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Abstract

High throughput measurements of DNA methylomes at single-cell resolution are
a promising resource to quantify the heterogeneity of DNA methylation and uncover
its role in gene regulation. However, limitations of the technology result in sparse
CpG coverage, effectively posing challenges to robustly quantify genuine DNA methy-
lation heterogeneity. Here we tackle these issues by introducing scMET, a hierarchical
Bayesian model which overcomes data sparsity by sharing information across cells and
genomic features, resulting in a robust and biologically interpretable quantification of
variability. scMET can be used to both identify highly variable features that drive epi-
genetic heterogeneity and perform differential methylation and differential variability
analysis between pre-specified groups of cells. We demonstrate scMET’s effectiveness
on some recent large scale single cell methylation datasets, showing that the scMET
feature selection approach facilitates the characterisation of epigenetically distinct cell
populations. Moreover, we illustrate how scMET variability estimates enable the for-
mulation of novel biological hypotheses on the epigenetic regulation of gene expression
in early development. An R package implementation of scMET is publicly available at
https://github.com/andreaskapou/scMET.

Introduction

DNA methylation (DNAm) at cytosine residues plays an important role in the regulation of
gene expression (Jaenisch and Bird, 2003). It is also critical for a broad range of biological
processes, including X-chromosome inactivation, genomic imprinting and cancer (Avner and
Heard, 2001; Baylin and Jones, 2011; Reik and Walter, 2001). The gold standard approach
to profile DNAm at single-base resolution is to treat DNA with sodium bisulphite, which
efficiently converts unmethylated cytosines to uracils, while leaving methylated cytosines
unmodified (Krueger et al., 2012). Although bulk bisulphite sequencing (BS-seq) experiments
have paved the way for mapping the methylome landscape across different tissues, they fall
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short of explaining the inter-cellular methylation heterogeneity and quantifying its dynamics
in a variety of biological contexts (Schwartzman and Tanay, 2015).

More recently, advances in sequencing technologies have enabled the development of proto-
cols that profile DNAm with single-cell resolution (e.g. scBS-seq, Guo et al., 2013; Smallwood
et al., 2014) and multiplexing protocols offer scalability to thousands of cells in a single ex-
periment (Luo et al., 2017; Mulqueen et al., 2018). In contrast to gene expression signatures
from scRNA-seq experiments, which are influenced by the environment, DNA methylation
profiles are highly distinct between cell types and stable across individuals and over the life
span (Lister et al., 2013; Mo et al., 2015). Moreover, whilst scRNA-seq assays might fail to
capture information about genes with moderate expression levels, cell-level measurements of
DNAm offer a more complete coverage across genomic regions (Luo et al., 2017). However,
due to the small amounts of initial genomic DNA and the destructive nature of bisulphite
on nucleic acids, the output data are often noisy and extremely sparse; that is, a large pro-
portion of CpG dinucleotides is not observed (ranging from 80% to 95%). While tailored
computational imputation methods such as Melissa (Kapourani and Sanguinetti, 2019) and
DeepCpG (Angermueller et al., 2017) might ameliorate the sparsity problem, disentangling
genuine epigenetic variability from technical biases remains a formidable problem.

Here we present scMET, a Bayesian framework that addresses the statistical challenges
associated with sparse scBS-seq data and provides novel functionality that is tailored to
single-cell level datasets. To overcome sparsity, scMET aggregates the input data within
regions (hereafter also referred to as genomic features): either by combining CpG informa-
tion in a sliding window approach or using pre-annotated contexts, such as promoter regions
or enhancers (Gravina et al., 2016; Smallwood et al., 2014). To dissect genuine epigenetic
variability from the many confounding technical biases, scMET adopts a hierarchical model
specification which shares information across cells and genomic features, whilst incorporat-
ing feature-level characteristics (e.g. CpG density). Critically, scMET introduces residual
overdispersion estimates as a measure of DNAm variability that is not confounded by dif-
ferences in mean methylation. These estimates can be used to perform differential DNAm
variability testing among groups of cells, embracing the cellular resolution of the data to
provide novel insights which are not possible using traditional differential mean tests on bulk
data (Lähnemann et al., 2020). scMET can also identify highly variable features (HVFs)
which, among others, can be used as input for unsupervised clustering analyses.

scMET scales readily to thousands of cells and features, making it a powerful tool for
large scale single-cell epigenetic studies. Our results both on simulated and real datasets
demonstrate that it can accurately and robustly quantify DNAm heterogeneity. Results on
two recent large scale datasets show that scMET detects biologically relevant highly variable
features which result in improved clustering performance. In addition, we show that scMET
can facilitate the interrogation of single-cell multi-omics assays, yielding novel biological hy-
potheses on the role of epigenetic variability in gene regulation in early development.

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.07.10.196816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.196816
http://creativecommons.org/licenses/by-nc/4.0/


Results

Quantifying cell-to-cell DNAm heterogeneity with scMET

To disentangle technical from biological variability and overcome data sparsity, scMET cou-
ples a hierarchical beta-binomial (BB) model with a generalised linear model (GLM) frame-
work (Fig. 1a-b). For each cell i and feature j, the input for scMET is the number of CpG
sites that are observed to be methylated (Yij) and the total number of sites for which methy-
lation status was recorded (nij). The BB model uses feature-specific mean parameters µj
to quantify overall DNAm across all cells and biological overdispersion parameters γj as a
proxy for cell-to-cell DNAm heterogeneity. The latter capture the amount of variability that
is not explained by binomial sampling noise, which would only account for technical vari-
ation. Hence, γj is akin to the overdispersion term used in negative binomial models for
RNA-seq data (e.g. Love et al., 2014). Although BB models have been developed for bulk
DNAm data (e.g. Dolzhenko and Smith, 2014; Feng et al., 2014), they typically use data from
individual CpG sites as input; a strategy prone to fail for the highly sparse scBS-seq data.

The GLM framework is incorporated at two levels. Firstly, to introduce feature-specific
covariates xj (e.g. CpG density) that may explain differences in mean methylation µj across
features. Secondly, similar to Eling et al. (2018), we use a non-linear regression framework
to capture the mean-overdispersion trend that is typically observed in high throughput se-
quencing data, such as scBS-seq (Fig. 1c). Critically, this trend is used to derive residual
overdispersion parameters εj — a measure of cell-to-cell variability that is not confounded
by mean methylation. Feature-specific parameters are subsequently used for: (i) feature
selection, to identify highly variable features (HVFs) that drive cell-to-cell epigenetic het-
erogeneity (Fig. 1d) and (ii) differential methylation testing, to highlight features that show
differences in DNAm mean or variability between specified groups of cells (Fig. 1e).

By using a Bayesian formulation, scMET infers the posterior distribution for all model
parameters (Methods). Moreover, a variational Bayes scheme (Blei et al., 2017) permits
scalable analysis to thousands of cells and features (Supplementary Fig. S1), while having
comparable posterior inference performance when compared to a Markov Chain Monte Carlo
implementation (Supplementary Fig. S2 and S3). As in Bochkina and Richardson (2007), the
output generated by scMET is used to implement a probabilistic decision rule to enable HVF
selection and differential methylation testing. The decision rule is calibrated to control the
expected false discovery rate (EFDR, Newton et al., 2004). A more detailed description of
the model specification and its implementation is provided in the Methods section. scMET is
implemented as an R package and is available at https://github.com/andreaskapou/scMET.
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Figure 1: Graphical outline for scMET. (a) Overview of the scMET probabilistic graphical
model. The random variables and data that form the model, along with the distributional assump-
tions, are shown. Input values are denoted by gray circles. Model parameters are denoted by white
circles. (b) scMET uses single-cell DNAm data as input. The data could consist of measurements
obtained from different groups of cells, such as experimental conditions or cell types (represented
by green and orange colours in the diagram). For each region of interest (e.g. promoters), the
input data is recorded in terms of the number of CpG sites for which a valid measurement was
recorded and, among those, the number of methylated CpG sites. (c) By combining a hierarchical
beta-binomial specification with a generalized linear model framework, scMET captures the mean-
overdispersion relationship (left) that is typically observed in bisulphite sequencing readouts and
derives residual overdispersion estimates that are not confounded by mean methylation (right). (d)
scMET can be used to identify HVFs that drive epigenetic heterogeneity within a cell population.
For example, these could be used as the input of dimensionality reduction techniques or clustering
analyses. (e) scMET uses a probabilistic decision rule to perform differential methylation analysis:
to identify features that show differences in mean methylation (left) and/or methylation variability
(right) between pre-specified groups of cells.
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Benchmarking scMET on synthetic data

First, we benchmark the performance of scMET using synthetic data. To mimic the proper-
ties observed in real scBS-seq data, we simulated features with rich and poor CpG density
(see Methods for details about the simulation settings). We compared mean and overdis-
persion estimates obtained by scMET with respect to BB maximum likelihood estimates
(BB MLE), which were obtained separately for each feature. As expected, mean parameters
µj are easier to infer and estimates were comparable across both methods (Supplementary
Fig. S4). However, scMET outperformed BB MLE when inferring overdispersion parameters
γj, particularly for small numbers of cells (Supplementary Fig. S5).

To assess whether the shrinkage introduced by scMET improves overdispersion estimates
in real data, we performed down-sampling experiments based on a subset of the dataset in-
troduced by Luo et al. (2017). For this analysis, we focused on 424 inhibitory neurons (a
more detailed description is provided in Methods). We compared estimates obtained using
the full and down-sampled datasets (Supplementary Fig. S6). We observed scMET posterior
estimates to be more stable than BB MLE as the sample size decreased, suggesting that
scMET leads to more robust inference. This is particularly important for rare cell popula-
tions or during early development, where large numbers of cells are difficult to obtain. In
combination with the simulation study described above, this showcases the benefits of using
a Bayesian hierarchical framework to share information across cells and genomic features.

Finally, we evaluated the performance of scMET as a tool to identify differentially methy-
lated (DM) and differentially variable (DV) features. For this purpose, we generated synthetic
data representing two cell types, for varying number of cells and different effect sizes in terms
of log-odds ratio (Supplementary Note S2.3). For the DM analysis, we compared scMET
against the Fisher’s exact test, which has been previously used for BS-seq data (e.g. Challen
et al., 2012). We observed better performance for scMET in terms of the F1-measure, es-
pecially for CpG rich features (Supplementary Fig. S7). scMET led to better type I error
control, but to more conservative results (Supplementary Fig. S8). In terms of DV testing,
the simulation study showed that for small effect sizes we would need more than 200 cells to
achieve 50% to 80% power, whereas for features with larger effect sizes we would need around
50 cells per group to achieve 80% power (Supplementary Fig. S9).
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scMET improves feature selection for unsupervised analysis of single-cell methy-
lomes from the mouse frontal cortex

To demonstrate the performance of scMET in real data, we considered a dataset where
DNA methylation was profiled in 3,069 cells isolated from the frontal cortex of young adult
mice (Luo et al., 2017). To date, this is one of the largest and most heterogeneous publicly
available scBS-seq datasets. The main source of heterogeneity in this dataset is due to two
broad classes of neurons: excitatory (I = 2,645) and inhibitory (I = 424). Within each class,
a hierarchy of sub-populations can be identified according to the cortical depth (Fig. 2a),
where excitatory neurons progress from deep layers (mDL-1, mDL-2, mDL-3, mL6-1, mL6-2)
to middle (mL5-1, mL5-2, mL4) and superficial layers (mL2/3). These groups were validated
in the original study, and thus can be used as a benchmark for clustering analyses.

We applied scMET to genomic features from three different putative regulatory elements:
gene promoters within 2kb around transcription start site (J = 12,774), distal H3K27ac
peaks (J = 17,284) and H3K4me1 peaks (J = 30,374). As expected, scMET captured the
mean-overdispersion relationship within each genomic context, and estimates for residual
overdispersion parameters εj were not confounded by mean DNAm (Supplementary Fig. S10).

Here, we illustrate scMET as a feature selection tool, using residual overdispersion esti-
mates to identify HVFs that can be used as input for unsupervised analyses, such as cluster-
ing. For each genomic context, we selected HVFs (Supplementary Fig. S11a) and performed
a clustering analysis with varying numbers of HVFs (ranked by decreasing values of their as-
sociated tail posterior probabilities) as input. More concretely, we performed dimensionality
reduction followed by k-means clustering (Methods) and used the adjusted Rand index (ARI,
Hubert and Arabie, 1985) to quantify agreement with respect to the sub-populations validated
by Luo et al. As a comparison, we also evaluated two alternative HVF selection strategies
based on Gaussian and binomial models (Methods). As expected, the clustering performance
improved steadily with increasing number of HVFs for all three methods. However, scMET
consistently led to better clustering performance (Fig. 2b and Supplementary Fig. S11b, as
well as Supplementary Fig. S12 and S13 for visual inspection in a low dimensional space).
We could already separate inhibitory from excitatory neurons using only the top 100 HVFs
obtained by scMET, and generally resulted in more distinct cell sub-populations. In all cases,
promoters were less able to disentangle the neuronal sub-populations. This is consistent with
the lower overdispersion levels observed in this genomic context (Supplementary Fig. S11c).

To facilitate interpretation for the HVFs highlighted by scMET, we linked genomic fea-
tures to genes by overlapping the genomic coordinates allowing for a maximum distance of
20kb from the transcription start site in the case of distal elements. We explored whether
features identified as HVF (red points in Fig. 2c and Supplementary Fig. S14a) were enriched
for neuronal markers identified in the Luo et al. (2017) study (Supplementary Table S1).
This enrichment was observed for distal H3K27ac and H3K4me1 marks, but not for promot-
ers (Supplementary Fig. S14b). As representative examples, we display three distal H3K27ac
elements among the HVFs that are located proximal to known gene markers of each neuron
class: Gad1 for inhibitory, Neurod6 and Sv2b for excitatory (Fig. 2d).
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Figure 2: Feature selection using scMET characterises known heterogeneity on the
mouse frontal cortex. (a) UMAP (Becht et al., 2019) representation of neuron sub-populations
present in the mouse frontal cortex dataset by combining the top 4,000 HVFs identified by scMET
across distal H3K27ac and H3K4me1 genomic contexts. Cells are coloured according to the original
cell sub-population assignments obtained by Luo et al. (b) Clustering performance in terms of ad-
justed Rand index (ARI), for varying number of HVFs. HVF selection was based on scMET’s resid-
ual overdispersion parameters εj (yellow), binomial variance (grey) and Gaussian variance (blue).
A finite grid of HVFs was used for ARI evaluation and non-parametric regression was used to
obtain a smoothed interpolation across all values (Methods). (c) Identifying HVFs for the distal
H3K27ac genomic context. Red points correspond to features being called as HVF (EFDR = 10%
and percentile threshold δE = 90%). To ease interpretation each element is linked to its nearest
gene. Labels highlight known neuron marker genes that were used in the Luo et al. (2017) study to
define the different cell populations. (d) Example distal H3K27ac HVFs whose methylation patterns
distinguish the two broad neuronal populations. Panel titles correspond to the nearest genes.
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scMET enables differential methylation testing between cellular sub-populations

To showcase scMET as a differential methylation tool, we applied it on the same mouse frontal
cortex dataset (Luo et al., 2017), after separating the cells in excitatory and inhibitory groups.
Initially, we applied scMET to characterise differential methylation (DM), i.e. changes in
mean methylation. Across all genomic contexts, we observed a substantially larger fraction
of features being hyper-methylated in inhibitory compared to excitatory neurons (Fig. 3a
and Supplementary Fig. S15a). Within distal H3K27ac peaks, for instance, scMET identified
5,242 features to have higher methylation levels in inhibitory neurons, compared to only
935 features showing higher methylation in the excitatory group (Fig. 3a-b). After mapping
features to their nearest gene, we observed that DM hits were enriched for known marker
genes that differentiate inhibitory and excitatory neurons (Supplementary Fig. S15b).

Besides DM testing, the primary focus of the scMET differential test is to identify changes
in cell-to-cell methylation variability. In principle, differential variability (DV) testing could
be based on feature-specific overdispersion parameters γj, but these results would be con-
founded by the mean-overdispersion trend (Fig. 1c). Hence, meaningful DV analysis based
on γj would need to be restricted to non-DM features. Instead, we propose to perform DV
analysis based on residual overdispersion parameters εj. For the mouse frontal cortex dataset,
we identified a large number of DV features across genomic contexts, except from promoter
regions which showed tighter methylation patterns across inhibitory and excitatory neurons
(Fig. 3c and Supplementary Fig. S16a). Critically, the procedure for calling DV features was
not confounded by mean methylation levels (Fig. 3c and Supplementary Fig. S16b).

As representative examples, we show two distal H3K27ac peaks that are located proximal
to neuronal markers and exhibit higher variability in excitatory neurons (Fig. 3d). Both
features show substantial variation across the different sub-types of excitatory neurons: the
first is mostly unmethylated in the mL6 cortical layer, the second is mostly unmethylated in
the superficial cortical layer. These patterns are consistent with previously reported spatial
expression for Tle4 (mostly expressed in the deep cortical layer, see Sorensen et al., 2015;
Zahr et al., 2018) and Cux1 (which shows expression specificity for the superficial layer, see
Georgala et al., 2011; Zahr et al., 2018). It should be noted that these features would be
excluded from DV analysis based on γj, since they are also DM between the two broad classes
(Fig. 3a). In summary, these findings demonstrate the ability of scMET to identify potential
markers that drive between and within cell population heterogeneity.
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Figure 3: Summary of changes in methylation patterns (mean and variability) for in-
hibitory and excitatory neurons. (a) Identifying differentially methylated (DM) features for
the distal H3K27ac genomic context. Green and pink points correspond to features showing higher
mean methylation in inhibitory (Inh+) and excitatory (Exc+) neurons, respectively. Labels high-
light neuron marker genes that were used in Luo et al. (2017) to define the different cell populations.
Blue vertical dashed lines correspond to log-odds ratio threshold ψM = ± log(2). Yellow horizon-
tal dashed line is located at posterior evidence probability cut-offs defined by EFDR = 5%. (b)
Representative heatmap of methylation rates (Yij/nij) across cells (columns) and features (rows)
for the distal H3K27ac genomic context. Cells are grouped in excitatory and inhibitory classes. A
set of randomly selected features is displayed. These are grouped according to the DM analysis
output as: Exc+, Inh+ and no mean methylation difference. The colour code represents features
with low (0, green) and high (1, yellow) mean methylation level. Features with no CpG coverage
are denoted with white colour. (c) Identifying differentially variable (DV) features for the distal
H3K27ac genomic context. Green and pink points correspond to features showing higher methy-
lation variability in inhibitory and excitatory neurons, respectively. Blue dashed lines correspond
to log-odds ratio threshold ψE = ± log(1.5). Yellow dashed line is located at posterior evidence
probability cut-offs defined by EFDR = 5%. For each feature, posterior estimates for the change in
residual overdispersion parameter εj between excitatory and inhibitory neurons is plotted against
the posterior tail probability of calling a feature as DV (left). For each feature, posterior estimates
for mean methylation parameter µj is plotted against posterior estimates for the change in resid-
ual overdispersion parameter εj between excitatory and inhibitory neurons (right). (d) Example
features that are called as being more variable in excitatory neurons. Left subplots show broad
differences in methylation patterns. Right subplots show methylation patterns separately within
each broad neuronal class. Each data point represents the methylation rate for a cell.
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Exploring the relationship between transcriptional and DNAm variability using
single-cell multi-omics data

As a second use case, we considered a single-cell multi-omics dataset where scNMT-seq (Clark
et al., 2018) was employed to profile RNA expression, DNAm and nucleosome occupancy at
single-cell resolution, spanning multiple time points from the exit from pluripotency to pri-
mary germ layer specification (Argelaguet et al., 2019). The multi-modal nature of this
dataset provides a unique opportunity to link cell-to-cell variation between DNAm and tran-
scription across individual cells. Here we used scMET to quantify DNAm variability at
promoter elements, which we subsequently contrasted to RNA expression heterogeneity for
the corresponding genes. For this analysis we exclusively used promoter elements as, unlike
distal regulatory elements, they can be unambiguously matched to their respective genes.

For each gene, we quantified transcriptional heterogeneity using the residual overdisper-
sion estimates generated by BASiCS (Supplementary Fig. S17a, Eling et al., 2018). Promoter
DNAm variability was calculated using the residual overdispersion estimates inferred using
scMET (Supplementary Fig. S17b). More details about these analyses and the associated
data pre-processing steps are described in the Methods section.

When comparing residual overdispersion estimates for RNA expression and promoter
DNAm, there was no clear genome-wide association (Fig. 4a). However, when restricting to
genes that display high levels of transcriptional variability, two main groups can be identified.
The first category corresponds to genes with low levels of promoter DNAm residual overdis-
persion, and it includes differentiation and germ layer markers such as Mesp1, Lefty2, Id3
(mesoderm) and Cldn6, Cer1 and Krt8 (endoderm). The second category is characterised by
genes with high promoter DNAm residual overdispersion and includes known pluripotency
markers such as Dppa5a, Zfp42, Spp1 and Peg3. Representative examples for these genes are
displayed in Fig. 4b.

These results suggest the presence of two modes of regulation. On one hand, down-
regulation of pluripotency genes is associated with high promoter DNAm heterogeneity,
linked to a pronounced increase in promoter DNA methylation throughout the embryonic
stages. On the other hand, up-regulation of differentiation genes is not linked to high lev-
els of promoter DNAm variability. This suggests that other genomic contexts or molecular
layers might be responsible for their activation (Argelaguet et al., 2019). Finally, we also
find genes with low RNA expression variability that display high levels of promoter DNAm
heterogeneity (Supplementary Fig. S17c), suggesting that the coupling between promoter
DNAm and transcriptional activity is more complex than previously acknowledged during
embryonic development stages (Anastasiadi et al., 2018).
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Figure 4: scMET applied to the multi-omics scNMT-seq gastrulation dataset reveals a
complex linkage between promoter DNAm and RNA expression during embryonic de-
velopment. (a) Scatter plot displays posterior median estimates for residual DNAm overdispersion
parameters εj in gene promoters (x-axis) versus RNA residual overdispersion of the corresponding
genes (y-axis). Among the genes with high levels of RNA heterogeneity, green and pink points
correspond to promoters showing high and low levels of DNAm variability, respectively. (b) Repre-
sentative examples of DNAm and RNA expression patterns across developmental stages for genes
with high transcriptional heterogeneity and low (left, pink) or high (right, green) DNAm hetero-
geneity. Y-axis shows BASiCS log-normalised gene expression (in a log(x + 1) scale) (top) and
promoter DNAm rate (bottom). Cells are stratified by embryonic stage (x-axis).
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Discussion

Single-cell DNAm assays can currently profile hundreds to thousands of DNA methylomes,
with increasingly complex experimental designs. The high resolution of these measurements
enables us to measure cell-to-cell epigenetic variability, as well as uncover the regulatory
features that modulate it (Eling et al., 2019). However, the noise and biases intrinsic to such
technologies create a need for computational frameworks that can systematically interrogate
the data generated, dissecting genuine variability and quantifying uncertainties.

In this study we introduced scMET, a statistical framework for modelling DNA methyla-
tion heterogeneity from scBS-seq data. Using a hierarchical Bayesian framework to borrow
information across cells and features, scMET robustly quantifies genuine cell-to-cell vari-
ability. Our results demonstrated the ability of scMET in highlighting genomic features that
drive cell-to-cell heterogeneity across neuronal sub-populations in a large dataset of single-cell
methylomes from the mouse frontal cortex. Furthermore, scMET can be used as a quanti-
tative tool to interrogate changes in DNAm patterns between pre-specified cell populations.
Unlike common approaches that only detect changes in mean methylation levels (Feng et al.,
2014; Hansen et al., 2012), scMET can also identify features with differences in DNAm vari-
ability between populations. Importantly, the differential variability estimates are quantified
through residual overdispersion parameters, thus accounting for the known confounding re-
lationship between mean and overdispersion in scBS-seq datasets.

scMET uses a GLM framework to explicitly model known biases in the data in the form
of additional covariates, such as CpG content. The flexibility of the GLM approach enables
it to easily incorporate additional features, such as DNA motifs, which could be important to
elucidate the role of sequence or chromatin state in modulating DNA methylation. Addition-
ally, the framework could readily be extended to model joint variability in multiple molecular
layers (such as transcriptome and methylome), opening a path to new methodologies in in-
tegrative, single-cell multi-omics analyses. Given the increasing prominence of such studies,
we expect scMET to become an important tool in the extraction of biological signals from
DNAm datasets of increasing complexity.
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Methods

Standard statistical models for count data, such as the Poisson and binomial distributions,
do not always capture the properties of data generated by high-throughout sequencing assays
(e.g. RNA sequencing, bisulphite sequencing). In such cases, the data typically exhibit higher
variance than what is predicted by these models — this is often referred to as overdisper-
sion (Cox, 1983; Hinde et al., 1998). This overdispersion may relate to technical variation
(e.g. due to differences in sequencing depth) or to biological variation between the units
of interest (e.g. cells or subjects) that is linked to genetic, environmental or other factors.
Disentangling these sources of variation is a major challenge in computational biology.

The scMET model

Let Yij represent the number of methylated CpGs out of the nij CpGs for which DNAm was
measured for genomic feature j ∈ {1, . . . , J} in cell i ∈ {1, . . . , I}. These genomic features
could be defined by pre-annotated regions (e.g. enhancers) or other regions of interest. To
capture data overdispersion, scMET assumes a beta-binomial (BB) hierarchical formulation:

Yij | θij ∼ Binomial(nij, θij), θij |µj, γj ∼ Beta(µj, γj). (1)

In Eq. (1), the beta distribution is parameterised such that E[θij] = µj and Var[θij] =
γ2jµj

(
1 − µj(1 − γj) − γj

)
(1 − γj)−1, with µj ∈ (0, 1) and γj ∈ (0, 1). If γj = 0, the model

in Eq. (1) reduces to a binomial model with parameters nij and µj. After integrating out
the random effects θij, it can be seen that µj corresponds to the mean methylation across all
cells for feature j and that γj controls the overdispersion that is not captured by binomial
sampling. In fact, the BB variance can be written as:

Var[Yij |µj, γj] = nijµj(1− µj)︸ ︷︷ ︸
technical variation

+nijµj(1− µj)(nij − 1)γj︸ ︷︷ ︸
additional (biological) variation

. (2)

Parameters µj and γj can be inferred via maximum likelihood estimation. However, due to
the high sparsity and noise present in single-cell DNAm data, these estimates can be unstable,
especially for overdispersion parameters γj (Supplementary Fig. S5 and S6). To overcome
this, we use a Bayesian framework with a hierarchical prior specification for µj and γj, sharing
information across sets of similar types of genomic features (e.g. enhancers). Our approach
is flexible and can incorporate feature-specific covariates xj that explain differences in mean
methylation across features. For instance, features with high CpG density tend to have lower
methylation levels. These covariates are introduced within a generalized linear model (GLM)
framework through the prior on the mean methylation parameters µj:

µj |wµ, sµ,xj ∼ LogitN
(
fµ(xj; wµ), sµ

)
, where fµ(xj; wµ) = w>µ xj. (3)

In Eq. (3), LogitN denotes a logit-normal distribution, wµ is a vector of regression coefficients
and sµ is the standard deviation for logit(µj). Throughout our analyses we assume xj =
(1, Cj), where Cj denotes the CpG density for feature j. However, scMET is flexible and
users can introduce other feature-specific covariates.

Our prior specification is also designed to capture the mean-overdispersion relationship
that is typically observed in the data generated by high-throughput sequencing assays, such
as scBS-seq (Fig. 1c). Here, we follow the approach in Eling et al. (2018), introducing a
non-linear regression model through an informative prior for γj:

γj |µj,wγ, sγ ∼ LogitN (fγ(µj; wγ), sγ), where fγ(µj; wγ) = wγ1 +
L∑
l=2

wγlgl(µj). (4)
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Here, fγ(µj; w) can be interpreted as the overdispersion (logit scale) that is predicted by
mean methylation levels µj (fitted black line in Fig. 1c), gl(µj) represent radial basis function
kernels (defined as in Kapourani and Sanguinetti, 2016), and wγ1, . . . , wγ,L are regression
coefficients. Unless otherwise stated, we use L = 4 throughout our analyses. The remaining
elements of the prior are described in Supplementary Note 2.1.

The prior distribution in Eq. (4) can be rewritten as a non-linear regression model

logit(γj) = fγ(µj; wγ) + εj, εj ∼ N (0, sγ), (5)

where εj corresponds to a feature-specific residual overdispersion parameter that captures
deviations from the overall trend. Hence, a feature that exhibits positive εj values has more
variation than expected for features with similar mean methylation. Accordingly, negative εj
values indicate less variation than expected for features with similar mean methylation.

Implementation

The posterior distribution for the model parameters in scMET is not amenable to analytic
solutions. Hence, we resort to variational Bayes (VB, Blei et al., 2017) and Markov Chain
Monte Carlo (MCMC, Liang et al., 2010) implementations using the Stan probabilistic
programming language (Carpenter et al., 2017). scMET is publicly available as an R package
at https://github.com/andreaskapou/scMET and will be shortly submitted to Bioconductor.

Identifying highly variable features

Residual overdispersion parameters εj can be used to label highly variable features (HVFs)
within a population of cells. Our decision rule is based on tail posterior probabilities (Bochk-
ina and Richardson, 2007) associated to whether εj exceed a pre-specified threshold ε0:

πEj
(
ε0
)
≡ P (εj > ε0 | data), (6)

As a default choice, we define ε0 based on the distribution of posterior estimates for residual
overdispersion parameters εj across all features. In particular, we define ε0 to match the δE-th
percentile of the distribution. Unless otherwise stated, we set as default δE = 0.9.

The probabilities in Eq. (6) can be estimated by counting the proportion of posterior
draws (obtained by VB or MCMC) for which the chosen criteria are met (Lewin et al.,
2006). scMET labels as HVFs those for which their associated tail posterior probabilities
are above a given posterior evidence threshold αH (0.6 < αH < 1), where αH is calibrated
via the expected false discovery rate (EFDR; Newton et al., 2004), see also Supplementary
Note S2.2.

Differential testing

scMET provides a similar probabilistic rule to label differentially methylated (DM) and dif-
ferentially variable (DV) features across experimental conditions or cell types (Fig 1e). Here,
we define DM features as those for which mean methylation varies across the groups of cells
under study. More concretely, let µAj and µBj be the mean methylation parameters associ-
ated with feature j in groups A and B. We quantify differences in mean methylation as the
log-odds ratio (LOR):

LOR(µAj , µ
B
j ) = logit(µAj )− logit(µBj ). (7)

Similar to the HVF analysis, our decision rule for DM testing is defined as:

πMjAB
(
ψM
)
≡ P (|LOR(µAj , µ

B
j )| > ψM | data) > αM , (8)
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where αM (0.6 < αM < 1) is a posterior evidence threshold chosen to match a desired EFDR
level and ψM is a LOR threshold which can be interpreted as a minimum effect size to be
detected by the test. As default, we use ψM = log(2), i.e. a two fold change in odds ratio.

Beyond highlighting DM features, scMET embraces the cellular resolution of scBS-seq
data to perform differential variability (DV) analyses, identifying changes in cell-to-cell DNAm
variability across groups. Although overdispersion parameters γj could be used as the input
for the DV test, the results would be confounded by the mean-overdispersion relationship that
is typically observed within each genomic context (Fig 1c). Instead, we propose to perform
DV analysis based on εj — a measure of cell-to-cell DNAm variability that is not confounded
by differences in mean methylation. Let γAj and γBj denote the overdispersion parameters
linked to feature j in groups A and B. To label DV features based on residual overdispersion,
we make use of Eq. (5), and decompose the LOR between γAj and γBj parameters as:

LOR(γAj , γ
B
j ) = fAµ (xj; w

A
µ )− fBµ (xj; w

B
µ )︸ ︷︷ ︸

mean contribution

+ εAj − εBj︸ ︷︷ ︸
residual change

. (9)

In Eq. (9), the first term captures the changes in overdispersion that are explained by mean
methylation and the second term captures residual overdispersion changes after accounting
for the mean methylation. This residual change is used to identify features with statistically
significant differences in residual overdispersion. For a given posterior evidence threshold αE
(0.6 < αE < 1) and tolerance threshold ψE, the following rule is used to identify DV features:

πEjAB
(
ψE
)
≡ P (|εAj − εBj | > ψE | data) > αE. (10)

As default we set ψE = log(1.5), i.e. 50% change in overdispersion LOR between the groups.
As above, the posterior evidence threshold αE is calibrated via the EFDR, see Supplementary
Note 2.2.

Competing methods

The BB MLE method corresponds to estimating the parameters of the beta-binomial model
in Eq. (1) independently per feature using maximum likelihood. The VGAM package was used
for parameter estimation (Yee, 2015).

For HVF selection, two additional strategies were considered. The binomial model, where
features are ranked according to binomial variance given by 1/I

∑
i θij(1 − θij), where θij =

Yij/nij is the methylation rate for feature j in cell i. The Gaussian model on methylation
rates θij ∼ N (µj, σj), where features are ranked according to σj.

For differential mean methylation testing on the synthetic datasets, we compared scMET
with the Fisher’s exact test. Features with log-odds ratio > log(1.5) between the two groups
and FDR < 10% (based on Benjamini-Hochberg procedure) were called as differentially
methylated. Whilst methods have been proposed for DV testing using bulk methylation
data (e.g. Phipson and Oshlack, 2014), to the best of our knowledge, scMET is the first DV
approach tailored to single cell methylation data.

Simulation study

We simulated J = 300 features for varying number of cells ranging from I = 20 up to I = 1000.
To mimic the properties observed in real scBS-seq data, we assume that for each feature we
have coverage for a subset of cells given by Ij ∼ Binomial(I, pj), where pj ∼ Uniform(0.4, 0.8)
to generate diverse Ij across features. We also simulate two alternative regions that have rich
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(N = 50) and poor (N = 15) CpG density. That is, the number of CpGs (nij) are simulated
from Binomial(N, qj), where qj ∼ Uniform(0.4, 0.8) to generate a broad range of CpG coverage
across features. Next, for each feature we generate mean methylation parameters µj ∼
LogitN (w>µ xj, 1), where wµ = (−0.5,−1.5) and xj = (1, Cj) are feature-specific covariates,
where Cj denotes the CpG density. The negative weight on wµ is used to simulate the
known negative association between mean methylation and CpG density. Next, we simulated
feature-specific overdispersion parameters γj ∼ LogitN (w>γ gj(µj), 0.25) to mimic the mean-
overdispersion relationship. We set wγ = (−1.2,−.3, 1.1,−.9) and gj(µj) is a vector of basis
function values with methylation level µj. Finally, we simulated the number of methylated
CpGs from BB distribution, using the VGAM package, that is, Yij ∼ BB(nij, µj, γj).

For differential testing analysis, we used the above approach to generate cells from the
first group (group A). For DM analysis, 15% of features were randomly selected and their
corresponding µj were randomly increased or decreased by three different LOR thresholds:
2, 3, and 5, to generate cells from the second group (group B). Similarly, for DV analysis
15% of features were randomly selected from the first group and their corresponding γj were
randomly increased or decreased by three different LOR thresholds: 2, 3, and 5, to generate
cells from second group.

Mouse frontal cortex dataset

Data processing

The dataset is available from the Gene Expression Omnibus repository under accession num-
ber GSE97179. Details on quality control and data pre-processing can be found in Luo et al.
(2017). Supplementary Table S2 contains metadata for the 3,069 cells, such as cell type anno-
tations and cortical layer information. We aggregated closely related cellular sub-populations
with less than 25 cells, following the hierarchy established in Luo et al. (2017). DNA methyla-
tion was quantified using mCG dinucleotides over three genomic contexts: (1) gene promoters
(±2kb windows around the transcription start sites of genes extracted from ENSEMBL ver-
sion 87 Yates et al., 2016), (2) Distal H3K27ac ChIP-seq peaks and (3) H3K4me1 ChIP-seq
peaks. The latter was based on two ChIP-seq datasets that were profiled in adult (8 weeks)
mouse cortex as part of the ENCODE project (see Supplementary Table S3).

For each genomic feature j ∈ {1, . . . , J} and cell i ∈ {1, . . . , I}, the following censoring
procedure was applied: we recorded Yij as a missing value if methylation coverage was avail-
able in less than 3 CpGs (i.e. nij < 3). The purpose of this censoring step was to exclude
observations with very low coverage for which DNAm quantification is less reliable. Subse-
quently, we removed features that did not have CpG coverage in at least 15 cells. In addition,
we excluded features that had mean methylation across cells lower than 0.1 or higher than 0.9;
the rationale being that fully (un)methylated features do not drive methylation heterogeneity
and will not provide information for identifying cell sub-populations.

Down-sampling experiment

Using the characterised sub-populations from Luo et al. (2017) we performed down-sampling
experiments on 424 inhibitory neurons. Both scMET and BB MLE methods were run once
on the full dataset (424 cells) to generate pseudo-ground truth parameter estimates. Sub-
sequently, 20, 50, 100 and 200 cells were randomly down-sampled from the full population
prior to parameter estimation. This procedure was repeated 5 times for each sample size.
The same censoring step as described above was applied. Moreover, due to smaller sample
sizes, we filtered genomic features that did not have CpG coverage in at least 5 cells.
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HVF analysis

HVF analysis was applied on 12,774 gene promoters, 17,284 distal H3K27ac peaks, and 30,374
H3K4me1 peaks. To model the mean-overdispersion relationship we used L = 4 radial basis
function kernels and kept default hyper-parameter values (Supplementary Note S2.1). The
total number of iterations was set to 50,000 and convergence was attained when the evidence
lower bound difference between two consecutive iterations was less than 1e-04.

Differential analysis

For differential analysis between excitatory and inhibitory neurons, we only included features
with CpG coverage in at least 15 cells, in both sub-populations. This resulted in 12,611
gene promoters, 13,075 distal H3K27ac peaks, and 20,212 H3K4me1 peaks. To model the
mean-overdispersion relationship we used L = 4 radial basis function kernels and kept default
hyper-parameter values (Supplementary Note S2.1). The total number of iterations was set
to 50,000 and convergence was attained when the evidence lower bound difference between
two consecutive iterations was less than 1e-04.

Dimensionality reduction

Dimensionality reduction was applied using a Bayesian Factor Analysis algorithm, as imple-
mented in the MOFA2 package (Argelaguet et al., 2020). The motivation for this method, as
opposed to the conventional Principal Component Analysis, is to handle the large presence of
missing values without need for imputation. A second (non-linear) dimensionality reduction
step was applied using UMAP (as implemented in the umap package) to project the data into
a two-dimensional space (Supplementary Fig. S12 and S13).

Clustering

A finite grid of HVFs (from 50 to 1,000 with step size of 50) was selected by each of the
competing methods. Subsequently, clustering analysis was performed using the k-means
algorithm on the latent space defined by the MOFA factors (fixed to 15). The number of
clusters was set to the number of cell types as characterised by Luo et al. (2017) (see also
Data processing section). We assessed clustering performance using the ARI and cluster
purity. A non-parametric regression (implemented by the loess function) was used to obtain
a smoothed interpolation across all HVF values.

scNMT-seq gastrulation dataset

Data processing

The parsed scNMT-seq gastrulation dataset was downloaded from
ftp://ftp.ebi.ac.uk/pub/databases/scnmt gastrulation. Raw files are available from the Gene
Expression Omnibus repository under accession number GSE121708. Details on the quality
control and data processing can be found in Argelaguet et al. (2019). We selected all cells from
E4.5 to E7.5 days after excluding the extra-embryonic visceral endoderm cells, as they display
distinct DNA methylation profiles. Supplementary Table S4 contains sample metadata for the
848 cells retained for analysis. DNA methylation was quantified over gene promoters (±2kb
windows around the transcription start sites of genes extracted from ENSEMBL version 87
Yates et al., 2016).
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Calculation of DNA methylation and RNA expression heterogeneity

For the DNAm data, we applied the same censoring procedure and feature exclusion criteria
as described in the pre-processing of the Luo et al. (2017) dataset. This resulted in 13,785
gene promoters for downstream analysis. Residual overdispersion estimates were calculated
by scMET with default parameter values using the same number of iterations and convergence
criteria described above.

For the RNA expression data, we removed lowly expressed genes (no counts in less than
10 cells and average count across expressed cells less than 5). This resulted in 14,076 genes for
downstream analysis. Residual overdispersion estimates were obtained using BASiCS (Eling
et al., 2018). The algorithm was run using 20,000 iterations, applying a burn in of 10,000 and
thinning of 10. An empirical Bayes approach was used to derive the prior hyperparameters
associated to gene-specific mean expression parameters within BASiCS.

In the comparison displayed in Fig 4, we focused on the 10,192 genes contained in the
intersection of the lists obtained above.
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Data availability

All datasets analysed in this article are publicly available in the cited references.

Code availability

scMET is implemented in an open-source and publicly available R package at
https://github.com/andreaskapou/scMET. The code used to process and analyse the data
is available at https://github.com/andreaskapou/scMET-analysis. The following software
versions were used throughout our analyses: scMET (0.99.1), BASiCS (2.0.1), coda (0.19.3),
MOFA2 (0.99.7), rstan (2.19.3) and VGAM (1.1.3).
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