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Abstract

This Thesis aims to advance the understanding of photonic systems
along two parallel but complementary tracks: the semiclassical analysis
of lattices involving a macroscopic number of photons and the quantum
analysis of strongly-correlated photonic lattices.

The semiclassical analysis is particularly suited to investigate systems,
among others, that emerge in the context of topological photonics. In par-
ticular, this Thesis focuses on the analysis of so-called topological lasers,
devices that aim to improve on traditional lasers by operating in special
lasing modes, i.e. topological modes, that are more resilient against disrup-
tions. Via a semiclassical description of the laser physics, we are able to
determine the most efficient gain configurations, uncover new effects and
new instability regimes, investigate the resilience to disorder, and design
subtle mechanisms that allow the laser to select the desired topological
mode even under unfavorable conditions.

The quantum analysis of strongly-correlated photonic lattices is instead
complicated by the sheer size of the Hilbert space and by the inherent
many-body correlations, which do not allow for an effective single-particle
scenario. In absence of a coherent pump, though, small enough systems can
still be studied via exact diagonalization by exploiting their phase rotation
symmetry; we do so in the analysis of a driven-dissipative Bose-Hubbard
dimer, where two nonlinear cavities are coupled. In this system, we reveal
signatures of a localization-delocalization transition in steady-state observ-
ables and in steady-state response functions, as well as in the time dynamics
of the observables. For the more ambitious goal of studying a full lattice of
highly nonlinear cavities, though, this is no longer enough. Therefore, we
employ a technique called dynamical mean-field theory, borrowed from the
treatment of strongly-correlated electron systems, to reduce the size of the
effective Hilbert space by replacing the interaction generated by the lattice
on any one of its sites with an effective time-dependent field. As a case
study for the effectiveness of our specific implementation of this technique
in the context of driven-dissipative photonic lattices, we demonstrate the
ability to reproduce the so-called quantum Zeno effect in a Bose-Hubbard
lattice with strong two-particle dissipation.
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Introduction

The inception of my doctoral studies came at the beginning of a time of great
excitement and renewed interest in a wide class of light-based open quantum
systems, in fields ranging from optical lattices to photonics to quantum systems
[1–23].

On one hand, I have been a curious witness of the explosion of the field
of topological photonics, launched by the pioneering works [24–26], and in par-
ticular, I became interested in the efforts towards the realization of the first
two-dimensional topological laser [27–29].

On the other hand, the recent advances in the development of new platforms
for photonic quantum systems [2–8] started to stimulate a vivid demand for new
techniques able to address the many-body problem in open bosonic systems.
While semiclassical simulations at the mean-field level are inherently suitable
to investigate systems with a large number of photons and weak nonlinearities,
like the ones typically considered in topological photonics, the sheer size of the
Hilbert space and the intrinsic strong correlations between the particles make the
simulation of photonic systems with strong nonlinearities at the quantum level
notoriously difficult, unless they are extremely small.

Motivated by the advances in these fields, this Thesis project started out
by pursuing both the analysis of photonic systems at a semiclassical level, in
particular in the context of topological photonics [30], and their analysis via full
quantum simulations. We set out to reach, eventually, the ambitious goal of
converging these two seemingly separate yet complementary paths in order to
probe, at the quantum level, photonic systems whose Hilbert space is too large
to be dealt with via standard quantum mechanical techniques.

In order to fill the gap between the simulation of photonic systems in a semi-
classical context, where size is not an issue, and the simulation of photonic sys-
tems at the quantum level, which are extremely limited in size, we decided to
employ a technique known as Dynamical Mean Field Theory (DMFT) [31], suit-
ably generalized to deal with the open quantum systems at hand. While this
Thesis does not report results combining the two research lines, namely the full
quantum study of extended non-linear systems with non-trivial topology remains,
it has brought on one hand important technical advances and on the other hand
significant physical insight, paving the way for the successful convergence of the
two research lines. I am indeed confident that, once a few remaining technical
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Introduction

roadblocks are solved, we’ll soon be able to showcase the quantum analysis of
larger classes of open quantum systems.

While working towards this convergence, the semiclassical investigation of the
topological laser was nevertheless successful in uncovering new unexpected and
exciting features [32], after having laid out the initial numerical foundations in
my Master’s Thesis. Furthermore, stimulated by the puzzling results in [29] that
were calling for a theoretical explanation, I worked to advance the understanding
of the promotion of topological edge modes to lasing modes [33].

At the same time, our work on the quantum analysis of photonic systems was
instrumental in the investigation of the quantum dynamics and of the steady-
state response functions of two coupled nonlinear cavities, which can be seen as
a minimal non-trivial non-linear model which can be used to guide the study of
larger systems as described by DMFT. Building upon this first step, our DMFT
implementation was then successfully employed to investigate the physics of a
full lattice model with strong nonlinear dissipation.

This Thesis will walk the reader through these two parallel paths in Part I
and Part II; more detailed introductions for each of the two Parts can be found
in Chapter 1 and in Chapter 6, respectively. In Chapter 2 we introduce the semi-
classical theory of lasers, extensively used in Part I and referenced in Part II when
discussing the presence of nonlinearities. In Chapters 3 and 4, instead, we present
the results of our semiclassical investigation of two-dimensional topological lasers.
Chapter 7 is devoted to a more systematic approach to the Lindblad equation, al-
ready employed in Part I; we discuss its solution via Exact Diagonalization (ED)
in the superbosonic representation, and the consequential calculation of Green’s
functions in the Keldysh formalism. This technical toolkit is used to investigate
a pair of nonlinear cavities in Chapter 8. Finally, in Chapter 9, we introduce
the DMFT technique in the context of driven-dissipative bosonic systems. After
providing a practical DMFT implementation built upon the technical skill set
developed in Chapter 7, we showcase its excellent capabilities by investigating a
lattice of highly nonlinear cavities.

The main results achieved in Part I and Part II are summarized, respectively,
in Chapter 5 and Chapter 10; Chapter 11 is devoted to a summary of the Thesis
at large.
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Part I

Driven-dissipative
semiclassical systems:

investigating topological
lasers





C
h
a
p
t
e
r 1

Introduction

The birth of topological photonics can be traced back to 2005, when Haldane
and Raghu [24, 25] proposed to replicate the electronic chiral edge states of the
quantum Hall effect in photonic crystals, and use them as channels for unidi-
rectional light propagation with robustness against bends and impurities. Their
theoretical proposal was shortly after experimentally demonstrated in [26].

Since then, the vast breadth of possible technological applications has stim-
ulated a vivid research activity towards the realization of band structures with
non-trivial topological invariants. Such systems have testified the advantages
of employing topological photonics in several contexts, from robust delay lines
[16, 34] and slow-light waveguides [35, 36] to traveling-wave amplifiers [37], with
promising applications that reach the realm of optical quantum computing and
information processing [38–41]. For a more comprehensive overview, we refer the
interested reader to [30, 42–44].

One of the most promising applications of topological photonics are the so-
called topological lasers (in short, topolasers), where an active medium is inserted
in the topological system. Topological lasers trace back to the first proposal of
lasing into the zero-dimensional edge states of a one-dimensional Su-Schrieffer-
Heeger (SSH) chain, put forward in [45, 46] and experimentally demonstrated
with polariton micropillars [21], microring resonators [23, 47], and photonic crys-
tals [48]. Extensions to nanolasers based on zero-dimensional corner states of
two-dimensional lattices were reported in [49, 50]. Scaling up in dimension, the
crucial advantages for optoelectronic applications offered by topological lasing
into the one-dimensional edge modes of a two-dimensional lattice have been the-
oretically highlighted [27, 28, 51–53]: the topological protection of chirally prop-
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Chapter 1. Introduction

agating one-dimensional edge modes appears as a promising strategy towards an
efficient phase-locking of the laser oscillation at the different sites. In this way, the
gain can be distributed over a large number of sites, while maintaining a globally
stable single-mode coherent emission, which is very promising to realize high-
power coherent sources [54]. Experiments along these lines were reported shortly
afterwards using photonic crystals under a strong magnetic field [29] and arrays
of coupled ring microcavities [55], followed by more recent valley-Hall quantum
cascade [56] and telecom-wavelength [57] lasers.

Our analysis of topological lasers starts in Chapter 2, with a review of the
foundations of the semiclassical theory of lasers. The broadband limit of this the-
ory is commonly used for systems whose topological bandgap is much smaller than
the gain linewidth, and it’s the basis of our analysis in Chapter 3; in Chapter 4,
instead, the full equations will be needed in order to include spectral selection
effects that are essential in our analysis.

More specifically, in Chapter 3, we study the paradigmatic example of a
Harper-Hofstadter topological laser with the purpose of building a generic theory
of topological laser operation. Going beyond the pioneering works [51, 52, 58],
we identify a number of peculiar effects that directly stem from the chirality of
the lasing mode and thus differentiate topological lasers from standard lasers.
Keeping the complexity of the model at a minimum level, our attention will be
focused on those general effects that play a central role in different realizations
of topological laser devices.

After this first analysis, in Chapter 4 we investigate the various mode-selection
mechanisms that determine whether a topolaser device is going to lase in an
edge or a bulk state. We go beyond previous works by including the additional
spectral mode-selection mechanism coming from the frequency-dependence of
gain, reviewed in Chapter 2. In its simplest formulation, spectral mode-selection
allows suppressing competing cavity modes that are well separated in frequency
by tuning a narrowband gain material in the spectral vicinity of the desired mode.
In particular, we take motivation from the recent topolaser experiment in [29]
to investigate how a subtle combination of spectral and spatial mode-selection
mechanisms can conspire to stabilize laser oscillation into a chiral edge state. As
an important outcome of our analysis, we point out a possible mechanism for the
still unexplained experimental observation [29] of single-mode emission under a
homogeneous pump with no need of concentrating pumping along the edge as it
was instead done in other topolaser realizations, e.g., in [55].

Finally, in Chapter 5 we offer a summary of the main results presented in
Part I.

6
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Semiclassical theory of lasers

In this Chapter we’ll build up the basic theory that underlies the operation of a
prototypical laser — not necessarily a topological one.

The basic idea behind a laser is to stimulate the emission of photons from
the atoms of an active medium via a feedback loop, in such a way to obtain a
macroscopically large number of photons. Given the macroscopic nature of laser
emission, we can achieve an operating description via a semiclassical approach;
this road was indeed taken by Willis E. Lamb, Jr., who developed a semiclassical
theory of lasers by coupling the optical Bloch equations for the atoms of the active
medium to an equation for the (classical) electric field derived from Maxwell’s
equations.

Lamb’s approach is commonly found in laser textbooks (see e.g. [59, Chap-
ters 7–8] and [60, Chapter 5]); here we present an alternative derivation that, in
our opinion, has the virtue of providing a clearer connection between the macro-
scopic laser operation and its microscopic building blocks, and it’s better suited
to implement quantum Hamiltonians on top of active optical cavities.

Most of this Chapter is based on our publication “Spatial and spectral mode-
selection effects in topological lasers with frequency-dependent gain” [33].

2.1 Model and equations

As mentioned in the opening of this Chapter, Lamb’s semiclassical theory of
lasing is usually derived by including, in the classical Maxwell’s equations for
the electromagnetic field, the dipole polarization of two-level atoms (TLAs) as
predicted by a full quantum theory. Here instead, under a mean-field treatment

7



Chapter 2. Semiclassical theory of lasers

of the photon field, we show how to obtain the same theory by starting from a
fully quantum Hamiltonian, e.g. the Jaynes-Cummings Hamiltonian.

The starting point is a Hamiltonian description of N identical TLAs inside
a cavity with the dipole approximation and the rotating wave approximation
(RWA); the choice of working with TLAs comes from the fact that they’re the
simplest — yet effective — model of an emitter. The multi-atom version of
the Jaynes-Cummings Hamiltonian, also called Tavis-Cummings or Dicke model,
reads as: [61]

Jaynes-
Cummings

Hamiltonian

H = ~ωcava
†a+

N∑
n=1

{
1
2~ωegσ

z
n + ~g

(
σ+
n a+ a†σ−n

)}

+ H(r) +
N∑
n=1

H(ar)
n , (2.1)

where (r) stands for “radiation” and (ar) for “atom-radiation” interaction. Here
ωcav is the natural frequency of the cavity, ωeg = ωe−ωg is the energy difference
between the atomic levels, g = geg = gge = −degE0

~ is the light-atom coupling,
deg = |deg| = ezeg = d∗eg, deg = d∗ge is the matrix element 〈e | er | g〉 of the dipole
moment — usually called the transition dipole moment, E0 =

√
~ωcav
2ε0V

and V is the
volume of the cavity. In the Hamiltonian, a† is an operator that creates a cavity
photon and, for every atom n, σ+ = |e〉 〈g| and σ− = (σ+)† = |g〉 〈e| are operators
that describe transitions between the atomic levels, and σz = |e〉 〈e| − |g〉 〈g|.
Additionally |e〉 〈e|+ |g〉 〈g| = I, with I the identity operator.

The central assumption we now make is for the total density matrix ρ to
be factorizable as a tensor product between a density matrix for the atoms and
a density matrix for the photons, i.e. ρ = ρN−at ⊗ ρph, where the atomic part
can be obtained by tracing out the photonic part: ρN−at = Trphρ. With this
consideration, one can similarly obtain a time-evolution equation for the atomic
density matrix ρN−at by starting from the evolution of the full density matrix,
dρ
dt = − i

~ [H, ρ], and tracing out the photonic part. The result is an equation
very similar to the one for the full density matrix, but in which H is replaced by
a mean-field Hamiltonian:

dρN−at
dt

= − i
~
[
HMF, ρN−at

]
= − i

~

N∑
n=1

[
HMF, (ar)
n , ρN−at

]
, (2.2)

where in HMF all the photon operators have been replaced by their expectation
values:

HMF = ~ωcav
〈
a†a
〉

+
N∑
n=1

{
1
2~ωegσ

z
n + ~g

(
σ+
n 〈a〉+

〈
a†
〉
σ−n

)}
(2.3)
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2.1. Model and equations

The mean-field Hamiltonian we’ve just obtained is already reminiscent of
the semiclassical light-atom interaction Hamiltonian under the dipole and RWA
approximations, in which essentially the expectation value of the photon field
〈a〉 is replaced by the macroscopic electric field (see [62, Chapter 4–5]). We’ll
comment again briefly on this connection once we obtain the full set of equations.

If we further assume that the atomic density matrix can be factorized as a
tensor product of the density matrices of all the atoms, i.e.

ρN−at = ρ
(1)
at ⊗ . . .⊗ ρ

(N)
at (2.4)

where ρ(n)
at =

∑
{α, β}={e, g} ρ

(n)
αβ |α〉 〈β| is the density matrix of the n-th atom,

then the commutator above simplifies as

[
HMF,(ar)
n , ρN−at

]
=
[
HMF,(ar)
n , ρ

(n)
at

]
. (2.5)

If we trace away all the other atoms except for the n-th one, we get

dρ
(n)
at
dt

= − i
~

[
HMF,(ar)
n , ρ

(n)
at

]
(2.6)

which is exactly the same time-evolution equation one would get from a single-
atom Jaynes-Cummings Hamiltonian. This means that all the atoms are equiv-
alent and have exactly the same evolution, so we can drop the (n) superscript.

Finally, we can provide every atom with decay and pumping mechanisms at
the master equation level, by adding Lindblad terms of the following form:

dρat
dt

= . . .+
∑
s=e,g

γs

(
LsρatL

†
s −

1
2
{
L†sLs, ρat

})
, (2.7)

where the dots . . . indicate the RHS of (2.6), L†e = |e〉 〈g| = σ+ (the population
of |e〉 is increased) and Le = |g〉 〈e| = σ− (the population of |e〉 is decreased), and
conversely L†g = |g〉 〈e| = σ− and Lg = |e〉 〈g| = σ+. A pictorial representation
of the full Hamiltonian + Lindblad dynamics is given in Figure 2.1.

With these ingredients we can write down the equations for the matrix ele-
ments of the atomic density matrix of a generic atom in the cavity:


ρ̇ee = γgρgg − γeρee + i

degE0
~

(
〈a〉 ρge − 〈a〉∗ ρeg

)
ρ̇gg = γeρee − γgρgg − i

degE0
~

(
〈a〉 ρge − 〈a〉∗ ρeg

)
ρ̇eg = −i(ωeg − iγ)ρeg − i

degE0
~
〈a〉
(
ρee − ρgg

) (2.8)

9



Chapter 2. Semiclassical theory of lasers

Figure 2.1: Scheme of a photonic cavity embedding two-level atoms (TLAs).
The energy difference between the two atomic levels is ωeg; pumping of the atoms
from |g〉 to |e〉 occurs at a rate γg, while their spontaneous decay from |e〉 to |g〉
occurs at a rate γe. Additionally, the cavity decays at an intrinsic rate Γ.

where γ = γeg + γph, γeg = γe+γg
2 and γph, in the more general treatment (see

[60, Chapter 5]), comes from dephasing processes1; for the sake of our discussion,
though, γph = 0. The fact that the evolution of the population of one of the
levels is the negative of the evolution of the other one is due to the fact that the
Lindblad losses preserve the trace of the density matrix (which is 1), and indeed
from ρgg + ρee = 1 we get ρ̇gg = −ρ̇ee.

We still miss an equation for the cavity field a, or better, for its expectation
value. The Heisenberg equation for the field operator is

da

dt
= i

~
[H, a] = −iωcava− ig

N∑
n=1

σ−n . (2.9)

1Dephasing processes are due to e.g. elastic collisions of atoms in a gas. This kind of
processes cause a frequency shift δω(t) that enters the equation for the coherence ρeg ; if we
assume, though, that 〈δω(t)〉 = 0 and that the process is Markovian, i.e.〈

δω(t)δω(t′)
〉

= 2γphδ(t− t′),

then we can just replace ρeg with its average over the ensemble of random variations in δω(t).
The resulting ensemble-averaged coherence, that we call again ρeg in order to simplify the
notation, differs from the one without dephasing processes by an additional loss rate in its
equation of motion. The equations for the populations are instead left unchanged.

The presence of these dephasing processes increases the linewidth of the gain, as well as the
carrier lifetime. When the latter becomes larger than the photon lifetime and is combined with
a strong photon-carrier coupling, it results in a strong effective photon-carrier repulsion that
can give rise to dynamical instabilities [58, 63].
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2.1. Model and equations

Connection
to Lamb’s
theory

By noticing that σ− is an atom-only operator, so that

〈σ−〉 = 〈σ−〉at = Trat

(
ρatσ

−
)

= ρeg, (2.10)

we can then take the expectation value of (2.9) and use the fact that the atoms
are all equivalent to write

d 〈a〉
dt

= −iωcav 〈a〉 − ig
N∑
n=1

ρ(n)
eg

= −iωcav 〈a〉 − igNρeg. (2.11)

Finally, by redefining 〈a〉 → a for simplicity and by adding a phenomenological
cavity loss coefficient Γ, we have a set of coupled semi-classical equations for the
elements of the atomic density matrix and the expectation value of the photon
field: 

ρ̇ee = γgρgg − γeρee + i
degE0

~

(
aρge − a∗ρeg

)
Semiclassical
laser
equations

ρ̇gg = γeρee − γgρgg − i
degE0

~

(
aρge − a∗ρeg

)
ρ̇eg = −i(ωeg − iγ)ρeg − i

degE0
~

a
(
ρee − ρgg

)
ȧ = −iωcava− Γa+ i

degE0
~

Nρeg

(2.12)

Interestingly the number of atoms in the cavity, N , appears only in the equa-
tion for the average photon field, in front of the off-diagonal atomic matrix el-
ement. Indeed, if you compare with the semiclassical theory by Lamb, [59, 60]
you find that the time-evolution for the macroscopic electric field is

Ė+ = −iωcavE
+ + i

ωcav
2ε0

P+, (2.13)

where E+ is the positive-frequency component of the electric field and P+ is
the positive-frequency component of the (macroscopic) polarization. Each atom
here has a tiny dipole moment that can be shown to be 〈er〉 = deg(ρeg + ρge) =
deg(ρeg +ρ∗eg), so one can assume that the macroscopic polarization vector is just
the sum of these tiny dipole moments:

P = N 〈er〉 = Ndeg

(
ρeg + c.c.

)
. (2.14)

When you then identify P+ ≡ Ndegρeg, you get

Ė+ = −iωcavE
+ − ig′Nρeg (2.15)

where g′ = −ωcavdeg
2ε0

, which has the same form of (2.11).
At a first sight, it might seem odd that a semiclassical theory requiring

Maxwell’s equations can also be obtained from a mean-field treatment of a fully

11



Chapter 2. Semiclassical theory of lasers

quantum Hamiltonian, without any reference to Maxwell’s equations. However,
Maxwell’s equations are definitely here, hidden behind the Jaynes-Cummings
model; the model itself was, in fact, derived [64] by making full use of Maxwell’s
equations, followed by a field quantization, in a true semiclassical fashion.

2.2 Stationary state and gain profile

We can get additional insights and build up some intuition by solving the equa-
tions (2.12) for the stationary state.

In order to do that, let us first perform a change of variable. We define the
overall oscillation frequency of the field as ωL — which is not a priori guaranteed
to be equal to ωcav, so that it is convenient to define a new variable ã as

a(t) + ã(t)e−iωLt, (2.16)

where now ã(t) is a slowly-varying quantity, i.e. | ˙̃a/ã| � ωL. We also define
ρ̃eg = ρege

+iωLt and ρ̃αα ≡ ραα (α = e, g), and we use the fact that 1 = Trρ =
ρgg + ρee. Then the equations assume the following form:

ρ̇ee = γg − 2γegρee − ig
(
ãρ̃ge − ã∗ρ̃eg

)
ρ̇gg = γe − 2γegρgg + ig

(
ãρ̃ge − ã∗ρ̃eg

)
˙̃ρeg = −i(ωeg − iγ)ρ̃eg + igã

(
ρee − ρgg

)
˙̃a = −i (ωcav − ωL) ã− Γã− igNρeg

(2.17)

The steady-state coherence in (2.12) can then be expressed as

ρ̃eg = gã

[
(ωeg − ωL) + iγ

]
[
(ωeg − ωL)2 + γ2

](ρ̃ee − ρ̃gg), (2.18)

while the steady-state population difference takes the form

(
ρ̃ee − ρ̃gg

)
=

(
ρ̃

(0)
ee − ρ̃(0)

gg

)
1 +R/γeg

, R = 2g2|ã|2 γ

(ωeg − ωL)2 + γ2 , (2.19)

where ρ̃(0)
ee = γg

γg+γe and ρ̃
(0)
gg = γe

γg+γe are the steady-state populations at zero
field.

By combining (2.18) and (2.19), the equation for the field can be written in
the following form:

˙̃a = iΩã− Γã+ P

1 + β|ã|2
ã (2.20)

12



2.2. Stationary state and gain profile

Frequency
dependence
of gain

Broadband
gain

Lasing
threshold

where

Ω = Ω({ω}, {γ}, |ã|2) = (ωL − ωcav)− g2N
(ωeg − ωL)[

(ωeg − ωL)2 + γ2
]
(
ρ̃

(0)
ee − ρ̃(0)

gg

)
1 + β|ã|2

,

(2.21)

P = P (ωeg − ωL, {γ}) = g2N
γ[

(ωeg − ωL)2 + γ2
](ρ̃(0)

ee − ρ̃(0)
gg

)
(2.22)

and
β = β(ωeg − ωL, γ) = 2g2 γ/γeg

(ωeg − ωL)2 + γ2 . (2.23)

Here {ω} indicates the dependence on the frequencies (ωcav, ωeg and ωL) and
{γ} indicates the dependence on the microscopic loss coefficients (γe, γg, γph).

As a key point, the P coefficient which, for a positive zero-field population
difference

(
ρ̃

(0)
ee − ρ̃(0)

gg

)
= (γg−γe)/(γg+γe) > 0, acts as a gain, is here frequency-

dependent; you get most out of your cavity system when the lasing frequency ωL
is in resonance with the transition frequency between the two atomic levels ωeg.
If instead your lasing frequency gets farther apart from the transition frequency,
then the gain decays by following a Lorentzian behavior — with the linewidth of
the Lorentzian controlled by γ. Additionally, the lasing frequency experiences an
intensity-dependent frequency shift that decays as the square of the detuning for
large detunings but is exactly zero at resonance; this shift is responsible for the
so-called mode pulling.

A common limit considered in the literature is the so-called broadband gain
limit, in which the gain linewidth controlled by γ is much larger than all the other
energy scales. In this limit, the gain profile is essentially flat in frequency space
and it’s sufficient to solve just the equation for the photon field. The latter, in
fact, takes the same form as in (2.20):

˙̃a = i (ωL − ωcav) ã− Γã+ P

1 + β|ã|2
ã (2.24)

with the key difference that now the lasing frequency is set by the cavity frequency
and that the parameters P and β are frequency-independent and can be treated
as phenomenological quantities.

In this limit, it’s immediate to see that the minimum amount of power Pth
that’s required for the operation of the laser is Pth = Γ. Below this threshold,
called lasing threshold, the emitted light intensity is in fact I = |a|2 = 0; above
the lasing threshold, the only dynamically stable solution of (2.24) is instead
given by I = 1

β

(
P
Γ − 1

)
, i.e. the emitted intensity grows linearly with P .

13



Chapter 2. Semiclassical theory of lasers

2.3 Connection to the generalized Gross-Pitaevskii
equation

The semiclassical laser equations (2.12) can be also mapped into the generalized
Gross-Pitaevskii equation (GPE) introduced in [65], with the difference that the
parameters become frequency-dependent. Although we won’t make use of it in
this work, it’s still an interesting point of view from which to look at the laser
equations.

Let’s start again from (2.17) and (2.18), with the difference that now we don’t
solve for the steady-state of the populations. As a convenient shortcut, we express
the coherence as

ρ̃eg = gãL
(
ρ̃ee − ρ̃gg

)
, (2.25)

where L = Lr + iLi is a Lorentzian factor with real part Lr = (ωeg−ωL)
[(ωeg−ωL)2+γ2] and

imaginary part Li = γ
[(ωeg−ωL)2+γ2] .

We now define a new quantity Nex + N
(
ρ̃ee − ρ̃gg

)
that we interpret as

the excess of the atomic population in the excited state, i.e. as a number of
excitations. The equation for the time-evolution of this new quantity and for the
photon field can now be readily written in terms of each other from (2.17) and
(2.18) as Ṅex = P −

[
γR + 4R |ã|2

]
NexGeneralized

GPE
i ˙̃a =

[
(ωcav − ωL) + gRNex + i (RNex − Γ)

]
ã

(2.26)

with

P + N
(
γg − γe

)
, γR + 2γeg = γg + γe, gR + g

2Lr, R + g2Li.
(2.27)

Here the parameter P is a measure of the number of atoms pumped from the
ground state to the excited state, and it’s proportional to the pumping strength
γg, so it acts as an amplification; the interaction g2L, that gives the frequency
dependence, splits into a contribution gR from the real part that describes the
interaction between the field and a reservoir excitation, and into a contribution R
from the real part that describes the efficiency of the stimulated emission; finally,
the atomic Lindblad rates γg and γe describe the rate at which the reservoir is
depleted.

In the event the gain material has an additional Kerr nonlinearity, beyond
the gain saturation nonlinearity already present in eq. (2.26), we would also have
an additional term of the form “ + gU |ã|2 a” on the RHS of the second equation
in (2.26) — where the “U” subscript reminds us that this is the same type of
nonlinearity that characterizes the Hubbard Hamiltonian.

At this point, the equations (2.26) become a generalization of the GPE in [65]
in which gR and R have acquired a frequency-dependence. In particular, the sign
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2.4. Conclusions

of the nonlinearity gR self-consistently depends on the lasing frequency ωL itself,
as gR > 0 (gR < 0) for ωL < ωeg (ωL > ωeg).

2.4 Conclusions

In this Chapter we’ve developed a semiclassical theory of laser operation from
scratch, starting from a single-mode cavity embedding TLAs as a gain material.

The key ingredients that we’ve employed are the Jaynes-Cummings model —
that provides perhaps the most simple description of light-matter interaction at
the quantum level — and a mean-field treatment as a way to obtain semiclassical
equations. The resulting coupled differential equations in (2.12) provide then a
description of populations and coherence of the TLAs, and of the expectation
value of the photonic field in the cavity.

The steady-state analysis that we’ve performed in Section 2.2 highlights how
the presence of the TLAs accounts for the Lorentzian shape of the gain in the
frequency domain; the frequency corresponding to the maximum gain matches
the transition energy between the atomic levels. This means that a signal at a
frequency close to the atomic transition will be amplified better than a signal
detuned from that frequency, thereby effectively providing a spectral selection
mechanism. In a situation in which the linewidth of the gain is much larger than
the effective frequency range of the problem, the effects of the spectral selection
become negligible; this limit is called the broadband limit, and can be described
with a single equation for the photon field.

Finally, we’ve shown how the semiclassical laser equations (2.12) can be
mapped into a generalized GPE (2.26), coupled to an equation that describes
the evolution of reservoir excitations; several nonlinearities arise due to the cou-
pling with the reservoir and due to the frequency-dependence of the coupling
coefficients.

This theory is the cornerstone upon which we’ll model topological lasers in
the remainder of this journey; in particular, the frequency dependence of the gain
will play a central role in Chapter 4, where we provide a possible explanation for
the experimental observations in [29].
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Harper-Hofstadter broadband
topological laser

In this Chapter we consider the broadband limit of the semiclassical theory of
lasers developed in Chapter 2, in the context of a topological system.

As a key example of a topological lattice model, we focus here on the Harper-
Hofstadter model, which was originally formulated to describe the lattice motion
of an electron under a magnetic field perpendicular to the lattice itself. In the pho-
tonics community, this model has surged as an ideal playground to test, among
others, robust transport of light signals [16, 34] and, more recently, the viability
of topological lasers [32, 33, 51, 53, 55, 63].

The analysis of this Chapter starts in Section 3.1 with a review of the Harper-
Hofstadter model and of the relevant topological concepts, while in Section 3.2
we write down the equations for a topological laser based on such model via
the addition of an active medium. After a brief review of the chaotic behavior
in the presence of a spatially uniform gain in Section 3.3, in Section 3.4 we
discuss how restricting gain to the edge of the lattice allows obtaining a single-
mode laser emission that is robust against disorder. The peculiar features that
stem from the chiral nature of the lasing mode are highlighted, as well as the
limitations they are expected to impose on the laser performance. In Section 3.5,
we investigate the effect of restricting gain to a finite strip of sites along one edge.
For this geometry, the finite group velocity of the chiral edge mode turns out to be
responsible for a marked distinction between convective and absolute instabilities,
which is characterized in terms of noise-sustained structures and traveling-wave
amplification. A summary and a discussion of this Chapter’s results is provided
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Chapter 3. Harper-Hofstadter broadband topological laser

Synthetic
gauge field

in Section 3.6.
Most of this Chapter is based on our publication “Theory of chiral edge state

lasing in a two-dimensional topological system” [32]; the Supplemental Videos
referred in the text can be found at the following address: https://journals.
aps.org/prresearch/supplemental/10.1103/PhysRevResearch.1.033148.

3.1 The Harper-Hofstadter model

The Harper-Hofstadter model [66, 67] was originally formulated to describe the
motion of a charged particle on a lattice, under the influence of a normal, uniform
magnetic field. It can be seen as a quantized description of the motion of a
conduction electron in a two-dimensional metal plate subject to a magnetic field,
and indeed it plays a key role in the analysis of the quantum Hall effect, the
quantized counterpart of the Hall effect.

We do not go into these details, as they’ve been extensively discussed in the
literature and as they’ll drift us away from the original purpose of this work; we
limit ourselves to the bare essentials, and the interested reader can refer to the
pedagogical introductions in [68, 69]. We just mention that, although photons
are not charged particles and therefore cannot be drifted by a magnetic field, it’s
still possible to create a synthetic field that acts on photons (or other uncharged
objects like neutral atoms) like a real magnetic field would act on electrons; such
a field is called a synthetic gauge field. In the context of silicon photonics and
with specific reference to the Harper-Hofstadter model this has been achieved by
connecting photonic cavities via asymmetric link waveguides, with lengths that
were specifically tuned to reproduce the presence of a given magnetic field, both
in the context of delay lines [16, 34] as well as in the topolaser experiment in [55].

We’ll start by writing down the Hamiltonian of the model, that is a simple
tight-binding Hamiltonian on a square lattice with a key twist: the hopping along
one of the directions has an additional complex phase1 that depends on the lattice
location in the other direction and on the flux of a corresponding magnetic field:

Harper-
Hofstadter

Hamiltonian

Hbare =
∑
m,n

{
~ωcava

†
m,nam,n − J

(
a†m,nam+1,n + e−i2πϑma†m,nam,n+1 + h.c.

)}
(3.1)

where a†m,n (am,n) is the operator that creates (annihilates) a photon at the
(m,n) site. All sites are assumed to have a bare photon frequency ωcav, the
real and positive parameter J quantifies the hopping strength, and ϑ is the flux
per plaquette of the synthetic gauge field that is responsible for the topological

1The fact that the hopping has a complex phase only in one of the two directions results from
having chosen a Landau gauge for the magnetic vector potential A, of the form A = B(−y, 0, 0)
(1st Landau gauge) or A = B(0, x, 0) (2nd Landau gauge); here we work in the 2nd Landau
gauge [70]. However, a fully equivalent magnetic field B = (0, 0, B) can also be obtained in
the so-called symmetric gauge, where A = B(−y, x, 0)/2; with this gauge choice, the resulting
Hamiltonian has complex hoppings in both directions.
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3.1. The Harper-Hofstadter model

Figure 3.1: Sketch of a Harper-Hofstadter lattice. The lattice has a square
unit cell and the lattice sites (blue dots) are coupled via a hopping coefficient
with uniform absolute value (dashed gray lines). The presence of the synthetic
magnetic field is included as an extra complex hopping phase, such that when
a photon hops around a plaquette (orange arrows) picks up an extra phase 2πϑ
due to the synthetic magnetic flux ϑ.

Berry
connection,
curvature
and phase

properties (unless otherwise, we’ll always use = ϑ = 1/4 for reasons that we are
going to discuss shortly). We denote the Hamiltonian as “bare” as, in the context
of an active photonic lattice, this Hamiltonian does not contain yet any pump or
loss mechanism.

A photon that hops anti-clockwise around a plaquette acquires an additional
complex phase controlled by ϑ (see Figure 3.1). For rational ϑ = p/q with p and
q coprime integers, the Hamiltonian in (3.1) with periodic boundary conditions
(PBC) in both directions can be written in k-space as a q× q matrix, whose bulk
eigenstates uν(k) (ν = 1, . . . , q) distribute in q bands. The bulk bands, identified
by the integers ν, can be characterized via the following topological quantities
due to Berry [71]:

Aν(k) + 〈uν(k) | i∇k |uν(k)〉 , Bν(k) + ∇k ×Aν(k),

γν =
∫
S

Bν(k) · dS =
∮
C

Aν(k) · dl
(3.2)

where C is a closed path in the Brillouin zone and S is the k-space surface
enclosed by C. Without going into details, the quantities Aν(k) and Bν(k),
called respectively the Berry connection and the Berry curvature, act like a vector
potential and a magnetic field in momentum space. The Berry phase γν , that
can be similarly interpreted as a magnetic flux in momentum space, is a gauge-
invariant quantity that can be used to characterize the topological properties of
the bands. Namely, when S corresponds to the whole Brillouin zone, the resulting
Berry curvature is an integer multiple of 2π and we can define a new integer Cν
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Edge states
and

topological
bandgap

called the Chern number :

Cν = 1
2π

∫
BZ

Bν(k) · kxdkxdky, Cν ∈ Z. (3.3)

Up to now, we’ve taken advantage of the PBC to diagonalize the Hamiltonian
and to define bulk quantities like the Chern number. What’s then the role of
these quantities when we have instead open boundary conditions (OBC), as in
the case of an actual experimental device? The answer is given by the bulk-edge
correspondence theorem, which tells us that when PBC are replaced by OBC, it’s
possible to have additional states spatially localized at the edge of the system and
spectrally localized in a bandgap between two bands. If a bandgap possesses such
edge states, it’s called a topological bandgap. The number of edge states Nedge,ν
(ν = 1, . . . , q − 1) in the bandgap between the ν-th band and the ν + 1-th band
can be calculated by summing up all the Chern numbers of the bands below the
bandgap itself:

Nedge,ν =

∣∣∣∣∣∣
∑
µ≤ν

Cµ

∣∣∣∣∣∣ . (3.4)

Figure 3.2: Energy dispersion of the Harper-Hofstadter Hamiltonian (3.1) in
a cylindrical geometry for ϑ = 1/3, 1/4, 1/5 (left to right), with PBC along y
and Nx = 299, 399, 499 sites with OBC along x; the energies ω/J are measured
with respect to ωcav/J , and Hofstadter found them bounded as −4 ≤ ω/J ≤ +4.
The topologically protected edge states are indicated here with colorful lines, red
(blue) color indicating localization on the right (left) edge, while the gray bands
correspond to delocalized bulk states.

As an example, we can take a look at the bands and the Chern numbers of
the Harper-Hofstadter Hamiltonian for ϑ = 1/3, 1/4, 1/5 (see Figure 3.2); the
Chern numbers and their cumulants are summarized in Table 3.1. For ϑ = 1/3 we
have two bandgaps, each hosting a single edge mode2. The sign in the cumulant

2In Figure 3.2, there are OBC only in one direction; therefore the system is equivalent to
a cylinder and has two distinct edges, one on the left and one on the right, presented with
different colors. Each edge has Nedge edge states. In the text, we discuss the case in which
OBC are placed in both directions; the system becomes equivalent to a rectangle and it has
therefore a single edge with Nedge edge states.
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3.2. Active Harper-Hofstadter lattice of cavities

ϑ (Cν)ν
(∑

µ≤ν Cν

)
ν

1/3 −1,+2,−1 −1,+1
1/4 −1,+2,−1 −1,+1
1/5 −1,−1,+4,−1,−1 −1,−2,+2,+1

Table 3.1: Sequence of Chern numbers Cν and their cumulants
∑
µ≤ν Cν of the

bulk bands of the Harper-Hofstadter Hamiltonian (3.1) with ϑ = 1/3, 1/4, 1/5.
For ϑ = 1/4, the two central bands touch in degenerate Dirac points and are
therefore considered as a single band in the calculation of the Chern number.

Chiralityof the Chern numbers provides information about the chirality of these modes:
a −1 sign indicates modes that travel around the edge with an anti-clockwise
chirality, while a +1 sign indicates a clockwise chirality. The situation is similar
for ϑ = 1/4, despite having 4 bands; the reason is that the two central bands touch
at degenerate Dirac points, thus there is no true bandgap between those bands
and they have to be considered as if they were a single band when calculating
the Chern number. The result is that we still have two topological bandgaps, one
at negative energies and one at positive energies, hosting each one a single edge
mode with opposite chiralities. Finally, for ϑ = 1/5, there are 4 bandgaps; the
two central ones host two edge modes each, again with anti-clockwise chirality
for edge modes at negative energies and with clockwise chirality for edge modes
at positive energies.

In the remainder of this work, we’ll always consider the case ϑ = 1/4; like
the case ϑ = 1/3 it has only two topological bandgaps, each hosting a single
chiral edge mode; however, for ϑ = 1/4 the two bandgaps enjoy a wider spectral
separation due to the presence of the two central bands touching in degenerate
Dirac points.

3.2 Active Harper-Hofstadter lattice of cavities

We now write down the equations for an active version of a ϑ = 1/4 Harper-
Hofstadter lattice of optical cavities (see Figure 3.3); with the addition of a
pumping mechanism, we will be able to turn our optical lattice into a lasing
device.

The starting point is the semiclassical theory of lasers review in Chapter 2,
in the form of equation (2.24) since we are considering the broadband limit. If
we don’t perform the transformation (2.16), that is useful only for theoretical
calculations since we don’t a priori know the lasing frequency, the equation has
the following form:

ȧ = −iωcava− Γa+ P

1 + β|a|2
a (3.5)
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Chapter 3. Harper-Hofstadter broadband topological laser

Figure 3.3: Energy bands of the conservative Harper-Hofstadter Hamiltonian
(3.1) with flux ϑ = 1/4 in a lattice of Nx = 399 sites along x and periodic
boundary conditions along y. Blue vs. red color scale quantifies localization on
the left or right edges. The horizontal black and orange lines indicate the WEG
and PEG lasing frequencies shown in Figure 3.5(c).

where, we recall that a is the expectation value of the original field operator. The
first term on the right-hand site is actually coming from the commutator in the
Heisenberg equation for a single cavity, i.e. −iωcava = −i

[
a, ωcava

†a
]
〈a〉→a, in

which naturally a has to be considered as a field operator in order to compute
the commutator, and subsequently replaced by its expectation value. Since we
now have a lattice of cavities, we have a cavity field for each cavity and the
commutator has to be computed with respect to the full lattice Hamiltonian
Hbare specified in (3.1); this holds true for any lattice model, not just for the
Harper-Hofstadter lattice we’re considering here. Additionally, while we consider
cavities with the same intrinsic loss coefficient Γ, we want to have the possibility
to selectively pump only a given set of cavities; therefore we replace P with a
site-dependent coefficient Pm,n.

To summarize, the semiclassical equations for an active Harper-Hofstadter
lattice are:

Active lattice
equations

ȧm,n(t) = −i [am,n, Hbare] +
(

Pm,n
1 + β|am,n|2

− Γ
)
am,n. (3.6)

For a Nx × Ny lattice, we have therefore a set of Nx × Ny coupled3 differential
equations; these equations can be solved via numerical integration, until a steady-
state or a maximum integration time has been reached.

In our calculations, we’ve set the gain saturation parameter β = 1 and we’ve
used a 4-th order Runge-Kutta numerical integration scheme, that provides direct
access to time-dependent quantities. In order to reach a non-trivial solution, we
numerically initialize the fields to a small Gaussian noise.

3The coupling is due to the Hamiltonian Hbare, which couples neighboring cavities.
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Slope
efficiency

3.3 Whole system gain (WSG)

Figure 3.4: Topological lasing in a 25×25 Harper-Hofstadter lattice with a flux
ϑ = 1/4 per plaquette. Left panel: total intensity IT =

∑
m,n |am,n|2 normalized

to the number of amplifying sites vs. gain strength for different configurations:
single resonator (SR), whole system gain (WSG) and whole edge gain (WEG).
Right panel: snapshot of the typical intensity distribution at an arbitrarily chosen
time t = 1000Γ−1 in a WSG configuration. If not differently specified, we have
taken β = 1.

We start our discussion by reviewing the case of a spatially uniform Pm,n = P
gain. Figure 3.4(a) shows how the lasing threshold remains very close to the
single-resonator (SR) value P0 + Γ analytically extracted from (3.6), the slope
efficiency dIT /dP is only slightly lower than the single-resonator value, and the
laser emission is spread throughout the whole system. However, due to com-
plex mode-competition effects, the intensity distribution is very inhomogeneous
in space [Figure 3.4(b)] and no monochromatically oscillating steady-state is ever
reached. This strong spatio-temporal modulation persists indefinitely (see Sup-
plemental Video 1) and is due to the simultaneous lasing into many modes that
interfere and interact with each other via the intrinsic nonlinearity of the model.
Such chaotic behaviors are very common in laser arrays unless some specific sta-
bilization scheme is introduced [54, 72–74]. As one can see in the Supplemental
Video 1, while the chaotic dynamics of the bulk does not appear to display any
specific signature of the non-trivial topology, the intensity distribution on the
edge keeps circulating around the system.

3.4 Whole edge gain (WEG)

A natural strategy to favor laser emission in the topological edge states is to
restrict the gain to the sites on the geometrical border of the system,4 as exper-

4Note that topological lasing in [29] was operated under a WSG; we will propose a physical
reason why bulk mode lasing was suppressed in this experiment in Chapter 4.
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Chapter 3. Harper-Hofstadter broadband topological laser

Figure 3.5: Topological lasing in a 25 × 25 HH lattice with ϑ = 1/4 in a one-
site-thick WEG configuration. Panel (a): snapshot of the steady-state intensity
distribution. The green rectangle indicates the amplifying sites. Panel (b): cuts
of the intensity distribution along the x = 1 line at times (from top to bottom)
Γt = 43.85, 51.65, 59.45, 67.20, 75.00. Panel (c): normalized realization-averaged
power spectral density (PSD). The dashed lines indicate the center of mass of the
distribution. For comparison, the orange arrows indicate the lasing frequency for
a 1 × 15 PEG. The gray shading indicates the density of states of the bands in
Figure 3.3(a).

imentally implemented in [55]. Figure 3.5(a) recovers the predictions of earlier
theoretical work [51] and displays a stable monochromatic single-mode oscillation
in a topological edge mode of the system.5 The slope efficiency (i.e. the slope
of the blue curve in Figure 3.4(a) right above the threshold) is very close to the
single-site one and the slightly increased threshold P̃0 & P0 is due to the weak but
finite penetration of the edge mode into the non-amplifying bulk sites. Given the
broadband gain used in the calculations, the oscillation frequency occurs with the
same probability in either gap of the band structure [Figure 3.5(c)]: as expected
from the band structure shown in Figure 3.3, the lasing mode will have opposite

5Note that the dynamical instabilities anticipated in [58] were due to specific features of
semiconductor lasers, in particular to the presence of a slow carrier reservoir that induces
site-dependent nonlinear frequency shifts. They are absent in our simple model of lasing. A
theoretical study of the stability of edge state lasing has been subsequently carried out in [63].
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Selection of
lasing
frequency

Ultra-slow
relaxation
rate

chirality depending on which edge mode is selected.

3.4.1 Consequences of the chirality of the lasing
mode

This general picture of topological lasing [51, 54] is the starting point to inves-
tigate the subtle physical consequences of the chirality of the lasing modes that
are the core subject of this Chapter.

As a first result, Figure 3.5(c) shows that the lasing frequency is randomly
chosen among a number of available modes located around the gap centers. Since
the penetration of the edge mode in the bulk is minimum at the center of the
energy gap, lasing will preferentially occur in this frequency region that maximizes
the overlap with the amplifying sites and thus the effective gain. As it happens
in ring lasers, edge modes are discretized according to a round-trip quantization
condition around the perimeter of the system. This gives a frequency spacing
∆ω ' 2π vg/L where vg is the edge mode group velocity and L is the perimeter.
The approximately equal spacing of the modes is due to the weak curvature
of the edge mode band that is visible in Figure 3.3. Even though the mode
spacing can be very small in large lattices, once a lasing mode has been selected,
the single-mode emission remains stable for indefinite times in the absence of
noise. The overall width of the distribution is determined by the k-dependent
spatial overlap of edge modes with the gain region, which introduces an effective
frequency dependence of the gain.

As an even more remarkable feature, Figure 3.5(b) displays a series of longi-
tudinal cuts of the intensity profile along the x = 1 left edge for different times
separated by an (approximate) round-trip time Trt = L/vg. The intensity mod-
ulation due to the initially noisy state relaxes away on a much slower timescale
than all other microscopic scales, including Trt. As an illustrative example, Sup-
plemental Video 2 shows an intensity bump traveling in the clockwise direction
around the system and slowly fading away. This ultra-slow relaxation rate is a
consequence of the Goldstone theorem which imposes (at least) a k2 behavior for
the imaginary part of the complex frequency of the long-wavelength collective
modes corresponding to spatially slow fluctuations of the laser emission [63, 65].

3.4.2 Robustness to disorder

To complete the picture, it is important to briefly investigate the robustness of
these features against static disorder. Some first remarks on the effect of disorder
were reported in [51].

The most straightforward way of including disorder in our model is to in-
troduce a random frequency shift of the natural frequencies of the cavities. In
Figure 3.6 we take the on-site disorder U to have a Gaussian distribution with
standard deviation σ(U). A specific realization of disorder is displayed in panel
(g) for the σ(U)/J = 0.1 case. The disorder used in the cases σ(U)/J = 0.4, 1.2 is
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Figure 3.6: Panels (a)–(c): normalized spatially integrated power spectral den-
sity (PSD) in the WEG configuration without disorder (panel (a)) and with a
disorder strength equal to σ(U)/J = 0.4 (panel (b)) and to σ(U)/J = 1.2 (panel
(c)). The PSD for a single random realization of lasing is displayed in green,
while the average over multiple realizations [5000 in panel (a), 2500 in panels
(b)–(c)] is shown in blue. The shaded areas indicate the density of states of the
bands in the absence of disorder, and the central band region has been cut out
for visualization convenience. Panels (d)–(f): snapshots of the typical intensity
distribution at an arbitrarily chosen late time t = 500Γ−1 for the same values of
disorder as in (a)–(c). Panel (g): realization of the disorder used (upon rescaling)
for all other simulations in the figure. Colors indicate the frequency shift of the
different sites for a disorder strength σ(U)/J = 0.1. Panel (h): normalized emit-
ted intensity as a function of gain strength for a single resonator (blue dashed
line), for the non-disordered case (solid red line), and for a few disordered cases
with σ(U)/J = 0.4 (solid yellow line) and σ(U)/J = 0.4 (violet line).
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obtained by simply rescaling this distribution. In addition to this “non-magnetic”
disorder that is common to all systems, note that microrings-based implementa-
tions like the one in [55] can also host another source of disorder, called “mag-
netic” disorder since it couples the two pseudo-spin states [34, 51]. A study of
this latter disorder goes beyond the scope of our work.

Thanks to the topological protection of the edge mode and its ability to cir-
cumnavigate impurities and defects, the intensity distribution for a WEG config-
uration remains spatially localized on the edge up to large values of the disorder
strength comparable to the bandgap [panels (d)–(f)]. As one can see by com-
paring the different curves in panel (h), moderate values of disorder only slightly
increase the lasing threshold, while the slope efficiency is almost unaffected. The
unidirectional chiral motion of the lasing edge mode guarantees an efficient phase
locking of the emission at different points along the edge, and the laser operation
remains firmly single-mode [green lines in panels (a)–(b)].

Only when the disorder gets comparable to the energy band gap, the laser
emission breaks into several independently lasing regions and the emission ac-
quires a multi-mode and multi-frequency character, as shown in the intensity
distribution in panel (f) and in the spectrum in panel (c). Correspondingly, one
can see in panel (h) that the sharp threshold transforms into a smooth, pro-
gressive switch-on. As compared to the WSG case, the spatial separation of the
different lasing modes makes the temporal fluctuations of the intensity profile less
apparent than in Figure 3.4 and Supplemental Video 1.

The blue lines in panels (a)–(c) show a statistical analysis of the emission
frequency over many realizations of laser operation with the same realization
of the Gaussian disorder.6 As long as the disorder is moderate and the lasing
mode keeps extending around the whole system, the discretization of the modes is
preserved [blue lines in panels (a)–(b)]. For stronger disorder, when many modes
are simultaneously and independently lasing, the emission spectrum for a single
realization matches the averaged one, so the distinction between the green and
the blue curve is no longer visible in panel (c).

3.5 Partial edge gain (PEG)

Since the ultra-slow relaxation of long-wavelength fluctuations discussed in the
previous Section is likely to compromise the coherence of the emission against
quantum noise [53], it is interesting to explore a configuration where gain is
restricted to a 1×N finite strip of sites along an edge. A related geometry was
experimentally considered in [55].

In this case, a dramatically faster relaxation can be anticipated since any
perturbation is rapidly expelled by the chiral motion into the surrounding non-

6The study of a single disordered realization is physically more meaningful, in this case,
than averaging over multiple disorder realizations; it models a specific sample that has a single
and immutable disordered configuration.
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amplified edge region. Furthermore, while in the WEG configuration the round-
trip quantization around the system perimeter gives a topologically protected
winding number [75] characterizing the lasing mode as in standard ring lasers, in
the present PEG configuration the lasing region is an open segment, for which
no topologically protected winding number exists; as a result, the spatial profile
of the lasing mode is able to continuously relax towards its optimal shape.

3.5.1 Spatial structure of the lasing mode

This expected behavior is confirmed in Figure 3.7. A steady-state with a stable
monochromatic oscillation is indeed quickly reached on a microscopic timescale.
For moderate values of N [panels (c) and (d)], all the emission is efficiently
funneled into one of the two modes with opposite chiralities, randomly chosen
at each realization. Given their relatively large frequency-separation of order J ,
one can anticipate that in practice one of them will be privileged by the small
frequency-dependence of the gain7.

The selected chirality reflects in the spatial asymmetry of the intensity profile
within the amplifying region. This asymmetry is clearly visible on the dotted
light-blue lines in panels (c) and (d) as a growing intensity along the positive-y
chiral propagation direction. This asymmetry is still visible but less marked on
the solid blue lines calculated for a higher gain far above the threshold, for which
the light intensity displays within the amplifying region a faster growth towards
the saturated value. Irrespectively of the gain strength, the chirality of the lasing
edge mode is also apparent in the significant amount of light emission from the
non-amplifying edge sites located just downstream of the amplifying region, while
the ones located in the upstream direction remain dark. In Figure 3.7(c)–(d), this
corresponds to a much more pronounced tail of the intensity distribution on the
right-hand side of the amplifying region marked in yellow.

The situation is very different for large values of N . In this case, mode
competition is not able to isolate a single mode, and lasing simultaneously occurs
in modes of both chiralities, [panel (e)]. Nonetheless, local gain saturation effects
are still able to keep the two chiralities almost spatially separated with a net
outward flow (red arrows). The fringes that are visible in the central region
arise from interference of the two lasing modes and oscillate at their frequency
separation of the order of J .

3.5.2 Convective vs. absolute instability

Additional intriguing features of the PEG case are found in the dependence of
the lasing threshold on the strip length N plotted in Figure 3.7(b). As expected,
the threshold decreases for growing N , but a numerical fit of the form aN−b + c

7Note that the pseudo-spin degree of freedom in [55] allows for more complex field config-
urations where modes of both chiralities are excited even in a monochromatic steady-state. As
discussed there, more complex ring-resonators are then required to select a specific chirality.
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Figure 3.7: Panel (a): steady-state intensity distribution for a 1× 15 PEG in a
large 11×51 lattice. The green rectangle indicates the amplifying sites. Panel (b):
lasing threshold for 1×N PEG with different J/Γ = 20, 10 (solid lines). Lasing
threshold for a one-site-thick WEG case (dashed line). Panels (c)–(e): cuts of
the intensity distribution along the x = 1 line for different PEG geometries (see
legends). The shaded area indicates the amplifying sites. The different curves
in (c)–(d) refer to the steady-state for different gain strengths P/P0 = 4 (solid
blue), P/P0 = 2 (dotted, light blue; to facilitate reading, these curves have been
rescaled to have the same maximum as the solid blue ones); the different curves
in (e) refer to different times separated by 0.05Γ−1.
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Convective
instability

(solid lines) clearly shows that the large-N limit remains significantly higher than
the WEG threshold (dashed line).

An explanation for this remarkable finding is offered by the distinction be-
tween convective and absolute instabilities, a well-known phenomenon in the
theory of nonlinear dynamical systems and in hydrodynamics [76, 77]. The ab-
solute instability (AI) corresponds to the standard dynamical instability of the
zero-field state above a threshold Pabs. The convective instability (CI) is instead
a weaker form of instability that is found whenever the exponential growth of a
perturbation for P > P̃0 is overcompensated by its quick motion at vg: in this
CI regime, even though the peak amplitude of the moving perturbation grows
in time, its local value at any given spatial location quickly decreases back to
zero. When the amplifying region is spatially finite, as in our PEG case, any per-
turbation immediately disappears upon entering the external lossy region. This
distinction between CI and AI explains why the laser instability is only observed
above the higher AI threshold Pabs > P̃0 & P0. This phenomenon cannot occur
in the WEG case where the closed shape of the amplifying region does not allow
the perturbation to escape from it.8

Further evidence of the role of the convective instability in the PEG configu-
ration is offered by the dependence of the lasing operation on the group velocity
vg. As we have seen in the previous Section, a lasing frequency next to the gap
centers [Figure 3.5(c)] is chosen in the WEG case so to maximize the spatial over-
lap with gain. In the PEG case, instead, the location of the absolute threshold
Pabs is dominantly controlled by vg, so the AI is first reached by edge modes lo-
cated next to the outer edge of the gaps (orange arrows) for which vg is lower. A
more subtle feature is visible in Figure 3.7(b). On one hand, the WEG threshold
(dashed line) stays constant at P̃0 & P0 when J/Γ (and thus vg) is increased.
On the other hand, the PEG threshold at Pabs monotonically grows when J and
consequently vg are increased (squares vs. circles).

3.5.3 Noise-sustained structures

A typical way to characterize the convective vs. absolute nature of a dynami-
cal instability in generic nonlinear dynamical systems is to study the intensity
distribution in the presence of some external noise and look for the so-called
noise-sustained structures (NSS) [76–79].

Generic quantum optical systems are unavoidably subject to quantum noise
due to the discreteness of the light quanta. An easy way to include the effects of
the quantum noise is to switch to the Wigner representation [80–83] and write
stochastic differential equations for the classical complex variables am,n corre-
sponding to the quantum field amplitudes âm,n. In the absence of extra noise
sources, noise can be approximated by its expression in the linear gain regime,

8The transition between WEG to PEG occurs when the length of the non-pumped interval
largely exceeds the absorption length along a (non-pumped) edge.
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Figure 3.8: Spatio-temporal intensity patterns on the left border of a 11 × 51
lattice with a 1 × 21 amplified strip located at the center of the left side and
indicated in all panels by the dashed white lines. In the first row there is a
noisy seed only at t = 0, while on the third one there is noise at all times. In
the second row there is no noise, but there is a Gaussian pulse at frequency
ω/J = 1.9 localized on the central site and centered in time at t = 15, with
standard deviation σt = 0.3. All the times are measured in units of Γ−1. For
homogeneity, in the AI case we restricted to a realization of lasing into the clock-
wise propagating topological mode localized on the left edge. In this figure,
β = 0.01 was taken.
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where it amounts to an additional stochastic term in (3.6):

ȧm,n(t) = . . .−

√
Γ
(

1 + Pm,n
P

)
ξm,n(t). (3.7)

Here the dots . . . summarize the RHS of (3.6) and ξm,n(t) are independent, zero-
mean normally-distributed complex white noises of variance 1.

Examples of simulations of noise-sustained structures in the topological laser
PEG configuration are shown in Figure 3.8. We go through the different instabil-
ity regimes by varying the pump power P , namely P/P0 = 0.9 for the absolutely
stable (AS) regime, P/P0 = 1.5 for the CI regime, and P/P0 = 1.8 for the AI
regime. As shown in Figure 3.7(b) for the considered J/Γ = 10 and N = 21 case,
the thresholds are at P/P0 = 1.13 for the AS to CI transition and at P/P0 = 1.56
for the CI to AI transition.

The spatio-temporal patterns in Figure 3.8 are calculated in three different
cases, namely with a weak initial noisy seed (top row); with a coherent pulse
incident on the system at a given time (central row); with a continuous white
noise active during the whole evolution according to Equation (3.7) (bottom row).

In the CI regime without noise [panel (b)], the initial noisy seed gets quickly
amplified in the amplifying region but is simultaneously advected away with group
velocity vg. Locally, the system then quickly returns to the equilibrium zero-field
state. In the presence of continuous noise [panel (h)], the spatio-temporal pattern
clearly shows so-called noise-sustained structures (NSS) [76, 77]. These consist
of high-intensity stripes that keep appearing at random times and get amplified
while being advected away at ±vg (depending on which topological gap they are
spectrally located in). As a result, the intensity is continuously fluctuating at all
points, but its average and variance are strongest on the edge of the amplifying
region. Of course, the field shows no long-time phase coherence. A short coherent
pump pulse whose spectrum overlaps one of the two topological edge modes (the
upwards propagating one in the figure) injects a wavepacket that gets quickly
amplified while it propagates along the edge at vg with a minor spatial broadening
[panel (e)]. Once the wavepacket reaches the edge of the amplified region, it starts
decaying.

These are the typical features of systems located in a convective instability
regime and accurately match the ones displayed by other optical systems in the
same regime [78, 79]. For the sake of completeness, it is interesting to compare
these behaviors to the ones in the absolute stability and in the absolute instability
regimes.

In absence of noise [panels (a)–(c)] the initial perturbation gets quickly damped
in the AS regime, while it is exponentially amplified into a self-supporting lasing
mode in the AI regime. In this latter case, the chirality of the lasing mode is
randomly selected depending on the initial condition. In the shown case, the
system starts lasing in both chiralities, but eventually one of them (the upwards
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propagating one in the figure) dominates and ends up completely suppressing the
other one.

We now replace the initial noisy perturbation with a short Gaussian pulse
spectrally overlapping with the upwards propagating chiral edge mode. In the
AS regime, we observe that the pulse propagates at vg but is quickly damped
during propagation [panel (d)]. In the AI regime, instead, the injected pulse has
the time to expand across the whole amplified region before being advected away,
so that it can eventually transform into a self-supporting lasing mode [panel (f)].
In this case, the chirality of the lasing mode is fixed from the beginning by the
one of the incident pulse.

In the presence of noise at all times, the stripe-shaped intensity fluctuations
that are visible in the amplifying region have different properties in the AS regime
[panel (g)] as compared to the one discussed above for the CI regime [panel
(h)]. Since decay now dominates over amplification, the intensity is now roughly
uniform across the whole amplified region and is no longer peaked on the edges.
Still, both chiralities are randomly selected during the evolution.

In the AI regime, the behavior in the presence of a continuous noise [panel (i)]
is very similar to the other two cases [panels (c) and (f)]. As in (c), the chirality of
the lasing mode is randomly selected. The main difference with (c) and (f) is that
the noise accelerates the onset of lasing; furthermore, weak intensity fluctuations
are visible on top of the lasing mode at all times and propagate in the same
direction.

3.5.4 Robustness to disorder

In order to assess the robustness of lasing to disorder, we now consider a PEG
configuration with a 1×15 strip of amplifying sites on the left border of a 11×51
lattice and we add the typical Gaussian disorder configuration shown in Fig-
ure 3.9(g). Snapshots of the spatial intensity distribution of the emission at a
late time t = 500Γ−1 are shown in panels (d)–(f) for different values of the overall
disorder strength. These plots suggest that the disorder strength which is needed
to spoil the single-mode nature of the topological laser emission is roughly 1/3
of what was needed in the WEG configuration discussed above. This relative
fragility is due to proximity (visible in Figure 3.3) of the lasing frequency to the
bulk bands: a weaker disorder is sufficient to mix the edge mode with the bulk
bands and thus break the edge state into independently lasing regions, as shown
in panel (f).

Further light on this physics can be obtained from the power spectral densities
shown in panels (a)–(c). In contrast to the WEG case, no visible difference is
found between the spectra for single realizations of lasing and the averaged ones.
As already mentioned for the disorder-free case, this is due to the open boundaries
of the amplifying region, which allow for a smooth adjustment of the lasing
mode to the optimal gain. As long as the disorder remains moderate, we have a
monochromatic and single-mode emission. For the strong disorder strength case
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Figure 3.9: Panels (a)-(c): normalized spatially integrated power spectral densi-
ties for different values of the disorder strength σ(U)/J = 0 [panel (a)], 0.2 [panel
(b)], 0.5 [panel (c)]; the shaded areas indicate the density of states of the bands
in the absence of disorder. Panels (d)-(f): snapshots of the intensity distribution
at a late time t = 500Γ−1 for the same configurations of panels (a-c). Panel (g):
frequency shift of the different sites for a disorder strength σ(U)/J = 0.1; upon
a suitable rescaling, this realization of the disorder is used in all panels. Same
geometry with a 1× 15 amplifying strip in a 11× 51 lattice as in Figure 3.7(a).
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considered in panel (c), the spatial breaking into several independent lasing mode
visible in panel (f) reflects in the multi-mode character of the emission, which
also involves frequencies located within the bands.

3.5.5 Amplification of a propagating probe

Figure 3.10: Left panel (a): Incident-frequency-dependent transmission spec-
trum for a 1 × 7 PEG and different gain strengths (from bottom to top)
P/P0 = 2.04, 2.05, 2.06, 2.07, 2.08, 2.085, 2.09 approaching the lasing threshold.
Right panel (b): peak transmittivity as a function of gain strength for incident
amplitude E0/

√
J = 10−7 (upwards triangles) or 10−8 (downwards triangles).

Red lines indicate the result of the linearized calculation based on the input-
output formalism of [34, 37].

As a final characterization of the CI regime, Figure 3.10 illustrates the pos-
sibility of an efficient traveling-wave amplification [37]. We consider a system of
11× 25 sites with amplification restricted to a 1× 7 vertical strip in the middle
of the left border (sites 10 to 16). The chiral transmission of a coherent probe
through the gain region is studied using a pair of input and output waveguides
coupled to the neighboring sites 8 and 18 on the same border. The transmission is
calculated by solving the temporal evolution until the steady-state is reached. As
usual in input-output theory [84], new terms must be added to the time-evolution
equations for the input and output sites,

ȧin(t) = . . .− γin
2 ain −

√
γinE0e

−iωt (3.8)

ȧout(t) = . . .− γout
2 aout (3.9)

where the dots . . . summarize the RHS of (3.6), the incident field has amplitude
E0 and frequency ω, and γin,out account for the extra radiative losses into the
waveguides. The transmittivity (Figure 3.5) is obtained from the transmitted
field Eout = √γoutaout as T = |Eout/E0|2: below the lasing threshold Pabs,
the full numerical calculations (triangles) are perfectly recovered by a simpler
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linearized calculation based on the Green’s function approach for a weak probe
(red lines) discussed in the supplementary material of [34] and extended to the
quantum level in [37]. Above the threshold, nonlinear effects dominate and the
linearized calculations are no longer reliable.

Panel (a) shows the transmission spectrum for gain values in the CI region
P̃0 < P < Pabs. For P < P0, the gain is not able to overcome losses: the
net absorption of all sites combined with the impedance mismatch at the input
and output waveguides conspire to give a very low transmission. As P grows
above P̃0, net amplification sets in, giving a broad transmission peak. As P
further grows towards Pabs, the transmittivity grows far above 1 in a narrow
frequency range and eventually diverges at the lasing frequency as the absolute
threshold is approached (P → P−abs). Panel (b) shows the peak transmittivity
as a function of gain strength for two values of the probe intensity. Well below
the laser threshold, the two curves coincide as the system behaves in a linear
way. Around and above threshold, instead, nonlinear gain saturation sets in,
limiting the effective amplification and thus distinguishing the two curves. Well
above the laser threshold, the field intensity is fixed by the self-oscillation process
independently of the probe, so the transmittivity is inversely proportional to
|E0|2.

3.6 Conclusions

In this Chapter, we have theoretically studied a topological laser device based on
a bosonic Harper-Hofstadter lattice model endowed with optical gain.

After a brief introduction on the Harper-Hofstadter model and on its topolog-
ical properties, we have obtained the equations that describe a topolaser device
by incorporating the lattice dynamics into the semiclassical theory of lasers, in
the limit of a broadband gain. We have then numerically simulated the resulting
set of equations in order to investigate the properties of the laser.

The numerical simulations have highlighted striking consequences of the chi-
rality of the lasing mode: when the gain is distributed around the whole edge,
lasing can occur in a number of closely-spaced modes, and relaxation towards
the steady-state occurs on a very slow timescale; when the gain is restricted to a
finite strip, relaxation is fast but the distinction between convective and absolute
instabilities causes an increase of the threshold and introduces new amplification
regimes. On this latter point, in analogy to other convectively unstable systems,
we have illustrated the qualitative shape of the structures that appear in the
presence of quantum noise. Finally, to complete the picture, we have quantita-
tively assessed the impact of disorder on topological lasing and highlighted the
stronger robustness of the WEG configuration.

While the analysis developed in this Chapter offers new fundamental insights,
especially on broadband topolasers like the one in [51, 55], it falls short of ad-
dressing the pioneering experimental observations in [29], in which a single-mode
topolaser based on photonic crystals was obtained in a WSG configuration. Since
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in this configuration a broadband analysis predicts, as discussed in Section 3.3
and as observed in [51, 55], a chaotic multi-mode emission even from topologically
trivial modes, we felt the motivation to investigate on the interplay between spa-
tial mode-selection mechanisms and spectral mode-selection mechanisms, which
is the subject of Chapter 4.
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In the previous Chapter, we’ve analyzed a broadband topolaser based on the
Harper-Hofstadter model, exploring the viability and the properties of different
pumping schemes that we classified as WSG, WEG or PEG.

Under a WSG — i.e. spatially uniform pumping — configuration, such a
system is not able to selectively promote an edge mode to a lasing mode, and
when the pumping strength is above the absolute lasing threshold all the modes
start to lase — even the bulk ones. This is the reason most topolaser realizations
employ a WEG pumping scheme [21, 49, 55, 85] or a PEG pumping scheme
[48, 50, 86], that are able to effectively increase the gain of the edge modes with
respect to the bulk ones by exploiting the spatial overlap between the mode profile
and the pumped region itself.

However, a notable exception in these experiments was reported in [29]; de-
spite having an extremely narrow topological bandgap, the authors were able to
get a clean single-mode emission from a topologically protected edge state by
employing a WSG scheme — also used in later works [57, 87].

Motivated by these puzzling experimental results, we have decided to investi-
gate the interplay between spatial and spectral mode-selection mechanisms, which
requires treating the system beyond the broadband regime by incorporating the
frequency-dependent contributions from the gain medium. In this Chapter we
will explore the physics down this road, by suitably modifying the topological
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laser equations and the system itself.
The Chapter is organized as follows. In Section 4.1 we introduce the underly-

ing model and the equations used in the numerical simulations. In Section 4.2 we
review the case of narrowband gain, and in Section 4.2.2 we discuss the interplay
between mode pulling and the resonant frequency of the gain. In Section 4.3 we
consider the case of a broadband gain, starting in Section 4.3.1 where we present
a scheme that is able to qualitatively reproduce the observations of [29] and where
we briefly discuss the main results at a more intuitive level, while leaving a more
in-depth analysis to Sections 4.3.2 to 4.3.4. In Section 4.4 we discuss the connec-
tion between our model and the experimental observations in [29], and finally in
Section 4.5 we draw the conclusions.

Most of this Chapter is based on our publication “Spatial and spectral mode-
selection effects in topological lasers with frequency-dependent gain” [33].

4.1 The Bloch-Harper-Hofstadter model

As a starting model, we consider again the same Harper-Hofstadter lattice we
have introduced in Chapter 3. Analogously to what we did in Section 3.2, we
now want to write the corresponding semiclassical equations we have to solve;
here, however, we don’t restrict ourselves in the broadband limit anymore, so we
need to use the full set of equations (2.12) that describe not only the evolution
of the photon field, but also of the coherence and the populations of the atoms
in the gain medium.

For clarity, let’s write again the full semiclassical equations for a cavity with
a gain medium:

ρ̇ee = γgρgg − γeρee + i
degE0

~

(
aρge − a∗ρeg

)
ρ̇gg = γeρee − γgρgg − i

degE0
~

(
aρge − a∗ρeg

)
ρ̇eg = −i(ωeg − iγ)ρeg − i

degE0
~

a
(
ρee − ρgg

)
ȧ = −Γa+ i

degE0
~

Nρeg

(4.1)

Notice that, compared to (2.12), we have eliminated the cavity frequency ωcav
by using it as a reference frequency to measure all other frequencies, i.e. by
performing the unitary transformation

a→ ae−iωcavt and ρeg → ρege
+iωcavt, (4.2)

that does not affect the populations.
Just as before, we now have such a set of equations for each cavity in the

lattice, so we have to add position indices; furthermore, the lattice cavities them-
selves are connected through the Harper-Hofstadter hopping term

Hhop = −J
∑
m,n

{
a†m,nam+1,n + e−i2πϑma†m,nam,n+1 + h.c.

}
, (4.3)
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so the equations for the photon field have to include it as ȧm,n = . . .+ i
~ [Hhop, am,n],

where the dots . . . indicate the existing terms in the RHS of (4.1).
As now J sets the lattice energy scale, it is also useful to perform a rescaling to

dimensionless quantities for numerical purposes. This is done by performing the
re-definitions ~γ{e,g,eg,ph}

J → γ{e,g,eg,ph}, ~ωeg
J → ωeg, Jt~ → t, ~Γ

J → Γ, −~g
J a→ a

(the extra “−” compensates the fact that g is negative), and by defining the new
quantity

G +

(
~g
J

)2
N =

(
degE0
J

)2
N =

d2
eg~ωcav

2J2ε0

N

V
. (4.4)

This parameter, which is proportional to the volumetric density N
V of TLAs and

to the natural frequency of the cavity, will act as a gain parameter in the following
discussion — we comment more on this choice below.

With all these ingredients, the set of equations (4.1) for a single cavity turns
into the following set of coupled equations (4.5) for our Harper-Hofstadter lattice,
in dimensionless units, that we dub Bloch-Harper-Hofstadter model:

ρ̇m,nee = γg − 2γegρm,nee + i
(
am,nρ

m,n
ge − a∗m,nρm,neg

)
Bloch-
Harper-
Hofstadter
model

ρ̇m,ngg = γe − 2γegρm,ngg − i
(
am,nρ

m,n
ge − a∗m,nρm,neg

)
ρ̇m,neg = −i

(
ωeg − iγ

)
ρm,neg − iam,n

(
ρm,nee − ρm,ngg

)
ȧm,n =− Γam,n + iGρm,neg + i

(
am+1,n + αm−1,n

)
+ i
(
e−i2πϑmam,n+1 + e+i2πϑmam,n−1

)
(4.5)

In all the simulations, we’ve set the on-site losses to a reasonable value Γ = 0.1.
We now seek the lasing condition of a single lattice cavity, bearing in mind

that, as we have shown in Chapter 3, the lasing condition for a lattice of identical
cavities has to be greater or equal than the threshold of a single cavity.

In actual devices, the amplification is controlled by γg, the rate at which
the atoms are excited from their ground state |g〉 to a higher-energy state |e〉.
However, this has also the additional side effect of possibly modifying both the
height and the linewidth of the Lorentzian profile of the gain (see Section 2.2),
depending on the relative value of γph, as well as contributing to frequency-
dependent shifts of the lasing frequency itself and of the saturation factor of
the amplification term. In order to skim these side effects off the model and
obtain a simpler, yet still meaningful description, we’ll instead use G as the
primary amplification parameter, and we’ll write the lasing condition for G itself.
Increasing G instead of ρeg (through γg) has the same effect on the amplification
term in the equation for a, but helps avoid the effects described above and, if the
range of probed G values is not too large, it still gives a faithful description.

The lasing condition in terms of G is easily obtained from the steady-state
analysis done in Section 2.2, which shows we must have P

1+β|a|2 > Γ. By expand-
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ing this expression, we have the threshold condition
Single-cavity

lasing
threshold

G >
2Γγeg/γ
γg − γe

[
γ2 + ∆2

det

]
, (4.6)

where ∆det = ωeg − ωL measures the detuning of the lasing frequency ωL from
the atomic transition frequency ωeg. This relation shows that the threshold for
a given mode has a quadratic dependence on its frequency, and that the mode
that lases first — i.e. for which the threshold is as small as possible — is the one
at resonance, ωL = ωeg. In this resonant case, the threshold condition becomes

G >
2γegγΓ
γg − γe

+ Gres,0, (4.7)

where we have defined Gres,0 as the single-cavity resonant lasing threshold.
In the numerical simulations, for the atomic parameters we have set γph = 0

and we have taken γg = 4
3γ and γg = 2

3γ, with 2γ = γg + γe being the FWHM of
the Lorentzian profile of the gain. With this choice of parameters, we then have
Gres,0 = 3γΓ. The remaining parameters are changed throughout the remainder
of this Chapter.

4.2 Narrowband gain

In the previous Section 4.1, we have worked out the equations (4.5) for an active
Harper-Hofstadter lattice, without any particular restriction on the linewidth of
the gain. Together with the definition of the resonant lasing threshold Gres,0 of a
single lattice site, this provides us the conceptual building blocks to understand
laser operation in a topological lattice. As a first step in this direction, in this
Section we consider the simplest case where the narrowband gain spectrum is
concentrated within a topological gap. In contrast to the chaotic multi-mode
emission found in Section 3.3 for the extreme broadband gain, here we show
that such narrowband gain can lead to a stable topological lasing even under
a spatially uniform pumping. While such a narrowband gain might not be the
technologically simplest option for practical devices, a detailed discussion of its
features is an interesting first step to validate our Bloch-Harper-Hofstadter model
and understand its behavior in the different regimes. In addition to that, because
of mode-pulling effects, an interesting non-trivial relation is found between the
lasing frequency and the bare frequencies of the discrete set of edge modes.

4.2.1 Single-mode topological laser emission
This narrowband gain configuration can be obtained by considering the Bloch-
Harper-Hofstadter model introduced in Section 4.1 and tuning the atomic fre-
quency ωeg in the middle of the topological bandgap with a gain linewidth γ
much smaller than the gap width, as sketched in Figure 4.1(c). In this way, the
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Figure 4.1: Panel (a): steady-state emission of a 15 × 15 lattice, uniformly
pumped on all sites with a narrowband gain of strength G/Gres,0 = 3. The atomic
transition frequency is ωeg = 1.9. For these parameters, lasing is found to occur
at ω = 1.87. Panel (b): spatially averaged emitted intensity as a function of the
gain strength G, showing the typical linear behavior after the lasing threshold.
Panel (c): band structure of a Harper-Hofstadter lattice with PBC in the y-
direction, but finite in the x-direction Nx = 39. The color scale from blue to
red quantifies the localization of each mode from left to right in the x-direction,
while the dashed line indicates the atomic resonance ωeg. The narrowband gain
used for the simulations in the panels above is represented as a Lorentzian in the
frequency domain, centered at ωeg and with a FWHM 2γ = 0.2, i.e. roughly 13%
of the topological bandgap.

frequency-dependence of gain strongly increases the effective threshold for laser
operation in the off-resonant bulk band states while the one for edge state lasing
remains almost unaffected.

Laser operation in this regime is illustrated in Figure 4.1(a)–(b). Emission
into the edge state is stable and monochromatic and remains so up to high pump
strengths well above the laser threshold [88]. Quite interestingly, such monochro-
matic single-mode emission is not restricted to small lattice sizes where a sin-
gle eigenstate — classified by ky for the strip geometry of Figure 4.1(c), or by
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the winding number around the lattice for the geometry of Figure 4.1(a) —
falls within the gain bandwidth: as it was pointed out in [32] for the extreme
broadband gain case, the high spatial overlap of different edge states provides
in fact a very efficient mode competition mechanism [59] eventually suppressing
simultaneous laser operation in multiple modes. The dynamical stability of the
single-mode emission was confirmed by the Bogoliubov analysis in [63]. A fur-
ther illustration of the dynamics of this mode-competition process over time is
provided in Section 4.3.2 where we display a time-frequency representation of the
lasing process. As usual, the choice of the specific lasing mode is stochastically
determined at each instance of lasing by the initial conditions and the noise. Still,
for sufficiently narrowband gain, the resulting probability distribution for lasing
in different modes will be very peaked on the most likely mode.

Of course, this monochromatic emission only holds up to moderate pump
strengths, at which only the quasi-resonant edge modes experience an effective
gain. At very high pump strength also the bulk modes go above threshold and
the dynamics recovers the chaotic behavior found in Section 3.3 for a broadband
gain distributed in the whole system (WSG).

4.2.2 Mode-pulling effects
It is a general feature of laser physics that a narrowband gain causes an additional
mode pulling effect. For a single cavity this means that the lasing frequency does
not correspond to the bare cavity frequency ωcav, as it is pulled towards the
center of the Lorentzian profile of the gain [60], i.e. towards ωeg:

Mode-pulling
(one cavity) ωL = ωcav + Sωeg

1 + S , (4.8)

where S = Γ
γ is called the stabilization factor.

In the case of a lattice of cavities, we have to replace ωcav with a frequency ω0
that corresponds to the specific mode of the underlying lattice that the system
is selecting for lasing:

ωL = ω0 + Sωeg
1 + S . (4.9)

So, in contrast to the broadband gain case where the laser frequency ωL is typ-
ically locked to the bare mode frequency ω0, for a narrowband gain a possi-
bly sizable mode-pulling effect has to be considered for a reliable calculation of
frequency-dependent lasing thresholds and to correctly relate the lasing frequen-
cies that we measure through a power spectral density analysis to the underlying
lattice eigenmodes.

When S � 1 mode pulling effects are negligible and ωL = ω0, where ω0 is
the frequency of the corresponding lattice mode selected by the lasing process.
For equal Γ = γ, the stabilization factor is S = 1 and the mode pulling effect be-
comes a simple average. Physically, this mode-pulling effect can be understood
as the result of the refractive index change that is naturally associated to the
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Figure 4.2: Numerical simulations of topological laser operation in a 15 × 15
Harper-Hofstadter lattice and Γ = γ = 0.1, up to a time T = 500 Γ−1. In panel
(a), the blue dots represent the measured lasing frequencies obtained from a power
spectral density analysis for different values of ωeg. Each slant step is fitted with
a black, dashed line with equation ωL = 1

2ωeg + b. The light gray dash-dot lines
mark the lasing frequency values for which ωL = ωeg = ω0 (see (4.9)), while the
red line represents the approximated curve ωL = ωeg. In panel (b), we compare
the mode spacing ∆ω calculated from the difference between the intersections
ωint of adjacent steps in panel (a) (red dots) with the one obtained from the
group velocity (blue line) as discussed in the text. All frequencies are measured
in units of the hopping J , and the zero is at the bare cavity frequency ωcav. The
lasing frequency is extracted from the power spectral density of the emission that
is obtained by a temporal Fourier transform of the light field amplitude in the
latest ∆T = 150 Γ−1 of the evolution.

gain via Kramers-Kronig causality relations: as usual, narrow resonances are re-
sponsible for quantitatively larger changes of the refractive index in their spectral
neighborhood.

Let us explore the impact of this effect on topolaser operation for a nar-
rowband gain centered inside the topological bandgap, thus perfectly overlap-
ping with the edge state dispersion. In this case, one may naively expect that
mode-pulling effects are irrelevant. The system is in fact expected to lase in the
topological edge mode resonant with the gain for which the threshold is lowest.
Since it is resonant, this mode does not experience any mode pulling — setting
ω0 = ωeg yields in fact ωL = ω0+Sωeg

1+S = ωeg. In contrast to this expectation, the
numerical experiment shown in Figure 4.2 shows that we actually have a richer
physics due to the intrinsic discreteness of the modes.

In Figure 4.2(a) we have simulated a lattice with narrowband gain for multiple
values of ωeg and we have measured the steady-state frequency at which the
system was emitting via a power spectral density analysis. While the measured
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frequencies obey an overall approximate relation ωL ∼ ωeg, that holds exactly
only when ωeg coincides with a lattice mode frequency ω0 (light gray dash-dot
lines), the reality is that ωL is bound to assume only discretized values due to
the periodic boundary conditions, as discussed in Section 3.4. In a broadband
gain regime where mode-pulling effects are negligible (S � 1), this would result
in ωL following a stair-like behavior as a function of ωeg, with uniform spacing
∆ω = vg · 2π

L determined by the length L of the topological edge. Within each
step, the emission frequency is locked to the one of the modes that is closest to
resonance and for which gain is strongest. For a narrowband gain, the behavior
is instead that of a slant stair and the slope of each of these slant steps is exactly
S

1+S (dashed lines). This results from the fact that ω0 cannot continuously follow
ωeg, but it has to do so in steps, so it is actually constant in a certain frequency
interval; then ωL = ω0+Sωeg

1+S yields a behavior of type y = a · x+ b with a ≡ S
1+S

and b ≡ ω0
1+S . In the particular case S = 1, we get a = 1/2 and b = ω0/2.

This also gives us the chance to quantitatively verify, in Figure 4.2(b), the
relation between the spacing of the lasing frequencies and the group velocity of
the topological edge mode in the presence of mode pulling. We can calculate the
spacing between successive modes by just calculating the intersection frequencies
ωint between the fits of type y = 1

2 · x + b (dashed lines) and the line y = x
(red line) and then taking the difference ∆ωint between successive frequencies.
We assign each value ∆ωint to the frequency at the center of its corresponding
frequency interval; this first order approximation becomes exact for L → ∞.
From our periodic boundary condition argument, we should also have that the
spacing between successive modes is ∆ω ∼ vg · 2π

L ; as it’s not clear how to treat
the corner sites in the calculation of L, we show values ranging from L = 4× 14
to L = 4× 16 as a blue shaded area in the plot, with the solid blue line marking
the value L = 4× 15.

The data shows a good agreement with respect to our predictions, highlighting
the importance of including mode-pulling effects as well as the presence of mode
discretization even in the narrowband case.

4.3 Broadband gain

In the previous Section, we have seen an efficient scheme to stabilize topolaser
operation with a uniformly distributed gain, by spectrally concentrating the gain
spectrum in the topological gap. While conceptually interesting, this scheme is
hardly useful in practical semiconductor systems, where the gain linewidth is
typically comparable if not larger than the width of the topological band gaps so
that an efficient spectral selection of the edge mode from the neighboring bulk
modes is hardly obtained.

In this Section we will explore a more sophisticated scheme that is able to
stabilize topological lasing in a much wider range of parameters of potential tech-
nological relevance. The configuration we consider is inspired by the photonic
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Figure 4.3: Panels (a)–(b): band structure for the proposed broadband scheme,
with a geometry schematically depicted in panel (c). The central region (panel
(a)) is a bipartite ϑ = 1/4 Harper-Hofstadter lattice with checkerboard detuning
∆ = 4.0, while the surrounding region (panel (b)) has the same geometry with a
larger checkerboard detuning ∆trivial = 7.0 and a global detuning ωtrivial = 4.65
(red dotted line). The gain spectrum is centered at ωeg = 4.85 (blue dashed line)
and has a FWHM linewidth 2γ = 5.2 (yellow shading). The relative strength of
gain on the two sides depends on d = Gtrivial/G: for the specific case illustrated
in the figure, the taller gain spectrum in panel (b) refers to a d > 1 case of
stronger gain in the trivial region. The gray shaded areas indicate ky-vectors
outside the reduced Brillouin zone. For these parameters, the gain linewidth is
around 8.2 larger than the width of the topological band gap of the central region
and around 37% of the width of the trivial band gap in the surrounding region.
It is around 63 times wider than the one considered in Figure 4.1.

crystal experiment in [29] where the topological band gap is orders of magnitude
narrower than the gain linewidth. One of the aims of our work is to provide
theoretical insight into the observed single-mode topolaser emission of this ex-
periment.

4.3.1 Model and results

A sketch of the configuration under examination is shown in Figure 4.3(c). As in
the experiment [29], we consider a central region, which has a narrow topological
gap, surrounded by a region with a much wider and topologically trivial gap.
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Chiral boundary modes are localized at the interface between the two regions. We
also assume that the gain bandwidth is much larger than the narrow topological
gap but comparable to the large trivial gap, as in the experiment, and that
the gain is stronger in the trivial region than in the topological region. As a
consequence, even though the gain material is pumped in a globally spatially
uniform fashion we can expect clear topolaser operation in the edge states which
partially penetrate into the trivial region with stronger gain, while lasing into
the bulk states of the trivial region is suppressed by their detuning from the gain
bandwidth. In this Section, we explain in detail how this idea works.

We first explain how we model a narrow and isolated topological gap in the
central region. We start from the ϑ = 1/4 Harper-Hofstadter lattice, which
contains multiple topological band gaps with topological invariants adding up
to zero. We want to isolate one topological band gap from these multiple gaps.
To this end, we add a checkerboard-shaped on-site frequency detuning ±∆: the
frequencies of the (m,n) sites are thus alternated and equal to ωcav+∆·(−1)m+n.
The photonic bands of such a bipartite Harper-Hofstadter model are shown in
panel (a) of Figure 4.3: because of the checkerboard detuning, the Brillouin zone
is reduced to ky ∈

[
−π2 ,

π
2
]
and the Dirac touching points between the middle two

bands open into a trivial gap with size ∼ 2∆. In agreement with the sequence
−1,+1,+1,−1 of Chern numbers of the different bands, the two (small) gaps
between the lower two bands and the upper two bands maintain their topological
nature visible in the corresponding edge states. In what follows, we focus on
the topological band gap of the two upper bands; the gain spectrum is centered
around the frequency of the two upper bands. The two lower bands are, instead,
off-resonant, and are not relevant in the laser operation and the discussion below.

Next, we explain how we prepare the surrounding region with a wide, trivial
gap. We again start from the ϑ = 1/4 Harper-Hofstadter model and add a
checkerboard-shaped detuning ∆trivial, which is larger than ±∆ in the topological
region. We add a global shift of all site frequencies by ωtrivial so that the large
topologically trivial gap between the middle two bands is centered around the
two upper bands of the topological region. The corresponding photonic bands are
shown in panel (b). Although the two upper and two lower bands have narrow
topological gaps, they are pushed away by the large ∆trivial, and thus we can
focus on the effect of the wide trivial gap between the middle two bands. We call
this surrounding region a “trivial” region in this sense. The gain spectrum, which
is indicated by the yellow shading in panels (a)–(b), is centered at the middle
of the wide trivial gap and completely encompasses the topological gap in the
central region.

The gain strength in the surrounding trivial region, Gtrivial, can be reinforced
either by locally increasing the pumping strength or, alternatively, by keeping
a spatially uniform pumping but increasing the density of gain material with
respect to the central region, as discussed in Chapter 2. Focusing on this latter
case, which appears relevant for the experiment in [29], we can write Gtrivial =
G · d, where d can be interpreted as the effective density of gain material in
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Figure 4.4: Result of simulations performed on a 25× 25 lattice with a 5-sites
thick surrounding region, configured as in Figure 4.3. Panel (a): phase diagram
of the different lasing regimes as a function of the overall pumping strength
G/Gres,0 and of the relative effective density of gain material of the surrounding
region d = Gtrivial/G for the same lattice parameters used in the dispersion
plots shown in the top left panels. A gray color indicates no lasing; a blue
color indicates lasing from the topological edge mode; a red color indicates lasing
from the non-topological portion of the central region; a yellow color indicates
lasing from the surrounding region. Fading to white indicates the coexistence of
multiple phases. The thin dashed black lines indicate the G/Gres,0 = 1 and d = 1
values. The solid and dot-dashed black transition lines between different phases
are analytically predicted via the prescriptions in Section 4.3.4. The six yellow
stars have a one-to-one correspondence with the six panels (b)–(g) presented on
the right, showing sample snapshots of the real-space emitted intensity at the end
of the integration time. The first, second, and third rows from the top are for
decreasing values of d = 9.0, 6.8, 0 respectively. The left and right columns are
for increasing G/Gres,0 = 0.90, 1.05, respectively below and above the single-site
resonant lasing threshold. All simulations have been performed by numerically
integrating the Bloch-Harper-Hofstadter motion equations (4.5) up to a time
T = 104 Γ−1.

the surrounding region relative to the central region, and treat G/Gres,0 as a
global measure of the uniformly distributed pumping strength in units of the
single-resonator resonant threshold.

The results of the numerical simulations are summarized in Figure 4.4, where
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Passive
trivial region

(d = 0)

Monochro-
matic

topological
laser

we show a phase diagram of the different regimes of laser operation as a function
of the relative effective density of gain material in the surrounding region d =
Gtrivial/G and of the pumping strength in the central topological region in units
of the resonant, single-site threshold, G/Gres,0.

When the surrounding trivial region is purely passive and does not display
any gain (d = 0, Figure 4.4(f) and (g)), the system is almost equivalent to a
bipartite 15×15 lattice without the surrounding region. We therefore expect the
system to only lase above the resonant single-site lasing threshold, G/Gres,0 = 1,
as shown by the red region at the bottom of the phase diagram. Since the gain
is effectively broadband with respect to the upper pair of photonic bands in the
central region, both bulk and boundary modes equally participate in the lasing
process, forbidding a stable topological laser operation (panel (g)). Compared to
the bulk states, boundary states are even slightly disfavored by the worse spectral
overlap with the gain spectrum and by their evanescent tail that penetrates into
the surrounding trivial region and reduces the spatial overlap with the gain region.

We can induce lasing from the topological edge modes at the boundary by
making the gain in the surrounding trivial region to be stronger than the one in
the central topological region, that is d > 1. In this case, a region appears in the
parameter space where the system displays a monochromatic topological laser be-
havior (panel (d)). Thanks to their evanescent tail overlapping with the stronger
amplifying surrounding region, the effective threshold of the topological bound-
ary modes is in fact pushed well below the one G/Gres,0 = 1 of the bulk modes
(thick solid black line in the phase diagram), opening a window where only these
modes can lase (blue region). In this G/Gres,0 < 1 regime, the monochromaticity
of the topolaser emission is ensured by the same mode competition effects pointed
out in [32] and reviewed in Section 4.2: since only topological edge modes ex-
perience a sufficient gain to lase and since these modes spatially share the same
active medium, steady-state lasing ends up being concentrated in one of them
only, thus making the emission monochromatic. A more detailed time-frequency
analysis in support of this conclusion is reported in Section 4.3.2.

In order to better quantify the efficiency of our combined mode-selection
scheme, we have investigated the constraints on the gain linewidth γ in order
to have pure topolaser operation into the edge state. Quite interestingly, topo-
lasing turns out to be robust as long as the effective gain experienced by the bulk
bands in the trivial region remains below threshold. As it can be inferred from
the discussion in Section 4.3.4, for sufficiently large ∆trivial the upper bound on
γ involves γ/∆trivial only. In particular, no restriction applies to the ratio of γ
to the topological gap width. In the experiment of [29], the analog of ∆trivial
is way larger than the topological band-gap, which releases any constraint on
the gain bandwidth compared to the topological gap and allows this latter to be
arbitrarily small.

Note that this spectral structure is characteristic of the photonic crystal plat-
form of [29] and is different from the typical one of the ring-resonator-based
platforms considered in [55]. Here, additional copies of the band structure are in

50



4.3. Broadband gain

fact present with a spacing set by the (relatively small) free spectral range of the
single ring resonators and our mode-selection mechanism is not applicable in a
straightforward way.

The situation is of course very different in the G/Gres,0 > 1 case, when also the
bulk modes of the topological region go above threshold. Since these modes have
a reduced spatial overlap among them and with the edge mode, mode competition
is no longer effective in ensuring a monochromatic emission and the latter acquires
a complex multi-mode character (blue-to-white-to-red region). Still, thanks to
the stronger gain of the surrounding trivial region, the intensity of boundary
mode lasing can remain significantly stronger than the one of the central bulk
modes even at values of G above the single-cavity lasing threshold (panel (e)).

For even higher values of the surrounding density d above the dash-dotted
black line in the phase diagram, we reach a point where the spectral selection is no
longer sufficient to suppress bulk lasing in the surrounding region and topological
lasing is no longer possible. In this phase (yellow area in the phase diagram),
the much stronger gain of the surrounding region makes the laser emission to be
concentrated in this region (panels (b) and (c)).

A quantitative analytical discussion of the location of the transition lines in
the phase diagram is given in Section 4.3.4. As expected, the area of the topo-
logical lasing region in parameter space can be increased by either increasing the
trivial bandgap in the surrounding region or by using a narrower gain spectrum.
This trend is confirmed by the additional numerical simulations with different
values of the parameters that are shown in Section 4.3.3.

4.3.2 Time-frequency analysis of the lasing pro-
cess

In this Section we discuss the spectral features of the lasing emission for the
scheme presented in Section 4.3.1. As representatives for some of the different
regimes identified in the phase diagram, we focus on three different parame-
ter sets leading to the long-time snapshots of the emitted intensity shown in
Figure 4.4(e),(d),(g). These parameters realize, respectively: a monochromatic
topological laser, a multi-mode laser with a majority of the emission coming from
a topological mode, and a non-topological multi-mode laser whose emission is due
to the lasing of non-topological modes only.

The evolution of the system, numerically integrated up to T = 500Γ−1 for the
three different cases, is shown in Figure 4.5 as a time-frequency representation
(TFR), where the color represents (in log scale) the spatially averaged amplitude
of the smoothed pseudo Wigner-Ville distribution [89] (WVD) of field amplitude
on individual lattice sites. In Figure 4.5(a)–(b) we focus around the relevant las-
ing frequencies for these cases; as a first observation, in the considered frequency
interval the gain is effectively broadband (not shown). The band structure can
also be used to classify the frequencies emerging from the TFR in panel (c),
corresponding to a multi-mode laser in which, though, most of the emission is

51



Chapter 4. Harper-Hofstadter topological laser with spatial and
spectral mode-selection

Figure 4.5: Time-frequency representation (TFR) of the lasing process, for the
same parameters used in Figure 4.4(e),(d),(g). Panels (a)–(b): vertically zoomed-
in view of the band structure shown in Figure 4.3(a)–(b). Panels (c)–(e): TFR
for the same parameters as in Figure 4.4(e),(d),(g), respectively. The TFR is
obtained by spatially averaging the smoothed pseudo Wigner-Ville distribution
(WVD) of the field amplitude on individual lattice sites. The horizontal axis is
broken so as to better focus on the initial and final moments of the time evolution;
the WVD close to the limits of the temporal intervals of the transform is also
removed, as it displays well-known unphysical artifacts due to border effects.
The amplitude of the WVD is shown in log scale, color-coded according to the
colorbar on the right of each panel; the colorbars span three orders of magnitude,
and the ones in panels (c) and (e) are matched for reading convenience.

52



4.3. Broadband gain

still coming from a topological edge mode. In this panel, the topological edge
modes correspond to the well-separated horizontal features of the WVD falling
inside the frequency range of the topological bandgap shown in panel (a). There
are striking signatures of two distinct effects: the frequency discretization dis-
cussed in Section 4.2.2, and the well-known mode-competition. While due to
the frequency discretization there are multiple topological modes that are able
to ignite the lasing process, these modes spatially share the same active medium
and therefore compete with each other until, at long enough times, only one of
them is left.[59] The upper horizontal features, closer to each other, correspond
instead to bulk modes located in the upper band of the central region; also in
this case there are multiple modes that ignite the lasing process, but not all of
them survive at long times.

If we turn off the surrounding trivial region (i.e. if we set d = 0, panel (e)), the
modes in the topological bandgap are not able to ignite the lasing process and
lasing occurs from the top band modes only. Note that the switch-on happens at
a longer time, due to the fact that a surrounding trivial region with d = 0 creates
an additional loss channel, especially for the modes that have a considerable
overlap with the trivial region itself.

If instead we reduce G/Gres,0 below the lasing threshold of the bulk states
(panel (d)) but we correspondingly increase d, we are able to prevent lasing from
the bulk modes and only retain edge mode lasing at long times, thus obtaining
a monochromatic topological laser. Due to the fact that the mechanism for
providing the gain relies heavily, in this case, on the overlap of the edge mode
tail with the trivial region (see Section 4.3.4), the switch-on is much slower than
the previous cases.

4.3.3 Phase diagrams for different values of the
gain linewidth

We show here additional simulations of the bipartite Harper-Hofstadter laser
with the central topological region and the surrounding trivial region discussed
in Section 4.3.1. In particular, we have pointed out in that Section that changing
the gain linewidth reflects in a change of the area of the topological lasing region
in the phase diagram. In Figure 4.6 we show simulations with an increased (top
row) or reduced (bottom row) gain linewidth when compared to the value used
in Figure 4.4.

For the increased (reduced) gain linewidth we take 2γ = 8.0 (2γ = 4.0), to be
compared with the value 2γ = 5.2 used in Figure 4.4. With these settings, the
gain linewidth is around ×12.5 (×6.3) wider than the linewidth of the topological
bandgap of the central region, so it is roughly 96 (48) times wider with respect
to the topological bandgap than the gain linewidth shown in the narrowband
case. The gain linewidth is also around 57% (29%) of the linewidth of the trivial
bandgap in the surrounding region.
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Figure 4.6: Simulations obtained on a 25 × 25 lattice with a 5-sites thick sur-
rounding region with a trivial gap. (Left column) Band structure of the lattice.
The central region has ∆ = 4.0, while the surrounding region has ∆trivial = 7.0
and ωtrivial = 4.65 (red, dotted line). The gain is centered at ωeg = 4.85 (blue,
dashed line). (Right column) Phase diagram of the different lasing regimes ob-
tained from multiple simulations of equations (4.5) up to a long time T = 104/Γ
as a function of the density d of the surrounding region and the gain strength G.
A gray color indicates no lasing; a blue color indicates topological lasing from the
edge mode; a red color indicates lasing from the non-topological portion of the
central region; a yellow color indicates lasing from the surrounding region. Fad-
ing to white indicates the coexistence of multiple phases. The panels on the two
rows correspond to different values of the FWHM of the gain lineshape (yellow
shading in the left panels), 2γ = 8.0 (top), 2γ = 4.0 (bottom). The solid and
dot-dashed black lines in the phase diagrams indicate the analytical predictions
in Section 4.3.4 for the transition between the different regions. The dashed black
lines indicate G/Gres,0 = 1 and d = 1.
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Figure 4.7: Emitted intensity along a horizontal (left panel) and a vertical (right
panel) cut of the phase diagram shown in the bottom right panel of Figure 4.6.
(Left panel) Total emitted intensity as a function of the gain strength G/Gres,0,
at a fixed value of the density d = 9.80 of the surrounding region. The data
has been classified into four color-coded groups, each fitted by a (accordingly
colored) straight dashed line. Grey indicates no lasing, blue indicates lasing from
the topological edge, red from the topological edge and the central bulk, and
yellow from topological edge, central bulk, and the surrounding region. (Right
panel) Emitted intensity by each spatial region as a function of the density d of
the surrounding region, for a fixed value G/Gres,0 = 1.06 of the gain strength.
The intensity has been averaged in time for the last 1% of the simulation, with
the shaded areas corresponding to one standard deviation from the mean. The
vertical dashed line marks the peak of the topological edge emission, while the
oblique straight dashed line is a fit of the right-most part of the emission from
the surrounding region.

When using this increased/reduced gain linewidth, the area of the region of
parameters that yields a topological laser shrinks/widens; in particular, the upper
transition line (which describes the lasing threshold of the surrounding region) is
extremely sensitive to the linewidth of the gain. It is possible to predict in advance
the effects of such a reduced/increased gain linewidth on the phase diagram by
a direct calculation of the transition lines — see Section 4.3.4.

It is also instructive to explore the phase diagram, with respect to the emitted
intensity, along both a vertical and a horizontal cut; we do that in Figure 4.7 for
the bottom right phase diagram of Figure 4.6.

If we fix the effective density of gain material d of the surrounding region at
some value d = 9.80 and we plot the emitted intensity vs G/Gres,0 (left panel of
Figure 4.7) we notice that the data can be grouped in four sets, each one fitting a
distinct linear branch. The fitted linear branches highlight the presence of three
thresholds: the first one for the topological edge, the second one for the central
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bulk and the third one for the surrounding region.
We can also explore the emitted intensity along a vertical cut of the phase

diagram, i.e. as a function of the density d of the surrounding region for a fixed
value of the gain strength G/Gres,0 = 1.06; for the sake of clarity, it is best to
separate the emission from the topological edge region (blue), from the central
bulk (red), and from the surrounding region (yellow). First of all, we have to make
a crucial observation: the scale of the emission from the surrounding region (right
vertical axis) is two orders of magnitude bigger than the scale of the topological
edge and the central bulk (left vertical axis). This means that if we look at
real-space snapshots of the system when the surrounding region is lasing — e.g.
Figure 4.4(b)–(c) — we get the wrong impression that the rest of the system
(i.e. the central bulk and topological edge) is not lasing; the rest of the system
is indeed lasing, but the value of the emitted intensity is negligibly small when
compared to the one emitted from the surrounding region.

The other crucial observation is that the plot shows clear evidence that the
topological edge is indeed lasing by exploiting the unused amplification in the
surrounding region. First of all, after the surrounding region is above threshold,
its emitted intensity has a non-linear ramp-up as a function of the density. This is
due to the fact that, as one increases the density of the surrounding region, more
and more modes from the surrounding region reach the lasing threshold. The first
ones to lase are localized in the bulk of the surrounding region; however, at higher
densities, the modes from the surrounding region localized on the border reach
the lasing threshold as well. These modes, due to their sizable shared overlap,
are in direct competition with the topological edge mode that is lasing in the
central region; thus the emitted intensity of the latter starts decreasing (marked
by a vertical dashed line in the plot).

4.3.4 Transition lines in the phase diagram
As pointed out in Section 4.3.1, the topological edge mode is able to lase thanks
to an amplification leak from the surrounding region. This leak can be quantified
and used to analytically determine the transition lines of the phase diagrams
in Figure 4.6 and Figure 4.4(a) without having to resort at all to dynamical
simulations.

The first ingredient is the knowledge of the energy spectrum and of the spatial
structure of the eigenmodes of the lattice Hamiltonian, which we call Hbare:

Hbareψi = Eiψi, (4.10)

where Ei is the energy corresponding to the mode with normalized wavefunction
ψi, and ψi can be thought of as a matrix in position space, i.e. ψi = (ψi;m,n),
with m and n respectively the x- and the y-index.

At this point we can define some spatial masksMtopo,Mbulk andMtrivial; these
masks are matrices in position space and contain 1 in the entries representing
points belonging to, respectively, the topological edge, the bulk of the central
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Figure 4.8: Overlaps Stopo, Sbulk and Strivial of each eigenmode with the differ-
ent regions (colored shading, left vertical axis) and energies Ei of the eigenmodes
(solid black line). The calculations have been performed on the same 25 × 25
lattice geometry considered in Section 4.3.1.

region and the surrounding region, and zero elsewhere. These masks are the
same ones used to calculate the emitted intensity overlaps in the phase diagram,
and also allow us to calculate the overlap of a given wavefunction with these
three spatial regions of the system, e.g. to calculate the overlap Stopo,i of the
wavefunction ψi with the topological edge:

Stopo,i =
∑
m,n

|ψi;m,n|2 ·Mtopo;m,n. (4.11)

For a given wavefunction ψi the overlaps with the three regions sum to 1 since
the wavefunction is normalized, i.e. Stopo,i + Sbulk,i + Strivial,i = 1. The overlaps
of each mode can be visualized as in Figure 4.8.

The overlaps are useful to determine what is the effective amplification Geff,i
experienced by a given mode ψi as compared to the global parameter G character-
izing the gain strength. For a completely flat gain profile, if all the system regions
have the same density of the bulk, then Geff,i/G = 1 because the overlaps of any
given wavefunction with the three regions of the system sum to 1. However, if
we change the density d of the surrounding region, this ratio will be in general
Geff,i(d)/G = fi(d) = Stopo,i + Sbulk,i + d · Strivial,i. If d > 1, then fi(d) > 1 and
it acts as an enhancement factor for the amplification of that mode.
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If the gain is not flat but has e.g. a Lorentzian profile, as in our case, the
expression of fi(d) in terms of wavefunction overlaps has to be modified. Namely,
we have to add an extra Lorentzian factor

Li = 1

1 +
(
Ẽi−ωeg

γ

)2 (4.12)

that is equal to 1 at zero energy detuning and falls to 0 at large energy differences.
Analogously to Section 4.2.2, the energies Ẽi are here corrected with respect to
Ei in order to take into account the mode pulling, i.e.

Ẽi = Ei + Sωeg
1 + S , S = Γ

γ
. (4.13)

Here, the mode pulling correction has the effect of increasing the value of Li as
compared to a Lorentzian factor calculated with the non-pulled energies Ei. So,
the overall enhancement factor will be

fi(d) = Stopo,i + Sbulk,i + d · Strivial,i

1 +
(
Ẽi−ωeg

γ

)2 . (4.14)

With these ingredients, we are ready to calculate the transition line between
the not-lasing region and the different lasing regions, starting with the one cor-
responding to a topological laser. The first mode to lase, i.e. the mode that
determines the threshold, will be the mode with the largest effective amplifica-
tion, i.e. with greater fi(d). That mode will have an enhancement factor equal
to

f̄topo(d) = max
i :Stopo,i>εtopo

fi(d). (4.15)

Since we are looking for the lasing threshold among the topological edge modes,
we take the max over the modes that have an overlap Stopo,i with the topological
edge greater than a certain threshold εtopo, e.g. εtopo = 0.80. Similarly, to find
the second transition line at which the surrounding region starts to lase, one
defines

f̄trivial(d) = max
i :Strivial,i>εtrivial

fi(d). (4.16)

Note that the mode that maximizes the enhancement factor depends on the
specific d being considered. A more crude approximation not involving a maxi-
mization over the modes, but that still provides very good results, would be to
define e.g. f̄topo(d) = fitopo(d), where itopo is the index of the topological edge
mode that lases more frequently just above threshold in the time-domain simula-
tions; itopo is then independent on the choice of d. A similar consideration holds
for f̄trivial(d) as well.

In general, the threshold for lasing into a given mode is reduced by the same
factor fi characterizing the enhanced effective amplification as compared to the
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Figure 4.9: Calculations performed on a 17 × 17 lattice geometry obtained
from a 15 × 15 lattice surrounded by a 1-site-thick trivial region. All the other
parameters are equal to the ones used in Section 4.3.1. (Left) Transition lines of
the considered 17× 17 geometry with a 1-site-thick surrounding region on top of
the phase diagram obtained with a 5-sites-thick surrounding region — identical
to the one shown in Figure 4.4(a). (Right) Overlaps Stopo, Sbulk and Strivial of
each eigenmode with the different regions (colored shading, left vertical axis) and
energies Ei of the eigenmodes (solid black line).

d = 1 case for which the threshold is at G/Gres,0 = 1. As a result, the transition
lines we are looking for are simply described by the equations

d = 1
f̄topo(d)

and d = 1
f̄trivial(d)

. (4.17)

Both transition lines carry a dependency on γ, mediated by the Lorentzian factor
in fi(d). However, the transition line between the not-lasing and the topo-lasing
regimes has a much weaker dependence. The reason is that, by construction, the
topological edge modes are much closer to the center of the Lorentzian than the
bands in the surrounding region. Since this detuning contributes quadratically
to the position of any transition line, the transition line involving modes farther
from the gain center is therefore much more sensitive to γ itself.

As a final note, this calculation also allows us to easily determine the lasing
thresholds when we vary the thickness of the surrounding region. The system
considered in Section 4.3.1 has a 5-sites-thick surrounding region; in the left panel
of Figure 4.9 we show again its phase diagram, but we calculate the transition lines
of an otherwise identical system which differs by having a 1-site-thick surrounding
region. There is a discrepancy between the two, albeit extremely small, which
shows that a bare minimum 1-site-thick surrounding region is already enough
to open a topological lasing region in the phase diagram. Already with a 2-
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sites-thick surrounding region even this small discrepancy disappears, and the
transition lines become virtually indistinguishable from the 5-sites-thick case.

The fact that a 1-site-thick surrounding region is already sufficient comes from
the fact that the topological edge modes we want to enhance have an overlap with
the surrounding region that is mainly concentrated in the surrounding sites closest
to the edge itself, i.e. in the system region covered by a 1-site-thick surrounding
region. As can be inferred by comparing the overlap fractions shown in Figure 4.8
and in the right panel of Figure 4.9, the positive-energy topological edge modes
have an overlap with the surrounding region that’s at best around 2.3% both when
the surrounding region is 1-site-thick and when it’s 5-sites-thick, thus contributing
around the same enhancing factor in the calculation of the thresholds.

4.4 Discussion

In the previous Sections, we have concentrated our attention on a Harper-Hofstadter
model which provides a relatively straightforward insight into the basic effects,
but our conclusions extend to any combination of lattices with suitable spectral
and topological properties. In particular, we expect that our physical conclusions
extend even outside the tight-binding approximation that has been made in all
theoretical studies of topological lasing so far.

As a most intriguing example, the results of our calculations are compatible
with some key observations of the pioneering experiment in [29] that, to the best
of our knowledge, remain so far unexplained. In particular, topological lasing
was observed in this experiment without the need to concentrate gain along the
edge separating the topological and trivial regions, as it was instead the case in
other experiments [55, 56]. A key difference between the devices used in these
works consists in that the topological system used in [55] is surrounded by empty
space, while in [29] the central topological system is surrounded by a topologically
trivial region where the field can penetrate with a significant evanescent tail. Most
importantly for our purposes, the outer region displays a larger filling factor of
the unit cell (compare Figs. 2A and 2B in [29]). For an equal level of optical
pumping, we can thus reasonably expect the gain to be stronger in the outer
region, which corresponds to d > 1 in our model. As a result, the overlap
of the edge state with this stronger amplifying region favors topological lasing
with respect to bulk lasing in the central region. At the same time, the much
wider extension of the trivial photonic band gap of the outer region forbids laser
operation in the outer region thanks to the natural frequency-dependence of gain
in the used semiconductor quantum well material.

While these arguments provide a suggestive interpretation of experimental
observations, they are of course not yet completely sufficient to rule out other
possible explanations. For instance, in analogy to the arguments put forward in
[57] for a different geometry, another potentially relevant mechanism for stabi-
lizing the edge mode lasing could originate from the weaker losses of the edge
mode compared to the ones of bulk modes [87]. In the specific system of [29],
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reduced radiative losses may in fact originate from the evanescent tail in the outer
trivial region, where bulk modes in the vicinity of the trivial gap are below the
light cone. In our model theory, the reduced radiative losses of the trivial region
could be explicitly included via a reduced Γ of the outer sites, but we expect
their effect to be similar to the one of the increased gain Gtrivial considered in
our calculations. On this basis, we are confident that the qualitative conclusions
of our theory directly apply to the experiment. However, a firm and definitive
unraveling of these questions requires accurate experimental measurements and
comprehensive microscopic calculations of the band structure and of the radiative
and non-radiative decay rates of the different modes [87], which go beyond this
work.

As a final point, it is worth briefly mentioning some straightforward experi-
ments that may serve to shed light on the possible interpretations of the experi-
mental observations even in the absence of a direct measurement of the Q factor
of the different modes. In the IR spectral region of the experiment, magnetic
effects are quite weak, as signaled by the smallness of the topological gap. This
implies that the magnetic field is crucial to induce the topological edge state, but
has a minor effect on the bulk regions. As a result, according to our theory, in
the absence of any magnetic field no laser operation should be observed up to
powers well above the topological laser threshold. Some evidence in this direc-
tion is found by comparing Figs. 3B and 3C of [29]. Further experimental insight
could be obtained by keeping the magnetic field on and ramping up the pump
intensity well above the topological laser threshold. According to our model, as
discussed in Section 4.3, going up in gain strength G should move the system
from the topological lasing region indicated in blue into the ones of multi-mode
bulk lasing indicated in red/yellow. In particular, we expect that the threshold
for bulk lasing at high gain strengths should be almost insensitive to the applied
magnetic field.

4.5 Conclusions

In this Chapter we have investigated the effect of a frequency-dependent gain
on a Harper-Hofstadter topological laser by simulating, at each cavity, the full
frequency-dependent semiclassical laser theory developed in Chapter 2.

While in the case of broadband gain a spatially uniform pumping scheme
(WSG) is not able to select a single lasing mode (see Section 3.3), in the case
of a narrowband gain it’s possible to select a topological edge mode by using
TLAs with a transition energy tuned in the topological bandgap, as shown in
Section 4.2.

In Section 4.3 we have then shown that, by combining this standard spectral
selection mechanism with a suitable design of a topological cavity that takes into
account the natural spatial distribution of the boundary modes and their overlap
with the gain medium, it’s possible to promote a topological edge mode to a
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lasing mode even in a WSG configuration with a gain linewidth several times
larger than the topological bandgap.

Based on our theory, we have proposed an interpretation of the recent exper-
iments in [29], where stable topolaser emission was observed in spite of the gain
being distributed across the whole photonic crystal structure and not localized
on the topological edge as in [55], and at the same time being much larger than
the topological bandgap.

In addition to offering additional validation of the experimental results in
[29], our work can be applied to simplify the design and operation of topological
lasers by allowing for smaller cavity designs and by lifting the need to precisely
control the spatial location of the pump spot, thus helping to bridge the gap to
a commercial-grade generation of topological lasers.
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Conclusions

In Part I we investigated the laser operation and the mode-selection mechanisms
of topological lasers via a semiclassical analysis.

Our primary investigation tool was the numerical simulation of coupled dif-
ferential equations obtained from the semiclassical theory of lasers, derived in
Chapter 2 via a mean-field treatment of actively pumped atoms embedded in a
single-mode cavity, that we chose as a simple model of light-matter interaction.
The equations provide the time evolution of the macroscopic electric field and the
populations of the atomic levels, as well as of the atomic coherence, linked to the
macroscopic polarization. Their steady-state analysis reveals that the gain has a
Lorentzian profile in frequency space, which favors the amplification of modes at
frequencies closer to the atomic transition energy.

In several circumstances, however, the gain linewidth is so large compared to
the relevant system bandwidth that the gain itself can be considered uniformly
distributed in frequency space. In this limit, called the broadband limit, the equa-
tions of the semiclassical theory of lasers reduce to a single equation describing
the evolution of the macroscopic electric field.

The broadband limit was employed in Chapter 3 in order to characterize the
topological laser operation. We performed a numerical analysis of a topological
laser based on the Harper-Hofstadter model, after a brief introduction on the
lattice model itself. We highlighted crucial consequences of the chirality of the
lasing edge modes, such as a sharp dependence of the lasing threshold on the
geometrical shape of the amplifying region and the possibility of ultraslow relax-
ation times and of convectively unstable regimes. The different unstable regimes
were characterized in terms of spatio-temporal structures sustained by noise, and
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we showcased the strong amplification of a propagating probe beam in between
the convective and the absolute (lasing) thresholds. We pointed out that, when
the gain is distributed along the whole edge, topological lasers still suffer from
the mode discretization commonly found in ring lasers and due to the periodic
boundary conditions. Along the Chapter, we also discussed the robustness of
topological laser operation against static disorder.

In Chapter 4, instead, we investigated the mode-selection mechanisms that
are beneficial in order to promote lasing from a topological edge mode. In order to
do so, we simulated the full coupled equations of the semiclassical theory of lasers.
We first reviewed the case of a narrowband gain, i.e. with a linewidth smaller than
the topological bandgap; in this case, even when the gain is spatially uniform,
lasing from a topological edge mode can be promoted by working between two
effective atomic levels of the gain medium with an energy separation that lies
in the topological bandgap. In this regime, we also pointed out how the mode
discretization identified in the previous Chapter is affected by mode-pulling.

In experimental settings, however, the gain linewidth is typically several times
larger than the topological bandgap, becoming effectively broadband; it may
then naively seem that, without a spatially-selective pumping like the one used
in Chapter 3, it’s not possible to obtain a topological laser. Motivated by the
puzzling experimental results of [29], we proposed a cavity design that, even
without a spatially-selective pumping, can still perform a spatial mode selection
in tandem with spectral selection effects. Namely, we surrounded the original
topological lattice with a trivial lattice; the trivial lattice was designed so to have
a wide trivial bandgap, whose center was approximately around the topological
bandgap of the inner lattice. The bulk bands of the trivial lattice were then
spectrally excluded by using a gain linewidth smaller than the trivial bandgap,
though such linewidth could still be several times larger than the topological
bandgap, as in typical experimental settings. The gain material density in the
trivial region was also chosen to be larger than the one in the topological region.
Finally, the system was pumped below the original lasing threshold of the bulk
modes of the topological region; while those bulk modes could not lase, the
topological edge modes could experience a gain enhancement thanks to their
sizable evanescent tail overlap with the denser trivial region, thus becoming lasing
modes and realizing a topological laser. The gain enhancement experienced by
the topological edge modes could persist even at moderate pumping powers above
the lasing threshold of the bulk modes, with sizable improvements compared to
the same system without an external trivial region.

Despite the fact that we did not explicitly model a photonic crystal and that
we used different lattice models, our results are in qualitative agreement with
the pioneering experimental observations in [29], offering a viable explanation
for the physics at play in the experiment. After having worked here on this
underlying, general mechanism, the next natural step in our investigation will be
the experimental verification of our findings, as well as to take advantage of this
physics in order to improve the design of new topolaser devices.
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Introduction

The study of the quantum many-body problem has gained, in the last decade,
considerable traction. This push was motivated both by the desire to answer
fundamental questions and by the possibilities of exploiting new quantum tech-
nologies, and went hand in hand with the tremendous experimental advances.

The circuit QED platform [90–99], in particular, has attracted remarkable
interest as a platform for quantum many-body physics. Not only its constituent
superconducting circuits, originally developed for quantum computing purposes,
feature long coherence times, single-photon nonlinearities and considerable scal-
ability, but the platform itself allows a broad degree of flexibility in the system
geometry design and in the light-matter coupling [100]. In this platform, the pho-
tons experience an effective interaction due to the presence of Josephson junctions
[93, 99, 101, 102]; nowadays, transmon qubits (capacitively shunted Josephson
junctions) are typically used as nonlinear lattice sites, due to their exponentially
increased dephasing times compared to standard charge qubits [103].

Employing photonic systems as platforms for the study of many-body prob-
lems has also advantages in terms of ease of introduction of driving and dissi-
pation. In contrast to the general understanding, until recently, that photonic
systems would preclude the realization of strongly-correlated many-body states
due to the presence of large losses, the idea of dissipation engineering [104–107]
has been harnessed as a convenient tool for the preparation of such states, em-
ployed in the first experimental demonstration of a dissipatively stabilized Mott
insulator of photons [98].

Despite the recent efforts devoted to the study of non-equilibrium many-body
phases and non-equilibrium phase transitions [4, 13, 108–116], the general pic-
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ture on driven-dissipative many-body quantum systems is still incomplete. As
an example, it is not clear yet to what extent the many-body states prepared
via dissipative stabilization map to their equilibrium counterparts, and how the
critical behavior is affected in the presence of drive and dissipation [100]. The
resulting need for deepening our understanding of the driven-dissipative many-
body quantum problem vehemently calls, therefore, for the development of new,
powerful numerical methods. This is especially true in the context of bosonic
systems, in which the Hilbert space can reach intractable dimensions even for
very small systems, and in that of strongly-correlated systems, which cannot be
properly treated with standard mean-field techniques and require more careful
handling of correlations.

In this Part, as a consequence, we work to advance the understanding of
driven-dissipative strongly-correlated quantum systems by employing a technique
known as Dynamical Mean Field Theory (DMFT), originally developed for strongly-
correlated electron systems but extended to other classes of systems over the past
decade.

We start our discussion in Chapter 7, where we introduce the Lindblad equa-
tion as a primary tool for the investigation of driven-dissipative quantum systems.
We review its diagonalization in the superparticle representation, as well as the
Keldysh formalism for the calculation of response functions, for which we provide
numerically relevant expressions in the superparticle representation.

In Chapter 8, we employ the Exact Diagonalization (ED) technique on the
Lindblad equation in order to investigate the signatures of a putative localization-
delocalization transition in a driven-dissipative BHD, which can be seen as a fun-
damental building block in the study of driven-dissipative quantum many-body
systems. We harness the technical tools introduced in Chapter 7 in order to study
both the quantum dynamics and the steady-state, as well as the spectral proper-
ties encoded into the single-particle response functions of the system, discussing
the interplay between the coherent evolution and the dissipative setting.

In Chapter 9 we take a further leap in complexity, focusing instead on the
analysis of a driven-dissipative lattice with strong correlations, in the thermo-
dynamic limit. Before delving into the analysis of the system, we briefly review
the main concepts at the heart of the DMFT technique and, employing the tool-
box gathered in Chapter 7, we build the “engine” of our DMFT calculation for
driven-dissipative quantum many-body problems, based on ED. The lattice sys-
tem is then simulated in the presence of strong two-particle dissipation, which
leads to the emergence of hard-core bosons and to a driven-dissipative analog of
the quantum Zeno effect.

Finally, in Chapter 10, we present a summary of the main results obtained in
Part II.
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Technical background

In this Chapter we review the basic concepts and techniques that we will use
throughout Part II of the Thesis.

We start in Section 7.1 by reviewing the Lindblad equation and in Section 7.2
by introducing the formalism of the superboson representation used to vector-
ize the Lindblad equation [117], while in Section 7.3 we go over the Keldysh
formalism used for the calculations of out-of-equilibrium response functions. Fi-
nally, in Section 7.4 we derive the Källén-Lehmann representation of the response
functions used in the numerical calculations.

We will keep the treatment of these prerequisites to the level of a functional
knowledge, pointing the interested reader to more in-depth resources, as a full
treatment of these topics goes beyond the scope of this Thesis. Additionally,
as a common thread throughout the whole Chapter, we will provide a practical
application of these tools by analyzing the basic building block of a single cavity
in thermal equilibrium, that will be of fundamental importance in the following
Chapters.

This Chapter owes much to the treatment of the analogous fermionic case in
[117], and it follows it closely. The reader familiar with the Lindblad equation
and with the Keldysh formalism can safely skip this Chapter without fears of
compromising the logic flow of the discussion, and refer back to it only when
strictly necessary in the following ones.

7.1 Lindblad equation
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Chapter 7. Technical background

7.1.1 Generalities and interpretation
The so-called Lindblad equation [118] is nowadays the basic tool used to in-
vestigate open Markovian quantum systems. We have indeed already used the
equation in Part I, and in this Section 7.1 we review the basic ideas and we pro-
vide an intuitive grasp of the formalism, referring to previous works [62, 80, 117,
119–121] for a formal proof of the derivation.

The Lindblad equation originates from the problem of studying a system of
interest (S) connected to a bath (B), that live in a total (T) Hilbert space [122]

HT = HS ⊗HB (7.1)

The total dynamics in the system is described by the Schrödinger equation ob-
tained from the total HamiltonianHT , or alternatively by the equivalent Liouville
equation for the density matrix:1

ρ̇T (t) = −i [HT , ρT (t)] , (7.2)

where we’ve used ~ = 1 and the dot notation for the time derivative.
So far, no approximation has been made. However, since we are typically

interested in the system (S) only, we would like to trace out the bath (B) so to
gather info just on the traced-out density matrix for the system:

ρ + ρS = TrB ρT , (7.3)

where the trace is performed over the bath degrees of freedom. Under the Markov
approximation (plus some auxiliary ones), i.e. under the assumption that the bath
responds instantaneously to changes in the system, the equation for the traced-
out density matrix ρ can be written as

Lindblad
equation

ρ̇(t) = −i [H, ρ(t)] + LD [ρ] + Lρ, (7.4)

where in general H commutes with the Hamiltonian of the system of interest (S)
— can be HS itself — and [119]

Lindblad
dissipator

LDρ = 2
dim(HS)2−1∑

i=1
γi

(
LiρL

†
i −

1
2

{
L†iLi, ρ

})
(7.5)

is called the Lindblad dissipator , with γi are non-negative coefficients. The op-
erators Li are called jump operators, and describe exchange processes between
the reduced system and the bath that has been traced out. Throughout this

1The density matrix is the operator counterpart of a quantum state, i.e. it provides us
with complete information about the state of a system. If the system is a pure state |ψ〉, the
density matrix is indeed ρ = |ψ〉 〈ψ|; in general, instead, the density matrix can be written as
ρ =

∑
ij
ρij |ψi〉 〈ψj |, with the condition Tr ρ =

∑
i
ρii = 1 coming from the normalization of

probabilities.
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work we will call the superoperator LindbladianL, i.e a functional over the space of operators
that according to eq. (7.4) encompasses both the Hermitian evolution and the
Lindblad dissipator itself, the Lindbladian.2

After having introduced the Lindblad equation, let’s comment on its physical
meaning. We do so by focusing on the simplest yet ubiquitous and perhaps most
important example, i.e. the harmonic oscillator — that, since we work in the
context of optics and photonics, we simply call a single-mode cavity.

The Hamiltonian for a single-mode cavity is simply

H = ωcava
†a, (7.6)

where a (a†) destroys (creates) a photon with energy ωcav. The lossy version of
the single-mode cavity can be naively seen as having the same Hamiltonian above,
in which we just allow for an extra imaginary part in the bare cavity frequency:

H = (ωcav − iΓ) a†a, Γ ≥ 0. (7.7)

To see why this should give a dissipative system, we can try for example to write
the equation for the total number of photons N = a†a in the limit of large N ;
from the Heisenberg equation for a, we get

ȧ = (−iωcav − Γ) a =⇒ a = a0e
−iωcavte−Γt, (7.8)

that gives N = N0e
−2Γt −→

t→∞
0.

We now have a situation in which the Hamiltonian is not Hermitian anymore,
but has a Hermitian part — that we call H+ = ωcava

†a— and an anti-Hermitian
part — that we call H− = −iΓa†a. As a general fact, from the Schrödinger
equation one immediately obtains that the Liouville equation associated to an
operator H = H+ +H− containing both a Hermitian and an anti-Hermitian part
is

ρ̇(t) = −i [H+, ρ(t)]− i {H−, ρ(t)} . (7.9)

By explicitly using the expression for our anti-Hermitian term in the example of
the single-mode cavity, we get

ρ̇(t) = −i [H+, ρ(t)]− Γ
{
a†a, ρ(t)

}
, (7.10)

that starts to look like equations (7.4) and (7.5) when one identifies γ ≡ Γ and
L ≡ a. Single-

particle
losses

Since we’ve said that this is a lossy system and a is a one-photon operator,
L = a is the kind of jump operator that describes single-particle losses.

2It’s also common, in the literature, to see the name “Liouvillian” to indicate what we call
here “Lindbladian”. However, in our opinion, the name “Liouvillian” can be ambiguous, and we
opted instead for a name — still present in the literature [123–127] — that immediately makes
the presence of a Lindblad dissipator clear.
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We’ve said before that the Hamiltonian we’ve written for the lossy single-mode
cavity is naive — although very useful in practice — since it doesn’t preserve the
trace of the density matrix. Indeed, if we take the trace of (7.9), we get that

d

dt
Tr ρ(t) = −2iTr (ρ(t)H−) . (7.11)

The solution to this problem is the addition of a further term on the RHS of
(7.9) whose trace is exactly Tr (+2iρ(t)H−). By taking again our single-mode
cavity example, the extra term has to have trace Tr

(
+2Γρa†a

)
; instead of adding

“+2Γρa†a”, however, we add the term “+2Γ
(
aρa†

)
”; this term has the same

trace as the previous one, because of the cyclic property of the trace, but this
particular form comes from the formal derivation of the Lindblad equation. After
this correction — which can be obtained rigorously — we obtain the equation for
the density matrix of the lossy single-mode cavity:

ρ̇ = −i [H, ρ] + 2Γ
(
aρa† − 1

2
{
a†a, ρ

})
(7.12)

where H = ωcava
†a is the Hamiltonian of the non-lossy cavity.

We reiterate again that the discussion above is not a formal proof of the
Lindblad equation; for that, we refer the interested reader to one of the many
derivations in the literature — see e.g. [62, 80, 117, 119–121]. Instead of a proof,
we’ve chosen to focus on the relevant example of the single-mode cavity in order
to provide an intuitive understanding of the meaning of the different terms in the
Lindblad equation. Namely, we can argue that:

• the commutator −i [H, ρ] provides the Hermitian part of the evolution;

• the anti-commutator −Γ
{
a†a, ρ

}
provides the dissipation in terms of a

non-Hermitian addition in what’s usually called the effective Hamiltonian;

• the term +2Γaρa† restores the trace of the density matrix.

7.1.2 Connection to the semiclassical theory of la-
sers

In Chapter 2 we’ve derived the semiclassical theory of lasers for a cavity embed-
ding a gain medium modeled as a collection of TLAs, and in Section 2.2 we’ve
written the broadband limit of the theory. Such a limit does not involve the
atoms at all, as it’s just a single equation for the cavity field; is it then possible
to get the same broadband semiclassical theory of lasers by means of proper jump
operators acting on a single cavity? The answer is yes, and here we will briefly
show how, since this discussion is relevant for our following analyses.

In order to build a laser, we need of course a pumping mechanism. We’ve
seen in the previous Section that a jump operator L = a with a non-negative
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cavity

Lindblad coefficient Γ corresponds to having single-particle losses at a rate Γ,
since a destroys a single-particle. This suggests a natural way to describe a
single-particle (incoherent) pumping by introducing a term analogous to the
single-particle losses, where the destruction operator a is replaced by the cre-
ation operator L = a† with its own pumping rate P . So, the Lindblad equa-
tion for a single-mode cavity with (incoherent) drive and dissipation is simply
(H = ωcava

†a)

ρ̇ = −i [H, ρ] + 2Γ1

(
aρa† − 1

2
{
a†a, ρ

})
+ 2P1

(
a†ρa− 1

2
{
aa†, ρ

})
(7.13)

where we’ve added a subscript “1” in order to mark 1-particle processes.
Unfortunately, such a system cannot work as a laser. To see why, we de-

rive the equation of motion for the expectation value of the photon field. The
motivation for doing this is that the laser theory obtained in Chapter 2 is a semi-
classical theory derived at a mean-field level, for a macroscopically large number
of photons. From the definitions we get:

d

dt
〈a〉 = d

dt
Tr (aρ) = Tr

(
a
dρ

dt

)
= Tr (aLρ)

= −iTr (a [H, ρ]) + 2Γ1 Tr
(
aaρa† − 1

2a
{
a†a, ρ

})
+ 2Γ2 Tr

(
aa†ρa− 1

2a
{
aa†, ρ

})
. (7.14)

We treat each term one-by one:

−iTr (a [H, ρ]) = −iTr (aHρ)− iTr (aρH0) = −iTr (aHρ)− iTr (H0aρ)
= −iTr ([a,H] ρ) = Tr (i [H, a] ρ) = 〈i [H, a]〉 . (7.15)

2Γ1 Tr
(
aaρa† − 1

2a
{
a†a, ρ

})
= 2Γ1

{
Tr
(
aaρa†

)
− 1

2 Tr
(
aa†aρ

)
− 1

2 Tr
(
aρa†a

)}
= 2Γ1

{
Tr
(
a†aaρ

)
− 1

2 Tr
(
aa†aρ

)
− 1

2 Tr
(
a†aaρ

)}
= Γ1

{
Tr
(
a†aaρ

)
− Tr

(
aa†aρ

)}
= Γ1

{
Tr
([
a†, a

]
aρ
)}

= Tr (−Γ1aρ)
= 〈−Γ1a〉 . (7.16)
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2P1 Tr
(
aa†ρa− 1

2a
{
aa†, ρ

})
= 2P1

{
Tr
(
aa†ρa

)
− 1

2 Tr
(
aaa†ρ

)
− 1

2 Tr
(
aρaa†

)}
= 2P1

{
Tr
(
aaa†ρ

)
− 1

2 Tr
(
aaa†ρ

)
− 1

2 Tr
(
aa†aρ

)}
= 2P1

{
Tr
(
aaa†ρ

)
− Tr

(
aa†aρ

)}
= P1

{
Tr
(
a
[
a, a†

]
ρ
)}

= Tr (P1aρ)
= 〈P1a〉 . (7.17)

So, in the end, if we re-define 〈a〉 → a with the caveat of taking the proper
commutators, as done in the calculations of Chapter 2, we get

ȧ = i [H, a]〈a〉→a + (P1 − Γ1) a = i [Heff , a]〈a〉→a (7.18)

where
Heff = H + i (P1 − Γ1) a†a. (7.19)

This basically means that a evolves under a non-Hermitian Hamiltonian Heff
at a mean-field level. If we compare the equation for the time-evolution of the
expectation of the photon field with the semiclassical equation for the broadband
cavity laser (2.24) in the linear regime — i.e. for | 〈a〉 |2 � 1 — we get indeed the
same evolution (possibly modulo some unitary transformation to get rid of the
oscillation frequency).

While the combination of single-particle pumping and single-particle losses
correctly reproduces the broadband theory of lasers in the linear regime, i.e.
below the lasing threshold, it doesn’t work above the lasing threshold, when one
thus has a macroscopically large number of photons. If indeed we get rid of the
Hermitian part of the evolution in (7.18) — which can always be done via a
unitary transformation — we get

ȧ = (P1 − Γ1) a =⇒ a = a0e
(P1−Γ1)t (7.20)

that gives, for the expectation value of the total number of photons N = a†a —
that in this context we just call I as intensity

I = |a|2 = I0e
2(P1−Γ1)t. (7.21)

First, we immediately realize that, in order to have a non-diverging intensity
for t → ∞, we have to work under the condition that P1 ≤ Γ1, i.e. with a
pumping strength that cannot overcome the losses. This condition, which will
be relevant for the results presented in Chapter 8, comes naturally from the fact
that eq. (7.18) is equivalent to the semiclassical laser equations only in the linear
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regime | 〈a〉 |2 � 1, which according to eq. (2.24) occurs for P1 ≤ Γ1. The fact
that we cannot overcome the losses means, however, that we will never get a
lasing stationary state: indeed, at long times, we just get limt→∞ I = 0.

The impossibility to describe the system above the lasing threshold, where
we must have a saturable gain in order to obtain a stable lasing branch, can be
cured by introducing nonlinearities. Since the nonlinearity in a saturable gain is
present at the level of the driven-dissipative description, and not at the level of
the coherent dynamics, more specifically we need a nonlinearity in the Lindblad
dissipator.

Such dissipative nonlinearity can be obtained from suitable jump operators
inspired by the most straightforward nonlinearity in the coherent dynamics, i.e.
the Kerr nonlinearity. While the quadratic terms in the Hamiltonian have a
form a†a, and the corresponding linear jump operators are either a or a†, the
Kerr nonlinearity has a form (a†)2a2; thus, the corresponding nonlinear jump
operators are a2 and (a†)2. Since they are quadratic in the fields, these jump
operators describe respectively two-particle losses and two-particle pumping.

As we will see shortly, the right choice to describe the regime above the
lasing threshold is to add two-particle losses to the model. We indicate the
corresponding coefficient as Γ2, where again the subscript indicates the number
of particles involved, and the corresponding Lindblad equation is

ρ̇ = −i [H, ρ] + βΓ2

(
aaρa†a† − 1

2
{
a†a†aa, ρ

})
+ 2 (P1 − Γ2)

(
a†ρa− 1

2
{
aa†, ρ

})
. (7.22)

The particular choice of coefficients will be clear below; we did not include single-
particle losses since, at the mean-field level, they are simply subtracted from the
pump coefficient — although they have a key role in the quantum fluctuations.

In the equation for the evolution for a, we now have the following term:

βΓ2 Tr
(
aaaρa†a† − 1

2a
{
a†a†aa, ρ

})
= βΓ2

{
Tr
(
aaaρa†a†

)
− 1

2 Tr
(
aa†a†aaρ

)
− 1

2 Tr
(
aρa†a†aa

)}
= βΓ2

{
1
2 Tr

(
a†a†aaaρ

)
− 1

2 Tr
(
aa†a†aaρ

)}
= βΓ2

2
{〈
a†a†aaa

〉
−
〈
aa†a†aa

〉}
(4)= βΓ2

2
{
��

���
〈
a†a†aaa

〉
− 2

〈
a†aa

〉
−���

��〈
a†a†aaa

〉}
=
〈
−βΓ2(a†a)a

〉
(7.23)
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where in the second-last equality (4) we’ve recursively used the commutation
relation

[
a, a†

]
= 1 obtaining

aa†a†a = a†a+ a†aa†a = a†a+ a†a+ a†a†aa = 2a†a+ a†a†aa. (7.24)

If we then eliminate the Hermitian part of the evolution with a unitary trans-
formation and we approximate-then-substitute

〈
a†aa

〉
≈
〈
a†
〉
〈a〉 〈a〉 = 〈a〉∗ 〈a〉 〈a〉 =

| 〈a〉 |2 〈a〉 −→ |a|2a we obtain the following semiclassical equation

ȧ =
(
P1 − Γ2

(
1 + β|a|2

) )
a , (7.25)

where we see that compared to (7.20) the losses have been renormalized by an
additional factor β|a|2 proportional to the field intensity itself. The steady-state
solution of the equation above is

Iss = |a|2 =
{

0 P1 < Γ2
1
β

(
P1
Γ2
− 1
)

P1 ≥ Γ2
(7.26)

We notice that the solution |a|2 = 0 exists for all values of parameters, but it’s
unstable above the lasing threshold (P1 > Γ2). Therefore, above this threshold,
the system spontaneously jumps into the lasing solution, which is instead stable.
This piecewise solution is exactly equal to the steady-state solution of (2.24),
so we’ve successfully reproduced the semiclassical theory of lasers in the limit
of broadband gain by using the proper jump operators: we need both a single-
particle incoherent pumping and two-particle losses, where the latter provides a
way to saturate the gain above the lasing threshold.

Finally, notice that we cannot include such non-linear effects in a non-Hermitian
Hamiltonian description. Hamiltonians are linear operators, and although we can
have Hermitian nonlinearities in the Hamiltonian, we cannot reabsorb nonlinear
terms in the Lindblad dissipator as additional non-Hermitian terms. For this rea-
son we have to either integrate a nonlinear master equation for the expectation
values of the fields, obtained by integrating out some other degrees of freedom
as we did in Chapter 2, or to integrate a master equation for the density ma-
trix with proper jump operators; this latter case doesn’t require a mean-field
approximation, and it’s thus suitable to explore the quantum dynamics beyond
the mean-field description.

7.2 Superbosons and Lindbladian diagonalization

In Section 7.1 we have spent plenty of paragraphs discussing the Lindblad equa-
tion, its properties, and its interpretation. An important aspect to notice is that
while the Hamiltonian H that enters the Schrödinger equation is a linear operator
over the Hilbert space, the Lindbladian L that enters the Lindblad equation is not
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a linear operator over the Hilbert space itself, but over the space of linear opera-
tors acting on the Hilbert space. While in fact, on the Hilbert space, the action
of the Hamiltonian on a state can be expressed as a matrix-by-vector product,
the density matrix itself is already a matrix on its own — and the Lindbladian
acts as a linear operator on the space of such matrices.

This doesn’t mean, of course, that it’s not possible to simply integrate the
Lindblad equation in time in order to find a solution; however, for reasons that will
become clearer later, we would still like to write the Lindblad equation as a linear
differential equation, i.e. in such a way that the term Lρ can be interpreted as
a matrix-by-vector product. At that point, the Lindblad equation would involve
an eigenvalue problem, just as it happens with the Schrödinger equation. This
procedure is commonly called vectorization of the Lindblad equation.

A straightforward, even if not physics-driven, way to turn the Lindblad equa-
tion into a linear differential equation is to transform the matrix ρ into a vector
|ρ〉, for example by concatenating its columns, and then figuring out the ma-
trix form of L when it acts on |ρ〉. There is however a more systematic way to
turn ρ into a vector |ρ〉, not necessarily as a concatenation of the original matrix
columns, and thus to obtain a matrix form for L; this framework is the one of
the superfermion/superboson representation.

In the following we walk the reader through the formalism, for what it concerns
the class of problems we’re dealing with; for a more comprehensive treatment,
and for an overview of the related but more general concept of thermo fields, we
point the interested reader to [128–132].

7.2.1 Left vacuum and tilde rules

We start again with a system (S) living in a Hilbert space HS , whose identity
operator is written as

IS =
∑
n

|n〉 〈n| (7.27)

in a complete Fock basis. The idea of this formalism, connected with the idea of
purification of density operators, is to enlarge the Hilbert space by considering
a “ghost” copy of the original system, marked by an additional tilde “∼” and
thus also called “tilde system”, such that the total Hilbert space becomes H =
HS⊗H̃S ; the tilde system has the same Hamiltonian of the original system, with
the difference that every operator is marked by an additional tilde. The identity
operator over the tilde system is then simply

ĨS =
∑
n

|ñ〉 〈ñ| . (7.28)

We now define a new state |I〉, living in the combined Hilbert space H, as

Left vacuum|I〉 =
∑
n

|n〉 ⊗ |ñ〉 . (7.29)
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Purification

Tilde-
conjugation

This state, called the left vacuum for reasons that will become clearer later, is
the pillar of this formalism.

The nature of the left vacuum can be understood by recalling the concept of
purification [133]: the purification of a density operator ρ on a Hilbert spaceHS is
a pure state |ψ〉 on an enlarged Hilbert space HS⊗HA such that ρ = TrA |ψ〉 〈ψ|,
where TrA is taken over the auxiliary system HA. In other words, every density
matrix ρ representing a mixed state in a system (S) can be obtained from a
density matrix representing a pure state |ψ〉 in a larger system (S+A) by tracing
out (A). In the light of this definition, the state |I〉 can be interpreted as the
purification of the identity operator. In fact, if we take |I〉 〈I| and we trace out
the tilde system, we get

Tr∼ |I〉 〈I| = Tr∼
∑
nn′

(|n〉 〈n′|)⊗ (|ñ〉 〈ñ′|)

=
∑
nn′

|n〉 〈n′| ⊗ Tr∼ (|ñ〉 〈ñ′|)

=
∑
nn′n′′

|n〉 〈n′| ⊗ 〈ñ′′|ñ〉 〈ñ′ | ñ′′〉︸ ︷︷ ︸
δñ′′,ñδñ′,ñ′′

=
∑
n

|n〉 〈n| ≡ IS . (7.30)

Now that we have the first basic vector of our theory, we would like to apply
operators to it. The rule that relates an operator A belonging to the original
system to an operator Ã belonging to the tilde system when they are applied to
|I〉 is called the tilde-conjugation rule [129, 134, 135] — see also Appendix A:

Tilde-
conjugation

rule
A |I〉 = σAÃ

† |I〉 , (7.31)

where

σA =
{
−i if A is a fermionic operator
1 if A is a bosonic operator

(7.32)

The tilde-conjugation rule can in turn be used to define a new operation “∼”,
called “tilde-conjugation”, that acts via the following practical rules:

1. The vacuum |I〉 is invariant under tilde-conjugation:

|̃I〉 = |I〉 . (7.33)

2. The double-tilde conjugation is the identity:˜̃
A = A. (7.34)

3. The tilde-conjugation preserves the ordering of the operators:

(̃AB) = ÃB̃. (7.35)

78



7.2. Superbosons and Lindbladian diagonalization

4. The tilde-conjugation is antilinear:

˜(c1A+ c2B) = c∗1Ã+ c∗2B̃. (7.36)

5. The tilde-conjugation and the adjoint operation commute:

(̃A†) = Ã†. (7.37)

For a proof of the above rules, we point the interested reader to [129, 130, 136].

7.2.2 Vectorization of the Lindblad equation

Armed with the set of rules introduced in Section 7.2.1 we can now take a generic
operator O, written in complete generality as

O =
∑
nm

Onm |n〉 〈m| , (7.38)

and define its vectorized version as:3

|O〉 + O |I〉 =
∑
nmn′

Onm |n〉 〈m|n′〉 |ñ′〉 =
∑
nm

Onm |n〉 ⊗ |m̃〉 . (7.39)

We see that, with the definition of |I〉, transforming a generic operator O as
written in (7.38) to a vector |O〉 = O |I〉 takes no more than taking the bra
state 〈m| in (7.38) and flipping it into a ket state in the auxiliary space, |m̃〉. In
particular, if O is Hermitian, i.e. if Onm = O∗mn, the tilde rules give

|O〉 =
∣∣Õ〉 , (7.40)

i.e. if O is Hermitian then |O〉 is invariant under the tilde-conjugation.
In a similar way, by combining eqs. (7.29) and (7.39), we see that the trace

of a generic operator O can be expressed as the expectation value of O over |I〉:

TrO = 〈I|O|I〉 = 〈I|O〉 . (7.41)

If instead of a generic operator O we consider a density matrix, we get the
vector representation we were originally looking for in the context of the Lindblad
equation:

ρ =
∑
nm

ρnm |n〉 〈m| =⇒ |ρ〉 =
∑
nm

ρnm |n〉 ⊗ |m̃〉 ≡ ρ |I〉 . (7.42)

In particular, (7.40) holds here as well: |ρ̃〉 = |ρ〉.
3It is understood that, since O lives in (S), O |I〉 ≡

(
O ⊗ ĨS

)
|I〉
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Considering that the trace in the vectorized representation is calculated via
(7.41) and that the density matrix is represented as (7.42), we can then express
the expectation value of a generic operator O as:

〈O〉 = Tr (Oρ) = 〈I | Oρ | I〉 = 〈I | O | ρ〉 . (7.43)

In particular, since the expectation value of the identity operator must be 1, we
get the fundamental normalization relation

〈I | ρ〉 = 1 (7.44)

which is the vectorized equivalent of the requirement that the density matrix has
a unity trace: Tr ρ = 1.

In the context of the following calculations, the following relation is particu-
larly useful:

ρO |I〉 = (̃ρO)
†
|I〉 = (ρ̃Õ)† |I〉 = Õ†ρ̃† |I〉 = Õ† |ρ̃†〉 = Õ† |ρ〉 , (7.45)

Finally, we want to vectorize the Lindblad equation:
d

dt
ρ = Lρ = LHρ+ LDρ =⇒ d

dt
|ρ〉 = L |ρ〉 , (7.46)

where LHρ = −i [H, ρ] is the Hermitian contribution to the evolution, LD is
the Lindblad dissipator (see (7.5)) and, in the vectorized form of the Lindblad
equation, L is finally a linear operator over the Hilbert space.

First, notice that from (7.44) and from the vectorized Lindblad equation
above, we get

0 = d

dt
1 = d

dt
〈I | ρ〉 = 〈I | L | ρ〉 . (7.47)

Origin of the
term “left
vacuum”

Since this relation holds for every |ρ〉, we get

〈I| L = 0, (7.48)

i.e. 〈I| is the left eigenvector of L with eigenvalue zero, justifying the name of
left vacuum. On the other hand, the right eigenvector of L is, by definition, the
stationary-state density matrix |ρss〉:

L |ρss〉 = 0. (7.49)

Now we proceed with the actual vectorization.Vectorization
of the

Lindblad
equation

As explained so far, in order
to obtain the vectorized representation we have to apply the whole Lindblad
equation to the left vacuum |I〉; let’s proceed piece by piece.

• LHρ |I〉.
By using (7.45) we get:

LHρ |I〉 = −i [H, ρ] |I〉 = −i
(
Hρ |I〉 − ρH |I〉

)
= −i

(
H |ρ〉 − H̃† |ρ〉

)
= −i

(
H − H̃

)
|ρ〉 , (7.50)
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where we remind that H̃ is built out of H by applying the tilde-conjugation
— i.e. by taking the tilde-conjugate of all the fields.

• LDρ |I〉.
Since the dissipator is additive, we can perform the calculation with just a
single jump operator L; in the case of multiple jump operators, we would
just sum similar terms. Then the dissipator takes the form

LDρ = 2γ
(
LρL† − 1

2
{
L†L, ρ

})
. (7.51)

In order to perform the calculation, we apply the dissipator to |I〉 by split-
ting it in pieces:(

LρL† − 1
2
{
L†L, ρ

})
|I〉 =

(
LρL†

)
|I〉︸ ︷︷ ︸

1

−1
2
(
L†Lρ

)
|I〉︸ ︷︷ ︸

2

−1
2
(
ρL†L

)
|I〉︸ ︷︷ ︸

3
(7.52)

1 By using the tilde-conjugation rules, we get (remind that σL is −i for
a fermionic L and 1 for a bosonic L)

LρL† |I〉 = LρσL(L̃) |I〉 = σLLL̃ρ |I〉 = σLLL̃ |ρ〉 . (7.53)

2 This is immediate:
L†Lρ |I〉 = L†L |ρ〉 . (7.54)

3 Notice that L†L is a bosonic operator when considered as a whole,
independently of the fact that L itself is fermionic or bosonic; so we
can apply again (7.45):

ρ
(
L†L

)
|I〉 =

(̃
L†L

)†
|ρ〉 = L̃†L̃ |ρ〉 . (7.55)

So, finally, the dissipator in the vectorized representation is [135]:

LD |ρ〉 = 2γ
(
LρL† − 1

2
{
L†L, ρ

})
|I〉

= 2γ
(
σLLL̃−

1
2L
†L− 1

2 L̃
†L̃

)
|ρ〉 . (7.56)

In order to get some insight, we apply the vectorization procedure to the Lind-
blad equation for a single-mode cavity with single-particle incoherent pumping
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and losses in (7.13). Since in this case a and a† are themselves bosonic jump
operators, the procedure above gives:Example:

nonlinear
single-mode
cavity with
incoherent

pumping and
losses

d

dt
|ρ〉 = L |ρ〉 =− i

(
H − H̃

)
|ρ〉

+ Γ1

(
2aã− a†a− ã†ã

)
|ρ〉+ P1

(
2a†ã† − aa† − ãã†

)
|ρ〉 (7.57)

If the cavity has an additional Kerr nonlinearity of amplitude U , i.e. if its Hamil-
tonian is

H = ωcavN + UN2 (7.58)
where N = a†a is the occupation operator, then the Lindbladian L can be written
as

L = − i
[
ωcav

(
N − Ñ

)
+ U

(
N2 − Ñ2

)]
− Γ1

[(
N + Ñ

)
− 2aã

]
− P1

[(
N + Ñ

)
− 2a†ã† + 2

]
(7.59)

At this point, we finally have a Lindbladian L written as a linear operator
over the Hilbert space. In order to study its properties, we typically want to write
it in matrix form, i.e. we want to calculate the matrix elements 〈n′, m̃′| L |n, m̃〉.
In order to do that, we work in a basis of orthonormal states |n, m̃〉, that are a
natural extension of the system Fock states over the tilde space, such that (see
Appendix A){
a |n, m̃〉 =

√
n |n− 1, m̃〉

a† |n, m̃〉 =
√
n+ 1 |n+ 1, m̃〉

and
{
ã |n, m̃〉 =

√
m |n, m̃− 1〉

ã† |n, m̃〉 =
√
m+ 1 |n, m̃+ 1〉

(7.60)
which verify, as we expect

a†a |n, m̃〉 = n |n, m̃〉 and ã†ã |n, m̃〉 = m |n, m̃〉 . (7.61)

By applying the rules above, we get

2aã |n, m̃〉 = 2
√
nm |n− 1, m̃− 1〉 (7.62)

2a†ã† |n, m̃〉 = 2
√

(n+ 1)(m+ 1) |n+ 1, m̃+ 1〉 . (7.63)
So, by eventually applying the Lindbladian in linear operator form to a state
|n, m̃〉, we get

L |n, m̃〉 =
{
− i
[
ωcav

(
n−m

)
+ U

(
n2 −m2

)]
− (Γ1 + P1)(n+m)− 2P1

}
|n, m̃〉

+ 2Γ1
√
nm |n− 1, m̃− 1〉

+ 2P1
√

(n+ 1)(m+ 1) |n+ 1, m̃+ 1〉 (7.64)
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Gauge
symmetry

Lindbladian
block
structure

and the generic matrix element becomes

〈n′, m̃′ | L |n, m̃〉 =
{
− i
[
ωcav

(
n−m

)
+ U

(
n2 −m2

)]
− (Γ1 + P1)(n+m)− 2P1

}
δn′,nδm′,m

+ 2Γ1
√
nmδn′,n−1δm′,m−1

+ 2P1
√

(n+ 1)(m+ 1)δn′,n+1δm′,m+1 (7.65)

The first observation we have to make is that the terms including U appear
only on the diagonal (i.e. when n = n′ and m = m′ at the same time). Even
here, however, all the terms including contributions from the Hamiltonian vanish
for n = m. This fact, as we will see, it’s connected with the theorem in [105]; for
the time being, this suggests that some simplifications are possible.

The key observation is that the dissipator has not disrupted the U(1) gauge
symmetry possessed by the Hamiltonian, i.e. the invariance with respect to phase
rotations. Indeed, if we perform the transformation (consistent with the tilde-
rules) {

a→ aeiϑ

ã→ ãe−iϑ
(ϑ ∈ R) (7.66)

the Lindbladian remains unchanged.
Since the generator of a phase rotation is the occupation operator N = a†a,

we have [H,N ] = 0 but also [L,K] = 0, where L is in superoperator form and,
inspired by the form of the Hermitian contribution in the Lindblad equation, we
have defined a new superoperator

K• = −i [N, •] =⇒
(vectorization)

K = i
(
Ñ −N

)
= ik, (7.67)

where, since we work in the number basis, the linear operator K has eigenvalues
ik, k = 0, +1, −1, +2, −2, . . .. Since the Lindbladian and K commute, they
share a common set of eigenvectors; this means we can classify the eigenvectors
of the Lindbladian by labeling them with the eigenvalues of K, i.e. with k if we
drop the imaginary unit for convenience. In other words, we have discovered that
the Lindbladian is block-diagonal, with each block (also called “sector”) labeled
by an integer value k that is equal to the difference between the occupation in the
tilde-system and the occupation in the original system. This symmetry is also
clearly visible in (7.64): when the Lindbladian is applied to a state |n, m̃〉 living
in the sector k = m− n, we can jump to other states with different occupations
in the tilde-system and in the original one, but always in such a way that k is
preserved.

Let’s proceed again with a practical example, by explicitly writing down the
matrix in (7.65). In contrast to the fermionic case, where the matrix is finite-size,

83



Chapter 7. Technical background

Cutoff of the
Hilbert space

|ρss〉 lives in
B0 and does
not depend

on H

in the bosonic case the matrix has infinite size. So, in order to be able to make
any numerical calculation, we have to choose a maximum occupation number for
the bosons, that we call Ncutoff ; with this choice, the number of possible states
becomes

(
Ncutoff + 1

)2
and therefore the dimension of the Lindbladian matrix

is
(
Ncutoff + 1

)2
×
(
Ncutoff + 1

)2
. Let’s choose Ncutoff = 3 for this example; the

resulting (3 + 1)2 = 16 basis elements, organized by their k-sector, are:

(k = 0) |0, 0̃〉 , |1, 1̃〉 , |2, 2̃〉 , |3, 3̃〉 ,
(k = +1) |0, 1̃〉 , |1, 2̃〉 , |2, 3̃〉 ,
(k = −1) |1, 0̃〉 , |2, 1̃〉 , |3, 2̃〉 ,
(k = +2) |0, 2̃〉 , |1, 3̃〉 ,
(k = −2) |2, 0̃〉 , |3, 1̃〉 ,
(k = +3) |0, 3̃〉 ,
(k = −3) |3, 0̃〉 .

Then the Lindbladian will have the following form:

L =



B0 0 0 0 0 0 0
0 B+1 0 0 0 0 0
0 0 B−1 0 0 0 0
0 0 0 B+2 0 0 0
0 0 0 0 B−2 0 0
0 0 0 0 0 B+3 0
0 0 0 0 0 0 B−3


(7.68)

where Bh is the Lindbladian block with k = h. For Ncutoff = 2, instead, we will
have only 5 diagonal blocks with the following expressions:

B0 =

 −2P1 +2Γ1 0
+2P1 −2 (Γ1 + P1)− 2P1 +2

√
4Γ1

0 +2
√

4P1 −4 (Γ1 + P1)− 2P1

 (7.69)

B±1 =
(
±i (ω0 + U)− (Γ1 + P1)− 2P1 +2

√
2Γ1

+2
√

2P1 ±i (ω0 + 3U)− 3 (Γ1 + P1)− 2P1

)
(7.70)

B±2 =
(
±i (2ω0 + 4U)− 2 (Γ1 + P1)− 2P1

)
(7.71)

Thus, already withNcutoff = 2, we are able to verify that 〈I| L = −2P1+2P1 =
0, i.e. 〈I| is indeed the left eigenvector of L. In particular, since |I〉 lives by
definition in (the eigenspace of) B0, |ρss〉 is an eigenvector of L so it must live in
some block4 Bh, and the unitarity of the trace of the density matrix requires that

4This is not true for a generic density matrix, i.e. a density matrix at intermediate times,
since it’s not necessarily an eigenvector of L.
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Equation of
motion
technique

〈I | ρss〉 = 1, we get that |ρss〉 lives in B0 as well. This is an important result,
that holds for any Hamiltonian and dissipator for which the gauge symmetry is
preserved. Since in this case the first diagonal block does not depend on the
details of the Hamiltonian, this means that the steady-state density matrix is
independent of the Hamiltonian as well; it only depends on the details of the
dissipator, that acts as a thermalizer for the system.

Naturally, if the density matrix at the steady-state is independent of the
Hamiltonian, the same will hold for any steady-state observable. As an example,
we compute the occupation of our nonlinear cavity; we do so via the equation of
motion technique, that exploits the property 〈I| L = 0 to get, for an observable
O:

d

dt
〈O(t)〉 = d

dt
〈I | O | ρ(t)〉 = 〈I | OL | ρ(t)〉 = 〈I | [O,L] | ρ(t)〉 . (7.72)

In our case we want to calculate the commutator [N,L], that gives

[N,L] = 2Γ1 [N, aã] + 2P1
[
N, a†ã†

]
. (7.73)

By using the following commutators computed over 〈I|

〈I| [N, aã] = −〈I|N and 〈I|
[
N, a†ã†

]
= 〈I| (N + 1) (7.74)

as well as the definition N(t) = 〈I|N |ρ〉 and 〈I|ρ〉 = 1, we immediately get the
following equation for N(t):

d

dt
N(t) = −2(Γ1 − P1)

{
N(t)− P1

Γ1 − P1

}
, (7.75)

where Γ1 > P1 in order to have a stationary state. Note that this is the same
condition we have found when discussing the connection with the semiclassical
theory of lasers in Section 7.1.2! The equation for N(t) has the following solution
(N0 = N(0), N∞ = limt→∞N(t)):

N(t) =
(
N0 −N∞

)
e−2(Γ1−P1)t +N∞, N∞ = P1

Γ1 − P1
, (7.76)

so the steady-state is indeed independent of the details of the Hamiltonian and
has a thermal occupation given by the Lindblad coefficients. In particular, if
we define as Γeff = Γ1 − P1 > 0 as the semiclassical effective loss coefficient,
a stationary occupation equal to N∞ can be realized by choosing the following
Lindblad coefficients:

Γ1 ≡ Γeff
(
N∞ + 1

)
and P1 ≡ ΓeffN∞. (7.77)

Finally, note that the mean-field description correctly predicts decay rate but
completely misses the presence of a baseline occupation N∞ at the stationary
state; this term results in fact from a proper description of the cavity at the
quantum level, as we’ve done here.
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7.2.3 Diagonalization of the Lindbladian
As a last step after the vectorization procedure, let’s spend a few words on the
diagonalization of the Lindbladian in matrix form.

The calculation of physical quantities often requires working in the basis of the
eigenstates of the Lindbladian, for example in order to find a Källén-Lehmann
representation for the Green’s functions (see Section 7.4). Namely, the formal
solution of the Lindblad equation in the vectorized representation is

|ρ(t)〉 = eLt |ρ(0)〉 (7.78)

and the Lindbladian L eigenvalues and right and left eigenvectors

〈lα| L = Lα 〈lα| and L |rα〉 = Lα |rα〉 (7.79)

or, if we drop the bra-ket notation and consider the kets as column vectors,

lHα L = LαlHα and Lrα = Lαrα (7.80)

where H indicates the hermitian conjugate (transpose + complex conjugate).
These equations can be written in matrix form as

XH
L L = DXH

L , LXR = XRD, (7.81)

where XL (XR) is the matrix of all the left (right) eigenvectors (both stored as
columns) and D is the diagonal matrix with the corresponding eigenvalues on the
diagonal.

Note that, from the equations above, we have (by multiplying the first one by
XR on the right and the second one by XH

L on the left) that

XH
L LXR = D(XH

L XR) = (XH
L XR)D.

Since the matrix XH
L XR commutes with a diagonal matrix, it’s diagonal5 (unless

for some special cases with degenerate eigenvalues). This means that left and
5Observation. Let D = (dij) = (dijδij) be a n × n diagonal matrix with n distinct

diagonal elements dii 6= djj ⇔ i 6= j and let A = (aij) be a n×n matrix such that A commutes
with D, i.e. AD = DA. Then A is a diagonal matrix.
Proof. We prove the statement by simply proving that aij = 0 for i 6= j. Indeed,

(AD)ij =
∑
k

aikdkj =
∑
k

aikdkjδkj = aijdjj

(DA)ij =
∑
k

dikakj =
∑
k

dikδikakj = diiaij

thus
aijdjj = aijdii ⇔ aij(dii − djj) = 0.

Under the hypothesis that dii 6= djj for i 6= j, then we have that aij = 0 for i 6= j, i.e. A = (aij)
is a diagonal matrix.
Note. The above proof can be extended to the case in which the matrix D is block-diagonal
with distinct diagonal blocks (which is the case e.g. for a diagonal matrix D with degenerate
diagonal elements). In this case, the matrix A is block-diagonal with the same block-diagonal
structure as the matrix D.
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Bi-orthonor-
malization

right eigenvectors are bi-orthogonal to each other, though not necessarily nor-
malized to one. So, in principle, one can achieve a bi-orthonormalization to 1 by
simply rescaling left and right eigenvectors by a proper c-number. However, if
there are degenerate eigenvalues, XH

L XR is at least block diagonal (in this case,
written for each degenerate block, the equation above is just a tautology – D is
proportional to the identity! – so we must assume the most general form for each
degenerate block – i.e., a dense matrix). Then, for each degenerate block, we can
perform a LU decomposition6

XH
L XR = LU =⇒ (XLL

−H)H(XRU
−1) = I, (7.82)

i.e. we can obtain a set of bi-orthonormalized eigenvectors by taking XLL
−H and

XRU
−1 as a set of left and right eigenvectors, respectively. All in all, we see that

we can find (bi)normalized left and right eigenvectors such that

〈lα|rβ〉 = δαβ . (7.83)

Since they form a complete set, we can express the identity as

I =
∑
α

|rα〉 〈lα| . (7.84)

This completeness relation allows us to expand any state |ρ(t)〉 as written in
(7.78) in this basis:

|ρ(t)〉 = eLt |ρ(0)〉 = eLtI |ρ(0)〉

=
∑
α

eLαt |rα〉 〈lα|ρ(0)〉 =
∑
α

ρα(t) |rα〉 , (7.85)

where (by using the above expression for |ρ(0)〉 and the bi-orthonormalization
property)

ρα(t) + eLαt 〈lα|ρ(0)〉 = eLαtρα(0). (7.86)

So we see that, in order to have a non-exploding solution, we must have ReLα ≤
0 ∀α, which is ensured by the form of the Lindblad equation. We also have to
remember that 〈I| is the left eigenvector7 of L with zero eigenvalue, i.e. 〈I| L = 0.
So we assume that there is exactly one zero eigenvalue and we denote it with
α = 0, i.e.

〈l0| ≡ 〈I| and |r0〉 ≡ |ρss〉 . (7.87)
6From a numerical perspective, it’s still better to perform a LU decomposition of the whole

matrix, as it’s difficult to numerically acknowledge the presence of degeneracies and as the LU
decomposition is still relatively inexpensive with respect to the diagonalization procedure itself.
In this way, we have greater confidence in the proper normalization of the eigenstates.

7With the caveat that, for a bosonic system, 〈I| is a left eigenvector of L only in the case of
an infinite basis; since in general we use a finite cutoff Ncutoff , the numerical left vacuum will
differ from the analytical one.
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Keldysh field
theory

7.3 Keldysh field theory and Green’s functions

Single-particle Green’s functions provide a wealth of precious information, and
they are the main quantities to be computed within the Dynamical Mean Field
Theory (DMFT) technique that we introduce in Chapter 9. These functions
provide spatio-temporal information about the system; for example, in the case of
an optical cavity, the elements of the single-particle Green’s function are related
to optical coefficients like reflection and transmission. In the context of non-
equilibrium systems, much of the formalism developed at equilibrium can be
straightforwardly generalized by performing the calculations on a suitably defined
contour in the complex-time space; the resulting theory is called Keldysh field
theory.

A full introduction to the Keldysh formalism would be way beyond the scope
of this Thesis. However, in order to provide a self-contained presentation of our
results and methods, we give here a very brief overview of the formalism, relying
on the physical intuition rather than on full-blown proofs. For the reader inter-
ested in more solid mathematical foundations, we refer to [137–143]; in particular,
[140, 142] focus on the context of non-equilibrium bosonic systems described by
a Lindblad equation.

7.3.1 Keldysh formalism

Figure 7.1: Schematic depiction of the Keldysh contour C. The upper/lower
branches, on which the +/− fields are defined, are infinitesimally shifted respec-
tively above and below the real-time axis in the complex plane and extend to
−∞; the arrows indicate the time ordering along the contour.

As a general idea, we want to calculate the Green’s functions in the path inte-
gral formulation, in which, at the steady-state, the partition function is expressed
as the integral of a certain action S[φ̄, φ] over all the possible paths:

Z =
∫
D[φ̄, φ]eiS[φ̄,φ] = 1. (7.88)

The D[φ̄, φ] is a symbolic notation for products of differentials, normalized such
that Z = 1. We will not delve into the details of theD as it’s not important for our
purposes; additionally, when we calculate expectation values, we integrate over
the same degrees of freedom and we divide by Z, so any extra factor coming from
the calculations that doesn’t depend on the degrees of freedom in the integral
can be safely discarded by reabsorbing it into D itself.
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Ideally, we would like to write the action as a quadratic form

S[φ̄, φ] =
∫
C
dt φ̄(t)G−1φ(t) (7.89)

from which we can directly read off G−1(t), i.e. the inverse of the local-in-time
Green’s function (propagator); here C is the Keldysh contour shown in Figure 7.1.
The peculiarity of the Keldysh contour is that it has an upper branch traveling
forward in time (t > 0), and a lower branch traveling backward in time (t < 0).
We can thus split the field φ into two components: φ+ on the upper branch
(positive time flow), and φ− on the lower branch (negative time flow). The
action, therefore, becomes

S[φ̄, φ] =
∫
C
dt φ̄(t)G−1φ(t) =

∫
t

(
φ̄+(t)G−1φ+(t)− φ̄−(t)G−1φ−(t)

)
. (7.90)

At this point, we perform the so-called Keldysh rotation:8

Keldysh
rotation

φ± = φc ± φq√
2

, (7.91)

where “c” stands for “classical” and “q” stands for “quantum”. We collect these
two components into a single vector ψ = (φc, φq)ᵀ, so that the action is written
as the following quadratic form under a single integral:

S[ψ̄, ψ] =
∫
t

ψ̄(t)G−1(t)ψ(t), (7.92)

where now the advantage compared to (7.89) is that the integral is performed on
the real axis and not along a contour in the complex plane. Finally, if we allow
for a Green’s function that is non-local in time,9 a more generic quadratic form
for the action is

S[ψ̄, ψ] =
∫
t

∫
t′
ψ̄(t)G−1(t, t′)ψ(t′). (7.93)

Notice that, at the steady-state, the Green’s function only depends on time dif-
ferences: G−1(t, t′) = G−1(t − t′). By using the convolution theorem, one can

8Here we are dealing with bosonic systems, so the conjugated fields transform in the same
way. For fermions, however, the conjugated fields transform with the opposite sign (see [137]);
this produces a different causality structure and different signs when restoring the connection
between the functional integral description and the operator formalism, thus resulting in an
exchange between commutators and anti-commutators in the definitions of the retarded and of
the Keldysh components.

9With this notation, if the generic G−1(t, t′) is actually local in time then its connection
with the local-in-time Green’s function defined above is G−1(t, t′) = δ(t− t′)−1G(t′).
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therefore write the action as an integral in frequency space:10,11

S[ψ̄, ψ] =
∫
ω

ψ̄(ω)G−1(ω)ψ(ω). (7.95)

From now on, unless otherwise specified, the Green’s function with one time-
argument will refer to the non-local-in-time steady-state Green’s functionG−1(t, t′) =
G−1(t− t′) in (7.93) evaluated at the time difference t− t′, and not to the local-
in-time Green’s function in (7.92).

At this point, we take the following definition of the Green’s function (con-
sistent with (7.93)) in terms of the original fields:

iG(t, t′) +
〈
φ(t)φ̄(t′)

〉
=
∫
D[φ̄, φ]eiS[φ̄,φ]φ(t)φ̄(t′). (7.96)

Splitting into +/− fields gives the following four combinations [137]:

iG<(t, t′) +
〈
φ+(t)φ̄−(t′)

〉
(7.97)

iG>(t, t′) +
〈
φ−(t)φ̄+(t′)

〉
(7.98)

iGT (t, t′) +
〈
φ+(t)φ̄+(t′)

〉
= θ(t− t′)iG>(t, t′) + θ(t′ − t)iG<(t, t′) (7.99)

iGT̃ (t, t′) +
〈
φ+(t)φ̄−(t′)

〉
= θ(t′ − t)iG>(t, t′) + θ(t−′ t)iG<(t, t′) (7.100)

10We employ the following convention on Fourier transforms (f(ω) = FT {f(t)} [ω]):
f(ω) =

∫
t

eiωtf(t)
∫
t

≡
∫ ∞
−∞

dt

f(t) =
∫
ω

e−iωtf(ω)
∫
ω

≡
∫ ∞
−∞

dω

2π

(7.94)

11Typically, the propagator G−1(t) in (7.92) contains a free term i∂t; therefore, G−1(t, t′) =
G−1(t− t′) will contain a term δ(t− t′)i∂t′ . The Fourier transform of this term with respect to
the time difference is simply ω; therefore, when we encounter an action written locally in time
as S[ψ̄, ψ] =

∫
t
ψ̄(t) (i∂t)ψ(t), we can simply rewrite the same action in the frequency repre-

sentation as S[ψ̄, ψ] =
∫
t
ψ̄(ω)ωψ(ω). The Fourier transform above can be directly obtained

from the convolution theorem. In fact, by defining D(t − t′) = δ(t − t′)i∂t′ and f(t′) any test
function,

D(ω)f(ω) =
∫
ω

e+iωt {D ∗ f} (t) =
∫
ω

e+iωt
∫
t′
D(t− t′)f(t′)

=
∫
ω

e+iωt
∫
t′
D(t− t′)

∫
ω′
e−iω

′t′f(ω′) =
∫
ω

e+iωt
∫
t′
δ(t− t′)

∫
ω′
ω′e−iω

′t′f(ω′)

=
∫
ω

e+iωt
∫
ω′
ω′e−iω

′tf(ω′) =
∫
ω′

∫
ω

e−i(ω
′−ω)tω′f(ω′)

=
∫
ω′
δ(ω′ − ω)ω′f(ω′) = ωf(ω) ,

from which we obtain the result D(ω) = FT {D(t)} [ω] = ω.
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where θ(t) is the Heaviside step function and T and T̃ denote, respectively, the
time-ordering and anti-time-ordering operators. For t = t′, we regularize the
Heaviside step-function by taking GT (t, t) = GT̃ (t, t) = G<(t, t), while for t 6= t′

one notices that GT + GT̃ = G< + G>, i.e. the Green’s functions are not inde-
pendent of each other and since we have found one constraint, we can eliminate
one degree of freedom and work with only three objects instead of four. This is
precisely what is achieved by the Keldysh rotation (7.91); in this basis, indeed,
one defines

iGR(t, t′) +
〈
φc(t)φ̄q(t′)

〉
= i

2

(
GT −GT̃ −G< +G>

)
= θ(t− t′)

(
G> −G<

)
(7.101)

iGA(t, t′) +
〈
φq(t)φ̄c(t′)

〉
= i

2

(
GT −GT̃ +G< −G>

)
= θ(t′ − t)

(
G< −G>

)
(7.102)

iGK(t, t′) +
〈
φc(t)φ̄c(t′)

〉
= i

2

(
GT +GT̃ +G< +G>

)
= G< +G> (7.103)

(7.104)

so the Green’s function has the following structure, called causality structure:

G−1 =
(
GK GR

GA 0

)−1
=
(

0 (G−1)A
(G−1)R (G−1)K

)
=
(

0 (GA)−1

(GR)−1 −(GR)−1GK(GA)−1

)
, (7.105)

where GR (GA) is called the retarded (advanced) Green’s function and GK is
called the Keldysh Green’s function. The cancellation of the (q, q) component
results from the constraint we’ve found and reflects the fact that for a classical
field the action is zero, while the other three components have the following
properties of Hermiticity and anti-Hermiticity:

GA =
(
GR
)†
, GK = −

(
GK
)†
. (7.106)

Here, the first property is a manifestation of the causality of the response function;
it also allows us to work with just two objects, the retarded and the Keldysh com-
ponents. The second property is instead a manifestation of the non-equilibrium
nature of the Keldysh Green’s function.

Connection
with operator
formalism

Before dealing with a practical example, let’s finally restore the connection
between the functional integral description and the operator formalism. Take
for example a system with a single bosonic field a, i.e.

[
a, a†

]
= 1. From the

definition of the retarded Green’s function in (7.101) we have:

iGR(t, t′) =
〈
ac(t)a∗q(t′)

〉
= θ(t− t′)

(
G> −G<

)
= θ(t− t′)

〈
a−(t)a∗+(t′)− a+(t)a∗−(t′)

〉
= θ(t− t′)

〈[
a(t), a†(t′)

]〉
(7.107)
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Example:
single-mode

cavity

and similarly, from the definition of the Keldysh Green’s function in (7.103), we
have:

iGK(t, t′) = 〈ac(t)a∗c(t′)〉 =
(
G> +G<

)
=
〈
a−(t)a∗+(t′) + a+(t)a∗−(t′)

〉
=
〈{
a(t), a†(t′)

}〉
. (7.108)

7.3.2 Keldysh action for the Lindblad equation
As a first example, we apply the Keldysh formalism to a single-mode cavity in
the absence of driving and dissipation. We know that the Hamiltonian of such a
system is simply H = ωcava

†a, so the local-in-time propagator is i∂t − ωcav and
the action is:

S =
∫
C

[
a∗(t)i∂ta(t)−H(t)

]
=
∫
C
a∗(t)

(
i∂t − ωcav

)
a(t)

=
∫
t

[
a∗+(t)

(
i∂t − ωcav

)
a+(t)− a∗−(t)

(
i∂t − ωcav

)
a−(t)

]
=
∫
ω

[
a∗+(ω)

(
ω − ωcav

)
a+(ω)− a∗−(ω)

(
ω − ωcav

)
a−(ω)

]
, (7.109)

where in the last step we’ve switched to the frequency representation as discussed
before. Then one performs the Keldysh rotation by substituting the expressions
in (7.91) for the +/− fields and reads off the components of the Green’s function;
we will perform this stage below for the open cavity, as it’s the system we are
actually interested about.

In our open problems, the dynamics is governed by the Lindbladian rather
than by the Hamiltonian. What’s therefore the equivalent of the action

∫
(a∗i∂ta−H)

for a system evolving via a Lindblad equation? We refer the reader to [142] for
a thorough discussion; here we will limit ourselves to the intuitive idea that the
correct integrand for the action can be read off the proper time-evolution that
governs the system.

For a closed system governed by a Hamiltonian, the proper time-evolution is
given by the Schrödinger equation:

i∂tψ = Hψ =⇒
(
i∂t −H

)
ψ = 0 (7.110)

from which we can read off the action integrand as (a∗i∂ta−H), where the fields
are time-dependent. For a system whose dynamics is governed by a Lindblad
equation, its evolution reads as:

i∂tρ = iLρ =⇒
(
i∂t − iL

)
ρ = 0 (7.111)

from which we can read off the action integrand as (a∗i∂ta− iL). Now, consider
the fact that the density matrix provides time-evolved operators; therefore, we
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Example:
driven-
dissipative
single-mode
cavity

argue here that, for a generic operator O, Oρ and ρO provide time-evolved op-
erators that flow in opposite directions of time. Specifically, in the process of
translating a Lindblad master equation into an action, we perform the following
replacements:

Oρ(t) −→ O+(t) (7.112)
ρ(t)O −→ O−(t) (7.113)

As an example, take the Hermitian contribution to the evolution: −i [H, ρ] =
−i (Hρ− ρH). The corresponding term in the action in terms of the +/− fields
is then

∫
t

[
a∗+i∂ta+ − a∗−i∂ta− − (H+ −H−)

]
. Generalizing to a Lindblad dis-

sipator in the form of (7.5) and to a field φ, the corresponding action has the
form

S =
∫
t

{
φ̄+i∂tφ+ − φ̄−i∂tφ− −

(
H+ −H−

)
− i
∑
α

γα

[
2Lα+L

∗
α− −

(
L∗α+Lα+ + L∗α−Lα−

)]}
(7.114)

where the first two terms come from the free propagator, the third one takes into
account the Hermitian component, and the last one corresponds to the Lindblad
dissipator. In other words, in contrast to the Schrödinger equation, the structure
of the Lindblad equation lends itself naturally into a mapping over the +/− fields
on the Keldysh contour.

With this recipe, we can turn to the driven-dissipative system of eq. (7.13).
For convenience, we rewrite here the Lindblad equation:

ρ̇ = −i [H, ρ] + 2Γ1

(
aρa† − 1

2
{
a†a, ρ

})
+ 2P1

(
a†ρa− 1

2
{
aa†, ρ

})
(7.115)

where H = ωcava
†a.

Via the recipe in (7.114), we can immediately write the corresponding Keldysh
action:

S =
∫
t

{
a∗+

(
i∂t − ωcav

)
a+ − a∗−

(
i∂t − ωcav

)
a−

− iΓ1

[
2a+a

∗
− −

(
a∗+a+ + a∗−a−

)]
− iP1

[
2a∗+a− −

(
a+a

∗
+ + a−a

∗
−

)]}
. (7.116)

If we perform the Keldysh rotation (7.91) and we go to frequency space (that
just amounts to replacing every time argument and i∂t with ω), we then get:

S =
∫
ω

(
a∗c a∗q

)( 0 ω − ωcav − i(Γ1 − P1)
ω − ωcav + i(Γ1 − P1) 2i(Γ1 + P1)

)(
ac
aq

)
(7.117)
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which immediately allows reading out, as commented before, the following rela-
tions: 

(GR)−1 = ω − ωcav + i(Γ1 − P1)
(GA)−1 = ω − ωcav − i(Γ1 − P1)
−(GR)−1GK(GA)−1 = 2i(Γ1 + P1)

. (7.118)

If we finally solve for the Green’s function components and we use the connection
with the operator formalism outlined in (7.107) and (7.108), we get:

GR/A(ω) = 1
ω − ωcav ± i(Γ1 − P1) and GK(ω) = −2i(Γ1 + P1)

(ω − ωcav)2 + (Γ1 − P1)2 .

(7.119)
Notice in particular the fact that the loss/pumping rates appear in couple as
Γ1 − P1, except for the Keldysh Green’s function in which they also appear as
Γ1 + P1. This is an important signature of the quantum nature of the system,
encoded in the Keldysh Green’s function, in the same way that it appears, for
example, when adding quantum noise to a semiclassical treatment — see (3.7).

The connection with the operator formalism outlined in (7.107) and (7.108)
results here in the following relations:

GR(ω) = FT
{
−iθ(t)

〈[
a(t), a†(0)

]〉}
, GK(ω) = FT

{
−i
〈{
a(t), a†(0)

}〉}
.

(7.120)
This connection provides us with some important results; namely, since the com-
mutator and the anti-commutator at equal times are respectively

[
a, a†

]
= 1 and{

a, a†
}

= 2N + 1, with a†a the occupation operator, we get that∫
dωA(ω) = −2

∫
ω

ImGR(ω) = i

∫
ω

e+iω0 (GR(ω)−GA(ω)
)

= i
(
GR(t = 0)−GA(t = 0)

)
=
〈[
a(t), a†(0)

]〉
= 1 (7.121)

and∫
dω C(ω) = i

∫
ω

e+iω0GK(ω) = iGK(t = 0) =
〈{
a(t), a†(0)

}〉
= 2n+ 1 ,

(7.122)

where we have defined the spectral function A(ω) and the cavity correlation func-
tion C(ω) to be respectively

Spectral
function A(ω) + − 1

π
ImGR(ω) (7.123)

andCavity
correlation

function C(ω) + − 1
2πiG

K(ω) , (7.124)

and n is the steady-state occupation of the cavity.
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We can indeed verify the so-called 0-th sum rule (7.121) by noting that the
frequency integral corresponds to the integral of a Cauchy-Lorentz PDF:∫

dωA(ω) =
∫
dω

(Γ1 − P1)
(ω − ωcav)2 + (Γ1 − P1)2 = 1 , (7.125)

and by using this result in second sum rule (7.122):∫
dω C(ω) =

∫
dω

Γ1 + P1
Γ1 − P1

A(ω) = 2 P1
Γ1 − P1

+ 1 , (7.126)

from which we find that, at the stationary state,

n = P1
Γ1 − P1

(7.127)

exactly as we’ve found in (7.76) directly from the Lindblad equation via the
equation of motion technique.

7.4 Källén-Lehmann spectral representation of Green’s
functions

Analytical expressions for the Green’s functions can be obtained only for non-
interacting systems, i.e. in the absence of nonlinear terms. In general situa-
tions, we can exploit the vectorization procedure we’ve reviewed in Sections 7.2.2
and 7.2.3. The entire knowledge about the evolution of the system is encoded into
the diagonalization result, i.e. into the eigenvalues and the right/left eigenvectors
of the Lindbladian; we look therefore for a way to express the Green’s function
in terms of these objects. This representation is called Källén-Lehmann spec-
tral representation, and has the huge advantage that, since eventually we want
to perform a numerical diagonalization of the Lindbladian, we can numerically
calculate the Green’s function even when the system has strong nonlinearities.

We will now proceed to work out the spectral representation of the Green’s
function in the vectorized representation, closely following the treatment of the
fermionic case in [117].

7.4.1 Green’s functions and Lindblad equation

Let’s first remind the fact that the expectation value of a system operator O(t)
is, in the general,

〈O(t)〉 = Tr(O(t)ρT ) = TrS TrB(OρT (t)) = TrS(Oρ(t)), (7.128)

with ρ(t) = TrB ρT (t) the reduced density matrix of the system (S) obtained by
tracing out the bath (B).
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Quantum
regression
theorem

What we want to calculate in this case, however, are Green’s functions of two
generic system operators A and B, i.e.

iGAB(t+ τ, t) + 〈A(t+ τ)B(t)〉 = Tr(A(t+ τ)B(t)ρT ) (7.129)

where τ ∈ R. It’s then useful to define a new system operator

BS(τ, t) + TrR e−iHτBρT (t)eiHτ , (7.130)

with which the expression for the Green’s function is

iGAB(t+ τ, t) = TrS(ABS(τ, t)) , (7.131)

i.e. it involves a trace over the system degrees of freedom only.
Unfortunately, in order to determine BS , we still need the total density matrix

ρT (S+B); there is in general no way to trace the bath away from the total density
matrix in order to get an expression involving the system reduced density matrix
ρ only. However, under the same Markovian conditions for which the system
density matrix evolves via a Lindblad equation, we are able to get a Lindblad-
type equation for the evolution of BS thanks to the quantum regression theorem
(QRT), which though holds only for τ > 0:

d

dτ
BS(τ, t) = L′BS(τ, t) (7.132)

with the initial condition

BS(0, t) = TrB BρT (t) = Bρ(t). (7.133)

It’s important to point out that the superoperator L′ is generally different
from L (L′ = L only in the case in which B is a bosonic operator, see Appendix
B in [144]). However, in the vectorized representation, it can be shown that
the associated matrices are equal (L′ = L) for any kind of operator (see [117]);
so, in particular, the vectorized |BS〉 associated to BS follows exactly the same
Lindblad equation for |ρ〉 (for τ > 0)

d

dτ
|BS(τ, t)〉 = L |BS(τ, t)〉 , |BS(0, t)〉 = B |ρ(t)〉 (7.134)

with the formal solution

|BS(τ, t)〉 = eLτB |ρ(t)〉 (7.135)

and the Green’s function (7.131) can finally be written as, for τ > 0,

iGAB(t+ τ, t) = TrS(ABS(τ, t)) = 〈I |ABS(τ, t) | I〉
= 〈I |A |BS(τ, t)〉 =

〈
I
∣∣AeLτB ∣∣ ρ(t)

〉
. (7.136)
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The issue with the restriction that τ > 0 can be dealt with by noticing that

iGAB(t+ τ, t) =
(
iGB†A†(t, t+ τ)

)∗
(7.137)

which gives the right time ordering when τ < 0.
At the steady-state, the Green’s function can be written as G(t, t′) = G(t−t′)

— see also Section 7.3.1. So, in this case, we define

iGAB(t+ τ, t), τ > 0 SS−→ iGAB(τ,+) (7.138)

iGAB(t+ τ, t), τ < 0 SS−→ iGAB(τ,−) ≡
(
iGB†A†(−τ,+)

)∗
(7.139)

where the second argument “+” or “−” reminds us that the first argument as a
whole is either positive or negative. Then, from (7.136), we can directly write

iGAB(τ,+) = θ(τ)
〈
I
∣∣AeLτB ∣∣ ρss

〉
, (7.140)

where we’ve added a θ(τ) in order to make sure that iGAB(τ,+) = 0 for τ < 0.

7.4.2 Spectral representation of Green’s functions
We start by finding the spectral representations of iGAB(±t,±). From (7.140),
by inserting two identities (7.84), we have:

iGAB(t,+) = θ(t)
〈
I
∣∣AeLτB ∣∣ ρss

〉
= θ(t)

〈
I
∣∣AIeLτIB ∣∣ ρss

〉
= θ(t)

∑
α

〈I |A | rα〉 〈lα |B | ρss〉 eLαt. (7.141)

For the negative-time version, we use (7.139) to find (notice the swap of the
operators in the subscript and the sign change in the time argument):

iGBA(−t,−) =
(
θ(−t)

∑
α

〈
I
∣∣A† ∣∣ rα〉 〈lα ∣∣B† ∣∣ ρss

〉
eLαt

)∗
. (7.142)

The frequency-domain versions of these expressions are found by performing a
Fourier transform12

GAB(ω,+) +
∫ +∞

−∞
dt eiωtGAB(t,+)

=
∑
α

〈I |A | rα〉 〈lα |B | ρss〉
1

ω − iLα
(7.143)

GBA(ω,−) +
∫ +∞

−∞
dt eiωtGBA(−t,−)

=
(∑

α

〈
I
∣∣A† ∣∣ rα〉 〈lα ∣∣B† ∣∣ ρss

〉 1
ω + iLα

)∗
(7.144)

12Notice that GAB(±t,±) both contain a θ(t) factor, so the integral is actually performed
only for t > 0. This is a consequence of the fact that the QRT works only at positive times.
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Greater and
lesser

Green’s
functions

At this point we generalize the definitions (7.97) and (7.98) by defining the
bosonic greater and lesser Green’s functions G> and G< as (t > 0){

iG>AB(t) + 〈A(t)B〉
iG<AB(t) + 〈BA(t)〉

(7.145)

With these expressions, we find that, for t > 0,

θ(t)G>AB(t) = −iθ(t) 〈A(t)B〉 ≡ GAB(t,+) (7.146)

and

θ(t)G<AB(t) = −iθ(t) 〈BA(t)〉 = −iθ(t) 〈B(−t)A〉 ≡ GBA(−t,−) (7.147)

Steady-state retarded Green’s function

The steady-state retarded Green’s function is defined by generalizing (7.107) as

GRAB(t) + −iθ(t) 〈[A(t), B(0)]〉 . (7.148)

By expanding the commutator, we immediately see that

GRAB(t) = −iθ(t) 〈A(t)B〉+ iθ(t) 〈BA(t)〉

= θ(t)
(
G>AB(t)−G<AB(t)

)
= GAB(t,+)−GBA(−t,−) (7.149)

By using the last equality, the retarded Green’s function in frequency space is
then

GRAB(ω) = GAB(ω,+)−GBA(ω,−). (7.150)
Finally, by directly inserting the expressions (7.143) and (7.144), we get:

Retarded
Green’s
function

GRAB(ω) =
∑
α

〈I |A | rα〉 〈lα |B | ρss〉
1

ω − iLα

−

(∑
α

〈
I
∣∣A† ∣∣ rα〉 〈lα ∣∣B† ∣∣ ρss

〉 1
ω + iLα

)∗
(7.151)

Steady-state Keldysh Green’s function

The steady-state Keldysh Green’s function is defined by generalizing (7.108) as

GKAB(t) + −i 〈{A(t), B(0)}〉 . (7.152)

By expanding the anticommutator, we immediately see that

GKAB(t) = −i 〈A(t)B〉 − i 〈BA(t)〉
= G>AB(t) +G<AB(t)
= θ(t)G>AB(t) + θ(−t)G<AB(t) + θ(t)G<AB(t) + θ(−t)G>AB(t). (7.153)

We go through the expression term by term, by using (7.146) and (7.147):
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• θ(t)G>AB(t) ≡ GAB(t,+)

• θ(−t)G<AB(t) = −iθ(−t) 〈BA(t)〉 = −iθ(−t) 〈B(−t)A〉 ≡ GBA(−t,+)

• θ(t)G<AB(t) ≡ GBA(−t,−)

• θ(−t)G>AB(t) = −iθ(−t) 〈A(t)B〉 = −iθ(−t) 〈AB(−t)〉 ≡ GAB(t,−)

So:

GKAB(t) = θ(t)G>AB(t) + θ(−t)G<AB(t) + θ(t)G<AB(t) + θ(−t)G>AB(t)
= GAB(t,+) +GBA(−t,+) +GBA(−t,−) +GAB(t,−) (7.154)

By taking the Fourier transform of the last equality, we find

GKAB(ω) = GAB(ω,+) +GBA(−ω,+) +GBA(ω,−) +GAB(−ω,−). (7.155)

Finally, again by using (7.143) and (7.144), we get:

GKAB(ω) =
∑
α

〈I |A | rα〉 〈lα |B | ρss〉
1

ω − iLα

Keldysh
Green’s
function

−
∑
α

〈I |B | rα〉 〈lα |A | ρss〉
1

ω + iLα

+
(∑

α

〈
I
∣∣A† ∣∣ rα〉 〈lα ∣∣B† ∣∣ ρss

〉 1
ω + iLα

)∗

−

(∑
α

〈
I
∣∣B† ∣∣ rα〉 〈lα ∣∣A† ∣∣ ρss

〉 1
ω − iLα

)∗
(7.156)

Single-particle steady-state retarded and Keldysh Green’s
functions

The expressions (7.151) and (7.156) that we’ve derived above are for general
operators A and B. We are actually interested in the single-particle Green’s
functions, where A = ai and B = a†j :

GRij(ω) + FT
{
− iθ(t)

〈[
ai(t), a†j(0)

]〉}
[ω] (7.157)

and

GKij (ω) + FT
{
− i
〈{
ai(t), a†j(0)

}〉}
[ω]. (7.158)
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By direct insertion, we get:

GRij(ω) =
∑
α

〈I | ai | rα〉
〈
lα

∣∣∣ a†j ∣∣∣ ρss

〉 1
ω − iLα

−

(∑
α

〈
I
∣∣∣ a†i ∣∣∣ rα〉 〈lα | aj | ρss〉

1
ω + iLα

)∗
(7.159)

GKij (ω) =
∑
α

〈I | ai | rα〉
〈
lα

∣∣∣ a†j ∣∣∣ ρss

〉 1
ω − iLα

−
∑
α

〈
I
∣∣∣ a†j ∣∣∣ rα〉 〈lα | ai | ρss〉

1
ω + iLα

+
(∑

α

〈
I
∣∣∣ a†i ∣∣∣ rα〉 〈lα | aj | ρss〉

1
ω + iLα

)∗

−

(∑
α

〈I | aj | rα〉
〈
lα

∣∣∣ a†i ∣∣∣ ρss

〉 1
ω − iLα

)∗
(7.160)

A key observation hereThe single-
particle
Green’s
function

connects B0
with B±1

is that the single-particle Green’s function connects
only the sector with k = 0 with the sectors k = ±1. Take for example the
expression for the retarded Green’s function in (7.159): the first piece of the sum
lives in the block with k = −1, while the second piece lives in the block with
k = +1. The reason is that both 〈I| and |ρss〉 live in the block with k = 0,
and the first piece has only terms that create a particle of the original system,
either in the steady-state or in the left vacuum. Since k is the difference between
the number of particles in the tilde system and the number of particles in the
original system, going to a state with one more particle in the original system
means decreasing k by one unit. A similar argument holds for the second piece of
the sum as well, which instead has operators that increase k by one unit. Under
these considerations, we can rewrite (7.159) as

GRij(ω) =
∑

α∈B−1

 〈I | ai | rα〉
〈
lα

∣∣∣ a†j ∣∣∣ ρss

〉
ω − iLα

− ∑
α∈B+1


(〈
I
∣∣∣ a†i ∣∣∣ rα〉 〈lα | aj | ρss〉

)∗
ω − iL∗α


(7.161)

where B±1 indicate the blocks with k = ±1. The calculation can be simplified
even more, at a computational level, if one realizes that the sums can be brought
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inside the products:

GRij(ω) =
〈
I

∣∣∣∣∣∣ ai
 ∑
α∈B−1

|rα〉 〈lα|
ω − iLα

 a†j
∣∣∣∣∣∣ ρss

〉

−

〈I
∣∣∣∣∣∣ a†i

 ∑
α∈B+1

|rα〉 〈lα|
ω + iLα

 aj
∣∣∣∣∣∣ ρss

〉∗ (7.162)

Since the left and the right eigenvectors form a bi-orthonormal basis, the term[∑
α∈B±1

|rα〉〈lα|
ω±iLα

]
is nothing more than a diagonal matrix D̄±(ω) in this bi-

orthogonal basis, with diagonal elements 1
ω±iLα . Since we are working in the

occupation number basis, we have to transform back into the diagonalizing basis;
from the discussion in Section 7.2.3, it’s easy to realize that the matrix D̄−(ω)
expressed in the occupation number basis is

XRD̄
−(ω)XH

L , (7.163)

where Lα, XR, XL belong to the block with k = ±1. All in all, the retarded
Green’s function can be expressed as the following sequence of matrix products:

GRij(ω) =
(
〈I| aiXR,−1

)
D̄−−1(ω)

(
XH
L,−1a

†
j |ρss〉

)
−
[(
〈I| a†iXR,+1

)
D̄+

+1(ω)
(
XH
L,+1aj |ρss〉

)]∗
(7.164)

where we added subscripts corresponding to the blocks’ k’s and we also grouped
the quantities that, for a given (i, j), remain constant. In the same way, one can
find an easy expression for the Keldysh component:

GKij (ω) =
(
〈I| aiXR,−1

)
D̄−−1(ω)

(
XH
L,−1a

†
j |ρss〉

)
−
(
〈I| a†jXR,+1

)
D̄+

+1(ω)
(
XH
L,+1ai |ρss〉

)
+
[(
〈I| a†iXR,+1

)
D̄+

+1(ω)
(
XH
L,+1aj |ρss〉

)]∗
−
[(
〈I| ajXR,−1

)
D̄−−1(ω)

(
XH
L,−1a

†
i |ρss〉

)]∗
(7.165)

7.5 Conclusions

In this Chapter we reviewed the technical toolbox needed in the following ones,
using the single-mode cavity as a common thread.

The driven-dissipative systems we are interested in are described via a Lind-
blad equation for the density matrix, commented in Section 7.1. In Section 7.2,
we recast this equation in a matrix form within the superparticle representation;
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not only this form is convenient in the light of numerical calculations, but it also
proved to be a valuable asset in the derivation of analytical results.

In the following, we also need to be able to calculate response functions.
In the non-equilibrium setting, these are calculated via the Keldysh field the-
ory, reviewed in Section 7.3 in the context of systems described by a Lindblad
equation. When the analytical calculation of the response functions is not an-
alytically viable, we can obtain them numerically via the exact diagonalization
of the Lindblad equation; this is discussed in Section 7.4, where we derived the
Källén-Lehmann spectral representation of the response functions.
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Driven-dissipative Bose-Hubbard
dimer

In the previous Chapter, we introduced the Lindblad description of a driven-
dissipative system, and we established a framework in which the solution of the
Lindblad equation can be recast into an eigenvalue problem. The solution of the
eigenvalue problem allows us to reconstruct the whole dynamics of the system
and, at the same time, to easily calculate its non-equilibrium response function
in the Keldysh formalism.

Throughout the whole discussion, we considered the example of a single-mode
cavity — possibly with a Kerr (Hubbard-like) nonlinearity — from multiple points
of views, and we worked out analytical results in the linear limit. As a next
relevant step, we focus here on the analysis of two such coupled nonlinear cavities,
called the driven-dissipative Bose-Hubbard dimer (BHD); not only this problem
is interesting per se, because of the presence of a self-trapping or localization-
delocalization transition in the closed case, which has seen a surge of interest
from the community in recent times, but also because it can be seen as a toy
model of strongly correlated open Markovian quantum systems, since it encodes
the basic competition between local dissipative processes, interactions, and non-
local coherent hopping processes. Indeed, it will also be an important piece of
our discussion in Chapter 9, in the context of the DMFT technique.

Besides its paradigmatic relevance, the driven-dissipative BHD has also been
realized experimentally in a variety of quantum light-matter platforms, including
superconducting circuits [9, 145], exciton-polaritons in semiconductor microcav-
ities [146–148], and photonic crystals [149, 150].
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In the closed isolated case, corresponding to a purely conservative Hamiltonian
evolution, the BHD has been extensively studied in Bose-Einstein condensates,
in particular its self-trapping, or localization-delocalization [151–157]. Here, an
initial imbalance of particles between the two sites of the dimer is either rapidly
redistributed by hopping processes leading to a homogeneous configuration or
conserved indefinitely, leading to a self-trapped state below a critical ratio be-
tween hopping and interaction. This transition corresponds to a spontaneous
breaking of the reflection symmetry between the two sites of the dimer. Open-
Markovian extensions of the BHD have been mostly focused on the coherently
driven case [145, 158–161] or, in the case of the related Jaynes-Cummings Dimer
model [108], the purely dissipative case in absence of any external pumping.

The driven-dissipative BHD considered here employs single-particle losses and
an incoherent single-particle drive. This case is somewhat peculiar, since it is
known that for a perfectly symmetric model the stationary state of the problem
is completely independent of Hamiltonian parameters and only set by the ratio
between pump and losses [105], so it cannot contain any signature of a putative
delocalization transition. In order to explore the competition between hopping
and interactions in a dissipative setting, one has therefore to go beyond the
analysis of steady-state observables and focus instead on response functions, or
to introduce an asymmetry between the two sites of the dimer.

In particular, we prepare the system in different initial states and follow the
exact quantum dynamics of the model, characterizing also the properties of the
stationary state reached at long times. Furthermore, we focus on the spectral
properties of the BHD as encoded in the Green’s functions which for open Marko-
vian quantum system, much like their closed system counterpart, contain rich
insights on the structure of the single-particle excitations around the stationary
state.

This Chapter is organized as follows. In Section 8.1 we introduce the BHD
model, and we briefly review some of its properties, while in Section 8.2 we
present details on its numerical solution. In Section 8.3 we review the known
results about the semiclassical limit and the self-trapping transition in the isolated
and dissipative cases. Our results for the quantum dynamics in the symmetric
pumping regime are discussed in Section 8.4, while those for finite pump/loss
asymmetry are presented in Section 8.5. In Section 8.6 we present our results
for the Green’s functions of the BHD, starting from closed analytical expressions
in the linear case (U = 0) followed by an analysis of our numerical results at
U 6= 0, both with and without a finite pump/loss asymmetry. In Section 8.7 we
comment on our results, and we draw the conclusions.

This Chapter is largely based on our publication “Signatures of self-trapping
in the driven-dissipative Bose–Hubbard dimer” [162].
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Figure 8.1: Sketch of a driven-dissipative BHD. The left (right) site has a
natural frequency ωL (ωR); both have a Kerr nonlinearity U and are connected
via a hopping of strength J . In most cases considered in the text, ωL = ωR = ω0.
Both sites are connected to two Markovian environments, a completely full one
(above) and a completely empty one (below). These two environments provide,
respectively, an incoherent single-particle pumping to the left (right) cavity at
a rate PL (PR), and single-particle losses to the left (right) cavity at a rate ΓL
(ΓR).

8.1 The model

We start by considering the Hamiltonian of the Bose-Hubbard dimer (BHD)
sketched in Figure 8.1. The model is a paradigmatic interacting lattice model
which can be realized in a number of platforms. Our implementation includ-
ing pumping and losses is naturally realized using optical cavities (see also Sec-
tion 8.7). For this reason, in the following, we will refer to the two lattice sites as
cavities and to the bosonic degrees of freedom involved in the physics as photons.
The Hamiltonian reads

Hamiltonian
of the BHD

Ĥ = ω0 (n̂L + n̂R) + U
(
n̂Ln̂L + n̂Rn̂R

)
+ J

(
â†LâR + â†RâL

)
, (8.1)

where n̂L = â†LâL and n̂R = â†RâR are the number operators of the left and the
right cavities, respectively. The two cavities have the same resonant frequency
ω0 and Kerr nonlinearity U , and photons can hop between the cavities at a rate
J .

We can add a simple mechanism for incoherent driving and dissipation at
the master-equation level, by using single-particle pump and loss operators. In
practice, we describe the driven-dissipative dimer by a reduced density matrix ρ̂
that evolves according to the Lindblad master equation

˙̂ρ = ˆ̂Lρ̂ = ˆ̂LH ρ̂+ ˆ̂LDρ̂ (8.2)

where
ˆ̂LHρ = −i

[
Ĥ, ρ̂

]
(8.3)
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Single-
particle

pump/loss
mechanisms
in the BHD

Diagonaliza-
tion of the

Lindbladian

is the Hermitian part of the evolution, while the dissipative piece reads as

ˆ̂LDρ̂ = 2
∑
i=L,R

{
Γi
(
âiρ̂â

†
i −

1
2

{
â†i âi, ρ̂

})
+ Pi

(
â†i ρ̂âi −

1
2

{
âiâ
†
i , ρ̂
})}

(8.4)

with the constraint that Pi < Γi ∀i, as if ∃i : Pi > Γi single-particle jump oper-
ators alone may no longer be sufficient to provide a correct physical description
of the system — see also the discussion in Section 7.1.2.

In this form, ΓL/R are interpreted as loss rates while PL/R as pumping rates.
It is convenient to parametrize them as

Γi = Γ±∆Γ/2, ∆Γ = ΓL − ΓR (8.5)
Pi = P ±∆P/2, ∆P = PL − PR (8.6)

to distinguish the case in which pump/loss rates are symmetric in the dimer,
∆Γ = ∆P = 0 or asymmetric due to an imbalance of pump and/or losses. In
fact, it is known [105] that for a Bose-Hubbard lattice with uniform parameters
and identical single-particle pump and loss rates, i.e. ∆Γ = ∆P = 0 the structure
of the stationary-state density matrix is particularly simple and reads

ρ̂ss =
∑
N

πN |N〉 〈N |

where |N〉 is a Fock state with N bosons and
Structureless

stationary
state for

pump/loss
symmetry

πN = a

(
P

Γ

)N
, (8.7)

where a is a normalization constant. We note in the above expression that ρ̂ss
is independent of any Hamiltonian parameter and only set by pump/loss ratio.
This implies in particular that the stationary-state occupancy nα = Tr (ρssn̂α) is
equal in the two cavities and given by

nL = nR = P

Γ− P (8.8)

which coincides with the value of an uncoupled Kerr resonator — see eq. (7.76).
It should be clear, however, that this result holds only for stationary-state observ-
ables, while time-dependent quantities retain a non-trivial dependence on J/U ,
as we discuss in Sections 8.4 and 8.6.2. The above result is however no longer
true in the presence of a finite asymmetry in the dissipative couplings, leading to
∆Γ, ∆P 6= 0, as we will see more in detail in Sections 8.5 and 8.6.3.

8.2 Methods

The vectorized version of equation (8.2) is solved by exact diagonalization, as
discussed in detail in Section 7.2, yielding a bi-normalized set of left and right
eigenvectors (〈lα| and |rα〉, respectively) that satisfy
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Global gauge
symmetry

〈lα| L̂ = Lα 〈lα| and L̂ |rα〉 = Lα |rα〉 (8.9)

where L̂ is the matrix representation of the superoperator ˆ̂L. The cokernel and
the kernel1 of L̂ are, respectively, the left vacuum 〈I| and the steady-state density
matrix |ρss〉.

The diagonalization problem can actually be simplified by realizing that both
the Hamiltonian and the dissipator posses a global gauge symmetry, expressed by
an operator functional ˆ̂K that commutes with ˆ̂L and that acts as ˆ̂K• = −i

[
N̂, •

]
,

with N̂ = n̂L + n̂R. By exploiting this symmetry, the matrix L̂ can then be
written in a block-diagonal form, where each block is labeled by the eigenvalues
of ˆ̂K.

The matrix L̂ and its eigenvectors are written in a basis of Fock states, with a
cutoff Ncutoff on each particle number. We’ve fixed Ncutoff = 20 throughout the
work as a good compromise between accuracy and time and memory costs; this
cutoff guarantees that the error on the displayed average steady-state occupations
is equal or below 2%, while higher but more expensive cutoffs would not visibly
change the results on the Green’s functions.

8.2.1 Time dynamics

Having solved the eigenproblem, we can then expand [117]

|ρ(t)〉 = eLt |ρ(0)〉 =
∑
α

ρα(t) |rα〉 , (8.10)

where
ρα(t) + eLαt 〈lα|ρ(0)〉 = eLαtρα(0). (8.11)

We note that the form of the Lindblad equation ensures ReLα ≤ 0 ∀α, which is
a necessary condition to avoid an unbounded growth at long times. Again, if we
can exploit the global gauge symmetry, and if the initial density matrix belongs
to the null space of ˆ̂K, then it is sufficient to diagonalize just the largest diagonal
block of the Lindbladian. The knowledge of the time-evolution of the density
matrix can then be used to calculate the time-evolution of other observables, for
example, the occupations of the two cavities (i = {L, R}):

ni(t) = Tr
(
n̂iρ(t)

)
=
∑
α

〈I | n̂i | rα〉 ρα(t). (8.12)

8.2.2 Steady-state Green’s functions

As discussed in detail in Section 7.4.2, one can obtain frequency-domain expres-
sions for the retarded and the Keldysh components of the steady-state Green’s

1The left and right eigenvectors corresponding to the special eigenvalue L0 = 0.
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function. From such expressions in eqs. (7.151) and (7.156), we see that the
Green’s functions of an open Markovian quantum system can be generically writ-
ten as a sum of simple poles at complex frequencies given by the eigenvalues of the
Lindbladian and with weights, in general complex, given by the transition matrix
elements between the stationary state and some excited state of the system [117,
163].

From the practical point of view, if one focuses on the single-particle Green’s
functions, the calculation can be further simplified via the block-diagonal struc-
ture of the Lindbladian outlined above. In fact, as argued in Section 7.4.2, since
the calculation of the single-particle Green’s functions involves states that dif-
fer at most by one particle from the stationary state, it turns out that the full
knowledge of the spectrum is not necessary; it is sufficient to diagonalize just the
3 largest blocks of the diagonal-block structure. Assuming that the diagonlization
scales as the cube of the matrix linear dimension, this yielded a theoretical 104

speedup of the diagonalization with the 20-bosons cutoff we have used in both
cavities, as well as a 99.7% reduction of the memory required to store the results
— see also Appendix B.

8.3 Review of semiclassical dynamics and self-trap-
ping transition

In order to have a reference point for the analysis of our results, we can start by
recalling the predictions of a semiclassical treatment of the quantum dynamics for
the BHD [151, 164]. This is obtained by writing the exact equations of motion for
the cavity field operators âL/R and by closing them by taking

〈
âL/R

〉
→ aL/R,

where aL/R are c-numbers. It is important to remark that this approach, which
assumes a coherent state of bosons, works for large photon numbers, while in the
quantum treatment we are typically interested in systems populated by only a
few photons. The resulting equations of motion read

ȧL = −i
[
(ωL − U) + 2Ua†LaL

]
aL − iJaR − Γeff

L aL

ȧR = −i
[
(ωR − U) + 2Ua†RaR

]
aR − iJaL − Γeff

R aR

where Γeff
L/R = ΓL/R − PL/R are the effective loss rates, which for single-particle

losses must always be positive.
By applying the transformation

aL/R + αL/Re
iϑL/R , αi, ϑi ∈ R (8.13)

one can then reduce the equations for the two complex numbers above into the
following three equations for real quantities corresponding to the total number
of photons N = nL + nR, to the occupation imbalance between the two cavities
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Z = nL − nR, and to the phase difference φ = ϑL − ϑR:
Semiclassical
equations of
motion

Ṅ = −
(
Γeff
L + Γeff

R

)
N −

(
Γeff
L − Γeff

R

)
Z

Ż =−
(
Γeff
L + Γeff

R

)
Z −

(
Γeff
L − Γeff

R

)
N

− 2J
√
N2 − Z2 sin(φ)

φ̇ = −∆ω − 2UZ + 2J Z√
N2 − Z2

cosφ

(8.14)

where nL/R = |αL/R|2 and ∆ω = ωL − ωR.

8.3.1 Closed system
The closed-system case, corresponding to Γeff

L/R = 0, has been studied extensively;
experimental realizations [154, 165–167] and theoretical investigations [151, 157,
168–170] were reported in the context of double-well Bose-Einstein condensates,
as well as an experimental implementation based on two internal atomic states
of 87Rb [171]. In this regime, the equations reduce to — we take ∆ω = 0 for
simplicity: 

Ṅ = 0 =⇒ N = N0 = const.
Ż = −2J

√
N2

0 − Z2 sin(φ)

φ̇ = −2UZ + 2J Z√
N2

0 − Z2
cosφ

(8.15)

By using the fact that in a closed system the energy is conserved, the two re-
maining equations can be further reduced to a single equation for the macroscopic
occupation imbalance:

Ż = −2
√
p(Z) (8.16)

where p(Z) is a polynomial that can be factorized as

p(Z) = −U
2

4
(
Z2 − Z2

0
) (
Z2 − Z2

1
)
, (8.17)

with Z0 the initial imbalance and Z1 equal to

Z1 =

√
Z2

0 + 4
(
J

U

)√
N2

0 − Z2
0 − 4

(
J

U

)2
. (8.18)

The sign of the polynomial p(Z) which appears under square root in the
equation of motion (8.16) determines two different regimes. In turn, the sign of
p(Z) is completely determined by Z1 being real or imaginary (since Z0 is real).
If Z1 is real, then the polynomial is positive only in the region between Z0 and
Z1 and in the region between −Z0 and −Z1, no matter whether Z1 is greater or
less than Z0. If instead Z1 is imaginary, then the polynomial is positive only in
the region between −Z0 and Z0.
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Chapter 8. Driven-dissipative Bose-Hubbard dimer

Figure 8.2: Evolution of the occupation imbalance for N0 = 3, Z0 = 1, U = 0.1
and ∆ω = 0. Different colors correspond to different values of J/U around the
critical value, predicted via eq. (8.20). The lines in the top panel are for a closed
system, while the ones of the same color in the bottom panel are for an open
system with Γeff

L = Γeff
R = 4×10−4; they are obtained respectively by numerically

solving the full system of equations discussed in Section 8.3 — see in particular
eqs. (8.14) and (8.15).

The nature of Z1 is in turn determined by the sign of the polynomial(
J

U

)2
−
√
N2

0 − Z2
0

(
J

U

)
− Z2

0
4 . (8.19)

If we assume that J/U is positive, then the polynomial above provides a critical
J
U

Semiclassical
critical J/U

(
J

U

)
c

= N0

(√
1− (Z0/N0)2 + 1

2

)
(8.20)

which depends on the initial total number of photons N0 and imbalance Z0.
For J

U <
(
J
U

)
c Z1 is real and therefore Z(t) oscillates between Z0 and Z1; for

J
U >

(
J
U

)
c Z1 is imaginary and therefore Z(t) oscillates between −Z0 and Z0 (see

Figure 8.2). Then
(
J
U

)
c, in this sense, can be interpreted as a critical value for a

transition from a localized regime (low J) to a delocalized regime (high J).
This transition can also be seen as a sharp decay to zero of the time-averaged

imbalance 〈Z〉T = 1
T

∫ t0+T
t0

dtZ(t) (Figure 8.4, bottom panel), or through the
divergence of the oscillation period at the critical point (Figure 8.3), which can
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8.3. Review of semiclassical dynamics and self-trapping transition

Figure 8.3: Oscillation period T obtained from (8.21) as a function of J/U ; the
settings are the same as in Figure 8.2.

be analytically expressed as

T =


4K
((

Z0
Z1

)2
)

U
√
−Z2

1

(
J
U

)
>
(
J
U

)
c∣∣∣∣∣∣

2
[
K

((
Z0
Z1

)2
)
−F
(

sin−1
(
Z1
Z0

)
,
(
Z0
Z1

)2
)]

U
√
−Z2

1

∣∣∣∣∣∣ (
J
U

)
<
(
J
U

)
c

(8.21)

where F (ϕ,m) =
∫ ϕ

0 du 1√
1−m2 sin2 u

and K(m) = F (π2 ,m) are respectively the
incomplete and the complete elliptic integral of the first kind.

The divergence is logarithmic, as one can infer by approximating the integral
around the critical point (Z1 → 0+). The fact that the period diverges, making
the oscillations slower and slower, is a common signature of a phase transition
called the critical slowing down.

8.3.2 Open system
The open system case is not analytically solvable, but the numerical solution
of the equations for the total number of photons and for the cavity occupation
imbalance shows that the closed-system picture is preserved for low enough val-
ues of the loss coefficients, with the difference that also in the regime where the
oscillations at short times are centered around a non-zero value, the time evolu-
tion leads to a transition towards oscillations centered around zero (Figure 8.2,
bottom panel). This behavior has been observed experimentally by using exciton-
polaritons in two coupled semiconductor microcavities [148].

We can estimate the time at which this dynamical transition happens to be
the time tcross for which the imbalance Z(t) crosses the value Z = 0 for the first
time. If we plot this time as a function of J/U , see top panel of Figure 8.4, we
expect that for the closed system this time is divergent for values of J/U below
the critical value; for the open system, however, this time assumes finite values
even below the critical point and the critical point itself is at a slightly lower value
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Figure 8.4: (Top) Time tcross at which Z(t) crosses the value Z = 0, as a
function of J/U . (Bottom) Semiclassical time-averaged imbalance. While the
closed system has an analytical expression, the open case requires solving the full
dynamics (8.14) and choosing an upper time limit in the integration; in this plot,
we integrate up to t = 200. In both panels, the critical value of J/U predicted via
(8.20) (for the closed system) and as a numerical estimate (for the open system)
is shown as a vertical dotted line.

than its closed-system counterpart ((J/U)c = 2.88 vs. (J/U)c = 2.91). The peak
structure visible below (J/U)c for the open system is due to the commensurability
between the period of the imbalance oscillations, which is a function of J/U itself,
and tcross.

Albeit holding in the limit of large photon number only, these semiclassical
results provide a useful hint for the quantities to look at in the quantum case,
as well as a point of comparison that highlights the intrinsic differences between
the two types of analyses.

8.4 Dissipative quantum dynamics

In this Section we start the analysis of the full numerical solution of the dissipative
dynamics of the BHD introduced in Section 8.1. We focus in particular on the
occupation imbalance Z(t) = nL(t) − nR(t) between the two cavities, which in
the semiclassical limit shows a clear change of behavior as a function of the
parameters.

In the following we set ω0 = 1, U = 0.1 and consider a situation of symmetric
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8.4. Dissipative quantum dynamics

Figure 8.5: (Inset) Imbalance Z(t) = nL(t)− nR(t) for different values of J/U
[U = 0.1], starting from a state |3, 1〉 at t = 0 (Z0 = 2). The cavities have a
base frequency ω0 = 1.0. The effective loss is Γeff

L = Γeff
R = 1 × 10−4 and the

pumping rate realizes a steady-state occupation equal to 2 in both cavities, so
that Zss = 0 by construction. The semiclassical, non-dissipative critical value
of J/U for this particular configuration is (J/U)c ≈ 3.73. The time-averaged
occupation imbalance computed over the time interval [0, 1000] is shown in the
main panel.

pump and loss rates, ∆P = ∆Γ = 0, so that by construction the imbalance is
zero at long times. We set the effective losses Γeff

L/R = ΓL/R − PL/R = 1 × 10−4

and the pump PL/R = 2 × 10−4, such that the identical occupation in the two
cavities is nL = nR = 2 (see eq. (8.8)), independently on J/U .

We start discussing the imbalance dynamics as a function from J/U , and we
consider as an example an initial configuration with three bosons on the first
site and one on the second site, described by the ket |3, 1〉, corresponding to an
initial imbalance Z0 = 2 and to an initial number of photons N0 = 4. At the
semiclassical level, see eq. (8.20), this would correspond to a critical coupling
(J/U)c = 3.73 for the self-trapping transition.

In the inset of Figure 8.5, we plot the time-dependent imbalance Z(t) for
different values of J/U . We find a clear crossover as the hopping is increased, from
a pure exponential decay to zero at small J/U = 0.1, to an underdamped decay
with fast oscillations superimposed at J/U = 0.26 which evolves further into
strongly anharmonic oscillations at large values of the hopping, whose frequency
grows with J/U . We can interpret this behavior as a signature of the self-trapping
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Crossover of
the time-
averaged

imbalance

transition in the dissipative quantum dynamics. In the small hopping regime each
site of the dimer evolves almost independently and the imbalance goes to zero,
while for larger values of the hopping there is a substantial transfer of photons
across the dimer, resulting in coherent Rabi-like oscillations, before the imbalance
reaches the stationary state.

The J/U dependence can also be studied from the point of view of the time-
averaged occupation imbalance 〈Z〉T . In contrast to the semiclassical case (Fig-
ure 8.4), where one expects a sharp transition2 between 〈Z〉T 6= 0 and 〈Z〉T = 0,
in the quantum case we have a smooth crossover between the two regimes. The
average imbalance drops quickly with J/U due to the development of damped
Rabi oscillations, reaching a minimum around J/U ' 0.25. Quite interestingly,
though, we find the appearance of a region in which the imbalance actually
increases as a function of J/U before completely dropping to 0 at higher val-
ues of J/U . We note that, with respect to the semiclassical case, the localized
(self-trapped) phase with 〈Z〉T 6= 0 is strongly suppressed and that already for
J/U ' 1.25 the average imbalance is zero. This is consistent with the expecta-
tion that quantum fluctuations, included in the exact solution and not properly
treated in the semiclassical approach, tend to reduce the broken symmetry phase.

We now discuss the dynamics on longer time scales, where we expect the
small dissipative couplings to dominate over the Hamiltonian parameters. To
this extent in Figure 8.6 we plot the time-dependent imbalance over a broad
range of time scales and for different values of J/U . We see a clear separation
of dynamical regimes, from a short-time one — strongly dependent on J/U , as
we discussed above — to a longer-time one where the imbalance exponentially
decays to zero. While naively one could have expected the decay rate to be set
only by the dissipative couplings we see in the inset of Figure 8.6 that instead it
shows a monotonic increase with J/U .

Finally, we consider the dependence of the time-dependent imbalance Z(t)
from the initial condition. To this extent, we fix as an initial density matrix a
pure Fock state ρ0 = |n0L, n0R〉 〈n0L, n0R|, corresponding to an initial imbalance
Z0 = n0L − n0R and initial photon number N0 = n0L + n0R, and change the
values of n0L, n0R. At the semiclassical level, as we see in eq. (8.20), there is a
critical value of J/U for any N0, Z0. In order to highlight the difference between
the exact quantum dynamics and the semiclassical evolution, we fix the value of
the hopping to interaction ratio J/U to be always below (J/U)c(N0, Z0), such
that at the semiclassical level the system should be localized (self-trapped) at
short times for all the chosen initial conditions (see eq. (8.20)) and delocalized at
longer times (see Figure 8.2).

We plot in Figure 8.7 the quantum dynamics of the imbalance for different
initial conditions. We see that, quite at the opposite of what we expected from the
semiclassical analysis, for a fixed (J/U)

/
(J/U)c the evolution of Z(t) has a strong

dependence on the initial state in which the system is prepared. In particular,
2In the open case, the extent of the jump discontinuity in ∂J/U 〈Z〉T depends on the upper

limit of the integration time.
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8.5. Quantum steady-state for finite pump/loss asymmetry

Figure 8.6: Evolution of the imbalance Z(t) for the same settings of Figure 8.5,
shown at longer times and at log scale. The black, dotted line is obtained ana-
lytically at J/U = 0; it corresponds to an exponential decay at a rate 2Γeff —
see eq. (7.76). At long times, ln (Z(t)/Z0) fits a straight line; the inset shows the
corresponding decay rate as a function of J/U .

we find both regimes of slow decay to zero of the imbalance (see for example
the initial conditions corresponding to |3, 1〉 or |4, 1〉), indicating localized/self-
trapped behavior, as well as regimes of coherent Rabi-like oscillations of the
imbalance (see for example the initial conditions corresponding to |3, 2〉 or |4, 3〉)
that we can interpret as signatures of delocalization. This is consistent with the
observation made earlier (see Figure 8.5) that quantum fluctuations renormalize
the critical coupling and favor the delocalized regime. We conclude therefore
that, as in the semiclassical case, the self-trapping crossover can be accessed by
changing the initial condition; however, we could not identify a simple analytical
trend in the dependence of (J/U)c on the initial values of N0 and Z0.

8.5 Quantum steady-state for finite pump/loss asym-
metry

In the previous Section, we have considered the case of a BHD with symmetric
pump and loss rates, resulting in a trivial stationary state with zero imbalance
for any value of J/U , which is however reached after a rich and non-trivial non-
equilibrium dynamics.

As we discussed in Section 8.1, in presence of a finite pump/loss asymmetry
among the two cavities also the stationary state becomes more interesting. We
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Figure 8.7: Imbalance Z(t) = nL(t)−nR(t) for (J/U) = 0.04(J/U)c [U = 0.1],
starting from different |n0L, n0R〉 number states at t = 0. The cavities have a
base frequency ω0 = 1.0. The effective loss is Γeff

L = Γeff
R = 1 × 10−4 and the

pumping rate realizes a steady-state occupation equal to 2 in both cavities, so
that Zss = 0 by construction. The quantity (J/U)c refers to the semiclassical
non-dissipative value in (8.20).

can therefore look for signatures of a delocalization crossover, analogous to what
we have shown in Figure 8.5, directly in observables such as the steady-state
occupation or imbalance.

As an example, we consider two cavities with loss coefficients (ΓL, ΓR) =
(6×10−2, 2×10−2) and pump coefficients (PL, PR) = (4×10−2, 1×10−2), that
according to eq. (8.8) realize steady-state occupations (n0L, n0R) = (2, 1) in the
uncoupled limit J = 0. In Figure 8.8 we plot, respectively in the top and in the
bottom panel, the dependence of the two cavities occupations and imbalance from
the hopping to interaction ratio J/U , for different values of U and in units of ω0 =
1. We see in the top panel that as J/U is increased, the two occupations both
converge towards a common value, which is essentially independent of U . The
large-J/U limit of the occupations can be obtained analytically by considering the
limit U = 0 and results in a weighted average of the two uncoupled occupations
(see eq. (8.56)).

As a consequence of the two occupations becoming equal at large J/U , we
see in the bottom panel that the steady-state imbalance between the two cavities
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Figure 8.8: (Top) Steady-state cavity occupations as a function of J/U for a
dimer with loss coefficients (ΓL, ΓR) = (6×10−2, 2×10−2) and pump coefficients
(PL, PR) = (4 × 10−2, 1 × 10−2) described in the main text, at different values
of U . The cavities have a base frequency ω0 = 1.0. The top curves are the
occupations of the left cavity, while the bottom ones are the occupations of the
right cavity. (Bottom) Steady-state imbalance Z = nL − nR corresponding to
the occupations in the top panel.

reduces and approaches zero for large enough J/U , a signature of delocalization.
We also note that increasing U pushes the crossover J/U scale for delocalization
to lower values.

8.6 Green’s functions

A way to get some insights on the system even when the steady-state observables
depend neither on J nor on U , as in the case of symmetric pump and losses, is
to look instead at the single-particle Green’s functions. Either by seeing them as
the resolvent of the Lindbladian or as response functions that link different states
and thus participate in the calculation of transport quantities like the optical
transmission, the Green’s functions are sensitive to the details of the Lindbladian
spectrum, and not only to the zero mode (stationary state), as it appears clearly
from the Källén-Lehmann representation derived in Section 7.4.

In this Section we present our results for the Green’s function of the BHD,
that we obtained from the exact diagonalization of the Lindbladian as discussed in
Section 8.2. Specifically, we consider the single-particle Green’s functions GRij(ω)
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and GKij (ω) with i, j = L/R, already defined in eqs. (7.157) and (7.158), and in
particular the spectral function Aij(ω) and the cavity correlation function Cij(ω),
defined as

Aij(ω) + − 1
π

ImGRij(ω), Cij(ω) + − 1
2πiG

K
ij (ω) (8.22)

with i, j = L/R. The diagonal components (for i = j) contain information on
the local (on-site) spectrum and occupations of the bosonic mode and satisfy the
sum rules

Diagonal
sum rules

∫ +∞

−∞
dωAi(ω) = 1 (8.23)∫ +∞

−∞
dω Ci(ω) = 2ni + 1 (8.24)

where ni is the stationary state occupation. The off-diagonal components contain
instead information on the delocalized modes across the dimer. In particular, the
correlation function CLR(ω) has real and imaginary parts which satisfy the sum-
rules

Off-diagonal
sum rules

J

∫ +∞

−∞
dω Re CLR(ω) = 〈T̂ 〉 (8.25)

J

∫ +∞

−∞
dω Im CLR(ω) = 〈Î〉 (8.26)

where 〈T̂ 〉 = J 〈â†LâR + â†RâL〉 is the average kinetic energy in the stationary
state while 〈Î〉 = −iJ 〈â†RâL − â

†
LâR〉 is the average current flowing from L to R.

The diagonal sum-rules in (8.24) are the straightforward generalization of
the ones we derived for a single cavity in eqs. (7.121) and (7.122). In order to
derive eqs. (8.25) and (8.26) note that, by our definitions in eqs. (7.157), (7.158)
and (8.22), ∫ +∞

−∞
dω e−iωtCLR(ω) = 〈âL(t)â†R + â†RâL(t)〉 (8.27)

and that by taking the Hermitian conjugate we have∫ +∞

−∞
dω eiωtC∗LR(ω) = 〈âRâ†L(t) + â†L(t)âR〉 . (8.28)

Taking the t → 0+ limit and the sum/difference of the above two equations we
obtain ∫ +∞

−∞
dω (CLR(ω) + C∗LR(ω)) = 2 〈â†LâR + â†RâL〉 (8.29)

as well as ∫ +∞

−∞
dω (CLR(ω)− C∗LR(ω)) = 2 〈â†RâL − â

†
LâR〉 , (8.30)
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from which eqs. (8.25) and (8.26) follow.
We now discuss some analytical results for these Green’s functions in the

linear case (U = 0), followed by our numerical analysis at U 6= 0 of the pump/loss
symmetric case and of the role of a finite pump/loss asymmetry.

8.6.1 Analytical Green’s functions at U = 0
We label the left and right cavities with a subscript L/R. The uncoupled Green’s
functions, denoted with a lowercase g, are the ones in (7.119) that we derived
before for the single cavity, i.e.

g
R/A
i (ω) = 1

∆i ± iΓ−i
, gKi (ω) = −2iΓ+i

∆2
i + Γ2

−i
(8.31)

where

∆i + ω − ωi, i = L,R (8.32)
Γ±i + Γi ± Pi, i = L,R (8.33)

In order to find analytical expressions for the L/R Green’s functions of the
coupled cavities, we have to go back to the Keldysh action and write it as a
quadratic form — see the treatment for one cavity in Section 7.3.2. In particular,
the action will have a contribution sL + sR for the uncoupled L/R cavities,
already written as a quadratic form, plus an interaction contribution that has
the following form in terms of the +/− fields on the Keldysh contour:

S = sL + sR + Sint = sL + sR −
∫
ω

J
[(
a∗L+aR+ − a∗L−a∗R−

)
+ h.c.

]
. (8.34)

After performing the Keldysh rotation, the total action takes the following form:

S =
∫
ω

{
ψ̄Lg

−1
L ψL + ψ̄Rg

−1
R ψR −

[(
Jψ̄Lσx

)
ψR + h.c.

]}
(8.35)

where ψi = (ai,c, ai,q)ᵀ and σx =
(

0 1
1 0

)
is the first Pauli matrix.

The goal is now to write the total action SL for the left cavity as a quadratic
form:

SL =
∫
ω

ψ̄LG
−1
L ψL. (8.36)

This is done by integrating out the degrees of freedom of the right cavity, i.e. by
writing

Z =
∫
D[ψ̄L, ψL]D[ψ̄R, ψR]eiS[ψ̄L,ψL,ψ̄R,ψR] =

∫
D[ψ̄L, ψL]eiSL[ψ̄L,ψL] (8.37)
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where SL[ψ̄L, ψL] such that

eiSL[ψ̄L,ψL] =
∫
D[ψ̄R, ψR]eiS[ψ̄L,ψL,ψ̄R,ψR] (8.38)

is the quadratic action for the left cavity we are looking for.
From (8.35) we can write:∫

D[ψ̄R, ψR]eiS[ψ̄L,ψL,ψ̄R,ψR]

= e
i
∫
ω
ψ̄Lg

−1
L
ψL

∫
D[ψ̄R, ψR]ei

∫
ω
{ψ̄Rg−1

R
ψR−[η̄LψR+h.c.]}, (8.39)

where η̄L =
(
Jψ̄Lσx

)
and we can then use the Gaussian integral (see [138])∫
D[z̄, z]e−z̄Az+[w̄z+h.c.] = ew̄A

−1w

detA (8.40)

to get ∫
D[ψ̄R, ψR]eiS[ψ̄L,ψL,ψ̄R,ψR] = e

i
∫
ω
[ψ̄Lg−1

L
ψL−η̄LgRηL], (8.41)

where the extra numerical factors have been reabsorbed into the definition of the
path integral differential. From this form, we can immediately read out SL:

Left cavity
effective
quadratic

action

SL =
∫
ω

[
ψ̄Lg

−1
L ψL − η̄LgRηL

]
=
∫
ω

[
ψ̄Lg

−1
L ψL −

(
Jψ̄Lσx

)
gR (JσxψL)

]
=
∫
ω

ψ̄L

[
g−1
L − J

2σxgRσx

]
ψL

+
∫
ω

ψ̄LG
−1
L ψL. (8.42)

By using the fact that rotating through σx is equivalent to perform two successive
reflections along the two main diagonals, i.e.

σx

(
a b
c d

)
σx =

(
d c
b a

)
, (8.43)

we obtain the matrix equality(
0 (GAL)−1

(GRL)−1 −(GRL)−1GKL (GAL)−1

)
=
(

0 (gAL )−1

(gRL )−1 −(gRL )−1gKL (gAL )−1

)
− J2

(
0 gAR
gRR gKR

)
(8.44)
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i.e. 
(GRL)−1 = (gRL )−1 − J2gRR
(GAL)−1 = (gAL )−1 − J2gAR
(GRL)−1GKL (GAL)−1 = (gRL )−1gKL (gAL )−1 + J2gKR

(8.45)

which clearly shows that the other cavity’s (real part of the) Green’s function acts
as a self-energy term for the cavity itself that shifts the spectral peaks, mediated
by the hopping strength, while the imaginary part modifies the spectral linewidth.

Solving the system above eventually leads to the Green’s function components
for the left cavity:

GRL(ω) = 1
∆L + iΓ−L − J2

∆R+iΓ−R

(8.46)

Left cavity
Green’s
functions

GAL(ω) = (GRL(ω))∗ (8.47)

GKL (ω) = −2i
[

Γ+L + J2 Γ+R
Γ2

+R + Γ2
−R

] ∣∣GRL(ω)
∣∣2 (8.48)

and the corresponding Green’s functions for the right cavity are obtained by
simply replacing L→ R.

The retarded Green’s function of the left cavity can be also rewritten as

GRL(ω) = ∆R + iΓ−R
∆+∆− + i (∆LΓ−R + ∆RΓ−L) (8.49)

where ∆± = ω − ω± and

ω± = ωL + ωR
2 ±

√(
ωL − ωR

2

)2
+ J2 + Γ−LΓ−R. (8.50)

Since the spectral function is proportional to the imaginary part of the retarded
Green’s function, this means that the frequency spectrum will be peaked around
ω+ and ω−, and J will just have the effect of increasing or decreasing the sepa-
ration between these two peaks.

With these shortcuts, it’s possible to further write the spectral function and
the cavity correlation function for the left cavity, defined in (8.22), as:

AL(ω) = 1
π

Γ−L
(
∆2
R + Γ2

−R
)

+ J2Γ−R
[∆+∆−]2 + [(∆LΓ−R + ∆RΓ−L)]2

(8.51)

and

CL(ω) = 1
π

Γ+L
(
∆2
R + Γ2

−R
)

+ J2Γ+R

[∆+∆−]2 + [(∆LΓ−R + ∆RΓ−L)]2
. (8.52)
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Figure 8.9: (Top) Steady-state cavity occupations as a function of J for the
dimer with loss coefficients (ΓL, ΓR) = (6×10−2, 2×10−2) and pump coefficients
(PL, PR) = (4× 10−2, 1× 10−2) described in Section 8.5, at U = 0. The dashed
lines are the theoretical results calculated by combining the exact formula for the
Keldysh Green’s function (8.48) and (8.24). (Bottom) Steady-state imbalance
Z = nL − nR corresponding to the occupations in the top panel.

In particular, since the spectral function integrates to one, it’s useful to factor it
out in the expression for the cavity correlation function:

CL(ω) = AL(ω)
[

Γ+L
(
∆2
R + Γ2

−R
)

+ J2Γ+R

Γ−L
(
∆2
R + Γ2

−R
)

+ J2Γ−R

]
. (8.53)

At this point, the occupations of the two cavities can be calculated via (8.24);
analytical expressions can be easily obtained in some limiting cases.

For example, if Γ±R = Γ±L, you immediately obtain from (8.53) that∫ +∞

−∞
dω CL(ω) = Γ+L

Γ−L
(8.54)

and therefore
nL ≡ n0L = PL

ΓL − PL
(8.55)

(and similarly for the right cavity), i.e. the occupation of the cavities at the
steady-state is equal to the occupation of the uncoupled cavities (J = 0) and it’s
completely fixed by the pump/loss rates, no matter what the value of J is. This
is actually a special case of a result obtained in [105], showing that any number of
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cavities with the same incoherent pump/loss rates have a trivial steady-state that
does not depend on the details of their Hamiltonian, i.e. in this case neither on
J nor on U . This means, in practice, that in order to have non-trivial physics at
the steady-state we must have, if not a loss imbalance between the two cavities,
at least a pump imbalance.

A more interesting case is the one at “large” J , where “large” means much
bigger than at least all the loss coefficients. This time, we do not impose any
prior condition on the pump/loss rates. If ωL = ωR for simplicity, then the
steady-state occupations become3

nL ≡ nR = Γ−Ln0L + Γ−Rn0R
Γ−L + Γ−R

, (8.56)

i.e., for large enough coupling the occupation of the left and of the right cavities
are equal and equal to a weighted average of their bare occupations.4

In particular, if the effective losses are equal (Γ−L = Γ−R), then

nL ≡ nR = n0L + n0R
2 , (8.57)

3Note that the quantity Γ−L/R used in the quantum treatment has the same value of the
semiclassical Γeff

L/R
.

In addition, below the lasing threshold, we can always parameterize ΓL/R and PL/R as

ΓL/R = Γ−L/R
(
n0L/R + 1

)
and

PL/R = Γ−L/Rn0L/R .

4In order to prove eq. (8.56) use that in general, by doing a partial fraction decomposition,
we have:

ax2 + b

cx4 + dx2 + e
=

1
E

[
−A+B
√
C −D

dy−

dx

1
1 + y2

−
+

A+B
√
C +D

dy+

dx

1
1 + y2

+

]
where y± =

√
2c√

C±Dx, A = ad − 2bc, B = aD = a
√
d2 − 4ce, C = d, D =

√
d2 − 4ce, E =

√
2cD =

√
2c
√
d2 − 4ce. So, the indefinite integral gives∫

dx
ax2 + b

cx4 + dx2 + e
=

1
E

[
−A+B
√
C −D

arctan
( √

2c
√
C −D

x

)
+

A+B
√
C +D

arctan
( √

2c
√
C +D

x

)]
.

In our case, we first write CL(ω) as 1
π

ax2+b
cx4+dx2+e for some coefficients a, b, c, d, e. Then we

replace them in the expressions for A, B, C, D, E while keeping only the leading order in J ,
obtaining

±A+B

E
√
C ±D

= ±
(Γ+L + Γ+R)
2(Γ−L + Γ−R)

and
√

2c
√
C ±D

=
−i
J
.

Finally, we calculate the definite integral by taking the limits ω → ±∞ and using
limx→∞ arctan(±ix) = ±π2 , obtaining that∫ +∞

−∞
dω CL(ω) =

Γ+L + Γ+R
Γ−L + Γ−R

.
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Bonding/anti-
bonding

peaks

i.e. the steady-state occupation of the two cavities is exactly the mean between
the bare occupations.

The J = 0 and large J limits match our intuitive expectations, i.e. that the
occupations of the cavities, as a function of J , start from their uncoupled values
and get closer and closer to each other as J is increased, up to the point at which
they match each other’s value (Figure 8.9).

Another interesting limiting case is obtained if one of the cavities, say e.g. the
right one, has Γ±R = 0. Then, for any J , we get — again from (8.24)

nL ≡ nR ≡ n0L. (8.58)

In this case, the uncoupled occupation of the right cavity, n0R, is formally ill-
defined; however, it can be easily regularized by taking PR = 0 and ΓR = ε, with
ε > 0 arbitrarily small, for which n0R = 0.

From a physical point of view, in this case the steady-state occupations in
the system are fixed by the only available Markovian environments, i.e. the ones
attached to the left cavity, so the occupations become equal as soon as the two
cavities are connected (J > 0). For this reason, we expect this result to be valid
at U 6= 0 as well.

Having analytically discussed the U = 0 Green’s functions, we now consider a
non-zero Kerr nonlinearity (U 6= 0) in both cavities, and we present our numerical
results.

8.6.2 Symmetric pump and losses at U 6= 0
We start considering the case of symmetric pump and loss rates, ∆Γ = ∆P = 0.
As a result, the system is completely symmetric upon reflection (L ↔ R), and
as such the diagonal spectral functions in eq. (8.22) do not depend on the index
i = L/R. As an example, in Figure 8.10 we plot the spectral function of the left
cavity for different values of J/U .

At low J/U the spectral function resembles much the one of a single driven-
dissipative Kerr resonator, with a characteristic sequence of peaks located at
frequencies given by the energy difference between states with n+1 and n photons,
∆n = En+1 − En = ω0 + U + 2Un, where En = ω0n + Un2 is the energy of the
Kerr resonator with n photons (see the Hamiltonian in eq. (8.1)). These peaks,
which start at ω0 +U and are equally spaced by 2U , would be infinitely sharp in
the closed system while are broadened by the dissipative processes by an amount
roughly given by Γeff

L (it would perfectly match this value in the non-interacting,
decoupled case J = U = 0, see Section 8.6.1).

As J/U is increased, we see that the first effect is the creation of sub-peaks
within each resonance, particularly in the low-frequency ones, with the center
of mass of each band remaining roughly located at the isolated Kerr excitation
energies. Upon increasing further J/U we see how different bands start to merge
in a continuum and for J/U = 0.64 a new feature arises, namely a finite spectral
weight appears below the resonator frequency ω0 = 1, which becomes a sharp

124



8.6. Green’s functions

Figure 8.10: Spectral function AL(ω) for different values of J/U [U = 0.1]. The
cavities have a base frequency ω0 = 1.0 (vertical dotted line), while the effective
loss is Γeff

L = Γeff
R = 1 × 10−4 and the pumping rate realizes a steady-state

occupation equal to 2 in both cavities. The circled peaks mark the bonding/anti-
bonding states resulting from the splitting of the first excited state at ω0 +U for
decoupled cavities.

peak for large values of J/U (e.g. J/U = 1.50). This peak corresponds to a delo-
calized photonic excitation as one can realize by looking at the spectral function
in the opposite limit of U = 0 (see Section 8.6.1), which has two poles at frequen-
cies roughly ω± ' ω0 ± J since in this regime the dissipative couplings are very
small.

It is interesting to connect these spectral features to the behavior of the time-
dependent and of the time-averaged imbalance shown in Figure 8.5 for similar
values of J/U . For small values of the hopping, the imbalance is different from
zero at short and intermediate times, i.e. photons remain localized in one of
the two cavities and the spectral function resembles the one of an isolated Kerr
resonator. Upon increasing J/U , photons start to hop coherently within the
dimer: the imbalance shows short-time Rabi oscillations with a period controlled
by J/U and its time-average vanishes, while spectrally this translates into the
emergence of two peaks above and below the bare resonator frequency.

In Figure 8.11 we plot the real part of the off-diagonal correlation function,
for different values of J/U and ∆Γ = ∆P = 0. We note that quite interestingly
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Figure 8.11: Real part of the off-diagonal cavity correlation function CLR(ω)
for the same parameters considered in Figure 8.10. This function is negative
(positive) for the bonding (anti-bonding) states marked by circles and discussed
in Figure 8.10.

the imaginary part of this Green’s function vanishes in this regime, a point we
discuss also in the next Section. At small values of the hopping the real-part
CLR(ω) is essentially zero, the cavities are almost decoupled, except at frequencies
corresponding to the eigenmodes of the (interacting) single cavity (see Figure 8.10
at the same value of J/U), where an anti-resonance like contribution emerges.
Upon increasing J/U , as we discussed for the spectral function, further peaks
appear which start merging and shifting towards lower frequencies. We note
that the structure of the peaks evolves as well: at small J/U they are almost
perfectly asymmetric in frequency (leading to a vanishing integral, see eq. (8.25))
while upon increasing J/U , when the system becomes more delocalized, this
asymmetry disappears. Furthermore, also the strength of the peaks increases
with J/U (note the different scales in the panels) in a way that appears opposite
to the peaks in the spectral function in Figure 8.10. This is again consistent with
the idea that upon entering the delocalized regime, the weight is transferred from
the localized (on-site) modes to the delocalized (off-diagonal ones).
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Figure 8.12: Spectral functions AL(ω) (top) and AR(ω) (bottom) for different
values of J/U [U = 0.1]. The cavities have a base frequency ω0 = 1.0 (vertical
dotted line), while the effective losses are Γeff

L = 2.5 × 10−4 and Γeff
R = 1 × 10−4

and the pumping rates realize uncoupled steady-state occupations equal to ∼ 3.3
in the left cavity and 2 in the right cavity.
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Figure 8.13: Cavity off-diagonal correlation function CLR(ω) for different values
of J/U [U = 0.1]. The cavities have a base frequency ω0 = 1.0 (vertical dotted
line), while the effective losses are Γeff

L = 2.5× 10−4 and Γeff
R = 1× 10−4 and the

pumping rates realize uncoupled steady-state occupations equal to ∼ 3.3 in the
left cavity and 2 in the right cavity.
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Figure 8.14: Current flowing in the dimer, as obtained from (8.26) and (8.63).
The shown values of J/U are the same ones used for the panels of Figures 8.12
and 8.13.

8.6.3 Asymmetric pump and losses at U 6= 0
We now move to discuss the case of asymmetric pump and losses, ∆P, ∆Γ 6=
0, resulting as we know in a non-trivial stationary state density matrix (and
finite imbalance, see Section 8.5). A natural question is whether this different
nonequilibrium protocol results in a qualitatively different behavior of the Green’s
functions.

We start from the spectral functions, that we plot in Figure 8.12 for a fixed
pump/loss asymmetry and different values of J/U . To highlight the comparison
between the two cavities, we plot the left and right spectral functions on a com-
mon frequency scale. While we see a similar structure of peaks evolving with J/U ,
as compared to the symmetric case of Figure 8.10, we also note an interesting
dependence from the pump/loss asymmetry and the hopping. In particular, for
small J/U the right cavity spectral function (bottom panels) has slightly stronger
peaks at low frequencies than the left cavity one, reflecting the asymmetry in the
pump/loss rates. As the hopping is increased and the excitations are delocalized
in the dimer, we see that this asymmetry in the left/right spectral functions de-
creases and for J/U = 1.50 the two spectra are essentially the same and very
close in shape to the symmetric one for the same value of J/U (see Figure 8.10).

Then we consider the off-diagonal cavity correlation function, see Figure 8.13,
that we study as a function of J/U . In the top panel we plot the real part,
Re CLR(ω), which shows a qualitative behavior very similar to the symmetric
case shown in Figure 8.11, with anti-Lorentzian peaks which broaden and merge
into a continuum at large J/U , indicating the increase in kinetic energy. On the
other hand, an interesting difference appears in the imaginary part of the off-
diagonal cavity correlation function, Im CLR(ω), which is now different from zero
and shows a non-trivial dependence from J/U , with narrow peaks which broaden
and merge into a continuum as J/U is increased.

We can understand the origin of a finite imaginary part of the off-diagonal
cavity correlation function by using the sum rule that relates the integral of
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Connection
between

current and
pump/loss
imbalance

Im CLR(ω) to the average current flowing from L to R (see eq. (8.26)), and by
expressing the latter in terms of the pump/loss asymmetry.

The equations of motion for the BHD, nα(t) = Tr
(
ρ̂(t)n̂α

)
, with α = L/R,

read
dnL
dt

= i
〈[
T̂, n̂L

]〉
+ 2
(
PL + nL (PL − ΓL)

)
(8.59)

dnR
dt

= i
〈[
T̂, n̂R

]〉
+ 2
(
PR + nR (PR − ΓR)

)
(8.60)

where T̂ = J
(
â†LâR + â†RâL

)
is the kinetic energy operator. The commutator

gives [
T̂, n̂L

]
= −

[
T̂, n̂R

]
= J

(
â†RâL − â

†
LâR

)
≡ iÎ . (8.61)

If we take the difference between the two equations we obtain for the dynamics
of the imbalance Z = nL − nR the result

dZ

dt
= −2 〈Î〉+ 2

(
∆P − nLΓeff

L + nRΓeff
R

)
, (8.62)

where ∆P is the pump asymmetry. In the stationary state, the right-hand side
goes to zero, and we obtain

〈Î〉 = ∆P − nLΓeff
L + nRΓeff

R . (8.63)

We see that the right-hand side of this equation exactly vanishes in the symmetric
case ∆P = 0, Γeff

L = Γeff
R since as we know the occupations of the two cavities be-

come equal (nL = nR). On the other hand, for finite pump/loss asymmetry, there
is a finite current flowing from L to R and therefore an intra-dimer dissipation.
This is interesting since the two cavities are only coupled by a coherent hopping
coupling. As a result of this finite current and dissipation, the imaginary part
of the off-diagonal cavity correlation function has to be different from zero, both
based on the sum-rule in eq. (8.26) and on physical intuition. In Figure 8.14
we plot the average current versus J/U and compare it with the integral over
Im CLR(ω) to confirm the quantitative agreement. We also see that the overall
current, although very small, increases with J/U , an effect which does not appear
clearly from the shape of Im CLR(ω) in Figure 8.13 but that is consistent with the
idea that delocalization leads to a more coherent exchange of excitations between
the two cavities and therefore an increased current.

Finally, we have also considered the case of extreme pump/loss asymmetry,
corresponding to the situation in which one of the two cavities is non-dissipative,
i.e. Γeff

R = PR = 0. Quite interestingly we have found that also in this case, as for
perfectly symmetric rates, the current and the dissipative part of the off-diagonal
cavity correlation function Im CLR(ω) are both zero, for any value of J/U . We
can understand this result from a simple physical picture: in the absence of a
Markovian environment coupled to the right cavity, the current flowing from left
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to right cannot be dissipated and bounces back, resulting in a zero net current.
This can be also understood more formally, by looking at eq. (8.63) and by noting
that, for Γeff

R = PR = 0, this reduces to 〈Î〉 = Γeff
L (n0L − nL). As we discussed in

Section 8.6.1, in the limit Γeff
R = PR = 0 the left cavity occupation reduces to the

one of an isolated left site coupled to Markovian pump and losses, i.e. nL = n0L,
resulting therefore in a vanishing current.

8.7 Conclusions

In this Chapter we have analyzed an open Bose-Hubbard dimer, and we have
investigated the signatures of a dissipative localization-delocalization transition
or crossover where, upon tuning the ratio of coherent hopping versus local inter-
action, an initial population imbalance is either trapped in one of the two cavities
(self-trapping) or equally distributed across the dimer.

In general, such dissipative phase transitions emerge sharply in the limit of
thermodynamically large systems [115, 172] — just like their conservative coun-
terparts. In the open-systems context, this has been shown to usually arise when
taking the large volume limit at fixed finite-density but also in the limit of large
photon numbers, correspondingly to a well-defined classical limit. From this point
of view, it is not surprising that for our BHD the localization-delocalization tran-
sition that exists at the semiclassical level, and that we reviewed for completeness
in Section 8.3, turns in a crossover in the presence of quantum fluctuations. These
are in fact particularly strong in the present case, where the system size is finite
and therefore the spectrum of the Liouvillian is unavoidably gapped. This does
not exclude of course the presence of sharp nonequilibrium phase transitions for
arrays of driven-dissipative cavities with incoherent pumping, as it has been in-
deed recently discussed [13, 163].

In the context of experimental realization of the driven-dissipative BHD, the
focus has been mostly on the case of coherently driven cavities, or of purely dissi-
pative (lossy) dynamics; as an example, a driven-dissipative BHD can be obtained
in a circuit QED platform by considering the large detuning limit of two coupled
Jaynes-Cummings (JC) units, which can be realized by capacitively coupling two
resonators, each containing a transmon qubit. However, an incoherent pump can
be also engineered by weakly coupling each site of the dimer to a transmission
line or to an incoherent noise [173], or to additional sites acting as a dissipa-
tive stabilizer [98]. This situation is particularly interesting in the full quantum
regime, since it is known that in absence of any asymmetry in the system pa-
rameters the stationary state density matrix is independent of any Hamiltonian
coupling and only set by the pump and loss coefficients. Therefore, in order to
address possible signatures of a dissipative self-trapping crossover, it’s necessary
to go beyond simple steady-state observables or to explicitly break the symmetry
between the two cavities. To this extent, in this Chapter we have exactly solved
the problem by numerical diagonalization of the Lindbladian superoperator, and
we have obtained the stationary state, the full dissipative quantum dynamics and
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the properties of the excitations on top of the stationary state, as encoded in the
single-particle Green’s functions, see Section 8.2.

In Section 8.4 we have shown that the short-time dissipative dynamics shows
clear signatures of a crossover between a localized behavior with finite residual
imbalance and coherent oscillations leading to a vanishing imbalance, which can
be accessed by either changing the ratio J/U or the initial condition. On the other
hand, the long-times dynamics is largely controlled by the dissipative rates. In
Section 8.5 we have shown that by breaking the symmetry of pump/loss rates
between the two cavities one can induce a non-trivial stationary state and a finite
imbalance which shows a smooth delocalization crossover upon increasing J/U .

In Section 8.6 we have presented our results for the single-particle Green’s
functions, in particular the spectral function and the cavity correlation function
describing spectrum and occupation of the bosonic modes. These turn out to be
sensitive probes of the Hamiltonian dynamics even in the fully symmetric case,
where the delocalization crossover is signaled by the splitting of the lowest energy
single-photon peak into bonding and anti-bonding modes as J/U is increased. In
presence of a finite pump/loss asymmetry, we have shown that a finite current
flows between the left and right cavities and this has direct consequences in the
emergence of a non-vanishing imaginary part of the off-diagonal cavity correlation
function.

Finally, we point out that, from an experimental point of view, our results
for the quantum dynamics of the imbalance or its dependence on external pa-
rameters, as well as the Green’s functions, can be directly measured experimen-
tally. The former has been done in the context of a Jaynes-Cummings dimer
through homodyne detection [9], while the latter can be naturally addressed in
a transmission/reflection experiment. Furthermore, the methodology employed
in this Chapter, based on the exact diagonalization of a few-sites Lindbladian
and on the computation of Green’s functions, can be applied to different prob-
lems. In particular, in Chapter 9 we will use this methodology to develop an
exact-diagonalization Lindblad impurity solver for Dynamical Mean Field The-
ory (DMFT) [31, 124, 126, 174]; in this scheme, the DMFT self-consistent bath
is approximated with a limited number of effective sites. In this respect, we note
that a two-site model turns out to share many similarities [175] with a minimal,
yet reasonably accurate, implementation of the DMFT using a single site in the
bath [176]. The rationale is simply that, in the dimer, one of the two sites plays
the role of the self-consistent bath for the other.
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Probing the quantum Zeno effect
via dynamical mean-field theory

In the previous Chapters, we built up the necessary technical tools and funda-
mental building blocks for the treatment of driven-dissipative systems described
by a Lindblad equation. In particular, in Chapter 7 we discussed a framework for
the exact diagonalization of the Lindblad equation itself, and we briefly reviewed
the Keldysh description of out-of-equilibrium Green’s functions. We worked out
some analytical results for a single nonlinear cavity, upon which we have built in
Chapter 8 in order to describe a dimer of coupled nonlinear cavities, the so-called
Bose-Hubbard Dimer (BHD). The exact numerical diagonalization allowed us to
probe both observables and response functions at the steady-state, as well as to
reconstruct the full time-dynamics of observables.

In this Chapter, we combine all the previous techniques with the goal of study-
ing a translationally-invariant driven-dissipative lattice problem; as a paradig-
matic example, we can think about a lattice of nonlinear optical cavities, each
with some driving and dissipation mechanism. The nonlinear losses considered
in the lattice we study here lead, in particular, to the onset of the so-called
“Zeno regime”, which displays a seemingly paradoxical behavior. This regime
was experimentally observed in [18, 177, 178] by using ultracold gases in optical
lattices, but the extremely non-local origin of this effect cannot be captured by a
simple Gutzwiller mean-field theory. Additionally, the presence of nonlinearities,
in general, makes the system not analytically solvable, so one needs to resort to
numerical techniques; however, the brute-force diagonalization of a lattice big
enough to correctly take into account the translational invariance is out of reach
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even for today’s most advanced machines.
In order to overcome these problems, we resort to a self-consistent description

of the lattice provided by a technique known as Dynamical Mean Field Theory
(DMFT), which has long proved its ability to provide a faithful description of
strongly-correlated fermionic systems. The idea of DMFT, as we discuss in this
Chapter, is to use the Green’s function of the lattice as a proxy to calculate
a mean interaction (i.e. “field”) felt by each lattice site due to the presence of
all the other lattice sites. This idea is of course a close relative of the standard
mean-field; compared to the latter, however, the word “dynamical” indicates that
the mean-field is not constant in time, and it’s thus able to provide a description
of dynamical correlations.

As a first step, in Section 9.1 we introduce the lattice problem we aim to solve
and we walk the reader through the basic ideas behind the Dynamical Mean Field
Theory (DMFT). Then, in Section 9.2 we present our parametrization of choice
of the effective bath as a non-equilibrium Anderson Impurity Model (AIM) and
in Section 9.3 we provide the details of the DMFT loop. Finally, in Section 9.4 we
solve the lattice problem via the DMFT technique and we uncover the emergence
of the Zeno regime. In Section 9.5 we draw the conclusions.

9.1 Model and general idea

9.1.1 Driven-dissipative Bose-Hubbard lattice

We want to study a translationally symmetric lattice of non-linear optical cavities
in the normal phase, under single-photon driving and two-photon dissipation.
The Hamiltonian of the system, also known as the Bose-Hubbard model, can be
written as a local term in the occupation basis, plus a tunneling contribution:

Bose-
Hubbard

Hamiltonian ĤBH =
∑

r

(
ω0n̂r + Un̂2

r

)
− J

z

∑
〈r, r′〉

â†râr′ (9.1)

where ω0 denotes the natural frequency of the cavities located at positions {r},
n̂r = â†râr is their occupation operator, U is the strength of the nonlinearity, z is
the number of nearest-neighbors and J/z is the tunneling amplitude among any
two of the nearest-neighbors indicated by 〈r, r′〉 in the sum.

Under driving and dissipation, the evolution is governed by a Lindblad master
equation

˙̂ρBH = ˆ̂LBHρ̂BH = ˆ̂LBH
H ρ̂BH + ˆ̂LBH

D ρ̂BH (9.2)

where
ˆ̂LBH
H ρBH = −i

[
ĤBH, ρ̂BH

]
(9.3)
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Effective
local theory

is the Hermitian contribution to the time-evolution, while the driven-dissipative
contribution can be written as

Single-
photon
driving and
two-photon
losses

ˆ̂LBH
D ρ̂BH = 2

∑
r

{
Γ2

(
ârârρ̂

BHâ†râ
†
r −

1
2
{
â†râ
†
rârâr, ρ̂

BH})

+ P1

(
â†rρ̂

BHâr −
1
2
{
ârâ
†
r, ρ̂

BH})}. (9.4)

In the notation we employed for (9.4), “Γ” (“P”) indicates a loss (pump) term,
while the subscript “1” or “2” indicates the number of photons involved in the
process. The term with amplitude Γ2 is therefore describing a two-photon loss
mechanism, that has to be interpreted as an additional nonlinearity providing a
stabilizing gain saturation in the semiclassical limit, while the term with ampli-
tude P1 describes a single-photon incoherent pump — see the previous discussion
in Section 7.1.2.

9.1.2 Sketch of dynamical mean-field theory
As simple as it might look, the system described by eqs. (9.2) and (9.4) is noto-
riously hard to solve. In this Chapter, in order to get to the solution, we employ
a technique known as Dynamical Mean Field Theory (DMFT), originally formu-
lated to study strongly correlated electron systems [31, 179] but extended over the
past few years to handle bosonic and non-equilibrium systems as well [124, 126,
174, 180–183]. For more detailed information, we refer the interested reader to
one of the recent reviews or walked-through introductions on the subject [31, 174,
179]; here, we limit ourselves to provide an intuitive overview of this technique,
sketched in Figure 9.1.

DMFT is a powerful non-perturbative method to solve strongly correlated
quantum lattice models, developed in the limit of large coordination z. In par-
ticular, the fermionic version becomes exact in the limit of large z, while the
equilibrium bosonic version captures, non-perturbatively, the 1/z corrections to
Gutzwiller mean-field theory through the solution of a quantum impurity model.

DMFT is essentially a mapping of the lattice model onto a quantum impurity
model where only one lattice site features nonlinearities. The method can be
derived following the scheme outlined below.

1. Assuming translational invariance, one can select one arbitrary lattice site
(equivalent to any other) and construct an effective local theory which in-
cludes the effect of the rest of the lattice on the “selected” site. The effective
local theory is in principle very complicated as it contains all the Green’s
functions of the rest of the lattice at any order (single-particle, two-particle,
three-particle, . . . ) which make the problem intractable.

2. In the spirit of a mean-field theory, the effective theory can be truncated
to the first non-trivial term, containing only the single-particle Green’s
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Figure 9.1: Sketch of the DMFT technique, inspired from [31]. We start from
a translationally-invariant lattice problem, in which each site (i.e. “cavity”) has a
Kerr nonlinearity U — and possibly, in the case of driven-dissipative systems, a
nonlinearity in the Lindblad dissipator. The lattice sketched here has a nearest-
neighbor hopping strength J/z, where z is the lattice coordination number. Since
the lattice is translationally invariant, we focus on a single site — marked here
in red; at this point, the original lattice problem can be seen as the problem
of a single site embedded in some effective bath generated by its interaction
with all the other lattice sites. The DMFT technique provides an equation that
mathematically connects such bath to the original lattice problem, by discarding
spatial correlations in the lattice self-energy. In our case we use a discretized
representation of the effective bath, i.e. we represent it as a collection of linear
cavities (numbered from 1 to N) connected to the representative lattice site from
the original lattice. As discussed in Section 9.2, in the case of driven-dissipative
systems the bath sites have a (linear) Lindblad dissipator as well.
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Effective bath
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DMFT
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DMFT loop

Impurity
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function of the rest of the lattice. This truncation can be derived rigorously
in the limit of large coordination z.

3. The effective local theory, after this simplification, is the same of a quantum
impurity model where the “selected” site plays the role of a nonlinear quan-
tum impurity site embedded in a linear medium (or bath) which describes
effectively the interaction of the site with the rest of the lattice. The key dif-
ference with standard mean-field is that this linear effective bath is time- (or
frequency-) dependent. This quantity is often called the dynamical Weiss
field. The impurity self-energy is the DMFT approximation of the lattice
self-energy, which implies that the latter is approximated as momentum
independent. This can be seen as the crucial approximation underlying the
whole DMFT scheme.

4. The theory becomes a closed set of equations, since one can prove that
the Green’s function of the impurity model has to coincide with the local
component of the Green’s function of the original lattice model within the
DMFT approximation. This condition can be written as a self-consistency
condition relating the dynamical Weiss field with the impurity Green’s func-
tion.

5. This implies that the solution of a lattice model within DMFT requires a
self-consistent solution of a quantum impurity model. The self-consistent
scheme is implemented iteratively. We start from a guess for the bath or for
the Weiss field, then we solve the impurity model computing the Green’s
function. Using the self-consistency, a new Weiss field is obtained, and the
procedure is iterated until convergence.

6. The engine of a DMFT calculation is a method to solve the impurity model,
providing the Green’s function or the self-energy. This is usually called the
“impurity solver”. In this work, we use the exact diagonalization algorithm
described in the previous Chapters as an impurity solver. This naturally
implies a discretization of the bath, which is described in detail in the
following Section 9.2.

9.2 Non-equilibrium Anderson impurity model

9.2.1 Parametrization of the effective bath
In order to solve the effective impurity model using an exact diagonalization
solver, we have to represent the effective bath as a finite (and numerically af-
fordable) matrix. This is usually done, for the fermionic Hamiltonian theory, by
expanding the bath function in terms of a finite number of linear auxiliary levels
(or sites) whose energies and couplings with the impurity site are chosen in order
to represent the dynamical Weiss field. As an example, in Figure 9.1, these tun-
able parameters are respectively ω1, . . . , ωN and ν1, . . . , νN for N bath sites, while
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the impurity parameters ω0 and U are fixed by the original lattice problem. This
parametrization choice stems from the fact that, in principle, an infinite number
of auxiliary sites would be able to perfectly reproduce any possible effective bath.

This idea can be straightforwardly applied to bosonic Hermitian DMFT as
well; however, here we want to attack the non-Hermitian case. We can again
take inspiration from what was developed for fermionic non-equilibrium DMFT;
in particular, the authors of [124, 125] showed1 that in order to extend to the
non-equilibrium case, it’s sufficient to provide the auxiliary sites with Markovian
mechanisms of single-particle loss/pump that provide an effective thermalization,
thus effectively employing a non-equilibrium AIM.

The ideas developed in [124, 125] can be applied to the bosonic DMFT the-
ory for open systems (OpenBDMFT) as well, with the caveat that in this case
also the impurity site has drive and dissipation. One can easily argue that the
introduction of driving and dissipation on the bath sites is necessary to properly
represent a driven-dissipative lattice system within the DMFT framework. Still,
it is sufficient to provide the bath sites with single-particle loss/pump terms even
when the lattice model features two-particle terms. This is of course a crucial
point, because it means that, even in the presence of driving and dissipation, the
lattice model can be mapped onto a single nonlinear site embedded in a linear
bath.

So, compared to the Hermitian BDMFT, we can parametrize the auxiliary
bath by using not only the energies of the auxiliary cavities and their coupling
with the impurity, but also the Lindblad coefficients that describe single-particle
pumping/loss processes in the bath. There is however one last additional degree
of freedom that we can exploit for our bath parametrization: the choice of the
Lindblad jump operators themselves. In fact, since the auxiliary cavities are a
mere fitting tool, we can choose their jump operators as we like, provided that
they are linear in the particle creation/annihilation operators. In order to see
that, consider that the dissipator for the auxiliary bath sites has the typical form

NB∑
n=1

γn

(
L̂nρ̂L̂

†
n −

1
2

{
L̂†nL̂n, ρ̂

})
(9.5)

where NB is the number of bath sites — again, the subscript “0” is generally re-
served for the impurity — and the most general form for the linear jump operators
is

Ln =
NB∑
m=1

Unmlm (9.6)

with lm = am for single-particle losses and lm = a†m for single-particle pump-
ing. The linear combination coefficients Unm form a unitary matrix, because

1Compared to [124, 125], which deal with a non-equilibrium though Hermitian problem,
here we deal with a non-equilibrium non-Hermitian problem. The difference is that, in contrast
to [124, 125], we also have driving and dissipation on the impurity site.

138



9.2. Non-equilibrium Anderson impurity model

Figure 9.2: Sketch of a typical non-equilibrium AIM used to model a single
lattice site plus effective bath in OpenBDMFT. The impurity (central red site) is
the only site having nonlinearities, and it’s connected to the auxiliary bath sites
via some hopping amplitudes νn, where n = 1, . . . , NN indexes the bath sites.
The bath sites have energies ωn and are connected to a completely full Markovian
environment (dark green blob on the left), that provides single-particle pumping,
and to a completely empty Markovian environment (light green blob on the right),
that provides single-particle losses. The connection is visualized in terms of
links corresponding to the Lindblad coefficients, with P1 and Γ1 representing the
coefficients matrices of the single-particle loss and pump processes, respectively.
The diagonal elements of the coefficient matrices correspond to solid lines, while
the off-diagonal elements to dashed lines. This form of the effective impurity
model was proposed in [124, 125] in the context of a technique called Auxiliary
Master Equation Approach (AMEA) developed by the authors. While in the
original proposal such an effective model was used to describe a non-equilibrium
though still Hermitian lattice model, i.e. a lattice model fully described by a
Schrödinger equation and not by a Lindblad equation, here it arises as a natural
choice when even the lattice model itself is described by a Lindblad equation.

of the conditions on the Lindblad equation; we can therefore perform a unitary
transformation and define a matrix Γ with elements

Γnm = UΛU†, (9.7)

where Λ is just a matrix with diagonal elements Λnn = γn and the associated
Lindblad dissipator takes the form

NB∑
n,m=1

Γnm
(
L̂nρ̂L̂

†
m −

1
2

{
L̂†mL̂n, ρ̂

})
. (9.8)

This shows that the freedom in choosing different jump operators for the auxil-
iary cavities translates into allowing for non-diagonal Lindblad couplings between
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the auxiliary cavities with fixed, standard jump operators — see the sketch in
Figure 9.2.

9.2.2 AIM equations
In the light of the discussion above, we can then finally write a non-equilibrium
AIM corresponding within DMFT to the lattice model described by eqs. (9.1)
to (9.4).

Specifically, we map the Bose-Hubbard lattice with the Hamiltonian HBH in
(9.1) into an AIM with the following Hamiltonian H:

AIM
Hamiltonian

H = ω0a
†
0a0 + Ua†0a0a

†
0a0 +

NB∑
n=1

{
ωna

†
nan + νna

†
na0 + ν∗na

†
0an

}
, (9.9)

where we stress that ω0 and U are the physical parameters of the lattice model
used in (9.1), while ωn and νn, n = 1, . . . , NB , are discrete parameters used to
represent the Weiss field that is in turn self-consistently determined. Then, the
density matrix for the AIM evolves according to the Lindblad equation:

ρ̇ = Lρ = LHρ+ LDρ (9.10)

where
LHρ = −i [H, ρ] (9.11)

and

LDρ = 2
NB∑

n,m=0

{
Γ1mn

(
anρa

†
m −

1
2
{
a†man, ρ

})
AIM

dissipator
+P1mn

(
a†mρan −

1
2
{
ana

†
m, ρ

})
+Γ2mn

(
ananρa

†
ma
†
m −

1
2
{
a†ma

†
manan, ρ

})}
. (9.12)

Since the 0-th site is identical to every lattice site with dissipator (9.4) and
the bath must not contain nonlinearities — i.e. neither the Kerr nonlinearity U
neither the two-particle losses Γ2, we make the choices Γ10n = Γ1n0 = Γ100δn0 ≡
Γ1δn0, P10n = P1n0 = P100δn0 ≡ P1δn0 and Γ2mn = Γ200δm0δn0 ≡ Γ2δm0δn0, i.e.
the central site is in contact with Markovian environments which do not provide
connections to the other bath sites. Furthermore, we take νn = ν∗n in (9.9).

9.2.3 AIM diagonalization
At this point, the AIM in eqs. (9.9) to (9.12) can be numerically solved by di-
agonalizing the Lindbladian matrix obtained via the vectorization procedure dis-
cussed in Chapter 7.
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To this end, we start to write the Hermitian and the dissipative contribu-
tions to the Lindblad equation (9.10) and (9.11), respectively, in the vectorized
notation:

LH |ρ〉 = −i
{
ω0(n0 − ñ0) + U(n2

0 − ñ2
0)

+
NB∑
i=1

[
ωi (ni − ñi) + νi

(
a†ia0 − ã†i ã0

)
+ ν∗i

(
a†0ai − ã

†
0ãi

) ]}
|ρ〉

(9.13)

LD |ρ〉 =
NB∑
i,j=0

{
Γ1ji

(
2aiãj − a†jai − ã

†
i ãj

)
+P1ji

(
2a†j ã

†
i − a

†
iaj − ã

†
j ãi

)
Γ2ji

(
2aiaiãj ãj − a†ja

†
jaiai − ã

†
i ã
†
i ãj ãj

)}
|ρ〉 (9.14)

Finally, by evaluating LH and LD as written respectively in (9.13) and (9.14)
between two generic elements in the number basis, and by using the fact that
the two-particle losses are zero on the bath sites, we have — see Appendix A for
more notational details:

〈n′; m̃′| LH |n; m̃〉 = −i
[
NB∑
i=0

ωi(ni −mi) + U(n2
0 −m2

0)
]
δn′,nδm̃′,m̃

− i
NB∑
n=1

{
νi

[√
n′in0δn′0,n0−1 · · · δn′

i
,ni+1 · · · δm̃′,m̃

−
√
m′im0δn′,nδm′0,m0−1 · · · δm′

i
,mi+1 · · ·

]
+ ν∗i

[√
n′0niδn′0,n0+1 · · · δn′

i
,ni−1 · · · δm̃′,m̃

−
√
m′0miδn′,nδm′0,m0+1 · · · δm′

i
,mi−1 · · ·

]}
(9.15)
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〈n′; m̃′| LD |n; m̃〉 =
NB∑
i,j=0

{
δij

[
− (Γ1ji + P1ji)(ni +mi)− 2P1ji

]
δn′,nδm̃′,m̃

− (1− δij)(Γ1ji + P1ji)
√
nin′j · · · δn′i,ni−1 · · · δn′

j
,nj+1 · · · δm̃′,m̃

− (1− δij)(Γ1ji + P1ji)
√
m′jmiδn′,nδm′

i
,mi+1 · · · δm′

j
,mj−1 · · ·

+ 2Γ1ji
√
nimj · · · δn′

i
,ni−1 · · · δm′

j
,mj−1 · · ·

+ 2P1ji

√
n′im

′
j · · · δn′j ,nj+1 · · · δm′

i
,mi+1 · · ·

}

+ Γ200

{
−
[
n0(n0 − 1) +m0(m0 − 1)

]
δn′,nδm̃′,m̃

+ 2
√
n0(n0 − 1) +m0(m0 − 1) · · · δn′0,n0−2 · · · δm′0,m0−2 · · ·

}
(9.16)

where the dots “· · · ” indicate Kronecker deltas of type δn′
i
,ni and δm′i,mi , and we

remind that the values ω0, U , Γ100 ≡ Γ1, P100 ≡ P1 and Γ200 ≡ Γ2 are provided
by the original lattice model, while all the other parameters are meant to be
found self-consistently via the DMFT equations.

Note that the presence of two-photon losses still preserves the global U(1)
gauge symmetry (i.e. phase rotation symmetry) possessed by the Lindbladian,
so all the numerical simplifications discussed in Sections 7.2.2 and 7.4.2 and
already exploited in the context of the BHD as discussed in Section 8.2, can
be applied here as well. In this case, the superoperator ˆ̂K that commutes with
ˆ̂L is simply the superoperator generated by the total number of particles, i.e.
ˆ̂K• = −i

[
N̂, •

]
where now N̂ =

∑NB
i=0 n̂i, and the global gauge symmetry is then

generated by the unitary operator U = eiN̂ϑ. The eigenvalues of ˆ̂K are still good
labels for the blocks in the resulting block-diagonal structure of the Lindbladian
— see Figure 9.3; a calculation of the dimension of such blocks in provided in
Appendix B.

Our C++ OpenBDMFT code can perform the numerical diagonalization via
the standard LAPACK (or its high-speed replacements) libraries thanks to a user-
friendly interface provided by the Armadillo library [184, 185], which we have
extended to support the two-sided diagonalization of non-symmetric matrices.
This extension, as well as another extension that enables a user-friendly shift-
invert diagonalization of sparse matrices via ARPACK+SuperLU, was contributed
upstream. However, due to the sheer size of the problem, the diagonalization
times via CPU-based routines like LAPACK’s ones are particularly high. In order to
further cut down on the diagonalization times, we eventually decided to customize
Armadillo’s internal diagonalization routines so to accelerate the diagonalization
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Figure 9.3: Block-diagonal structure for the gauge-symmetric Lindbladian of
the AIM discussed in Section 9.2, with NB bath sites plus the impurity. The full
Lindbladian matrix has a size

(∏NB
i=0(Ncutoff,i + 1)

)2
×
(∏NB

i=0(Ncutoff,i + 1)
)2

,
but it can be written as a block-diagonal matrix where each block is labeled by
an integer k, with ik an eigenvalue of ˆ̂K• = −i

[
N̂, •

]
.

via GPUs, when they are available. The support for GPU acceleration is provided
via the MAGMA library [186–188].

9.2.4 Keldysh Green’s functions for the AIM

We now proceed to write the Green’s function on the impurity site. In the
following, we will only consider diagonal Lindblad couplings between the impurity
site and the auxiliary bath sites. Before proceeding, we list in Table 9.1 the
notation employed in the following. The impurity Green’s functions are denoted
by a subscript “�” in order not to mistake them with the noninteracting (U,Γ2 =
0) Green’s functions, denoted by a subscript “0”; the lowercase Green’s functions
indicate instead the Green’s functions of the uncoupled sites, i.e. for some νn = 0,
in the same way they did so in the context of the BHD in Section 8.6.1.

First, notice that we already know the uncoupled Green’s functions of the
bath sites, gn ≡ g0n: each of them is just the Green’s function of a single cav-
ity with single-particle pumping and single-particle losses, for whom we derived
the retarded/Keldysh components in eq. (7.119). A similar statement holds for
the uncoupled noninteracting Green’s function of the impurity, g0�, with the
difference that there is no single-particle pumping.
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Impurity n-th bath site
Full G� Gn
U,Γ2 = 0, νn 6= 0 G0� G0n
U,Γ2 = 0, νn = 0 g0� g0n

Table 9.1: Notation used for the Green’s functions. The impurity site is denoted
by “�”, while the bath sites are indexed with n = 1, . . . , NB . Uppercase letters
indicate νn 6= 0, while lowercase letters indicate νn = 0; noninteracting (U,Γ2 =
0) Green’s functions are instead indicated by an additional “0”. Note that, since
the bath sites are linear, gn ≡ g0n.

Impurity
self-energy

We now take care of the full impurity Green’s function, G�, that includes
local nonlinearities as well as the interaction between the impurity and the bath
sites. We first express it as a noninteracting contribution G0� plus a self-energy
term Σ� that encodes the interactions:

G� =
(
G−1

0� − Σ�
)−1 (9.17)

While Σ� is not known analytically, we can obtain G−1
0� by using a reasoning fully

akin to the one employed in Section 8.6.1. Namely, we write the Keldysh-rotated
noninteracting action as

S0 =
∫
ω

{
ψ̄�g

−1
0�ψ� +

NB∑
n=1

[
ψ̄ng

−1
n ψn − [η̄nψn + h.c.]

]}
(9.18)

where ψn = (an,c, an,q)ᵀ, η̄n = (νnψ̄�σx) and σx =
(

0 1
1 0

)
is the first Pauli

matrix. The noninteracting effective action S0� for the impurity is then obtained
by integrating out all the other sites, i.e. by writing the partition function of the
noninteracting AIM as

Z =
∫
D[ψ̄�, ψ�]

NB∏
n=1
D[ψ̄n, ψn]eiS0[ψ̄�,ψ�,{ψ̄n,ψn}] =

∫
D[ψ̄�, ψ�]eiS0�[ψ̄�,ψ�]

(9.19)
where

eiS0�[ψ̄�,ψ�] =
∫ NB∏

n=1
D[ψ̄n, ψn]eiS0[ψ̄�,ψ�,{ψ̄n,ψn}]. (9.20)

By writing∫ NB∏
n=1
D[ψ̄n, ψn]eiS0 = e

i
∫
ω
ψ̄�g

−1
0�ψ�

NB∏
n=1

∫
D[ψ̄n, ψn]e

i
∫
ω

[
ψ̄ng

−1
n ψn−[η̄nψn+h.c.]

]
(9.21)
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and by applying the same Gaussian integral in eq. (8.40) to each factor in the
product, taking also care to reabsorb any numerical factor into the definition of
the differential, we can finally read out S0� as

S0� =
∫
ω

[
ψ̄�g

−1
0�ψ� −

NB∑
n=1

η̄ngnηn

]
=
∫
ω

[
ψ̄�g

−1
0�ψ� −

NB∑
n=1

(
νnψ̄nσx

)
gn (νnσxψn)

]
=
∫
ω

ψ̄�

[
g−1

0� −
NB∑
n=1

ν2
n (σxgnσx)

]
ψ�

+
∫
ω

ψ̄�G
−1
0�ψ�. (9.22)

Notice that the Green’s functions above have the usual causality structure:

G0� =
(
GK0� GR0�
GA0� 0

)
, gn =

(
gKn gRn
gAn 0

)
, (9.23)

so a σx rotation gives

σxgnσx =
(

0 gAn
gRn gKn

)
. (9.24)

In other words, the σx rotation provides a causality structure akin to the one
of a self-energy. Indeed, by combining eqs. (9.17), (9.22) and (9.24), we get the
following decomposed expression for the full impurity Green’s function:

G� =
(
G−1

0� − Σ�
)−1

=
(
g−1

0� −∆− Σ�
)−1 (9.25)

The term
Weiss fieldG0� =

(
g−1

0� −∆
)−1 (9.26)

corresponds to the DMFT dynamical Weiss field. Its meaning is that of an
effective field that describes the interaction between a generic lattice site and all
the other ones in absence of nonlinearities; those latter ones, instead, are encoded
in the lattice self-energy. The term

Bath
hybridization
function∆ =

(
0 ∆A

∆R ∆K

)
=
(

0
∑NB
n=1 ν

2
ng
A
n∑NB

n=1 ν
2
ng
R
n

∑NB
n=1 ν

2
ng
K
n

)
, (9.27)

instead, is known as the bath hybridization function.
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Enforcing
DMFT

DMFT loop

In eq. (9.25), we marked the terms with different colors according to the
following legend:

� −→We can obtain it via exact diagonalization
� −→ Analytically known
� −→ Unknown

So, given an AIM with any nonlinearity on the impurity site, but with fully linear
bath sites, we can obtain the impurity self-energy Σ� via a full diagonalization of
the AIM itself; this is a key point in the DMFT procedure, for which we provide
more details in Section 9.3.

9.3 The OpenBDMFT loop

The goal of DMFT is to describe a generic lattice site, embedded in the field gen-
erated by all the other lattice sites, as an equivalent AIM. At DMFT convergence,
the impurity site in the AIM will then directly correspond to any lattice site; this
equivalence is mathematically concretized by equating the lattice Green’s func-
tion calculated on a generic lattice site, i.e. the local-in-space lattice Green’s
function Gloc ≡ Gi,i, and the impurity Green’s function G�. The OpenBDMFT
loop is obtained by enforcing this equality, which turns out to be a self-consistency
equation.

We start by writing the local part of the original lattice Green’s function,
diagonal in the lattice sites indices, as the sum of its k-space components:

Gloc =
∑

k

(
G−1

0,k − Σk

)−1
. (9.28)

Gloc is our final goal, since we want to solve the original lattice problem, G−1
0,k

is the non-interacting (bare) Green’s function at a given k — so it can be found
analytically, and it depends on the specific lattice problem at hand — and finally
Σk is the lattice self-energy at a given k. This is the unknown quantity that
the DMFT technique replaces with the impurity self-energy of the equivalent
AIM, see (9.25), which can in turn be obtained via the difference between the
non-interacting impurity Green’s function, known analytically, and the full one,
obtained from the numerics. In other words, the DMFT cycle is imposed via the
following two equalities:

Gloc = G� and Σk = Σ� (9.29)

In practice, the equalities (9.29) are self-consistently satisfied by performing
the following DMFT loop:

1 Initial guess.
Start from a guess for the bath parameters ωn, νn, Γ1nn, and P1nn, with
n = 1, . . . , NB , which corresponds to a guess for ∆ given by eq. (9.27).

146



9.3. The OpenBDMFT loop

2 From ∆ to G�.
Given a bath hybridization function ∆, corresponding to a set of bath pa-
rameters for the AIM, obtain the impurity Green’s function by diagonalizing
the AIM via ED.

3 From G� to ∆(new).
Given G�, calculate a new bath hybridization function ∆(new). This is the
step that involves the original lattice, i.e. the step in which we actually
enforce the DMFT equalities (9.29).

3.1 Obtain the impurity self-energy via (9.25) as: Σ� = g−1
0� −∆−G−1

� .

3.2 Perform the DMFT approximation on the self-energy: Σk = Σ�.

3.3 Compute the local lattice Green’s function Gloc via (9.28).

3.4 Impose the DMFT condition to get a new impurity Green’s function:

G
(new)
� = Gloc.

3.5 Numerically compute the new bath hybridization function via (9.25)

as: ∆(new) = g−1
0� −

(
G

(new)
�

)−1
− Σ�.

4 Fit of ∆(new).
Find new bath parameters such that the bath hybridization function com-
puted via (9.27) is as close as possible to the given numerical ∆(new). This
is done, as we will see, via a fitting procedure that minimizes a suitable
distance between the two hybridization functions.

5 Convergence test.
If the distance between the new bath hybridization function and the for-
mer one is less than the specified tolerance, i.e. if

∣∣∣∣∆(new) −∆
∣∣∣∣ < δ∆,

stop. Otherwise, set ∆ = ∆(new), go back to step 2 and iterate until
convergence.

In some cases, the step 3 involving lattice quantities can be greatly sim-
plified. As an example, on a Bethe lattice — see Figure 9.4, the self-consistency
relation simply reads [31, 182]:

Bethe lattice
self-
consistency

∆ = c ·G� (9.30)
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Figure 9.4: Illustration of a Bethe lattice with coordination number z = 3. A
Bethe lattice [189] is an infinite, connected, cycle-free graph in which each node,
connected to z neighboring nodes, is equivalent to all the others. If one of them
is selected as a root node (red one in the illustration), the graph can be organized
as an infinite number of shells centered around the root node, each containing
z(z−1)k−1 nodes, with k ≥ 1. In the illustration above, we show the lattice only
up to the shell k = 4.

Distance
between

hybridization
functions

where the proportionality constant c for a lattice like the one we are considering
in (9.1) is [182]:

c = J2

z
(9.31)

in contrast to the value J2/
√
z that c would take for an analogous fermionic

lattice model [31].
The last point to address is how we can perform the fitting step in 4 . First,

we define a distance χ(∆1,∆2) between two generic hybridization functions ∆1,
∆2 as:

χ(∆1,∆2) =
∑

α=R,K

∫ +∞

−∞
dωWα(ω) |∆α

1 (ω)−∆α
2 (ω)|n , (9.32)

whereWα(ω) is a weight function, |·| is the complex norm, and n can be typically
fixed to 2. So, the basic idea is just to take the squared differences between
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L-BFGS-B
minimizer

∆R
1 (ω) and ∆R

2 (ω) at every frequency point, sum them up, and then add the
corresponding contribution from the Keldysh component as well. Wα(ω) can
either be the identity function, a constant function serving as normalization, or
some function of the frequency with the purpose of e.g. introducing a smooth high-
frequency cutoff. As an example, when using the self-consistency condition on the
Bethe lattice eq. (9.30), ∆ is obtained from the Green’s function by multiplying
it by J2/z (for bosons). This means that, when the lattice coupling constant J
is small, χ itself becomes very small; in order to void this type of skewing, we’ve
empirically found that using Wα(ω) = (J2/z)n−1 provides good results.

The fitting procedure is then achieved by performing a multidimensional nu-
merical minimization of the function χ(∆target,∆), where ∆target is given numer-
ically and it’s the data we want to fit, while ∆ is the analytical fitting function
in eq. (9.27).

Our code is able to use several minimizers provided by the libraries ensmallen
[190], LBFGS++ [191], and CppOptimizationLibrary [192], including some deriv-
ative-free minimizers; by default, we use the L-BFGS-B minimizer provided by
CppOptimizationLibrary. The L-BFGS-B method [193] is a limited-memory
(L-) version of the quasi-Netwon method known as BFGS, named after its au-
thor Broyden, Fletcher, Goldfarb, and Shanno, capable of handling simple box
constraints (-B); it appears to be the same optimization method employed in
[125] as well. In our case, the box constraints are used to ensure that the coef-
ficient matrices in the Lindblad equation for the AIM are positive semi-definite.
Since the BFGS family of methods performs the minimization by providing an
estimate of the Hessian matrix of the function to minimize, providing the analyt-
ical derivatives of the cost function with respect to the parameters {νn}, {ωn},
{Γ1nn}, {P1nn} is essential in order to achieve a good numerical performance; all
the relevant derivatives can be easily calculated from eqs. (7.119) and (9.27).

9.4 Quantum Zeno effect

Having established all the necessary technical components of our OpenBDMFT
calculation, in this Section 9.4 we use it to probe the incoherently pumped Bose-
Hubbard lattice with two-photon losses introduced in Section 9.1.1.

We focus in particular on the emergence of a so-called quantum Zeno regime
[194]. In this regime, in analogy with Zeno’s arrow paradox [195], an increase in
the physical dissipation surprisingly leads to a decrease in the effective dissipation,
up to a limit in which the effective dissipation is completely suppressed.

9.4.1 Mapping on hard-core bosons

In [1] it has been shown that, in the limit of large dissipation Γ2 � J , the
dissipative Bose-Hubbard model obtained from eqs. (9.1) to (9.4) by removing
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the incoherent pump can be mapped onto the following effective Hamiltonian:

Ĥeff = −J
z

∑
〈r, r′〉

ĉ†rĉr′ − Jeff
2
∑

r
Ĉ†r Ĉr, (9.33)

where cr, c†r are hard-core bosonic operators, i.e. with a constraint enforcing a
maximum occupation of one boson per site:

Hard-core
bosons

cr = |0〉r 〈1|r , c†r = |1〉r 〈0|r . (9.34)

The reason the system can be mapped, at the first order, into a lattice of hard-
core bosons, is due to the fact that for Γ2 � J the two-photon losses are very
large but there is no single-photon loss process, so all the states with 2 or more
bosons per site are highly suppressed.

The second term in eq. (9.33) is instead written in terms of two-photon oper-
ators

Ĉr = ĉr
∑

r′:〈r, r′〉

ĉr′ , (9.35)

where the sum over r′ is carried over the first nearest-neighbors of r, which destroy
pairs of photons in neighboring sites. The quantity

Jeff
2 =

(
J

z

)2
U

U2 + Γ2
2

(9.36)

is the effective energy associated with these pairs. Finally, the local two-photon
dissipator in the Lindblad equation is replaced by an effective non-local two-
photon dissipator

ˆ̂Leff
D ρ̂

BH = 2
∑

r
Γeff

2

(
Ĉrρ̂

BHĈ†r −
1
2

{
Ĉ†r Ĉr, ρ̂

BH
})

, (9.37)

where
Effective

dissipation
rate

Γeff
2 =

(
J

z

)2 Γ2
U2 + Γ2

2
(9.38)

is the effective decay rate of pairs of photons on neighboring sites. The peculiarity
of the effective dissipation is that it’s mediated by the original tunneling ampli-
tude J : as J increases, more and more photons on neighboring sites are discarded
from the lattice. Even more interestingly, for Γ2 < U the effective dissipation
increases with the physical dissipation Γ2, but only up to a maximum at Γ2 = U ;
for Γ2 > U , instead, the effective dissipation decreases as the physical dissipation
Γ2 is increased. Eventually, at Γ2 � U , the effective dissipation becomes

Quantum
Zeno regime

Γeff
2 ≈

Γ2�U

(
J

z

)2 1
Γ2

, (9.39)
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Figure 9.5: Effective AIM used for the numerical simulations in Section 9.4.
The impurity site, representing a generic site of the original lattice, is depicted
on the left and has a bare frequency ω0 and a Kerr nonlinearity U ; the bath sites,
depicted on the right, do not have Kerr nonlinearities and have bare frequencies
ω1, ω2 and couplings with the impurity ν1, ν2 that are treated as fitting parame-
ters. Every site has single-particle pumping, with P100 ≡ P1 and with P111, P122
fitting parameters. The impurity site has two-particle losses Γ200 ≡ Γ2, while
the auxiliary bath sites have single-particle losses Γ111 and Γ122, again treated as
fitting parameters.

thus it decreases as Γ−1
2 . This regime where the effective dissipation shows a

seemingly paradoxical behavior, experimentally observed with ultracold gases
[18, 177, 178], has been called the quantum Zeno regime [19, 194, 196–198] for
its analogy with Zeno’s arrow paradox [195].

Because of their origin in terms of virtual processes, the hopping-induced
dissipative processes described by eqs. (9.37) and (9.38) are completely neglected
by simple approaches such as the Gutzwiller mean-field theory and, even in the
context of DMFT, they cannot be handled using approximate solvers such as
the Hubbard-I approximation [126]. On the other hand, our non-perturbative
implementation of DMFT is not limited in this regard, and it is an ideal tool to
explore this regime. We shall also see that our ED implementation provides an
intriguing and insightful mapping on an effective two-site model.

9.4.2 Emergence of the Zeno regime

We can exploit the mapping to hard-core bosons to effectively reduce the size of
the Hilbert space as the two-particle losses amplitude Γ2 increases.

Such a reduced effective Hilbert space of the lattice allows us to reduce the
Hilbert space of the auxiliary AIM as well. As a first point, in order not to
have an empty stationary state, we introduce a small single-particle pumping
P1 � Γ2 in the lattice; in the following, P1 = 0.1. This is a key difference
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Hilbert space
cutoff

Occupation
probabilities

compared to the effective model in eqs. (9.33) to (9.38), derived in [1] for a
lattice without a pumping mechanism. In the deep Zeno regime (Γ2 � U > J)
we then expect that the Fock space on the impurity site is effectively reduced
to |0〉 and |1〉, since states with 2 or more photons are strongly dissipated by
the two-photon losses. As a consequence, the spectral function on the impurity
site has a single peak around ω0 + U , corresponding to transitions between |0〉
and |1〉. This feature is particularly appealing, especially if we decide to work
on the Bethe lattice, where the DMFT self-consistency condition (9.30) amounts
to require that the spectral function of the impurity site must be proportional
to the bath hybridization function.2 The latter is in turn a weighted sum of
Lorentzians, where each Lorentzian is contributed by a single auxiliary bath site;
therefore, in order to be able to fit a single peak in the spectral function, a single
auxiliary bath site is enough. If we also want to analyze the system at values of
Γ2 not necessarily in the deep Zeno regime, as in our case, we can add a second
auxiliary bath site that takes into account the spectral peak around ω0 + 3U ,
that is suppressed in the deep Zeno regime only; the suppression experienced by
peaks at even higher energy makes trying to reproduce them unworthy. A sketch
of the resulting impurity model employed in the following is shown in Figure 9.5.

So, we work in a regime in which the local occupied states are mainly |0〉 and
|1〉, while states |n〉 with n ≥ 2 contribute at most an additional peak at higher
energies in the spectral function and are highly suppressed. For this reason, we
can choose quite a small Hilbert space cutoff Ncutoff,0 on the impurity site in the
numerical calculations; in the following, we fixed Ncutoff,0 = 5. As for the Hilbert
space cutoff on the bath sites, instead, we have to take some extra care; these
sites reproduce the presence of the original lattice, but while physical lattice sites
may mainly occupy the states |0〉 and |1〉, this is not necessarily true for our
auxiliary effective sites which are meant to represent the effect of the rest of the
lattice on the impurity. In the following, we fixed Ncutoff,1 = Ncutoff,2 = 7; we
validate this choice below.

We start performing our OpenBDMFT simulations on a Bethe lattice with
coordination number z = 6. We choose a large value of the Kerr nonlinearity,
U = 10, so to have enough separation — equal to 2U for a single disconnected
cavity — between the peaks in the spectral function. The lattice hopping strength
is instead J = 4; since Γeff

2 is proportional to J2, decreasing/increasing J is
expected to result in a less/more prominent Zeno effect. We then explore values
of Γ2 from 2.5 to 15.0, and we plot in Figure 9.6 the elements of the on-site reduced
density matrix in all the three sites of the auxiliary AIM; these elements give the
occupation probability in each on-site Fock state. We immediately notice that, on
the impurity site (top panel), the contributions to the density matrix come mainly
from the Fock states |0〉 and |1〉; together, these two states contribute (increasing
from low to high Γ2/U) 98.8%–99.8% of the total weight on the impurity site,

2On a generic lattice, this relation does not hold. Yet, a variety of DMFT Hamiltonian
studies have demonstrated a strong similarity between the results on the Bethe lattice and on
other lattices. Therefore, we can expect a similar generality also for our results.
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Figure 9.6: Elements of the AIM on-site reduced density matrix ρni in the
Fock basis at site i with ni bosons. The impurity site is indexed by i = 0, while
the bath site indexed by i = 1 (i = 2) is the one at low (high) energies. Γ2/U
(or equivalently Γ2/J) is increased from fading blue to strong blue. Parameters:
z = 6 on the Bethe lattice, ω0 = 1, U = 10, J = 4, P1 = 0.1, Γ2 = [2.5, 15.0].
The cutoffs on the i = 0, 1, 2 sites are respectively 5, 7, 7, as commented in the
text.

thus validating our expectation on the extent of the reduced Hilbert space and
our cutoff choice for i = 0. The situation is quite different in the auxiliary bath
sites (central and bottom panels), that instead display a thermal-like occupation
— although with a stark difference in the order of magnitude of the occupation
probabilities. The fact that the Fock states |n〉 with n ≥ 2 are still relevant
even in the deep Zeno regime is the reason we are using a higher cutoff of 7
in the bath sites with respect to a cutoff of 5 that we use in the impurity site.
However, as also made clear by the Bethe lattice self-consistency condition (9.30),
the auxiliary bath in some sense mirrors the properties of the impurity site (and
in turn, those of the lattice model). This means that, since the occupation on
the impurity site is low due to the presence of two-particle losses that dissipate
states with higher occupations, we can expect the occupation on the auxiliary
bath sites to be low as well. Specifically, for the parameters discussed here, the
occupation on the i = 1 bath site (central panel), having energy ω1 ≈ ω0 + U , is
roughly in the range 0.5–0.7, so based on the discussion on the choice of cutoffs
made in Section 8.2, a cutoff of 7 is expected to provide results with a negligible
error. This is especially clear for the i = 2 bath site (bottom panel), at energy
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Figure 9.7: Spectral function A� (top panel) and cavity correlation function
C� (bottom panel) of the impurity site, shown in solid lines for increasing values
of Γ2/U (fading blue to strong blue); the color scale is the same one used in
Figure 9.6. The red dashed lines correspond to −zIm{∆R}/(πJ2) (top panel)
and −z∆K/(2πiJ2) (bottom panel), and are shaded in accordance with the re-
spective solid blue lines. According to the self-consistency condition on the Bethe
lattice eqs. (9.30) and (9.31), at a given value of Γ2/U the solid blue line and its
corresponding dashed red line should overlap for an ideal AIM.

Response
functions

ω2 ≈ ω0 + 3U , whose occupation visibly decreases as Γ2 is increased, due to the
fact that in the deep Zeno regime we expect not to have any other spectral peaks
except for the first one. At the higher values of Γ2 shown here, the occupation
probability of Fock states |n〉 with n & 4 is already in the order of magnitude
of the numerical noise. The sizable difference in the order of magnitude of the
occupation probabilities of the two bath sites already points to the key result
that the i = 2 bath site, at higher energies, becomes less and less relevant as the
two-particle losses are increased. This effectively allows us to solve the problem,
in the deep Zeno regime, via a DMFT with a single auxiliary bath site.

We now take a look at the corresponding response functions on the impurity
site (i = 0), shown in Figure 9.7 (solid blue lines) alongside their fitted bath
hybridization functions (dashed red lines). At the lowest value of Γ2/U shown in
the plot, we still have two visible peaks in the spectral function (top panel), cor-
responding to the transitions between states discussed above. The bath sites con-
tribute each one a Lorentzian in the bath hybridization function; the Lorentzian
contributed by the site i = 1 fits the peak at low energies (ω1 ≈ ω0+U), while the
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Figure 9.8: Mean occupation n0 = 〈n̂0〉 on the impurity site as a function
of Γ2/U , normalized to its value at Γ2/U = 10; different colors correspond to
different values of J/U . The horizontal and vertical dashed black lines mark the
values n0(Γ2/U)/n0(10) = 1 and Γ2/U = 1, respectively; the solid black line
marks the occupation minimum for different values of J/U . Parameters: as in
Figure 9.6, except for J = [2, 5] and Γ2 = [2.5, 100.0].

Steady-state
occupations

one contributed by the site i = 2 fits the peak at high energies (ω2 ≈ ω0+3U). As
Γ2/U is increased, the peak at high energies quickly becomes less and less promi-
nent until it becomes irrelevant in the spectral function; the deep Zeno regime
could then be described via a linearized DMFT, i.e. a DMFT with a single bath
site. Interestingly, a similar approach has been proposed as an approximate so-
lution of DMFT in [176]. On the other hand, for increasing values of Γ2/U , the
first peak in the spectral function becomes more and more prominent; this is a
signature of the effective narrowing of the Hilbert space to the two Fock states
|0〉 and |1〉. While the disappearance of the secondary peak is also visible in
the cavity correlation function (bottom panel), connected with the occupation, a
corresponding increase or decrease in the first peak is not immediately apparent.

The disappearance of the secondary peak in the cavity correlation function
suggests that there are important signatures of the Zeno transition in the steady-
state occupation, proportionally related to the integral of the cavity correlation
function itself. Such occupation, calculated from the steady-state density ma-
trix ρ̂ss as 〈n̂0〉 = Tr (n̂0ρ̂ss) over a broad range of Γ2/U and J/U , is shown in
Figure 9.8, normalized to the latest available value in the deep Zeno regime; we
show only a selection of J/U values due to data visualization constraints.

155



Chapter 9. Probing the quantum Zeno effect via dynamical
mean-field theory

Figure 9.9: Effective loss rate Γeff
111 = Γ111−P111 on the first bath site i = 1 (see

also Figures 9.6 and 9.7), normalized to its value at Γ2/U = 10; different colors
correspond to different values of J/U . The horizontal and vertical dashed black
lines mark the values Γeff

111(Γ2/U)/Γeff
111(10) = 1 and Γ2/U = 1, respectively; the

solid black line marks the maximum Γeff
111 for different values of J/U . Parameters

as in Figure 9.8.

The transition into the Zeno regime, marked at the stationary point Γ2/U = 1
of the effective two-particle losses (9.38), results here in a stationary point of the
steady-state occupation. Namely, at low values of Γ2/U (. 1), the occupation
decreases as a result of increased two-particle losses — that remain however
smaller than the Kerr nonlinearity U . On the other hand, for larger values
of Γ2/U (& 1) in which the system is fully into the hard-core bosons regime,
the dissipation can only happen for pairs of particles on neighboring sites. Such
dissipation, however, is less and less likely to happen as potential pairs of particles
on the same site get dissipated by the local two-particle losses; the net result, as
we also have a small, fixed pump, is an increase in the occupation.

The transition between a regime in which the steady-state occupation de-
creases and a regime in which it increases doesn’t occur exactly at Γ2/U = 1 for
any value of J/U , as it happens instead for the effective two-particle losses (9.38).
The reason, aside from the introduction of a small incoherent pump not present
in the effective model eqs. (9.33) to (9.38) and that contributes to the steady-
state occupation, is that we also have a first-order contribution in eq. (9.33), that
scales with J/z, while the second-order contribution responsible for the Zeno ef-
fect scales as (J/U)2. The first-order contribution is responsible for the shift of

156



9.5. Conclusions

Zeno
signatures in
the auxiliary
bath

the minimum of the steady-state occupation; however, when J is increased, the
second-order contribution becomes progressively dominant, resulting in a conver-
gence of the stationary point of the steady-state occupation towards Γ2/U = 1
— see the solid black line in (9.8).

Finally, it’s interesting to look for signatures of such a transition in the prop-
erties of the auxiliary bath as well, since we already pointed out that the bath
itself acts as a mirror image of the original lattice. Since the first bath site (i = 1)
is the only relevant one in the deep Zeno regime, we can analyze its effective (in
the semiclassical sense) dissipation rate, given by the difference Γeff

111 = Γ111−P111
between the single-particle dissipation rate and the single-particle pump rate, as
a function of Γ2/U . This quantity corresponds to the HWHM of the Lorentzian
contributed by this site to the bath hybridization function. We see in Figure 9.9
that this effective loss rate qualitatively reproduces the behavior of the two-
particle effective loss rate Γeff

2 , i.e. it first increases up to a maximum value at
Γ2/U ≈ 1, after which it starts decreasing as Γ2/U is increased. The behavior
of the effective loss on the first auxiliary bath site provides a remarkably clear
picture of the process in which DMFT successfully encodes the nonlinear effects
characterizing the dynamics of a full lattice model into the parameters and the
consequent properties of an effective linear system.

9.5 Conclusions

In this Chapter, we have showcased our implementation of a powerful technique
for the analysis of strongly-correlated driven-dissipative photonic lattices, known
as OpenBDMFT — an extension of the DMFT technique originally developed
to study strongly correlated electronic systems. The core idea of this technique
is to replace all the interconnected nonlinear lattice sites surrounding any given
lattice site with an effective linear bath, which is in turn parameterized in terms
of a finite number of linear auxiliary sites. The parameters of the auxiliary sites
are then self-consistently fitted in order to correctly reproduce the frequency-
dependent local physics of the lattice. This effective parametrization has, first of
all, the benefit of dramatically reducing the size of the Hilbert space — a point
that is especially important, as we saw, in the context of driven-dissipative quan-
tum many-body problems. Furthermore, in contrast to the standard Gutzwiller
mean-field technique, the dynamical mean-field obtained via the DMFT is able
to reproduce even highly non-local effects.

As a paradigmatic example that can demonstrate the capabilities of this tech-
nique, we have analyzed a driven-dissipative Bose-Hubbard lattice in the thermo-
dynamic limit, where the driving is achieved via a single-particle incoherent pump
at a rate P1 and the local dissipation removes pairs of particles from the system
at a rate Γ2. Such a driven-dissipative Bose-Hubbard lattice becomes especially
interesting in the presence of strong — compared to the tunneling rate — local
two-particle losses. In fact, in this limit, the lattice can be mapped into a lattice
of hard-core bosons with non-local two-particle losses at a rate Γeff

2 induced by
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the tunneling rate. Interestingly, when the local two-particle losses Γ2 overcome
the local Kerr nonlinearity U , the non-local two-particle losses Γeff

2 actually start
decreasing as Γ2 is increased, with a behavior Γeff

2 ∼ Γ−1
2 in the limit Γ2 � U .

This regime is known as the quantum Zeno regime.
Via our OpenBDMFT analysis, performed on a Bethe lattice under a weak

incoherent pump, we have witnessed the emergence of hard-core bosons on the
sites of the original lattice, signaled both by the negligible occupation probability
of on-site Fock states |n〉 with n ≥ 2 and by the progressive reduction of the
response function to a single peak relative to the |0〉 → |1〉 transition.

The transition to the quantum Zeno regime is then testified by the behavior
of the number of particles as a function of Γ2/U on a given lattice site. While
for Γ2/U . 1 the occupation decreases as the local two-particle losses increase,
for Γ2/U & 1 the quantum Zeno effect results in an increase of such occupation
as Γ2 is increased. This effect becomes stronger at higher values of J/U , and our
observations are in qualitative agreement with OpenBDMFT results obtained
with an NCA impurity solver [126].

An analogous behavior can also be found in the width of the spectral peak
contributed by the auxiliary site at low energy. Here, the spectral peak has
instead a maximum around Γ2/U = 1, qualitatively reproducing the behavior of
Γeff

2 itself. This signature clearly shows how the OpenBDMFT procedure is able
to encode the non-trivial nonlinear effects in the lattice into the parameters of
a fully linear auxiliary bath, consisting in this case of just 2 auxiliary sites. In
the deep Zeno regime, in particular, the effective reduction of the DMFT bath
to a single auxiliary site shows that the OpenBDMFT method is able to map a
translationally invariant, highly nonlinear lattice of cavities into a dimer, in which
one of the cavities serves as a representative of any one of the lattice cavities, and
the other one mimics the dynamical mean interaction with the rest of the lattice.
This result stems directly from our choice for the impurity solver; in contrast
to other solvers, the one we employ here inherently provides a more detailed
insight on the structure of the DMFT auxiliary bath, and, as a consequence, it
can directly point to a more simplified physical picture.

These initial exciting results open the way to further extensions of our numer-
ical code, with the goal of being able to treat systems with a finite condensate
fraction and with coherent pumping mechanisms, for which an exact diagonaliza-
tion has to be ruled out due to the behemoth size of the Hilbert space3 and one
has to resort to Arnoldi-like diagonalization schemes. These technical advances
would then allow us to explore systems with light-matter coupling at the quan-
tum level [13, 98, 106, 199] and with non-trivial non-Markovian effects, making
our OpenBDMFT implementation a promising platform for the investigation of
novel many-body physics.

3A coherent pump would break the global gauge symmetry, thus it’s not possible to use the
numerical simplifications induced by the block structure of the Lindbladian matrix.
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Conclusions

In Part II we focused on the analysis of driven-dissipative strongly-correlated
photonic systems described by a Lindblad equation for the density matrix.

The primary tools we employed in our analysis were the exact numerical
diagonalization of the Lindblad equation, performed within the framework of the
superparticle representation, and the Keldysh field theory for the calculation of
non-equilibrium response functions; both are reviewed in Chapter 7. During our
review of this technical toolbox, we focused in particular on the properties of the
basic building block of any driven-dissipative photonic lattice system: a single
driven-dissipative cavity. In absence of nonlinearities, such a cavity possesses
a trivial Lorentzian-shaped spectral function, centered around the bare cavity
frequency and with a width controlled by its single-particle loss/pump rates;
yet, despite its simplicity, the analytical knowledge on the linear cavity is of the
utmost importance in the design of more advanced numerical techniques. We also
discussed how to dramatically reduce the computational resources required for
the diagonalization by taking advantage of the global phase rotation symmetry
possessed by the physical models we studied.

In Chapter 8 we then focused our attention on the study of two coupled driven-
dissipative nonlinear cavities, the so-called driven-dissipative Bose-Hubbard Dimer
(BHD). Such a system is both intriguing per se, due to the presence of a semi-
classical localization-delocalization transition of which we looked for quantum
signatures, but also as a basic building block for the analysis of full lattice sys-
tems. After a review of the semiclassical transition, we considered the quantum
regime in the case of both uniform and non-uniform pumping. In the former case,
the system is known to have a trivial steady-state density matrix that does not

159



Chapter 10. Conclusions

depend on the Hamiltonian of the dimer; therefore, we looked for the signatures
of the transition both in the time dynamics of the occupation imbalance and in
the steady-state single-particle response functions, that are instead sensitive to
the details of the Hamiltonian, finding a crossover between the localized and the
delocalized phases. By using a non-uniform pumping, we were instead able to
induce a non-trivial stationary state density matrix; therefore, we could obtain
signatures of the transition in the steady-state occupation imbalance as well. In
this case, we also derived a connection between the pump imbalance and the
current flowing in the dimer via the Keldysh component of the single-particle
response function.

We stepped up the complexity of the problem in Chapter 9, where we con-
sidered the problem of studying a driven-dissipative strongly-correlated photonic
lattice in the thermodynamic limit. In order to be able to handle the massive size
of the Hilbert space of the system and yet to retain crucial correlations, we re-
sorted to a powerful technique known as Dynamical Mean Field Theory (DMFT)
— also called OpenBDMFT in the specific context of driven-dissipative bosonic
systems. In the DMFT picture, similar to a standard mean-field treatment, any
lattice site experiences an effective interaction (or “bath”) generated by all the
other lattice sites; crucially for the treatment of strong correlations, though, the
DMFT mean-field is not static, but is provided with temporal correlations. In our
implementation of the DMFT technique, we modeled the effective bath as a col-
lection of linear cavities connected to any one of the lattice sites; the parameters
of the linear cavities modeling the bath were then self-consistently determined
via a procedure involving the iterative diagonalization of the effective system
composed by a generic lattice site connected to these linear cavities.

We showcased the capabilities of our DMFT implementation by studying a
paradigmatic Bose-Hubbard lattice, provided with single-particle pumping and
two-particle losses, which can be seen as the dissipative analogous of the Kerr
nonlinearity. In presence of strong two-particle losses, the photons progressively
acquire a hard-core behavior, i.e. the states with two or more photons per cavity
are highly suppressed. The numerical results were able to recover the consequent
narrowing of the Hilbert space in this regime, and we were able to reproduce the
effective interaction resulting from a lattice of highly nonlinear cavities by em-
ploying instead, at most, two linear cavities in the bath. Even more impressively,
we were able to reproduce the physics of the so-called Zeno regime with just one
linear cavity in the bath, i.e. with a dimer of cavities. In this regime that, being
due to non-local effects, is completely neglected by a Gutzwiller mean-field anal-
ysis, the effective dissipation decreases as the physical two-particle dissipation
increases, in a seemingly paradoxical behavior. We showed striking signatures
of this effect in the behavior of the average steady-state occupation obtained via
DMFT; after a certain threshold, the occupation of the lattice cavities starts in
fact to increase when we increase the two-particle dissipation. Thanks to our
discretized representation of the effective bath, that in this regime reduced to
just one linear cavity, we were able to establish that such effect was encoded by
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the DMFT procedure into an analogous behavior of the effective lifetime of the
bath cavity.

In the light of these very promising results obtained via our implementation of
the DMFT technique for driven-dissipative photonic lattices, we plan to work on
further extensions to enable the treatment of a wider class of photonic systems.
These include, but are not limited to, the exploration of Krylov-space techniques
to reduce the computational costs and to enable the treatment of much larger
Hilbert spaces, the analysis of systems with a finite condensate fraction, the
inclusion of a light-matter coupling at the quantum level, as well as the treatment
of non-Markovian effects. We are confident that the development of the full
potential of this technique will provide unprecedented possibilities to explore
novel frontiers in the investigation of quantum many-body problems.
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Final remarks

This Thesis presented the investigation of driven-dissipative photonic lattices us-
ing two different routes: a semiclassical analysis, which is expected to be accurate
for a large number of excited bosons (Part I), and a fully quantum analysis of
the driven-dissipative strongly-correlated many-body problem (Part II).

The mechanisms of driving and dissipation considered here were described
by a Lindblad equation, i.e. an equation for the time-evolution of the density
matrix of the system of interest, where the surrounding environment — to which
the open nature of the system is ascribed — is traced out. We went through a
more thorough discussion on the Lindblad equation in Chapter 7, including its
numerical diagonalization; however, already in Chapter 2, it was instrumental in
deriving the semiclassical theory of lasers as a mean-field approximation of the
Lindbladian dynamics in a cavity endowed with optical gain.

As a system of interest for the semiclassical investigation in Part I, we chose
to focus on a topological laser (also dubbed topolaser), a device that lases in a
topologically protected mode as a means to increase its robustness against static
disorder, its flexibility in the design shape, and as a promising strategy to effi-
ciently increase the power output upon increasing the active area of the device.
In Chapter 3, we worked in a regime in which the optical medium responsible
for the gain could be traced out from the mean-field equations of the semiclas-
sical theory of lasers. Therefore, we explored different strategies for the spatial
localization of the pump needed to sustain the lasing process, in such a way as
to promote the emission from a topological mode. During our investigation, we
uncovered the emergence of new instability regimes and of a potentially slow
transient dynamics, and we pointed out key characteristics of the topological
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robustness and of the lasing regime. In Chapter 3, instead, motivated by the
goal of providing a theoretical explanation for the observations in the pioneering
topolaser experiment in [29], we simulated the full equations that describe the
frequency-dependent semiclassical theory of lasers. We then proposed a scheme
in which the spectral selection mechanism, resulting from the explicit treatment
of the gain medium in the theory, conspires with a suitably engineered spatial
selection mechanism in order to promote lasing from a topological mode, even
when the pump is uniformly distributed across the whole system.

Our quantum analysis in Part II, instead, focused on the treatment of lat-
tices of driven-dissipative nonlinear cavities. The non-equilibrium nature of the
problem was addressed by working in the framework of the Keldysh field theory,
reviewed in Chapter 7 and instrumental in the calculation of response functions;
at the numerical level, these latter were then obtained via a suitable spectral rep-
resentation that involved the eigenvectors and the eigenvalues of the Lindbladian
matrix representing the Lindblad equation.

As a first step towards our final goal, in Chapter 8 we performed an exact di-
agonalization analysis of a Bose-Hubbard dimer provided with incoherent single-
particle pumping and single-particle losses; given the infinite size of the photonic
Hilbert space, even this very small size requires some care. We were able to reduce
the numerical diagonalization requirements by exploiting the global phase rota-
tion symmetry of the Lindblad equation, managing therefore to reconstruct the
full quantum dynamics of the observables and to probe the steady-state response
functions. This allowed us to look for the quantum signatures of the localization-
delocalization transition occurring in the semiclassical regime, in the case of both
symmetric and asymmetric pumping and losses. The extension to a full lattice
of cavities in the thermodynamic limit, however, required the development of a
more sophisticated technique. In this context, we presented in Chapter 9 our
implementation of a technique known as dynamical mean-field theory, originally
developed for systems of strongly correlated electrons. The idea behind this tech-
nique consists in mapping a translationally invariant lattice model into a smaller,
semi-analytical system of connected cavities that can be more easily numerically
diagonalized. A consistent mapping between these two models is ensured by
matching their local Green’s functions, in such a way that, eventually, the com-
plex non-linear action of a lattice on any one of its cavities is encoded into the
properties of a finite set of linear cavities, to be determined self-consistently. In
order to showcase the power of this idea, we analyzed a Bose-Hubbard lattice
provided with incoherent pumping and two-particle losses. As a first application
of the method, we focused on the regime of large two-particle losses which in
turn induce a non-local effective loss process, that is responsible for the onset of
the so-called quantum Zeno regime. In this regime, we face what may seem a
paradox: the effective losses (the average occupation) decrease (increases) when
the physical losses are increased. The Gutzwiller mean-field theory is not able to
describe the onset of this quantum Zeno effect, because of the non-local origin
of the latter; our dynamical mean-field theory implementation, instead, is able
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to provide the correct physical picture, and to encode the complex non-linear
features of the lattice model into the properties of a single, linear cavity.

The most natural, yet challenging and ambitious follow-up of this Thesis is a
path to connect the two lines of research that we carried out during the Ph.D.
work.

The methodology we have developed can indeed be generalized to different
lattice models, and there is no conceptual obstacle preventing its application to
systems in topological photonics. Though, for two-dimensional systems, DMFT
becomes exact in the limit of infinite coordination, studies of strongly correlated
fermionic topological insulators provided indeed very promising results and rich
physics.

Possible extensions of DMFT can be envisaged to deal with the current limi-
tations, and they will be guided by the physical insight derived from semiclassical
methods and by a constant interaction with the experimental community.
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Superparticle states and tilde-rule

Let’s take a system made of N sites. According to the vectorization procedure
discussed in Section 7.2.1 we have to introduce a tilde-copy of the system, whose
additional N sites are marked by a tilde “∼”. The particle creation/annihilation
operators in the original system and the ones in the tilde system commute ac-
cording to the following rules (adapted from [129]):[

ai, a
†
j

]
±

= δij , [ai, aj ]± =
[
a†i , a

†
j

]
±

= 0; (A.1)

[
ãi, ã

†
j

]
±

= δij , [ãi, ãj ]± =
[
ã†i , ã

†
j

]
±

= 0; (A.2)

[ai, ãj ]± =
[
ai, ã

†
j

]
±

=
[
a†i , ãj

]
±

=
[
a†i , ã

†
j

]
±

= 0; (A.3)

ai |0〉 |0̃〉 = ãi |0〉 |0̃〉 = 0 , (A.4)

where [A,B]± = AB ± BA, and “+” holds for fermions while “−” holds for
bosons.

You can then easily prove by induction that the following relation holds:[
aj ,
(
a†j

)nj]
±

= nj

(
a†j

)nj−1
, (A.5)

with nj = 1 for fermions and nj > 0 for bosons.

169



Appendix A. Superparticle states and tilde-rule

At this point, if we define n = (n1, . . . , nN ) and m̃ = (m1, . . . ,mN ), we can
define the following

|n, m̃〉 +

√√√√ (−i)λ
∑

i
ni∏

i ni!

√√√√ (−i)λ
∑

i
mi∏

imi!

(
a†1

)n1
· · ·
(
a†N

)nN (
ã†1

)m1
· · ·
(
ã†1

)mN
|0〉 |0̃〉

(A.6)
to be the N -particles state with n1 particles in site 1 and m1 particles in site 1̃,
n2 particles in site 2 and m2 particles in site 2̃, and so on up to site N . Here,
λ = 1 for fermions and λ = 0 for bosons. As an example, in the case of a single
site, we get

|n, m̃〉 +
√

(−i)λn
n!

√
(−i)λm
m!

(
a†
)n (

ã†
)m |0〉 |0̃〉 . (A.7)

We’ll then show that:

1. That this definition is still consistent with the laddering rules, and in par-
ticular that the number operator acts as we expect;

2. That these states are normalized.

We will work out the bosonic case, as this is the case we treat in this work; the
discussion for fermions is nonetheless very similar.

For the first point, by using the commutation relation (A.5) and the definition,
we get:

aj |n, m̃〉 =
√

1
· · ·nj ! · · ·

√
1∏
imi!

· · · aj
(
a†j

)nj
· · · |0〉 |0̃〉

=
√

1
· · ·nj(nj − 1)! · · ·

√
1∏
imi!

· · ·nj
(
a†j

)nj−1
· · · |0〉 |0̃〉

= √nj

√
1

· · · (nj − 1)! · · ·

√
1∏
imi!

· · ·
(
a†j

)nj−1
· · · |0〉 |0̃〉

= √nj |n : nj − 1, m̃〉

where the notation |n : nj − 1, m̃〉 indicates a state obtained from |n, m̃〉 by re-
placing the j-th element of n, nj , with nj − 1. Similarly, where now we don’t
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need the commutation relation (A.5), we get

a†j |n, m̃〉 =
√

1
· · ·nj ! · · ·

√
1∏
imi!

· · · a†j
(
a†j

)nj
· · · |0〉 |0̃〉

=
√

1
· · · (nj + 1)nj ! · · ·

√
1∏
imi!

· · ·
√
nj + 1

(
a†j

)nj+1
· · · |0〉 |0̃〉

=
√
nj + 1

√
1

· · · (nj + 1)! · · ·

√
1∏
imi!

· · ·
(
a†j

)nj+1
· · · |0〉 |0̃〉

=
√
nj + 1 |n : nj + 1, m̃〉

The proof goes in the same way for the tilde-equivalents; overall, we get the
following laddering rules:{

aj |n, m̃〉 = √nj |n : nj − 1, m̃〉
a†j |n, m̃〉 =

√
nj + 1 |n : nj + 1, m̃〉

and (A.8){
ãj |n, m̃〉 = √mj |n, m̃ : mj − 1〉
ã†j |n, m̃〉 =

√
mj + 1 |n, m̃ : mj + 1〉

which verify, as we want,

a†jaj |n, m̃〉 = nj |n, m̃〉 and ã†j ãj |n, m̃〉 = mj |n, m̃〉 . (A.9)

Now we check the normalization; we’ll concentrate on the single-site case,
since the extension to the multi-site case is immediate.

〈n′, m̃′|n, m̃〉 =
√

1
n!m!n′!m′!

〈
0, 0̃

∣∣∣∣∣ (ã)m′ (a)n′(a†)n︸ ︷︷ ︸
(
ã†
)n ∣∣∣∣∣ 0, 0̃

〉
We focus on the terms grouped by the horizontal bracket. By applying recursively
the commutator (A.5), we get

(
a
)n′(

a†
)n

=


n!
(
a
)n′−n

if n′ > n

n! if n′ = n

n′!
(
a†
)n−n′

if n > n′

(A.10)

and the same goes for the tilde-case. Overall, we have to distinguish the following
cases for 〈n′, m̃′|n, m̃〉:

• n′ > n or m′ > m

Either
(
a
)n′−n

or
(
ã
)m′−m

annihilates |0, 0̃〉 =⇒ 〈n′,m′|n,m〉 = 0.
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• n > n′ or m > m′

Either
(
a†
)n′−n

or
(
ã†
)m′−m

annihilates 〈0, 0̃| =⇒ 〈n′, m̃′|n, m̃〉 = 0.

• n = n′ or m = m′

We are left with

〈n′, m̃′|n, m̃〉 =
√

1
(n!)2(m!)2n!m!���

��:1
〈0, 0̃|0, 0̃〉 = 1. (A.11)

So, in general,
〈n′, m̃′|n, m̃〉 = δn,n′δm̃,m̃′ (A.12)

where δn,n′ = δn1,n′1
δn2,n′2

· · · δnN ,n′N and similarly for the tilde counterpart.
Having defined (A.6), we now prove that it’s consistent with the tilde-rule

(7.32) — again for the bosonic case:

aj |I〉 = aj

∞∑
n:nj=0

|n, ñ〉 = aj

∞∑
n:nj=0

1
· · ·nj ! · · ·

· · · (a†j ã
†
j)nj · · · |0〉 |0̃〉

= aj

∞∑
n:nj=1

1
· · ·nj ! · · ·

· · · (a†j ã
†
j)nj · · · |0〉 |0̃〉

=
∞∑

n:nj=1

1
· · ·nj ! · · ·

· · ·nj ã†j(a
†
j ã
†
j)nj−1 · · · |0〉 |0̃〉

= ã†j

∞∑
n:nj=1

1
· · · (nj − 1)! · · · · · · (a

†
j ã
†
j)nj−1 · · · |0〉 |0̃〉

= ã†j

∞∑
n:nj=0

1
· · ·nj ! · · ·

· · · (a†j ã
†
j)nj · · · |0〉 |0̃〉

= ã†j

∞∑
n:nj=0

|n, ñ〉

= ã†j |I〉 (A.13)

where we’ve applied the commutator (A.5) and we’ve used the fact that tilde and
non-tilde operators always commute.
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Size of the Lindbladian matrix and
role of gauge symmetry

Let’s take a system of N bosonic sites, each with a cutoff bi, i = 1, . . . , N on
the number of bosons. The number of possible Fock states is then

∏N
i=1(bi + 1).

In the superbosonic representation (see Section 7.2) that we use to vectorize
the Lindblad equation, tough, the Lindbladian matrix is written in the basis
of the Fock states of an enlarged system, consisting of the original system plus
an identical tilde-copy of it. The number of Fock states in such an enlarged
system is then

(∏N
i=1(bi + 1)

)2
(equal to the number of entries of the density

matrix, that is now a vector), so the dimension of the Lindbladian matrix is(∏N
i=1(bi + 1)

)2
×
(∏N

i=1(bi + 1)
)2

.

In the presence of a global gauge symmetry (i.e. phase rotation symmetry),
though, we can write the Lindbladian matrix as a series of diagonal blocks of
decreasing dimension, each labeled by an integer k equal to the difference between
the total number of bosons in the tilde-system and the total number of bosons
in the original system — see Figure 9.3. Given these constraints, k can take the
values k = 0, ±1, ±2, . . . , ±

∑N
i=1 bi, so we have a total of 1+2

∑N
i=1 bi diagonal

blocks.

In order to find the dimensions of these blocks, we first have to find the
number of states we can form such that the total occupation of each state is
equal to M ∈ N. This number is equal to cM + [xM ]F (x), where cM is the M -th
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degree coefficient of the generating polynomial

F (x) =

∑N

i=1
bi∑

n=1
cnx

n =
N∏
i=1

bi∑
j=0

xj . (B.1)

By using the geometric series

bi∑
j=0

xj = 1− xbi+1

1− x , (B.2)

we can write the generating polynomial as

F (x) =
N∏
i=1

1− xbi+1

1− x =
∏N
i=1
(
1− xbi+1)

(1− x)N
. (B.3)

The coefficient [xM ]F (x) can be easily calculated via a symbolic math soft-
ware, e.g. Mathematica® or MATLAB®’s Symbolic Math Toolbox™. We can
obtain a closed expression is some limiting cases; as an example, if all the cutoffs
bi’s have the same value, i.e. bi ≡ b ∀i, then

F (x) =
(
1 + x+ x2 + . . .+ xb

)N =

 b∑
j=0

xj

N

=
(

1− xb+1

1− x

)N
. (B.4)

We can apply the binomial formula twice to get

F (x) =
(
1− xb+1)N (1− x)−N =

∞∑
i=0

(−1)i
(
N

i

)
xi(b+1)

∞∑
j=0

(
N + j − 1

j

)
xj

(B.5)
and we can group the terms as

F (x) =
∞∑
i=0

∞∑
j=0

(−1)i
(
N

i

)(
N + j − 1

j

)
xi(b+1)+j . (B.6)

The term of power xM will satisfy M = i(b + 1) + j, so that j = M − i(b + 1);
substitution of j gives (note that

(
n
k

)
=
(
n

n−k
)
)

[xM ]F (x) =
∞∑
i=0

(−1)i
(
N

i

)(
N − 1 +M − i(b+ 1)

M − i(b+ 1)

)
(B.7)

Now notice that the sum is not actually infinite; since
(
n
k

)
= 0 for k > n, we can

restrict the sum up to i = N . We can simplify further by noting that we have
non-zero entries only for M − i(b + 1) ≥ 0, so since M and b are non-negative
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and M ≤ bN we have the condition i ≤
⌊
M
b+1

⌋
< N . Eventually, the number of

solutions cM in this case is equal to

[xM ]F (x) =
b Mb+1c∑
i=0

(−1)i
(
N

i

)(
N − 1 +M − i(b+ 1)

M − i(b+ 1)

)
. (B.8)

Having found how many states we can form such that the total occupation of
each state is equal to M ∈ N, we can then ask what’s the number D(k) of pairs
of states we can form such that the difference between the total occupations of
the states is equal to k ∈ Z, which is exactly the integer labeling the diagonal
blocks of the Lindbladian with gauge symmetry. This number is given by

D(k) = D(|k|) =

∑N

i=1
bi−|k|∑

n=1
cn · cn+|k|, (B.9)

where cn are the coefficients of the generating polynomial (B.3). So, each diagonal
block has a dimension D(k)×D(k).

As an example of the advantage of having such a diagonal-block structure,
we can take a look at the impurity model employed in Section 9.4, having 3
bosonic sites with cutoffs b = (5, 7, 7)ᵀ. In Table B.1, we list the dimensions

k D(k)
Whole Lindbladian 147456

0 11040
+1 10857
−1 10857
+2 10326
−2 10326
. . . . . .

Table B.1: Linear dimension of the diagonal blocks of the Lindbladian for 3
bosonic sites with cutoffs b = (5, 7, 7)ᵀ.

of the diagonal blocks in this case, plus the dimension of the full Lindbladian
matrix. The first blocks are already one order of magnitude smaller than the full
Lindbladian; this is important, since the storage requirements scale as the square
of the linear dimension and the diagonalization times typically scale as the cube
of the linear dimension. Assuming these scaling, exploiting the gauge symmetry
allows us to solve this specific problem by diagonalizing the first three blocks only,
which provide the steady-state density matrix and the steady-state single-particle
response functions, thus by employing only the 1.64% of the memory required to
diagonalize the full Lindbladian matrix and only the 0.12% of the time required
to diagonalize the full Lindbladian.
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