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Abstract

■ The animal brain is endowed with an innate sense of num-
ber allowing to intuitively perceive the approximate quantity of
items in a scene, or “numerosity.” This ability is not limited to
items distributed in space, but also to events unfolding in time
and to the average numerosity of dynamic scenes. How the
brain computes and represents the average numerosity over
time, however, remains unclear. Here, we investigate the
mechanisms and EEG signature of the perception of average
numerosity over time. To do so, we used stimuli composed
of a variable number (3–12) of briefly presented dot arrays
(50 msec each) and asked participants to judge the average
numerosity of the sequence. We first show that the weight of
different portions of the stimuli in determining the judgment
depends on how many arrays are included in the sequence

itself: the longer the sequence, the lower the weight of the
latest arrays. Second, we show systematic adaptation effects
across stimuli in consecutive trials. Importantly, the EEG results
highlight two processing stages whereby the amplitude of
occipital ERPs reflects the adaptation effect (∼300 msec after
stimulus onset) and the accuracy and precision of average
numerosity judgments (∼450–700 msec). These two stages
are consistent with processes involved with the representation
of perceived average numerosity and with perceptual decision-
making, respectively. Overall, our findings provide new
evidence showing how the visual system computes the average
numerosity of dynamic visual stimuli, and support the existence
of a dedicated, relatively low-level perceptual mechanism medi-
ating this process. ■

INTRODUCTION

Humans and other animals have an innate ability to rapidly
estimate the number—or numerosity—of objects in a
visual scene (e.g., Feigenson, Dehaene, & Spelke, 2004;
see also the recent reviews by Visibelli, Porru, Lucangeli,
Butterworth, & Benavides-Varela, 2024; Visibelli, Vigna,
Nascimben, & Benavides-Varela, 2024). This ability is inde-
pendent of counting and produces an approximate esti-
mation prone to errors proportional to the number of
items being estimated (e.g., Anobile et al., 2016; but see
Testolin & McClelland, 2021). Because of the properties
of numerosity perception, like, for instance, it being sub-
ject to perceptual adaptation effects, numerosity has been
proposed to represent a “primary” perceptual attribute
(Anobile et al., 2016; Burr & Ross, 2008; but see Leibovich,
Katzin, Harel, & Henik, 2017, for a different account), that
is, one of the fundamental building blocks of our percep-
tual experience. Research into numerosity perception
focused especially on the judgment of items presented
simultaneously in space, like arrays of dots. Numerosity,
however, can be computed from several different types
of stimuli. For instance, rather than objects distributed in
space, numerosity can be extracted from series of events
(e.g., brief flashes) presented over time (e.g., Arrighi,

Togoli, & Burr, 2014). Research in this context has shown
that different types of numerical stimuli can affect each
other via the process of perceptual adaptation (Anobile,
Arrighi, Togoli, & Burr, 2016; Arrighi et al., 2014) and the
serial dependence effect (Fornaciai & Park, 2019a),
suggesting the existence of an abstract “number sense”
(Anobile, Arrighi, et al., 2016; Arrighi et al., 2014). In terms
of neural correlates, a numerosity-sensitive brain activity
has been observed throughout the visual dorsal stream
starting from early visual areas, in terms of localization
(Castaldi, Piazza, Dehaene, Vignaud, & Eger, 2019;
DeWind, Park, Woldorff, & Brannon, 2019; Harvey, Klein,
Petridou, & Dumoulin, 2013; Roggeman, Santens, Fias, &
Verguts, 2011), and from very early processing stages, in
terms of timing (Fornaciai & Park, 2018; Fornaciai,
Brannon, Woldorff, & Park, 2017; Park, DeWind, Woldorff,
& Brannon, 2016; Temple & Posner, 1998).

Although the use of static dot-array stimuli probably
remains themost common practice in numerosity percep-
tion research, the external environment and the stimuli
that our sensory organs receive are rarely static. Because
of the intrinsically dynamic nature of the external world,
numerosity perception is likely to involve dynamic pro-
cesses based on information received over a relatively
extended period, rather than being based on static snap-
shots of the external world. Imagine, for instance, watch-
ing people walking down a street: The number of people
varies from moment to moment, and whether the street
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would appear crowded or not would depend on howmany
people we see on average in a given period. In many
cases, our experience of numerosity could thus be defined
by the average number of items observed in a given period
rather than a static snapshot of a visual scene.

An intriguing question is thus how the visual system
computes and processes the average numerosity of
dynamic visual events over time (or “time-averaged”
numerosity), involving both the spatial and the temporal
dimension. Previous research in this context shows that
when presented with dynamic stimuli modulated over
time (Togoli, Fornaciai, & Bueti, 2021) or series of discrete
stimuli (Katzin, Rosenbaum, & Usher, 2021), humans are
able to judge their average numerosity with good accu-
racy and precision. In line with the concept of “summary
statistics” (e.g., Whitney & Yamanashi Leib, 2018;
McDermott, Schemitsch, & Simoncelli, 2013), many
studies indeed show that the visual system can easily
extract or compute the average value of a feature modu-
lated over time (e.g., Robitaille & Harris, 2011; de Fockert
& Wolfenstein, 2009; Chong & Treisman, 2005). In terms
of the properties of average numerosity perception, it has
been shown that the judgment precision of average
numerosity tends to increase with the sequence length
(i.e., the number of individual dot arrays included in the
sequence), leading to better averaging performance when
more information is provided (Katzin et al., 2021). In addi-
tion, Katzin and colleagues’ (2021) results provided some
indications of recency effects, whereby more recent infor-
mation in the sequence has a larger weight on perceptual
decisions, although this effect was observed only in some
participants. However, such results were obtained with
sequences of relatively long (i.e., 500 msec) discrete stim-
uli, which likely engage mnemonic rather than perceptual
processes.

In the present study, we thus aim to further address the
perceptual mechanisms of average numerosity perception
and the neural signature of this process. Could average
numerosity be considered a perceptual feature explicitly
processed and represented by the visual system? To
address this possibility, we employed a classification task
of the average numerosity of dynamic dot-array stimuli
(Togoli et al., 2021). Namely, in each trial, the participants
observed a fast sequence of multiple (3–12) individual
arrays varying in numerosity, presented at 20 Hz, and were
asked to judge whether their average numerosity was
higher or lower compared with a reference shown before
the task. The stimuli were specifically designed to give the
impression of a continuous stimulus varying over time,
rather than a sequence of individual, static arrays. To
understand how average numerosity is computed and rep-
resented, we first assessed the weight of different arrays in
the sequence (first, middle, last) in determining the judg-
ment. This was done separately according to how many
individual arrays were included in the sequence, to test
whether increasing the amount of information may affect
the weight of different portions of the sequence.

Moreover, we assessed trial-history effects across different
stimuli and, in particular, the presence of perceptual adap-
tation effects. Indeed, if average numerosity is explicitly
represented by the visual system, we would expect it to
be susceptible to perceptual adaptation, similarly to what
has been demonstrated with other types of stimuli like
static dot arrays (e.g., Burr & Ross, 2008) or sequential
stimuli (e.g., Arrighi et al., 2014). Adaptation is usually
induced by exposure to a relatively long, sustained stimu-
lus and entails a “repulsive” change in the perceived mag-
nitude of a stimulus, increasing the difference between
“adaptor” and “adapted” stimulus (e.g., see Kohn, 2007,
for a review about the mechanisms of perceptual adapta-
tion). For instance, after exposure to an array with a low
number of dots, the perceived numerosity of a stimulus
increases and vice versa. In numerosity perception, this
process has been shown to arise not only with long expo-
sures but also with multiple briefer exposures (Aagten-
Murphy & Burr, 2016). With EEG, we measured the neural
signature of average numerosity processing and the adap-
tation effect, as well as the relationship between behav-
ioral and neural measures, to better understand the brain
processing stages linked to the representation of average
numerosity. Specifically, if average numerosity is explicitly
represented by the visual system, we expect EEG signals to
highlight specific processing stages sensitive to the aver-
age numerosity of the stimuli. In addition, we would
expect such a correlate of average numerosity to be able
to predict the behavioral performance in the task. Finally, a
genuine correlate of average numerosity should reflect not
only the numerosity of the sequences but also the distor-
tion of perceived average numerosity, as induced by per-
ceptual adaptation effects across different stimuli. We thus
also addressed the relationship between brain responses
as a function of the stimulus in the preceding trial and
the adaptation effect measured behaviorally.

METHODS

Participants

The sample tested in this study included 22 adult volun-
teers (mean age = 23 years, SD = 2.82; age range = 18–
31; 1 male). All participants provided written informed
consent before testing and received monetary compensa-
tion for their time (10A/hr). All the participants had
normal or corrected-to-normal vision, were naive to the
purpose of the experiment, and reported no history of
neurological, attentional, or psychiatric disorders. The
research protocol was approved by the ethics committee
of the International School for Advanced Studies (Protocol
10035-III/13) and was in line with the Declaration of Hel-
sinki. One participant was excluded from the data analysis
because of equipment failure (i.e., missing EEGdata), leav-
ing 21 participants included in the final sample of the
study. Because we did not have a specific a priori hypoth-
esis concerning the expected effect size in terms of the
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mechanisms of average numerosity, the sample size esti-
mation was based on the secondary aim of the study to
assess the mutual interference effects across numerosity
and duration. The sample size of the study was thus com-
puted with a power analysis based on two previous studies
addressing the interference effects across magnitudes
(Togoli et al., 2021, 2022). In the power analysis, we took
an average effect size (Cohen’s d) computed from previ-
ous results of d = 0.82. Considering a two-tailed distribu-
tion and a power of 95%, the power analysis indicated a
sample size of 22 participants. Note that although the
majority of participants recruited were female partici-
pants, numerosity perception is not expected to differ
based on the sex or gender of the participants (Kersey,
Braham, Csumitta, Libertus, & Cantlon, 2018).

Stimuli

The visual stimuli were generated using the routines of the
Psychophysics Toolbox (v.3; Kleiner, Brainard, & Pelli,
2007; Pelli, 1997) in MATLAB (r2021b, Mathworks, Inc.).
During the experiment, the stimuli were displayed on a
1920 × 1080 LCD monitor running at 120 Hz, encompass-
ing a visual angle of about 48° × 30° from a distance of
57 cm. Each participant performed the experiment in a
closed booth equipped with a Faraday cage, where the
only source of light was the monitor screen. The stimulus
design was based on Togoli and colleagues (2021) and
consisted of dynamically modulated arrays of dots. Specif-
ically, the dynamic stimuli involved a sequence of multiple
briefly flashed (50 msec each; 20 Hz frequency) dot arrays
modulated in average numerosity (i.e., the average
amount of dots displayed across all the arrays included
in a sequence). The number of dots in each array varied
around the mean numerosity of the sequence selected
in each trial (±50%). The numerosity of each array was
computed before the presentation of the stimulus in order
for the sequence to result in a specific average numerosity,
while keeping the overall variance of the sequence roughly
equal irrespective of the sequence length. This stimulus
construction procedure and presentation frequency
(20 Hz) were chosen in order for the sequence to be per-
ceived as a fast dynamic stimulus, while avoiding toomuch
perceptual “overlap” between consecutive arrays. With
increasing presentation frequency, it is indeed likely that
consecutive arrays could be increasingly “fused” together.
In other words, we aimed to have stimuli that give the
impression of a continuous modulation of numerosity
(rather than a series of discrete, static arrays), while retain-
ing the ability to assess the influence of different portions
of the sequence on the global judgment of average numer-
osity. The positions of the dots were computed to avoid
overlapping, considering a minimum interdot distance of
2.5 times the radius of an individual dot. The minimum
interdot distance was set to scale with the radius of the
dots to keep the same border-to-border minimum dis-
tance irrespective of dot size. Dot sizes and the radius of

the area encompassing them were systematically varied in
a trial-by-trial fashion, in line with the procedure used in
previous studies (Fornaciai et al., 2017; Park et al., 2016;
DeWind, Adams, Platt, & Brannon, 2015). The radius of
the dots ranged from 6 to 10 pixels (0.14°–0.24° of visual
angle), whereas the radius of the area of the stimulus
spanned from 200 to 400 pixels (4.76°–9.52° of visual
angle). Each array in a sequence had the same area and
the same dot size. The dots in each array were 50% black
and 50%white (MATLAB RGB color values: black= [0 0 0],
gray = [0.5 0.5 0.5], white = [1 1 1]; CIE L*a*b color
values: black = [0 0 0], gray = [53.39 0 0], black = [0 0
0]), to keep the global contrast of the stimuli similar to
the gray background. In the case of odd numerosities,
the color of the exceeding dot was determined randomly
(i.e., either black or white). The dots were presented at
maximum contrast with the background. The luminance
of the white dots was 98.17 cd/m2, the luminance of the
black dots was 0.24 cd/m2, and the luminance of the gray
background was 46.79 cd/m2. In case of odd numerosities,
the color of the exceeding dot was determined randomly.
The average numerosity of each stimulus could be either
15, 21, 30, 42, or 60 dots. The number of arrays in the
sequence could be 3, 4, 6, 9, or 12 arrays, corresponding
to a total duration of the stimulus of 150, 200, 300, 450, and
600 msec. Both the average numerosity range and the
number of arrays in the sequence were devised to be
spaced in a Log2 scale (i.e., ±1 logarithmic unit around
the middle value). The average numerosity range and
the number of arrays were combined, resulting in 25 dif-
ferent stimulus types. Before the beginning of the session
and before each block, we presented a reference stimulus
that the participants had to memorize and use as a com-
parison to provide a judgment. The reference stimulus
had the intermediate values of the average numerosity
and number of arrays, that is, it had an average numerosity
of 30 dots and was composed of six arrays (duration =
300 msec). Note that although having a mask at the end
of the sequence might have reduced the potential visual
persistence of the last array in the sequence, we chose
not to present a mask to avoid interfering with effects
across stimuli in different trials and with the visibility of
the last array. A movie of the stimuli, including all the 25
combinations of average numerosity and sequence length,
is available on Open Science Framework at this link:
https://osf.io/fjrnp.

Procedure

The experiment was conducted in a dark, sound-
attenuated room, with each participant sitting in front of
the computer screen at a distance of about 57 cm. In the
testing room, the screen was the only source of light, to
avoid distractions. The study involved a classification task
of the average numerosity of the dynamic stimuli. EEGwas
also recorded throughout the session to measure the
brain responses to the stimuli. At the beginning of the
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session, participants were shown the reference stimulus
(average numerosity of 30 dots, six arrays) that they were
instructed to use to classify the stimuli in the main task
sequence. The reference was displayed 10 times. During
the task, participants kept their gaze on a central fixation
point, and the dynamic stimuli were presented at the cen-
ter of the screen. Following the offset of each stimulus,
there was a 600-msec interval after which the fixation cross
turned red, signaling to the participant to provide a
response. The participant was then asked to judge, by
pressing the left or the right arrow on the keyboard,
whether the average numerosity was lower or higher
compared with the memorized reference stimulus
(respectively). The time available to provide a response
was limited to 1200msec. If they could not respond within
this interval, the next trial started automatically. The inter-
trial interval (ITI) was 1100–1300 msec). The trials in
which participants were not able to provide a response
were excluded from the data analysis (1.1% ± 1.2%). This
response deadline was added to limit the length and vari-
ability of the interval between stimuli in consecutive trials.
Because one of the main goals of the study was to assess
effects across different stimuli (i.e., perceptual adaptation
effects), this limit was thus added to reduce the potential
decay of such effects over time. Participants received no
feedback about their response. The reference stimulus
was presented again to the participants before the begin-
ning of each block (displayed five times). Each participant
completed 10 blocks of 100 trials, for 1000 trials and 40
repetitions of each combination of average numerosity
and number of arrays. Before the start of the session, sub-
jects were familiarized with the task with ∼10 practice
trials.

Behavioral Data Analysis

To assess the performance in the task, we first focused on
the point of subjective equality (PSE), reflecting the
accuracy of numerical estimates, and the just noticeable
difference ( JND) and Weber’s fraction (WF), reflecting
the precision in the task. To compute these values, a
cumulative Gaussian (psychometric) function was fitted
to the proportion of “more numerous” responses as a
function of the different levels of average numerosity, col-
lapsing together the different numbers of arrays. The psy-
chometric fitting was performed following the maximum
likelihood method described by Watson (1979). From
the psychometric fit, we computed the PSE as the average
numerosity corresponding to chance-level responses,
reflecting the perceptual match with thememorized refer-
ence. The JND was computed from the slope of the fit. As
an additional measure of precision in the task, we com-
puted the WF, which is the ratio of the JND and the PSE.
This additional measure allows to assess the precision in
the task while accounting for changes in the perceived
magnitude of the stimuli. In terms of exclusion criteria
based on behavioral performance, we set a broad cutoff

of WF ≥1. Indeed, the task was designed to be challeng-
ing, and we wanted to make sure to only exclude partici-
pants unable or unwilling to do the task. No participant
was, however, excluded based on behavioral performance,
as the higher WF observed in the task was ∼0.57. In addi-
tion to computing the general measures of performance,
we also computed the accuracy (PSE) and precision (WF)
of average numerosity judgments as a function of the num-
ber of arrays included in each sequence. To do so, we per-
formed the psychometric fit separately for the trials in
which the number of arrays was 3, 4, 6, 9, or 12. The PSE
and WF were computed from these fits as explained above.
To assess the biases in perceived average numerosity as a
function of sequence length, we used a linear mixed-effect
(LME) model test on the PSEs, entering the sequence
length as predictor and the subject as the random effect.
To assess the weights of different arrays in the sequence

in driving the judgment of average numerosity, we
employed a nonlinear regression analysis. A nonlinear
analysis was chosen in this case because the weights were
assessed based on the raw, binary response provided in
each trial. Because of the nonlinear nature of the binary
response, a nonlinear regression analysis is thus necessary
in this context. The analysis was performed separately
according to the number of arrays in the sequences, to fur-
ther assess whether the amount of information provided
affects the weighting profile of different arrays in the
sequence. In the analysis, the binary response of the clas-
sification task was entered as the dependent variable, and
the numerosity of the arrays along the sequence as the
predictors. To have the same number of parameters across
the different tests (i.e., to make the results more easily
comparable across different tests), the predictors included
only the first array in the sequence, the last array, and
either the middle array (in the case of three-array
sequences) or an average of two intermediate positions
in the sequence (second and third, third and fourth, fourth
and sixth, and sixth and seventh, respectively, for
sequences of 4, 6, 9, and 12 arrays). The resulting beta
values were first analyzed using an LME model including
serial position and sequence length as predictors (and sub-
jects as the random effect) to assess the difference across
the temporal weighting profiles as a function of the num-
ber of arrays in the sequence. Then, follow-up LME tests
were performed within each level of sequence length.
Finally, we assessed the perceptual adaptation effects

across successive trials, measuring how the perceived
average numerosity of the stimuli is affected by the numer-
osity presented in the preceding trial. We employed again
a psychometric fitting procedure, performed separately
according to the average numerosity of the preceding
stimulus. To better characterize the effect of the preceding
stimulus, we performed two versions of this analysis. The
first one was performed by pooling together all the differ-
ent lengths of the preceding stimulus. Thus, the PSE was
computed only based on the average numerosity of the
preceding stimulus. Because an effect like perceptual
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adaptation is also expected to be modulated by the
duration (or number of arrays) of the previous stimulus,
we also repeated the analysis by separating the trials
according to whether the preceding stimulus was short
(3–4 arrays; 150–200 msec) or long (9–12 arrays; 450–
600 msec). Thus, by doing so, we obtained two sets of
PSE values according to the average numerosity of the pre-
ceding sequence and according to whether the preceding
sequence was short or long. The PSEs obtained in this
analysis were then used to compute an adaptation effect
index, based on the difference in PSE between trials in
which the preceding stimulus had a numerosity of 30
(the same as the reference; “PSE30”), and either lower
(15, 21 dots) or higher (45, 60 dots) average numerosities
(“PSEj”), according to the following formula:

Adaptation index ¼ −1� PSEJ − PSE30
� �

=
� �� 100

The sign was switched to make the interpretation of the
index more intuitive, that is, a negative adaptation index indi-
cates a relative underestimation of the stimulus, whereas a
positive index indicates an overestimation. The adaptation
indices were then analyzed using LME models to assess the
extent to which the perceived average numerosity of the cur-
rent stimulus is affected by the stimulus in the previous trial.

EEG Recording and Preprocessing

Throughout the experimental session, we recorded the
EEG to address the neural signature of average numerosity
processing and the signature of the adaptation effect. The
EEG was recorded using the Biosemi ActiveTwo system
(2048-Hz sampling rate) and a 64-channel cap based on
the 10–20 system layout. To monitor artifacts because of
eye movements and blinks, the EOG was measured via
an additional electrode attached below the left eye of
the participant. The electrode offset values across the
channels were usually kept below 20 μV, but occasional
values up to 30 μV were tolerated.
The data preprocessing was performed offline in

MATLAB (Version R2021b), using the functions of the
EEGLAB (Delorme & Makeig, 2004) and ERPlab (Lopez-
Calderon & Luck, 2014) toolbox. First, EEG signals were
resampled to a sampling rate of 1000 Hz. Then, each com-
bination of average numerosity and number of arrays was
binned individually, for 25 bins. In addition, we added bins
corresponding to the combination of different numeros-
ities and different numbers of arrays of the stimuli in the
previous trial, and different numerosities in the current
trial, to assess the signature of adaptation effects (125
unique combinations). The continuous EEG data were
then epoched, time-locking the signal to the onset of each
stimulus (i.e., the onset of the first array in each stimulus
sequence). The epochs spanned from−300 to 1200 msec
around the stimulus onset. The prestimulus interval
(−300:0 msec) was used for baseline correction. The
EEG signal was band-pass filtered with cutoffs at 0.1 and
40 Hz. To reduce artifactual activity in the data, we used

an independent component analysis, aimed at removing
identifiable artifacts such as eye movements and blinks.
We additionally employed a step-like artifact rejection
procedure (amplitude threshold = 40 μV, window =
400 msec, step = 20 msec) to further remove any remain-
ing large artifact from the signal, leading to the exclusion of
2.9% ± 2.8% of the trials, on average (±SD). Finally, the
ERPs were computed by averaging EEG epochs within
each bin. ERPs were further low-pass filtered with a cutoff
at 30 Hz, and smoothed with a sliding-window average
with a width of 20 msec and a step of 5 msec.

ERPs Analysis

The analysis of ERPs was performed by first selecting a set
of channels of interest, based on previous studies. Namely,
we selected a series of four occipital channels, including
O1, O2, Oz, and Iz, based on previous studies on numer-
osity perception (Fornaciai & Park, 2018; Fornaciai et al.,
2017) and trial-history effects in magnitude perception
(Fornaciai, Togoli, & Bueti, 2023; Tonoyan, Fornaciai,
Parsons, & Bueti, 2022). First, we assessed numerosity-
sensitive brain responses by sorting the ERPs according
to the average numerosity of the stimuli, collapsing
together the different durations. To assess themodulation
of ERPs as a function of numerosity, we computed the lin-
ear contrast of the brainwaves (weights = [−2 –1 0 1 2],
corresponding to the different levels of average numeros-
ity) throughout the epoch. We then performed a series of
one-sample t tests against zero, corrected for multiple
comparisons with a false discovery rate (FDR) procedure
(FDR = 0.05). Moreover, we assessed the relationship
between ERPs, in terms of the linear contrast amplitude,
and behavior in terms of the accuracy (PSE) and precision
( JND) of average numerosity perception. To do so, we
employed an LME model entering the contrast amplitude
as the dependent variable, PSE and JND as predictors, and
the subject as the random effect. To control for multiple
comparisons, in this case, we used a nonparametric
cluster-based test. Namely, we repeated the analysis across
the clusters of consecutive significant time windows
observed in the actual LME test, randomly shuffling the
vectors of PSE and JND values at each iteration. This pro-
cedure was repeated 10,000 times, and we measured how
many times we could observe similar clusters of consecu-
tive significant time points in this simulation. The signifi-
cance threshold of each test in this control analysis was set
based on the lowest t value observed in the corresponding
cluster of the actual analysis.

To assess the impact of adaptation effects on ERPs, we
further sorted the data according to the average numeros-
ity and number of arrays of the preceding stimulus, taking
only the trials in which the middle numerosity (30 dots)
was presented in the current trial. Themodulation of ERPs
was then tested by performing a series of LME tests across
a series of small windows throughout the epoch, in a
sliding-window fashion (width = 50 msec, step = 5 msec)
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to increase the signal-to-noise ratio. The tests included the
ERP amplitude as the dependent variable, and the average
numerosity and number of arrays of the preceding stimu-
lus (as well as their interaction) as predictors (fixed
effects). The subjects were added as the random effect.
Because adaptation effects are expected to be modulated
by the number of arrays/duration of the preceding stimu-
lus, we specifically looked for an interaction between the
two factors as evidence for a signature of adaptation. To
assess the nature of such an interaction, we further com-
puted the effect of the preceding numerosity on ERP
amplitude (i.e., the difference in amplitude corresponding
to trials in which the preceding stimulus had 60 dots and
15 dots), as a function of the different number of arrays of
the previous stimulus. This analysis was limited to the
average ERPs within the latency window showing a
significant interaction between average numerosity and
number of arrays of the preceding stimulus. Again, to con-
trol for multiple comparisons, we used a nonparametric
cluster-based analysis (see above).

Finally, we assessed the relationship between the bias in
perceived numerosity because of adaptation, and the
extent to which adaptation modulates the ERP amplitude.
To do so, we computed two corresponding measures of
the adaptation effect on behavior (“ΔPSE”) and on ERPs
(“ΔERP”). The ΔPSE was computed as the difference in
PSE between the cases where the preceding stimulus
had a numerosity either lower (15, 21 dots) or higher
(45, 60 dots) than the reference (30 dots), and the case
where the numerosity of the preceding stimulus was equal
to the reference. The ΔERP measure was computed in a
similar fashion, as a difference in ERP amplitude at each
time point in the cases where the preceding stimulus

had either a lower or higher numerosity than the refer-
ence, and the case where the preceding stimulus had
the same numerosity as the reference. To compute this
index, we considered only the trials in which the stimulus
in the current trial had 30 dots. We then used an LME
model to assess the relationship between ΔPSE and ΔERP
(ΔPSE ∼ ΔERP + (1|subj)). This analysis was performed
across the latency windows where the effect of adaptation
on ERPs showed a significant interaction between the aver-
age numerosity and the number of arrays of the previous
stimulus. This was done to limit the tests to the most sig-
nificant latency windows in terms of adaptation effect, as
we predicted that genuine perceptual adaptation effects
should depend on both the numerosity and the duration
of the preceding stimulus.

RESULTS

In the present study, we addressed the mechanisms of
time-averaged numerosity perception and its neural signa-
ture, using fast dynamic dot-array stimuli. See Figure 1 for
a depiction of the experimental procedure.
First, we assessed the general performance of average

numerosity judgments, computing measures of accuracy
(PSE) and precision (JND and WF). Figure 2A shows the
general measures of performance. On average, the per-
ceived numerosity of the stimuli was quite accurate and
precise, showing a PSE (±SD) of 31.42 ± 4.41 dots, a
JND of 7.70 ± 2.34 dots, and a WF of 0.25 ± 0.11. These
results show that participants are able to judge an average
numerosity fairly accurately (i.e., considering the average
PSE of ∼31 dots compared with the reference numerosity
of 30 dots) and precisely (i.e., considering the average

Figure 1. Stimulation procedure. The classification task involved participants watching a series of dynamic stimuli modulated in average numerosity
and in the number of arrays presented, and determining whether the average numerosity in each trial was higher or lower compared with a
memorized reference stimulus. The reference was presented at the beginning of the session and at the beginning of each block. Each array in the
stimulus sequence included a set of black-and-white dots drawn within a circular area, presented for 50 msec. The number of arrays presented in
each sequence varied from 3 (150 msec) to 12 (600 msec). The stimuli were designed to facilitate the impression of a continuous, dynamic
modulation of numerosity rather than a sequence of static dot arrays. The offset of the stimulus sequence was followed by a 600-msec blank interval.
After the interval, the fixation cross became red, signaling to the participant to provide a response by pressing the appropriate key on a standard
keyboard. The maximum time allowed to provide a response was 1200 msec, after which the next trial started automatically. The proportion of
trials in which participants did not provide a response was mean = 1.1%, SD = 1.2%. The ITI was 1100–1300 msec. The stimuli are not depicted
in the scale.
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WF), in line with previous studies (Katzin et al., 2021;
Togoli et al., 2021).
Second, we assessed whether the amount of informa-

tion provided, that is, the number of arrays presented in
the sequence, affects the accuracy and/or the precision
of judgments. To address this question, we computed
the PSE and WF separately as a function of the number
of arrays of the sequences (Figure 2B). The results showed
substantial biases in perceived numerosity according to
the length of the sequence, with a pattern of both
under- and overestimation. Indeed, when the duration/
number of arrays was smaller than 300 msec/6 arrays
(i.e., the middle values of the range, corresponding to
the reference), PSEs were higher (37.78 ± 1.24 and
34.62 ± 1.13, respectively, for three and four arrays),
showing an underestimation of perceived average
numerosity (i.e., a higher number of dots is necessary to
perceptually match the reference). Conversely, PSEs were
lower when the sequence was longer than the 300 msec/6
arrays (26.80 ± 0.82 and 24.44 ± 0.84, respectively, for 9
and 12 arrays), showing an overestimation. An LME regres-
sion model (LME; PSE ∼ number of arrays + (1|subj))
showed a significant modulation of PSE as a function of
sequence length (adjusted R2 = .85, β = −1.43, t =
−17.69, p < .001). On the other hand, the WF (shown

in red in Figure 2B) showed a small but significant increase
(i.e., worsening of performance) with sequence length
(LME test on WFs; adjusted R2 = .76, β = 0.002, t =
−2.27, p = .025).

Furthermore, we addressed the temporal weighting
profile of the dynamic stimuli—that is, the extent to
which arrays in different positions along the sequence
contribute to the perception and judgment of average
numerosity. To do so, we employed a nonlinear regres-
sion analysis, entering the binary classification response
as the dependent variable and the numerosity of arrays
along the sequence as predictors. This analysis was per-
formed separately as a function of the number of arrays
in the sequence, to further assess whether the amount
of information presented affected the weight of different
portions of the sequence. To ensure that the results con-
cerning different sequences are comparable, we included
the same number of parameters (array position) in the
nonlinear regression: the first and the last array, and
either the middle array (in the case of three arrays) or
the average of two intermediate arrays. The beta values
obtained with this analysis reflect the extent to which
arrays in different positions contribute to the classification
judgment (i.e., the higher the beta value, the higher the
weight on perceptual decisions).

Figure 2. Behavioral results. (A) General measures of performance, including the PSE as a measure of accuracy, and the JND and WF as a measure of
precision. (B) Biases in perceived average numerosity as a function of the number of arrays presented, and modulation of the precision of judgments
(WF). (C) Temporal weighting profile, reflecting the weights of the first, middle, and last array(s) in the sequence in driving the overall judgment of
average numerosity, separately for the different numbers of arrays composing the sequence. Error bars are SEM.
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The results, shown in Figure 2C, show a clear difference
in the temporal weighting profile as a function of the
sequence length. An LME test on the beta values, with
factors position and number of arrays, showed indeed a
significant interaction between the two factors (adjusted
R2 = .37, β=−0.025, t=−10.93, p< .001). Interestingly,
considering the pattern across the three sequence posi-
tions (first, middle, and last; Figure 2C), the change in beta
values showed different directions according to the num-
ber of arrays presented. Follow-up LME tests on beta
values performed individually within each level of
sequence length (i.e., 3–12 arrays) first showed a signifi-
cant difference in the three-array sequence, in the positive
direction, that is, higher beta values at the end of the
sequence (“recency” effect; adjusted R2 = .08, β =
0.035, t = 2.55, p = .013). With four arrays, the middle
position showed a higher weight, but the overall differ-
ence was not significant (adjusted R2 = .03, β = 0.040,
t= 1.73, p= .09). Conversely, with sequences longer than
four arrays, the tests showed significant differences in the
negative direction, reflecting a higher weight of the first
array in the sequence compared with the last (“primacy”
effect; adjusted R2 = .24, β = −0.080, t = −4.59, p <
.001, adjusted R2 = .53, β = −0.134, t = −8.52, p <

.001, and adjusted R2 = .73, β = −0.180, t = −13.09,
p < .001, respectively, for 6, 9, and 12 arrays).
Then, we assessed the presence of trial-history effects

across different stimuli and, in particular, perceptual adap-
tation effects (Aagten-Murphy & Burr, 2016). To address
this possibility, we computed the perceived average
numerosity of the stimuli as a function of the average
numerosity preceding them. The results of this analysis
are shown in Figure 3. First, we observed a robust modu-
lation of the perceived numerosity of the stimuli (PSE) as a
function of the preceding numerosity (Figure 3A), in line
with an adaptation effect. To better assess the bias induced
by the previous stimuli, we computed an adaptation effect
index reflecting how much the perception of the stimuli
changes when the previous stimulus had either a lower
or higher numerosity than the intermediate, reference
numerosity (Figure 3B). What we observed was a relative
overestimation when the preceding stimulus had fewer
dots than the middle numerosity level (15, 21 dots), and
a relative underestimation when the preceding stimulus
had more dots (45, 60 dots). The biases ranged from 6%
to about−8%. An LME test showed a significant difference
in the adaptation effect as a function of the preceding
numerosity (adjusted R2 = .61, β = −0.306, t = −6.37,

Figure 3. Perceptual adaptation
effects. (A) PSE values as a
function of the preceding
numerosity. (B) Average
adaptation effect indices as a
function of the preceding
numerosity. (C) PSEs as a
function of the preceding
numerosity, separately for the
cases where the previous
stimulus had a short (3, 4
arrays) or long (9, 12 arrays)
sequence. (D) Adaptation effect
indices as a function of
preceding numerosity and
sequence length (short vs.
long). Error bars are SEM.
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p < .001). In addition, we further tested whether the
number of arrays/duration of the previous stimulus could
modulate the effect. The PSEs shown in Figure 3C indeed
suggest that when the preceding stimulus was longer (9,
12 arrays), the bias in perceived numerosity was stronger
compared with a shorter sequence (3, 4 arrays), although
mostly at larger numerosities. To assess the pattern of
adaptation effects computed as a function of the number
of arrays of the preceding stimulus (Figure 3D), we used
an LMEmodel test with factors numerosity and number of
arrays of the preceding stimulus. The results showed a
significant interaction between the two factors (adjusted
R2 = .60, β = −0.271, t = −2.44, p = .016), suggesting a
stronger effect when the preceding sequence was longer,
especially at larger numerosities. Further LME tests, per-
formed individually for the two sequence lengths, showed,
however, that in both cases, the effect is statistically signif-
icant (adjusted R2 = .71, β=−0.179, t=−3.51, p< .001,
and adjusted R2 = .70, β = −0.450, t = −5.53, p < .001,
respectively, for short and long sequences).
After characterizing the properties of average numeros-

ity perception at the behavioral level, we addressed its
neural signature. First, we assessed the brain responses
sensitive to average numerosity, which are shown in
Figure 4A. To do so, we sorted the ERPs according to cor-
responding average numerosity and computed the linear
contrast of ERPs as a measure of sensitivity to numerical
information. The linear contrast was then tested with a
series of one-sample t tests against zero, corrected formul-
tiple comparisons with an FDR procedure (FDR = 0.05).
The results showed a significant numerosity-sensitive
activity in four distinct latency windows, starting very early
after the onset of the sequence: 20–55 msec, t(20) ≥ 3.10,
adjusted p ≤ .039; 115–155 msec, t(20) ≤ −3.35, adjusted
p ≤ .026; 190–230 msec, t(20) ≥ 2.99, adjusted p ≤ .049;
and 430–595msec, t(20)≤−2.98, adjusted p≤ .049. Topo-
graphic plots of the average contrast amplitude within
these significant windows show patterns of activity mostly
at central occipital scalp locations (rightmost columns in
Figure 4A).
What are the processing stages contributing to the judg-

ment of average numerosity? To answer this questions, we
focused on the relationship between brain activity and
behavioral performance, in terms of the accuracy (PSE)
and precision (JND) of numerical judgments. We thus per-
formed LME tests on the contrast amplitude throughout
the poststimulus interval, entering PSE and JND as predic-
tors and the subjects as the random effect. The results first
showed that the amplitude of numerosity-sensitive
responses can be predicted by the PSE at two latency win-
dows: 580–625 msec (adjusted R2 = .62–.65, β ≤ −0.022,
t ≤ −2.11, p ≤ .049), and 635–710 msec (adjusted R2 =
.61–.87, β ≤ −0.026, t ≤ −2.13, p ≤ .047). Both these win-
dows show a negative relationship between amplitude and
PSE, suggesting that higher amplitudes are associated with
lower PSE. Second, the results also showed a significant
relationship between the contrast amplitude and JND at

three latency windows: 410–455 msec (adjusted R2 =
.62–.65, β ≥ 0.045, t ≥ 2.22, p ≤ .039), 470–500 msec
(adjusted R2 = .63–.67, β ≥ 0.051, t ≥ 2.36, p ≤ .030),
and 650–715 msec (adjusted R2 = .66–.86, β ≤ −0.045,
t ≤−2.25, p ≤ .037). Both earlier windows show a positive
relationship between amplitude and JND, suggesting that
higher amplitudes are associated with poorer precision.
Instead, at the later window (650–715 msec), the negative
relationship suggests that the higher the sensitivity of
responses to numerosity, the higher the precision (i.e.,
the lower the JND). To control for multiple comparisons,
the significant windows observed in the LME tests were
assessed with a nonparametric cluster-based test (see
the Methods section). All the cluster p values resulted to
be <.001.

Furthermore, we assessed the EEG signature of the per-
ceptual adaptation effect across stimuli in different trials
(Figure 4B). In this context, we took the ERPs correspond-
ing to the presentation of 30 dots in the current trial and
sorted them according to the average numerosity and
sequence length of the preceding stimuli. Figure 4B shows
a representative set of the ERPs reflecting the responses to
the “current” (i.e., average numerosity of 30 dots) stimulus
as a function of the preceding stimulus. In the analysis,
however, we considered the full set of 25 unique combina-
tions of average numerosity and number of arrays of the
preceding stimulus. We then performed LME tests on
the ERP amplitude throughout the poststimulus interval,
adding the numerosity and the sequence length of the pre-
ceding stimulus as predictors, and the subjects as the ran-
dom effect. Because the effect of adaptation is expected to
increase with the duration (or number of arrays) of the
previous stimulus, a neural signature of the effect is
expected to show a similar interaction between the two
factors. The results first show a significant effect of numer-
osity on the ERP amplitude at two latency windows: 245–
330 msec (adjusted R2 = .55–.66, β ≤ −0.025, t ≤ −2.33,
p ≤ .020) and 670–725 msec (adjusted R2 = .14–.15, β ≤
−0.021, t ≤ −1.97, p ≤ .049). The topography of activity
within these two windows (contrast amplitude based on
the different levels of average numerosity of the previous
stimulus; top two plots in the rightmost part of Figure 4B)
showed a less unitary distribution compared with the
effect of average numerosity shown in Figure 4A. The
activity in this case encompassed both occipital and
occipito-parietal scalp locations, especially in the earlier
window (245–330msec). Moreover, the effect of sequence
length was observed at two similar latency windows: 240–
350 msec (adjusted R2 = .51–.67, β ≤ −0.002, t ≤ −1.97,
p ≤ .048) and 665–735 msec (adjusted R2 = .12–.16, β ≤
−0.002, t ≤ −2.07, p ≤ .039). The topographic distribu-
tion of activity corresponding to the effect of the previous
stimulus length (bottom two images in the rightmost part
of Figure 4B) showed again peaks at both occipital and
occipito-parietal scalp locations, especially at the earlier
window (240–350 msec). Additional significant effects of
the sequence length were observed at other latencies
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where no other effect was found. Because an effect of the
preceding sequence length in isolation (i.e., not coupled
with an effect of numerosity or an interaction) is difficult
to interpret in this context, we did not consider such
latency windows for further analysis. More importantly,
we observed a significant interaction between numerosity
and sequence length at 240–345 msec (adjusted R2 =
.51–.67, β ≥ 0.001, t ≥ 2.04, p ≤ .042). These significant
latency windows were further assessed with nonparametric

cluster-based tests to control for multiple comparisons.
All the cluster p values were < .001.
To better understand the nature of this interaction, we

assessed how the adaptation effect is modulated by the
length of the preceding sequence, within the 240- to
345-msec latency window (i.e., the latency window show-
ing a significant interaction between average numerosity
and sequence length). We thus computed a measure of
the effect of numerosity in the preceding trial on ERPs

Figure 4. ERPs reflecting average numerosity and adaptation effects. (A) ERPs sorted according to average numerosity. The green wave represents
the linear contrast of ERPs, reflecting the extent to which the ERPs are modulated by numerosity. The green shaded area around the contrast wave
represents the SEM. Lines at the bottom of the plot show the significance of different tests. The thick black lines indicate the latency windows where
the linear contrast is significantly different from zero (FDR-corrected one-sample t tests). The cyan lines instead indicate the results of the LME test
relating the ERPs to the behavioral performance. Namely, the lines show the latency windows for which we observed a significant relationship
between the amplitude of the linear contrast and either the PSE or the JND. The topographic plots in the rightmost part of the figure show the
distribution of activity at posterior scalp locations, averaged across the four latency windows where we observed significant numerosity-sensitive
responses (i.e., significant one-sample t tests). (B) Representative ERPs reflecting the effect of the preceding stimulus on the responses to the
intermediate average numerosity in the current trial (30 dots). For the sake of clarity, only the pairwise corresponding combinations of average
numerosity and number of arrays (length) are shown in the plot. However, the analysis was performed on the full set of 25 unique combinations of
average numerosity and length of the preceding stimulus. The lines at the bottom of the plot show the results of the LME tests, reflecting the
significance of the average numerosity, length, and their interaction in driving the ERPs. The topographic plots show the distribution of the linear
contrast amplitude considering ERPs sorted according to either the average numerosity of the previous stimulus (top) or the length of the previous
sequence (bottom). The linear contrast was computed as the average across the two latency windows showing a significant effect of numerosity and
length of the previous stimulus.
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(i.e., amplitude of responses to 60 dots minus responses
to 15 dots) and plotted it as a function of the length of the
preceding stimulus (Figure 5A). The results show indeed a
clear modulation, with a significant effect of the preceding
stimulus length in modulating the impact that numerosity
has on ERPs (LME test; adjusted R2 = .08, β = 0.193, t =
3.14, p= .002). This test shows, however, a low R2, which
may be because of the difficulty of the linear model to cap-
ture a potentially nonlinear effect (see the pattern in
Figure 5A).
Finally, we assessed the relationship between the

behavioral and EEG signature of the adaptation effect.
To do so, we computed two corresponding measures:
ΔPSE and ΔERP. These measures were computed as the
difference in either PSE or ERP amplitude between the
lower (15, 21 dots) and higher (45, 60 dots) numerosity
levels of the previous stimulus and the intermediate level
(30 dots). The ΔERP was computed in a similar fashion,
taking all the trials in which the current stimulus had an
average numerosity of 30 dots and computing the differ-
ence in ERP amplitude as a function of the preceding stim-
ulus (15–21 vs. 45–60 dots). This measure was computed
as the average amplitude within the latency window show-
ing an interaction between numerosity and length of the
preceding stimulus (240–345 msec). Figure 5B shows the
general trend of these data. To assess the relationship
between the two measures, we performed an LME test,
entering the ΔPSE as the dependent variable, ΔERP as
the predictor, and the subject as the random effect. The
results showed a significant relationship, whereby the
ΔPSE, indexing the behavioral effect of adaptation, can

be predicted by the ΔERP, which indexes the changes in
ERP amplitude because of the preceding stimulus
(adjusted R2 = .56, β=0.813, t=2.26, p= .026). The rela-
tionship is positive, suggesting that the higher the change
in ERP amplitude within the 240- to 345-msec window, the
higher the behavioral effect of adaptation.

DISCUSSION

In the present study, we addressed the mechanisms medi-
ating the perception of average numerosity over time
using fast dynamic stimuli, and the neural signature of this
process. Although numerosity perception is most often
investigated using static stimuli, the external environment
is rarely static. Numerosity information in the environment
indeed can vary overtime, like, for instance, when observ-
ing a scene in which humans or animalsmove in and out of
our visual field. For example, whether a street is perceived
as crowded with people or not would depend on how
many people we see on average, in a given period, and
not on individual “snapshots” of the scene. In many cases,
the average numerosity across different points in time or
different samples of a visual scenes might thus be more
important than “local” information present in a given loca-
tion or at a given time. Despite its importance, how the
brain computes and represents the approximate average
of numerosity over time remains mostly unclear.

So far, only a few studies addressed this process, provid-
ing initial evidence for the existence of dedicated brain
mechanisms supporting the averaging of numerosity
information over time (Katzin et al., 2021; Togoli et al.,

Figure 5. Interaction between numerosity and length and relationship between the behavioral and EEG effect of adaptation. (A) Effect of the
preceding numerosity as a function of the length of the preceding sequence. Error bars are SEM. (B) Effect of adaptation measured behaviorally
(ΔPSE) as a function of the effect measured with EEG (ΔERP). The ΔPSE and ΔERP measures were computed as the difference in PSE or ERP
amplitude between either lower (15, 21 dots) or higher (45, 60 dots) numerosities of the preceding stimulus and the intermediate numerosity of the
range (30 dots). The line represents a linear fit to the data, to show the general trend. The data were, however, analyzed with an LME model. Both
columns report data averaged within the latency window where we observed a significant interaction between the numerosity and length of the
preceding stimulus (240–345 msec after stimulus onset).
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2021). Our results provide new evidence showing that (1)
the weighting profile of information along the sequence
depends on the total amount of information provided,
(2) average numerosity is subject to perceptual adaptation
effects across trials, and (3) average numerosity and the
adaptation effect show robust neural (EEG) signatures,
with activity at specific latency windows predicting the
behavioral performance and effects.

First, in terms of general performance, our data show
that despite the challenging nature of the task, the partic-
ipants were able to judge average numerosity with good
accuracy and precision. This is important as we did not
control for how well the reference presented before each
block was memorized. However, even if the reference was
not memorized, the stimulation range was structured so
that the middle levels of the stimuli (both average numer-
osity and sequence length) corresponded to the refer-
ence. Thus, even if participants judged the stimuli based
on an internal reference constructed according to the
stimuli, they would still be able to classify the average
numerosity correctly. The results indeed show that irre-
spective of whether the initial reference was memorized
or not, participants were able to classify the stimuli with
good accuracy.

Moreover, we observed a few differences compared
with previous results. Namely, whereas Katzin and
colleagues (2021) reported that the averaging precision
increases as a function of the sequence length, here, we
observed a small but significant reduction in precision
(i.e., WF). In addition, we also observed biases in accuracy
depending on the sequence length, with both under- and
overestimation of average numerosity according to
whether the sequencewas shorter or longer than 300msec
(i.e., the middle duration of the range or the reference
duration), respectively. Although previous studies often
show only a weak influence of duration on other nontem-
poral magnitude dimensions like space and numerosity
(e.g., Dormal et al., 2006; Droit-Volet et al., 2003; but see
Javadi & Aichelburg, 2012), these biases seem in line with
an effect of duration on perceived numerosity (e.g.,
Lambrechts, Walsh, & van Wassenhove, 2013; Javadi &
Aichelburg, 2012; Walsh, 2003). In this context, one key
factor determining the effects across magnitude dimen-
sions is indeed the nature of the stimuli used. When using
static stimuli (i.e., a single dot array presented for a given
time), duration is usually the feature most easily affected
by other dimensions. Conversely, we have recently dem-
onstrated that using dynamic stimuli instead reduces this
asymmetry (Togoli, Bueti, & Fornaciai, 2022), making
durationmuchmore effective in biasing perceived numer-
osity (see also Lambrechts et al., 2013). This difference
might be because of the processing time-course of differ-
ent dimensions. Namely, with static stimuli, although
numerosity information is available from stimulus onset
and likely processed in a relatively short time (∼250 msec;
Fornaciai et al., 2017; Park et al., 2016), duration has to
fully unfold before it could be represented by the brain.

This likely makes it difficult for a duration representation
to affect numerosity. With dynamic stimuli based on
average numerosity, instead, both numerosity and time
information similarly unfold throughout the interval, thus
making it easier for duration to affect numerosity before it
is represented in a more stable fashion. The biases
observed here as a function of the sequence length are
thus consistent with our previous results showing an effect
of duration on numerosity with dynamic stimuli (Togoli
et al., 2022). These biases additionally suggest that our
dynamic stimuli were perceived as a continuous sequence
rather than a series of discrete stimuli. Indeed, it was the
entire duration of the sequence—not the duration of
individual arrays (which was constant)—that affected the
overall perceived average numerosity. When it comes to
the difference between our results and those of Katzin
and colleagues (2021), in terms of precision as a function
of sequence length, a possible explanation is the differ-
ence in the stimuli used. Indeed, while they used
sequence of relatively long stimuli (500 msec), which are
likely perceived as different, discrete arrays, we pur-
posedly used a fast modulation of numerosity (20 Hz) that
is likely perceived as a single continuous stimulus. The dif-
ference in how the sequence length modulates accuracy
and precision may thus suggest that computing the aver-
age of continuous versus discrete sequences may engage
differentmechanisms,more heavily relying for instance on
perceptual versus mnemonic resources.
Despite the relatively short duration of the stimulus

sequences, we observed systematic perceptual adaptation
effects. Numerosity adaptation effects are usually
observed with much longer exposures, around a few sec-
onds (e.g., Grasso, Petrizzo, Caponi, Anobile, & Arrighi,
2022; Arrighi et al., 2014; Burr & Ross, 2008), whereas
shorter stimuli usually lead to attractive “serial depen-
dence” effects (e.g., Fornaciai & Park, 2019b). However,
there is also evidence that repulsive adaptation can be
observed even with very short exposures, at least in the
case of ambiguous or masked stimuli (Fornaciai & Park,
2019b, 2021; Glasser, Tsui, Pack, & Tadin, 2011). In addi-
tion, numerosity adaptation effects have been observed
after repeated presentations of brief arrays of dots
(Aagten-Murphy & Burr, 2016), making our effect in line
with previous results. The emergence of perceptual
adaptation effects in this context supports the existence
of a perceptual mechanism specifically dedicated to the
representation of average numerosity.
Importantly, we observed different temporal weighting

profiles according to the sequence length. Although
sequences up to four arrays (or 200 msec) showed either
a recency effect (i.e., higher weight given to later informa-
tion) or a flat profile, longer sequences showed primacy
effects (i.e., higher weight given to earlier information).
This pattern is particularly interesting, as it suggests a
capacity limit for the computation of average numerosity.
Namely, with a relatively short sequence (i.e., 150 msec),
the visual system is able to use the information provided
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with similar weights, giving, however, more relevance to
more recent information. When the sequence gets longer
(i.e., 6–12 arrays, 300–600 msec), the visual system
weights further information increasingly less compared
with the early information. Comparing these temporal
weighting profiles with results obtained in other feature
dimensions, the primacy effect observed with long
sequences is similar to the one observed by Hubert-
Wallander and Boynton (2015) on the average spatial posi-
tion. Hubert-Wallander and Boynton (2015) also tested
and compared different dimensions, such as size, face
identity, and motion, which mostly showed recency
effects. Our results thus add to those previous observa-
tions in suggesting the existence of different, dimension-
specific mechanisms for the extraction of summary
statistics. Something to take into account when interpret-
ing the behavioral results is that we did not present a mask
at the end of the sequences. Thus, the last arrays in the
sequence might have perceptually persisted after the off-
set of the sequence and throughout the response phase,
potentially biasing the judgment. However, we chose not
to include a mask at the end of the sequences to avoid
interfering with effects across stimuli in different trials
and with the visibility of the last array in the sequence.
Although a prolonged visual persistence of the last array
is a possibility that we cannot exclude, the temporal
weighting profile shows that the last array did not neces-
sarily play a more pronounced role in the decision; con-
versely, it had instead a diminishing weight as a function
of the length of the sequence. This shows that, even if
visual persistence is possible, it did not affect the judgment
of average numerosity.
What is the mechanism underlying the peculiar tempo-

ral weighting profiles observed in average numerosity?
The weighting profile may be because of two possible
types of capacity limits, either cognitive (i.e., mnemonic)
or perceptual. First, the capacity limitation leading to dif-
ferent weighting profiles may be because of the limits of
working memory (WM) encoding, usually considered to
be around three to four items (Awh, Barton, & Vogel,
2007; Alvarez & Cavanagh, 2004; Luck & Vogel, 1997). This
limit of WM encodingmight be consistent with our results,
showing that information exceeding the third or fourth
array in the sequence is given increasingly less weight.
However, one might expect that with longer sequences
more recent information would be encoded in WM replac-
ing older information, leading to a recency effect (as found
by Katzin et al., 2021). A recency effect was, however,
observed only at the shorter sequence. As mentioned
above, differently from previous studies (Katzin et al.,
2021), our sequences were designed to appear like contin-
uous dynamic stimuli rather than a series of discrete
stimuli. Considering the more continuous nature of our
stimuli, it is thus unlikely that the results could be
explained by the capacity limits of WM in terms of the stor-
ing of discrete items. Therefore, a second and, perhaps, a
more plausible explanation for the weighting profiles is a

perceptual capacity limitation, based on the limits of tem-
poral integration of the visual system. Indeed, the ability of
the visual system to integrate information during the
presentation of a stimulus is limited by several factors,
including for instance rapid adaptation of responses and
the correlation in response fluctuations (e.g., see, for
instance, Goris, Ziemba, Movshon, & Simoncelli, 2018).
Because of these constraints, the limit of temporal integra-
tion in visual cortex has been estimated to be around 150–
300 msec (e.g., Goris et al., 2018; Burr & Santoro, 2001).
After this time, the temporal integration (or summation)
of signals—and its benefits in visual perception—tend to
plateau. The timing of our weighting profiles seems con-
sistent with this time course, as the turning point after
which the weights start to decrease is around 200 msec
(four arrays). A possibility is thus that the summary statis-
tics of a relatively brief, continuous sequences may rely of
the ability of the early visual system to track and integrate
information over time, rather than by the encoding of
information in visual WM. However, whether the duration
of the sequence or the number of arrays presentedwas the
critical limiting factor responsible for the weighting profile
remains unclear. Indeed, conclusively, addressing this
point would require testing different presentation fre-
quencies and different sequence durations, so that similar
amounts of information are provided in a shorter or longer
interval. Considering the fast presentation rate of the
sequences and their lack of clearly defined, discrete arrays
(from a perceptual standpoint), we believe that duration is
more likely the limiting factor in this context. This inter-
pretation is, however, speculative, and addressing this
point thus remains an open question for future studies.
Finally, additional possible factors limiting the weight of
the latest arrays in the sequences are themotivation of par-
ticipants to attend the full duration of the stimuli and the
possibility of predictions based on the first few arrays of
the sequences. First, participants could have lacked the
motivation to attend the full stimulus sequence, selecting
a response based on the first few arrays and disregarding
further information. Because of the relatively brief dura-
tion of the stimuli and their fast presentation rate, this is,
however, less likely. Indeed, a decrease in the weight of
the last array can be observed even with a 300-msec stim-
ulus. At such short durations, it is difficult to assume that
participants were not motivated enough to attend the
stimulus, especially considering the good accuracy and
precision of the judgments. In addition, the bias provided
by duration on average numerosity (see Figure 2B) sup-
ports the idea that participants attended the whole
sequence. Otherwise, no difference in PSE would be
expected for durations longer than 300 msec. Second,
the weights of later arrays might be reduced by implicit
predictions about their numerosity, based on statistical
learning. However, although possible, predictions based
on the first few arrays would likely be unreliable, because
of the overlap between the numerosities of individual
arrays. Indeed, within each level of average numerosity,
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each individual array could fluctuate ±50% around the
average. This means, for example, that an array of 21 dots
could be presented within sequences resulting in an aver-
age numerosity of 15, 21, 30, or 42 dots—so almost the
entire range. Because of this overlap, accurate predictions
could be made only based on the most extreme values of
numerosity, which in turn would predict a muchmore var-
iable performance, at odds with what we observed.

Beyond the behavioral results mentioned above, the
EEG results provide novel neural insights into the mecha-
nisms involved in the computation of average numerosity.
First, we observed numerosity-sensitive brain responses at
occipital channels (Iz, Oz, O1, O2) starting as early as 20–
50 msec after stimulus onset and continuing throughout
the presentation of the stimulus, with the more sustained
activity emerging around the offset of the longer stimulus
sequences (430–595 msec). The initial onset of such
responses is extremely early in terms of latency, but it
may be consistent with early responses to numerosity
observed in previous studies (e.g., ∼75 msec in Park et al.,
2016, 50–80 msec in Fornaciai et al., 2017; in both cases
with signals measured at Oz). Such an early onsetmay thus
be consistent with the responses of early visual areas such
as V1, V2, and V3 (e.g., Fornaciai et al., 2017; Foxe &
Simpson, 2002). Because of the nature of our analysis,
there is, however, the possibility that such very early
responses might be driven by other dimensions of the
stimuli correlating with numerosity, such as the density
of the items in the array. In addition, because of the
dynamic nature of our stimuli, some of the observed brain
responses might be driven by phenomena like apparent
motion of dots in consecutive arrays. For instance, less
numerous arrays might have favored the emergence of
stronger apparent motion effects because of their (on
average) sparser distribution of dots (i.e., an individual
dot might have appeared as “displaced” to a greater dis-
tance across successive arrays, increasing the implied
speed). The negative deflection observed at around
200 msec (N2 component) shows, for instance, a larger
negative amplitude for smaller numerosities. Because
the N2 component has been previously associated to
motion processing (Tonoyan et al., 2022; Hoffmann,
Unsöld, & Bach, 2001; Hoffmann, Dorn, & Bach, 1999),
such responsesmight be consistent with apparentmotion.
Considering the random nature of the stimuli and their
different numerosities, it is, however, difficult to quantify
the role that apparent motionmight have played in driving
brain responses. A dedicated paradigm would thus be
needed to disentangle the potential role of the different
dimensions of our dynamic dot-array stimuli, including
apparent motion, in driving such early brain responses.
Besides this, it is interesting to note that the ERPs did
not show any clear modulation at 20 Hz, reflecting
responses evoked by the individual arrays in the
sequences. One possibility explaining the lack of a 20-Hz
modulation is the overall broad temporal frequency of the
stimuli. Indeed, the sequences likely entailed different

local temporal frequencies, varying depending on the rela-
tionships between dots in consecutive arrays. The lack of
responses to the individual arrays also supports the idea
that our sequences were perceived and processed as uni-
tary dynamic stimuli, rather than series of individual
stimuli.
To better understand how the brain responses evoked

by the stimuli are related to the perception and judgment
of average numerosity, we also assessed the relationship
between the amplitude of ERPs and the behavioral mea-
sures of accuracy (PSE) and precision (JND). The results
show a series of latency windows whereby the behavioral
performance can predict the amplitude of ERPs, clustered
around the offset of the longer stimulus sequences (∼400–
700 msec). This suggests that the processes occurring in
this large latency window may be related either to the
computation of average numerosity based on responses
integrated during the stimulus presentation or, alterna-
tively, to perceptual decision-making involved with the
judgment of average numerosity.
Moreover, the adaptation effect shows instead an earlier

signature compared with the relationship with PSE and
JND, with occipital responses at ∼240–340 msec reflecting
the interaction between the average numerosity and the
length of the preceding sequence. First, such a localized
window suggests that adaptation did not affect the general
visual responses to the stimuli or the perceived numeros-
ity of the individual arrays in the sequence, but more likely
the computation of average numerosity from the unfold-
ing stimulus sequence. Second, activity within this latency
window is related to the adaptation effect measured
behaviorally. Thus, these aspects of the adaptation effect
suggest that the observed latency window may indeed
reflect the computation of perceived average numerosity.
Previous results concerning numerosity adaptation
(Grasso et al., 2022) observed a correlate of the effect at
the P2p component, an ERP component usually associated
with numerosity processing (Fornaciai & Park, 2018;
Fornaciai et al., 2017; Park et al., 2016; Libertus, Woldorff,
& Brannon, 2007). The latency window observed here is
not far off from the typical timing of the P2p (200–250msec),
but because of the different nature of the stimuli, it may
represent a partially different computational stage. A pos-
sibility is that the intermediate stage (∼300 msec poston-
set) in which we observed a correlate of the adaptation
effect might be more genuinely involved with the compu-
tation and representation of average numerosity com-
pared with later latency windows showing a relationship
with accuracy and precision (∼400+ msec). Such later
stages, as mentioned above, might instead reflect pro-
cesses more related to perceptual decision-making. Note,
however, that all these different ERP analyses were per-
formed considering the same set of occipital electrodes
(Iz, Oz, O1, O2). Although the spatial resolution of EEG
is notoriously poor, these results are more consistent with
perceptual processing occurring in visual cortex rather
than cognitive processes occurring in higher level brain
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areas. The topographic plots concerning the effect of
adaptation (Figure 4B) nevertheless show peaks extend-
ing to occipito-parietal channels, suggesting that signals
reflecting adaptation also emerged at scalp locations dif-
ferent from our target channels. Despite this, we were still
able to capture robust adaptation effects at our central-
occipital target channels. Because of our narrow a priori
selection of target channels, we also cannot exclude that
other aspects of average numerosity processing might
be better captured by other sets of electrodes, reflecting
for instance activity in parietal or frontal brain regions.
For example, higher level processes related to the judg-
ment of average numerositymight be capturedmore accu-
rately based on activity from such higher level cortices.
Our study was, however, focused on the perceptual
aspects of average numerosity processing. Exploring the
nature of brain activity at different scalp locations and its
potential link to higher level functions thus remains
another interesting goal for future studies.
To conclude, our results provide new insights into the

computational properties and neural signature of time-
averaged numerosity. Our results overall suggest the exis-
tence of specific perceptual mechanisms dedicated to the
computation of average numerosity over time, subject to
the limits of temporal integration of the visual system. The
neural signature of average numerosity and the adaptation
effect further show two crucial processing stages, at inter-
mediate (∼300 msec) and late (∼400–700 msec) latencies.
These stages are potentially consistent with the initial rep-
resentation of average numerosity and a subsequent per-
ceptual decision-making stage, respectively.
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