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1 Introduction

General Relativity has the peculiar feature that it predicts its own demise via the so called
singularity theorems [1–3]. Nonetheless such theorems are based, as any mathematical
theorem, on a precise set of technical assumptions which may be partly or completely violated
under the extreme conditions reached at the inevitable Planckian densities characterising
the near-singularity regime [4, 5]. It is widely believed that such singularities are not truly a
physical feature of collapsed objects, but rather a red herring, indicating the breakdown of
the general relativistic description of spacetime, and that a quantum gravitational treatment
is required in order to predict the evolution of the geometry beyond such regions [6].

While it is not at all certain that a continuous and classical description of spacetime
would always be possible as a consequence of this quantum gravitational regularization
of the singular behaviour, it is not inconceivable that such a description can represent an
adequate proxy almost everywhere for the regularized spacetime. In this sense a vibrant
research program probing possible regular spacetimes mimicking general relativistic black
holes has been carried out over the years, and has entered in recent times — mainly thanks
to gravitational wave [7–14] and shadow observations [15–21] — into a revitalized phase
of advancement.
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Among the possible scenarios a particular preeminence has been taken by those of
regular black holes [22–32] and or horizonless ultracompact stars [33–40]. While the former
are solutions characterized by at least an outer and inner horizon but devoid of a singular
core, the latter are instead more radical configurations, in which horizons are completely
absent but the star surface resides well within the photon sphere of the object, which could
have definite phenomenological implications (see, e.g., [41–52]).

Regular black hole solutions and horizonless ultracompact stars, have so far been viewed
as alternative scenarios for resolving the singular behaviour of spacetime at the core of
classical black holes. The purpose of this manuscript is to show that they can instead be
viewed as alternative subsets of a given class of regular black-hole-like spacetimes. Note
that we use “stars” instead of the more general term “objects”, as the latter category is
broader and includes other geometries such as e.g. wormholes. It is known that wormholes
and regular black holes can coexist within the same family of geometries [53, 54], which has
also recently motivated the study of the associated phenomenology [52, 55, 56]. However,
that this is also true for horizonless stars has not been pointed out before, and both results
are not trivially related due to the different topology of the spacetimes involved. The
parallelisms and differences between both situations (horizonless stars and wormholes) will
be discussed in more detail elsewhere.

First of all, we shall show in section 2 that any family of static non-singular black holes
has an associated family of static horizonless stars, while the converse is also true if certain
energy conditions are violated by the horizonless stars to be considered. We shall then
discuss some of the properties of the horizonless stars associated with the Hayward family
of non-singular black holes in section 3. In section 4, we present a preliminary study of
whether these two kinds of black hole mimickers can be related dynamically. These results
can be of importance for the understanding of the dynamics of both families of black hole
mimickers, providing new clues about formation mechanisms and stability issues.

2 Regular black holes and their horizonless compact counterparts

In order to discuss the connection between horizonless compact objects and regular black
holes, we shall simplify the discussion by restricting our analysis to spherically symmetric
solutions. While of course, rotating/axisymmetric solutions are those of most interest for
astrophysical phenomenological studies, understanding in detail the spherically symmetric
case in detail is an important stepping stone. On the other hand, the considerations
we are going to make herein might be extendable to these more realistic configurations,
e.g., by suitably applying the Newman-Janis ansatz [57–61] to the solutions discussed in
this work (note that this ansatz does not always yield adequate sources [62–64], and thus
its applicability must be assessed carefully, which is out of the scope of this paper). In
what follows, we shall see that for the standard cases of spherically symmetric regular
black holes a unified description of the black hole and quasi-black hole limit is possible,
with a one-to-one correspondence under suitable assumptions on the matter content of
the spacetime.
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2.1 Geometric setting

As anticipated, in this paper we will be working with spherically symmetric spacetimes. In
this case the metric can without loss of generality be written as

ds2 = gab dxa dxb = −e−2Φ(v,r)
(

1− 2m(v, r)
r

)
dv2 + 2e−Φ(v,r) dv dr + r2dΩ2. (2.1)

Here, m(v, r) and Φ(v, r) are arbitrary functions of their arguments, and dΩ2 is the line
element on the unit 2-sphere. The function Φ(v, r) must be bounded in the domain of
definition of these coordinates for the metric determinant to be well defined.

The functionm(v, r) is the Misner-Sharp-Hernandez (MSH) gravitational energy [65, 66],
also known as the MSH quasi-local mass, which can be invariantly characterized as

m(v, r) = r

2
(
1− gab ∂ar ∂br

)
. (2.2)

Indeed, the right-hand side of the equation above is the definition of the MSH quasi-local
energy [65, 66], as can easily be checked by noticing that grr = 1− 2m(v, r)/r. It is also
worth mentioning that, as we are working in spherical symmetry, the MSH quasi-local mass
is coincident with the Hawking quasi-local energy [67–69].

It is well known that the MSH energy controls many key properties of the spacetime
geometry [69, 70]. In particular, a sphere is trapped if m(v, r) > r/2, marginally trapped
if m(v, r) = r/2 and untrapped if m(v, r) < r/2. All information about the structure of
(apparent/trapping) horizons is thus encoded in the function m(v, r); in particular, the
radial position of trapping horizons rhi

at some given time v = v? is implicitly determined
by the roots of the equation

2m(v?, rhi
) = rhi

. (2.3)

We assume that the metric functions are finite everywhere, which in particular means that
near the origin we can write

m(v, r) = m0(v) +m1(v)r +m2(v)r2 +O(r3),
Φ(v, r) = Φ0(v) + Φ1(v)r + Φ2(v)r2 +O(r3). (2.4)

It is then straightforward to conclude [4] that, as in the static limit [28], regularity at r = 0
of the following curvature invariants,

gabRab, RabR
ab, RabcdR

abcd, CabcdC
abcd, (2.5)

is equivalent to the conditions

m0(v) = m1(v) = m2(v) = 0,
Φ1(v) = 0. (2.6)

These conditions can be equivalently obtained by demanding that the effective energy
density and pressures remain finite at r = 0.

For simplicity, in the following we will drop the time dependence, until section 4 in
which we will discuss time-dependent situations in detail. Hence, in the following m(v, r)
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will have no explicit nor implicit time dependence, and Φ(v, r) will be an additively separable
function Φ(v, r) = Φ1(r) + Φ2(v) so that the v-dependent part Φ2(v) can be reabsorbed
in a redefinition of time. It is always possible to reinstate time dependence [71], with the
statements below being still valid for a given instant of time v = v?. We will also assume
the following conditions:

1. Asymptotic flatness.

2. Bounded curvature invariants.

3. Non-negative gravitational energy m(r) that displays a parametric dependence on the
Arnowitt-Deser-Misner (ADM) mass M , as well as an additional length scale `,

m(r) = Mf(r,M, `), (2.7)

such that there exists a redefinition ¯̀= Mh(`/M) for which

m(r) = Mf(r/¯̀). (2.8)

That is, we assume that m(r) displays a linear dependence on M , plus a generally non-
linear dependence on another length scale ¯̀. That is, all non-linear dependence on M
must be absorbable in a redefinition of the additional length scale ` so that, while the
linearity on M may not be explicit, there always exists a parametrization in which the
linearity is explicit. We will use both kinds of parametrizations in the discussion below,
as changing from one to another is straightforward. All models of regular black holes
in the literature we are aware of satisfy this condition, including the Bardeen [22, 23],
Hayward [27], and Dymnikova [24–26] regular black holes. Hence, this condition does
not seem particularly restrictive in practice, although understanding whether it could
be relaxed might be interesting for future work.

These spacetimes are general enough to describe diverse types of physical situations, in
particular regular black holes and horizonless stars. We will first discuss the implementation
of these conditions step by step in this section, and then discuss these two situations in
detail in sections 2.2 and 2.3, respectively.

The condition of asymptotic flatness is equivalent to

lim
r→∞

m(r) = M,

lim
r→∞

Φ(r) = Φ∞, (2.9)

where both constants M and Φ∞ are finite. The constant Φ∞ can be absorbed into a
rescaling of the null coordinate v, and without loss of generality can be set to zero.

Each of these geometries will be assumed to depend on two parameters, so that we
have a family {gab(M, `)}M∈R+,`∈R+ , where M is the ADM mass in its standard definition
for asymptotically flat spacetimes and ` is a new length scale.

The position of the trapping horizons for the two metrics gab(M, `) and gab(λM,λ`)
nominally change, but physically remain the same if we use λ` as the new reference to
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measure distances and masses. In fact, eq. (2.3) can be written (recall that we are dropping
the time dependence) as

2M
¯̀ f(rhi

/¯̀) = rhi

¯̀ . (2.10)

This equation can be written in terms of dimensionless variables ᾱ = ¯̀/M ∈ [0,+∞) and
x = rhi

/¯̀∈ [0,+∞). We will use this form of the equation above later on in our analysis.
Let us now discuss in more detail possible reparametrizations of the length scale `,

namely redefinitions of the length scale ` so that α = `/M changes as α→ ᾱ = ᾱ(α) for a
monotonically increasing function satisfying ᾱ(0) = 0. For instance, we can always consider
redefinitions of the form

` −→ ¯̀= `pM1−p = M(`/M)p, p > 0. (2.11)

Under such a redefinition, we have

α −→ ᾱ =
¯̀
M

=
(
`

M

)p
= αp. (2.12)

Note that both α and ᾱ take values in [0,+∞) due to p > 0. Then, we see that condition 3,
which assumes the existence of a redefinition of the form (2.11) for which

f(r,M, `) = f(r, ¯̀), (2.13)

is equivalent to

f(r,M, `) = f(r, `pM1−p) = f(r/[`pM1−p]), p > 0, (2.14)

which hence can be used as an alternative form for the same condition.

2.2 Non-singular black holes

Non-singular black holes are characterized by the condition that the time-independent
version of eq. (2.3),

2m(rhi
) = rhi

, (2.15)

has at least one root to accommodate the existence of an outer horizon as defined by
Hayward [27, 72]. The existence of at least one root, together with regularity at r = 0,
requires the existence of an even number of roots (counting multiplicities). This is a corollary
of eqs. (2.6) and (2.9).

Without loss of generality, we can focus our attention on the simplest case in which
there are two roots. If these roots are simple, these mark the location of outer and inner
horizons [27, 72]. If these roots have the same value, being therefore a double root, the
corresponding horizon is extremal in the sense that the associated surface gravity vanishes.
It is also possible to have intermediate situations in which both horizons have distinct
positions, but one of them is extremal [31, 32, 73].

The two roots, r+(α) and r−(α), are functions of the dimensionless parameter α = `/M

introduced above. We are using the naming convention that r−(α) ≤ r+(α), so that r+(α)
corresponds to the outer horizon and r−(α) to the inner horizon.

– 5 –
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These roots recover their values for the Schwarzschild geometry in the limit α→ 0:

lim
α→0

r−(α) = 0, lim
α→0

r+(α) = rS = 2M. (2.16)

The generic presence of an inner horizon is particularly relevant as it casts concerns regarding
the viability of such geometries. In fact, it has been shown that regular black holes suffer
from mass inflation instability [29, 30, 74]. Due to the large blueshift at the inner horizon, a
small perturbation has a large backreaction on the geometry, possibly destabilizing it. This
property is extremely general as it can be derived with purely geometrical considerations.
However, it is only possible to prove the presence of a linear instability, while the non-linear
analysis would require the knowledge of the dynamics of the theory leading to regular
black holes. The result of the non-linear analysis can be either a migration to a horizonless
configuration, or a regular black hole with zero surface gravity at the inner horizon, which
would not suffer from mass inflation instability [31, 32]. Regardless of this limitation, the
mass inflation instability teaches us that there is still a lot of work to do before we can
claim that regular black holes provide a complete alternative representation of black holes.

2.3 Horizonless stars

In contrast to regular black holes, horizonless stars are characterized by the condition that
eq. (2.15) does not have any roots. This guarantees the lack of horizons of any kind in
the geometry. The metric we are considering is not generally a vacuum solution of the
Einstein field equations, even if it asymptotically approaches the Schwarzschild geometry.
This allows us to define an effective radius of the source for which the deviations from the
Schwarzschild geometry become O(1) [49]. This effective radius R can be parameterized as
R = rs(1 + ∆), where rs is the Schwarzchild radius and ∆ ≥ 0. Thus for the “compactness”
of the star we have χ = 2M/R = 1/(1 + ∆). The smaller the value of ∆, the more compact
the geometry is considered, as the effective size of the source becomes smaller. Aside from
that, horizonless stars can still have tails for r > R, these tails being defined as modifications
of the geometry that decay with radial distance, typically following a polynomial law [49].

These geometries are horizonless, meaning that gvv(r) never vanishes, and therefore
there are no hypersurfaces of infinite redshift. However, gvv(r) can take arbitrarily small
values depending on the value of ∆, which means that the maximum redshift attained,
being the inverse of the former dimensionless quantity, can be arbitrarily large. To obtain
this maximum redshift, we just need to evaluate the minimum of the function 1/gvv(r). We
will calculate this for an specific example later, showing in particular that, for ∆� 1, the
maximum redshift scales as 1/∆.

There is an interesting parallelism between horizonless stars and regular black holes.
While horizonless stars do not have an inner horizon, and therefore do not display the
associated instability discussed in the previous section, it has been shown that horizonless
stars must have a even number of light rings, one of which is stable [75]. The presence of a
stable light ring is often associated with an unstable configuration, as massless perturbations
would pile up there and eventually their backreaction on the geometry would not be
negligible [76]. Contrary to the regular black hole case, this instability is non-linear and the
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analysis has to be carried out case by case in a model-dependent way. Recently, the presence
of such instability has been confirmed for some specific models of boson and Proca stars, in
which the presence of the stable light ring destabilizes the geometry in a short timescale
leading to either a non compact configuration or a collapse into a black hole [76]. More
analyses in different models of compact objects are required to understand if this instability
is a generic feature or if there are stable compact horizonless models. In particular, one
aspect that needs to be analyzed is that the standard argument requires that matter follow
null geodesics and can pile up at the light ring. This assumption is reasonable if there are
no interactions between matter and the central object. However, it is straightforward to
realize that the stable light ring is always contained within the non-vacuum region of the
geometry, which means that any interactions between the accreting matter and the matter
supporting the compact object (possibly mediated by the gravitational interaction) can
take over as the dominant process and render the instability meaningless.

Due to their quite different spacetime structures, horizonless stars and non-singular
black holes are typically considered as unrelated kinds of geometries. However, as we discuss
below, these two classes of geometries are in fact complementary subsets of the families of
geometries we are considering. In fact, each of the families considered above can be spit
into these two subsets (regular black holes and horizonless stars), with a marginal case
(extremal regular black hole) as the boundary between the two subsets.

2.4 Horizonless stars associated with non-singular black holes

In the discussion above, we have discussed how the structure of roots of gvv(r) [equivalently,
eq. (2.15)] determines whether the spacetime being considered is either a regular black hole
or a horizonless object. This is related to the values that the parameter α takes. We discuss
this explicitly below. We keep working with static geometries; general dynamical situations
will be analyzed in section 4.

The spacetimes we are studying are characterized by a function m(r) taking the form
in eq. (2.8). We have already discussed that it is useful to introduce dimensionless variables
ᾱ = ¯̀/M ∈ [0,+∞) and x = rhi

/¯̀∈ [0,+∞), as well as the function h(x) = x/2f(x), in
terms of which eq. (2.10) takes the form

1
ᾱ

= h(x). (2.17)

Assuming that the Misner-Sharp-Hernandez mass m(r) is non-negative, the function f(x)
must also be non-negative in its domain of definition x ∈ [0,+∞). Then, h(x) is bounded
from below, and we can define

h? = inf
x≥0

h(x) = inf
x≥0

x

2f(x) ≥ 0. (2.18)

• The equation (2.17) has zero solutions if ᾱ > 1/h?. The corresponding spacetime
describes a horizonless object.

• The equation (2.17) has one or more solutions if ᾱ = 1/h?. The corresponding
spacetime describes an extremal regular black hole.
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Figure 1. This figure illustrates how non-singular black hole geometries with ᾱ ∈ [0, ᾱ?] are
deformed into horizonless configurations for ᾱ ∈ (ᾱ?,+∞]. These horizonless configurations are
ultracompact for ᾱ−α? � 1 but become diluted (that is, the effective radius increases) for increasing
values of α. In fact, for Φ = 0 the ᾱ→∞ limit is the Minkowski spacetime. The solid line indicates
a non-singular black hole (ᾱ < ᾱ?), the sparsely dashed line an extremal non-singular black hole
(ᾱ = ᾱ?), the thinly dashed line an ultracompact horizonless object (ᾱ > ᾱ?, ᾱ− ᾱ? � 1), and the
dotted line a low-density horizonless configuration (ᾱ > ᾱ?, ᾱ− ᾱ? � 1). The white arrows indicate
how the functional profile of m(r) changes when ᾱ increases.

• The equation (2.17) has one or more solutions if ᾱ < 1/h?. The corresponding
spacetime describes a regular black hole.

Hence, we see that there always exists a critical value ᾱ = ᾱ? = 1/h? that divides the
family in two different subsets. Geometries with ᾱ ∈ (0, ᾱ?) describe regular black holes,
while geometries with ᾱ ∈ (ᾱ?,+∞) describe horizonless stars. There is a limiting case
ᾱ = ᾱ? describing an extremal regular black hole.

The compactness of horizonless stars is a function of ᾱ ∈ [ᾱ?,+∞), so that this
compactness is higher for ᾱ − ᾱ? � 1 while, in the limit ᾱ → ∞ these objects become
diluted and, in fact, Minkowski spacetime is recovered (see figure 1).

3 Explicit example: horizonless stars of Hayward type

In this section, we consider a specific example in order to illustrate our general discussion
above. Let us consider the static Hayward metric corresponding to the choices [27]:

m(r) = Mr3

r3 + 2`2M , φ(r) = 0, (3.1)

thus defining a specific two-parameter family of geometries {gab(M, `)}M∈R+,`∈R+ . The
parameter M is the Arnowitt-Deser-Misner (ADM) mass, while ` is a parameter with
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dimensions of length that controls the value of curvature invariants around the center
of spherical symmetry [27] as well as the effective stress-energy tensor sourcing the ge-
ometry. This metric satisfies eq. (2.14) for the specific value p = 2/3. That is, herein
¯̀= 3√

M`2 = M(`/M)2/3.
This effective stress energy tensor takes the form associated with an anisotropic perfect

fluid, with:

ρ(r) = 3`2
2π

(
m(r)
r3

)2
= −pr(r), pt(r) = 3`2

π

r3 − `2M
r3 + 2`2M

(
m(r)
r3

)2
= 2r3 − 2`2M

r3 + 2`2M ρ(r).
(3.2)

We note that

wr ≡
pr
ρ
≡ −1; wt ≡

pt
ρ

= 2(r3 − `2M)
r3 + 2`2M ∈ [−1, 2]. (3.3)

Thence

wt − wr = 3r3

r3 + 2`2M ≥ 0, (3.4)

which makes it clear that the pressures are anisotropic everywhere away from the centre
at r = 0.

As discussed above on general grounds, the relative values of ` andM or, more precisely,
the dimensionless quotient α = `/M , determine the structure of horizons of these geometries.
Studying the roots of eq. (2.3) shows that there are two single roots if α < 4/3

√
3, a double

root if α = α? = 4/3
√

3 (at r? = 4M/3 =
√

3`), and no roots if α > 4/3
√

3. This is
precisely the situation that we have described generically before, for a particular value of
α? that arises from the specific choice of functions in eq. (3.1). The presence of light rings
also depends on α. For small values of α there is only one light ring. For α ≥ α?, a second
light ring is formed. In particular, for α = α? the location of the inner light ring coincides
with the degenerate horizon. The situation is summarised in figure 2. The presence of
an odd numbers of light rings for a regular black hole is not peculiar to the Hayward
geometry. Appendix C, shows that this results is true for any spherically symmetric static
regular black hole (see also [77] for a related discussion of rotating solutions and their
phenomenology [78]).

The original motivation of Hayward in [27] was constructing an effective model for the
formation and evaporation of regular black holes, taking ` to be the Planck length. Under
this assumption, a macroscopic value of the mass M (e.g. one solar mass) would imply the
separation of scales `�M . Hayward assumed that the leading dynamical effects in regular
black holes could be described by promoting M to a time-dependent function, while keeping
the value of ` fixed. This is an assumption regarding the time evolution of this metric, that
we will put under scrutiny in section 4.

Let us consider two different situations, one in which this separation of scales takes
place, and another in which both scales are comparable. As we have discussed above, it
is more adequate to use the parameter α to describe these situations. In terms of this
dimensionless parameter, we can focus on two different situations of special interest:
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Figure 2. Location of the inner horizon (green), outer horizon (red), inner light ring (blue) and
outer light ring (yellow) for different values of α. The dashed line corresponds to α = α?.

• α � 4/3
√

3: as illustrated in figure 3, the corresponding geometries describe a
structure with a de Sitter core within the inner horizon, surrounded by a transition
region from the de Sitter core to a Schwarzschild geometry. Around the gravitational
radius, deviations from the Schwarzschild geometry are already strongly suppressed
by a factor α4, and decay polynomially with the radius.

• α ∼ 4/3
√

3: as illustrated in figure 4 and figure 5 the de Sitter core is still within in the
interior region, but deviations from the Schwarzschild geometry become O(1) at the
gravitational radius. The qualitative features of this effective source are reminiscent
of gravastars [33–35, 79], more specifically with models that avoid the introduction of
infinitesimally thin shells so that the pressure is continuous [36]. These similarities
include the equation of state for the radial pressure being pr = −ρ, with a positive
energy density, and with pr(0) = pt(0) = ρ(0) at the center of spherical symmetry,
with the pressure being anisotropic elsewhere, which is necessary for gravastar-like
configurations [36]. It is important to distinguish the cases α . 4/3

√
3 and α & 4/3

√
3.

In the first case, the geometry has both outer and inner horizons and a light ring
(see figure 4). In the second case, the geometry is now horizonless and possess a
second light ring which is located in a region where the effective stress energy tensor
is non-negligible (see figure 5).

When α takes values in between the two situations above, the corresponding geometries
describe intermediate situations in which the de Sitter core becomes larger as α increases.
These intermediate situations play an essential role in the dynamical considerations discussed
in the next section. For values of α greater than the ones considered in the second
case, the corresponding horizonless stars become more dilute progressively until becoming
indistinguishable from Minkowski spacetime in the α→∞ limit. We will not discuss further
these situations as we will mostly focus on ultracompact horizonless stars, but these less
compact configurations could still play an interesting role in phenomenological studies.
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Figure 3. Value of the relevant components of the Einstein tensor for M = 1 and α = 0.1. The
dashed black lines mark the inner and outer horizons, while the grey dot-dashed line correspond to
the light ring. The left figure shows that within the inner horizon the effective energy density and
pressures go to constant values for small r signaling the presence of a de Sitter core. The right figure
plots the same quantities on a different scale to show that deviations from Schwarzschild geometry
are strongly suppressed at the outer horizon.

Figure 4. Value of the relevant components of the Einstein tensor for M = 1 and α = α? − 0.01.
The dashed lines mark the inner and outer horizon, while the grey dot-dashed line correspond to
the light ring. The effective energy density and pressures go to constant values for small r signaling
the presence of a de Sitter core. Deviations from Schwarzschild geometry decay at large distances,
but they are still non-negligible at the gravitational radius.

4 Dynamical considerations

In the previous section we have discussed specific static examples. The fact that the family
of static geometries considered contains both non-singular black holes and horizonless stars
suggests that it may be possible to find dynamical geometries in which non-singular black
holes evolve towards horizonless stars. There is currently no known system of nonlinear
equations leading to the formation of regular black holes from regular initial data (see,
however, related results in recent works [80, 81]), or describing dynamically evolving regular
black holes, and therefore a detailed analysis of this issue is currently out of reach. However,
it is still possible to discuss some generic aspects of this problem, in particular whether

– 11 –
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Figure 5. Value of the relevant components of the Einstein tensor for M = 1 and α = α? + 0.01.
The geometry does not possess horizons. Beside the outer light ring, a second light ring is present.
The two light rings are marked by the grey dot-dashed lines. The inner light ring is located in a
region where the effective energy and pressures are non-negligible.

semiclassical physics contain the seeds for this evolution, by analyzing the effective stress-
energy tensor associated with these interpolating dynamical geometries. We will see that
the results obtained analyzing the effective stress-energy tensor are compatible with existing
perturbative analyses of the semiclassical backreaction of quantum fields [82, 83], thus
encouraging further research in this direction.

Let us consider for simplicity the metric (2.1) with Φ(v, r) = 0,

ds2 = −
(

1− 2m(v, r)
r

)
dv2 + 2dvdr + r2dΩ2. (4.1)

This is sometimes called generalized Vaidya spacetime. The time independence is introduced
by promoting M and ` to functions of v, so that the time dependence on m(v, r) is implicit.

It is certainly possible to prescribe functions M(v) and `(v) that lead to a transition
between regular black holes and horizonless stars. This require that ` flows from an initial
value `0 to a value greater than αcritM(v), where the specific value of αcrit depends on the
specific model (for instance, αcrit = 4/3

√
3 for the Hayward model). The goal of this section

is to understand here is whether such evolution can be justified within the framework of
semiclassical physics.

The non-zero components of the effective stress energy tensor associated with the metric
in eq. (4.1) are given by

Tv
v =Tr

r =− 1
4πr2

∂m(v,r)
∂r

, Tθ
θ =Tφ

φ =− 1
8πr

∂2m(v,r)
∂r2 , Tv

r = 1
4πr2

∂m(v,r)
∂v

.

(4.2)
Ordering the coordinates as (v, r, θ, φ) we can write it in the matrix notation as

Ta
b = − 1

8πr2


2m′ −2ṁ 0 0

0 2m′ 0 0
0 0 rm′′ 0
0 0 0 rm′′

 . (4.3)
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This is of non-trivial Jordan normal form, and specifically, guarantees that the stress-energy
tensor is of Hawking-Ellis type II [84]. Indeed one has Tab = T I ba + ṁkak

b/4πr2, where k a
is a suitable outward-pointing null vector is ka = (0, 1, 0, 0), with corresponding co-vector
ka = (1, 0, 0, 0), and T I ba is type I (thus diagonal).

Let us analyze two different situations:

• If there is no explicit time dependence, m = m(r) and the only non-vanishing
components are Tv v, Tr r, Tθ θ, Tφ φ. These components indicate the stresses that are
necessary to maintain the geometric structure, for instance of a static regular black
hole.

• When switching on time dependence, the components of the stress-energy tensor
split naturally into two kinds of components. The components Tv v, Tr r, Tθ θ, Tφ φ
do not get any additional contributions and remain the same from both functional
and conceptual perspectives, and describe how the stresses necessary to maintain the
time-dependent structure change in time. Aside from this, there is an additional flux
Tv

r, that can be written as

Tv
r = 1

4πr2

(
∂m(v, r)
∂M(v)

∂M(v)
∂v

+ ∂m(v, r)
∂`(v)

∂`(v)
∂v

)
. (4.4)

4.1 Time dependence in the ADM mass

Let us now compare the expressions of the stress energy tensor obtained when we promote
only one of the two quantities M and ` to be a function of time. From eq. (4.4), we learn
that the radial profile of the flux does not depend on the actual time dependence we show for
these parameters, but rather on the quantities ∂m/∂M and ∂m/∂`. Hence, an analysis of
these quantities can contain valuable information about the radial behavior of the effective
source in these geometries.

Let us starting by promoting M to a function M(v). Given that the quasilocal mass
function m(v, r) has to approach the value of the asymptotic mass M(v) for large values of
the radius, we have

lim
r→∞

∂m(v, r)
∂M(v) = 1 . (4.5)

Therefore, at large distances we have

Tv
r = 1

4πr2 Ṁ +O
(
r−3

)
, (4.6)

where Ṁ = ∂M/∂v.
This behaves as a flux of radiation for r →∞ (decays as 1/r2). The flux is positive if

Ṁ(v) > 0 and negative if Ṁ(v) < 0. On the other hand, the value of Tv r for small values
of r depends on the choice of the geometry. For concreteness, let us consider the Hayward
geometry (3.1). We have then

Tv
r = 1

4π
r4Ṁ

(r3 + 2`2M)2 (4.7)
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As discussed before, this behaves as a flux of radiation for r →∞. The value of r = r? for
which this flux is maximal is determined by the relation

4r3
?(r3

? + 2`2M)− 6r6
? = 0, (4.8)

namely
r? = (`2M)1/3. (4.9)

The radial profile associated with this flux is displayed in figure 6.

4.2 Time dependence in the core size

Let us now consider the case in which we only promote ` to a function `(v). As before, the
asymptotic behavior is fixed by the requirement that m(v, r) at large distances approaches
M and it is therefore independent of `

lim
r→∞

∂m

∂`
= 0 . (4.10)

Therefore, Tv r decays more rapidly than a flux of radiation. Considering again the Hayward
geometry, we have

Tv
r = − 1

π

rM2` ˙̀
(r3 + 2`2M)2 , (4.11)

where ˙̀ = ∂`/∂v. Which, as expected, decays more rapidly than a flux of radiation for
r →∞ (namely as 1/r5). Note also that there is a relative minus sign with respect to the
case discussed previously. The flux is positive if ˙̀(v) < 0 and negative if ˙̀(v) > 0.

The value of r = r? for which this flux is maximal is determined by the relation

r3
? + 2`2M − 6r3

? = 0, (4.12)

namely
r? = 3

√
`2M/5. (4.13)

This maximum is at a different position than the maximum in eq. (4.9). The differences
between the radial behavior of both fluxes is illustrated more clearly in figure 6.

4.3 Summary

In the previous two sections, we have discussed the effective source associated with two
different kinds of situations:

• Promoting M to a function M(v): this is a standard choice in the literature (e.g. [27])
to describe the evaporation of black holes. It is reasonable to assume that a time
dependence on this sort is present, and the corresponding effective source is consistent
with semiclassical physics from around the outer horizon to the asymptotic region.

• Promoting ` to a function `(v): this possibility has not previously been considered,
to the best of our knowledge, and we have found that the effective source associated
with it takes qualitatively the same form as the one in the item above, but just with a
different radial profile so that this effective source is localized around the inner horizon.

– 14 –
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Figure 6. Values of ∂m/∂M and ∂m/∂` which are proportional to the flux required to promote
either M or ` to a function of time. We considered the Hayward geometry evaluated at the values
M = 1 and ` = 0.1. The dotted lines correspond to the inner and outer horizon. The flux associated
to the time dependence of the ADM mass M monotonically increases from 0 to a constant value,
while the flux associated to the time dependence of the regularization parameter ` goes to zero both
at the center and asymptotically and it reaches a maximum value slightly outside the inner horizon.

Both points above imply that assuming that ` remains constant is a strong assumption,
given our lack of knowledge of semiclassical backreaction in the interior of regular black
holes. In other words, there is no proof that just promoting M to a function M(v) provides
a good effective description of semiclassical physics. It is necessary to analyze carefully
the semiclassical backreaction around the inner horizon to determine whether or not the
standard picture of evaporation involves also a time dependence of the form `(v), and
therefore a displacement of the inner horizon. The only studies of this issue that have been
performed so far show results that are indeed consistent with an evolution of this length
scale [82, 83], so that the inner horizon is displaced outwards. This is also consistent with
what one would expect on the basis of the instability of inner horizons [29, 30].1 As we
have discussed in this paper, this could be the first steps in the dynamical evolution of
regular black holes towards horizonless ultracompact stars. Hence, we think that a careful
analysis of semiclassical physics around inner horizons, and not only outer horizons, is of
fundamental importance in order to understand the structure of black holes.

5 Conclusions

In this paper we have shown that each family of regular black holes has a complementary
family of horizonless stars, a subset of which are ultracompact. This connection has never
been identified in the literature to the best of our knowledge and, in fact, these different
objects were considered to describe alternative end states of black holes once the new physics
necessary to get rid of singularities is included in the picture.

1An alternative possibility is that the surface gravity evolves dynamical towards a vanishing value, resulting
in the geometry proposed in [31, 32]. We leave a detailed discussion of this possibility for future work.
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We also stress that our analysis clarifies how the inner/outer horizon structure intrinsic
to the regular black hole geometries is deformed continuously into an inner/outer light
ring structure for the exterior of the ultracompact stars obtained as the complementary
geometries to the regular black hole geometries. It is also interesting to note that both
inner horizons and light rings pose similar viability issues for the corresponding models,
which strongly suggests that some form of dynamics is needed to characterize at least the
early times of these objects.

Indeed, our work provides further evidence that these different geometries may in fact
represent different phases of black holes during their lifetime. We have analyzed dynamical
situations in which regular black holes evolve towards horizonless stars, and show that it is
plausible that the effective stress-energy tensor that results in the first stages of evolution
is compatible with semiclassical physics. Hence, gravitational collapse may lead first to a
regular black hole, that could evolve dynamically towards an ultracompact horizonless star.
The details of such a transition need to be fleshed out, but we think the evidence for the
plausibility of this scenario is strong enough to call for future studies of this issue.

A Horizonless stars of the Bardeen type

While in this article we have concentrated on the Hayward black hole it is worth asking
whether looking at the Bardeen [22] regular black hole teach us anything fundamentally new.
Indeed, the key differences for the Bardeen regular black hole [22] are that the Misner-Sharp
quasi-local mass is now replaced by

m(r) = Mr3

(r2 + `2)3/2 , (A.1)

implying that for the Bardeen regular black hole one can conveniently set ¯̀= `.
The density and principal pressures become

ρ = −pr = 3M`2

4π(r2 + `2)5/2 ; pt = 3M`2(3r2 − 2`2)
8π(r2 + `2)4/2 . (A.2)

Then for the w parameter:

wr = −1; wt = 3r2 − 2`2
2(r2 − `2) ∈ [−1, 3/2]. (A.3)

To find the critical point where a Bardeen RBH switches over to a Bardeen ulta-compact
object you need to simultaneously solve

r = 2m(r); and 1 = 2m′(r). (A.4)

This happens when

r2 = 2`2; ` = 4
√

3
9 M. (A.5)

So there are definitely many qualitative similarities to the Hayward case (for instance, we
still have wt ≈ −1 in the de Sitter core r � `); but a few technical (quantitative) changes.
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B Unifying the Hayward and Bardeen metrics

To unify the discussion of the Hayward and Bardeen metrics we could (setting Φ(r) = 0)
consider a quasi-local mass function m(r) of the form:

m(r) = Mr3(
r(2+n) + `2(2M)n

)(3−n)/2 . (B.1)

Hayward is n = 1 and Bardeen is n = 0. In this framework one would find it convenient to
set ¯̀= (`2Mn)1/(2+n) = M(`/M)2/(2+n).
Another possibility would be to take

m(r) = Mr3

(rn + [`aM (1−a)]n)(3/n) . (B.2)

Bardeen would be n = 2; a = 1, Hayward would be n = 3; a = 2/3. But this form of the
quasi-local mass is a little trickier to use. In this framework one would find it convenient to
set ¯̀= `aM (1−a) = M(`/M)a.
Overall, we see that attempting to generalize the discussion from Hayward to Bardeen
geometries, while introducing several quantitative technical changes, does not really involve
any qualitatively new concepts.

C Light rings and trapped regions

In section 3, we have seen that the Hayward geometry has only one light ring for the
values of α for which a trapped region is present, and two light rings when there is no
trapping region. In the limiting case in which α = α?, the stable light ring coincides with
the degenerate horizon. Here we show that this structure is completely general and holds
true for any spherically symmetric geometry with a trapped region.

In (t, r, θ, φ) coordinates, the location of the light rings can be obtained finding the
local extrema of the effective potentials [76, 85],

V± =
gtφ ±

√
g2
tφ − gttgφφ
gφφ

. (C.1)

For a spherically symmetric configuration

ds2 = −e−2Φ(r)F (r)dt2 + F−1(r) dr2 + r2dΩ2 , (C.2)

the condition for the light rings reads

∂rV = 0 ⇐⇒ d

dr

(
e−Φ(r)

r

√
−F (r)

)
= 0 . (C.3)

Which is equivalent to

g(r) := 1
2F
′(r)−

(
Φ′(r) + 1

r

)
F (r) = 0 , (C.4)
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where the prime denotes derivative with respect to r. This equation is guaranteed to have an
even number of solutions (counting multiplicity) [85]. However, such solutions corresponds
to light rings only if F (r) > 0, as otherwise the effective potential would be imaginary. This
implies that any solution of eq. (C.4) inside a trapped region must be discarded, so that
the corresponding spacetime has an odd number of light rings. It is easy to show that there
is an odd number of light rings whenever a trapped region is present. In fact, both at the
inner and outer horizons we have F = 0, while we have F ′ < 0 at the inner horizon and
F ′ > 0 at the outer horizon. Therefore,

g(r−) < 0 , g(r+) > 0 . (C.5)

This shows that there is always an odd number of roots of eq. (C.4) between the two
horizons. Therefore, a regular black hole has an odd numbers of light rings, and we can
conclude that the structure of figure 2 is general for every spherically symmetric static
spacetime with a trapped region.
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