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Note from the authors

This chapter is a reprint of the article Spectral geometry of the Steklov problem by the
same authors, published in the Journal of Spectral Theory. We would like to thank the
Journal of Spectral Theory and the European Mathematical Society for granting per-
mission to reproduce the paper in this book. Spectral geometry of the Steklov problem
is a rapidly developing subject, and there have been a number of important advances
since the original version of this article has appeared. In the present text, we have
added references to some of these new results in the footnotes. In order to make this
chapter coherentwith the rest of the book, the dimension is denoted by d, and the triv-
ial Steklov eigenvalue is now denoted by σ1 = 0, as opposed to σ0 = 0 in the journal
version of this article. The numeration has been also changed.

5.1 Introduction

5.1.1 The Steklov problem

Let Ω be a compact Riemannian manifold of dimension d ≥ 2 with (possibly non-
smooth) boundary M = ∂Ω. The Steklov problem on Ω is{

∆u = 0 in Ω,
∂u
∂n = σ u on M.

where ∆ is the Laplace-Beltrami operator acting on functions on Ω, and ∂u
∂n is the out-

ward normal derivative along the boundary M. This problem was introduced by the
Russian mathematician V.A. Steklov at the turn of the 20th century (see [613] for a
historical discussion). It is well known that the spectrum of the Steklov problem is
discrete as long as the trace operator H1(Ω) → L2(∂Ω) is compact (see [50]). In this
case, the eigenvalues form a sequence 0 = σ1 ≤ σ2 ≤ σ3 ≤ · · · ↗ ∞. This is true under
some mild regularity assumptions, for instance if Ω has Lipschitz boundary (see [725,
Theorem 6.2]).

The present paper focuses on the geometric properties of Steklov eigenvalues and
eigenfunctions. A lot of progress in this area has been made in the last few years, and
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some fascinating open problems have emerged. We will start by explaining the moti-
vation for studying the Steklov spectrum. In particular, we will emphasize the di�er-
ences between this eigenvalue problem and its Dirichlet and Neumann counterparts.

5.1.2 Motivation

The Steklov eigenvalues can be interpreted as the eigenvalues of the Dirichlet-to-
Neumann operator D : H1/2(M) → H−1/2(M) which maps a function f ∈ H1/2(M) to
Df = ∂Hf

∂n , where Hf is the harmonic extension of f to Ω. The study of the Dirichlet-to-
Neumannoperator (also knownas the voltage-to-currentmap) is essential for applica-
tions to electrical impedance tomography, which is used in medical and geophysical
imaging (see [858] for a recent survey). The Steklov spectrumalso plays a fundamental
role in the mathematical analysis of photonic crystals (see [606] for a survey).

A rather striking feature of the asymptotic distribution of Steklov eigenvalues is
its unusually (compared to the Dirichlet and Neumann cases) high sensitivity to the
regularity of the boundary. On one hand, if the boundary of a domain is smooth, the
corresponding Dirichlet-to-Neumann operator is pseudodi�erential and elliptic of or-
der one (see [850, pp. 37-38]). As a result, one can show, for instance, that a surpris-
ingly sharp asymptotic formula for Steklov eigenvalues (5.3) holds for smooth sur-
faces. However, this estimate already fails for polygons (see section 5.3). It is in fact
likely that for domains which are not C∞-smooth but only of class Ck for some k ≥ 1
that the rate of decay of the remainder in eigenvalue asymptotics depends on k. To our
knowledge, for domains with Lipschitz boundaries, even one-term spectral asymp-
totics have not yet been proved. A summary of the available results is presented in [11]
(see also [12]).

One of the oldest topics in spectral geometry is shape optimization. Here again,
the Steklov spectrumholds some surprises. For instance, the classical result of Faber–
Krahn for the �rst Dirichlet eigenvalue λ1(Ω) states that among Euclidean domains
with �xed measure, λ1 is minimized by a ball. Similarly, the Szegő–Weinberger in-
equality states that the �rst nonzero Neumann eigenvalue µ2(Ω) is maximized by a
ball. In both cases, no topological assumptions are made. The analogous result for
Steklov eigenvalues is Weinstock’s inequality, which states that among planar do-
mains with �xed perimeter, σ2 is maximized by a disk provided that Ω is simply–
connected. In contrast with the Dirichlet and Neumann case, this assumption cannot
be removed. Indeed the result fails for appropriate annuli (see section 5.4.2). More-
over, maximization of the �rst nonzero Steklov eigenvalue among all planar domains
of given perimeter is an open problem. At the same time, it is known that for simply–
connected planar domains, the k-th normalized Steklov eigenvalue is maximized in
the limit by a disjoint union of k −1 identical disks for any k ≥ 2 [892]. Once again, for
the Dirichlet and Neumann eigenvalues the situation is quite di�erent: the extremal
domains for k ≥ 3 are known only at the level of experimental numerics, and, with a
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few exceptions, are expected to have rather complicated geometries, see the pictures
in Chapter 11.

Probably the most well–known question in spectral geometry is “Can one hear
the shape of a drum?”, or whether there exist domains or manifolds that are isospec-
tral but not isometric. Apart from some easy examples discussed in section 5.5, no
examples of Steklov isospectral non-isometric manifolds are presently known. Their
construction appears to be even trickier than for the Dirichlet or Neumann problems.
In particular, it is not known whether there exist Steklov isospectral Euclidean do-
mainswhich are not isometric. Note that the standard transplantation techniques (see
[127, 232, 233]) are not applicable for the Steklov problem, as it is not clear how to re-
�ect Steklov eigenfunctions across the boundary.

New challenges also arise in the study of the nodal domains and the nodal sets
of Steklov eigenfunctions. One of the problems is to understand whether the nodal
lines of Steklov eigenfunctions are dense at the “wave-length scale”, which is a basic
property of the zeros of Laplace eigenfunctions. Another interesting question is the
nodal count for the Dirichlet-to-Neumann eigenfunctions.We touch upon these topics
in section 5.6.

Let us conclude this discussion by mentioning that the Steklov problem is often
considered in the more general form

∂u
∂n = σρu, (5.1)

where ρ ∈ L∞(∂Ω) is a non-negative weight function on the boundary. If Ω is two-
dimensional, the Steklov eigenvalues can be thought of as the squares of the natural
frequencies of a vibrating free membrane with its mass concentrated along its bound-
ary with density ρ (see [619]). A special case of the Steklov problemwith the boundary
condition (5.1) is the sloshing problem, which describes the oscillations of �uid in a
container. In this case, ρ ≡ 1 on the free surface of the �uid and ρ ≡ 0 on the walls of
the container. There is an extensive literature on theproperties of sloshing eigenvalues
and eigenfunctions, see [105, 388, 602] and references therein.

Since the present survey is directed towards geometric questions, in order to sim-
plify the analysis and presentation we focus on the pure Steklov problem with ρ ≡ 1.

5.1.3 Computational examples

The Steklov spectrum can be explicitly computed in a few cases. Below we discuss
the Steklov eigenvalues and eigenfunctions of cylinders and balls using separation of
variables.

Example 5.1. The Steklov eigenvalues of a unit disk are

0, 1, 1, 2, 2, . . . , k, k, . . . .
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The corresponding eigenfunctions in polar coordinates (r, ϕ) are given by

1, r sinϕ, r cosϕ, . . . , rk sin kϕ, rk cos kϕ, . . . .

Example 5.2. The Steklov eigenspaces on the ball B(0, R) ⊂ Rd are the restrictions
of the spaces Hdk of homogeneous harmonic polynomials of degree k ∈ N on Rd. The
corresponding eigenvalue is σ = k/R with multiplicity

dimHdk =
(
d + k − 1
d − 1

)
−
(
d + k − 3
d − 1

)
.

This is of course a generalization of the previous example.

Example 5.3. This example is taken from [279]. Let Σ be a compact Riemannian man-
ifold without boundary. Let

0 = λ1 < λ2 ≤ λ3 · · · ↗ ∞

be the spectrum of the Laplace-Beltrami operator ∆Σ on Σ, and let (uk) be an orthonor-
mal basis of L2(Σ) such that

∆Σuk = λkuk .

Given any L > 0, consider the cylinder Ω = [−L, L] × Σ ⊂ R × Σ. Its Steklov spectrum is
given by

0, 1/L,
√
λk tanh(

√
λkL),

√
λk coth(

√
λkL).

and the corresponding eigenfunctions are

1, t, cosh(
√
λk t)uk(x), sinh(

√
λk t)uk(x).

In sections 5.3.1 and 5.4.2 we will discuss two more computational examples: the
Steklov eigenvalues of a square and of annuli.

5.1.4 Plan of the chapter

The chapter is organized as follows. In section 5.2we survey results on the asymptotics
and invariants of the Steklov spectrum on smooth Riemannian manifolds. In section
5.3 we discuss asymptotics of Steklov eigenvalues on polygons, which turns out to be
quite di�erent from the case of smooth planar domains. Section 5.4 is concerned with
geometric inequalities. In section 5.5 we discuss Steklov isospectrality and spectral
rigidity. Finally, section 5.6 deals with the nodal geometry of Steklov eigenfunctions
and the multiplicity bounds for Steklov eigenvalues.
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5.2 Asymptotics and invariants of the Steklov spectrum

5.2.1 Eigenvalue asymptotics

As above, let d ≥ 2 be the dimension of the manifold Ω, so that the dimension of
the boundary M = ∂Ω is d − 1. As was mentioned in the introduction, the Steklov
eigenvalues of a compactmanifoldΩwithboundaryM = ∂Ω are the eigenvalues of the
Dirichlet-to-Neumannmap. It is a �rst order elliptic pseudodi�erential operatorwhich
has the same principal symbol as the square root of the Laplace-Beltrami operator on
M. Therefore, applying the results of Hörmander [540, 541]5.1 we obtain the following
Weyl’s law for Steklov eigenvalues:

#(σj < σ) = Vol(Bd−1) Vol(M)
(2π)d−1 σd−1 + O(σd−2),

where Bd−1 is a unit ball in Rd−1. This formula can be rewritten

σj = 2π
(

j
Vol(Bd−1) Vol(M)

) 1
d−1

+ O(1). (5.2)

In two dimensions, a much more precise asymptotic formula was proved in [429].
Given a �nite sequence C = {α1, · · · , αk} of positive numbers, consider the follow-
ing union of multisets (i.e. sets with multiplicities): {0, .. . . . , 0} ∪ α1N ∪ α1N ∪
α2N ∪ α2N ∪ · · · ∪ αkN ∪ αkN, where the �rst multiset contains k zeros and αN =
{α, 2α, 3α, . . . , nα, . . . }. We rearrange the elements of this multiset into a mono-
tone increasing sequence5.2 S(C). For example, S({1}) = {0, 1, 1, 2, 2, 3, 3, · · · } and
S({1, π}) = {0, 0, 1, 1, 2, 2, 3, 3, π, π, 4, 4, 5, 5, 6, 6, 2π, 2π, 7, 7, · · · }. The follow-
ing sharp spectral estimate was proved in [429].

Theorem 5.4. Let Ω be a smooth compact Riemannian surface with boundary M. Let
M1, · · · ,Mk be the connected components of the boundary M = ∂Ω, with lengths
`(Mi), 1 ≤ i ≤ k. Set R =

{
2π
`(M1) , · · · ,

2π
`(Mk)

}
. Then

σj = S(R)j + O(j−∞), (5.3)

where O(j−∞) means that the error term decays faster than any negative power of j.

In particular, for simply–connected surfaces we recover the following result proved
earlier by Rozenblyum and Guillemin–Melrose (see [354, 794]):

σ2j = σ2j+1 + O(j−∞) = 2π
`(M) j + O(j−∞). (5.4)

5.1 The authors thankY. Kannai for providing thema copy of L. Hörmander’s unpublishedmanuscript
[540].
5.2 In this chapter, the sequence starts with S(C)1 = 0, as opposed to S(C)0 = 0 in the original paper.
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The idea of the proof of Theorem 5.4 is as follows. For each boundary component Mi,
i = 1, . . . , k, we cut o� a “collar” neighbourhood of the boundary and smoothly glue
a cap onto it. In this way, one obtains k simply–connected surfaces, whose bound-
aries are precisely M1, . . . ,Mk, and the Riemannian metric in the neighbourhood
of each Mi, i = 1, . . . k, coincides with the metric on Ω. Denote by Ω* the union of
these simply–connected surfaces. Using an explicit formula for the full symbol of the
Dirichlet-to-Neumann operator [646] we notice that the Dirichlet-to-Neumann opera-
tors associated with Ω and Ω* di�er by a smoothing operator, that is, by a pseudodif-
ferential operator with a smooth integral kernel; such operators are bounded asmaps
between any two Sobolev spaces Hs(M) and H t(M), s, t ∈ R. Applying pseudodi�er-
ential techniques, we deduce that the corresponding Steklov eigenvalues of σj(Ω) and
σj(Ω*)di�er byO(j−∞). Note that a similar ideawasused in [529]. Now, in order to study
the asymptotics of the Steklov spectrum of Ω*, we map each of its connected compo-
nents to a disk by a conformal transformation and apply the approach of Rozenblyum-
Guillemin-Melrose which is also based on pseudodi�erential calculus.

5.2.2 Spectral invariants

The following result is an immediate corollary of Weyl’s law (5.2).

Corollary 5.5. The Steklov spectrum determines the dimension of the manifold and the
volume of its boundary.

More re�ned information can be extracted from the Steklov spectrum of surfaces.

Theorem 5.6. The Steklov spectrum determines the number k and the lengths `1 ≥ `2 ≥
· · · ≥ `k of the boundary components of a smooth compact Riemannian surface. More-
over, if {σj} is the monotone increasing sequence of Steklov eigenvalues, then:

`1 = 2π
lim supj→∞(σj+1 − σj)

.

This result is proved in [429] by a combination of Theorem 5.4 and certain number-
theoretic arguments involving the Dirichlet theorem on simultaneous approximation
of irrational numbers.

Aswas shown in [429], a direct generalizationof Theorem5.6 tohigher dimensions
is false. Indeed, consider four �at rectangular tori: T1,1 = R2/Z2, T2,1 = R/2Z × R/Z,
T2,2 = R2/(2Z)2 and T√2,

√
2 = R2/(

√
2Z)2. It was shown in [344, 741] that the dis-

joint union T = T1,1tT1,1tT2,2 is Laplace–Beltrami isospectral to the disjoint union
T′ = T2,1 t T2,1 t T√2,

√
2. It follows from Example 5.3 that for any L > 0, the two dis-

joint unions of cylinders Ω1 = [0, L] ×T and Ω2 = [0, L] ×T′ are Steklov isospectral. At
the same time, Ω1 has four boundary components of area 1 and two boundary com-
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ponents of area 4, while Ω2 has six boundary components of area 2. Therefore, the
collection of areas of boundary components cannot be determined from the Steklov
spectrum. Still, the following question can be asked:

Open problem 5.7. Is the number of boundary components of amanifold of dimension
≥ 3 a Steklov spectral invariant?

Further spectral invariants can be deduced using the heat trace of the Dirichlet-to-
Neumann operatorD. By the results of [10, 348, 440], the heat trace admits an asymp-
totic expansion

∞∑
i=1

e−tσi = Tr e−tD =
ˆ
M
e−tD(x, x) dx ∼

∞∑
k=0

ak t−d+1+k +
∞∑
l=1

bl tl log t. (5.5)

The coe�cients ak and bl are called the Steklov heat invariants, and it follows from
(5.5) that they are determined by the Steklov spectrum. The invariants a0, . . . , ad−1,
aswell as bl for all l, are local, in the sense that they are integrals overM of correspond-
ing functions ak(x) and bl(x) which may be computed directly from the symbol of the
Dirichlet-to-Neumann operatorD. The coe�cients ak are not local for k ≥ d [422, 423]
and hence are signi�cantly more di�cult to study.

In [764], explicit expressions for the Steklov heat invariants a0, a1 and a2 forman-
ifolds of dimensions three or higher were given in terms of the scalar curvatures of M
and Ω, as well as the mean curvature and the second order mean curvature of M (for
further results in this direction, see [675]). For example, the formula for a1 yields the
following corollary:

Corollary 5.8. Let dimΩ ≥ 3. Then the integral of the mean curvature over ∂Ω = M
(i.e. the total mean curvature of M) is an invariant of the Steklov spectrum.

The Steklov heat invariants will be revisited in section 5.5.

Remark 5.9. Other spectral invariants have also been studied. For smooth simply con-
nected planar domains it was shown in [353] that the regularized determinant det(D) of
the Dirichlet–to–Neumann map is equal to the perimeter of the domain. In fact, on an
arbitrary smooth compact Riemannian surface with boundary, det(D)/L(∂Ω) is a con-
formal invariant. This was proved in [441], where an explicit formula for the determinant
was given in terms of particular values of Selberg and Ruelle zeta functions and of the
Euler characteristic of Ω.

One should also mention the recent paper [690] where special values of the zeta
function are computed for smooth simply connected planar domains, providing a seem-
ingly large number of new spectral invariants which are expressed in terms of the Fourier
coe�cients of a bihilomorphism from the disk (see also [352]).
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Table 5.1. Eigenfunctions obtained by separation of variables on the square (−1, 1) × (−1, 1).

Eigenspace basis Conditions on α Eigenvalues Asymptotic behaviour

cos(αx) cosh(αy)
cos(αy) cosh(αx) tan(α) = − tanh(α) α tanh(α) 3π

4 + πj + O(j−∞)

sin(αx) cosh(αy)
sin(αy) cosh(αx) tan(α) = coth(α) α tanh(α) π

4 + πj + O(j−∞)

cos(αx) sinh(αy)
cos(αy) sinh(αx) tan(α) = − coth(α) α coth(α) 3π

4 + πj + O(j−∞)

sin(αx) sinh(αy)
sin(αy) sinh(αx) tan(α) = tanh(α) α coth(α) π

4 + πj + O(j−∞)

xy 1

5.3 Spectral asymptotics on polygons

The spectral asymptotics given by formula (5.2) and Theorem 5.4 are obtained us-
ing pseudodi�erential techniques which are valid only for manifolds with smooth
boundaries. In the presence of singularities, the study of the asymptotic distribution
of Steklov eigenvalues is more di�cult, and the known remainder estimates are sig-
ni�cantly weaker (see [11] and references therein). Moreover, Theorem 5.4 fails even
for planar domains with corners. This can be seen from the explicit computation of
the spectrum for the simplest nonsmooth domain: the square.

5.3.1 Spectral asymptotics on the square

The Steklov spectrum of the square Ω = (−1, 1) × (−1, 1) is described as follows. For
each positive root α of the following equations:

tan(α) + tanh(α) = 0, tan(α) − coth(α) = 0,
tan(α) + coth(α) = 0, tan(α) − tanh(α) = 0

the number α tanh(α) or α coth(α) is a Steklov eigenvalue of multiplicity two (see Ta-
ble 5.1 and Figure 5.1). The function f (x, y) = xy is also an eigenfunction, with a sim-
ple eigenvalue σ4 = 1. Starting from σ5, the normalized eigenvalues are clustered in
groups of 4 around the odd multiples of 2π:

σ4j+lL = (2j + 1)2π + O(j−∞), for l = 1, 2, 3, 4.

This is compatible with Weyl’s law since for k = 4j + l it follows that

σkL =
(
k − l

2 + 1
)

2π + O(j−∞) = πk + O(1).
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Fig. 5.1. The Steklov eigenvalues of a square. Each intersection corresponds to a double eigenvalue.

Nevertheless, the re�ned asymptotics (5.4) does not hold.
Let us discuss the spectrum of a square in more detail. Separation of variables

quickly leads to the 8 families of Steklov eigenfunctions presented in Table 5.1 plus
an “exceptional” eigenfunction f (x, y) = xy. One now needs to prove the complete-
ness of this system of orthogonal functions in L2(∂Ω). Using the diagonal symmetries
of the square (see Figure 5.2), we obtain symmetrized functions spanning the same
eigenspaces. Splitting the eigenfunctions into odd and even parts with respect to the
diagonal symmetries, we represent the spectrum as the union of the spectra of four
mixed Steklov problems on a right isosceles triangle. In each of these problems the
Steklov condition is imposed on the hypotenuse, and on each of the sides the condi-
tion is either Dirichlet or Neumann, depending on whether the corresponding eigen-
functions are odd or even when re�ected across this side. In order to prove the com-
pleteness of this system of Steklov eigenfunctions, it is su�cient to show that the cor-
responding symmetrized eigenfunctions form a complete set of solutions for each of
the four mixed problems.

Let us show this property for the problem corresponding to even symmetries
across the diagonal. In this way, one gets a sloshing (mixed Steklov–Neumann) prob-
lem on a right isosceles triangle. Solutions of this problem were known since 1840s
(see [618]). The restrictions of the solutions to the hypotenuse (i.e. to the side of the
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Fig. 5.2. Decomposition of the Steklov problem on a square into four mixed problems on a triangle.

original square) turn out to be the eigenfunctions of the free beam equation:

d4

dx4 f = ω4f on (−1, 1)

d3

dx3 f = d2

dx2 f = 0 at x = −1, 1.

This is a fourth order self-adjoint Sturm-Liouvillle equation. It is known that its solu-
tions form a complete set of functions on the interval (−1, 1).

The remaining three mixed problems are dealt with similarly: one reduces the
problem to the studyof solutions of the vibratingbeamequationwith either theDirich-
let condition on both ends, or the Dirichlet condition on one end and the Neumann
on the other.

Remark 5.10. The idea to replace the Dirichlet–to–Neumann map on the boundary of
a non-smooth domain by a higher order di�erential problem has been also used in the
mathematical analysis of photonic crystals (see [606, section 7.5.3]).

5.3.2 Numerical experiments

Understanding �ne spectral asymptotics for the Steklov problem on arbitrary polygo-
nal domains is a di�cult question.Wehave used software from the FEniCS Project (see
http://fenicsproject.org/ and [677]) to investigate the behaviour of the Steklov eigen-
values for some speci�c examples. This was done using an implementation due to B.
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Siudeja [814] which was already applied in [613]. For the sake of completeness, we
discuss two of these experiments here.

Example 5.11. (Equilateral triangle) We have computed the �rst 60 normalized eigen-
values σjL of an equilateral triangle. The results lead to a conjecture that

σ2jL = σ2j−1L + o(1) = π(2j − 1) + o(1).

Example 5.12. (Right isosceles triangle) For the right isosceles triangle with sides of
lengths 1, 1,

√
2, we have also computed the �rst 60 normalized eigenvalues. The nu-

merics indicate that the spectrum is composed of two sequences of eigenvalues, one of
which is behaving as a sequence of double eigenvalues

πj + o(1)

and the other one as a sequence of simple eigenvalues

π√
2

(j + 1/2) + o(1).

In the context of the sloshing problem, some related conjectures have been proposed
in [388].

5.4 Geometric inequalities for Steklov eigenvalues

5.4.1 Preliminaries

Let us start with the following simple observation. If a Euclidean domain Ω ⊂ Rd is
scaled by a factor c > 0, then

σk(c Ω) = c−1σk(Ω). (5.6)

Because of this scalingproperty,maximizing σk(Ω)amongdomainswith�xedperime-
ter is equivalent to maximizing the normalized eigenvalues σk(Ω)|∂Ω|1/(d−1) on arbi-
trary domains. Here and further on we use the notation | · | to denote the volume of a
manifold.

All the results concerning geometric bounds are proved using a variational char-
acterization of the eigenvalues. Let E(k) be the set of all k dimensional subspaces of
the Sobolev spaceH1(Ω) which are orthogonal to constants on the boundary ∂Ω, then
for each k ≥ 1,

σk+1(Ω) = min
E∈E(k)

sup
06= u∈E

R(u), (5.7)
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Fig. 5.3. A domain with a thin passage.

where the Rayleigh quotient is

R(u) =
´
Ω |∇u|

2 dA´
∂Ω u2 dS

.

In particular, the �rst nonzero eigenvalue is given by

σ2(Ω) = min
{
R(u) : u ∈ H1(Ω),

ˆ
∂Ω
u dS = 0

}
.

These variational characterizations are similar to those of Neumann eigenvalues on
Ω, where the integral in the denominator of R(u) would be on the domain Ω rather
than on its boundary.

One last observation is in order before we discuss isoperimetric bounds. Let Ωϵ :=
(−1, 1) × (−ϵ, ϵ) be a thin rectangle (0 < ϵ << 1). It is easy to see using using (5.7) that

lim
ϵ→0

σk(Ωϵ) = 0, for each k ∈ N. (5.8)

In fact, it su�ces for a family Ωϵ of domains to have a thin collapsing passage (see
Figure 5.3) to guarantee that σk(Ωϵ) becomes arbitrarily small as ϵ ↘ 0 (see [892, sec-
tion 2.2].) This follows from the variational characterization: the idea is to construct a
sequence of k pairwise orthogonal test functions that oscillate inside the thin passage
and vanish outside. Then the Dirichlet energy of such functions will be very small,
while the denominator in the Rayleigh quotient remains bounded away from zero, due
to the integration over the side of the passage. Hence, the Rayleigh quotient will tend
to zero, yielding (5.8). When considering an isoperimetric constraint, it is therefore
more interesting to maximize eigenvalues.

5.4.2 Isoperimetric upper bounds for Steklov eigenvalues on surfaces

On a compact surface with boundary, the following theorem gives a general upper
bound in terms of the genus and the number of boundary components.
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Fig. 5.4. A family of domains Ωϵ maximizing σ3L in the limit as ϵ → 0.

Theorem 5.13 ([431]). 5.3 Let Ω be a smooth orientable compact Riemannian surface
with boundaryM = ∂Ω of length L. Let γ be the genus of Ω and let l be the number of its
boundary components. Then the following holds:

σpσq L2 ≤
{
π2(γ + l)2(p + q − 2)2 if p + q is even,
π2(γ + l)2(p + q − 3)2 if p + q is odd,

(5.9)

for any pair of integers p, q ≥ 2. In particular by setting p = q = k one obtains the
following bound:

σk(Ω)L(M) ≤ 2π(γ + l)(k − 1). (5.10)

The proof of Theorem 5.13 is based on the existence of a proper holomorphic covering
map ϕ : Ω → D of degree γ + l (the Ahlfors map), which was proved in [414], and
on an ingenious complex analytic argument due to J. Hersch, L. Payne and M. Schif-
fer [513], who used it to prove inequality (5.9) for planar domains. In this particular
case, inequality (5.10) is known to be sharp. Indeed, it was proved in [892] that equal-
ity is attained in the limit by a family Ωϵ of domains degenerating to a disjoint union
of k−1 identical disks (see Figure 5.4). For k = 2, inequality (5.10) was proved in [392].

The earliest isoperimetric inequality for Steklov eigenvalues is that of R. Wein-
stock [873]. For simply–connected planar domains (γ = 0, l = 1), he proved that

σ2(Ω)L(∂Ω) ≤ 2π (5.11)

with equality if and only ifΩ is a disk.Weinstock used an argument similar to that of G.
Szegő [838], who obtained an isoperimetric inequality for the �rst nonzero Neumann
eigenvalue of a simply–connected domain Ω normalized by the measure |Ω| rather
than its perimeter. In fact, Weinstock’s proof is the simplest application of the center
of mass renormalization (also known as Hersch’s lemma, see [428, 430, 519, 802]).

5.3 This result has been recently improved by M. Karpukhin [573]. Karpukhin’s bound involves an
explicit linear comibination of the genus, the number of boundary components and the index of the
eigenvalue. It should also be compared to Theorem 5.18 below, where the constants are implicit, but
the estimate is independent on the number of boundary components.
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While Szegő’s inequality can be generalized to an arbitrary Euclideandomain (see
[871]), this is not true for Weinstock’s inequality. In particular, as follows from the ex-
ample below,Weinstock’s inequality fails for non-simply–connected planar domains.

Example 5.14. The Steklov eigenvalues and eigenfunctions of an annulus have been
computed in [338]. On the annulus Aϵ = D\B(0, ϵ), there is a radially symmetric Steklov
eigenfunction

f (r) = −
(

1 + ϵ
ϵ log(ϵ)

)
log(r) + 1,

with the corresponding eigenvalue σ = 1+ϵ
ϵ log(1/ϵ) . All other eigenfunctions are of the form

fk(r, θ) = (Akrk + A−kr−k)T(kθ) (with k ∈ N)

where T(kθ) = cos(kθ) or T(kθ) = sin(kθ). In order for fk(r, θ) to be a Steklov eigenfunc-
tion it is required that

∂
∂r
fk(1, θ) = σfk(1, θ) and − ∂

∂r
fk(ϵ, θ) = σfk(ϵ, θ),

which leads to the following system:(
σϵk + kϵk−1 σϵ−k − kϵ−k−1

σ − k σ + k

)(
Ak
A−k

)
=
(

0
0

)
.

This system has a nonzero solution if and only if its determinant vanishes. After some
simpli�cations, the Steklov eigenvalues of the annulus Aϵ = D \ B(0, ϵ) are seen to be
the roots of the quadratic polynomials

pk(σ) = σ2 − σk
(
ϵ + 1
ϵ

)(
1 + ϵ2k

1 − ϵ2k

)
+ 1
ϵ k

2 (k ∈ N).

Each of these roots contributes double eigenvalues, corresponding to the choice of a cos
or sin function for the angular part T(kθ) of the corresponding eigenfunction. For ϵ > 0
small enough, this leads in particular to

σ2(Aϵ) = 1
2ϵ

1 + ϵ2

1 − ϵ

1 −

√
1 − 4ϵ

(
1 − ϵ

1 + ϵ2

)2
 . (5.12)

It follows from formula (5.12) that for the annulus Aϵ = B(0, 1) \ B(0, ϵ) one has

σ2(Aϵ)L(∂Aϵ) = 2πσ2(D) + 2πϵ + o(ϵ) as ϵ ↘ 0. (5.13)

Therefore, σ2(Aϵ)L(∂Aϵ) > 2πσ2(D) for ϵ > 0 small enough (see Figure 5.5), and hence
Weinstock’s inequality (5.11) fails.



134 | Alexandre Girouard and Iosif Polterovich

Fig. 5.5. The normalized eigenvalue σ2(Aϵ)L(∂Aϵ)

Remark 5.15. One can also compute the Steklov eigenvalues of the spherical shellΩϵ :=
B(0, 1) \ B(0, ϵ) ⊂ Rd for d ≥ 3. The eigenvalues are the roots of certain quadratic
polynomials which can be computed explicitly. Here again, it is true that for ϵ > 0 small
enough, σ2(Ωϵ)|∂Ωϵ|

1
d−1 > σ2(B)|∂B| 1

d−1 . This computation was part of an unpublished
undergraduate research project of E. Martel at Université Laval.

Given that Weinstock’s inequality is no longer true for non-simply–connected planar
domains, one may ask whether the supremum of σ2L among all planar domains of
�xed perimeter is �nite. This is indeed the case, as follows from the following theorem
for k = 2 and γ = 0.

Theorem 5.16 ([279]). There exists a universal constant C > 0 such that

σk(Ω)L(∂Ω) ≤ C(γ + 1)k. (5.14)

Theorem 5.16 leads to the following question:

Open problem 5.17. What is the maximal value of σ2(Ω) among Euclidean domains
Ω ⊂ Rd of �xed perimeter? On which domain (or in the limit of which sequence of do-
mains) is it realized?

Some related results will be discussed in subsection 5.4.3. In particular, in view of The-
orem 5.26 [392], it is tempting to suggest that the maximum is realized in the limit by
a sequence of domains with the number of boundary components tending to in�nity.

The proof of Theorem 5.16 is based on N. Korevaar’s metric geometry ap-
proach [598] as described in [438]. For k = 2, inequality (5.14) holds with C = 4π
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(see [594]). For k = 2 and γ = 0, it holds with C = 2π [392] (see Theorem 5.26 below).
It is also possible to “decouple” the genus γ and the index k. The following theorem
was proved by A. Hassannezhad [467], using a generalization of the Korevaar method
in combination with concentration results from [281].

Theorem 5.18. There exists two constants A, B > 0 such that

σk(Ω)L(∂Ω) ≤ Aγ + Bk.

At this point, we have considered maximization of the Steklov eigenvalues under the
constraint of �xed perimeter. This is natural, since they are the eigenvalues of to the
Dirichlet-to-Neumann operator, which acts on the boundary. Nevertheless, it is also
possible to normalize the eigenvalues by �xing the measure of Ω. The following theo-
rem was proved by F. Brock [192].

Theorem 5.19. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then

σ2(Ω)|Ω|1/d ≤ ω1/d
d , (5.15)

with equality if and only if Ω is a ball. Here ωd is the volume of the unit ball Bd ⊂ Rd.

Observe that no connectedness assumption is required this time.5.4 The proof of Theo-
rem 5.19 is based on a weighted isoperimetric inequality for moments of inertia of the
boundary ∂Ω. A quantitative improvement of Brock’s theorem was obtained in [180]
in terms of the Fraenkel asymmetry of a bounded domain Ω ⊂ Rd,:

A(Ω) := inf
{
‖1Ω − 1B‖L1

|Ω| : B is a ball with |B| = |Ω|
}
.

Theorem 5.20. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then

σ2(Ω)|Ω|1/d ≤ ω1/d
d (1 − αdA(Ω)2), (5.16)

where αd > 0 depends only on the dimension.

The proof of Theorem 5.20 is based on a quantitative re�nement of the isoperimetric
inequality, see also [178] for related results on stability of the Dirichlet and Neumann
eigenvalues and Chapter 7 for a complete overview on that topic. It would be interest-
ing to prove a similar stability result for Weinstock’s inequality:

Open problem 5.21. Let Ω be a planar simply–connected domain such that the di�er-
ence 2π − σ2(Ω)L(∂Ω) is small. Show that Ω must be close to a disk (in the sense of
Fraenkel asymmetry or some other measure of proximity).

5.4 Recent numerical results [16, 153] show that in two dimensions, the maximizer of σk under the
area constraint is connected for each k ≥ 2. Moreover, the maximizing domains appear to be smooth
and have exactly k axes of symmetry.
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5.4.3 Existence of maximizers and free boundary minimal surfaces

A free boundary submanifold is a proper minimal submanifold of some unit ball Bd
with its boundary meeting the sphere Sd−1 orthogonally. These are characterized by
their Steklov eigenfunctions.

Lemma 5.22 ([393]). A properly immersed submanifold Ω of the ball Bd is a free boun-
dary submanifold if and only if the restriction toΩ of the coordinate functions x1, · · · , xd
satisfy {

∆xi = 0 in Ω,
∂xi
∂n = xi on ∂Ω.

This link was exploited by A. Fraser and R. Schoen who developed the theory of ex-
tremal metrics for Steklov eigenvalues. See [392, 393] and especially [394] where an
overview is presented.

Let σ*(γ, l) be the supremum of σ2L taken over all Riemannian metrics on a com-
pact surface of genus γ with l boundary components. In [392], a geometric character-
ization of maximizers was proved.

Proposition 5.23. Let Ω be a compact surface of genus γ with l boundary components
and let g0 be a smooth metric on Ω such that

σ2(Ω, g0)L(∂Ω, g0) = σ*(γ, l).

Then there exist eigenfunctions u1, · · · , ud corresponding to σ2(Ω) such that the map

u = (u1, · · · , ud) : Ω → Bd

is a conformal minimal immersion such that u(Ω) ⊂ Bd is a free boundary submanifold,
and u is an isometry on ∂Ω up to a rescaling by a constant factor.

This result was extended to higher eigenvalues σk in [394]. This characterization is
similar to that of extremizers of the eigenvalues of the Laplace operator on surfaces
(see [361, 362, 720]).

For surfaces of genus zero, Fraser and Schoen could also obtain an existence and
regularity result for maximizers, which is the main result of their paper [392].

Theorem 5.24. For each l > 0, there exists a smooth metric g on the surface of genus
zero with l boundary components such that

σ2(Ω, g)Lg(∂Ω) = σ*(0, l).

Similar existence results have been proved for the �rst nonzero eigenvalue of the
Laplace–Beltrami operator in a �xed conformal class of a closed surface of arbitrary
genus, in which case conical singularities have to be allowed (see [556, 756]).
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Proposition 5.23 and Theorem 5.24 can be used to study optimal upper bounds for
σ2 on surfaces of genus zero. Observe that inequality (5.10) can be restated as

σ*(γ, l) ≤ 2π(γ + l).

This bound is not sharp in general. For instance, Fraser and Schoen [392] proved that
on annuli (γ = 0, l = 2), the maximal value of σ2(Ω)L(∂Ω) is attained by the critical
catenoid (σ2L ∼ 4π/1.2), which is the minimal surface Ω ⊂ B3 parametrized by

ϕ(t, θ) = c(cosh(t) cos(θ), cosh(t) sin(θ), t),

where the scaling factor c > 0 is chosen so that the boundary of the surface Ω meets
the sphere S2 orthogonally.

Theorem 5.25 ([392]). The supremum of σ2(Ω)L(∂Ω) among surfaces of genus 0 with
two boundary components is attained by the critical catenoid. The maximizer is unique
up to conformal changes of the metric which are constant on the boundary.

The uniqueness can be proved using Proposition 5.23 by showing that the critical
catenoid is the unique free boundary annulus in a Euclidean ball. The maximization
of σ2L for the Möbius bands has also been considered in [392].

For surfaces of genus zero with arbitrary number of boundary components, the
maximizers are not known explicitly, but the asymptotic behaviour for large number
of boundary components is understood [392].

Theorem 5.26. The sequence σ*(0, l) is strictly increasing and converges to 4π. For
each l ∈ N a maximizing metric is achieved by a free boundary minimal surface Ωl of
area less than 2π. The limit of these minimal surfaces as l ↗ +∞ is a double disk.

The results discussed above lead to the following question:

Open problem 5.27. 5.5 Let Ω be a surface of genus γ with l boundary components.
Does there exist a smooth Riemannian metric g0 such that

σ2(Ω, g0)L(∂Ω, g0) ≥ σ2(Ω, g)L(∂Ω, g)

for each Riemannian metric g?

Free boundaryminimal surfaces were used as a tool in the study of maximizers for σ2,
but this interplay can be reversed and used to obtain interesting geometric results.

5.5 Under certain assumptions, the existence of a regular maximizer of σk, k ≥ 2, on an arbitrary
Riemannian surface has recently been established in [755]. However, this result does not provide an
answer to the open problem.
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Corollary 5.28. For each l ≥ 1, there exists an embeddedminimal surface of genus zero
in B3 with l boundary components satisfying the free boundary condition.

5.4.4 Geometric bounds in higher dimensions

In dimensions d = dim(Ω) ≥ 3, isoperimetric inequalities for Steklov eigenvalues are
more complicated, as they involve other geometric quantities, such as the isoperimet-
ric ratio:

I(Ω) = |M|
|Ω| d−1

d
.

For the �rst nonzero eigenvalue σ2, it is possible to obtain upper bounds for general
compact manifolds with boundary in terms of I(Ω) and of the relative conformal vol-
ume,which is de�nedbelow. LetΩ be a compactmanifold of dimension dwith smooth
boundary M. Let m ∈ N be a positive integer. The relative m-conformal volume of Ω is

Vrc(Ω,m) = inf
ϕ:Ω↪→Bm

sup
γ∈M(m)

Vol(γ ◦ ϕ(Ω)),

where the in�mum is over all conformal immersions ϕ : Ω ↪→ Bm such that ϕ(M) ⊂
∂Bm, andM(m) is the group of conformal di�eomorphisms of the ball. This conformal
invariant was introduced in [393]. It is similar to the celebrated conformal volume of
P. Li and S.-T. Yau [659].

Theorem 5.29. [393] Let Ω be a compact Riemannian manifold of dimension d with
smooth boundary M. For each positive integer m, the following holds:

σ2(Ω)|M| 1
d−1 ≤ dVrc(Ω,m)2/d

I(Ω) d−2
d−1

. (5.17)

In case of equality, there exists a conformal harmonic map ϕ : Ω → Bm which is a
homothety on M = ∂Ω and such that ϕ(Ω) meets ∂Bm orthogonally. If d ≥ 3, then ϕ is
an isometricminimal immersion ofΩ and it is given by a subspace of the �rst eigenspace.

The proof uses coordinate functions as test functions and is based on the Hersch cen-
ter of mass renormalization procedure. It is similar to the proof of the Li-Yau inequal-
ity [659].

For higher eigenvalues, the following upper bound for bounded domains was
proved by B. Colbois, A. El Sou� and the �rst author in [279].

Theorem 5.30. Let N be a Riemannian manifold of dimension d. If N is conformally
equivalent to a complete Riemannian manifold with non-negative Ricci curvature, then
for each domain Ω ⊂ N, the following holds for each k ≥ 1,

σk(Ω)|M| 1
d−1 ≤ α(d)

I(Ω) d−2
d−1
k2/d . (5.18)
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where α(d) is a constant depending only on d.

Theproof of Theorem5.30 is basedon themethodsofmetric geometry initiated in [598]
and further developed in [438]. In combination with the classical isoperimetric in-
equality, Theorem 5.30 leads to the following corollary.

Corollary 5.31. There exists a constant Cd such that for any Euclidean domain Ω ⊂ Rd

σk(Ω)|∂Ω| 1
d−1 ≤ Cdk2/d .

Similar results alsohold for domains in thehyperbolic spaceHd and in thehemisphere
of Sd. An interesting question raised in [279] is whether or not one can replace the
exponent 2/d in Corollary 5.31 by 1/(d−1), which should be optimal in view ofWeyl’s
law (5.2):

Open problem 5.32. Does there exist a constant Cd such that any bounded Euclidean
domain Ω ⊂ Rd satis�es

σk(Ω)|∂Ω| 1
d−1 ≤ Cdk

1
d−1 ?

While it might be tempting to think that inequality (5.18) should also hold with the
exponent 1/(d − 1), this is necessarily false since it would imply a universal upper
bound on the isoperimetric ratio I(Ω) for Euclidean domains.

5.4.5 Lower bounds

In [365], J. Escobar proved the following lower bound.

Theorem 5.33. LetΩ be a smooth compact Riemannianmanifold of dimension ≥ 3with
boundary M = ∂Ω. Suppose that the Ricci curvature of Ω is non-negative and that the
second fundamental form of M is bounded below by k0 > 0, then σ2 > k0/2.

The proof is a simple application of Reilly’s formula. In [366], Escobar conjectured the
stronger bound σ2 ≥ k0, which he proved for surfaces. For convex planar domains,
this had already been proved by Payne [745]. Earlier lower bounds for convex and star-
shaped planar domains are due to Kuttler and Sigillito [608, 609].

In more general situations (e.g. no convexity assumption), it is still possible to
bound the �rst eigenvalue from below, in a way similar to the classical Cheeger in-
equality. The classical Cheeger constant associated to a compact Riemannian mani-
fold Ω with boundary M = ∂Ω is de�ned by

hc(Ω) := inf
|A|≤ |Ω|

2

|∂A ∩ int Ω|
|A| .
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where the in�mum is over all Borel subsets of Ω such that |A| ≤ |Ω|/2. In [559]
P. Jammes introduced the following Cheeger type constant for the Steklov problem:

hj(Ω) := inf
|A|≤ |Ω|

2

|∂A ∩ int Ω|
|A ∩ ∂Ω| .

He proved the following lower bound.

Theorem 5.34. Let Ω be a smooth compact Riemannian manifold with boundary M =
∂Ω. Then

σ2(Ω) ≥ 1
4hc(Ω)hj(Ω) (5.19)

The proof of this theoremuses the coarea formula and follows the proof of the classical
Cheeger inequality quite closely. Previous lower bounds were also obtained in [365] in
terms of a related Cheeger type constant and of the �rst eigenvalue of a Robin problem
on Ω.

5.4.6 Surfaces with large Steklov eigenvalues

The previous discussion immediately raises the question of whether or not there exist
surfaces with an arbitrarily large normalized �rst Steklov eigenvalue. The question
was settled by the �rst author and B. Colbois in [280].

Theorem 5.35. There exists a sequence {ΩN}N∈N of compact surfaces with boundary
and a constant C > 0 such that for each N ∈ N, genus(ΩN) = 1 + N, and

σ2(ΩN)L(∂ΩN) ≥ CN .

The proof is based on the construction of surfaces which are modelled on a family of
expander graphs.

Remark 5.36. The literature on geometric bounds for Steklov eigenvalues is expand-
ing rather fast. There is some interest in considering the maximization of various func-
tions of the Steklov eigenvalues. See [338, 355, 427, 503]. In the framework of comparison
geometry, σ2 was studied is [367] and more recently in [149]. For submanifolds of Rd,
upper bounds involving the mean curvatures of M = ∂Ω have been obtained in [553].
Higher eigenvalues on annuli have been studied in [378]. Isoperimetric bounds for the
�rst nonzero eigenvalue of the Dirichlet-to-Neumann operator on forms have been re-
cently obtained in [785, 786].
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5.5 Isospectrality and spectral rigidity

5.5.1 Isospectrality and the Steklov problem

Adapting the celebrated question of M. Kac “Can one hear the shape of a drum?” to
the Steklov problem, one may ask:

Open problem 5.37. Do there exist planar domains which are not isometric and have
the same Steklov spectrum?

We believe the answer to this question is negative. Moreover, the problem can be
viewed as a special case of a conjecture put forward in [564]: two surfaces have the
same Steklov spectrum if and only if there exists a conformal mapping between them
such that the conformal factor on the boundary is identically equal to one. Note that
the “if” part immediately follows from the variational principle (5.7). Indeed, the nu-
merator of the Rayleigh quotient for Steklov eigenvalues is the usual Dirichlet energy,
which is invariant under conformal transformations in two dimensions. The denom-
inator also stays the same if the conformal factor is equal to one on the boundary.
Therefore, the Steklov spectra of such conformally equivalent surfaces coincide. For
simply connected domains, a closely related question is to �nd out whether a smooth
positive function a ∈ C∞(S1) is determined by the spectrum of aDD, up to confor-
mal automorphisms of the disk. A positive answer to this question would imply that
smooth simply connected domains are spectrally determined (see [564]). In [352], cal-
culations of the zeta function were used to prove a weaker statement — namely, that
a family of smooth simply connected planar domains is pre-compact in the topology
of a certain Sobolev space.

In higher dimensions, theDirichlet energy is not conformally invariant, and there-
fore the approach described above does not work. However, one can construct Steklov
isospectral manifolds of dimension d ≥ 3 with the help of Example 5.3. Indeed, given
two compact manifoldsM1 andM2 which are Laplace-Beltrami isospectral (there are
many known examples of such pairs, see, for instance, [232, 436, 834]), consider two
cylinders Ω1 = M1 × [0, L] and Ω2 = M2 × [0, L], L > 0. It follows from Example 5.3 that
Ω1 and Ω2 have the same Steklov spectra. Recently, examples of higher-dimesional
Steklov isospectral manifolds with connected boundaries were announced in [435].

In all known constructions of Steklov isospectral manifolds, their boundaries are
Laplace isospectral. The following question was asked in [429]:

Open problem 5.38. Do there exist Steklov isospectral manifolds such that their
boundaries are not Laplace isospectral?
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5.5.2 Rigidity of the Steklov spectrum: the case of a ball

It is an interesting and challenging question to �nd examples of manifolds with
boundary that are uniquely determined by their Steklov spectrum. In this subsection
we discuss the seemingly simple example of Euclidean balls.

Proposition 5.39. A disk is uniquely determined by its Steklov spectrum among all
smooth Euclidean domains.

Proof. LetΩ be anEuclideandomainwhichhas the sameSteklov spectrumas the disk
of radius r. Then, by Corollary 5.5 one immediately deduces that Ω is a planar domain
of perimeter 2πr. Moreover, it follows from Theorem 5.6 that Ω is simply–connected.
Therefore, since the equality in Weinstock’s inequality (5.11) is achieved for Ω, the
domain Ω is a disk of radius r.

Remark 5.40. The smoothness hypothesis in the proposition above seems to be purely
technical. We have to make this assumption since we make use of Theorem 5.6.

The above result motivates the following open problem:

Open problem 5.41. Let Ω ⊂ Rd be a domain which is isospectral to a ball of radius
r. Show that it is a ball of radius r.

Note that Theorem 5.19 does not yield a solution to this problem because the volume
|Ω| is not a Steklov spectrum invariant. Using the heat invariants of the Dirichlet-to-
Neumann operator (see subsection 5.2.2), one can prove the following statement in
dimension three.

Proposition 5.42. Let Ω ⊂ R3 be a domain with connected and smooth boundary M.
Suppose its Steklov spectrum is equal to that of a ball of radius r. Then Ω is a ball of
radius r.

This result was obtained in [764], and we sketch its proof below. First, let us show that
M is simply–connected. We use an adaptation of a theorem of Zelditch on multiplici-
ties [891] proved using microlocal analysis. Namely, since Ω is Steklov isospectral to
a ball, the multiplicities of its Steklov eigenvalues grow as mk = Ck + O(1), where
C > 0 is some constant and mk is the multiplicity of the k-th distinct eigenvalue (cf.
Example 5.2). Then one deduces that M is a Zoll surface (that is, all geodesics on M
are periodic with a common period), and hence it is simply–connected [141].

Therefore, the following formula holds for the coe�cient a2 in the Steklov heat
trace asymptotics (5.5) on Ω:

a2 = 1
16π

ˆ
M
H2

1 + 1
12 .
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HereH1(x)denotes themean curvature ofM at the point x, and the term 1
12 is obtained

from the Gauss–Bonnet theorem using the fact that M is simply–connected. We have
then:

´
M H

2
1 =

´
Sr H

2
1, where Sr = ∂Br.

On the other hand, it follows from (5.2) and Corollary 5.8 that Vol(M) and
´
M H1

are Steklov spectral invariants. Therefore,

Area(M) = Area(Sr),
ˆ
M
H1 =

ˆ
Sr
H1.

Hence√
Area(M)

(ˆ
M
H2

1

)1/2
−
∣∣∣∣ˆ
M
H1

∣∣∣∣ =
√

Area(Sr)
(ˆ

Sr
H2

1

)1/2
−
∣∣∣∣ˆ
Sr
H1

∣∣∣∣ = 0.

Since the Cauchy-Schwarz inequality becomes an equality only for constant func-
tions, one gets that H1 must be constant on M. By a theorem of Alexandrov [18], the
only compact surfaces of constantmean curvature embedded inR3 are round spheres.
We conclude thatM is itself a sphere of radius r and thereforeΩ is isometric to Br. This
completes the proof of the proposition.

5.6 Nodal geometry and multiplicity bounds

5.6.1 Nodal domain count

The study of nodal domains and nodal sets of eigenfunctions is probably the oldest
topic in geometric spectral theory, going back to the experiments of E. Chladni with
vibrating plates. The fundamental result in the subject is Courant’s nodal domain the-
oremwhich states that the k-th eigenfunction of theDirichlet boundary value problem
has at most k nodal domains. The proof of this statement uses essentially two ingre-
dients: the variational principle (see section 5.4.1) and the unique continuation for
solutions of second order elliptic equations. It can therefore be extended essentially
verbatim to Steklov eigenfunctions (see [574, 609]).

Theorem 5.43. Let Ω be a compact Riemannian manifold with boundary and uk be an
eigenfunction corresponding to the Steklov eigenvalue σk. Then uk has at most k nodal
domains.

Apart from the “interior” nodal domains and nodal sets of Steklov eigenfunctions,
a natural problem is to study the boundary nodal domains and nodal sets, that is,
the nodal domains and nodal sets of the eigenfunctions of the Dirichlet-to-Neumann
operator.

The proof of Courant’s theorem cannot be generalized to the Dirichlet-to-
Neumann operator because it is nonlocal. The following problem therefore arises:
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Fig. 5.6. A surface inside a ball creating only two connected components in the interior and a large
number of connected components on the boundary sphere.

Open problem 5.44. LetΩ be aRiemannianmanifoldwith boundaryM. Find an upper
bound for the number of nodal domains of the k-th eigenfunction of the Dirichlet-to-
Neumann operator on M.

For surfaces, a simple topological argument shows that the bound on the number of
interior nodal domains implies an estimate on thenumber of boundarynodal domains
of a Steklov eigenfunction. In particular, the k-th nontrivial Dirichlet-to-Neumann
eigenfunction on the boundary of a simply–connected planar domain has at most 2k
nodal domains [19, Lemma 3.4].

In higher dimensions, the number of interior nodal domains does not control the
number of boundary nodal domains (see Figure 5.6), and therefore new ideas are
needed to tackle Open Problem 5.44. However, there are indications that a Courant-
type (i.e.O(k)) bound should hold in this case as well. For instance, this is the case for
cylinders and Euclidean balls (see Examples 5.2 and 5.3).

5.6.2 Geometry of the nodal sets

The nodal sets of Steklov eigenfunctions, both interior and boundary, remain largely
unexplored. The basic property of the nodal sets of Laplace–Beltrami eigenfunctions
is their density on the scale of 1/

√
λ, where λ is the eigenvalue (cf. [889], see also

Figure 5.7). This means that for anymanifold Ω, there exists a constant C such that for
any eigenvalue λ large enough, the corresponding eigenfunction ϕλ has a zero in any
geodesic ball of radius C/

√
λ. This motivates the following questions (see also Figure

5.7):
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Fig. 5.7. The nodal lines of the 30th eigenfunction on an ellipse.

Open problem 5.45. (i) Are the nodal sets of Steklov eigenfunctions on a Riemannian
manifold Ω dense on the scale 1/σ in Ω? (ii) Are the nodal sets of the Dirichlet-to-
Neumann eigenfunctions dense on the scale 1/σ in M = ∂Ω?

For smooth simply–connected planar domains, a positive answer to question (ii) fol-
lows from the work of Shamma [807] on the asymptotic behaviour of Steklov eigen-
functions. On the other hand, the explicit representation of eigenfunctions on rectan-
gles implies that there exist eigenfunctions of arbitrary high order which have zeros
only on one pair of parallel sides. Therefore, a positive answer to (ii) may hold only
under some regularity assumptions on the boundary.

Another fundamental problem in nodal geometry is to estimate the size of the
nodal set. It was conjectured by S.-T. Yau that for any Riemannian manifold of dimen-
sion d,

C1
√
λ ≤ Hd−1(N(ϕλ)) ≤ C2

√
λ,

where Hd−1(N(ϕλ)) denotes the d − 1-dimensional Hausdor� measure of the nodal
set N(ϕλ) of a Laplace-Beltrami eigenfunction ϕλ, and the constants C1, C2 depend
only on the geometry of the manifold. Similar questions can be asked in the Steklov
setting:

Open problem 5.46. Let Ω be an d-dimensional Riemannian manifold with bound-
ary M. Let uσ be an eigenfunction of the Steklov problem on Ω corresponding to the
eigenvalue σ and let ϕσ = uσ|M be the corresponding eigenfunction of the Dirichlet-to-
Neumann operator on M. Show that

(i) C1σ ≤ Hd−1(N(uσ)) ≤ C2σ,
(ii) C1′σ ≤ Hd−2(N(ϕσ)) ≤ C2′σ,

where the constants C1, C2, C1′, C2′ depend only on the manifold.

Some partial results on this problem are known. In particular, the upper bound in
(ii) was conjectured by [119] and proved in [889] for real analytic manifolds with real
analytic boundary. A lower bound on the size of the nodal set N(ϕσ) for smooth Rie-
mannianmanifolds (thoughweaker than the one conjectured in (ii) in dimensions ≥ 3)
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was recently obtained in [868] using an adaptation of the approach of [822] to nonlocal
operators.

The upper bound in (i) is related to the question of estimating the size of the zero
set of a harmonic function in terms of its frequency (see [445]). In [765], this approach
is combinedwith themethods of potential theory and complex analysis in order to ob-
tain both upper and lower bounds in (i) for real analytic Riemannian surfaces.5.6 Let us
also note that the Steklov eigenfunctions decay rapidly away from the boundary [529],
and therefore the problem of understanding the properties of the nodal set in the inte-
rior is somewhat analogous to the study of the zero sets of Schrödinger eigenfunctions
in the “forbidden regions” (see [446]).

5.6.3 Multiplicity bounds for Steklov eigenvalues

In two dimensions, the estimate on the number of nodal domains allows us to control
the eigenvalue multiplicities (see [142, 268]). The argument roughly goes as follows:
if the multiplicity of an eigenvalue is high, one can construct a corresponding eigen-
function with a high enough vanishing order at a certain point of a surface. In the
neighbourhood of this point the eigenfunction looks like a harmonic polynomial, and
therefore the vanishing order together with the topology of a surface yield a lower
bound on the number of nodal domains. To avoid a contradiction with Courant’s the-
orem, one deduces a bound on the vanishing order, and hence on the multiplicity.

This general scheme was originally applied to Laplace-Beltrami eigenvalues, but
it can be also adapted to provemultiplicity bounds for Steklov eigenvalues. For simply
connected surfaces, this idea was used in [19]. For general Riemannian surfaces, in-
terestingly enough, one can obtain estimates of two kinds. Recall that the Euler char-
acteristic χ of an orientable surface of genus γ with l boundary components equals
2−2γ − l, and of a non-orientable one is equal to 2− γ − l. Putting together the results
of [392, 558, 560, 574] we get the following bounds:

Theorem 5.47. Let Σ be a compact surface of Euler characteristic χ with l boundary
components. Then the multiplicity mk(Σ) for any k ≥ 2 satis�es the following inequali-
ties:

mk(Σ) ≤ 2k − 2χ − 2l + 3, (5.20)

mk(Σ) ≤ k − 2χ + 2. (5.21)

Note that the right-hand side of (5.20) depends only on the index of the eigenvalue
k and on the genus γ of the surface, while the right-hand side of (5.21) depends also

5.6 See also recent results of J. Zhu [893, 894]. In particular, in [893] the upper bound in (i) was proved
for real-analytic Riemannian manifolds of arbitrary dimension.
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on the number of boundary components. Inequality (5.21) in this form was proved in
[558]. In particular, it is sharp for the �rst eigenvalue of simply connected surfaces
(χ = 1, the maximal multiplicity is two, see also [19]) and for surfaces homeomorphic
to a Möbius band (χ = 0, the maximal multiplicity is four). Inequality 5.20 is sharp for
surfaces homeomorphic to an annulus (χ = 0, l = 2, the maximal multiplicity is three
and attained by the critical catenoid, see Theorem 5.25).

While these bounds are sharp in some cases, they are far from optimal for large k.
In fact, the following result is an immediate corollary of Theorem 5.4.

Corollary 5.48. [429] For any smooth compact Riemannian surface Ω with l boundary
components, there is a constant N depending on the metric on Ω such that for j > N, the
multiplicity of σj is at most 2l.

Remark 5.49. The multiplicity of the �rst nonzero eigenvalue σ2 has been linked to the
relative chromatic number of the corresponding surface with boundary in [558].

Remark 5.50. It is well-known that the spectrum of the Laplace-Beltrami operator is
generically simple [17, 857]. It is likely that the same is true for the Steklov spectrum,
however, to our knowledge, such a result has not been established yet.

For manifolds of dimension d ≥ 3, no general multiplicity bounds for Steklov eigen-
values are available. Moreover, given a Riemannian manifold Ω of dimension d ≥ 3
and any non-decreasing sequence of N positive numbers, one can �nd a Riemannian
metric g in a given conformal class, such that this sequence coincides with the �rst N
nonzero Steklov eigenvalues of (M, g) [559].

Theorem 5.51. Let Ω be a compact manifold of dimension d ≥ 3 with boundary. Let m
be a positive integer and let 0 = s0 < s1 ≤ · · · ≤ sm be a �nite sequence. Then there exists
a Riemannian metric g on Ω such that σj = sj for j = 0, · · · ,m.

For Laplace-Beltrami eigenvalues, a similar result was obtained in [282]. It is plausi-
ble that multiplicity bounds for Steklov eigenvalues in higher dimensions could be
obtained under certain geometric assumptions, such as curvature constraints.
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