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Abstract

In this thesis, we study a couple of different but related questions: holography and quantum
error correction, the gravitationally dressed operators and locality in holographic theory,
introducing generalized versions of the class of continuous matrix product state as the most
famous class of tensor network, and the notion of Krylov complexity of matrix quantum
mechanics. In the first part, we use the notion of the Petz map and apply it to recon-
struct operators in the entanglement wedge. Moreover, for geometries that contain black
holes, we generalize the notion of the Petz map by itself and reconstruct black hole interior
modes. In particular, we show that the Petz map reconstruction of the black hole interior
is equivalent to the Papadodimas-Raju Proposal. In the second part, within the AdS/CFT
correspondence, we identify a class of CFT operators which represent diff-invariant and
approximately local observables in the gravitational dual. The interpretation of these ob-
servables is that they are not gravitationally dressed with respect to the boundary, but
instead to features of the state. We also provide evidence that there are bulk observables
whose commutator vanishes to all orders in 1/N with the entire algebra of single-trace
operators defined in a space-like separated time-band. In the third part, we defined two
new classes of continuous tensor networks by generalizing the class of continuous matrix
product states. One is appropriate to describe the ground state of the relativistic field
theory at strong coupling and the other is proper for the theories on compact spacetime.
We conjecture that the possible bulk dual of it in the AdS/CFT can be an evaporating
black hole microstates with the end of the word branes. In the last project, we study
the Krylov complexity for 1-matrix quantum mechanics. In the ground state, the Lancsoz
coefficients have linear behavior. The bn coefficients have a positive slope while an coef-
ficients have a negative slope. In the thermal states, the an coefficients are zero while bn
have two branches of linear growth. Although matrix quantum mechanics is a solvable the-
ory rather than chaotic, we find the linear behavior of the Lancsoz coefficients of this theory.
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Introduction

In this thesis, I will go through some different topics. I will start with the reconstruction
of the bulk in the holographic setup from the Petz map, a universal recovery channel that
comes from the quantum information theory. The chapter is divided into two parts. First,
we study the case of entanglement wedge reconstruction and in the second part, we consider
the interior reconstruction for the black hole microstates. In the next chapter, we study
the concept of Locality in AdS/CFT and in particular provide an idea to gravitationally
dress the bulk operators. Next, we define two new classes of continuous tensor networks
using the entanglement renormalization idea and boundary states. And in the last chapter,
we will study the notion of Krylov complexity for Matrix quantum mechanics

0.0.1 Petz map and holography

To describe our universe, we need to seek a theory of quantum gravity. Quantum grav-
ity refers to the combination of theories, including string theory. Seeking to unify the
macroscopic world of gravity, governed by general relativity, with the microscopic world
of quantum physics. Based on the classical Einstein-Hilbert action, gravity is perturba-
tively non-renormalizable and hence can not be expanded about a vanishing gravitational
coupling, the Newton coupling. The study of black hole physics can be the simplest way
toward this big aim. The black hole information paradox [1, 2] is one of the important
questions of physics in the last few decades [3–10]. It is related to the smoothness of the
horizon of the black hole. Among all the work related to it, I will focus on a proposal
by Papadodimas-Raju, who proposed a construction of black hole interior operator on the
boundary side [11–14] , called the mirror operators 1. For other relevant discussion one
can look at [15]

To simplify our study, firstly, we consider the AdS geometry or in other word empty
AdS. In this setup, one of the main important questions in AdS/CFT is the subregion
duality: finding the bulk region associated or dual to the given region of the boundary.

In the beginning, it has been conjectured that the subregion dual to the given region
A on the boundary is the causal wedge of that region shown as C(A). Later, by using the
JLMS statement (the relative entropy of two quantum states is the same as the relative
entropy of quantum states in the entanglement wedge of that region), it has been proved
that the maximum subregion dual to the given region on the boundary A is the entangle-
ment wedge E(A). The entanglement wedge E(A) is the domain of dependence of the bulk
region between the Ryu-Takayanagi surface and region A itself on the one Cauchy slice.

In general, the entanglement wedge E(A) is bigger than the causal wedge C(A) or in
other words, the entanglement wedge contains the causal wedge. Entanglement wedge

1The mirror operator in the Papadodimas-Raju proposal is different from the mirror operators that are
defined in the appendix.
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reconstruction (EWR) means that bulk operators acting inside the entanglement wedge
can be expressed in terms of CFT operators in region A.

At a large N limit in AdS/CFT, the logic for causal wedge reconstruction is well known.
By using the bulk equation of motion for fields in the curved spacetime background and
the boundary condition or extrapolate dictionary using the mode-sum approach, one can
write the bulk degree of freedom in terms of their dual operators on the boundary. The
most familiar example is the AdS-Rindler wedge reconstruction.

In the following chapter, we show how to explicitly reconstruct the entanglement wedge
from a quantum information technique called Petz map.

Shortly, the Petz map is a dual of the universal recovery channel for the quantum
channel that maps the relevant region on the bulk to the dual CFT region. In the case
of the EWR in the empty AdS, one can use the global HKLL reconstruction and take the
partial trace to find the appropriate quantum channel, and then by using the Petz theorem,
finding the corresponding Petz recovery channel, one can reconstruct the operators in the
entanglement wedge in terms of the boundary operators. This map has been known as
Petz map.

In other words, in the case of subregion duality, in the large N limit, following the JLMS
argument [16], there must be a recovery channel that maps the operator in the entanglement
wedge a = EA to the given region of the boundary A. In [17], the authors found an
expression of the recovery channel using the global HKLL map as a global isometry that
embeds the entire bulk to the entire boundary which is known as the Petz map. However,
the resulting formula was somewhat abstract. In this chapter it will be shown how this
formula can be used explicitly to reconstruct a bulk operator in the entanglement wedge.

After that, we come back to geometries containing black holes. On this side, in parallel,
we have the island conjecture related to the information paradox which postulatesabstractly
that we can construct the modes in the island from the Hawking radiation by using the Petz
map [17]. The Petz map has its origin in quantum information theory [18, 19]. Recently,
it has been found that the best way to understand the semi-classical limit of AdS/CFT is
in the language of quantum error correction codes [20]. The error-correcting codes then
are the isometries from the bulk Hilbert space to the dual boundary theory. When the
geometry contains a black hole, because of the lack of such an isometry we can not follow
the discussion in [17] and write the explicit form of the mapping.

In the second part of the first chapter, instead of following that work to write the
quantum channel by taking a trace over the complementary region, we use the definition
of the Petz map in modular theory. It is useful to note that the Petz recovery channel has
it is origin in modular theory, roughly speaking at the age when the theory of quantum
computation and information was born. We find the Petz reconstruction of the interior
modes and we reach the same result as the Papadodimas-Raju proposal.

0.0.2 Locality and gravitationally dressed operator

Locality is one of the most important concepts in quantum gravity. Locality in non-
gravitational QFT is well understood. It can be expressed by the axiom of microcausality
[21] or more broadly by the structure of “net of algebras” [22, 23]. While it is not straight-
forward to factorize the Hilbert space into subsystems corresponding to spacelike separated
regions, due to UV-divergent entanglement and the type III1 nature of local algebras [24],
there is a way of thinking about subsystems in terms of the split property [25]. In partic-
ular, on any given time-slice quantum information can in principle be strictly localized in
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finite spatial regions.
Classical general relativity also respects the principle of locality. While the constraints

in the Hamiltonian formulation impose non-trivial conditions on the initial value problem
allowing some properties of the state, like the total mass, to be read-off from infinity, it is
still possible to localize information in subregions of space, see for example [26] for a recent
discussion.

On the other hand, there are indications that in quantum gravity locality is an ap-
proximate, emergent notion: the absence of fundamental local degrees of freedom is at
the foundations of holography [27–29] and various proposals for resolving the black hole
information paradox [30–41] rely on the existence of non-local quantum effects.

Understanding the fate of locality in quantum gravity is thus of primordial importance.
More precisely, it remains to be understood if locality breaks down at the level of pertur-
bation theory, or whether the aforementioned non-local effects are always exponentially
suppressed in 1/GN .

It is not straightforward to answer the question since in order to even define what
we mean by locality we first need to identify candidate local observables. In a theory of
gravity, these must be diffeomorphism invariant. Defining local, diffeomorphism invariant
observables in quantum gravity has proven to be challenging. This question has a rich
history, see [42–51] and references therein.

If the spacetime has a well-defined boundary, one approach is to define diffeomorphism
invariant observables relationally, by gravitationally dressing them with respect to the
boundary, but then they are not really local. Moreover in a closed universe with no
boundary, this approach is not available.

An alternative would be to define observables relationally with respect to some feature
of the geometry without making use of a boundary. This has been discussed in various
earlier works and related ideas have been useful in the context of cosmology [42–48, 52–54].
However, it is not clear how to give a precise mathematical definition of such observables
at the quantum level, ensuring that they are exactly diffeomorphism invariant.

In this chapter, we revisit the question in the framework of the AdS/CFT correspon-
dence and we attempt to define observables dressed with respect to features of the state
directly in the dual CFT. An advantage of this approach is that on the boundary diffeo-
morphism invariance is automatically built in. A price that we pay in the construction is
that the observables are defined only for a class of states.

In order to investigate locality in AdS/CFT, we need to know how subregions in the
bulk are encoded in the CFT. For bulk regions corresponding to the entanglement wedge
of boundary subregions, this is generally understood [55–57]. However, for the purposes of
this work we want to find the CFT dual of a bulk subregion corresponding to a bounded
causal diamond containing the candidate approximately local, diffeomorphism invariant
observable. Such regions are generally not the entanglement wedge of any boundary sub-
region so the mapping is of different nature. Previous attempts to understand the CFT
mapping of such regions include [58–60]. Here we will follow a different approach by fo-
cusing on the algebra of single-trace operators.

In a large N holographic CFT, it is natural to define the algebra A generated by single-
trace operators in a time-band Dt1,t2 . This was first discussed explicitly in [61], inspired
by earlier work [12, 13, 34]. In [61] it was proposed that the algebra A is dual to the causal
wedge of the region Dt1,t2 in the bulk and the commutant of A dual to the spacelike-
separated causal diamond in the interior. Algebras of this type have received attention
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recently [62–64].
The discussion of [61] focused on perturbations around empty AdS. In this case, the

bulk geometry is homogeneous and “featureless” which, as we will see, introduces additional
challenges in defining local diff-invariant observables. In this paper, we revisit the algebra
in a time band, in cases where the bulk state is highly excited and time-dependent.

At infinite N the problem can be understood in terms of QFT on a time-dependent
bulk geometry, where gravitational backreaction of quantum fields can be ignored and the
existence of the commutant is obvious 2. When considering 1/N corrections, the existence
of the commutant is less obvious due to the gravitational Gauss law. Usually, in AdS/CFT
bulk operators are gravitationally dressed with respect to the boundary, hence at order
1/N they do not commute with the Hamiltonian, which is an element of the algebra A.
This raises the question of whether the algebra A still has a commutant at subleading
orders in 1/N .

In our works, we provide evidence for the existence of a commutant by identifying a class
of operators that are gravitationally dressed with respect to features of the state. As they
are not dressed with respect to the boundary, these operators have vanishing commutators
with the Hamiltonian, to all orders in 1/N , thus bypassing the previous problems with
the gravitational Gauss law. Here, we focus only on ensuring that bulk operators have
vanishing commutators with the Hamiltonian, but an extension to all single-trace operators
in Dt1,t2 is necessary. We emphasize that it is really the asymptotic charges that one should
be concerned with, since in the absence of gravity, bulk QFT in AdS is manifestly local.
Understanding the algebra A in the 1/N expansion around empty AdS, and other static
states also requires further attention 3.

The existence of a commutant for A in 1/N perturbation theory would imply that
information can be localized in regions of the bulk and is not visible from the boundary at
the level of perturbative quantum gravity 4.

0.0.3 Generalization of the continuous matrix product states

The idea that spacetime might emerge from more fundamental degrees of freedom has
long fascinated physicists. The holographic principle suggests that a (d + 1)-dimensional
spacetime might emerge from degrees of freedom in a d-dimensional theory without gravity
[75, 76]

While a completely general implementation of this idea is still lacking, the AdS/CFT
correspondence provides a specific example in which to probe the holographic emergence
of spacetime.

In other words, given a CFT state, one may think of bulk distance and geometry (at
least near the boundary) as being charted out by the entanglement properties of the CFT
state. A central question in this picture of spacetime emerging from entanglement is:

2If the Hamiltonian, which is an element of the time band algebra, is normalized appropriately, its
commutator with bulk fields is suppressed by 1/N .

3We strongly believe that our construction can be suitably generalized to include vanishing commutation
with all single-trace operators, and we give a prescription to do so in [65]. Concerning the acceptable class
of states, the fact that the AdS vacuum is not included in this class is a feature not a bug. Indeed, even
in classical gravity, one cannot define local and diff-invariant observables around a maximally symmetric
state like the AdS vacuum.

4Other discussions of localization of information in perturbative quantum gravity, with varying conclu-
sions, include [66–74].
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What is the precise relationship between bulk degrees of freedom and boundary degrees of
freedom?

From a very different perspective, tensor networks have arisen as a useful way to cal-
culate quantum states in strongly interacting many-body systems [77]. One significant
example is the Multi-scale Entanglement Renormalization Ansatz (MERA) [78] which is
relevant for critical (gapless) systems, i.e., CFTs. Starting from a simple state in a low-
dimensional Hilbert space, acting repeatedly with fixed tensors living on a network lattice
produces an entangled wave function for the quantum system of interest; varying with
respect to the tensor parameters efficiently computes the system’s ground state. Working
“backward” in the MERA, starting with the ground state and gradually removing entangle-
ment, produces a set of consecutively renormalized quantum states. This process reveals a
renormalization direction along the graph, which may be thought of as an emergent radial
direction of space. As pointed out by Swingle [79], the MERA graph can serve as a lattice
discretization of spatial slices of AdS. Furthermore, one can use the MERA to calculate the
entanglement entropy of regions of the original (boundary) critical system; this calculation
amounts to tracing over bonds in the tensor network that cross the causal cone of the
boundary region. The causal cone is a sort of extremal surface for the MERA, motivating
comparison to the Ryu–Takayanagi formula.

It is therefore natural to conjecture that the MERA provides a concrete implementation
of the emergence of spacetime, in the form of a correspondence between boundary and bulk
regions reminiscent of AdS/CFT [80].

Application of the tensor network in high energy physics is not limited to the AdS/MERA
connection. One can introduce a continuous version of the tensor networks to describe the
low-energy spectrum of the relativistic field theory.

A continuous tensor network gives a variational ansatz for the ground state of the quan-
tum field theories (QFTs). The notable examples are the continuous matrix product state
(cMPS) [81] and the continuous multiscale entanglement renormalization ansatz (cMERA).
While cMPS is just adapted to the non-relativistic QFTs, only the Gaussian cMERA is
well-understood which we can not use to approximate the ground state of the interacting
relativistic QFTs. But instead, cMERA also corresponds to a real-space renormalization
group flow in the context of the wave functions. In this Chapter, we investigate the back-
ward Gaussian cMERA renormalization group flow of the class of cMPS by putting the
standard cMPS at the IR scale. At the UV scale, for the bosonic systems in the thermo-
dynamic limit, we achieve the variational class of states that has been proposed recently
as the relativistic cMPS (RCMPS) is adapted to the relativistic QFTs without requiring
to introduce of any additional IR or UV cut-off. We also extend the RCMPS to fermionic
systems and theories on a finite circle.

In this chapter we also present work on finding the appropriate version of the cMPS
states for the theory on compact spacetime or in other words, boundary cMPS. We present
a proposal for the holographic dual of this class of states in the AdS/CFT setup which as
will be discussed can be the Black hole microstates with the end of the word brain which
is coupled to a bath system that absorbs the Hawking radiation of the black hole.

We start with the possible connection with a class of tensor networks with the geometry
of empty AdS and reach the point that conjectures a new connection with a class of tensor
networks and the geometry dual of that.
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0.0.4 Krylov complexity in 1-matrix quantum mechanics

After defining the time-band algebra, the question that emerges is whether the operators
in the time-band are simple or complex.

Ideas from quantum information theory have become increasingly relevant in high-
energy physics. One such concept is complexity, a quantity that is also important in
experimental realizations of quantum computers, describing how difficult it is to perform
an operation or task. In quantum field theories, there have been two different proposals
on how complexity can be defined. These are known as circuit complexity, based on
an operatorial approach, and path integral optimization, originating from ideas in tensor
networks - methods that allow efficient simulations of quantum many-body systems. There
are two motivations behind these studies. First, Einstein-Rosen bridge behind the horizon
keeps evolving even after thermalization. The dual quantity of this growth on QFT on the
boundary is conjectured to be complex. Second, the entanglement entropy approach as an
emergent of space cannot provide a time part of the metric in the bulk. Complexity can
do this.

Operator complexity describes the phenomenon that a simple operator O becomes com-
plex under Heisenberg evolutionO(t) in chaotic local quantum systems. Krylov Complexity
as a novel measure of operator complexity exhibits many interesting universal behaviors
and also bounds many other complexity measures.

In our work, we will study the notion of the Krylov complexity for a modelof 1-matrix
quantum mechanics. Over the thermal state, we find that the Lancsoz coefficients contain
the even and odd linear branches. Moreover, we will find the radius of convergence when
we are using the correlator to find the Krylov complexity. We see only growth of the Krylov
complexity till that point. It is almost the same point as the first peak of the correlation
function.

xiv



Chapter 1

Bulk Reconstruction in AdS/CFT
and Petz Map

In this chapter, our goal is to use a technique from quantum error correction, called Petz
map, to construct the bulk side in holographic theories from the boundary side. First,
we review the construction of the bulk theory as it is known in the literature which is
the HKLL approach. Then, in two parts we will apply the Petz map to the entanglement
wedge reconstruction and the construction of the black hole interior modes.

1.1 Bulk reconstruction in ordinary AdS/CFT

According to the AdS/CFT correspondence, a holographic CFT on R×Sd−1 can be inter-
preted as a theory of quantum gravity in an asymptotically AdSd+1×M spacetime, where
M is some compact manifold. Usually, this involves taking a large N limit in the CFT,
and bulk interactions are suppressed by powers of 1/N . Thus, to lead order at large N ,
the bulk quantum theory consists of free fields.

The correspondence also involves an identification between fields in the bulk and op-
erators in the boundary CFT. For example, the CFT operator dual to a bulk scalar field
ϕ is a scalar primary O with conformal dimension ∆ related to the mass of the field ϕ
by ∆ = d/2 +

√
m2 + d2/4 and the extrapolate dictionary defines O as the dual of ϕ at

infinity. For simplicity, in the following, we will just focus on scalar fields and discuss the
identification with the dual CFT operator O at large N .

First, on the bulk side of the duality, we start with AdSd+1 in global coordinates (t, ρ,Ω)
which is described with the metric below

ds2 =
1

cos2(ρ)

(
− dt2 + dρ2 + sin2(ρ)dΩ2

d−1

)
. (1.1)

Consider a scalar field on the AdSd+1 background with the action

S =

∫
dd+1x

√
−g 1

2

(
gµν∇µϕ∇νϕ−m2ϕ2

)
(1.2)

and corresponding equation of motion

(□−m2)ϕ = 0. (1.3)

1
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This equation has to be supplemented with normalizable boundary conditions at infinity,
which implies that near the AdS boundary ρ = π

2 , the field has to decay as ϕ ∼ (cos ρ)∆.
With these boundary conditions at infinity and demanding regularity in the interior, we
find a basis of solutions for (1.3) denoted as fnlm(t, ρ,Ω) which is labeled by the quantum
numbers n, l and m, where n ∈ {0, 1, 2, ...}, l is the total angular momentum of the corre-
sponding mode and m is related to the other angular quantum numbers needed to specify
a mode. These modes are proportional to

fnlm(t, ρ,Ω) ∝ e−iEnltYlm(Ω) sinl(ρ) cos∆(ρ)P (l+d/2−1,∆−d/2)
n (cos 2ρ) (1.4)

while
Enl = ∆+ 2n+ l, (1.5)

and ∆ = d/2 +
√
m2 + d2/4 is the conformal dimension of the dual CFTd operator O.

To quantize the scalar field, we associate an annihilation operator anlm to each mode
fnlm with normalized commutation relation

[anlm, a
†
n′l′m′ ] = δnn′δll′δmm′ . (1.6)

The quantized free scalar field in AdSd+1 is given by

ϕ(t, ρ,Ω) =
∑
nlm

fnlm(t, ρ,Ω)anlm + f∗nlm(t, ρ,Ω)a
†
nlm. (1.7)

The modes fnlm(t, ρ,Ω) should be normalized in such a way that the field ϕ obeys the
canonical commutation relation. To find the correct normalization factor we consider the
Klein-Gordon inner product defined on a Cauchy surface Σ. If we assume that t direction
is orthogonal to Σ, for every two functions ϕ1 and ϕ2, it is defined as

⟨ϕ1, ϕ2⟩KG ≡ i
∫
Σ
ddx
√
−g gtt

(
ϕ∗1∇tϕ2 − ϕ2∇tϕ∗1

)
. (1.8)

If both ϕ1 and ϕ2 obey the equation of motion, the integral above defines a conserved inner
product in t. In particular, it says that if we normalize the modes fnlm at some time such
that ⟨fnlm, fn′l′m′⟩ = δnn′δll′δmm′ and ⟨fnlm, f †n′l′m′⟩ = 0, they will remain normalized also
at later times [82]. Following these steps, in the end, one can write the modes explicitly as

fnlm(t, ρ,Ω) =
1

Nnlm
e−i(∆+2n+l)tYlm(Ω) sin

l(ρ) cos∆(ρ)P (l+d/2−1,∆−d/2)
n (cos 2ρ) (1.9)

where

Nnlm =

 
Γ(n+ l + d/2)Γ(n+∆− d/2 + 1)

n!Γ(n+ l +∆)
. (1.10)

The conformal boundary of AdSd+1 is the cylinder R × Sd−1 which in terms of the
global coordinates we obtain by taking ρ→ π/2 limit. We can use the coordinate t and Ω
to parametrize the boundary theory with metric

ds2 = −dt2 + dΩ2
d−1. (1.11)

In the boundary, using the state-operator correspondence in the CFT, the formula (1.5)
has a nice interpretation. The state created by the n = l = 0 creation operator is identified
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with the state in the CFT that is produced by inserting the single-trace primary operator
O dual to ϕ into the center of the Euclidean path integral and other excited states come
from inserting its descendants.

More generally, to leading order at large N , the Fourier modes Onlm of the single trace
primary operator and anlm for the mode fnlm are the same up to apriori arbitrary constant
Mnlm.The extrapolate dictionary in the global coordinates is given by

O(t,Ω) = lim
ρ→π/2

1

cos∆ ρ
ϕ(t, ρ,Ω). (1.12)

As a result, we can define the CFT operator Ônlm = 1
Mnlm

Onlm which is identified with
the bulk operator

Ônlm = anlm. (1.13)

As we will see later, this allows us to write a CFT expression for a local bulk field at any
point in the bulk.

The single trace primary operator O has a mode expansion on R× Sd−1 as

O(t,Ω) =
∑
nlm

gnlm(t,Ω)Onlm + g∗nlm(t,Ω)O
†
nlm. (1.14)

Following 1.7, we have gnlm = 1
Mnlm

limρ→π/2
1

cos∆ ρ
fnlm(t, ρ,Ω). Thus Mnlm can be chosen

so that mode functions gnlm are orthonormal.
At the large N limit, since we have a free theory in the bulk, all correlators can be

reduced to products of 2-point functions by Wick contractions. Therefore, on the boundary
side, we already know all the n-point functions of the operator O by taking the spacetime
points to the boundary in the expression we found for the bulk and using the extrapolate
dictionary (1.12), we have

⟨O(x1)O(x2)⟩ ∝
1

(x1 − x2)2∆
(1.15)

⟨O(x1)O(x2)...O(x2n)⟩ = ⟨O(x1)O(x2)⟩...⟨O(x2n−1)O(x2n)⟩+ permutations. (1.16)

Although the correlation functions of O factorize to the product of 2-point functions, the
scalar primary operator is not really a free scalar field. In a CFT in d spacetime dimensions,
the condition that a scalar operator is free, i.e. ∇2O = 0, is equivalent to the fact that its
conformal dimension is ∆ = d/2− 1. Therefore, as the conformal dimension for the scalar
primary operator O in a holographic CFT is ∆ = d/2 +

√
m2 + d2/4, it is actually not

a free scalar theory on the boundary. For the free scalar primaries, the factorization is a
consequence of the equation of motion. More generally, the scalar fields with ∆ ≥ d/2− 1
are called generalized free fields (GFFs) [83–85] if their correlators take the form of Eqs.
(1.15) and (1.16). However, because they do not obey the linear equation of motion, we can
not describe them in terms of a local free lagrangian in the spacetime background in which
the CFT lives. The reason that such fields can be called free is that their Hilbert space
has a Fock space structure that is the Hilbert space of a free theory. Nevertheless, such
a CFT, extrapolated to high temperatures, has the wrong thermodynamic properties, and
therefore it is inconsistent by itself. For the operators with large conformal dimensions,
the spectrum can not have the structure of a freely generated Fock space. One way to
solve the problem is that think about the GFF as the low-conformal dimension sector of a
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much larger CFT with a large central charge while all the additional states correspond to
the black hole microstates in the bulk [85].

As a result, we observe that at the large N limit, a free scalar field in pure AdS can be
identified as GFF of the boundary.

1.1.1 HKLL reconsruction method: mode sum approach

The study of bulk reconstruction, usually called HKLL, was developed by Hamilton, Kabat,
Lifschytz and Lowe in a series of papers [86–91] building on previous works. They attempt
to reconstruct the operators of the bulk gravitational theory in the non-interacting regime
from the operators of the boundary. Bulk operators are expressed in terms of smeared
single trace operators in the CFT as

ϕ(X) ←→
∫
dx K(X|x)O(x), (1.17)

where the kernelK(X|x) is called smearing function. At largeN limit, finding the smearing
function can be implemented through Fourier expansion. Consider fn(X) as the set of
orthogonal solutions to the Klein-Gordon equation. For simplicity here we denote the set
of labels (nlm) discussed in the previous subsection collectively by n. One can quantize
the bulk field in terms of creation and annihilation operators as

ϕ(X) =
∑
n

fn(X)an + h.c. (1.18)

Taking the points to the boundary and using the extrapolate dictionary, we get the mode
expansion of the boundary operators as

O(x) =
∑
n

g̃n(x)an + h.c. (1.19)

where g̃n(x) = limr→∞ r∆fn(r, x). If one defines orthonormal boundary mode functions
gn(x) =

1
Mn

g̃n(x), one can invert (1.19) and obtain

an =
1

Mn

∫
dxO(x)g∗n(x). (1.20)

By plugging it back to (1.18), we reach

ϕ(X) =
∑
n

1

Mn
fn(X)

∫
dx O(x)g̃∗n(x) + h.c.. (1.21)

In case we are able to exchange the summation and integration in (1.21), we will get

ϕ(X) =

∫
dx K(X|x)O(x), (1.22)

where K(X|x) =
∑

nM
−1
n fn(X) g̃∗n(x)+ h.c. is the smearing function [92]. We review the

HKLL construction for a free scalar field in pure AdS in global and AdS-Rindler coordinates
here.



1.1. BULK RECONSTRUCTION IN ORDINARY ADS/CFT 5

1.1.2 HKLL reconstruction in global and Rindler coordinates

We review here the HKLL reconstruction in global and AdS-Rindler coordinates [89] where
authors constructed the smearing functions based on the mode sum approach.

HKLL reconstruction in global coordinates

Before going through it, one point that one might be interested in is if there is any possi-
bility to find a smearing function that has compact support on the boundary of AdS. In
particular, we are interested the smearing function has support only on the points that
are spacelike separated from ϕ(X). The HKLL method provides us with a way of re-
construction in the large N limit where the field ϕ satisfies the free equation of motion.
Therefore, the smearing function can be constructed from a suitable Green’s function that
by definition satisfies

(□−m2)G(X|X ′) =
1√
−g

δd+1(X −X ′). (1.23)

Using the third Green identity, the field ϕ can be written in global coordinates as

ϕ(X ′) =

∫
dx
√
−g

(
ϕ(X)∂ρG(X|X ′)−G(X|X ′)∂ρϕ(X)

)∣∣∣
ρ=ρ0

(1.24)

where X = (ρ, x), and by sending ρ0 → π/2, one can find the smearing function in (1.24) in
terms of the Green’s function. For this purpose, let us take the ansatz of Green’s function
that is non-zero only at spacelike separation

G(X|X ′) = f(σ(X|X ′))θ(σ(X|X ′)− 1), (1.25)

where σ is an AdS-invariant distant function which in global coordinates is

σ(X|X ′) =
cos(t− t′)− sin(ρ)sin(ρ′)cos(Ω− Ω′)

cos(ρ)cos(ρ′)
(1.26)

and Ω− Ω′ is the angular separation on the sphere. The points that can be connected by
a geodesic necessarily lie in the unit cell −π < t − t′ < π. Spacelike separated points are
the ones with σ > 1 that connected by a geodesic proper distance. By plugging back the
ansatz (1.25) to (1.23), we can see that f(σ) satisfies the AdS wave equation. Then, if
we start from the beginning by the ansatz (1.25) [88], we can find the smearing function
with compact support only at spacelike separated region. We note here that this result
has been found in global coordinates and in general, it could not be the case. For example,
for odd-dimensional AdS in Poincare coordinates, the smearing function can have support
only on the entire boundary.

Now, let us find the smearing function in global coordinates. The exact form of the
smearing function depends on the dimension. The scalar field solution can be expanded as
a linear combination of independent modes that in global coordinates it is given by (Eq.
1.9). We can split the field into positive and negative frequency components

ϕ(X) = ϕ(X)+ + ϕ(X)− (1.27)

where
ϕ(X)+ = ϕ(X)†− =

∑
nlm

fnlmanlm (1.28)
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and for the boundary operator O(x) as well. Since we can use the AdS isometries to bring
one point to another one, it is enough to find the smearing function just at one point. In
the center (ρ = 0), fnlm vanishes for all l ̸= 0, therefore only the s-waves contributes to
the field in the center of Ads which will simplify the calculation drastically. Let us take
an = an00 = Ôn00, we can read an in terms of O(x) as

an =
1

πvol(Sd−1)P
(∆−d/2,d/2−1))
n (1)

∫ π/2

−π/2
dt

∫
dΩ
√
gΩ ei(2n+∆)tO+(t,Ω). (1.29)

Plugging it back into the bulk mode expansion, one can find the bulk field at the origin as

ϕ(t′, ρ′ = 0,Ω′) =

∫ π/2

−π/2
dt

∫
dΩ
√
gΩ K+(t

′, ρ′ = 0,Ω′|t,Ω)O+(t,Ω) + h.c. (1.30)

where

K+(t
′, ρ′ = 0,Ω′|t,Ω) = 1

πvol(Sd−1)
ei∆tF (1, d/2,∆− d/2 + 1, e−i2t). (1.31)

It is important to know that smearing functions are not necessarily unique. It can be
shifted by terms which vanish when integrated against the boundary operators. It can
happen in cases that the boundary fields do not involve a complete set of Foureier modes.
This freedom enable us to find K+ which is real and then we can find the kernel such that
K = K+ = K−.

Finally, for an arbitrary bulk point by action of an isometry map, we have

ϕ(X) =

∫
x∈bdy

dx K(X|x)O(x) (1.32)

which for the AdSd+1 in even dimension, the smearing function is

KG(X|x) =
Γ(∆− d/2 + 1)Γ(1− d/2)
πvol(Sd−1)Γ(∆− d+ 1)

lim
ρ→π/2

(σ(X|x)cosρ)∆−dθ(σ(xX|x)− 1) (1.33)

and in odd dimension it is given by

KG(X|x) =
2(−1)d/2−1Γ(∆− d/2 + 1)

πvol(Sd−1)Γ(∆− d+ 1)Γ(d/2)

lim
ρ→π/2

(σ(X|x)cosρ)∆−d log(σ(X|x)cosρ)θ(σ(X|x)− 1). (1.34)

HKLL reconstruction in AdS-Rindler coordinates

Consider a CFT Cauchy surface Σ and divide it into two regions A and its complementary
part Ā. The domain of dependence D(A) of A which is the set of points on the boundary
that every inextendible causal curve that passes through it must also insert A. The causal
wedge of a CFT subregion A is defined as

CA = J +[D(A)] ∩ J −[D(A)] (1.35)

where J ±[R] is the bulk causal future/past of region R in the boundary.
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Figure 1.1: (a) Domain of dependence of the spherical region of the boundary. (b) The
entanglement wedge of the region A in the bulk which is called AdS-Rindler wedge.

Consider the pure AdSd+1 in the bulk. If we take the t = 0 slice as the Cauchy surface
and A to be one hemisphere of Σ, the causal wedge of A is the region of bulk that referred
to as the AdS-Rindler wedge. Although it is naturally associated to a boundary region
that covers half of the spatial surface, the patch can be mapped by an isometry to a patch
that ends on arbitrary spatial region on the boundary. The coordinate system that covers
the AdS-Rindler patch is (r, τ, x) with the metric

ds2 = −(r2 − 1)dτ2 +
dr2

r2 − 1
+ r2dx2 (1.36)

where x is the set of coordinates on the (d − 1) dimensional hyperbolic ball Hd−1. We
can find the mode expansion of free scalar field in the AdS-Rindler wedge by solving the
Klein-Gordon equation on this background

ϕ(r, τ, x) =

∫
dω

2π

dλ

2π

(
fωλ(r, τ, x)bωλ + f∗ωλ(r, τ, x)b

†
ωλ

)
(1.37)

where the modes bωλ satisfy the usual commutation relation and the wave function is in
the form of

fωλ(r, τ, x) = e−iωτYλ(x)ψωλ(r). (1.38)

The exact expression for the ψωλ(r) in terms of hypergeometric function is [93]

ψωλ(r) =Mωλr
−∆(1− 1

r2
)−iω/2F

(
− d− 2

4
+

∆

2
− iω

2
+

1

2

 
(d− 2)2

4
− λ,

− d− 2

4
+

∆

2
− iω

2
− 1

2

 
(d− 2)2

4
− λ,∆− d− 2

2
,
1

r2

)
(1.39)

that

Mωλ =
1√
2|ω|

Γ(−d−2
4 + ∆

2 + iω
2 + 1

2

»
(d−2)2

4 − λ) Γ(−d−2
4 + ∆

2 + iω
2 −

1
2

»
(d−2)2

4 − λ)
Γ(∆− d−2

2 ) Γ(iω)
.

(1.40)
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By taking Fourier transformation of the boundary operator O(τ, x) = limr→∞ r∆ϕ(r, τ, x),
we have

Oωλ =

∫
dτdx eiωτY ∗

λ (x)O(τ, x) (1.41)

that is in the form of Oωλ =Mωλbωλ. Therefore, Ôωλ = 1
Mωλ

Oωλ is the boundary operator
identified with Rindler mode functions

Ôωλ = bωλ. (1.42)

By substituting (1.41) into (1.37) and exchange the order of integration we get

ϕ(r, τ, x) =

∫
dτ ′dx′ K(r, τ, x|τ ′, x′)O(τ ′, x′) (1.43)

where the smearing function is

KR(r, τ, x|τ ′, x′) =
∫
dω

2π

dλ

2π

1

Mωλ
fωλ(r, τ, x) e

iωτ ′Y ∗
λ (x

′). (1.44)

The issue here is that if we substitute the exact expression of fωλ(r, τ, x) in (1.44),
we find out that the integral does not converge for any choice of bulk and boundary
points [92, 94, 95]. In the original paper [89], authors argued that they can make the
integral convergent by analytically continuation of x coordinates. However, there is still
this question that if it is actually well-defined in the physically correct Lorentz signature.
The issue was illuminated in [94] when they gave an interpretation of the divergent smearing
function in the context of distribution theory.

1.1.3 Bulk reconstruction and subregion duality

As we had in the previous sections, a bulk operator ϕ(X) can be represented as a smearing
integral of boundary operators

ϕ(X) =

∫
bdy

dd−1xdt K(X|t, x)O(t, x) +O(1/N). (1.45)

We can use the CFT Hamiltonian to re-express all operators O(t, x) in terms of fields on a
Cauchy surface Σ of the boundary by explicitly evolving the operators with the boundary
Hamiltonian. Let us consider the pure AdS case and Σ to be the t = 0 slice

ϕ(X) =

∫
bdy

dd−1x dt K(X|t, x) eiHCFT tO(x)e−iHCFT t (1.46)

where O(t = 0, x) = O(x). In general, operators of the form eiHCFT t O(x) e−iHCFT t have
support on a large part of the slice Σ, t = 0. An interesting question in AdS/CFT is
whether the CFT representation of ϕ(X) can be localized to a subregion of Σ. Intuitively,
it is expected that the boundary support of ϕ(X) shrinks as the operator approaches the
boundary. However, one can see from (1.46) that even if we take X to be very close to the
boundary, the CFT reconstruction still has support on the entire Σ.

In fact, it is possible to reconstruct bulk operators so that they are supported on smaller
regions on the boundary. Consider a spherical subregion R on Σ and the corresponding
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causal wedge in the bulk. Consider a local field ϕ(X) localized inside this causal wedge.
Then it is possible to represent the bulk field as

ϕ(X) =

∫
D(R)

dτdd−1x KR(X|τ, x)O(τ, x). (1.47)

where the integral is over the domain of dependence D(R) of R and KR(X|τ, x) is a new
smearing function called the AdS-Rindler smearing function.

Again we can write it in terms of non-local operators in the Heisenberg picture which
evolves with Rindler Hamiltonian Hτ

ϕ(X) =

∫ ∞

−∞
dτ

∫
R
dd−1x KR(X|x, τ) eiHτ τO(x)e−iHτ τ . (1.48)

The operators eiHτ τ O(x) e−iHτ τ are again some non-local operators but this time they have
support only on region R instead of entire Σ. Therefore, the AdS-Rindler reconstruction
provides us a way to localize the representation of ϕ(X) in the boundary. More generally,
it suggests the proposal that a given region R on a Cauchy slice of the boundary encodes
the bulk data inside the causal wedge of its boundary domain of dependence.

Nevertheless, one can go ahead and look at the Rindler Hamiltonian in (1.48) as the
modular Hamiltonian of the region R that generates the modular flow of operators on R.
For the case of AdS-Rindler, it is just translation in the τ direction. In [16], authors showed
that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge
ER and conjectured that operators in the entanglement wedge of the region R are the ones
can be constructed on the boundary region R by replacing τ in (1.48) by the modular
parameter s as

ϕ(X) =

∫
R
dd−1x

∫ ∞

−∞
ds K ′

R(X|x, s)O(x, s) (1.49)

for every X ∈ ER where O(x, s) = eiKRs O(x, s = 0) e−iKRs.

1.2 Black holes in AdS

In this section, We briefly review the geometry of the eternal two-sided AdS black holes,
quantizing the free field theory on this background which is needed for studying the bulk
reconstruction in AdS/CFT at strict large N limit. We also discuss the operator algebra
of observable in the case that an eternal black hole in the bulk is dual to the two CFTs in
the termo-field-double (TFD) state, and in the end, talk about the typical one-sided black
holes in AdS.

1.2.1 AdS eternal black holes

There is a unique spherically symmetric solution of the Einstein equation with a nega-
tive cosmological constant known as AdS-Schwarzschild geometry. Its metric in (d + 1)-
dimension (d ≥ 3) is given by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1. (1.50)

In the AdS unit, we have
f(r) = 1 + r2 − α

rd−2
(1.51)
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where α is a parameter proportional to the ADM mass M . Like in flat space, one can
maximally extend the solution by introducing AdS-Kruskal coordinates

U ≡− e2π(r∗−t)/β

V ≡ e2π(r∗+t)/β
(1.52)

where here, r∗ is the tortoise coordinate defined as dr∗
dr = f−1(r). The metric in the new

coordinates can be written as

ds2 = (
β

2π
)2
f(r)

UV
dUdV + r2dΩ2

d−1. (1.53)

The metric is originally defined in the region U < 0, V > 0 corresponding to outside
the horizon. By extending the geometry in a maximal way when we assume that there
is no matter anywhere, one can describe eternal black holes in AdS spacetime (Fig. 1.2).
In all regions, one can introduce Schwarzschild coordinates. Their relation with Kruskal
coordinates is given as [14] :

regions Kruskal coordinates relationship with the AdS-Schwarzschild coordinates
I U < 0, V > 0 U = −e

2π
β
(r∗−t), V = e

2π
β
(r∗+t)

II U > 0, V > 0 U = e
2π
β
(r∗−t), V = e

2π
β
(r∗+t)

III U > 0, V < 0 U = e
2π
β
(r∗−t), V = −e

2π
β
(r∗+t)

IV U < 0, V < 0 U = −e
2π
β
(r∗−t), V = −e

2π
β
(r∗+t)

Regions I and III are two asymptotically AdS regions corresponding to black hole
exteriors that for each of them, another one is behind the horizon. In the U-V plane,
surfaces of constant r∗ are hyperboloids that always stay within a single region. On the
other hand, the surfaces of constant t are simply straight lines running through the origin
which means we can think of time translations as rotations of the Kruskal diagram about
the bifurcation point. Although, we should keep in mind that a line can not be rotated
past the horizon by a finite rotation. Moreover, since there is no global timelike isometry,
the entire geometry is time-dependent.

It is good to note that the natural choice for the vacuum of the bulk effective theory on
the AdS eternal black hole is the Hartle-Hawking (HH) state |HH⟩. It has been conjectured
by Maldacena [96] that the AdS eternal black hole has a holographic description in terms
of two copies of an identical CFT in the TFD state

|ΨTFD⟩ =
1√
Zβ

∑
i

e−βEi/2 |i∗⟩L |i⟩R . (1.54)

where β−1 is the Hawking temperature of the black hole. Therefore, one can describe
each holographic CFT dual to the eternal black hole with the thermal density matrix
ρth = 1

Zβ
e−βH , where Zβ is the partition function of the CFT at the temperature β−1.

Here, the states |i⟩ are the energy eigenstates of one single CFT and |i∗⟩L(R) = Θ |i⟩R(L).
The Θ is an anti-unitary operator that reverses the time direction after exchanging the
CFTs. Having the states |i∗⟩ for the left CFT comes from the point that the left CFT
is glued to the region III with a flip in the AdS-Schwarzschild time coordinate. In other
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words, the time in left and right CFTs are identified as tR = t and tL = −t, respectively.
The isometry of the entire bulk generated by t→ t+ T also corresponds to the identity

eiĤ |ΨTFD⟩ = |ΨTFD⟩ , Ĥ = HR −HL. (1.55)

The time translation on the entire geometry is generated by a Killing vector field denoted
by V . It is future-directed timelike on the right exterior and past-directed timelike on the
left exterior. The conserved charge associated to the global time translation is

ĥ =

∫
Σ
dΣµ V νTµν (1.56)

where Σ is a Cauchy hypersurface and Tµν is the energy-momentum tensor of the bulk
fields. The boundary dual of the operator ĥ is

ĥ = βĤ. (1.57)

It comes from the fact that the vector field V on the right boundary reduces to β∂t and
to −β∂t on the left one. We will discuss these quantity’s interpretation in the algebraic
context later.

I

II

III

IV

Σl

Σr Σ

Figure 1.2: The Penrose diagram of the eternal two-sided black hole.

1.2.2 Scalar field quantization in AdS eternal black hole background

Consider a free scalar field propagating on a curved spacetime background. The equation
of motion is the Klein-Gordon (KG) equation, (□ − m2)ϕ = 0. The field then has a
Heisenberg picture expression as

ϕ(x) =
∑
n

fn(x) an + f∗n(x) a
†
n, (1.58)

where fn are the classical solutions of the KG equation in the given background that
should be normalized with respect to the KG norm. We should also impose normalizable
boundary conditions at infinity. To each mode fn, we associate the annihilation and
creation operators an, a

†
n with normalized commutation relation. The Hilbert space of
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QFT at every Cauchy slice of the entire background of interest can be constructed as a
Fock space using these ladder operators.

On the other hand, we can always decompose a Cauchy slice Σ into the smaller slices
Σr such that their union covers the entire Cauchy surface, Σ = ∪rΣr. We can find an
alternative expression for the field in the domain of dependence of each subregion denoted
by D(Σr), by solving the equation of motion on the coordinate system that covers only
D(Σr)

ϕ(xr) =
∑
α

fr,α(xr) ar,α + f∗r,α(xr) a
†
r,α. (1.59)

The new operators ar,α has support only on Σr. Here, we can use the Bogoliubov trans-
formation and write the mode functions on the entire Cauchy slice as linear combinations
of ar,α. Hence, we can in principle expand the field ϕ at each point in terms of ar,α.

Now, let us quantize a scalar field on the eternal AdS black hole background. In
principle, we can do it by solving the equation of motion in Kruskal coordinates. However,
there is another possibility when we take the Cauchy slice Σ such that it passes through the
bifurcation point. We can consider Σ as the union of two smaller slices as Σ = Σr∪Σl (Fig.
1.2). Then, if we consider just region I(III), Σr(Σl) itself is a complete Cauchy slice on
that. We also know coordinate systems that cover regions I and III which are nothing but
two copies of AdS-Schwarzschild coordinates. Therefore, we can first start by region I and
solve the KG equation outside the horizon in AdS-Schwarzschild coordinates (1.50). One
can find its solutions as fω,m which are the modes labeled by quantum numbers ω,m. To
each of them, we associate a couple of creation and annihilation operators with normalized
commutation relation, denoted by aω,m. Therefore, one can express the fields lies in region
I as

ϕI(x) =
∑
m

∫ ∞

0

dω

2π

1√
2ω

(
fω,m(x)aω,m + f∗ω,m(x)a

†
ω,m

)
. (1.60)

We can follow the same analysis in region III and find another set of operators ãω,m with
the same algebra as aω,m while they commute with all aω,m. One can write the fields in
region III like region I as

ϕIII(x) =
∑
m

∫ ∞

0

dω

2π

1√
2ω

(
f̃ω,m(x)ãω,m + f̃∗ω,m(x)ã

†
ω,m

)
. (1.61)

Therefore, we have the expansion of the field in the entire Cauchy slice Σ and so, it is
straightforward to find the expression for fields in region II and IV by evolving them with
respect to the total Hamiltonian.

As it is mentioned, the vacuum of the quantum field in the eternal black hole back-
ground is an analog of the HH state corresponding to the black hole temperature T = 1/β
which is defined to satisfy (

aω,m − e−βω2a†ω,m
)
|HH⟩ = 0, (1.62)

and characterized by thermal occupation levels for both modes aω,k and ãω,k

⟨aω,ma†ω′,m′⟩HH =
eβω

eβω − 1
δ(ω − ω′)δm,m′

⟨a†ω,maω′,m′⟩HH =
1

eβω − 1
δ(ω − ω′)δm,m′

(1.63)
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and the same for the modes ãω,m [34]. Using this standard formalism of quantization of
the field theory on the curved spacetime background, one can also describe the Hilbert
space of the theory as the Fock space built on the HH vacuum, denoted as H(Fock)

BH .

1.2.3 Operator algebra of observables

Consider two copies of the boundary CFT in the TFD state dual to a two-sided eternal black
hole in AdS. As explained in the previous section, small perturbations around the black
hole background can be described by quantizing the QFT in curved spacetime background.
The algebra of low-energy effective field theory in the left and right exteriors is denoted
by Al,0 and Ar,0 respectively. In the large N limit, the algebras of observables outside the
horizon of the black hole, i.e. Al,0 and Ar,0, are of Type III1 von Neumann algebra since
the algebra of observables of a local region in QFT must be of this Type. As these two
spacetime regions are spacelike separated, the corresponding operator algebras are each
other’s commutants.

One can split ĥ in (1.56) as a difference between right and left operators as

ĥ = hr − hl (1.64)

while
hr =

∫
Σr

dΣµ V νTµν , hl =

∫
Σl

dΣµ V νTµν . (1.65)

To obtain this splitting we should choose the Cauchy hypersurface Σ to pass through the
bifurcate horizon, i.e. Σ = Σr ∪ Σl. The question that can arise at this point is whether
the operators hl and hr belong to the operator algebras Al,0 and Ar,0 or not?

As explained in [97] besides this formal splitting, due to the ultraviolet divergences
near the horizon, i.e.

|hr(l) |HH⟩ |2 = ⟨HH|h2r(l) |HH⟩ =∞, (1.66)

the operators hr, hl do not make sense as an operator on the bulk Hilbert space H(Fock)
BH .

There is another way of answering this question: in the Tomita-Takesaki theory, the oper-
ator ĥ is related to the modular Hamiltonian of the HH state for the algebra Ar,0

∆ = e−ĥ (1.67)

A modular Hamiltonian of a Type III1 algebra never has a splitting as in (1.64) and so the
operators hr, hl are not well-defined and so they do not belong to the operator algebras
Al,0 and Ar,0 at strict large N limit.

The operators dual to the low energy effective field theory are the subtracted single
trace operators of the boundary theory which have Gaussian correlation functions in the
large N limit and we denote them here as AL,0 and AR,0 for the left and right CFTs.
Therefore, the commutator of the single trace operators in the large N limit is c−number.
Since the operators hl and hr are not part of the bulk operator algebras, the gauge theory
Hamiltonian of the boundary theories, HL and HR must not be part of the algebras AL,0
and AR,0 as well.

Above the Hawking-Page temperature that the two CFTs in the TFD state are dual to
the two-sided eternal black hole in the bulk, HR andHL have the thermal expectation value
and connected two-point function of order N2. Although the operators HR and HL do not
have a large N limit, their difference does have as its bulk dual ĥ (1.57). The modular
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operator of the TFD state of the boundary for the algebra AR,0 is ∆ = e−βĤ . To obtain
the modular operator, one can also start with finite N where the algebra of observables on
both sides are of Type I von Neumann algebras. The left and right Hamiltonians can be
written in terms of the usual Hamiltonian of a single copy of the system H as HL = H ⊗ I
and HR = I⊗H. In the case of Type I algebra, each system individually can be described
by a reduced density matrix which here for the TFD state, they are obtained to be the
thermal density matrices ρL = ρR = e−βH/Z. Then, one can find the modular operator of
the TFD state by using the relation (A.20) as

∆ = ρ−1
L ⊗ ρR = e−βHR+βHL = e−βĤ (1.68)

which is also valid at large N limit. By subtracting the expectation value of the Hamil-
tonian, one can define the operator H ′

R = HR − ⟨HR⟩ and the same for the left side. We
have ⟨H ′2

R ⟩ ∼ N2 and thus H ′
R does not have a large N limit. By dividing it by N , we can

introduce an operator

U =
1

N
H ′
R (1.69)

with Gaussian correlation function at large N limit, the same as any other single trace
operators. Therefore, U has a large N limit, but at this limit, it is central as

[U,O] =
1

N
[HR, O] = − i

N

∂O

∂t
(1.70)

and at N =∞, it commutes with all the rest of single trace operators.
As explained, HR and thus U is not part of the algebra AR,0. Therefore, we can also

define AR,0 to consist of only the single trace operators that have non-zero commutators.
In other words, the operator algebra of low-energy excitations around the black hole back-
ground is dual to the single trace operators of the boundary with a nontrivial commutator,
they describe a generalized free field (GFF) over the thermal state of the CFT. Using the
AdS/CFT argument, we can identify the operator algebra of the bulk and boundary as

Ar,0 = AR,0, Al,0 = AL,0 (1.71)

which by itself requires that AL,0 and AR,0 be of Type III1 as well [97].
In addition to the argument above about the nature of the algebra AR,0, it has been also

studied recently by Leutheusser and Liu in [98, 99] purely in the boundary theory without
requiring the duality with the bulk theory. Using the half-sided modular inclusion, they
argued that above the Hawking-Page temperature, there is an emergent operator algebra
which is a von Neumann algebra of Type III1. Take B to be a time band in the right
boundary and denote the algebra generated by subtracted single-trace operators in B as
ABR,0 which is dual to the bulk algebra of operators in the causal wedge of the time band
B. Since the generator of the boundary time translation is not part of the algebra AR,0,
the algebra ABR,0 is not coincide with the algebra of subtracted single-trace operators on
the entire boundary and rather ABR,0 is just a subalgebra of AR,0. As Ĥ is the generator of
the boundary time translation, the modular flow of the algebra AR,0 shifts the boundary
time t → t + βu. Therefore, the operator algebra in the time band B = (t0,∞) maps to
itself under conjugation by ∆iu for u > 0

∆iu ABR,0 ∆−iu = ABR,0 u > 0. (1.72)
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This structure is called half-sided modular inclusion and exists only if AR,0 is a Type III1
von Neumann algebra.

The 1/N corrections to this picture have been discussed by Witten in [97]. In particular,
he showed that it modifies the emergent Type III1 algebra to an algebra of Type II∞. At
large N limit, one can define algebra AR as an extension of the algebra AR,0 by adding an
additional generator U as

AR = AR,0 ⊗AU . (1.73)

The algebra AR is no longer a factor since U is central. Similarly, one can define the
algebra AL on the left CFT by defining the operator U ′ = H ′

L/N . Note that the operators
U and U ′ are not completely independent since U − U ′ = Ĥ/N . At strict large N limit,
U − U ′ vanishes, and therefore, the algebra AL can also be defined in terms of U as

AL = AL,0 ⊗AU . (1.74)

In the large N limit, the algebras AL and AR are of Type III1 von Neumann algebra [98,
99]. Once we go beyond the large N limit and consider 1/N corrections, the algebras AL
and AR become of Type II∞. Mathematically, the Type II∞ algebra is the crossed product
of the Type III1 algebra of the strict large N limit by its modular automorphism group.
By duality, these boundary algebras are dual to the bulk algebras of observables on each
side of the black hole denoted by Al and Ar

Ar = AR, Al = AL (1.75)

which incorporates the algebra Ar(l),0, the observable U that is central at large N limit and
1/N corrections. Beyond N = ∞, U is no longer central and the 1/N corrections modify
the algebra in such a way that its center becomes trivial. More precisely perturbatively in
1/N , the algebra of observables deforms to the factor of Type II∞.

1.2.4 One-sided black holes in AdS/CFT

The full AdS-Schwarzschild geometry in (1.53) describes an additional asymptotically AdS
region that is connected to our universe by a wormhole. Besides them, like in flat space,
black holes can also be created by some sort of collapsing shell. In such a case, there
is no wormhole connecting to another universe since the geometry at the earlier time
looks nothing like the full AdS-Schwarzschild geometry as the interior is non-vacuum.
Nevertheless, the one-sided geometry may share some features such as singularity and
future horizon with maximally extended solutions.

Here, there is a new important feature in comparison with flat space. The Hawking
radiation in AdS black hole background will reach the boundary in a finite time and then,
it is reflected back by the boundary. If the black hole is small enough, the entire black
hole evaporates before the radiation gets to the boundary. By increasing the size of the
black hole, while the Schwarzschild radius of the black hole reaches the AdS radius, the
radiation will be reflected back into the black hole very fast. So, the black hole will quickly
reach equilibrium with the Hawking radiation and remain constant in size up to small
fluctuation. As a result, with the usual reflecting boundary condition, big black holes in
AdS never evaporate and they are eternal. Thus, for a big black hole in AdS formed from
collapse, at a late enough time when all the matter has fallen into the black hole and the
fluctuations of the horizon have decayed away, the quantum fields start behaving like ones
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Figure 1.3: The two sided eternal Black hole and the one-sided geometry for a stable AdS
black hole created by some sort of collapsing shell.

in the eternal black hole background. It is known that the small black holes in AdS are
not stable while the big ones are.

Black hole formation by collapse has a holographic interpretation as the thermalization
of the CFT pure state on the boundary of the AdS space. In the dual CFT, we start
in a pure state and then allow it to settle down and thermalize after a while. It will
evolve to a state that is indistinguishable from a thermal state for the set of interesting
observables. Therefore, the late time CFT correlation functions on a massive pure state
can be approximated by correlation functions on the thermal density matrix.

As we said, a big black hole in a pure state is dual to a high-energy pure state in the
CFT. For a black hole at fixed energy, as Bekenstein proposed, the number of black hole
microstates is counted by black hole entropy S. At sufficiently large energy, the black hole
microstates dominate the microcanonical ensemble of the CFT. In other words, almost all
high-energy states in the CFT have a bulk description as a single black hole. In general, we
can think of an equilibrium pure state as a typical state. A typical black hole microstate of
energy E0 in the CFT is defined as a pure state which is a random superposition of energy
eigenstates in a narrow energy band

|Ψ0⟩ =
∑

Ei∈(E0−δE,E0+δE)

ci |Ei⟩ , (1.76)

where ci are random numbers selected with the uniform Haar measure. These typical states
represent the majority of black hole microstates of a given energy. They are approximately
in equilibrium and so, it is expected that correlators in these states will be the same as
thermal correlators at large N limit

⟨Ψ0|O(x1)O(x2)...O(xn) |Ψ0⟩ =
1

Zβ
tr(e−βHO(x1)O(x2)...O(xn)) (1.77)

where β−1 is the temperature corresponding to the energy E0. We note that these typical
states are not exactly the same as the late-time configuration of a black hole forming by
collapse, as they have a narrower energy band.
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t

Figure 1.4: Two proposal for the geometry dual to the typical black hole microstate.

Since these typical states look time-independent for the simple observables, their dual
geometry should be characterized by an approximate killing isometry which is timelike
near the horizon. It is mostly accepted that the geometry contains one exterior region
described by the AdS-Schwarzschild metric. It was proposed in [3, 6, 8] that the entire
dual geometry is just the exterior region terminates on the horizon by a firewall which is
consistent with the time translation symmetry we have. However, since the curvature near
the horizon of a big black hole is low, their proposal demands a modification of general
relativity at low curvature. In addition to this solution, it has been conjectured in [100,
101] that if we have a smooth horizon, the dual geometry to a typical pure state contains
the black and white hole interiors and part of the left region as well (Fig. 1.4).

Finally, we mentioned that to study the evaporation of stable black holes in AdS, one
can impose the absorbing boundary condition for the big black holes instead of reflecting
ones. Here instead, the Hawking radiation never returns to the black hole since the outgoing
modes are absorbed by the boundary, and so, the black hole evaporates. In the dual theory
then, the CFT is not a closed system and it does not evolve unitarily. However, one can
as usual add an auxiliary system which here stores the outgoing Hawking radiation when
it reaches the boundary.

1.3 Quantum Error Correction and Petz map

1.3.1 Quantum channels

Real systems suffer from unwanted interactions with the outside world that show up as
noise in quantum information processing systems. In order to describe such systems, it is
useful to introduce the notion of a quantum channel, i.e. a linear map E : L(H) → L(H)
which is completely positive and trace-preserving. Here, L(H) denotes the set of linear
operators acting on the Hilbert space H.1 Every quantum channel E has an operator sum
representation in terms of a non-unique set of operators {Ai} known as Kraus operators

1More generally a quantum channel can be a map between L(H1), L(H2) for two different Hilbert spaces
H1,H2.



18 CHAPTER 1. BULK RECONSTRUCTION IN ADS/CFT AND PETZ MAP

[102–104] such that,

E(ρ) =
∑
i

AiρA
†
i

∑
i

A†
iAi = I. (1.78)

They are the most general transformation of a quantum state in an open quantum system.
A natural way to describe the dynamics of an open quantum system is to regard it as

arising from an interaction between the system and an environment which together trans-
form under a unitary. After the evolution we perform a partial trace over the environment
to obtain the state of the system. For every quantum channel, there exists a model envi-
ronment starting in an initial state σen and model dynamics specified by a unitary operator
U such that

E(.) = tren
(
U(.⊗ σen)U †), (1.79)

which is a version of the Stinespring dilation theorem. If σen =
∑

j λj |j⟩ ⟨j|, one can find
the Kraus representation of (3.57) as

E(ρ) =
∑
j,k

Aj,k ρ A
†
j,k (1.80)

which Aj,k =
√
λj ⟨k|U |j⟩ are the Kraus operators. Therefore, we can describe the dy-

namics of the system by using the operator-sum representation without having to explicitly
consider the properties of the environment. One advantage of this Kraus representation is
that it is well adapted to describe discrete state change without explicit reference to the
passage of time.

1.3.2 Quantum error correction

In order to do quantum information and communication in presence of the noise, we need
quantum error correction (QEC) codes. The basic ideas of the theory are inspired by
the classical information theory, but all the limitations of quantum mechanics have been
considered in its formulation.

The quantum error correcting code is just selecting an appropriate subspace of some
larger Hilbert space called code subspace (C or Hcode) that has the same dimension as
the system. Quantum states are encoded by a unitary operation into a quantum error-
correcting code. The encoding is simply as follows:

|ψ⟩ =
∑
i

λi |i⟩ ∈ Hsystem −→ |ψ⟩C =
∑
i

λi |i⟩C ∈ HC (1.81)

which {|i⟩C} forms a basis for Hcode.
Similar to the classical case, each QEC code is able to correct only a specific set of

errors
E = {E1, E2, ..., En}. (1.82)

A necessary and sufficient condition for the quantum error correcting code to be able to
correct the set of errors E is

⟨ψ|E†
aEb |ψ⟩ = Λab ∀ |ψ⟩ ∈ C, ∀Ea, Eb ∈ E . (1.83)
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One can always choose a new combination of errors {Fa}, Fa = UabEb which U is a unitary
matrix, such that ⟨ψ|F †

aFb |ψ⟩ = ωaδab. It says that the sub-spaces we will get after the
action of the errors are all orthogonal

FaHC ⊥ FbHC a ̸= b. (1.84)

Thus, different errors correspond to orthogonal sub-spaces of the larger Hilbert space and
therefore, there is a possibility to distinguish them by some measurements called error
measurements. After recognizing which error happened, one can find the initial state
via the appropriate procedure. Hence, to recover the correct quantum state, the error-
correction procedure can be done in two steps:

1. Error detection: We perform a measurement, that tells us which error occurred on
the quantum state.

2. Recovery : We use the result of the measurement to know which procedure to do to
return the quantum state to the initial one.

We can see one simple case of error correction procedure in the example below.
Example : Consider the one to three qubit encoding. Suppose the only possible error

that may happen is the action of X operator -the first one of Pauli matrices- on one qubit.
Then, the set of errors is

E = {X1, X2, X3} (1.85)

where X1 = X ⊗ I ⊗ I, etc.
To detect and recover the errors, we can encode the |0⟩ , |1⟩ as following:

|0⟩ −→ |0⟩C = |000⟩ |1⟩ −→ |1⟩C = |111⟩ . (1.86)

Therefore, the state of one qubit can be encoded as

|ψ⟩ = a |0⟩+ b |1⟩ −→ |ψ⟩C = a |000⟩+ b |111⟩ (1.87)

for every values of a and b. In other words, the quantum error correcting code in our
example is Hcode = span{|000⟩ , |111⟩}.

In the end, we either have the encoding state or one of the noises of (1.85) occurred on
it. Therefore, the quantum state is one of the states below

{|ψ⟩C , X1 |ψ⟩C , X2 |ψ⟩C , X3 |ψ⟩C} (1.88)

for any |ψ⟩C ∈ Hcode. It means the code subspace maps to orthogonal sub-spaces corre-
sponding to different errors (Fig. 1.5).

We should search for some appropriate operators to detect which error happened by
measuring them on the output state of the channel and be notified that it should be done
in such a way that the state we have in hand does not change. In general, these operators
are known as error syndromes. In our example, all of the states of the set (F.4) are the
eigenvectors of the two operators Z1Z3 and Z1Z2 with different couples of eigenvalues
(Tab.1.1). Hence, just by looking at the result of their measurements, we can find out in
which subspace we are and by acting appropriate Xi undo the effects of error.

The example above is a simple case of a wide range of quantum error-correcting codes
known as stabilizer codes. The theory of stabilizer formalism is used for the correction of
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Figure 1.5: The decomposition of the Hilbert space to subspaces orthogonal to the code
subspace.

|ψ⟩E X1 |ψ⟩E X2 |ψ⟩E X3 |ψ⟩E
Z1Z2 1 -1 -1 1
Z1Z3 1 -1 1 -1

Table 1.1: The results for measuring the error syndromes on different output states.

this useful class of codes in quantum information processing. Despite this, we should take
into account that for some real-world quantum systems, it is very difficult to perform the
quantum measurement we want for QEC. Thus, it is required to develop a general theory
of QEC that is not necessarily done via a two-step detection-recovery method.

In the general theory of QEC, the noise model is described by a quantum channel E ,
that the Kraus operators {Ai} of the channel E are corresponding to the set of the errors in
(F.6). Here, the complete error correction procedure is done by another quantum channel
R called Recovery Channel. The code subspace can be corrected if we require for every
state ρ whose support lies in the Hcode

R ◦ E(ρ) = ρ ∀ρ = PρP, (1.89)

that P is the projection into the code subspace.
In the example above, we can model the errors with the quantum channel

E(ρ) = q0ρ+
∑
i

qiXiρXi

∑
i

qi = 1, (1.90)

which error Xi happens with probability qi. The Kraus operators here are Ai = Xi. One
can write the recovery channel for this model as

R(ρ) = P0 ρ P0 +
∑
i

XiPi ρ PiXi, (1.91)

that Pi is projection on the subspace corresponding to error Xi.
One might be interested to consider the physical system instead of code subspace. In

such a case, if we take V : Hsystem → H as the isometry that embeds the Hsystem into H,
we can rewrite (E.11) as the following

R ◦ E(V ρV †) = V ρV † ∀ρ ∈ S(Hsystem) (1.92)

that is equivalent to having E ′ and R′ such that R′ ◦ E ′(ρ) = ρ where E ′(.) = E(V †(.)V †)
and R′(.) = V †R(.)V [105].
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Here, it is good to note that in information theory, on top of error correction, another
important problem is storing the information which is highly sensitive and important. This
problem is referred to as the secret sharing problem. There is a strong connection between
QEC and secret sharing so it is even suggested in [106] that secret sharing is a better
classical analog to QEC. In a quantum secret sharing scheme which is shown as (n, k), a
secret quantum state is divided into n pieces such that any k or more pieces can perfectly
reconstruct the secret quantum state and no k− 1 pieces reveal any information about the
secret.

As an example, consider the case that three qutrits (the 3-level quantum system)
are used to store a single-qutrit that is explained in [93, 107]. The quantum message
|ψ⟩ =

∑2
i=0 λi |i⟩ is shared between three people as ˜|ψ⟩ =

∑2
i=0 λi |̃i⟩ where

|0⟩ −→ ˜|0⟩ = 1√
3
(|000⟩+ |111⟩+ |222⟩)

|1⟩ −→ ˜|1⟩ = 1√
3
(|012⟩+ |120⟩+ |201⟩)

|2⟩ −→ ˜|2⟩ = 1√
3
(|021⟩+ |102⟩+ |210⟩).

No matter what the encoded state is, the reduced density matrix of each qutrit is maximally
mixed. Therefore, one person alone has no information about the message. On the other
hand, any two people can reconstruct the secret as explained in [93]. Such a scheme can be
interpreted as an error-correcting code that can protect against up to (n− k) erasures, in
other words, the set of errors is equivalent to erasures on any d single sites for 1 ⩽ d ⩽ n−k
[107].

1.3.3 Generalized approach to QEC

The formulation we had in the previous section is called the standard model for QEC. It
contains a triplet (R, E , C) where C is a subspace of a Hilbert space H = C ⊕ C⊥ and
R, E are quantum channels on L(H). The subspace C is said to be correctable for E and
conserved by R ◦ E .

The standard QEC has been formulated in the Schrodinger picture. It is known that
any quantum mechanical system can be equivalently written in the Heisenberg picture.
Although, in the quantum field theory is not always the case.

In order to write the theory of QEC in the Heisenberg picture, consider the case that
the evolution of the system is described by the channel E . After the evolution, the result
of a measurement of an observable O will be in the form of Tr(E(ρ)O), where ρ describes
the state of the system. As always, one can alternatively formulate the evolution of the
system in the Heisenberg picture by requiring to get the same measurement results. For
this purpose, we describe the evolution of the observables by the channel E∗ that is called
Hilbert-Schmidt dual map or just dual channel which defined as

Tr(ρE∗(O)) = Tr(E(ρ)O) ∀ρ,O. (1.93)

The set of Kraus operators for E∗ is given easily by cyclicity property of trace as {A†
a}

instead of {Aa}, and trace preservation of E is equivalent to the requirement that E∗ is
unital, E∗(I) = I.
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The conservation of a state by R ◦ E implies that in the Heisenberg picture for all the
operators O ∈ L(H) we have

P (R ◦ E)∗(O)P = PE∗ ◦ R∗(O)P = POP. (1.94)

Consider that observables can be characterized by a family of operators {Xa}. If for every
Xa there exists Ya such that Xa = E∗(Ya), to correct for the errors induced by E , we need
the channel R maps each Xa to one of the operators Ya through R∗(Xa) = Ya, so that
(R◦ E)∗(Xa) = (E∗ ◦R∗)(Xa) = Xa. In such a case, we will say that Xa is correctable for
E and conserved by R ◦ E . Therefore, for a given noise model, the conservation of a state
by a given noise model implies the conservation of all of its observables. One can think
about a natural generalization of the theory of QEC by deducing this strong requirement.
Instead of entire observables, we can assume the conservation of just a selecting set of
them. Thus, for a noise model E , we say that a set S of operators on H is correctable on
states in the code subspace if there exists a channel R such that

P (R ◦ E)∗(O)P = PE∗ ◦ R∗(O)P = POP, ∀O ∈ S. (1.95)

Here, we shall continue to focus on the conservation of sets of operators that have the
structure of an algebra where the result is a new theory referred to as operator algebra
quantum error correction (OAQEC) [108, 109].

When we have the conservation of just an algebra A in the code subspace, the infor-
mation is not encoded into the entire subspace. It is just encoded into some parts of code
induced from the algebra structure of A. In finite-dimensional case, our algebra is the set of
linear operators that are closed under addition, multiplication, and hermitian conjugation,
that is finite-dimensional von-Neumann algebra. Given the algebra A, the commutant of
A is another algebra on H that is defined as

A′ = {y ∈ L(H)|xy = yx,∀x ∈ A}. (1.96)

In order to study the error correction of an algebra, it is better to have a classification of
them. To do this, first, one can focus on the simple algebras called factor. An algebra A on
H is a factor if its center is trivial ZA = A∩A′ = λI. For a given factor, there always exists
a tensor factorization of the Hilbert space as H = HA ⊗HĀ such that A = L(HA) ⊗ IĀ,
which means each factor is just the set of all linear operators on a subsystem A of the
system.

Consider the decomposition of the Hilbert space as H = C ⊕ C⊥ = (HA ⊗ HĀ) ⊕ C⊥.
When we just require the correction of a factor, the generalization of the theory of QEC is
known as Operator Quantum Error Correction (OQEC) which is a simple case of OAQEC.
The standard QEC also corresponds to the special case when Ā is one-dimensional. In the
Schrodinger picture, the correctability of the observables on subsystem A is equivalent to
require that information is encoded in a subsystem A of the code space and errors need only
to be corrected up to a transformation on Ā. It means there exists τ ′ ∈ S(HĀ) such that
R◦E(ρ⊗ τ) = ρ⊗ τ ′ for all ρ⊗ τ ∈ S(C). (S(H) denote the set of density operators on H)
These are also known as subsystem codes in comparison with the standard quantum error
correcting codes that are known as subspace codes. that encoded in the algebra L(HA)⊗IĀ
for the general A and Ā.

Finally, let us consider the general case, where A is not necessarily a factor. For an
arbitrary algebra, there is always a block decomposition of the Hilbert space as H =



1.3. QUANTUM ERROR CORRECTION AND PETZ MAP 23

C ⊕C⊥ = ⊕α(HAα ⊗HĀα)⊕C
⊥ which the algebra is block-diagonal with decomposition as

A = ⊕α(LHAα
⊗ IĀα)⊕ 0C⊥ . For the noise model E , A is correctable on the code subspace

if there exists a channel R such that for all ρα ∈ S(HAα), τα ∈ S(HĀα) there exist some
states τ ′α ∈ S(HĀα) such that

R ◦ E(ρ) = R ◦ E(
∑
α

λαρα ⊗ τα) =
∑
α

λα(ρα ⊗ τ ′α). (1.97)

Here, each of the subsystems encodes the information individually and they all can be
corrected simultaneously via the same recovery channel [110].

1.3.4 Universal recovery channel and the Petz map

A quantum channel E is called reversible if one can find a recovery channel R : L(H) →
L(H) such that

R ◦ E(ρ) = ρ ∀ρ ∈ S(H). (1.98)

Most quantum channels, which correspond to open or noisy systems, are not reversible.
We will return to the question of reversibility later in this subsection.

A quantum error correcting code corresponds to selecting an appropriate subspace,
called code subspace(C or Hcode) that has the same dimension as the system, of some larger
Hilbert space. In the general theory of QEC, the noise model is described by a quantum
channel E . The code subspace can be corrected if we can find a recovery channel R, such
that for every state ρ whose support lies within Hcode, the channel can be reversed, i.e.

R ◦ E(ρ) = ρ ∀ρ = PρP (1.99)

where P is the projection into the code subspace. One might be interested to consider a
physical system instead of a code subspace. In such a case, if we take V : Hsystem → H as
the isometry that embeds the Hsystem into H, we can rewrite (E.11) as the following

R ◦ E(V ρV †) = V ρV † ∀ρ ∈ S(Hsystem) (1.100)

that is equivalent to having E ′ and R′ such that R′ ◦ E ′(ρ) = ρ where E ′(.) = E(V (.)V †)
and R′(.) = V †R(.)V [105].

Given a quantum channel E , it is useful to consider the Hilbert-Schmidt dual channel
which defines a mapping of observables rather than of states. This is also sometimes referred
to as the Heisenberg picture of the channel. The idea is to think of E as a (discrete)
evolution of a state. After the evolution, the result of a measurement of an observable O
will be in the form of tr(E(ρ)O), where ρ describes the state of the system. As we usually
do when going to the Heisenberg picture, we can alternatively formulate the evolution of
the system by transforming the operators, requiring to get the same measurement results.
For this purpose, we describe the evolution of the observables by the channel E∗ that is
called Hilbert-Schmidt dual map defined as

tr(ρE∗(O)) = tr(E(ρ)O) ∀ρ,O. (1.101)

The set of Kraus operators for E∗ is given easily by cyclicity property of trace as {A†
a}

instead of {Aa}, and trace preservation of E is equivalent to the requirement that E∗ is
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unital, E∗(I) = I. In the case of QEC, the conservation of a state by R ◦ E (E.11) implies
that in the Heisenberg picture for all the operators O ∈ L(H) we have

P (R ◦ E)∗(O)P = PE∗ ◦ R∗(O)P = POP. (1.102)

We now return to the general question of the reversibility of a quantum channel. This
has been studied widely in [18, 19, 111, 112]. The reversibility of E is related to the
quantum relative entropy of states under the action of E . The relative entropy between
two states ρ and σ is defined as S(ρ||σ) = tr(ρ log ρ − ρ log σ) and it is a measure of
distinguishability between two quantum states. The most important theorem related to
this quantity known as monotonicity of relative entropy or the data processing inequality,
whose proof is discussed in appendix ?? for finite dimensions, states that S(ρ||σ) is non-
increasing under the action of any quantum channel E [113, 114], i.e.,

S(ρ||σ) ⩾ S(E(ρ)||E(σ)). (1.103)

It has been shown in [115, 116] that there exists a quantum channelR such that for all states
ρ ∈ S(H), R◦E(ρ) = ρ if and only if S(ρ||σ) = S(E(ρ)||E(σ)) for all ρ, σ ∈ S(H). Moreover,
the explicit form of the quantum channel R for the set of states {E(ρ)|∀ρ ∈ S(H)} has
been found in [116]. It is given as a function of a reference quantum state σ ∈ S(HA) and
the channel E itself as

R(.) = Pσ,E(.) = σ1/2E∗
(
E(σ)−1/2(.)E(σ)−1/2

)
σ1/2 (1.104)

where E∗ is the dual channel of E . Pσ,E is known as Petz recovery channel. This result has
been also independently obtained by Barnum and Knill in [117].

1.3.5 Petz map and modular theory

In order to study the recovery of information in quantum field theories, it would be really
helpful to have an alternative description for the Petz recovery channel in the context of
the Tomita-Takesaki theory (A brief review can be found in the Appendix A). Luckily, the
Petz recovery channel indeed has its origin in the study of operator algebras [18, 19, 118].
It has also been studied in some recent works [119–121]. We will now review the definition
of the Petz map in the algebraic approach. All the discussion below is in the Heisenberg
picture and it is almost based on [122].

Consider two Type I von Neumann algebras in their standard forms: (A,HA, JA,PA)
and (B,HB, JB,PB). Assume two faithful states ρA and ρB respectively on A and B that
we will refer to their unique vector representations by |ρ1/2A ⟩ ∈ PA and |ρ1/2B ⟩ ∈ PB. The
corresponding GNS Hilbert spaces of the algebras over the states |ρ1/2A ⟩ and |ρ1/2B ⟩ are
denoted by HA and HB.

Let us consider a linear superoperator T : A → B and denote its corresponding operator
between the corresponding GNS Hilbert spaces by T : HA → HB. One can define a dual
of it T ∗

ρ : B → A as a solution to

⟨b |T (a)⟩ρB = ⟨b |Ta⟩ρB = ⟨T †b |a⟩ρA = ⟨T ∗
ρ (b) |a⟩ρA (1.105)

in the GNS Hilbert space (A.9) for all a ∈ A and b ∈ B . In the case of matrix algebra,
the definition (1.105) can be rewritten as

tr(ρBb
†T (a)) = tr(ρAT ∗

ρ (b
†)a). (1.106)
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We note it here that if we replace both ρA and ρB with the identity operators (unnormalized
maximally mixed states), the dual map T ∗ we will get is the usual dual map in the quantum
information theory defined in (??). One can find T ∗

ρ in (1.106) in terms of T ∗ as

T ∗
ρ (b) = ρ−1

A T
∗(ρBb). (1.107)

On the other hand, the GNS Hilbert spaceHA can be created by acting with the commutant
of the algebra HA = {A′ |ρ1/2A ⟩} and the same for another algebra HB = {B′ |ρ1/2B ⟩}.
Therefore, given T between the GNS Hilbert spaces, we can in principle associate to it one
superoperator between the commutants T ′

ρ : B′ → A′ which defined as

⟨b′ |T (a)⟩ρB = ⟨T ′
ρ(b

′) |a⟩ρA (1.108)

for all a ∈ A and b′ ∈ B′ that is called ρ-dual of the superoperator T . Then, one can use
the modular conjugations in both Hilbert spaces to define a superoperator between the
original algebras T Pρ : B → A as

T Pρ (.) = JA ◦ T ′
ρ ◦ JB(.) = JA T ′

ρ

(
JB (.) JB

)
JA (1.109)

which is exactly the Petz dual map we are interested in that for the Type I von Neumann
algebra, one can explicitly find its form as

T Pρ (.) = ρ
−1/2
A T

(
ρ
1/2
B (.) ρ

1/2
B

)
ρ
−1/2
A . (1.110)

The Petz dual map can also be realized as the solution to the relation (1.105) with respect
to the KMS inner product. If the state |Ψ⟩ is cyclic and separating for a von Neumann
algebra A, the KMS inner product on A is defined as

⟨a1 |a2⟩ψ,KMS = ⟨Jψ(a†1) |a2⟩ψ = ⟨Ψ| a†1 ∆
1/2
ψ a2 |Ψ⟩ . (1.111)

while the last expression can be found using (A.21). In the case of matrix algebra, it is
reduced to ⟨a1 |a2⟩ρ = tr(ρ1/2a†1ρ

1/2a2).
While the definition (1.110) is only for Type I von Neumann algebras, the one in (1.109)

can be generalized to the mapping between general von Neumann algebras. In particular,
it is helpful for high-energy physics applications where the von Neumann algebras under
consideration are of Type III1.

To summarize, consider (A,HA, JA,PA), (B,HB, JB,PB) and let T : A → B be a
unital completely positive map between the algebras. One can choose an arbitrary state
ρB ∈ S(B) and if both ρB and ρA = T ∗(ρB) are faithful states on the corresponding von
Neumann algebras, construct the Hilbert space representation of the algebras over them.
Then, if for all ρ, σ ∈ S(B) we have

S(ρ|σ) = S(T ∗(ρ)|T ∗(σ)), (1.112)

there exists a unital completely positive map T̃ : B → A that T ◦ T̃ acts as an identity
operator on HB. The T̃ is nothing but the Petz dual map given in (1.109) and can be
also shown that (T̃ )∗ = PρB ,T ∗ in (1.104). In [120, 121], one can find the discussion for
generalization of the Petz dual map in cases where the states are not faithful.
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1.3.6 Approximate recoverability

The equality of relative entropy is a necessary and sufficient condition for exact recover-
ability. In the case of approximate quantum error correction, the quality of recovery is
controlled by the behavior of the relative entropy under the action of the quantum chan-
nel. At the heart of this result is a strengthened version of the monotonicity of the relative
entropy which undergoes a slight change in relative entropy through the channel provides
the approximate recoverability of the states.

For a given channel E , Junge et al [123] found an expression for the recovery channel
Rρ,E , which is closely related to Petz recovery channel and it is also universal. In terms of
E and an arbitrary full rank density matrix ρ, it is given by

Rρ,E(.) =
∫ ∞

−∞
dt p(t) ρ−it Pρ,E

(
E(ρ)it (.)E(ρ)−it

)
ρit (1.113)

while p(t) = π/(cosh(2πt) + 1) and Pρ,E is the Petz recovery channel given in (1.104).
Moreover, they gave a lower bound on the difference between the relative entropy in terms
of the fidelity between the original state and the recovered one as

S(ρ|σ)− S(E(ρ)|E(σ)) ≥ −2 logF (ρ,Rσ,E ◦ E(ρ)). (1.114)

The result above has been found in the context of the quantum information theory i.e.,
Type I von Neumann algebra. While one should go beyond it in the case of QFTs and
gravity. In [120, 121], authors generalized the previous result to quantum channels between
general von Neumann algebras in the context of modular theory. In the Heisenberg picture,
consider T : A → B be a unital, normal and two-positive map between von Neumann
algebras.

One can associate a dual Petz map T Pψ : B → A (1.109). They found the recovery map
in the form of

α(.) =

∫ ∞

−∞
dt p(t) αtψ,T (.) (1.115)

while
αtψ,T (.) = ζtψ,A ◦ T Pψ ◦ ζ−tψ,B(.) (1.116)

is called the rotated Petz map, and ζtψ,A is the modular flow for |ΨA⟩ ,A is define as

ζtψ,A(a) = Ad ∆it
ψ,A (a) = ∆it

ψ,A (a) ∆−it
ψ,A ∀a ∈ A. (1.117)

In the case of finite-dimensional Type I factor, the recovery map in (1.115) reduced to the
dual of the recovery channel in (1.113).

1.4 Entanglement wedge reconstruction via universal recov-
ery channels

In this section, we review the arugments of [17], on how the Petz map can be used to
reconstruct bulk operators in the entanglement wedge of a boundary subregion.
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1.4.1 Background

Before we proceed we introduce an ingredient that will be useful in what follows. This is
the idea of a code subspace around a given state. For example, starting with the global
AdS vacuum state |Ω⟩ we define

HC = span{|Ω⟩ , ϕi(x) |Ω⟩ , ..., ϕi(x1)ϕj(x2) |Ω⟩ , ...}, (1.118)

where the range of i and the number of ϕ insertions are finite. More generally we can
define the code subspace around any semi-classical state. This subspace is the one where
low-energy experiments in the bulk can be described and we will study bulk reconstruction
within a given code subspace.

The entanglement wedge of a boundary region A is defined as the bulk domain of
dependence of any bulk spacelike surface whose boundary is the union of A and the codi-
mension two extremal area surface of minimal area (more precisely, quantum extremal
surface) whose boundary is ∂A. It is generally believed that bulk operators inside the
entanglement wedge can be reconstructed by operators in the region A on the boundary.

An important ingredient supporting this is the observation of JLMS [16] that the rela-
tive entropy of two states in the boundary region A is equal to the relative entropy of the
two corresponding bulk states in EA up to subleading correction.

S(ρA||σA) = S(ρa||σa) +O(1/N) (1.119)

which already suggests that information in the entanglement wedge is contained in region A
on the boundary. Using (1.119) arguments in favor of entanglement wedge reconstruction
were given in [20].

Assume that the bulk Hilbert space has a decomposition as Hbulk = Ha ⊗ Hā, while
a = EA. For the cases where the setup is symmetric, like the vacuum sector of the system,
the complement region of a in the bulk is also the entanglement wedge of the region Ā
in the boundary, ā = EĀ, so the same argument applies for Ā and ā. In general, the
entanglement wedge of a given boundary region A can be bigger than its causal wedge.
Finally, the entanglement wedge reconstruction is a statement that says any bulk operator
ϕa acting within Ha can always be represented in the CFT as an operator OA has support
only on HA.

1.4.2 Entanglement wedge reconstruction with a universal recovery chan-
nel

We now discuss entanglement wedge reconstruction in terms of the universal recovery
channels described in Sec. 1.3.4, based on [17].

First, consider the entanglement wedge reconstruction and for simplicity assume both
bulk and CFT Hilbert spaces have a tensor decomposition as Hbulk = Ha ⊗ Hā and
HCFT = HA ⊗ HĀ . At large N when the equality between the relative entropy of the
states in the entanglement wedge and the boundary region A is exact, i.e.,

S(ρA||σA) = S(ρa||σa) (1.120)

from the discussion in Sec. 1.3.4, one can say that there exists a quantum channel R which
recovers the information in the entanglement wedge from the boundary region A. Using
the dual channel R∗ we can map operators on Ha to operators on HA as OA = R∗(ϕa).
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If we assume that there is no black hole in the bulk, the global HKLL reconstruction
reviewed in section 2 provides us a map from states of the entire bulk to states of the entire
boundary. We can therefore define an isometry of embedding VHKLL that embeds the bulk
effective field theory Hilbert space to the CFT Hilbert space VHKLL : Hbulk ↪→ HCFT ,
which Hcode = VHKLL Hbulk V †

HKLL.
We now define a quantum channel E : S(Ha)→ S(HA). Here S(Ha) denotes the set of

possible density matrices in the bulk region a while S(HA) is the set of density matrices
in the boundary region A. As the entire AdS space is a closed system, the noise model
E : S(Ha) → S(HA) can be written in terms of a model environment (3.57) using the
global HKLL map. We take the complementary bulk region ā in a fixed reference state σā
and then, we can write the quantum channel E as

E(.) = trĀ
(
VHKLL(.⊗ σā)V †

HKLL

)
. (1.121)

To map the operators, as we had in Sec. 1.3.4, one can go to the Heisenberg picture and
write the dual of Petz recovery channel of E by taking a fixed reduced density matrix on
the entanglement wedge σa, using expression (1.104), we reach to

OA = R∗(ϕa) = E(σa)−1/2E
(
σ1/2a ϕaσ

1/2
a

)
E(σa)−1/2, (1.122)

which for the quantum channel (1.121), it will give us

OA = E(σa)−1/2trĀ
(
VHKLL(σ

1/2
a ⊗ σ1/2ā )(ϕa⊗ Iā)(σ1/2a ⊗ σ1/2ā )V †

HKLL

)
E(σa)−1/2, (1.123)

where E(σa) = trĀ
(
VHKLL(σa ⊗ σā)V †

HKLL

)
. If we take both σa and σā two maximally

mixed states or equivalently putting the bulk in the maximally mixed state τ , the map
(1.123) will be simplified as

OA =
1

dcode
τ
−1/2
A trĀ

(
VHKLL(ϕa)V

†
HKLL

)
τ
−1/2
A , (1.124)

where τA = 1
dcode

trĀPcode. It is good to note here that the condition

⟨ϕa⟩ρbulk = ⟨Φa,HKLL⟩ρCFT (1.125)

implies that VHKLL(ϕa)V
†
HKLL = PcodeΦa,HKLLPcode, and so the bulk operator ϕ in the

entanglement wedge can map to a boundary operator has support only in the region A as

OA =
1

dcode
τ
−1/2
A trĀ

(
PcodeΦHKLLPcode

)
τ
−1/2
A . (1.126)

This is the main result of the section, that we will use in the rest of the paper.
When including 1/N corrections, (3.66) will no longer be exact and we do not expect

to have an exact recoverability. In that case, we can try to reconstruct the entanglement
wedge using the twirled Petz map (F.1). For the maximally mixed state in the code
subspace, the mapping is as below

OA =
1

dcode

∫
R
dt β0(t) τ

−1/2(1−it)
A trĀ

(
VHKLL(ϕa)V

†
HKLL

)
τ
−1/2(1+it)
A (1.127)

which at large N limit gives us the same formula as (1.124) [17]. It has been argued that
for the reconstruction of the entanglement wedge for any finite-dimensional code subspace
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as well as code subspaces with dimensions that do not grow exponentially fast in N , while
the error is non perturbatively small, the ordinary Petz map works well enough [124].

In the large N limit it is possible to take the size of the code subspace to infinity. In
that case, the maximally mixed state on the code subspace does not really exist and we
would need to use some regulated version of it2 that we denote by ρ.

One should be careful at this point that the quantum channel in (1.121), which takes
as input the reduced density matrix of the entanglement wedge ρa = trā(ρ) and gives
as output a state on A, will not generally provide us exactly the same state on A as
ρA = trĀ

(
VHKLL(ρ)V

†
HKLL

)
which depends on the state ρ defined on the entire bulk.

Only in the case that the bulk reference state itself is a tensor factor of two states in a
and ā, like the maximally mixed state, they will give us the same result. However, their
difference is controlled by 1/N : if we say that |S(ρA||σA)− S(ρa||σa)| ⩽ ϵ, then

∥E(ρa)− ρA∥2 ⩽ 2 ln 2S(E(ρa)||ρA) ⩽ (2 ln 2)ϵ. (1.128)

Hence, at large N limit that ϵ goes to zero and we have the exact reconstruction of the
entanglement wedge, one can exchange the E(ρa) and ρA. Then, we can introduce a general
version of the Petz map in terms of an arbitrary fixed state ρ as [125]

O
(ρ)
A = ρ

−1/2
A trĀ

(
VHKLL(ρ

1/2ϕaρ
1/2)V †

HKLL

)
ρ
−1/2
A . (1.129)

We note here that, for this reconstruction, the only source of the error is not the 1/N
correction, but rather the entanglement in the state ρ between the inside and outside of
the entanglement wedge causes to not recover the original state.

1.5 AdS-Rindler reconstruction and Petz map

As we saw in the previous chapters, a free scalar field in pure AdS is dual to a GFF of the
boundary that can be thought of as a sector of a much larger CFT with a large central
charge. In addition, Petz map is a tool that comes from the quantum information theory
which provides us the CFT representation of the bulk field ϕ(X) that is localized in any
region A when the field lies in the entanglement wedge of A. It is given by

ΦA(X) = τ
−1/2
A trĀ

(
PcodeΦHKLL(X)Pcode

)
τ
−1/2
A (1.130)

where we redefine τA to the unnormalized maximally mixed state τA = trĀPcode and
ΦHKLL(X) is the boundary reconstruction of the field in global coordinates

ΦHKLL(X) =

∫
bdy

dtdΩ Kg(X|t,Ω)O(t,Ω) (1.131)

that Kg(X|t,Ω) is the smearing function for the AdS space which in even and odd dimen-
sion given by (1.33) and (1.34) respectively. By plugging (1.131) back into (1.130) and
considering the linearity of the trace we will get

ΦA(X) =

∫
bdy

dtdΩ Kg(X|t,Ω) τ−1/2
A trĀ

(
PcodeO(t,Ω)Pcode

)
τ
−1/2
A . (1.132)

2For example, this could be a thermal state, which approximates the maximally mixed state as T → ∞.
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Therefore, to find ΦA(X) we need to deal with terms

trĀ
(
PcodeO(t,Ω)Pcode

)
(1.133)

for every O(t,Ω). In order to take trace over Ā, we need to re-express them in terms of
the operators that act just on the Cauchy surface Σ. In other words, we should use the
Heisenberg picture and rewrite all O(t,Ω) in terms of the scalar primaries on Σ by evolving
them with boundary Hamiltonian. Let us consider Σ to be t = 0 slice. Then, (1.133) can
be read off as

trĀ
(
Pcodee

iHCFT tO(Ω)e−iHCFT tPcode
)
= trĀ

(
Pcodee

iHGFF tO(Ω)e−iHGFF tPcode
)
. (1.134)

Since we project the Heisenberg picture operators on the code subspace, which should be
a subspace of the GFF sector of the CFT, the CFT Hamiltonian can be replaced by the
Hamiltonian of generalized free theory, which is

HGFF =
∑
nlm

ωnlmO
†
nlmOnlm. (1.135)

It is important to note that all the operators in (1.134) have support on entire Σ, even
when t = 0 and O(xA) is localized in region A, PcodeO(xA)Pcode still can have support on
Ā.

To do the calculation, it can be more convenient to go to Fourier space. By substituting
(1.14) into (1.134) and plugging it back to (1.132) we arrive to

ΦA(X) =
∑
nlm

Gnlm(X)τ
−1/2
A trĀ

(
PcodeOnlmPcode

)
τ
−1/2
A

+G∗
nlm(X)τ

−1/2
A trĀ

(
PcodeO

†
nlmPcode

)
τ
−1/2
A (1.136)

where
Gnlm(X) =

∫
bdy

dtdΩ Kg(X|t,Ω) gnlm(t,Ω). (1.137)

To go ahead, we need to determine more precisely the setup we want to study and in
particular, specify the region A on the boundary. Let us start with a simple case. Take
A to be just one hemisphere of Σ, then as a result, a = EA is an AdS-Rindler wedge in
the bulk which its entanglement wedge coincides with its causal wedge. In the rest of this
chapter, we will focus on finding the boundary representation for the operators that lie in
the AdS-Rindler wedge. First, we work on rewriting the operator Onlm in terms of the
operators that act just on A or Ā. We will then define the code subspace in this case and
in particular, we will try to find a suitable choice of basis for code subspace to be able to
do the calculation. Finally, we will compare our result with the boundary representation
of the field one can find from the HKLL procedure in the AdS-Rindler coordinates.

1.5.1 Bogoliubov coefficients from Rindler mode expansion of bulk field

Now we proceed with the second way of arriving at (??). At every Cauchy surface, the
Hilbert space of a QFT is constructed as the Fock space obtained from creation and
annihilation operators ak and a†k, corresponding to the global modes of the field operator
which is

ϕ(t, x) =
∑
k

fk(t, x)ak + f∗k (t, x)a
†
k. (1.138)
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k is a collection of indices we need to describe the mode. We can use the same approach
to find the mode expansion of the field that lies in the region r by directly solving the
equation of motion just in this region to find the appropriate wave functions which have
support only on r. Let us take the time slice Σ and decompose it into the subregions Σr
such that Σr∩Σr′ = ∅. For all Σr, we should first find a coordinate system Ur which cover
D(Σr). Then, solve the equation of motion on Ur to find the mode expansion of fields on
D(Σr)

ϕ(tr, xr) =
∑
k

f rk (tr, xr)a
r
k + f r∗k (tr, xr)a

r†
k . (1.139)

The Hilbert space of the QFT restricted to Σr is denoted byHr and the Hilbert space of the
total theory on Σ is naively a tensor product of the subregion Hilbert spaces H = ⊗rHr.

One can expand the field ϕ(X) in global coordinates in terms of subregion mode func-
tions as

ϕ(t, x) =
∑
r

∑
k

f rk (tr, xr) a
r
k + f r∗k (tr, xr) a

r†
k . (1.140)

The point X is labeled in global coordinates and the coordinate system Ur by (t, x) and
(tr, xr), respectively. As a result, the creation and annihilation operators of the full Hilbert
space can be written as a linear combination of subregions mode functions and vice versa, by
comparing (1.138) and (1.140) which is a generalized version of Bogoliubov transformation
[126].

Let us come back to our problem. To proceed in the Petz map calculation, it can help
us if we could find an expression for Onlm in terms of the mode function corresponding
to the subregions A and Ā. The subtlety here is the point that GFF on the boundary
do not obey the equation of motion and hence, the discussion above is not applied to the
boundary QFT. However, in AdS/CFT correspondence, the extrapolate dictionary leads
us to the identification between some bulk and boundary operators. As a result, we expect
that bulk Bogoliubov transformation can help us to find one expression for Onlm as a linear
combination of the operators has support only on one subregion.

The boundary Cauchy slice Σ is divided into two hemispheres A and Ā. As a result,
their entanglement wedges are AdS-Rindler patches in the bulk which both together cover
the entire AdS space. To quantize the free fields in the entire AdS space in Rindler
coordinates, we need two copies of the creation and annihilation operators that obey the
commutation relation

[bωλ,I , b
†
ω′λ′,I′ ] = (2π)2δ(ω − ω′)δ(λ− λ′)δII′ (1.141)

where the mode functions bωλ,a and bωλ,ā have support only in a and ā patches respectively.
One can globally expand the bulk field ϕ(X) in terms of these mode functions as

ϕ(X) =
∑

I∈{a,ā}

∫
dω

2π

dλ

2π

(
fωλ,I(X)bωλ,I + f∗ωλ,I(X)b†ωλ,I

)
(1.142)

where fωλ,I(X) is given by (1.38) if the point X belongs to the patch I, otherwise it
vanishes. The global mode anlm in AdS are related to these mode functions by Bogoliubov
coefficients α and β as

anlm =
∑

I∈{a,ā}

∫
dωdλ

(
αInlm;ωλbωλ,I + β∗Inlm;ωλb

†
ωλ,I

)
. (1.143)
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The commutation relations (1.141) lead to the following constrain on the Bogoliubov co-
efficients∑

I∈{a,ā}

∫
dωdλ

(
αInlm;ωλα

∗I
n′l′m′;ω′λ′ − β∗Inlm;ωλβ

I
n′l′m′;ω′λ′

)
= δnn′δll′δmm′ . (1.144)

We can substitute (1.143) in the bulk global mode expansion (1.7) which lead us to the
relations ∑

nlm

fnlm(X)αanlm;ωλ + f∗nlm(X)βanlm;ωλ = 0 ∀X ∈ ā∑
nlm

fnlm(X)αānlm;ωλ + f∗nlm(X)βānlm;ωλ = 0 ∀X ∈ a.
(1.145)

We will use them in what follows.
For the case that we are studying, where on the boundary of pure AdS the GFF lives,

the mode functions anlm and bωλ are identified with the boundary operators given by (1.13)
and (1.42) respectively. By plugging them back into (1.143), one can find

Onlm =
∑

I∈{A,Ā}

∫
dωdλ

(Mnlm

Mωλ
αInlm;ωλOωλ,I +

Mnlm

Mωλ
β∗Inlm;ωλO

†
ωλ,I

)
. (1.146)

while αAnlm;ωλ = αanlm;ωλ, etc .

1.5.2 Appropriate basis for the code subspace

The code subspace has a Fock space structure Hcode = span{
∏
nlm(O

†
nlm)

inlm |Ω⟩}, where
|Ω⟩ is the global vacuum defined as Onlm |Ω⟩ = 0 for all n, l and m. The powers inlm are
some non-negative integers and we can also put a cut-off on them. In order to compute
the Petz map reconstruction of the bulk field ϕ(X) that lies in the AdS-Rindler patch, we
need to compute the terms trĀPcode and trĀ(PcodeOnlmPcode).

Before going through the calculation, we need to choose a basis for code subspace. The
natural choice one can take is

|{inlm}⟩ ∝
∏
nlm

(O†
nlm)

inlm |Ω⟩ . (1.147)

In this basis, we should calculate the terms of the form

trĀ

(
(O†

nlm)
i |Ω⟩ ⟨Ω| (On′l′m′)i

′
)

(1.148)

for every arbitrary integers i and i′. One way to deal with trace can be using (1.146). As
we know, the action of Rindler modes on |Ω⟩ in two wedges are related to each other by

Oω,λ;Ā |Ω⟩ = eπωO†
ω,−λ;A |Ω⟩

O†
ω,λ;Ā

|Ω⟩ = e−πωOω,−λ;A |Ω⟩
(1.149)

while |Ω⟩ = ⊗ω,λ |Ωω,λ⟩ = ⊗ω,λ
√
1− e−2πω

∑
n e

−πωn |n⟩Aω,λ |n̄⟩
Ā
ω,−λ. As a result, for each

choice of i, one can in principle find an operator Ai that has support only on region A such
that

(O†
nlm)

i |Ω⟩ = Ai |Ω⟩ . (1.150)



1.5. ADS-RINDLER RECONSTRUCTION AND PETZ MAP 33

Therefore, (1.148) can be simplified as

AitrĀ
(
|Ω⟩ ⟨Ω|

)
A†
i = Ai ρ

(0)
A A†

i (1.151)

that is an operator has support only on A, while ρ(0)A is a thermal density matrix in the
region A. Nevertheless, the equation (1.150) is somewhat abstract, and indeed finding an
expression for Ai can be difficult.

To find a more convenient basis for the code subspace we can use the Reeh-Schlieder
theorem for relativistic QFT. Consider a QFT in Minkowski spacetime M with a Hilbert
space H and the vacuum state denoted by |Ω⟩ ∈ H. For a small open set U ⊂ M, there
is a bounded algebra of local operators AU supported in U . The Reeh-Schlider theorem
says that every arbitrary state in H can be approximated by AU |Ω⟩ that means states
created by applying elements of the local algebra to the vacuum are not localized to the
region U . In other words, the vacuum is a cyclic and separating vector for the field algebra
corresponding to any open set U in Minkowski spacetime. This is the key point in our
work that causes the manageability of the Petz map calculation.

We can construct the code subspace using the Reeh-Schlieder theorem to the boundary
QFT by acting on the global vacuum with the operator algebra on region A, HGFF =
{L(HA) |Ω⟩}. Since one choice of basis for the operator algebra on A is the set of Rindler
modes Oωλ;A and O†

ωλ;A, one can take a basis for code subspace at large N as

|{jω,λ,∆ω,λ}⟩ =
∏
ω,λ

(Oωλ;A)
jω,λ(O†

ωλ;A)
jω,λ+∆ω,λ |Ω⟩ (1.152)

where j ∈ N and ∆ ∈ Z. 3 As the theory is free, different modes are decoupled and we
can rewrite the code subspace basis as

|{jω,λ,∆ω,λ}⟩ = ⊗ω,λ |jω,λ,∆ω,λ⟩ = ⊗ω,λ(Oωλ;A)jω,λ(O†
ωλ;A)

jω,λ+∆ω,λ |Ωω,λ⟩ (1.153)

In the following, for simplicity we will just focus on a single mode which the corresponding
Hilbert space is span{|j,∆⟩ = (OA)

j(O†
A)

j+∆ |Ω⟩}. In the new basis, instead of (1.148),
we should calculate the terms trĀ |j,∆⟩ ⟨j′,∆′| which one can simply find as

trĀ |j,∆⟩ ⟨j′,∆′| = (OA)
j(O†

A)
j+∆ρ

(0)
A (OA)

j′+∆′
(O†

A)
j′ (1.154)

We should be careful here that although this set of vectors spans the GFF sector of the
boundary, they are not orthonormal as we have

⟨j,∆ |j′,∆′⟩ = δ∆,∆′(1− e−2πω)
∑

n=max{0,−∆}

e−2ωn

 
(n+ j +∆)!

(n+∆)!

 
(n+ j′ +∆′)!

(n+∆′)!

(1.155)
which is proportional to δ∆,∆′ not δj,j′δ∆,∆′ . Nevertheless, we can still use this set of
vectors as a basis for the code subspace by considering the correct form of the projection
on a non-orthonormal basis.

3More precise statement here is that, since the representation of the vacuum state in terms of the Rindle
modes is cyclic and separating with respect to the operator algebra of the Rindler wedge, the vacuum sector
of the Hilbert space is isomorphic to the GNS Hilbert space of the operator algebra of the Rindler wedge
over the vacuum.
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Consider a vector space V = span{|vi⟩}. One can construct the metric tensor for this
basis G = [gij ] that by definition gij = ⟨vi |vj⟩. The inverse metric G−1 = [gij ] is defined
to be the inverse of the matrix G, so the relations∑

j

gijgjk = δik,
∑
j

gijg
jk = δki (1.156)

should satisfy and the projection on the subspace VI = span{|vi⟩ , i ∈ I} is given by

PI =
∑
i,j∈I

gij |vi⟩ ⟨vj | . (1.157)

1.5.3 AdS-Rindler wedge reconstruction via Petz map

Now we have all relations we need to find the Petz reconstruction for the fields in the
AdS-Rindler patch in the bulk. By plugging (1.146) back into (1.136), we arrive to

ΦA(X) =
∑

I∈{A,Ā}

∫
dωdλ Fω,λ;I(X) τ

−1/2
A trĀ(PcodeOωλ,IPcode)τ

−1/2
A

+ F∗
ω,λ;I(X) τ

−1/2
A trĀ(PcodeO

†
ωλ,IPcode)τ

−1/2
A (1.158)

while
Fω,λ;I(X) =

∑
nlm

Mnlm

Mωλ
(Gnlm(X)αInlm;ωλ +G∗

nlm(X)βInlm;ωλ). (1.159)

By comparing the global mode expansion of ΦHKLL(X) with ϕ(X), one can find that
Gnlm(X) = 1

Mnlm
fnlm(X). If we substitute it in (1.159), we can find that

Fω,λ;I(X) =
1

Mωλ

∑
nlm

(fnlm(X)αInlm;ωλ + f∗nlm(X)βInlm;ωλ) (1.160)

As ϕ(X) lies in the AdS-Rindler wedge homologous to the region A, by using the relations
(1.145), we find that Fω,λ;Ā(X) = 0 for all X ∈ EA. Therefore, the Petz reconstruction of
ϕ(X) gets simplified as

ΦA(X) =

∫
dωdλ Fω,λ;A(X) τ

−1/2
A trĀ(PcodeOωλ,APcode)τ

−1/2
A

+ F∗
ω,λ;A(X) τ

−1/2
A trĀ(PcodeO

†
ωλ,APcode)τ

−1/2
A . (1.161)

In our basis the projection to the code subspace is

Pcode =
∑
j,j′

∑
∆,∆′

g(j,∆);(j′,∆′) |j,∆⟩ ⟨j′,∆′| . (1.162)

From the inner product between {|j,∆⟩}, we see that the metric tensor here is block-
diagonal while each block labeled by ∆

G = ⊕∆G∆ = ⊕∆[gj,j′;∆] (1.163)

where gj,j′;∆ = ⟨j,∆ |j′,∆⟩. As a result, the inverse metric should have the form of

G−1 = ⊕∆G
−1
∆ = ⊕∆[A

∆
j,j′ ] (1.164)
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for some unknown elements A∆
j,j′ which should satisfy the relations below∑
j′

A∆
j,j′⟨j′,∆ |j′′,∆⟩ = δj,j′′∑

j′

⟨j,∆ |j′,∆⟩A∆
j′,j′′ = δj,j′′ .

(1.165)

Since g(j,∆);(j′,∆′) = A∆
j,j′δ∆,∆′ , we can write the projection on the code subspace in terms

of A∆
j,j′ as

Pcode =
∑
∆

∑
j,j′

A∆
j,j′ |j,∆⟩ ⟨j′,∆| . (1.166)

Now, we can use the form of the code subspace projection to find the three terms we
need to find the Petz reconstruction of ϕ(X). First, we start with τA which is

τA = trĀPcode =
∑
∆

∑
j,j′

A∆
j,j′trĀ |j,∆⟩ ⟨j′,∆|

=
∑
∆

∑
j,j′

A∆
j,j′(OA)

j(O†
A)

j+∆ρ
(0)
A (OA)

j′+∆′
(O†

A)
j′ . (1.167)

We also need to calculate the terms in the form of

trĀ
(
PcodeOPcode

)
=

∑
∆,∆′

∑
j,j′

∑
k,k′

A∆
j,kA

∆′
k′,j′ ⟨k,∆|O |k′,∆′⟩ trĀ |j,∆⟩ ⟨j′,∆′| , (1.168)

For O that is OA or O†
A, we get

⟨k,∆|OA |k′,∆′⟩ = ⟨k,∆| k′ + 1,∆′ − 1⟩

⟨k,∆|O†
A |k

′,∆′⟩ = ⟨k + 1,∆− 1| k′,∆′⟩.
(1.169)

By using the relations (1.165) and (1.169), one can find that

trĀ
(
PcodeOω,λ;APcode

)
=Oω,λ;AτA

trĀ
(
PcodeO

†
ω,λ;APcode

)
=τAO

†
ω,λ;A.

(1.170)

The operators Oω,λ;A and O†
ω,λ;A have support only on region A and commute with every

operator XĀ. We can show that here, it is equivalent to say that τ−1
A commute with the

trĀ(PcodeOPcode) for O being Oω,λ;A and O†
ω,λ;A. One can conclude that if they commute

with τ−1
A , they commute with τ−1/2

A as well. Therefore, we reach

τ
−1/2
A trĀ

(
PcodeOω,λ;APcode

)
τ
−1/2
A =trĀ

(
PcodeOω,λ;APcode

)
τ−1
A = Oω,λ;A

τ
−1/2
A trĀ

(
PcodeO

†
ω,λ;APcode

)
τ
−1/2
A =τ−1

A trĀ
(
PcodeO

†
ω,λ;APcode

)
= O†

ω,λ;A.
(1.171)

Finally, we find the Petz reconstruction of the bulk field ϕ(X) in the AdS-Rindler wedge
as

ΦA(X) =

∫
dωdλ

(
Fω,λ;A(X) Oωλ,A + F∗

ω,λ;A(X) O†
ωλ,A

)
. (1.172)
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By substituting (1.41) in (1.172), we will arrive at

ΦA(X) =

∫
dτdx KPetz,A(X|τ, x) O(τ, x) (1.173)

where the smearing function is

KPetz,A(X|τ, x) =
∫
dωdλ Fω,λ;A(X)eiωτY ∗

λ (x)

=

∫
dωdλ eiωτY ∗

λ (x)
1

Mω,λ

∑
nlm

(
fnlm(X)αanlm;ωλ + f∗nlm(X)βanlm;ωλ

)
=

∫
dω

2π

dλ

2π

1

Mω,λ
fωλ,A(X)eiωτY ∗

λ (x).

(1.174)

By comparing with (1.44), we see that the result one can find by applying the Petz map
in an AdS-Rindler patch is exactly the same as the result of the HKLL procedure in the
AdS-Rindler coordinate.

1.6 Entanglement wedge reconstruction and Petz map

In the previous chapter, we used the Petz map to find the CFT reconstruction of a bulk
field in the AdS-Rindler wedge. In principle, this approach can be used to reconstruct the
entanglement wedge of any region on the boundary explicitly. Let us consider CFTd in a
semi-classical state |Ψ⟩ which is dual to a smooth asymptotically AdS spacetime M. We
also assume that there is no black hole in the bulk. Consider a Cauchy surface Σ of the
boundary and divide it into an arbitrary region A and its complementary part Ā. In the
rest, we focus on finding the reconstruction of the entanglement wedge of A via the Petz
map.

In the bulk, one can find the global mode expansion of the field ϕ as

ϕ(X) =
∑
n

(
fn(X) an + f∗n(X) a†n

)
(1.175)

where fn(X) is the solution of the Klein-Gordon equation on M and an is the mode
corresponding to it that obeys the usual canonical commutation relations. All the labels
needed to define the modes are shown collectively by n. By applying the HKLL method
to an appropriate coordinate system that covers the entire bulk, labeled here by (r, t, x),
one can find that

ΦHKLL(X) =

∫
bdy

dtdx Kg
∂M(X|t, x)O(t, x) (1.176)

where Kg
∂M(X|t, x) is the global smearing function. As in the AdS-Rindler case, it is con-

venient to go to the Fourier modes where the single trace primaries have a mode expansion
as

O(t, x) =
∑
n

(
g̃n(t, x) Ôn + g̃∗n(t, x) Ô

†
n

)
(1.177)

where
Ôn =

1

Mn

∫
dtdx O(t, x) g∗n(t, x). (1.178)
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If we choose Ôn with standard commutation relation, i.e. identified it with an, from
extrapolate dictionary, we have g̃n(t, x) = limr→∞ r∆fn(r, x), where Mn and gn are defined
as in Sec. 1.1.1. Therefore

ΦHKLL(X) =
∑
n

(
Gn,M(X) Ôn +G∗

n,M(X) Ô†
n

)
(1.179)

while
Gn,M(X) =

∫
bdy

dtdx Kg
∂M(X|t, x)g̃n(t, x). (1.180)

By comparing (1.175) and (1.179), one can find that Gn,M(X) = fn(X).
Let us choose a basis for the operator algebra of the regions A and Ā which we denote

them by {Aν} and {Āν} respectively. In order to find the Petz reconstruction of ϕ(X), we
need to write the mode functions Ôn as a linear combination of {Aν} and {Āν}. If it is in
the form of

Ôn =
∑
ν

αAn,ν Aν + αĀn,ν Āν . (1.181)

The Petz reconstruction of ϕ(X) arrives to

ΦA(X) =
∑
ν

FAν (X)τ
−1/2
A trĀ

(
PcodeAνPcode

)
τ
−1/2
A +F Ā∗ν (X)τ

−1/2
A trĀ

(
PcodeĀνPcode

)
τ
−1/2
A

(1.182)
where

FIν (X) =
∑
n

fn(X) αIn,ν + f∗n(X) αI∗n,−ν (1.183)

for I ∈ {A, Ā}.
For a generic choice of basis, the coefficients behind τ−1/2

A trĀ(PcodeĀνPcode)τ
−1/2
A does

not vanish like the case of AdS-Rindler in the previous chapter. Hence, we also need to
calculate these terms here. Moreover, for a generic case of the basis of the operator algebra,
the sets of {Aν} and {Āν} do not have in general a simple bulk dual, and therefore, we
can not find the Bogoliubov coefficients in (1.181) from the bulk theory.

For now, let us assume that we can somehow find the Bogoliubov coefficients in (1.181).
Then in order to proceed, similar to the AdS-Rindler case, we can use the Reeh-Schlieder
theorem and write the code subspace as

Hcode = L(HA) |Ψ⟩ . (1.184)

In principle, to find the Petz reconstruction in (1.182), it is needed to know the commu-
tation relation between the operator algebras of the regions A, and rewrite the action of
the operator Āν on the state |Ψ⟩ in terms of the operators in region A on the state, i.e.,
finding the operator OA,ν as a function of {Aν} such that

Āν |Ψ⟩ = OA,ν |Ψ⟩ . (1.185)

But practically, whether or not we can explicitly compute all the terms in (1.182) depends
on the basis we take, and for an appropriate choice of it, we will be able to find an explicit
expression for the operator ΦA(X).

In the following, we will describe an appropriate choice of the sets {Aν} and {Āν} that
by using them, the calculation becomes attainable. We will see that there is a clever choice
of basis, the eigenfunctions of the modular Hamiltonian, that the Petz calculation will get
drastically simplified.
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1.6.1 Petz map and modular flow

In this section, we will focus on a special choice of basis for operator algebra in the region
A and Ā that is the eigenfunctions of modular Hamiltonian of the regions.

The modular Hamiltonian of a given region R is defined as KR = − log ρR where ρR
is the reduced density matrix of the region R. KR generates an automorphism for the
operator algebra AR associated to ρR [127] as

A ∈ AR −→ As = eiKRsAe−iKRs ∈ AR. (1.186)

called modular flow. The modular flow originally introduced in the context of the alge-
braic QFT [127–131] which recently played a key role in using the concepts of quantum
information theory in QFT and gravity [132–155].

In modular Fourier space, the Fourier transformation of As is

Aω =

∫ ∞

−∞
ds eisωeiKRsAe−iKRs. (1.187)

The operators Aω are the eigenfunctions of modular Hamiltonian [KR, Aω] = ωAω. They
also form a basis for operator algebra on region R. Therefore, we can take the eigen-
functions of the modular Hamiltonian of the both regions A and Ā as the basis for the
corresponding operator algebras on these regions.

Moreover, as we assume that there is no black hole in the bulk, the entanglement wedge
of the complementary part of A in the boundary is the same region as the complementary
part of the entanglement wedge of the region A and hence, the union of a and ā covers
the entire Cauchy surface. As a result, we can expand both the bulk and boundary global
modes as a linear combination of the modular eigenbasis as

an =
∑
ω

αan,ωA
a
ω + αān,ωA

ā
ω

Ôn =
∑
ω

αAn,ωA
A
ω + αĀn,ωA

Ā
ω .

(1.188)

In such a case, we can use the JLMS statement that relates the modular Hamiltonian of a
given boundary region A to the modular Hamiltonian of its entanglement wedge a as

KA = Ka +
Area

4G
+O(1/N). (1.189)

Since the area term in the right hand side of (1.189) is proportional to the identity, both
KA(Ā) and Ka(ā) have the same spectrum and we can identify their eigenfunctions as

AAω = Aaω ≡ Aω
AĀω = Aāω ≡ Āω.

(1.190)

Therefore as Ôn = an, by comparing (1.188) and (1.190), we see that both Ôn and an

have the same Bogoliubov coefficients αA(Ā)n,ω = α
a(ā)
n,ω . One can replace it into (1.183) and

find that when we take the eigenfunctions of modular Hamiltonian as the basis of operator
algebra of subregions, by definition

F Āω (X) =
∑
n

fn(X)αān,ω + f∗n(X)αā∗n,−ω = 0, ∀X ∈ a. (1.191)
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Therefore, the Petz reconstruction of ϕ(X) in the entanglement wedge of the region A can
be read off as

ΦA(X) =
∑
ω

FAω (X) τ
−1/2
A trĀ

(
PcodeAωPcode

)
τ
−1/2
A =

∑
ω

FAω (X) Aω (1.192)

where Aω is the eigenfunction of KA and FAω (X) is given by

FAω (X) =
∑
n

(
fn(X)αan,ω + f∗n(X)αa∗

)
(1.193)

which by using (1.180), it can be rewritten in terms of the global smearing function as

FAω (X) =

∫
bdy

dtdx Kg
∂M(X|t, x)

∑
n

(
g̃n(t, x)α

A
n,ω + g̃∗n(t, x)α

A∗
n,−ω

)
. (1.194)

At this point to write the operator ΦA more precisely, we should know more about the
Aω themselves. To leading order in AdS/CFT, the bulk field consists of free fields. For
free scalar fields on any region R that all correlators are fixed by the two-point function,
the density matrix is Gaussian and the modular Hamiltonian is bilinear. Its eigenfunctions
can be labeled by ω and XS where the coordinates XS corresponds to a codimension 2
surface S ∈ R on one Cauchy slice [156]. Therefore, we have

[KR,Φω(XS)] = ωΦω(XS) (1.195)

where
Φω(XS) =

∫
ds eisωeiKRsϕ(XS)e

−iKRs ∀XS ∈ S. (1.196)

Now, let us consider the free scalar field in the entanglement wedge of the region A and
the Cauchy surface as the slice of bulk that intersects with A. One clever choice for S can
be A itself. By using (1.189) and the identification on the boundary ϕ0(xA) = O(xA), we
can find the modular eigenfunction of KA as

Oω(xA) =

∫
ds eisωeiKAsO(xA)e

−iKAs ∀xA ∈ A. (1.197)

By substituting it in (1.192), we find the Petz reconstruction of ϕ(X) lies in the entangle-
ment wedge of A as

ΦA(X) =

∫ ∞

−∞
ds

∫
A
dxA KPetz,A(X|xA, s) eiKAsO(xA)e

−iKAs (1.198)

where the smearing function is given by

KPetz,A(X|xA, s) =
∑
n

∫
dω eisω

(
fn(X)αAn (ω, xA) + f∗n(X)αA∗n (−ω, xA)

)
(1.199)

while αAn (ω, xA) is the Bogoliubov coefficient between Ôn and Oω(xA). As we mentioned in
(1.1.3), the equation (1.198) has been conjectured in [16], and also derived in [156] through
acting with the modular flow on the extrapolate dictionary. Here, we could again obtain
it by using the Petz map formula which is a more generic approach.
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As a consistency check, let us calculate (1.199) for the AdS-Rindler wedge. In this
patch, the modular parameter is just the Rindler time τ and the modular Hamiltonian is
the Rindler Hamiltonian Hτ . To find the smearing function in (1.199), we need to find the
Bogoliubov coefficients between Ônlm and Oω(xA) =

∫
dτeiωτO(τ, xA) which is

αAnlm(ω, xA) =

∫
dλ

1

Mω,λ
Y ∗
λ (xA)αnlm;ω,λ ∀ω ≥ 0

αAnlm(ω, xA) =

∫
dλ

1

Mω,λ
Y ∗
λ (xA)β

∗
nlm;ω,λ ∀ω < 0

(1.200)

By plugging it into (1.199), we get

KPetz,A(X|xA, τ)

=
∑
nlm

∫
dωeiωτ

∫
dλ

1

Mω,λ
Y ∗(xA)

(
fnlm(X)αAnlm;ω,λ + f∗nlm(X)βAnlm;ω,λ

)
=

∫
dω

2π

dλ

2π

1

Mω,λ
fωλ,A(X)eiωτY ∗

λ (x)

(1.201)

which is exactly the smearing function that we know from AdS-Rindler wedge reconstruc-
tion.

As illustrated, to reconstruct the operator in the interior of the entanglement wedge,
we need to learn more about the modular Hamiltonian of general regions in QFTs. It
might be simpler to study the modular flow in the bulk theory since we treat with real free
theory which we know that its modular Hamiltonian is bi-local in the fields, rather than
the boundary theory that it contains the GFF.

1.7 Black hole exterior reconstruction and Petz map

In this section, we will discuss the reconstruction of the modes on the two-sided black hole
background. First, we review the HKLL procedure and after that, we will explain how we
can use the Petz map definition in modular theory to reconstruct the modes on the left
exterior from the reconstruction of the modes on the right exterior of the black hole.

1.7.1 Reconstruction of the black hole exterior using HKLL map

At large N we can treat the bulk theory as a quantum field theory on a curved spacetime
background. One can then represent the black hole exterior in terms of the CFT operators
using the HKLL reconstruction procedure [88–91]. It is known that the free scalar field
ϕ in the bulk is dual to the scalar conformal primary of the boundary with conformal
dimension ∆ = d/2 +

√
m2 + d2/4, which is related to the boundary limit of the field ϕ

via extrapolate dictionary as

lim
r→∞

r∆ϕ(t, r,Ω) = O(t,Ω). (1.202)

In case we have a gauge theory in the boundary, these primary operators are usually some
single trace operators.
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Consider scalar conformal primary operator O. The same as for the vacuum, large N
factorization holds for the thermal correlation functions, i.e.

tr
(
ρthO(x1)...O(x2n)

)
=

1

2n

∑
π

tr
(
ρthO(xπ1)O(xπ2)

)
...tr

(
ρthO(xπ2n−1)O(xπ2n)

)
+O(1/N), (1.203)

where π runs over the set of permutations. From (1.77), one can find out that the large N
factorization holds for the typical pure states as well, thus in all cases, each Schwarzschild
mode in the bulk is dual to a GFF on the boundary.

We can expand the boundary GFF in terms of its Fourier modes Oω,m as

O(t,Ω) =
∑
m

∫ ∞

0

dω

2π

(
gω,m(t,Ω)Oω,m + g∗ω,m(t,Ω)O

†
ω,m

)
. (1.204)

The thermal expectation values of the Fourier operators also imply that they behave like the
unnormalized creation and annihilation operators. One can use the extrapolate dictionary
to find the rescaled operators Ôω,m = M−1

ω,mOω,m, which are identified with the bulk
modes aω,m. These CFT operators Ôω,m are the ones thermally populated at the Hawking
temperature of the black hole β−1

1

Zβ
tr(e−βHÔω,mÔ

†
ω′,m′) =

eβω

eβω − 1
δ(ω − ω′)δm,m′

1

Zβ
tr(e−βHÔ†

ω,mÔω′,m′) =
1

eβω − 1
δ(ω − ω′)δm,m′ .

(1.205)

Having the identification between bulk and boundary modes, we can follow the mode sum
approach in [90] and find the CFT expression for every bulk field outside the horizon as

ΦHKLL(t, r,Ω) =

∫
dt′dΩ′ K(t, r,Ω|t′,Ω′)O(t′,Ω′) (1.206)

for an appropriate choice of smearing function K. We can also find the field expression in
terms of Fourier modes by plugging (1.204) into (1.206) as

ΦHKLL(t, r,Ω) =
∑
m

∫ ∞

0

dω

2π

(
Fω,m(t, r,Ω)Oω,m + F∗

ω,m(t, r,Ω)O
†
ω,m

)
(1.207)

where
Fω,m(t, r,Ω) =

∫
dt′dΩ′ K(t, r,Ω|t′,Ω′)gω,m(t

′,Ω′). (1.208)

By comparing with (1.60), we can find that Fω,m(t, r,Ω) =M−1
ω,mfω,m(t, r,Ω).

1.7.2 Coarse-grained vs fine-grained observables

Consider a big AdS black hole in equilibrium. An observable outside the horizon of the
black hole has access just to the information in the exterior of the black hole, referred
to as region I. This bulk observable can not distinguish the microstate of the black hole
and more generally, the fact that it is a one-sided black hole or connected to another
universe through a wormhole. However, in all cases, if we are just interested to the low
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energy observables outside the horizon, we find from (1.63) that it is enough to describe
the system by a thermal density matrix.

On the other hand, having a big black hole in AdS is dual to the thermalization of
the boundary theory. In general, the thermalization of a closed quantum system leads
to the division of the observables of the theory into two parts: the coarse-grained or
macroscopic observables and the fine-grained or microscopic ones, denoted by Ac and Af ,
respectively. The coarse-grained observables are the ones that can be easily measured by
the low-energy observer. More precisely, the thermalization of the system means that if we
are just interested to measure the macroscopic observable, the system can be approximately
described by a thermal density matrix, i.e.

ρ
∣∣
Ac = ρth,c =

1

Zcβ
e−βHc , (1.209)

where Hc is the coarse-grained Hamiltonian and Zcβ is the coarse-grained partition function
[11].

In AdS/CFT where we have the duality between the bulk and boundary theories, the
bulk Hilbert space is isomorphic to the boundary one. In the bulk, we have a fundamental
theory of quantum gravity that in low energy described by a local quantum field theory
on a curved spacetime background. These are usually the macroscopic degrees of freedom
in the bulk while the stringy and trans-Planckian observables are the non-perturbative
microscopic degrees of freedom. When we have a black hole in the bulk, the coarse-grained
observables are just the operators lie outside the horizon while the fine-grained one contains
the degrees of freedom of the black hole interior as well as the non-perturbative ones on
the entire bulk. In the rest, we are interested to study the bulk gravity in the low energy
and we denote the algebra of operator in this regime in the exterior and interior of the
black hole by Aext and Aint, respectively.

As it is mentioned above, for the low-energy observables outside the horizon we can
describe the bulk theory by the thermal density matrix for the bulk effective field theory
lives in the AdS-Schwarzschild coordinates, in other words

ρbulk

∣∣∣
Aext

= ρth,I . (1.210)

1.7.3 Reconstruction of the black hole exterior using the Petz map

As previously described, one can map the local bulk field in the exterior of a black hole
into the non-local CFT operators using the HKLL procedure

ϕ(t, r,Ω) −→ ΦHKLL(t, r,Ω) =

∫
bdy

dt′dΩ′ K(t, r,Ω|t′,Ω′)O(t′,Ω′). (1.211)

In other words, the HKLL map provides us an isometry of embedding VHKLL : Hext →
HCFT which in the Heisenberg picture maps the operators as

ϕ(t, r,Ω) −→ ΦHKLL(t, r,Ω) = VHKLL ϕ(t, r,Ω) V
†
HKLL. (1.212)

It is equivalent to consider the quantum channel which maps the density matrices in the
exterior region to the boundary density matrices E : S(Aext)→ S(ACFT ) as

E(.) = VHKLL (.) V †
HKLL. (1.213)
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However, we should be careful that the low-energy observers can only measure the coarse-
grained operators, for any GFF O(t,Ω), they can measure just

Oc(t,Ω) = PcoarseO(t,Ω)Pcoarse (1.214)

where Pcoarse is the projection onto the coarse-grained Hilbert space which traces out the
fine-grained degrees of freedom. Thus, the actual map we have is

ϕ(t, r,Ω) −→ Pcoarse ΦHKLL(t, r,Ω) Pcoarse

= Pcoarse VHKLL ϕ(t, r,Ω) V
†
HKLL Pcoarse =

∫
bdy

dt′dΩ′ K(t, r,Ω|t′,Ω′)Oc(t
′,Ω′).

(1.215)

The Hilbert space of these coarse-grained GFF has the Fock space structure which is
isomorphic to the Hilbert space of the free fields on the AdS-Schwarzschild background.
Therefore, we can introduce the quantum channel Ec : S(Aext)→ S(Acoarse) as

Ec(.) = VHKLL (.) V †
HKLL

∣∣∣
Acoarse

= Vc (.) V
†
c (1.216)

where Vc = PcoarseVHKLL. Unlike E , the quantum channel Ec is invertible as the evolution
is done via a unitary evolution. In this case, the recovery channel is simply known as

Rc(.) = V †
c (.) Vc = E∗c (.), (1.217)

which one can also find using the Petz recovery channel formula (1.206). Therefore, one
can use the dual of the recovery channel to map the operators in the Heisenberg picture,
R∗
c : Aext → Acoarse

R∗
c(.) = Vc (.) V

†
c = Ec(.). (1.218)

As a result, we have

S(Acoarse)

S(Aext)

S(ACFT )
res

EEc

Acoarse

Aext

R∗
c

R∗
c

(
ϕ(t, r,Ω)

)
=

∫
bdy

dt′dΩ′ K(t, r,Ω|t′,Ω′)Oc(t
′,Ω′) (1.219)

From now on, we drop the subscript c, but we mean by O the coarse-grained GFF. Since
Aext = span{aω,m, a†ω,m}, it is enough to find the action of the recovery map R∗

c on these
set of operators. One can easily use (1.60), (1.207) and reach to

R∗
c(aω,m) = Ôω,m, R∗

c(a
†
ω,m) = Ô†

ω,m. (1.220)
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t = 0

Figure 1.6: The two-sided eternal black hole in holography.

For now, let us consider a two-sided geometry that is dual to the TFD state of the
two identical non-interacting CFTs in the boundary which is given by (1.4), and take the
t = 0 Cauchy slice in the bulk, Fig. 1.6. As we had in Sec. 1.2, the bulk Hilbert space
corresponding to the quantizing the small fluctuations around the black hole geometry is
denoted as H(Fock)

BH and the algebra of low-energy observables on two sides of the black
hole as Al,0 and Ar,0. The bulk Hilbert space can be constructed through the action of the
operator algebra of only the right exterior on the HH state (one can obtain it equivalently
from the algebra of the left exterior), i.e.

H(Fock)
BH = Ar,0 |HH⟩ = Al,0 |HH⟩ . (1.221)

The Hilbert space of the full boundary theory is

H = HCFTL ⊗HCFTR . (1.222)

The bulk states in the Hilbert space H(Fock)
BH are dual to the set of states called code

subspace in the boundary theory corresponding to the excitations around the TFD state.
They can be obtained by acting with the dual single-trace boundary operators on the TFD
state denoted by HTFD. The TFD code subspace spanned by the states a |ΨTFD⟩ with
a ∈ AR,0. The corresponding code subspace has a structure of a Hilbert space that can be
made via GNS construction by using only AR,0 or AL,0 over TFD state (We will discuss it
more precisely later). At largeN limit where the algebras are of Type III1, the TFD Hilbert
space does not have a tensor product structure, in other words, there are no candidates for
HL and HR such that HTFD = HL ⊗HR. The GFFs are then the representations of the
single trace operators on the TFD Hilbert space and thus the algebras AL,0 and AR,0 are
the von Neumann algebras on HTFD. We note that these representations are not exactly
the same as the original operators since they only define on HTFD while the single trace
operators act on the full CFT Hilbert space.

We can follow the discussion above and map the algebra of operators in each region to
the coarse-grained operators on the boundary via two copies of the Petz recovery channel
as

R∗
c,R : Ar,0 −→ AR,0, R∗

c,L : Al,0 −→ AL,0 (1.223)
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such that

R∗
c,R(aω,m) = Ôω,m;R, R∗

c,R(a
†
ω,m) = Ô†

ω,m;R

R∗
c,L(ãω,m) = Ôω,m;L, R∗

c,L(ã
†
ω,m) = Ô†

ω,m;L.
(1.224)

Knowing the boundary reconstruction of the Schwarzschild modes, we can find the bound-
ary representation of the bulk field in every bulk point. Although we can simply map the
operator algebra in region III to the left CFT through R∗

c,L, there is an alternative way
to write this mapping by using the Petz map formula in the GNS Hilbert space (1.109).
This will be helpful later when we are interested to find the CFT representation of the
one-sided black hole interior modes.

As we mentioned, the effective field theory on the eternal black hole background is
described by the HH state, thus

ρbulk

∣∣∣
Ar,0

= ρth,I ρbulk

∣∣∣
Al,0

= ρth,III , (1.225)

and it is cyclic and separating for the operator algebra both in regions I and III. Moreover,
since these two regions are spacelike separated, we have [Al,0,Ar,0] = 0 and so they are
each others commutants

(Al,0)′ = Ar,0. (1.226)

On the other hand, the boundary theory is in the TFD state, therefore each CFT itself
is described by the CFT thermal state and as we mentioned above, its restriction to the
coarse-grained algebra is also a thermal state but this time with respect to the coarse-
grained Hamiltonian. They are also the commutants of each other on the HTFD

(AL,0)′ = AR,0. (1.227)

Therefore, one can use the modular theory expression (1.109) and write the Petz map R∗
c,L

as

R∗
c,L(.) = JTFD ◦ R′

c,R−ρth ◦ JHH (.) = JTFD R′
c,R−ρth (JHH (.) JHH) JTFD (1.228)

while JHH and JCFT are respectively the modular conjugations of the bulk and boundary
theories with respect to the low-energy observables, and, R′

c,R−ρth is defined based on the
relation in (1.108).

AL,0

Al,0

R∗
c,L

AL,0

Al,0

AR,0

Ar,0

R′
c,R−ρth

JHH

JTFD

In the bulk where the theory is described by HH state, the modular conjugation operator
is the anti-unitary CPT operator-more precisely, CRT transformation- which in the AdS-
Schwarzschild coordinates acts as

JHH
(
ϕI(t, r,Ω)

)
= JHH ϕI(t, r,Ω) JHH = ϕIII(−t, r,Ω). (1.229)
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One then can find that
JHH : aω,m ←→ ãω,m. (1.230)

On the boundary side where the theory is described by the TFD state, the modular con-
jugation acts in the TFD Hilbert space as

JTFD : Oω,m;L ←→ Oω,m;R. (1.231)

Therefore, one can simply check that

R∗
c,L(ãω,m) = JTFD ◦ R′

c,R−ρth ◦ JHH(ãω,m) = Ôω,m;L

R∗
c,L(ã

†
ω,m) = JTFD ◦ R′

c,R−ρth ◦ JHH(ã
†
ω,m) = Ô†

ω,m;L.
(1.232)

Before going ahead we note here that after considering the 1/N corrections, the picture
needs some modifications. The algebra of observables on each side of the eternal black
hole is Al and Ar which are of Type II∞. They are dual to the crossed product of AL,0
and AR,0 and their group of modular automorphism. The mapping now is as below. It

AL

Al

R∗
c,L

Ar

AR

R∗
c,R

AL

Al

AR

Ar

R′
c,R−ρth

JHH

JTFD

should be considered that since we are working at 1/N correction, it is better even to use
the approximate version of the recovery channel introduced in Sec. 1.3.6.

1.7.4 Vacuum of the GNS Hilbert space

As we had in the previous section, the Hilbert space of the effective field theory in bulk is
dual to the TFD Hilbert space HTFD. In this section, we will discuss more precisely the
structure of dual code subspace on the boundary.

The boundary theory is the tensor factor of two identical CFTs, H = HCFTL⊗HCFTR .
The algebra of bounded operators on H is

L(H) = L(HCFTL)⊗ L(HCFTR) (1.233)

and the algebra of low-energy observables is a subalgebra of the full algebra

A = AL,0 ⊗AR,0. (1.234)

In order to define the TFD Hilbert space as explained in [99] we should associate a state
|a⟩ to each operator a ∈ A with the inner product among them which is defined as

⟨a |b⟩ = ⟨ΨTFD| a†b |ΨTFD⟩ (1.235)
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for all a, b ∈ A and in particular if both a, b belong to AR,0 or AL,0, it is reduced to

⟨a |b⟩ = tr(ρtha
†b). (1.236)

The set of vectors |a⟩ does not have a Hilbert space structure since there exists non-zero
operators y ̸= 0 in the algebra A such that ⟨y |y⟩ = 0 [99]. In other words, the TFD state
is not separating for the algebra A. It is just cyclic and separating for the full operator
algebra on each CFT. In such a case to construct a Hilbert space from this set of vectors,
we can use the GNS construction to set such a vectors to zero by introducing the set of
equivalence classes. The equivalence relation between them is defined as

a ∼ a+ y a ∈ A, y ∈ Y (1.237)

while Y is the set of operators such that ⟨y |y⟩ = 0. Moreover, since the action of the single
trace operators on both sides on TFD state are related to each other, only the algebra AR,0
or AL,0 is enough to generate the full TFD Hilbert space. In other words, all the vectors
in HTFD can be written as |a⟩ with a ∈ AR,0.

Now let us consider just the algebra of single trace operators AR,0 on the right bound-
ary theory and build the GNS Hilbert space of the algebra with respect to the thermal
density matrix which is denoted as HGNSρth

. In the GNS Hilbert space, the thermal state is
represented by a pure state denoted by |Ω0⟩ which is called the GNS vacuum. It is also
the state in HGNSρth

corresponds to the identity operator of the algebra AR,0. The GNS
construction provides a representation for the algebra AR,0 on HGNSρth

which we denote
here asMR. The representation of any operator a ∈ AR,0 is π(a) ∈MR that acts only on
HGNSρth

and thus, it is state-dependent since it depends on the state that the GNS Hilbert
space is built over that. On the other hand, the original operator acts on the full CFT
Hilbert space and is state-independent. The inner product among the states in the GNS
Hilbert space is written as

⟨a|b⟩ = ⟨Ω0|π(a)†π(b) |Ω0⟩ . (1.238)

Here the algebra consists of the single trace operators of the CFT. Their representations
on the GNS Hilbert space are the GFFs acting only on HGNSρth

and we also have

⟨Ω0|π
(
OR(x1)

)†
π
(
OR(x2)

)
|Ω0⟩ = tr

(
ρthO(x1)

†O(x2)
)
. (1.239)

As we had, the TFD Hilbert space can be obtained using just AR,0 or AL,0 alone over
the TFD state. While the boundary theory is in the TFD state, the CFTR is described by
thermal state and so there should be some relation between the TFD Hilbert space and
the GNS Hilbert space corresponding to the thermal matrix over AR,0. Indeed, it can be
shown that they are isomorphic

HTFD ∼= HGNSρth
. (1.240)

We defined the algebraMR to be the representation of the AR,0 on the GNS Hilbert space.
Therefore, its commutant which we denote asML can be interpreted as the representation
of the AL,0 on HGNSρth

.
The GNS vacuum |Ω0⟩ is cyclic and separating for bothMR andML. Therefore, there

is a modular operator for the algebras which generate automorphisms of them and leaves
|Ω0⟩ invariant. If we denote the modular operator forMR as ∆0, then ∆−1

0 is the modular
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operator for the algebra ML. It can be seen as the representation of the ∆, the modular
operator for AR,0, in the GNS Hilbert space and in particular, it should satisfy

π
(
∆−iua ∆iu

)
= ∆−iu

0 π(a) ∆iu
0 (1.241)

for all a ∈ AR,0.
Now consider bulk field ϕ which is dual to the boundary operator O in the AdS/CFT

dictionary. To be more precise from the algebraic point of view, we should say that the
bulk field restricted in the regions I and III are dual to the representations of the OR
and OL in the GNS Hilbert space that here they are nothing but GFFs. The extrapolate
dictionary (1.202) should also be written more carefully as

π
(
OR(t,Ω)

)
= lim

r→∞
r∆ ϕR(t, r,Ω)

π
(
OL(t,Ω)

)
= lim

r→∞
r∆ ϕL(t, r,Ω).

(1.242)

Under the duality, at strict large N limit we reach to the identifications:

HGNSρth
= H(Fock)

BH , |Ω0⟩ = |HH⟩ , MR = Ar,0, ML = Al,0. (1.243)

Moreover, the state-dependence of the GNS representations of the boundary dual operators
is indeed a reflection of the fact that when we treat with the gravity at weak coupling in
bulk, its mode expansion that identifies the bulk operator algebra for us depends on the
bulk semi-classical geometry.

In order to create a GNS Hilbert space to describe the code subspace in the boundary,
one can alternatively start with another cyclic and separating vector |Ω⟩ for the algebra
MR as the vacuum. Therefore, by duality, we have

|Ω⟩ = |HH⟩ . (1.244)

In general, the new vacuum can be related to |Ω0⟩ by a unitary as

|Ω⟩ = U |Ω0⟩ . (1.245)

In particular, the simple cases are in the form of

|Ω⟩ = vLwR |Ω0⟩ (1.246)

while vL ∈ML and wR ∈MR. The vacuum |Ω0⟩ chose to be related to building the GNS
Hilbert space around the TFD state of the boundary theory. Then the GNS vacuum |Ω⟩
interpretation depends on whether it belongs to HGNSΩ0

or not. If it does so, i.e.

HGNSΩ = HGNSΩ0
(1.247)

the new GNS vacuum corresponds to having some small excitations around the eternal
black hole background and the unitaries wR and vL are related to the excitations which lie
just in region I and III respectively. On the other hand, if the state |Ω⟩ does not lie in the
GNS Hilbert space, bulk geometry is no longer described by the eternal black hole. The
new vacuum can be related to excitations due to the unitary that changes the energy of the
system by an amount that scales with N and thus its backreaction changes the geometry
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of the spacetime. Another possible example could be the time-shifted TFD state, defined
as

|ΨT ⟩ = ei(HL+HR)T/2 |ΨTFD⟩ = eiHLT |ΨTFD⟩ = eiHRT |ΨTFD⟩ (1.248)

or more generally evolving the TFD state with some other global charges. They correspond
to large diffeomorphisms in the bulk which for some large value of T , it changes the bulk
geometry (for more detail see [14]).

More generally we can extend the discussion in Sec. 1.7.1 and write the mapping from
the bulk algebra of observables to the representation of the corresponding algebra on the
boundary as

R∗
c,R : Ar,0 −→MR, R∗

c,L : Al,0 −→ML (1.249)

while again to map the operators lies in the region III to the left CFT, we can use the

ML

Al,0

MR

Ar,0

R′
c,R−Ω

JHH

JGNS,Ω

Petz map definition in the modular theory

R∗
c,L( . ) = JGNS,Ω ◦ R′

c,R−Ω ◦ JHH( . ) (1.250)

where the bulk mode maps as

ãω,m −→ JGNS,Ω ◦ R′
c,R−Ω ◦ JHH(ãω,m) = π

(
Ôω,m;L

)
ã†ω,m −→ JGNS,Ω ◦ R′

c,R−Ω ◦ JHH(ã†ω,m) = π
(
Ô†
ω,m;L

) (1.251)

and π provides the representation of the single trace operators in HGNSΩ .
Let us consider two vacua, |Ω⟩ and |Ω0⟩, lie in the same GNS Hilbert space. In such

a case since the Petz reconstruction of the modes act on the same Hilbert space, it is
interesting to compare them and find the relation between them. Take the Petz map
corresponding to two different GNS Hilbert space as R∗

Ω and R∗
Ω0

. From (1.134), we get

⟨ã1|∆1/2
bulk|ã2⟩ =⟨R

∗
Ω0
(ã1)|∆1/2

0 |R
∗
Ω0
(ã2)⟩Ω0

⟨ã1|∆1/2
bulk|ã2⟩ =⟨R

∗
Ω(ã1)|∆1/2|R∗

Ω(ã2)⟩Ω.
(1.252)

Since the two are in the same GNS Hilbert space, their dual bulk geometry is the same
and the left-hand sides of the equalities (1.252) coincide. By comparing the left-hand sides

⟨Ω0|R∗
Ω0
(ã†1)∆

1/2
0 R

∗
Ω0
(ã2)|Ω0⟩ = ⟨Ω|R∗

Ω(ã
†
1)∆

1/2R∗
Ω(ã2)|Ω⟩ (1.253)

and using (1.245), one reach to

R∗
Ω(ãω) = U R∗

Ω0
(ãω) U

†. (1.254)
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Consider that we have the eternal black hole in the bulk and the vacuums |Ω0⟩ and |Ω⟩
respectively correspond to the eternal black hole in equilibrium and have some excitations
on the eternal black hole background created by U . Then, we get

R∗
Ω(ã

†
ω,m) = π

(
Ôω,m;L

)
R∗

Ω0
(ã†ω,m) = π0

(
Ôω,m;L

)
(1.255)

where π0 and π are representations of the single trace operators on the GNS Hilbert spaces.
From (1.254), we reach to

π
(
Ôω,m;L

)
= U π0

(
Ôω,m;L

)
U †. (1.256)

1.8 Interior Petz reconstruction and Papadodimas-Raju pro-
posal

The idea of reconstructing the bulk modes in the left exterior via the Petz map (1.250)
is helpful even in the cases in which we have a one-sided black hole in the bulk. In this
section, we attempt to construct the interior modes of a typical black hole microstate and
we will see that we arrive to the same result as the Papadodimas-Raju proposal.

1.8.1 Papadodimas-Raju proposal

Consider a big one-sided black hole in AdS. In this case, only the bulk modes outside
the horizon can be described in the boundary theory using the HKLL procedure, while
describing the interior modes is much more challenging. For this purpose, a remarkable
proposal has been introduced by Papadodimas and Raju in a series of papers [11–14] to
find a CFT description of the black hole interior when the system is in a pure state. Here
we first shortly review the PR proposal. The main idea of the PR proposal is to focus on
a code subspace of the CFT theory, which is created by acting with a small algebra on the
corresponding pure state and then find the CFT description of the interior operator in a
state-dependent manner just in the chosen code subspace.

If the CFT pure state describes the stable black hole in AdS, it should be close to the
thermal state. More precisely, we consider a typical pure state in the high-temperature
phase of the gauge theory denoted by |Ψ0⟩ (see Sec. 1.2.4). The small algebra A corre-
sponds to simple experiments in the effective field theory in the bulk, i.e. the observables
outside the horizon of the black hole. At large N limit, A can be thought of as the set of
products of simple trace operators of low conformal dimensions up to K number of these
operators

A = span {Oω1 , Oω1Oω2 , ..., Oω1Oω2 ...OωK} (1.257)

such that Oωi are the Fourier modes of the single trace operators and
∑

i ωi ≪ N , while
N is the CFT’s central charge. Therefore, we do not have too many insertions and so
K ≪ N . Taking A as the linear span of the products of the operators is equivalent to
considering it as the set of all polynomials in the modes of the operators

Aα =
∑
I

α(I)(Oωi)
I(ωi) (1.258)

where α(I) are arbitrary coefficients and the sum runs over all functions I. This set of
polynomials forms a linear space. The size of the set all such polynomials scales like NK
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and limit the dimension of this space K should satisfy the constraint

dim(A) = NK ≪ eN . (1.259)

Given a typical black hole microstate |Ψ0⟩, one can define the code subspace, also called
the small Hilbert space as

Hψ0 = span {A |Ψ0⟩}. (1.260)

A typical pure state for the observables in O ∈ A can be approximated by the thermal
state, i.e.

⟨Ψ0|O†O |Ψ0⟩ =
1

Z
tr(e−βHO†O) +O(1/N ). (1.261)

To describe interior modes in the dual CFT theory, the PR proposal requires doubling
the set of operators Õω corresponding to the operator in the small algebra which they
call mirror operator. These mirror operators commute with the original operators and
moreover, they should be entangled with them in the pure state |Ψ0⟩ in an appropriate
way to ensure they have the right properties in a given state of the CFT. More concretely,
the mirror operators defined as

Õω |Ψ0⟩ = e−βω/2O†
ω |Ψ0⟩

Õω Oω1 ...Oωn |Ψ0⟩ = Oω1 ...Oωn Õω |Ψ0⟩
(1.262)

Thus, demanding that the mirror operator has the correct behavior within low-point cor-
relators in a given pure state leads to the set of linear equations for the mirror operators.
As far as we do not have too many operator insertions, this set of operators can be solved
in the full Hilbert space of the CFT.

1.8.2 Black hole interior reconstruction using Petz map

As we had in Sec. 1.7.4, we can start with just one black hole exterior. Having only access
to the black hole exterior is equivalent to doing simple experiments on the boundary
theory. In other words, the algebra of low-energy operators which we denote here as Aex
is identified with the algebra of coarse-grained operators of the CFT, denoted by Ac (see
Sec. 1.7.2)

Aex = Ac. (1.263)

From (1.209) and (1.210), we know that for the black hole in equilibrium both ρbulk
∣∣
Aex

and ρCFT
∣∣
Ac are thermal and under the duality, we can identify them.

One can follow the discussion in appendix A and build the GNS Hilbert spaces corre-
sponding to these thermal states in the bulk and boundary over the algebras Aex and Ac,
we denote them as HGNSex and HGNSc respectively. We take the vectors

|Ωex⟩ ∈ HGNSex |Ωc⟩ ∈ HGNSc (1.264)

as the cyclic vectors corresponding to ρbulk
∣∣
Aex and ρCFT

∣∣
Ac which satisfy (1.204). Then,

we have

HGNSex = span{Aex |Ωex⟩}
HGNSc = span{Ac |Ωc⟩}.

(1.265)
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The same as in Sec. 1.7.4, we will refer to the cyclic vectors in (1.264) as the GNS vacuums
of the GNS Hilbert spaces (1.265). We also identify the algebras with their representations
on the GNS Hilbert spaces.

By accessing to the information outside the black hole, the observable can not distin-
guish between all possible geometries of the entire bulk. The bulk can be described as an
eternal two-sided black hole or a one-sided black hole. If we know that in the bulk we have
an eternal black hole that is dual to the TFD state on the boundary, we will reach exactly
the setup that we discussed in Sec. 1.7.4. In this case, we have

|Ωex⟩ = |HH⟩ , |Ωc⟩ = |Ω0⟩ , HGNSex = H(Fock)
ρth

, HGNSc = HTFD
(1.266)

and

Aex = Ar,0, (Aex)′ = Al,0, Ac =MR, (Ac)′ =ML. (1.267)

There is another possibility that we have a black hole microstate in equilibrium. The CFT
dual of such a geometry is a typical state defined in (1.76). We assume that the geometry
corresponds to a typical state in the bulk has a smooth horizon and contains an interior
region. Here, there does not exist a second copy of the CFT as the left system and entire
bulk is dual to just one CFT.

Consider a Cauchy slice Σ in the bulk. We can divide it as Σ = Σex ∪ Σin. Aex is the
operator algebra of observable on Σex and the same we can denote the algebra of operators
on Σin as Ain. Since the two regions are spacelike separated, they commute with each
other, and as they cover the entire Cauchy slice

(Aex)′ = Ain. (1.268)

Therefore, the commutant of the algebra Aex in the GNS Hilbert space HGNSex can be
interpreted as the representation of the Ain in the GNS Hilbert space. We identify them
and denote the representation of the operator algebra inside the black hole in the GNS
Hilbert space as Ain too. We can build Ain in the GNS Hilbert space by conjugationg
with the modular conjugation as

Ain = Jbulk Aex Jbulk. (1.269)

Hence, to each element of the algebra we associate an operator in the commutant as

aω ∈ Aex −→ ãω ∈ Ain (1.270)

where corresponds to the modes in the black hole interior.
On the other hand on the boundary, the degree of freedoms inside the black hole are

encoded in the fine-grained observables of the CFT. In other words, the image of Ain on
the boundary, which we denote as Ain−bdy is a subalgebra of fine-graind algebra of the
CFT

Ain−bdy ⊂ Af ⊂ L(HCFT ). (1.271)

Since Ain is the commutant of Aex, under the duality it should map to the commutant
of Ac on the HGNSc . Therefore, we can identify the commutant of the algebra Ac on the
HGNSc with the representation of the Ain−bdy on the GNS Hilbert space

(Ac)′ = Jbdy Ac Jbdy = Ain−bdy (1.272)
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where Jbdy is the modular conjugation for the vacuum |Ωc⟩ corresponding to the algebra
Ac. We also note that if the black hole is in the microstate |Ψ0⟩, the GNS Hilbert space
HGNSc is isomorphic to the GNS Hilbert space obtained by acting the elements of Ac on
the state |Ψ0⟩.

Following the discussion in Sec. 1.7.3, we can map the algebra of the operator outside
the horizon Aext to the coarse-grained algebra Acg of the boundary theory through the
Petz map in (1.217) while the Schwarzschild modes mapped as (1.220). But here instead
we do not know the isometry that map the interior modes to the boundary theory unlike
in the case of the eternal black holes where the left exterior can also be mapped to the left
CFT via the second copy of the HKLL map. Moreover, we do not even know any global
mapping like the global HKLL map in the pure AdS spacetime that maps the entire bulk
to the entire boundary for us to use the same logic as the one has been done to find the
Petz map in order to reconstruct the entanglement wedge of a given boundary region.

The discussion we had in the previos section suggest the idea that we can use the
definition of the Petz map in modular theory and map the interior modes to the boundary
via (1.250). In addition to that from the bulk perspective for a black hole in a typical
microstates the geometry locally is the same as eternal black holes, and even for the late
time bulk correlation functions betweem the operators inside and outside the horizon of
the collapsing star geometry, it is known that they can be approximated very well by the
correlators of the operators in regions I and II of an eternal black hole [11]. Thus indeed
here the interior modes play the role of the modes coming from the left side on the eternal
geometry. But the important difference is that the commutant of the image of the operator
algebra in the region I is no longer in the second CFT but rather it represents a subalgebra
of fine-grained operators in the original CFT.

As a consequence of all the discussions above, we introduce the Petz map that encodes
the interior modes of a black hole microstate in the dual CFT R∗

c,in : Ain → Ain−bdr as

R∗
c,in(.) = Jbdy ◦ R′

c,Ω ◦ Jbulk(.) (1.273)

which leads to

ãω,m −→ R∗
c,in(ãω,m) = Jbdy Ôω,m;c Jbdy ≡ Õω,m ∈ L(HGNSc )

ã†ω,m −→ R∗
c,in(ã

†
ω,m) = Jbdy Ô

†
ω,m;c Jbdy ≡ Õ†

ω,m ∈ L(HGNSc ).
(1.274)

Ain−bdy

Ain

Ac

Aex

R′
c−Ω

Jbulk

Jbdy

We can also find the dual operator through its insertion between the vectors in the
GNS Hilbert space. From (??), it is clear that every vector |a⟩ ∈ HGNSc can be obtained
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by the action of an element of the algebra a ∈ Ac on the GNS vacuum

|a⟩ ≡ π(a) |Ωc⟩ (1.275)

where π(a) is the representation of a in the GNS Hilbert space. Then, we have

⟨a| Õω,m |b⟩ = ⟨Ωc|π(a)† Õω,m π(b) |Ωc⟩ = ⟨Ωc|π(a)† π(b) Õω,m |Ωc⟩
⟨a| Õ†

ω,m |b⟩ = ⟨Ωc|π(a)† Õ†
ω,m π(b) |Ωc⟩ = ⟨Ωc|π(a)† π(b) Õ†

ω,m |Ωc⟩ .
(1.276)

To go ahead, we remind that when the black hole is in equilibrium from (??) we have

|Ωc⟩
∣∣∣
Ac

= ρth,c =
1

Zcβ
e−βHc , (1.277)

One can obtain that for every a ∈ Acg

Jbdy a Jbdy |Ωcg⟩ = ρ
1/2
th,c a

† ρ
−1/2
th,c |Ωc⟩ = e−βHc/2 a† eβHc/2 |Ωc⟩ . (1.278)

Considering (1.277) roughly speaking, we can also interpret the vacuum |Ωc⟩ as a TFD
state with respect to Hc in the GNS Hilbert space as

|Ωc⟩ =
∑
i

e−βEi/2 |Ei⟩c |Ei⟩f (1.279)

where Eis are the energy eigenvalues of the coarse-grained Hamiltonian. As it is mentioned,
the coarse-grained observables are the GFFs around the thermal state of the CFT. Thus,
the coarse-grained Hamiltonian should be in the form of

Hc =
∑
ω,m

ω O†
ω,m;cOω,m;c (1.280)

where the operators Oω,m;c, the projection of the Fourier modes of the single trace operators
onto the coarse-grained part of the system, can be identified with the representation of the
single trace operators in the GNS Hilbert space HGNSc . They satisfy

[Hc, Oω,m;c] = −ω Oω,m;c [Hc, O
†
ω,m;c] = ω O†

ω,m;c (1.281)

and therefore, one can obtain that

e−βHc/2 Oω,m;c e
βHc/2 = eβω/2 Oω,m;c

e−βHc/2 O†
ω,m;c e

βHc/2 = e−βω/2 O†
ω,m;c.

(1.282)

In the end, using the definition of the operator Õω,m (1.274) and the relations (1.282), we
reach to

⟨a| Õω,m |b⟩ = e−βω/2 ⟨Ωc|π(a)† π(b) O†
ω,m;c |Ωc⟩ = e−βω/2 tr(ρth,c a

†b O†
ω,m) +O(1/N )

⟨a| Õ†
ω,m |b⟩ = eβω/2 ⟨Ωc|π(a)† π(b) Oω,m;c |Ωc⟩ = eβω/2 tr(ρth,c a

†b Oω,m) +O(1/N ).

(1.283)

Moreover, we also obtain

Õω,m |Ωc⟩ = e−βω/2 O†
ω,m;c |Ωc⟩

Õω,m Oω1,m1;c ... Oωn,mn;c |Ωc⟩ = Oω1,m1;c ... Oωn,mn;c Õω,m |Ωc⟩
(1.284)
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which is equivalent to the operators result in the PR proposal but it is obtained in a more
concrete way. The black hole microstate is replaced by the GNS vacuum state |Ωc⟩ and
considering the code subspace in the PR proposal is equivalent to work in the GNS Hilbert
space.

The GNS Hilbert space HGNSc can be also constructed through the action of Ac on
other cyclic and separating vectors |Ω′

c⟩ belong to HGNSc . They can be related to |Ωc⟩ via
a unitary operator u ∈ L(HGNSc ) as

|Ω′
c⟩ = U |Ωc⟩ (1.285)

and the vectors in the GNS Hilbert space can be identified as

HGNSc = span
{
|a′⟩ ≡ π(a)|Ω′

c⟩ | ∀a ∈ Ac
}
. (1.286)

If we denote the representation of the operator dual to the interior mode ãω,m in the
GNS Hilbert space is built over the vector |Ω′

c⟩ by Õ′
ω,m, from (??) we reach to

Õ′
ω,m = U Õω,m U † (1.287)

while Õω,m is the representation of the dual operator we defined in the GNS Hilbert space
over the thermal state (1.274). In particular, for the matrix elements of the operator we
find that

⟨a′| Õ′
ω,m |b′⟩ = ⟨Ω′

c|π(a)† Õ′
ω,m π(b) |Ω′

c⟩
= ⟨Ωc|U †π(a)†U Õω,m U †π(b)U |Ωc⟩ .

(1.288)

and to be compatible with PR proposal, we can also find that

Õ′
ω,m |Ω′

c⟩ = U Õω,m |Ωc⟩

= U ρ
1/2
th,c O

†
ω,m;c ρ

−1/2
th,c U

† |Ω′
c⟩

= U e−βω/2 O†
ω,m;c U

† |Ω′
c⟩ .

(1.289)

The vectors in (??) correspond to an equilibrium black hole background which is excited
by some sources. It can be provided by turning on a source for some CFT operators. The
unitary operator in (??) is indeed the representation of composite operator which creates
that excitation. The simplest cases for the unitary operator U that result in a cyclic and
separating vector |Ω′

c⟩ correspond to the local unitaries as

Vc ∈ Ac (1.290)

related to the excitation only on the region I, or

Wf ∈ A′
c = Ain−bdy. (1.291)

correspond to the excitation behind the black hole horizon. If we have the unitaries as in
(1.290), we get

⟨a′| Õ′
ω,m |b′⟩ = ⟨ V †

c a Vc| Õω,m |V †
c b Vc ⟩ (1.292)

since V †
c a Vc ∈ Ac, and in the case that we have some excitation inside the black hole, i.e.

act with some unitary in the form of (1.291), we get

⟨a′| Õ′
ω,m |b′⟩ = ⟨a| Õω,m |b⟩ (1.293)

as Wf and W †
f commute with every a, b ∈ Ac. As a result, as it is expected we see that

if we access only on the coarse-grained observables, we can not detect what happening
behind the black hole horizon.
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Chapter 2

Localization of Information in
Quantum Gravity

: Within the AdS/CFT correspondence, we identify a class of CFT operators which repre-
sent diff-invariant and approximately local observables in the gravitational dual. Provided
that the bulk state breaks all asymptotic symmetries, we show that these operators com-
mute to all orders in 1/N with asymptotic charges, thus resolving an apparent tension
between locality in perturbative quantum gravity and the gravitational Gauss law. The
interpretation of these observables is that they are not gravitationally dressed with respect
to the boundary, but instead to features of the state. We also provide evidence that there
are bulk observables whose commutator vanishes to all orders in 1/N with the entire al-
gebra of single-trace operators defined in a space-like separated time-band. This implies
that in a large N holographic CFT, the algebra generated by single-trace operators in a
short-enough timeband has a non-trivial commutant when acting on states which break
the symmetries. It also implies that information deep in the interior of the bulk is invis-
ible to single-trace correlators in the time-band and hence that it is possible to localize
information in perturbative quantum gravity

2.1 Aspects of locality in field theory and gravity

In this section, mostly addressed to non-experts, we review some background necessary to
explore the question of localizing information in different regions of space. A closely related
question is the association of algebras of observables to subregions and the factorization of
the Hilbert space. We start with non-gravitational field theories, where a non-dynamical
background space-time can be used in order to define sub-regions and their causal relations,
and then we consider the additional complications when gravity is taken into account.

In relativistic theories we expect that signals and information cannot travel faster than
light. We then want to address the following question: consider an initial space-like slice
Σ and divide it into a compact subregion D and its complement D′. We denote by J(D′)
the domain of dependence of D′. The question is the following: is it possible to modify
the state1 in region D without affecting the state in J(D′). If the answer is positive then
an observer initially in D′, and confined to move in J(D′), cannot reconstruct information
about the interior of D. Then we say that information can be localized.

1Either classical state, or quantum density matrix.
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2.1.1 Classical field theories

At the classical level this question can be addressed by studying the initial value problem:
we specify initial data C on a spacelike slice Σ and then look for a solution in the entire
space-time, or at least a neighborhood of the slice Σ, compatible with the initial data. The
initial data will typically include the values and time-derivatives of various fields of the
theory. The theories we will be considering have gauge invariance. One of the implications
is that the existence of a solution is guaranteed only if the initial data satisfy certain
constraints. In relativistic field theories theories the dynamical equations are hyperbolic,
which ensures that signals propagate forward from Σ at most at the speed of light. On
the other hand the constraint equations for initial data are of elliptic nature. This makes
the question of being able to specify the initial data independently in region D and its
complement D′ non-trivial. It is thus convenient to divide the question formulated above
in two steps:

• A. Localized preparation of states: for given initial data C1 on Σ satisfying the
constraints, to what extent can we deform to other initial data C2, also satisfying the
constraints, such that C1, C2 agree on D′, possibly up to a gauge transformation, but
differ essentially2 on D?

B. No super-luminal propagation: suppose we are given two initial data C1, C2
which satisfy the constraints, which agree on D′ and differ on D. We then want to
show that the two corresponding solutions agree on J(D′), possibly up to a gauge
transformation.

We will return to the classical problem in theories with gauge invariance in the following
subsections. For now we briefly consider the simplest example of a free Klein-Gordon field
in flat space obeying □ϕ = m2ϕ. We consider initial data on the slice Σ corresponding to
t = 0. The initial data on this slice are parametrized by C = {ϕ(t = 0, x), ∂0ϕ(t = 0, x)}.
In this case condition A mentioned earlier is clearly satisfied: the initial data do not need
to obey any constraint, so we can simply select the functions ϕ, ∂0ϕ to have any smooth
profile with features strictly localized inD. Notice that this requires the use of non-analytic
initial data. Condition B is also satisfied, see [157] for a basic review.3

2.1.2 Localization of information in QFT

In non-gravitational QFT we can associate algebras of observables to space-time regions
[21–23]. Locality is exact, and is expressed by the condition that algebras corresponding
to space-like separated regions commute. An analogue of the initial value problem in QFT
is expressed by the condition of primitive causality or relatedly the time-slice axiom which
postulates that the only operators commuting with the algebra generated by operators
in a time-band are proportional to the identity. Moreover a local version of these state-
ments postulates that the algebra of operators in a subregion coincides with the algebra of
operators in the causal domain of dependence of the subregion [158].

An intuitive way to see that that information can be localized in QFT is as follows:
suppose |Ψ0⟩ is a state in the Hilbert space of the QFT. Consider a unitary operator UD

2i.e. cannot be matched by a gauge transformation on D.
3In the case of non-relativistic theories, for example the heat equation, which is first order in time and

hence not hyperbolic, we are able to specify the initial data in subregions independently but the speed of
propagation is unbounded. Hence the heat equation obeys condition A but not B.
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constructed out of observables localized in D and the new state |Ψ⟩ = UD|Ψ0⟩. The unitary
UD modifies the state by creating an excitation in region D which encodes the desired
information in that region. For any observation OD′ in region D′, and more generally in
J(D′), we have

⟨Ψ|OD′ |Ψ⟩ = ⟨Ψ0|U †
DOD′UD|Ψ0⟩ = ⟨Ψ0|OD′ |Ψ0⟩ , (2.1)

where we used [UD,OD′ ] = 0. Hence states |Ψ⟩, |Ψ0⟩ are indistinguishable by measurements
in J(D′) and the excitation created by UD in D is invisible in J(D′).

Comments on the split property

More generally we would like to know whether it is possible to independently specify the
quantum state in space-like separated regions. The question is non-trivial since in most
quantum states these regions will be entangled. It is believed that, as long as the regions in
question are separated by a finite buffer region, then the answer should be positive. This
is related to the split property of quantum field theory[23, 25, 159, 160].

The split property can be defined as follows: consider the causal diamond whose base
is a ball D1 and the corresponding operator algebra AD1 . Consider a slightly larger ball
D2, containing D1, with corresponding operator algebra AD2 in its causal diamond. The
split property is satisfied if we can find a type I von Neumann algebra of operators N such
that AD1 ⊂ N ⊂ AD2 . It has been shown that quantum field theories with a reasonable
thermodynamic behavior, as expressed in terms of nuclearity conditions (see [23] for an
introduction), satisfy the split property. Using the algebraN we can have strict localization
of quantum information which is completely inaccessible from J(D′

2).
Equivalently, the split property can be defined by the existence of a state |ϕ⟩ which is

cyclic and separating for the algebra AD1∪D′
2

and such that

⟨ϕ|a b|ϕ⟩ = ⟨0|a|0⟩⟨0|b|0⟩ ∀ a ∈ AD1 , b ∈ AD′
2
, (2.2)

where |0⟩ is the Minkowski vacuum and D′
2 denotes the complement of D2. In the state

|ϕ⟩, the mutual information between regions D1 and D′
2 is vanishing. Such a state is not

uniquely defined, since for any unitary U ∈ A(D′
1∩D2) a state of the form U |ϕ⟩ will also

satisfy (2.2).
Starting with a split state |ϕ⟩ we can construct more general states by exciting the two

regions D1 and D′
2 acting with localized operators in the corresponding algebras. Since

there is no entanglement between D1 and D′
2 in the split state |ϕ⟩ the two algebras act

independently and we can arbitrarily approximate an excited state in D1 and another state
in D′

2.
An interesting question is to estimate the energy of a split state4. We do not expect

a split state to be an energy eigenstate, so in general it will have non-vanishing energy
variance. Here we provide some very heuristic arguments about the expectation value
of the energy. As a starting point, let us consider a CFT on R1,d−1 with coordinates
x0, x1, ..., xd−1. We define two regions to be the causal domains of two slightly displaced
Rindler wedges with bases x0 = 0, x1 < −ϵ and x0 = 0, x1 > ϵ respectively. The two
wedges are separated by the buffer region −ϵ < x1 < ϵ. In this case the total energy of
the split state will be infinite due to the infinite planar extension of the regions in the

4Since the split state is not unique, a reasonable question might be finding the lowest possible expecta-
tion value for the energy of a split state.
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transverse directions. However, we expect to have a finite energy per unit area E . Since
we are dealing with a CFT then the only scale in the problem is the size ϵ of the buffer
region. Hence by dimensional analysis the energy per unit area will scale like E = s

ϵd−1

where s is a constant depending on the CFT. If we now consider a more general compact
region D1 of typical size R, which is separated by a small buffer region of typical size ϵ
from D′

2 then we would expect that a split state with respect to D1, D
′
2 will have energy

which in the ϵ→ 0 limit will scale like

E = s
A(∂D1)

ϵd−1
+O(

ϵ

R
) , (2.3)

where A(∂D1) is the area of the boundary of D1. This is a heuristic estimate and it would
be interesting to investigate it more carefully.

As mentioned above, this is the expectation value of the energy and it would be inter-
esting to understand the spectral decomposition of a split state in the energy basis. Notice
that a split state does not respect the Reeh-Schlieder property with respect to the algebra
AD1

5. This implies in particular that the split state should have non-compact support
in energy, since otherwise the Reeh-Schlieder property would have to hold for D1, see for
example [161].

Subtleties with gauge invariance

Consider U(1) gauge theory minimally coupled to a charged scalar with Lagrangian L =
−1

4FµνF
µν − (Dµϕ)

∗Dµϕ , Dµϕ = ∂µϕ − igAµϕ. The system has U(1) gauge invariance
Aµ → Aµ + ∂µΛ, ϕ→ eigΛϕ. The dynamical equations are

∂νFµν = ig(ϕ∂µϕ
∗ − ϕ∗∂µϕ)− 2g2Aµϕ

∗ϕ

□ϕ = ig(∂µA
µ)ϕ+ 2igAµ∂µϕ+ g2AµA

µϕ .
(2.4)

In this case the initial data are C = {Aµ(t = 0, x), ∂0Aµ(t = 0, x), ϕ(t = 0, x), ∂0ϕ(t =
0, x)}. Here we encounter the subtleties mentioned for gauge systems: initial data related
by a gauge transformation are physically equivalent and initial data are admissible (i.e. lead
to a solution) only if the obey a constraint, the Gauss law, which is the µ = 0 component
of the first equation in (2.4)

∂i(∂0Ai − ∂iA0) = ig(ϕ∂0ϕ
∗ − ϕ∗∂0ϕ)− 2g2A0ϕ

∗ϕ . (2.5)

We now revisit the two properties mentioned in subsection 2.1.1. The fact that the dynam-
ical part of (2.4) obey condition B follows from general properties of hyperbolic equations
of this type. Let us now examine question A in this theory. From (2.5) we see that if we
try to deform the initial data in region D, then we may be forced to change them in D′

too. For example if we turn on a profile for the scalar in region D with total non-zero
charge, then the gauge field has to be turned on in region D′. The Gauss law constraint
(2.5) is of the familiar form ∇ · E⃗ = ρ. This imposes the constraint that

∮
∂D E⃗ · dS⃗ = QD.

However it is clear that once we make sure that the initial data in D′ are compatible
with the Gauss constraint from the total charge QD enclosed in D, there are many ways of
rearranging the initial data in region D keeping those in D′ fixed. In other words there are

5Since there is no entanglement between D1 and D′
2 we cannot create excitations in region D′

2 by acting
with operators in D1.
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deformations of the constraint equation (2.5), which are not gauge-equivalent, and which
have compact support localized in D. This means that theory under consideration obeys
condition A.

Moving on to the quantum theory, we can consider U(1) gauge theory weakly coupled to
matter. As in the classical theory the total charge Q enclosed in a region can be measured
on its boundary and the total charge of the entire state can be measured at space-like
infinity. At the quantum level, we can get information not only about the expectation
value of the charge but all the higher moments

⟨Ψ|Qn|Ψ⟩ , n = 1, 2, .... (2.6)

To proceed it is useful to consider observables in this theory. Physical observables must
be gauge invariant. In a U(1) gauge theory there are several examples of such observables
which are also local, for example, local operators constructed out of Fµν(x) or ϕ∗(x)ϕ(x).
Other interesting gauge invariant operators which are not completely local, but can be
contained in compact regions are closed Wilson loops eig

∮
C Aµdx

µ
or bilocals of the form

ϕ∗(x)eig
∫ y
C,x Aµdx

µ

ϕ(y). All these operators are neutral and do not change the electric
charge of the region D, if they are entirely contained in D. We can use such operators
localized in region D to construct unitaries UD which can be used to modify the state inside
D leaving all correlators outside invariant, as in (2.1). So information can be localized in
this theory if we work with neutral operators.

But what if we want to create an excitation in region D which has non-zero charge?
We already know from the classical problem that it will not be possible to add a charge in
D without affecting the exterior due to Gauss law (2.5). The same is true at the quantum
level. A charged operator ϕ in D is not gauge invariant. It can be made gauge invariant
by dressing it with a Wilson line extending all the way to infinity. We can think of the
Wilson line as a localized tube of electric flux ensuring that Gauss law is satisfied. It may
be energetically better to smear the Wilson line in a spherically symmetric configuration.
The important point is that the dressed operator Φ(x) = eig

∫ x
∞ Aµdxµϕ(x) is no longer a

local operator, though it is gauge invariant. If we act with a unitary made out of this
operator, we will modify correlators outside D and (2.1) will fail. This means that the
addition of the charge in D can be detected immediately outside. This is not surprising,
as the same thing is already visible at the classical level.

However, looking a bit more carefully, we run into certain somewhat surprising features
of the quantum theory. Suppose we have several charged fields ϕi, labeled by a flavor
index i, with the same electric charge. We construct the corresponding dressed operators
Φi(x) = eig

∫ x
∞ Aµdxµϕi(x), using some particular prescription for the Wilson line. These

obey
[Q,Φi(x)] = gΦi(x) , (2.7)

where Q =
∫

S2
∞
∗F is the charge operator which can be measured at space-like infinity.

Suppose the point x = 0 is inside D. We create a charged excitation of type i in region
D by acting on |0⟩ with a unitary Ui = eiϵΦi(0). Then we study correlators in region D′ in
the state Ui|0⟩ in perturbation theory. Consider a correlator of Q and Φj(x) in region D′.

⟨0|U †
i Φj(x)QUi|0⟩ = ⟨0|Φj(x)|0⟩+ iϵ⟨0|[Φj(x)Q,Φi(0)]|0⟩+O(ϵ2) , (2.8)

where to leading order in the perturbative expansion the second term is

⟨0|[Φj(x)Q,Φi(0)]|0⟩ = g⟨0|Φj(x)Φi(0)|0⟩ ∝ δij . (2.9)
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Hence by measuring correlators of all ϕj(x) and Q in D it seems that we can detect not
only the presence of a charge in D, which is expected by Gauss’s law, but we can even
identify the flavor of the charged particle, i.e. the value of the index i in the interior of
D. A similar argument in the gravitational case was discussed in [12, 162] for black hole
states and in [72] around empty AdS.

The reason we were able to get information beyond the total charge in D is that in
the vacuum the fields have non-trivial entanglement, on which the non-vanishing 2-point
function (2.9) depends. When we act with the unitary containing the Wilson line, the
Wilson line disturbs the pattern of entanglement in such a way that it breaks the symmetry
between the fields ϕi and we can detect from D′ the flavor of the excitation in D

This suggests a way to avoid the issue and succeed in hiding the flavor of charge in D.
We start with the analogue of a split state in the U(1) gauge theory, see the discussion in
[67], and then create the charged excitation in D by acting with the same unitary. In that
case there is no entanglement bewtween D and D′ and hence (2.9) will vanish making it
impossible to tell from measurements in D′ what is the type of charged excitation in D.6

This requires creating the charged excitation on top of the split state, with typical energy
scaling like (2.3), rather than the ground state.

2.1.3 Classical and Quantum Gravity

First we notice that in non-perturbative quantum gravity we do not expect to be able
to localize information in space: holography and AdS/CFT suggest that the fundamen-
tal degrees of freedom in quantum gravity are not local, but rather lie at the boundary.
Moreover there is strong evidence that an ingredient towards the resolution of the black
hole information paradox is that the naive factorization of the Hilbert space in space-like
separated subregions may not be true in the underlying theory of quantum gravity.

On the other hand at the classical level in General Relativity we do have an exact
notion of locality and information can be localized, as we will discuss below. An interesting
question, which is the main focus of this paper, is to understand the fate of locality at the
level of perturbative quantum gravity.

On the initial value problem of general relativity

In General Relativity the initial value problem is formulated by starting with a spacelike
slice Σ and specifying the data C = (hab,Kab) where hab is the intrinsic metric and Kab the
extrinsic curvature of Σ. If we have matter then the values of the fields and their normal
derivatives need to be specified. Initial data related by spatial diffeomorphisms on the slice
Σ are gauge-equivalent and have to be physically identified. In general relativity there is
one more subtlety: even if we have two initial data on the slice Σ which are not related
by a spatial diffeomorphism, they may still correspond to the same physical solution in
space-time. This is related to the freedom of choosing the initial slice Σ in space-time and
diffeomorphism invariance in full space-time.

Admissible initial data, which can be extended into a solution of the Einstein equations
must obey the following constraints

R+ (Ka
a )

2 −KabK
ab = 16πGρ (2.10)

6A more mundane way to hide the charge is to add "screening charges" in the buffer region, but here
we want to discuss how information can be localized even though a Wilson line extends all the way to
infinity.
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∇aKab −∇bKc
c = −8πGJb , (2.11)

where R is the Ricci scalar of hab on Σ, the covariant derivatives are with respect to hab
on Σ, na is the unit normal to Σ and ρ = Tabn

anb and Jb = −hcbTcana.
We now want to address the question of localization of information in classical general

relativity, as formulated in subsection 2.1.1. A theorem, see for example [157, 163], settles
question B for pure general relativity: if we have two admissible initial data which agree,
up to spatial diffeomorphism, on a part D′ of Σ, then the corresponding solutions will
agree, up to a space-time diff, on the development of D′. This continues to be true in the
presence of matter provided certain reasonable conditions are satisfied. This shows that in
general relativity signals propagate at most at the speed of light: if we modify the initial
data only in the region D, then the signals will propagate in the causal future of D.

Then we come to question A, that of localizing information on compact regions on Σ:
to what extent is it possible to find two initial data satisfying the constraints (2.10), (2.11),
which agree on D′ but differ on D?7 The equations (2.10) and (2.11) are non-linear and
of elliptic nature, though underdetermined. Understanding the space of solutions of the
constraint equations is an interesting problem which has been studied extensively in the
literature. Here we summarize some relevant points:

1. Gravitational Gauss law: in asymptotically flat or AdS space-times, the energy
and other conserved charges are defined at space-like infinity. The constraints of
general relativity relate these asymptotic charges to contributions from excitations
in the interior of space-time. For example, in the Newtonian limit the constraint
equations reduce to the gravitational analogue of Gauss’s law

□ϕ = 4πGρ .

As in electromagnetism this implies that the initial data in region D′ know about
the total mass enclosed in D.

2. Existence of localized deformations: it is possible to find many solutions of the
constraint equations which look the same in the domain D′ but differ on D. For
example, if we restrict our attention to spherically symmetric solutions, Birkhoff’s
theorem implies that there is a large number of solutions of (2.10) and (2.11) which all
look like the Schwarzschild metric of mass M in D′ but differ in D. Examples include
static, interior, star-like geometries supported by matter or more generally spherically
symmetric, time-dependent collapsing geometries of mass M . More generally, it has
been shown [164] that under reasonable conditions a compact patch D of a solution
of the constraints (2.10) and (2.11) can be glued to a boosted, Kerr solution in D′

of appropriate mass, angular momentum, momentum and center of mass position.
The existence of a large number of solutions, which all look exactly the same in D′

demonstrates that it is possible to localize information in classical general relativity.

3. Comments on the vacuum: For asymptotically AdS geometries, if a solution looks
like empty AdS in D′8 then it is guaranteed to be empty AdS in D as well. In other
words, starting with the vacuum it is not possible to modify the initial data in D
into a new solution, without at the same time modifying the solution in D′.

7Here we need to keep in mind that even if the initial data differ on D they may correspond to the
same solution in space-time, as they may correspond to two different choices of the slice Σ in the same
space-time solution.

8Here we assume that D is compact so D′ includes the region near space-like infinity.
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Diff-invariant observables in classical GR

We now consider the question of defining local diff-invariant observables in gravity. This is
a long-standing problem which is subtle even at the classical level. Let us consider general
relativity, possibly coupled to other fields, defined with certain asymptotic boundary con-
ditions at infinity (for example asymptotically flat or AdS) or on a closed manifold of fixed
topology. We denote by X the space of solutions of the equations of motion, in any possible
coordinate system. On this space we have the action of the group Diff of diffeomorphisms9.
Solutions related by a diffeomorphism are physically identified and we introduce

X = X/Diff . (2.12)

We can think of a diff-invariant observable as a function which has definite values on points
of X . However, we do not demand an observable to be necessarily defined on the entire
space of solutions X . Instead we will allow observables to possibly have a limited domain
of definition. Hence a diff-invariant observable is a map

A : U ⊂ X → R , (2.13)

where U is an open subset of X . Such observables can also be expressed as functions on
X which must obey A(s) = A(f∗s), where s denotes a solution in some coordinate system
and f∗ the action of a diffeomorphism.

In order for a diff-invariant observable to be local we need to impose additional con-
ditions. To formulate these conditions it is useful to introduce the Peierls bracket {A,B}
between two diff-invariant observables [165], which is a covariant generalization of the Pois-
son bracket. To compute the value of {A,B} we consider a modification of the action as
S → S + ϵA and compute the difference of the first order change of observable B on the
perturbed solutions with advanced (+) and retarded (−) boundary conditions. The Peierls
bracket is defined as10

{A,B} = δ−AB − δ
+
AB . (2.14)

It can be shown that the Peierls bracket has similar properties as the Poisson bracket,
for example linearity, antisymmetry and the Jacobi identity, and in fact coincides with
the Poisson bracket if a Hamiltonian formalism is introduced. One of the advantages of
the Peierls bracket is that we do not need to pass to the Hamiltonian formalism which is
somewhat complicated due to the constraints. Notice that to define the Peierls bracket of
two observables A,B they must have a common domain of definition on X and the bracket
will be generally a non-trivial function on this overlap.

We would like to define diff-invariant observables which can be associated to points
in space-time with the property that if two such observables are associated to space-like
separated points the corresponding Peierls bracket must vanish. The difficulty in doing this
is that in order to define an observable we need to define it at least in an open neighborhood
around a state as in (2.13), so we need some prescription for following "the same point",
on which the candidate diff-invariant observable will be localized, as we move on the space
of solutions X . General covariance implies that there is no canonical way to keep track of
the point as we change the state.

9If the space-time is non-compact along space we only consider small diffeomorphism, i.e. those which
become trivial fast enough at infinity.

10The first order solutions are not unique due to diffeomorphism invariance, however the ambiguity drops
out when computing the change of the diff-invariant observable B.
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If the space-time has a well-defined boundary we can find prescriptions which select a
point in space-time for each solution in X relationally with respect to the boundary. For
example in AdS we can define a diff-invariant observable which seems to be localized at a
point by considering a radial geodesic at right angle from a specific point on the boundary,
moving a fixed regularized distance along it and measuring the value of a scalar quantity,
for example a scalar field or a scalar combination of the curvature, at the resulting point.
This gives a map from the space of solutions X to R, so it is a diff-invariant observable which
could potentially be local. Notice however that the location of the resulting point depends
on the entire geometry along the geodesic, all the way from the boundary. Changing the
metric anywhere along this geodesic will move the resulting point. Hence the value of
the observable will not strictly depend on local data near the point. Similarly, if we act
with one of the asymptotic symmetries the boundary starting point will move and also
the resulting bulk point will move. This implies that the Peierls brackets of this candidate
observable with the boundary charges, or other observables along the geodesic will be non-
zero, even though these regions are space-like separated. Hence this relational observable
is not really local.

Another way to to define candidate local diff-invariant observables is to consider a
complete gauge fixing scheme. Then observables in the particular gauge labeled by a
space-time coordinates are automatically diff-invariant. However they will generally have
non-local Peierls brackets, since the assignment of a coordinate value to a point in space-
time in the particular gauge, will generally depend on the solution everywhere.

Additional difficulties arise in space-times without boundaries, for example in de Sitter
space. A boundary is an (asymptotic) part of the spacetime where gravity is not dynamical
anymore. This is why we can for example anchor geodesics to the boundary, and define
relational diff-invariant observables. Without a boundary, there is no part of the space-time
where gravity is turned off, and consequently no place to anchor geodesics.

State-dressed observables

If we consider a solution that is sufficiently complicated it is possible to specify points, and
hence define local diff-invariant observables, by using features of the state. We emphasize
that these observables will not have all the desired properties over the entire space of
solutions X , so these observables have certain aspects of state-dependence as discussed
around (2.13). One approach based on this idea was studied by DeWitt [166], building
on [42, 43]. For a D-dimensional space-time we start by identifying D scalar quantities
Za, a = 1, ..., D. These can be combinations of curvature invariants and other scalars
formed by the fields of the theory. We could try to fix a coordinate system by using
these D-scalars as coordinates. We can use this intuition to introduce candidate local
diff-invariant observables of the form

ϕ(Za0 ) =

∫
dDxϕ(x) δD(Za − Za0 ) det

∂Z

∂x
. (2.15)

Here Za are the D scalar quantities introduced above and ϕ is any other scalar combination
of the fundamental fields of the theory. Similar constructions can be done for fields with
tensor indices.

Some comments are in order:

1. For a general space-time which is in-homogenous, and for certain choices of the values
Za0 , the delta function in (2.15) will click on a finite number of points, so the quantity
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above is well-defined and finite. In symmetric space-times it will either not click at
all, hence the observable will be zero, or an infinite number of times so the observable
will be ill-defined. This shows that (2.15) is a quantity which is defined only on part
of the phase space. This is in accordance with our expectation that state-dressed
observables have to be state-dependent (2.13).

2. Suppose that the observable (2.15) is well defined on a state s and a neighborhood U
of the space of solutions X around it. It is clear that, at least at the classical level,
this observable is diff-invariant, i.e. a well defined map ϕ(Za0 ) : U ⊂ X → R and
hence a good observable according to the definition (2.13).

3. One can show that under certain conditions, observables (2.15) are also local. If we
have a state s on which two such observables ϕ(ZaA), ϕ(Z

b
B) are well defined, with the

property that the delta functions click at single points A,B and that these points
are space-like separated with respect to the metric of s, then the corresponding ob-
servables have vanishing Peierls brackets {ϕ(ZaA), ϕ(ZbB)} = 0, see [167] for a review.
This follows from the causality properties of linearized Green’s functions appearing
in (2.14) around the solution s. Notice that if two points A,B are spacelike sepa-
rated on a solution s, then there is a small enough neighborhood of s in which they
remain space-like separated. Hence their Peierls bracket will vanish in this entire
neighborhood.

4. This shows that, as long as we accept that observables may be defined only locally
on the phase space of solutions, it is possible to find local, diff-invariant observables
in classical general relativity around states which are complicated enough. These are
also the interesting states, i.e. those containing bulk observers who want to study
physics in their environment.

5. Similar ideas are useful in cosmology, where the value of a scalar field can be used
as as clock [52–54].

The next question is whether it is possible to define similar observables at the quantum
level. Aspects of this question were discussed in [47] and [48], where it was argued that there
is a quantum version of these observables which retain their locality properties to all orders
in the ℏ expansion, even though they are not expected to be local at the non-perturbative
level. Various difficulties are encountered at the quantum level including the question of the
renormalization of the composite operators (2.15), establishing diffeomorphism invariance
at the quantum level and the role of Poincare recurrences which will generally introduce
infinite copies where the delta function will have support [48]. In this paper we provide
support in favor of this conjecture by finding observables with certain similarities in spirit
to (2.15) directly in CFT language. This has the advantage that any object built directly
in the CFT is by construction diff-invariant.

A time-band in AdS

We now specialize to a setup that will allow us to make contact with AdS/CFT. We consider
geometries that are asymptotically AdSd+1 and we consider a short time-band T−ϵ,ϵ on the
boundary in global coordinates, defined as the set of points (−ϵ,+ϵ) × Sd−1 , ϵ > 0,
where the first interval refers to the time coordinate t. Near the boundary we can select a
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Fefferman-Graham coordinate system where the fields, for example the metric and a scalar
of mass m2, have the behavior

ds2 =
dr2

r2
+r2(−dt2+dΩ2

d−1)+r
2−dgµν(r, x) dx

µdxν gµν(r, x) = g(0)µν (x)+g
(2)
µν (x)r

−2+...

ϕ = r−∆(ϕ(0)(x) + ϕ(2)(x)r−2 + ...) , (2.16)

where x = (t,Ωd−1) and ∆ = d
2 +
»

d2

4 +m2. Here we consider normalizable states so
the growing modes, which would be dual to sources in the CFT, are set to zero11. The
Fefferman-Graham coefficients g(0)µν (x), ϕ(0)(x) are diff-invariant observables and are la-
belled by boundary coordinates12. This set of observables includes the asymptotic charges,
for example the ADM Hamiltonian can be computed as

H =
1

const

∫
Sd−1

dΩd−1g
(0)
00 (x) .

We focus on these Fefferman-Graham observables restricted in the time band T−ϵ,ϵ.
This set of observables is closed under Peierls brackets and form a Poisson algebra A.
Notice that in this algebra we do not include observables which would be finite distance
under Poisson flow, otherwise flowing by finite distance with H would take us out of the
time-band, see also the discussion in [66].

Starting with the classical theory, we ask whether we can find observables localized deep
in the interior of AdS which are space-like with respect to the time-band and which have
vanishing Peierls brackets with observables in the time-band algebra A. These candidate
observables are to be defined as in (2.13), in particular they need to be defined on a
neighborhood U ⊂ X of a solution s ∈ U and not necessarily on the entire space of
solutions X .

It is clear that observables defined relationally with respect to the boundary, or with a
gauge fixing condition which makes use of the boundary, do not satisfy these conditions.
Due to their gravitational Wilson lines they will have non-vanishing Peierls brackets with
the Hamiltonian and other charges on the boundary [49, 50]. Such observables generally
change the energy of the state, which due to the gravitational Gauss law can be measured in
the time band T−ϵ,ϵ by (??). Another point of view is that such observables identify a point
in the bulk, and in particular a moment in time, relationally with respect to the boundary.
Thus an infinitesimal motion in time of the starting point on the boundary is translated
via the relational prescription into an infinitesimal time motion of the corresponding bulk
point. Then the Peierls bracket of the candidate bulk observable with H generates time-
derivatives of the point in the bulk and is non-vanishing.

The discussion of the previous subsection implies that if we start with an asymptotically
AdSd+1 solution s of the bulk equations which is complicated enough, then we can define
diff-invariant observables of the form (2.15) in a neighborhood of s so that they have
vanishing Peierls bracket with all elements of the time-band algebra A including charges
like the Hamiltonian (??). Such observables do not change the total energy of the state but
instead they rearrange the energy, "absorbing" from the background solution the amount
of energy they themselves create. These observables select a point in the bulk, and a
moment in time, by using features of the state.

11We only assume that the sources are zero in the time band T , they could be turned on in the far past
in order to prepare a state.

12The subleading coefficients are fixed by the equations of motion in terms of the leading ones.
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In what follows we will provide evidence that the same conclusions are true in pertur-
bative quantum gravity. We will proceed by translating the question in CFT language and
using the AdS/CFT correspondence.

2.2 Holographic setup

In this section, we will study the question of locality in quantum gravity in the context of
the AdS/CFT correspondence. A question we would like to understand is how certain bulk
subregions are encoded in the boundary CFT. There are cases where this is well understood.
For example, the bulk dual of a boundary subregion is known as the entanglement wedge,
which is the bulk region extending between the boundary subregions and the relevant Ryu-
Takayanagi surface extending in the bulk [168]. This correspondence between parts of the
boundary and bulk is known as subregion-subregion duality [55–57], and it is worthwhile
to mention that in general, the entanglement wedge of a boundary subregion is much larger
than its causal wedge (the part of the bulk contained by lightrays shot from the causal
developments of the boundary subregion).

Subregion-subregion duality and entanglement wedge reconstruction utilizes the orga-
nization and entanglement of CFT degrees of freedom organized spatially. We will be
interested in rather different bulk subregions, which lie deep down in the bulk and never
extend to the boundary CFT. What is the CFT dual of a causal diamond located deep
near the center of AdS? The answer to this question remains elusive, and in particular it
is understood that in general, these bulk regions do not correspond to the entanglement
wedge of any boundary subregion. There have been previous attempts to understand the
CFT mapping of such regions, see for example [58–60, 169] which attempt to assign a
meaning to the entropy of a general closed codimension-2 spatial curve in AdS. Here we
will follow a different approach by focusing on the algebra of single-trace operators [61].

We will start by reviewing some basic but relevant features of AdS/CFT, before turning
to a discussion of the class of states that we will be considering throughout this paper and
their salient properties.

2.2.1 Gravitional states in AdS, large diffeomorphisms and asymptotic
symmetries

We will be interested in gravitational solutions which are asymptotically AdSd+1. We have
in mind an embedding in a top-down setup with a holographic dual CFT, like N = 4 SYM
at strong coupling, on S3 × R and the N -scaling we indicate in most of the paper refers
to this theory. However for most of the discussion the details of the embedding in string
theory, the extra fields, as well as the presence of a compact internal manifold are not
important unless explicitly stated.

Solutions to the bulk equations of motion can be thought of as states in the dual CFT. If
we think of a bulk geometry described by a Penrose diagram, the diagram really represents
the entire time-history of the state. We can take the state to live at t = 0 on a boundary
Cauchy slice, and the portion of the geometry relevant to describing the state is an initial
data surface given by a bulk Cauchy slice (or the Wheeler-de Witt patch associated to
the boundary Cauchy slice). To view these geometries as states of the dual CFT, it is
important that the bulk fields have a fall-off corresponding to normalizable modes with
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vanishing CFT sources.13

We want to consider semi-classical solutions with non-trivial bulk geometries, i.e. where
backreaction is strong. The corresponding CFT states |Ψ0⟩, which we take to be pure, have
large energies which scale as

⟨Ψ0|H|Ψ0⟩ ∼ O(N2) , (2.18)

and as we will see, they will generally also have an energy variance of the same order. We
will also consider perturbative excitations of the quantum fields on top of the background
geometry. These excitations add/subtract quantum particles which change the energy by
an O(N0) amount, and whose backreaction on the geometry is thus generally small.

Geometries of this type will often be macroscopically time-dependent, such that the
initial data on a bulk Cauchy slice changes as we perform time-evolution of the state. This
has consequences for the variance of the energy, as we will now see. Any state |Ψ0⟩ can be
expanded in the basis of CFT energy eigenstates as

|Ψ0⟩ =
∑
i

ci|Ei⟩ . (2.19)

The time-dependence of the bulk geometry implies that such states will have energy vari-
ance

(∆H)2 ≡ ⟨Ψ0|H2|Ψ0⟩ − ⟨Ψ0|H|Ψ0⟩2 ∼ O(N2) . (2.20)

To see this, consider the inequality

1

2
|⟨[H,A]⟩| = 1

2
⟨∂tA⟩ ≤ ∆H ·∆A , (2.21)

where in the first equality we assumed that the operator A is not explicitly time-dependent.
Then we have

∆H ≥ 1

2

⟨∂tA⟩
∆A

∼ O(N) , (2.22)

where we have used large N factorization for the operator A. This shows that provided
there is macroscopic time-dependence (the classical vev of A changes at leading order), the
variance of the energy scales at least as N2.14 Some bulk geometries we will consider are
macroscopically time-dependent, but only inside the horizon. In this case, we cannot use
the argument above, but we still expect the variance to be of order N2. It is interesting
to ask whether the variance is a quantity that can be extracted from the semi-classical
geometry alone. In general, we expect that the quantum state of the fields in the bulk is
important as well. We discuss this further in Appendix B.

There are various types of explicit constructions of states of this kind. There are
states prepared by Euclidean path integral with sources for single-trace operators [170–
173]. These states should be interpreted as coherent states of the quantum gravitational
dual, which are labelled by phase-space points corresponding to initial data15. There are

13If these states are prepared by a Euclidean path-integral [170–173], sources can be turned on in the
Euclidean past which prepares the state, but it is important that they vanish as tE → 0 for the geometries
to be interpreted as states in the undeformed CFT.

14Note that if the variance is parametrically larger than O(N2), the state may no longer have a good
semi-classical interpretation. An example would be a superposition of black holes of different masses.

15It appears that one may not construct arbitrary initial data this way, see [174]. This will not affect
our construction and for states prepared by a Euclidean path integral, we should simply keep in mind that
we have access to a restricted class of initial data.
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also states prepared by a boundary state of the CFT, further evolved by some amount of
Euclidean time [175–178]. The bulk interpretation of these states is that they correspond to
black hole geometries with End-of-the-World branes sitting behind the horizon. This is an
example where the bulk geometry is macroscopically time-dependent, but only behind the
horizon. Similarly, for two-dimensional CFTs, we can construct pure states by performing
the path integral over a surface of higher topology, for example half a genus-2 surface,
see [179]. These geometries are also macroscopically time-dependent behind the horizon,
but instead of having a brane behind the horizon, they have topology. Finally, it is worth
noting that there are semi-classical geometries that also preserve supersymmetry, the most
famous of which are the LLM geometries [180]. In these cases, one can obtain a better
understanding of the dual CFT states. We will come back to these geometries in section
2.5.

As usual in gravity, we should identify solutions which are related by small diffeomor-
phisms, i.e. diffeomorphisms that vanish near the AdS boundary. There is also a class of
large diffeomorphisms, which are compatible with the boundary conditions imposed in the
definition of our theory of AdS gravity. This set of diffeomorphisms forms what is called
the asymptotic symmetry group. In the case of AdSd+1, d ≥ 3 this is the conformal group
SO(2, d), while for d = 2 it gets enhanced to the Virasoro group [181]. When acting on
a given bulk solution these large diffeomorphisms will generally transform the geometry
into a new state, which is physically distinguished from the previous one, unless of course
the original state happens to be invariant under the symmetry. We will later also discuss
solutions with two asymptotic boundaries, such as the eternal black hole in AdS, in which
case the asymptotic symmetry group is larger. Let us now discuss the various elements of
the asymptotic group/conformal group:

• Time translations: One particular class of states we will discuss are those with
semiclassical time-dependence in the bulk, for example a state corresponding to the
gravitational collapse of a star. In this case large diffeomorphisms corresponding to
asymptotic time translations transform the state as |Ψ0⟩ → e−iHt|Ψ0⟩. The initial
data corresponding to |Ψ0⟩ is not the same as that of e−iHt|Ψ0⟩. Our end goal will
be to provide local operators whose gravitational dressing is done towards a feature
of the state. If the state is time-dependent then we can select a moment in time
by using the features of the state, as opposed to the boundary time coordinate. On
the other hand if the state is static, then the only way to identify a moment in time
is by dressing to the boundary. This is why it will be important for us to consider
time-dependent states.

• SO(d) rotations: If the state breaks SO(d), then asymptotic rotations transform
it to a new state. In this case we can use the features of the state to identify the
angular location of a point. On the other hand, if the state is SO(d) invariant it will
generally not be possible and at best we can obtain an operator smeared over the
bulk angular coordinates, or alternatively we can fix the angular location by dressing
to the boundary.

• AdS boosts: The Lorentzian conformal group acting on Sd−1 × R has another 2d
generators which correspond to boosts in various directions. These can be realized
as d non-independent copies of an SL(2,R) algebra, see for example [182]. Any
state with finite energy cannot be annihilated by Hermitian combinations of these
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generators, which we show in Appendix C. The only state which is annihilated by
these generators is the global vacuum and any other state will necessarily transform
under the action of these boosts16. Therefore, in any non-trivial state, we can fix the
radial position of an operator without referring to the boundary.

In a top-down setup, the gravity dual may have an internal manifold, like the S5 in the
context of N = 4 SYM. In such cases, we would need to break the R-symmetry to localize
a bulk operator in the internal space. In this paper, we will mostly restrict to a bottom up
construction without an internal manifold but it would be an interesting generalization.

2.2.2 Locality in AdS

We are now ready to discuss locality in quantum gravity with asymptotically AdS boundary
conditions. We would like to understand whether one can define local observables and
whether we can localize information deep in the center of the AdS.

The presence of the AdS boundary allows us to define one natural class of diff-invariant
observables: The fields in AdS can be expanded in a Fefferman-Graham expansion. The
coefficients of this expansion are themselves diff-invariant observables, which are dressed
to the boundary since the Fefferman-Graham gauge is chosen with respect to the bound-
ary. Let us call these observables FG-observables. For example, the AdM Hamiltonian is
one particular observable in this class. In perturbative quantum gravity, we can also con-
sider the expectation values of these observables as well as their higher-point correlation
functions. As we will discuss below, if we want to stay within the regime which can be de-
scribed by semi-classical gravity we may need to restrict the complexity of the correlators
(for example the number of operator insertions in the correlation function). We emphasize
again that all these observables are dressed with respect to the boundary. In particular,
they will generally not commute with the Hamiltonian or the other charges described in
the previous section.

The question we would like to address is the following. If we start with a state with
a semi-classical geometric description, is there a way to modify the state in the interior
of AdS, without modifying any of the correlators of FG-observables localized in a short
time-band of the boundary? If the answer is yes, this means we can localize information
since an observer living near the boundary will have no way to know whether or not
we modified the state. Rather than trying to come up with bulk objects that achieve
this goal, we will address this question directly in the dual CFT. This has the following
advantage: any object built out of CFT degrees of freedom is necessarily diff-invariant and
non-perturbatively well defined. Provided the object acts in the right away, we can be
assured that the construction is fully consistent.

2.2.3 The CFT description and the time band algebra

Consider a large N holographic CFT which is dual to semi-classical general relativity
coupled to matter fields. In the large N limit, we can define the algebra A generated
by single-trace operators in a time-band Dt1,t2 , where we allow products of single-trace

16States with infinite energy like the AdS-Rindler vacuum could also potentially be annihilated by some
boost generators.
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operators where the number of factors is arbitrary but scales like O(N0).17 This was
originally discussed in [61], inspired by the earlier work [12, 13, 34]. In [61] it was proposed
that the algebra A can be thought of as being dual to the causal wedge of the region Dt1,t2
in the bulk (see Fig. 4.3). This picture also suggests that the algebra A has a commutant
which can be idenfitied with a spacelike-separated causal diamond in the interior. Algebras
of this type have received attention recently [62–64, 183, 184].

The work [61] studied this setup for states which are small perturbations around the
AdS vacuum. The geometry of AdS is homogeneous and featureless since it is a maximally
symmetric space. As already discussed in the previous section, this makes the definition of
local diff-invariant observables challenging. We would like to revisit the time-band algebra,
this time in cases where the bulk state has features, which in particular are time-dependent.
This means the state must be highly excited as can be seen for example from its energy
(2.18).

At infiniteN the problem can be understood in terms of QFT on a curved and in general
time-dependent background. In particular, gravitational backreaction of the quantum fields
can be ignored and one does not need to talk about gravitational dressing, which is a form
of backreaction. In this case, the existence of the commutant is obvious because we are in
a QFT situation. Note that if the Hamiltonian (which is always an element of the time
band algebra) is normalized appropriately18, its commutator with the other single-trace
operators is suppressed by 1/N and thus vanishes when N is infinite.

At the level of 1/N corrections, the existence of the commutant is less obvious. Back-
reaction must now be taken into account and the gravitational Gauss law can spoil the
commutator between H and the other operators of the time-band algebra. For example,
the standard way to write bulk fields in terms of CFT operators is the HKLL construction
[86, 87, 185–189]

Φ(t, r,Ω) =

∫
bdry

dt′ dΩ′
d−1K(t, r,Ω; t′,Ω′)O(t′,Ω′) , (2.23)

where K is related to a Green’s function of the Klein-Gordon operator on the appropriate
bulk geometry. This operator is defined purely within the CFT so it is manifestly diff-
invariant. To leading order at large N , it acts as a bulk field and commutes with other
bulk fields at spacelike separation. Notice however that in order to define the kernel K
we have to choose a coordinate system in the bulk, which often is taken using Fefferman-
Graham gauge. As we already mentioned, this gauge choice is defined by making use of the
asymptotic boundary, and an HKLL operator is thus dressed to the boundary. Because of
this, the commutator between an HKLL operator and the Hamiltonian will not vanish at
subleading orders in the 1/N expansion.

The physical origin of this effect is the gravitational Gauss law: acting with (2.23) will
generally create or destroy a particle in the bulk, thus changing the energy of the state,
which can be immediately measured at spacelike infinity by H. One can try to correct the
HKLL operators at higher orders in 1/N by mixing it with other single- and multi-trace op-
erators, see [189–191], but the commutator with the Hamiltonian is universal and generally
cannot be removed in this way. It is also possible to think about the dressing in terms of

17Notice that at finite N the algebra in a time-band would be the same as the full algebra. In the large
N limit, a natural hierarchy emerges between "small products" of single-trace operators and the rest of
the algebra, which allows us to consider the notion of a time-band algebra.

18A useful normalization is h = 1
N
(H − ⟨Ψ0|H|Ψ0⟩), which ensures that ⟨Ψ0|h2|Ψ0⟩ ∼ O(N0).
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(smeared) gravitational Wilson lines connecting the bulk operator to the boundary, which
make it diff-invariant at the price of making it non-local [26, 192–194]. The commutator
with H is nonzero because H picks up the contribution of the Wilson line.

This raises the question of whether the algebra A still has a commutant at subleading
orders in 1/N . The main goal of this paper is to provide evidence for the existence of such
a commutant. We will do so by identifying a class of operators that are gravitationally
dressed with respect to features of the state, rather than dressed to the boundary. In
particular, these operators will have vanishing commutators with the Hamiltonian, to all
orders in 1/N . In this paper, we will focus mostly on ensuring that bulk operators have
a vanishing commutator with the Hamiltonian (and the other charges), but it would be
important to extend our construction to all single-trace operators in Dt1,t2 . We given an
alternative argument for the existence of a commutatant to all orders in 1/N in section
2.4.

The existence of a commutant for A in 1/N perturbation theory would imply that
information can be localized in regions of the bulk and is not visible from the boundary at
the level of perturbative quantum gravity19. We are now ready to formulate the concrete
goal that we will achieve in this paper.

2.2.4 Formulating the main goal

Our goal is to improve the locality properties of (2.23) by moving the gravitational dressing
from the boundary to the state. From a technical point of view, we will find CFT operators
Φ̂ which obey two properties:

1. [Qi, Φ̂] = 0 to all orders in 1/N , for all asymptotic charges Qi ∈ SO(2, d).

2. The correlators of Φ̂ agree with those of ΦHKLL to leading order in the large N
expansion, on the code subspace of |Ψ0⟩.

In taking the large N limit it is important to track how various effects scale with N . As
we will see, our new operators Φ̂ have vanishing commutator with Qi to all orders in the
1/N expansion, but have a non-vanishing commutator at the level of e−N2 corrections.

In what follows we will first focus on ensuring a vanishing commutator of Φ̂ with the
Hamiltonian H to all orders in 1/N and then discuss the generalization to the other charges
in SO(2, d).

As we will see, our construction will not work for |Ψ0⟩ = |0⟩. Technically, this is
because the vacuum does not comply with the properties (2.18) and (2.20). Physically,
it is because the AdS vacuum has no feature that we can use to attach the dressing of
our local operator. Note that this is in line with the results of [73], where a protocol to
reconstruct the bulk state from correlators in the time-band was discussed.

2.2.5 Time-shifted states and return probability

We will now present the main technical tool that will enable us to define state-dressed
operators: the return probability. Let us start with a state |Ψ0⟩ satisfying the properties
(2.18) and (2.20). We define the following one-parameter family of states

|ΨT ⟩ = e−iTH |Ψ0⟩ T ∈ R . (2.24)
19See [66–74] for other discussions of localization of information in perturbative quantum gravity, with

varying conclusions.
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In the bulk, the states |ΨT ⟩ are related to |Ψ0⟩ by a large diffeomorphism, i.e. one that does
not vanish near the boundary and induces a boundary time-translation. It is important
to emphasize that they are different quantum states, even though they are related by
a symmetry. If we think about the phase space of gravity in AdS, the family of states
correspond to different phase space points, just like a particle moves on phase space as a
function of time in classical mechanics. From the bulk perspective, if |Ψ0⟩ was a coherent
state, we can also think of |ΨT ⟩ as coherent states.

We would now like to consider the overlap of such states. In particular, we would like
to study the overlap

⟨Ψ0|ΨT ⟩ . (2.25)

Thinking of these states as coherent states is useful to gain intuition about such over-
laps. For the simple harmonic oscillator, the overlap of two coherent states is β ⟨α|β⟩ =
e−

1
ℏf(α,β) ,for a very simple quadratic function f . For states on the gravitational phase

space, recalling that ℏ ∼ GN ∼ 1/N2, we thus expect

⟨Ψ0|ΨT ⟩ = e−N
2f0(T ) , (2.26)

for a function f0 whose real part is positive. In the gravitational setting, it is not straightfor-
ward to directly compute f0(T ) from the phase space information, see [14] for a discussion
on nearby states. There is a general way to compute f0(T ) based on a Euclidean prepa-
ration of the states [173], but it requires some effort (in particular solving the non-linear
Einstein equations). The computation of f0(T ) directly from the information on an initial
data slice, which specifies the point on phase-space, is an interesting problem.20

It is also instructive to think about the overlap from a microscopic point of view. In
the CFT, the overlap is given by

⟨Ψ0|ΨT ⟩ =
∑
i

|ci|2e−iTEi . (2.27)

Note that there are eS(E) terms here, each of size e−S(E). The suppression (2.26) must
therefore come from the summation over a large number of phases.

If the bulk state has no periodicities in time, we expect the real part of f0(T ) to
increase as we increase T . However, this increase will not continue forever. We will shortly
give an estimate of the time-average of (2.27), and argue that the decay will saturate at
some point. Physically, the non-trivial overlaps (2.27) imply that it is not correct to think
that all the states |ΨT ⟩ are independent, see also [14, 195, 196] for related discussions.
In particular, even if the bulk state is not macroscopically periodic, there will still be a
microscopic periodicity of the state due to Poincare recurrences, that will happen at very
large T ∼ O(eeN

2

). Throughout this paper, we will be interested in much earlier time
scales so it will be sufficient for us to treat the states |ΨT ⟩ as quasi-orthogonal since all
overlaps will be exponentially small.

We will also need to define the notion of code subspace. Starting with the state |Ψ0⟩
we define the code subspace as

H0 = span{|Ψ0⟩,O(t,Ω)|Ψ0⟩, ...,O1(t1,Ω1)...On(tn,Ωn)|Ψ0⟩} , (2.28)
20Similarly, we do not know of a gravitational argument that guarantees that the real part of f0(T )

is positive, which must be the case if the geometries have a state interpretation in the dual CFT. We
comment on this further in the discussion.
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generated by acting on |Ψ0⟩ with a small number (n ≪ N) of single-trace operators21. It
will also be useful to define the projector P0 on this subspace. Similarly, a code subspace
can be defined for each of the time-shifted states

HT = span{|Ψ⟩T ,O(t,Ω)|ΨT ⟩, ...,O1(t1,Ω1)...On(tn,Ωn)|ΨT ⟩} , (2.29)

with the corresponding projector PT . The projectors P0 and PT are simply related by
time-evolution, i.e. we have

PT = e−iTHP0e
iTH , (2.30)

and in particular, we emphasize again that PT ̸= P0. In what follows, it will be convenient
to work with real quantities rather than the overlap (2.25), and we are now ready to define
the return probability.

2.2.6 The return probability

We now ready to examine the T -dependence of the overlap (2.27) in more detail. As
explained above, it is more convenient to work with a real quantity so let us define the
return probability

R(T ) := |⟨Ψ0|e−iTH |Ψ0⟩|2 . (2.31)

It is similar to the spectral form factor (the two coincide when |Ψ0⟩ = |TFD⟩ and H =
HL+HR). Recently, the spectral form factor has been extensively discussed in connection
to the black hole information paradox and quantum chaos, see for example [197]. The
time-scales of interest in that context are again late times such as t ∼ eN

2 (note this is
much shorter than the Poincare recurrence time which is doubly exponential). Here again,
we will be interested in much earlier time-scales.

In general, it is difficult to compute (2.31). As we mentioned above, the overlaps can
be computed from time-shifted coherent states in gravity but the best known technology
to do so uses the Euclidean path integral and involves solving the non-linear Einstein’s
equations. Nevertheless, we can compute the very early time dependence using large N
factorization. We present this calculation in Appendix D. At early times, we have

R(T ) = e−(∆H)2T 2
, (2.32)

which is generally valid for times up to T ∼ O(N−1). For the purposes of this paper, we
want to understand how the return probability behaves at time-scales T ∼ O(1). Here,
the decay does not follow from large N factorization and it is in general not an easy task
to compute it.

In Appendix D, we review that for the TFD state, the return probability (which is the
spectral form factor) decays as

RTFD(T ) = e−N
2fTFD(T ), (2.33)

where fTFD(T ) is O(N0) and for early times T ∼ O(N0)≪ β behaves like fTFD(T ) ≈ αT 2,
where α is an O(N0) constant which depends on the temperature. This is an extremely
fast decay, much faster than thermalization where the prefactor in the exponent is of order

21To be precise, we should also give a small smearing to the single-trace operators in order to avoid UV
divergences of operator insertions at coincident points. We will leave it as implicit in what follows.
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N0, and shows that thermofield double states at different times orthogonalize exponentially
fast.

We expect similar behaviour for many other semi-classically time-dependent states,
that is for timescales of T ∼ O(1), we expect

R(T ) ∼ e−N2f̃0(T ) , (2.34)

for a positive and O(N0) function f̃0(T ) which depends on the state |Ψ0⟩. We expect that
for small T the function f̃0(T ) starts quadratically, as in (2.32). Note that this fast decay is
not even a consequence of quantum chaos, as it can occur at weak coupling or even in free
theories, provided they have a large number of degrees of freedom (see [198] for a study of
this question in weakly coupled N = 4 SYM). The difference between a free theory and a
holographic one will manifest itself in the time-scale during which the exponentially small
overlap remains valid. For free N = 4 SYM, the spectrum is integer spaced and so the
return probability will be periodic with period 2π, while in a chaotic theory it will take
doubly exponentially long for the signal to return to unity.

The average late-time value of the signal is also highly dependent on whether the theory
is chaotic or not. For a system with no degeneracies,22

R = lim
t∗→∞

1

2t∗

∫ t∗

−t∗
dT R(T ) =

∑
i

|ci|4 . (2.35)

For the type of states we are considering, i.e. those with a large energy variance, this is
exponentially small, and scales as e−α′N2 , where α′ is an O(1) constant which depends on
the particular |Ψ0⟩ we have picked. This value is often referred to as the plateau, especially
in the context of the spectral form factor.

Between the initial decay (2.33) and the plateau (2.35), there can be other regimes,
which are particularly interesting in connection to quantum chaos [199, 200]. For example,
in the spectral form factor, the plateau is preceded by a ramp where the signal grows
linearly. These effects will not be important for the present work, as we will only consider
O(1) timescales. The crucial point we will exploit throughout the paper is that the signal
is already exponentailly small in N2 at those timescales.

The overlap (2.25) obeys the property

⟨Ψt0 |Ψt0+T ⟩ = ⟨Ψ0|ΨT ⟩ . (2.36)

This may appear trivial, but it means that even if the bulk geometry appears to be static
at the semi-classical level, the return probability may still decay following (2.33) if the
state had a period of manifest bulk time-dependence in the far past. Said differently, the
variance in energy which determines the decay is unchanged under time-evolution, so even
if the 1-point functions have stabilized, the variance remains large. This observation is
particularly relevant in the case of a black hole formed by gravitational collapse.

The exponential decay (2.33) can be extended to more general correlators of the form
⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩, where O are single-trace operators. We expect

⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩ = F (T )⟨Ψ0|ΨT ⟩ , (2.37)
22Systems like N = 4 SYM will have degeneracies due to superconformal symmetry. For example, for

every primary, there are towers of descendants with degenerate energy levels. Nevertheless, the number of
degenerate states is exponentially smaller than the number of all states, at least in the high-energy sector
of the theory, so the degeneracy only contributes a subleading effect.
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where F (T ) is finite in the large N limit and satisfies

F (0) = ⟨Ψ0|O(t1) . . .O(tn)|Ψ0⟩ ,
dkF (T )

dT k
|T=0 = O(N0) . (2.38)

To see the exponential decay we write (2.37) as

⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩ =
⟨Ψ0|O(t1) . . .O(tn)|ΨT ⟩

⟨Ψ0|ΨT ⟩
⟨Ψ0|ΨT ⟩ . (2.39)

The second term in this product is really responsible for the decay of the correlator. The
first term is hard to evaluate from first principles, but in holography its meaning is clearer.
In the bulk theory, it is computed by computing a correlation function on a background
dictated by the Euclidean path integral with different sources on the northern and soutern
hemisphere (corresponding to |Ψ0⟩ and |ΨT ⟩, respectively). This correlator is O(1) and a
smooth function of the background, which will generally change slowly with T , so we expect
its time derivatives not to scale with N as indicated in (2.39). We check this statement in
a few examples in section 2.5.

To sum up, any state in the code subspace (2.28) has an exponentially small overlap
with any state in the code subspace (2.29). This can be summarized by the relation

Rcode(T ) =
1

dcode
Tr[PTP0] = O(e−N

2f̃(T )) (2.40)

where dcode is the dimensionality of the code subspace, and for the time-scales we have
discussed. The decay (2.40) can be used in combination with other useful inequalities.
For example, for a Hermitian operator O with eigenvalues λi, and if [P0,O] = 0, we have
|⟨Ψ0|O|ΨT ⟩|2 ≤

√
Tr[O4]

√
Tr[PTP0] and |⟨Ψ0|O|ΨT ⟩|2 ≤ max(λ2i ) Tr[PTP0].

2.2.7 Other asymptotic charges

More generally we can consider the change of the state by large diffeomorphisms corre-
sponding to the other asymptotic symmetries of the theory, in the case of AdSd+1 the
conformal group SO(2, d) with the generators we discussed in section 2.2.1. This leads us
to define a natural generalization of the return probability

R(g) = |⟨Ψ0|U(g)|Ψ0⟩|2 , g ∈ SO(2, d) , (2.41)

where U(g) is the unitary realizing the conformal transformation of the CFT on Sd−1×time.
What can we expect for these overlaps? To start, let us suppose the state |Ψ0⟩ breaks

rotational SO(d) symmetry at the classical level. By this, we mean that bulk dual geometry
breaks the symmetry, which would be the case for some spherically asymmetric lump of
matter. Take J to be the angular momentum generator, then we expect that the variance
of J will be of O(N2) for such a state. Hence we expect that for small values of a rotation
angle ϕ dual to J we will have

R(ϕ) = e−(∆J)2ϕ2 = e−κN
2ϕ2 , (2.42)

for κ ∼ O(1). For more general angles, we expect

R(ϕ) = e−N
2frot(ϕ) . (2.43)
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However, because angular momentum is quantized, we have

R(ϕ+ 2π) = R(ϕ) , (2.44)

hence the function frot(ϕ) has period 2π. In this direction of the conformal group the
return probability has a very short Poincare recurrence equal to 2π.

All in all we find that as we increase ϕ away from 0 the return probability R(ϕ)
very quickly dips down to exponentially small values and stays there until the Poincare
recurrence at ϕ = 2π. As we see from (2.43), for any fixed ϕ which is in the range (0, 2π),
we have R(ϕ) being exponentially small in the large N limit.

Of course if the state respects spherical symmetry then the return probability will not
decay in the corresponding SO(d) directions. It is worthwhile to discuss several distinct
scenarios. In the simplest case, the state preserves the symmetry and is thus annihilated by
the generators of rotations. The second simplest situation is the case where the symmetry
is manifestly broken at the classical level (for example an asymmetric lump of matter).
In this case, the breaking of the symmetry is manifest, and would be visible in the 1-
point function of single-trace operators. There are also more subtle situations where the
state breaks the symmetry classically in the bulk, but this may be invisible in the 1-point
functions. An example of this are states by prepared by the path integral on higher genus
surfaces in d = 2, and have topology behind the horizon [179].23

Finally as discussed in section 2.2.1, we expect that semi-classical states also break the
other conformal symmetries. We can get some intuition by considering a state dual to a
conformal primary of dimension ∆. In this case the return probability along one of the
conformal boost directions is determined by a group theoretic computation

R(s) = |⟨∆|e−isK |∆⟩|2 =
Å

1

cosh2 s

ã2∆
. (2.45)

For primary states with ∆ ∼ O(N2), we get exponential decay of the form e−N
2f(s) for any

non-zero s. Notice that for the conformal boosts we do not expect any Poincare recurrence
for large s, which in the case of primaries is obvious from the formula above, since such a
transformation monotonically increases the energy of the state.

In the case of AdS3 the asymptotic symmetry group is enhanced to Virasoro and
similar statements hold for the flow of the state under more general large diffeomorphisms
generated by Ln, Ln.

To summarize, if we start with a state |Ψ0⟩ which breaks all conformal symmetries at
the level of the semi-classical geometry we expect that R(g) defined in (2.41) will decay
exponentially fast in all directions away from the identity element on the conformal group
manifold.

2.3 State-dressed operators

We are now in a position to introduce operators Φ̂ which satisfy the two properties described
in section 2.2.4, namely their commutator with the Hamiltonian and other asymptotic
charges is zero to all orders in the 1/N expansion and they act like HKLL operators to

23The thermofield double also has this property. It breaks rotational symmetry of each CFT individually,
but the breaking is invisible in 1-point functions. It would be interesting to understand if this type of
breaking always requires a horizon.
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leading order at large N on the code subspaces {HT , T ∈ (−t⋆, t⋆)}. Here t∗ is an order
one (i.e. N0)) time of our choice. We define the HKLL operator Φ, (2.23), in the N →∞
limit. In this limit the bulk is described by a quantum field theory on a curved spacetime
and code subspaces for different T will be strictly orthogonal to one another. In addition,
Φ is a local bulk operator which commutes with all the boundary single-trace operators
in the time band algebra, including the appropriately normalized Hamiltonian [186, 190].
But it will no longer be commuting once 1/N corrections are included. In particular, we
will have

[Φ,
H − ⟨H⟩

N
] = O(1/N) ̸= 0 . (2.46)

Again, the physical reason behind this is that (2.23) is a diff-invariant operator that is
dressed to the boundary. Note that for the naive HKLL operator (2.23), the commutator
with other single-trace operators will also be non-zero at order O(1/N). For almost all
single-trace operators, this can be removed order by order in 1/N by adding the appropriate
corrections to Φ [190]. However, these modifications will not be able to remove the non-
vanishing commutator with the Hamiltonian (2.46). Thus, to remove the gravitational
dressing to the boundary CFT, a more sophisticated procedure is required.

We start by focusing on setting the commutator with the Hamiltonian to zero and
discuss the extension to other asymptotic charges later. To this end, we introduce the
following operator24

Φ̂ = c

∫ t∗

−t∗
dT e−iTHP0ΦP0e

iTH , (2.47)

where t∗ is an O(N0) timescale of our choice, and c is an overall normalization constant

c−1 =

∫ t∗

−t∗
dT ⟨Ψ0|PT |Ψ0⟩ . (2.48)

As we will see, the projector P0 will be key and will make Φ̂ act appropriately on
the code subspaces. The range (−t⋆, t⋆) determines the set of code subspaces on which
Φ̂ acts in the desired fashion, and ultimately cannot be taken to be bigger than the time
range where the exponential decay of the return probability (2.33) is valid. To make the
operator (2.47) have the desired properties on as many states as possible, we can take this
range to be the time range where the return probability decays exponentially, though this
is not strictly necessary and a t∗ of O(N0) is sufficient. We also provide an alternative
presentation of the operators in subsection 2.3.4. In the following subsections, we will
study the action of these operators in the relevant code subspaces, and will be particularly
interested in their commutator with the Hamiltonian.

2.3.1 Vanishing commutator with H to all orders in 1/N

We now show that the operator (2.47) has vanishing commutator with H to all orders in
1/N . We start by rewriting the commutator as

[H, Φ̂] = −i d
ds

(
eisHΦ̂e−isH

)∣∣∣
s=0

, (2.49)

24Recall that P0 is the projector on the code subspace of |Ψ0⟩, and thus [Φ, P0] = 0 in that code subspace.
Therefore, we could have defined operators with the same action on the code subspace as (2.47), using a
single projector on the left (or right) of Φ. Even though the resulting operators would act in the same way
on the relevant code subspace, the operators would not be exactly identical: they would have additional
non-zero matrix elements associated to subspaces orthogonal to H0.
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and performing a change of variables, we find

[H, Φ̂] = −i d
ds

(
c

∫ t∗−s

−t∗−s
dT e−iTHP0ΦP0e

iTH
)∣∣∣
s=0

= ic(Pt∗Φt∗Pt∗ − P−t∗Φ−t∗P−t∗) ,

(2.50)

where we defined Φt∗ = e−iHt∗ΦeiHt∗ . Using the decay of the return probability through
(2.40), we see that the commutator inserted inside a correlator of a small number of single-
trace operators and evaluated on the state |ΨT ⟩ will give an exponentially small answer,
since each of the two terms in (2.50) give exponentially small numbers. This is valid for
any T as long as |T | < t⋆ and |T | − t⋆ ∼ O(N0). Thus,

[H, Φ̂] = O(e−γN
2
) , (2.51)

where γ is positive and O(N0), proving property 1, defined in subsection 2.2.4, for these
operators. Note (2.51) is true for our set of code subspaces with T constrained as above,
but not for all states. For example, the commutator is not exponentially suppressed in the
state |Ψt∗⟩.

2.3.2 Similar action as HKLL operators

A vanishing commutator with the Hamiltonian is necessary but not sufficient. There
are many CFT operators that commute with the Hamiltonian up to exponentially small
corrections in N2, but they will not have the same effect as acting with a local bulk
operator. Therefore, we also need to show that the operator Φ̂ behaves in the same way
as the HKLL operator (2.23) to leading order at large N inside correlation functions of
single-trace operators. For that we consider

⟨Ψ0|O...Φ̂...O|Ψ0⟩ =

=c

∫ t∗

−t∗
dT ⟨Ψ0|O...e−iTHP0ΦP0e

iTH ...O|Ψ0⟩

=c

∫ t∗

−t∗
dT ⟨Ψ0|O...P0PT (e

−iTHΦeiTH)PTP0...O|Ψ0⟩.

(2.52)

In the last line, we have inserted two projectors P0, which we are free to do since the
correlators is evaluated in the state |Ψ0⟩. The integrand above corresponds to TrPTP0, up
to some operator insertions that do not affect its general structure. From (2.40) we see
that the integrand will be exponentially suppressed as |T | increases (and is not O(1/N))
because of the exponentially small overlap of the code subspaces. We can thus evaluate
the integral by a saddle-point method controlled by the large N limit. The dominant
contribution comes from T = 025. Using (2.37) and (2.48) we have

⟨Ψ0|O...Φ̂...O|Ψ0⟩ = ⟨Ψ0|O...Φ...O|Ψ0⟩+O(1/N), (2.53)

as desired. The 1/N corrections can be thought of coming from corrections to the leading
saddle-point, and would be sensitive to the more detailed form of F (T ) in (2.37).

25One might worry about the possibility of rapidly oscillating phases, such as the one in ⟨Ψ0|ΨT ⟩ dis-
placing the location of the saddle point. Notice however that from (2.37),(2.38) it follows that such rapidly
oscillating phases cancel between the bra and ket contribution.
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Notice that if we apply the operator Φ̂ to one of the time-shifted states, then as long
as |T | < t∗, we find

⟨ΨT |O...Φ̂...O|ΨT ⟩ = ⟨ΨT |O...(e−iTHΦeiTH)...O|ΨT ⟩+O(1/N) (2.54)

Thus in the code subspace HT , Φ̂ acts as e−iTHΦeiTH to leading order at large N . To
make this more manifest, we can also write (2.47) as

Φ̂ = c

∫ t∗

−t∗
dT PT (e

−iTHΦeiTH)PT . (2.55)

Since we have shown that, to leading order at large N , Φ̂ and Φ have the same matrix
elements on the entire code subspace it follows that higher point functions of Φ̂ will also
agree at large N with those of Φ. Consider for instance,

Φ̂i = c

∫ t∗

−t∗
dT e−iTHP0ΦiP0e

iTH (2.56)

where Φi ≡ Φ(xi) is an HKLL operator located at a certain spacetime point xi, then in
the large N limit

⟨Ψ0|O...Φ̂1Φ̂2...Φ̂n...O|Ψ0⟩ =cn
∫ t∗

−t∗
dT1...dTn ⟨Ψ0|O...PT1(e−iT1HΦ1e

iT1H)PT1PT2

(e−iT2HΦ2e
iT2H)PT2 ...PTn(e

−iTnHΦne
iTnH)PTn ...O|Ψ0⟩

≈ ⟨Ψ0|O...Φ1Φ2...Φn...O|Ψ0⟩ .
(2.57)

In addition, this implies that the commutator of Φ̂i’s is the same as that of HKLL operators
in the large N limit. Two operators, Φ̂(xi) and Φ̂(xj), will have zero commutator at space-
like separated points whereas they have O(1) commutator if they are timelike-separated.
This is true even though these operators do not translate under commutation with the
boundary Hamiltonian, up to exponentially small corrections in N . Nevertheless, they
still have bulk space-time labels and preserve the causal properties of HKLL operators in
the large N limit.

2.3.3 Interpretation and comments

We have just seen that to leading order in the large N limit, the operator (2.47) acts like
the HKLL operator (2.23) in the appropriate code subspace. However, it commutes with
H to all orders in 1/N . The existence of these operators provides strong evidence that the
algebra of single-trace operators in a short time band can have a non-trivial commutant
when acting on time-dependent states of high energy.

The vanishing of the commutator with H should be interpreted as (2.47) being gravi-
tationally dressed not with respect to the boundary, but instead with respect to features of
the bulk state, in particular its time-dependence. This can be seen by the fact that Φ̂ acts
differently on different states. On the time-shifted states |ΨT ⟩ and their code subspaces,
it acts as e−iTHΦeiTH . For example, imagine that in the state |Ψ0⟩ we have a supernova
explosion taking place at t = 0 and we chose the operator (2.23) so that it acts right next
to the explosion. In the state |ΨT ⟩ the explosion obviously takes place at t = −T . From
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equation (2.54), we can see that the operator Φ̂ will act again right next to the supernova
explosion, even though the supernova is now at t = −T . Therefore, one and the same
operator Φ̂ knows how to always act at the correct moment (right next to the explosion)
for the entire family of states |ΨT ⟩, as long as |T | < t∗. The finiteness of t∗ indicates that
there is still some residual boundary dressing, which however is not visible in pertubation
theory26.

The property of being dressed with respect to features of the state is also present in the
local observables one defines in general relativity, discussed in section 2.1.3. These state
dressed observables are defined at points where a set of D scalars, like the Ricci scalar
or RµνρσRµνρσ where Rµνρσ is the Riemann tensor, ’click’ with a certain set of numbers.
The observables are labeled by these values and they are evaluated precisely where the
scalars take those values in each state. Locality of these observables requires them to be
defined only in some neighbourhood of a classical solution. In the same spirit, the operators
discussed in this section are also local for a certain family of code subspaces, see section
2.3.1.

As mentioned earlier, if the spacetime is so symmetric that the scalars take the same
values throughout the spacetime, then these classical observables are not well defined. Since
every point in the spacetime is physically equivalent, it is reasonable that local observables
are ill defined for these solutions. For this reason, the observables are state dependent.
Similarly, it is not possible to apply the same logic discussed in the previous subsections to
empty AdS, or other static states, as there are no time-dependent features in the bulk that
can be used as a ’clock’ to define a moment in time where the operator acts. Technically,
the return probability for such states does not exhibit the rapid decay (2.26). We thus see
a nice parallel between the classical and quantum situations.

The definition of our operator gives a bulk operator which is dressed with respect to
features of the state, but in an implicit manner. Our construction does not permit us to
extract the details of the dressing. Going back to our example of a supernova explosion,
one might guess that the dressing is with respect to the supernova and that one could
in principle define a gravitational Wilson line between the operator and the supernova.
But what if the state described instead two supernovas exploding at the same or different
times? To which explosion would our operator be dressed to? The construction does not
give a definite answer, and the way to address this question would be to enlarge the set of
code subspaces on which our operator correctly acts. For example, if our operator did not
move under the time-translation of one of two supernovae, we would say that it is dressed
to the other one. We hope to return to this question in the future, but see subsection 2.6.3
for some related remarks.

2.3.4 A similarity transformation

We briefly mention a variant of operators with properties similar to those of (2.47). We
first define the shifted Hamiltonian27

Ĥ = H − ⟨Ψ0|H|Ψ0⟩I . (2.58)

Then we introduce

V =
c√
2

∫ t∗

−t∗
dTe−iĤTP0 , (2.59)

26Similar remarks were made in [48] for the DeWitt observables in AdS.
27This shift is useful in order to avoid rapidly oscillating phases in the discussion below.
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with c given in (2.48). We have

V V † =
c2

2

∫ t∗

−t∗
dT

∫ t∗

−t∗
dT ′e−iĤTP0e

iĤT ′
, (2.60)

where we used P 2
0 = P0. Following arguments similar to those of the previous subsection,

we find that to leading order at large N , and when computing the matrix elements of
(2.60) within the code subspace, the two integrals in (2.60) can be computed by a saddle
point method, where the dominant saddle is T = T ′ = 0. We then find that in this class
of states and at large N

V V † ≃ I, and V †V ≃ I . (2.61)

in the sense that, within the code subspace V behaves like a unitary, up to 1/N corrections.
Then we start with a boundary-dressed operator Φ and define

Φ̂ = V ΦV † . (2.62)

Following similar arguments as before we can show that the operator (2.62) satisfies prop-
erties 1 and 2 of subsection 2.2.4. To check the commutator of Φ̂ with H. We write

[H, Φ̂] = −i d
ds

(
eiĤsV ΦV †e−iĤs

)
|s=0

= −i d
ds

c2

2
(

∫ t∗−s

−t∗−s
dTe−iĤT )P0ΦP0(

∫ t∗−s

−t∗−s
dT ′eiĤT

′
)|s=0 ,

(2.63)

which again localizes on boundary terms and is thus exponentially suppressed.
Second, to show that the leading large N correlators of Φ̂ are the same as those of Φ we

follow exactly the same reasoning as in the previous subsection, but now we will have two
time-integrals. Each one of these time integrals will lead to a sharply suppressed Gaussian
around T = T ′ = 0 and can be evaluated by saddle-point at large N , reproducing the
desired result.

2.3.5 Other asymptotic charges

More generally we need to make (2.23) commute with all boundary symmetry generators
corresponding to asymptotic symmetries. For asymptotically AdSd+1 space-times this is
the conformal group SO(2, d) and we consider a generalization of the form

Φ̂ = c

∫
B
dµ(g)U(g)P0ΦP0U(g)−1, (2.64)

where now
c−1 =

∫
B
dµ(g)⟨Ψ0|U(g)P0U(g)−1|Ψ0⟩ . (2.65)

Above, dµ(g) is the Haar measure on SO(2, d) and B is a reasonably sized connected sub-
manifold of SO(2, d) containing the identity. The commutator with conformal generators
will then be given by operators in the code subspace of states U(g∗)|Ψ0⟩, where g∗ lies on
the boundary ∂B. For the construction to work in this generalization we must make sure
that the overlaps

R(g) = |⟨Ψ0|U(g)|Ψ0⟩|2, (2.66)
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decay exponentially in the geodesic distance of g from the identity. As discussed in subsec-
tion 2.2.7 we expect this to be true for states which break all symmetries at the semiclassical
level28. The quantity R(g) is an interesting generalization of the return probability (2.31)
that would be interesting to study further.

2.4 A more general argument for the commutant

The operators (2.64) constructed in the previous section commute with the asymptotic
charges to all orders in 1/N , however they commute with the other single-trace operators
in the time-band generally only to leading order in 1/N . To identify a commutant for
the time-band algebra A, the operators (2.64) have to be improved. In this short section
we outline a somewhat different argument suggesting that it is indeed possible to find a
commutant to all orders in 1/N . We caution the reader that the argument that follows
is based on certain assumptions which seem physically plausible, but for which a rigorous
proof is still lacking. A more careful treatment for the existence of a commutant (as well
as a mathematically precise definition of the time-band algebra in the first place) would
be desirable.

Let us start with a standard HKLL operator Φ. We also introduce the notation qi =
Qi−⟨Qi⟩

N for where Qi denotes any of the asymptotic SO(2, d) charges and Oj a general
single-trace operator in the time-band. Our goal is to find an operator Φ̂ which has the
following properties:

1. [Φ̂, qi] = 0 and [Φ̂,Oj ] = 0 for all qi ∈ SO(2, d) and Oj ∈ A, to all orders in 1/N .

2. To leading order at large N the correlators of Φ̂ with qj ,Oi must be the same as
those of Φ. In particular this means that for single-trace operators Oi outside the
time-band we generally expect [Oi, Φ̂] = O(N0).

The first condition is obvious. The second condition is necessary in order to ensure that
the operator Φ̂ acts in the expected way, at least to leading order at large N , and creates
particles that can be detected with an O(1) effect by operators outside the time-band when
light rays from the diamond hit the boundary.

Here we remark that in order for the two conditions to be mutually consistent, it is
important that we impose the second condition only to leading order at large N . The
point is that [qi,Φ] = O(1/N) hence when looking at leading order correlators it is indeed
consistent to demand simultaneously that i) Φ̂ commutes with qi and that ii) Φ̂ acts like Φ.
However, when moving on to subleading corrections we have a non-vanishing commutator
[qi,Φ] hence we cannot impose both conditions at the same time. We choose to impose
that our operators Φ̂ continue to commute with qi to all orders in 1/N , but we allow their
correlators to depart from those of Φi at subleading orders in 1/N .

We now define the desired operators Φ̂ by specifying how they act on the code subspace
H0. Earlier we defined the code subspace as the space generated by acting on |Ψ0⟩ with
single-trace operators, which are not necessarily restricted in the time-band. However, by
an analogue of the Reeh-Schlieder theorem29 we expect that for reasonable bulk states |Ψ0⟩

28For compact symmetries, such as rotations, R(g) will have recurrences every 2π. Hence along the
compact directions we take g∗ ∼ O(1) < 2π.

29This was discussed in [61] for the case of empty AdS and at large N . We believe that a similar result
should hold for more general heavy states and even when taking 1/N corrections into account, but it would
be interesting to develop a more careful proof.
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the code subspace H0 can also be generated by acting on |Ψ0⟩ with only elements of the
time-band algebra A

H0 = span{A|Ψ0⟩} . (2.67)

We now define the action of the the operator Φ̂ on the code subspace by the following
conditions

Φ̂A|Ψ0⟩ = AΦ|Ψ0⟩ , ∀A ∈ A . (2.68)

This set of linear equations, one for every element of the small algebra A, defines the action
of Φ̂ on the code subspace, in a way which satisfies the desired properties as we will see
below.

Notice that these equations can also be represented as follows: we first select a basis
of linearly independent elements Ai of the algebra A. then we define the matrix of 2-point
functions

gij = ⟨Ψ0|A†
iAj |Ψ0⟩ . (2.69)

From (2.67), it follows that the set of states |i⟩ = Ai|Ψ0⟩ form a (possibly over-complete)
basis of the code subspace. Since Φ̂ is an operator on the code subspace it can be written
as

Φ̂ = Kij |i⟩⟨j| = KijAi|Ψ0⟩⟨Ψ0|A†
j . (2.70)

for an appropriate choice of Kij . To find the matrix K, we start with the desired relation
(2.68) written as

Φ̂Al|Ψ0⟩ = AlΦ|Ψ0⟩ , (2.71)

then we replace Φ̂ with (2.70) and multiply from the left with ⟨Ψ0|A†
k to get

gjl gkiK
ij = ⟨Ψ0|A†

kAlΦ|Ψ0⟩ . (2.72)

If the set of states |i⟩ = Ai|Ψ0⟩ are linearly independent then the matrix gij is positive
definite and invertible. In that case we can solve for K as

Kij = gikgjl⟨Ψ0|A†
kAlΦ|Ψ0⟩ , (2.73)

where gijgjk = δik. When (2.73) is replaced in expression (2.70), we find an explicit solution
of the desired equation (2.68).

We emphasize that the necessary ingredient to arrive at (2.73) was the linear inde-
pendence of the states Ai|Ψ0⟩, which is equivalent to the statement that there is no non-
vanishing operator in A which annihilates the state |Ψ0⟩. We discuss this condition in the
following subsection.

2.4.1 On the consistency of the defining equations

Before checking that the operators Φ̂ defined by (2.68), or equivalently via (2.70),(2.73),
have the desired properties, we need to check that equations (2.68) are self-consistent
linear equations. The only possible source of inconsistency is the following: if there was an
element A ̸= 0 of the time-band algebra A such that A|Ψ0⟩ = 0, this could potentially be
a problem since we would then have A|Ψ0⟩ = 0, while in general AΦ|Ψ0⟩ ̸= 0. Then the
equation (2.68) would imply 0 = A|Ψ0⟩ = AΦ|Ψ0⟩ ≠ 0 which is a contradiction. Relatedly,
gij defined in (2.69) would not be invertible and we would not be able to get to (2.73).
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We will now show that this situation does not arise, that is

A|Ψ0⟩ ≠ 0 ∀A ∈ A , A ̸= 0 . (2.74)

We will prove this by first proving that at large N (2.74) is true and then we will argue
that 1/N corrections cannot change the conclusion.

We have been working under the assumption that the time-band is short enough, which
means that in the bulk there will be a region which is space-like relative to the time band.
In the large N limit, where gravitational backreaction is turned off, operators inside that
region (for example usual HKLL operators) commute with all elements of the algebra A,
including the appropriately normalized asymptotic charges qi. Hence, in the large N limit
the algebra A has a non-trivial commutant A′. We want to argue that this commutant
continues to exist when 1/N corrections are taken into account, provided that the state
|Ψ0⟩ has non-vanishing variance of O(N2) under the asymptotic charges.

Assuming that at large N the theory in the bulk behaves like usual QFT on a curved
background, we expect that an analogue of the Reeh-Schlieder theorem will hold for the
commutant A′, which means that we can generate the code subspace H0 by acting on |Ψ0⟩
with elements of A′.

Suppose now that there was an element A of the time-band algebra A which annihilated
the state |Ψ0⟩. Then for any element a′ ∈ A′ we have

Aa′|Ψ0⟩ = a′A|Ψ0⟩ = 0 . (2.75)

Since states of the form a′|Ψ0⟩ generate H0 we conclude that the operator A has vanishing
matrix elements in H0 at large N . From this we can not immediately conclude that
A = 0 as an operator when 1/N corrections are included. For example, for |Ψ0⟩ = |0⟩ the
normalized SO(2, d) generators qi = Qi

N have vanishing matrix elements at large N , since
they annihilate |0⟩ and commute with all other operators. However they are non-vanishing
operators at order 1/N . If A is a non-vanishing operator which has vanishing matrix
elements at large N on H0 then it means that it acts as a central element at large N .
Here we make an additional assumption, that the only central elements are the SO(2, d)
generators qi and their functions30. Since, by assumption, the state |Ψ0⟩ has non-trivial
variance under these generators, we conclude that it cannot be annihilated by a non-trival
A.

Let us assume now that we have a state of the form A|Ψ0⟩ which has finite (i.e. O(N0))
positive norm at large N . Including 1/N corrections will generally modify the norm of this
state, but it will do so by corrections suppressed by powers of 1/N . Since the previous
argument established that the leading large N norm of the state A|Ψ0⟩ is a finite positive
number, perturbative 1/N corrections cannot make it vanish. Hence we expect property
(2.74) to be true to all orders in 1/N perturbation theory.

We emphasize that the fact that we cannot annihilate the state by the time-band
algebra A relies on the fact that we have restricted our attention to small products of
single-trace operators. As discussed in a related context [12, 61], if we consider the full
algebra of operators in the time-band we can find sufficiently complicated combinations
which can annihilate the state31.

30We believe this assumption to be quite weak, but it would be interesting to prove it more thoroughly.
31For example, consider a state |Ψ⟩ with ⟨Ψ0|Ψ⟩ = 0. Then the (complicated) operator |Ψ⟩⟨Ψ| annihilates

|Ψ0⟩.
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Finally, as should be clear from the above, if the state |Ψ0⟩ has very small or vanishing
variance in the asymptotic charges then (2.74) fails and it is not possible to define operators
obeying (2.68).

2.4.2 Proof that Φ̂ has the desired properties

Having established that equations (2.68) are consistent, we argue that the operator Φ̂ has
the desired properties.

First it is obvious by (2.68) that the operator Φ̂ has vanishing commutators with
elements of A. To see that consider A1 ∈ A and a general state in the code subspace which
can be written as A2|Ψ0⟩, with A2 ∈ A. Then we have

[Φ̂, A1]A2|Ψ0⟩ = Φ̂(A1A2)|Ψ0⟩ −A1(Φ̂A2|Ψ0⟩) = A1A2Φ|Ψ0⟩ −A1A2Φ|Ψ0⟩ = 0 , (2.76)

where in the second equality we used (2.68). Since this is true for all A2, we find

[Φ̂, A1] = 0 ∀A1 ∈ A , (2.77)

where it should be understood that this equation holds on the relevant code subspace.
Second, we will show that to leading order at large N , the operator Φ̂ acts like the

HKLL operator Φ. To see this, consider an arbitrary matrix element on the code subspace.
Two general states of the code subspace can be written as A1|Ψ0⟩, A2|Ψ0⟩. Then we have

⟨Ψ0|A†
1Φ̂A2|Ψ0⟩ = ⟨Ψ0|A†

1A2Φ|Ψ0⟩ = ⟨Ψ0|A†
1ΦA2|Ψ0⟩+ ⟨Ψ0|A†

1[Φ, A2]|Ψ0⟩ . (2.78)

In the first equality we used (2.68). Now, the operator A2 is some combination of single-
trace operators in the time band, as well as the normalized SO(2, d) generators qi. All of
these operators have commutators with Φ which are suppressed by powers of 1/N . Hence
the last term in the equation above is suppressed. All in all, we find

⟨Ψ0|A†
1Φ̂A2|Ψ0⟩ = ⟨Ψ0|A†

1ΦA2|Ψ0⟩+O(1/N) , (2.79)

which establishes the desired result. This ensures that large N correlators of Φ̂ are the
same as Φ.

We emphasize that the operators defined in this section are not exactly the same as
the operators (2.47) discussed earlier. For example, unlike (2.47) the operators (2.68) were
defined to act only on the code subspace H0 of |Ψ0⟩ and not on the code subspace HT for
T = O(N0). Also, the commutator of (2.47) with the Hamiltonian is of order e−N2 while
it is exactly zero, within the code subspace, for the operators (2.68).

2.5 Examples

In this section, we consider various examples. Our primary focus will be on examining
the validity of equations (2.34), (2.37),(2.38), on which the construction of our operators
relies.
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2.5.1 Coherent states

In general, we are interested in time-dependent semi-classical geometries. Many of these
states can be thought of as bulk coherent states. We will discuss the overlap of these states
closely following [173]. In the CFT, these states are prepared by a Euclidean path integral

|Ψ⟩ = Te
−

∫
tE<0 dtEd

d−1x ϕb(tE ,x)O(tE ,x) |0⟩ , (2.80)

where O is a single-trace operator dual to a supergravity field, and the source is scaled
appropriately so that it leads to states with non-trivial gravitational backreaction, i.e. the
expectation value of the energy and variance of this state will scale like (2.18) and (2.20).

In the large N limit the overlap of two such states can be computed by a Euclidean
gravitational path integration which in the semi-classical limit can be approximated by a
saddle point computation. For example, the norm of the state is

⟨Ψ|Ψ⟩ ≈ e−Igrav(λb) , (2.81)

where λb is the following boundary condition for the bulk field

λb =

®
ϕb(tE , x), tE < 0

ϕ⋆b(−tE , x), tE > 0 ,
(2.82)

and Igrav(λb) is the on-shell gravitational action in the presence of the sources specified
above.

Generalizing to two states |Ψ1⟩ and |Ψ2⟩, the normalized inner product between them
is

R =
|⟨Ψ1|Ψ2⟩|2

⟨Ψ1|Ψ1⟩⟨Ψ2|Ψ2⟩
, (2.83)

which at large N can be computed by a supergravity saddle-point computation

R ≈ exp
î
−2Re(Igrav(λ̃)) + Igrav(λ1) + Igrav(λ2)

ó
, (2.84)

where the supergravity solutions have the boundary sources λ̃, λ1 and λ2 which take the
following form

λ̃ =

®
ϕ2(tE , x), tE < 0

ϕ⋆1(−tE , x), tE > 0,
λi =

®
ϕi(tE , x), tE < 0

ϕ⋆i (−tE , x), tE > 0,
(2.85)

where i = 1, 232.
Notice that in each of the terms of (2.84), the gravitational on-shell action is propor-

tional to 1
GN
∼ N2. Since quantum mechanically we need R ≤ 1, we find that the following

inequality has to be satisfied

2Re(Igrav(λ̃)) ≥ Igrav(λ1) + Igrav(λ2) , (2.86)

for the on-shell value of solutions of the Einstein plus matter equations, for any choice of
sources of the form (2.85). If the two sources are different, we expect a strict inequality.

32The sources ϕ2(tE , x) and ϕ⋆1(−tE , x) should decay sufficiently fast at the t = 0 surface such that
the states are normalizable. This also implies that the bra and ket preprations of different states can be
smoothly glued to each other.
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It would be interesting to explore this inequality directly from the gravitational point of
view. We discuss this further in the discussion.

We now move on to the computation of the return probability for states of the form
(2.80) after a small (not N -dependent) time evolution. That is, we take the time-evolved
state, |Ψ(T )⟩ = e−iHT |Ψ⟩, and consider the following quantity

R(T ) =
|⟨Ψ(0)|Ψ(T )⟩|2

⟨Ψ(0)|Ψ(0)⟩⟨Ψ(T )|Ψ(T )⟩
. (2.87)

To apply the general formalism described above, we need to analyze how the Euclidean
sources ϕ0 preparing the state |Ψ(0)⟩ need to be modified to ϕT , in order to prepare |Ψ(T )⟩.
From a technical point of view computing ϕT in terms of ϕ0 is not straightforward, as it
requires a solution of the Einstein equations. Nevertheless, we can in principle compute
the return probability using (2.83) and (2.84) with a modified source

λ̃ =

®
ϕT (tE , x), tE < 0

ϕ⋆0(−tE , x), tE > 0,
λT =

®
ϕT (tE , x), tE < 0

ϕ⋆T (−tE , x), tE > 0 .
(2.88)

Thus we get
R(T ) = exp

î
−2Re(Igrav(λ̃)) + Igrav(λ0) + Igrav(λt)

ó
, (2.89)

and this is exponentially suppressed in the semi-classical limit because of the 1/GN ∼ N2

coefficient in the gravitational action and the condition (2.86).

2.5.2 Thermofield double state

We now consider the thermofield double state

|TFD⟩ = 1√
Z(β)

∑
n

e−
βEn
2 |En⟩L ⊗ |En⟩R , (2.90)

where the |En⟩’s are the energy eigenstates and Z(β) is the partition function at inverse
temperature β. In the strong coupling limit, for temperatures below the Hawking-Page
temperature, the state is dual to two entangled thermal AdS geometries, while for temper-
atures higher than the Hawking-Page temperature, it is expected to be dual to the eternal
black hole in AdS [201]. This geometry has two asymptotically AdS boundaries, on the
"left" and the "right", hence the asymptotic symmetry group is SO(2, d)L × SO(2, d)R.
The state (2.90) is invariant under certain combinations of the asymptotic charges, for
example, we have

(HR −HL) |TFD⟩ = 0 but (HR +HR) |TFD⟩ ≠ 0 (2.91)

and similarly for the other charges. In this case, we can generalize the return probability
to include all possible large diffeomorphisms on the two sides

R(g1, g2) = |⟨TFD|UL(gL)UR(gR) |TFD⟩|2 , gL/R ∈ SO(2, d)L/R . (2.92)

In this case, we expect R(gL, gR) to rapidly decay along certain directions but remain
constant along others due to the symmetries of the state (2.90).
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In what follows we focus on a particular class of deformations, corresponding to evolving
with HL+HR. This gives what is usually called the spectral form factor (SFF) defined as

R(t) = |⟨TFD|e−i
T
2
(HL+HR)|TFD⟩|2 =

∣∣∣∣Z(β + iT )

Z(β)

∣∣∣∣2 , (2.93)

which was introduced in the context of the eternal AdS black hole in [195] and studied in
detail in [197].

We are interested in studying (2.93) above the Hawking-Page temperature for small
times, i.e, T ∼ O(1). One way to proceed is by computing Z(β) and then analytically
continuing β → β + iT . If we are above the Hawking-Page temperature Z(β) can be
estimated by the Euclidean AdS-Schwarzschild black hole saddle point

Z(β) ≈ e−IBH(β) , (2.94)

where IBH(β) is the on-shell action on the Euclidean black hole background. For example,
we find

IBH(β) = −
π2

2GNβ
(for AdS3) IBH(β) =

β

GN
g(rH) (for AdS5) , (2.95)

where we have set the AdS radius ℓAdS = 1 and rH is the horizon radius, while

g(rH) =
V3
8π

(−r4H + r2H) (2.96)

where V3 is the dimensionless volume associated with the metric on a unit sphere. For the
AdS5 case, rH ≈ π/β for small real β. A detailed discussion of the action can be found in
[202]. The central charge of the CFT2 is c = 3/2GN and the rank for the gauge group of
the dual four dimensional SU(N) N = 4 super Yang Mills theory is given by N2 = π/2GN .

For small T the complexified partition function Z(β + iT ) will be given in terms of
the analytic continuation of the above actions. Thus for T ≪ β, one gets the following for
AdS3,

R(T ) ≈ e−
2π2

β3
c T 2

, (2.97)

which is exponentially small in the large central charge limit33. Similarly for AdS5, we find

that Z(β) ∼ e
πN2

β3 in the high temperature limit. Again for T ≪ β, we have

R(T ) ≈ e−
12π
β5

N2T 2

, (2.98)

As T becomes larger and approaches T ∼ β, the dominant saddle point will no longer be
the black hole, as the analytically continued action can start to compete with thermal AdS.
In addition the analytically continued black hole saddle point corresponds to a geometry
with a complex metric, and as T ∼ O(β) this metric becomes ’unallowable’ according to
the criteria of [203], see also [204]. Interestingly, thermal AdS becomes the dominant saddle
point before the metric becomes not allowable [198].

An exponential decay of R(T ) in N is to be expected even when T ∼ β, since in this
case the thermal AdS saddle dominates and, |Z(β + iT )|2 ∼ eg̃(T )/β

3 where g̃ is O(N0)
periodic function of time. Thus, the numerator of (2.93) |Z(β + iT )|2 is N0 while the
denominator is O(eN

2
) leading to an exponentially suppressed R(T ).

33There will be additional terms suppressed in T 2/β2 which will not affect the exponential decay in the
large c limit as long as t is smaller than β.
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2.5.3 Weakly coupled, large N gauge theories

It is interesting to consider the behavior of the SFF at small, or even vanishing ’t Hooft
coupling λ. In this case, the bulk dual is stringy and moreover, at λ = 0, the spectrum of
the dual CFT is (half)-integer-spaced and thus not chaotic at all. Nevertheless, the decay
(2.34) is still valid for a certain timescale, even in the free theory. This was discussed in
detail in [198]. For concreteness, we consider the partition function of free N = 4 SYM on
S3 × R, where the sphere has a unit radius. It has the form [205, 206]

Z(β) =

∫
DU e

∑
R

∑∞
m

1
m
zRm(β)χR(U

m) , (2.99)

where DU is the invariant Haar measure on the gauge group normalized to one, χR is
character in the representation R and

zRm(β) =
∑

Ri,B=R

e−mβEi + (−1)m+1
∑

Ri,F=R

e−mβEi , (2.100)

where the first sum is over bosonic states and the sum in the second term is over fermionic
states.

The behavior of the SFF
∣∣∣Z(β+iT )Z(β)

∣∣∣2, as well as of the microcanonical analogue YE,∆E(T ),
based on the analytic continuation of (2.99) was discussed in [198].

Even at λ = 0 the SFF obeys (2.34), though in this case the Poincare recurrence time
is very short, i.e. 4π.34 While in this limit the bulk theory does not admit a semiclassical
gravitational description, we could still apply the procedure (2.47) to identify operators
with vanishing commutators with the Hamiltonian to all orders in 1/N , though now they
do not have a nice bulk interpretation.35 In doing so, we would need to be careful to take
t∗ to be a short O(1) time-scale which is less than 4π.

Here we notice that similar results have been derived for the analytically continued
superconformal index [207], which can be thought of as the SFF for 2-sided eternal super-
symmetric AdS black holes.

2.5.4 Perturbative states around empty AdS

We now briefly discuss the return probability for perturbative states around empty AdS.
We want to consider states that have a large number of particles, but are still small
enough so that we can ignore gravitational backreation. We can get some useful estimates
by considering a thermal gas of particles in AdSd+1. These are dual to a gas generated
by single-trace operators in the CFT. Suppose we have low-lying single-trace operators
with conformal dimension ∆i. For simplicity, we consider only scalars and we take the
radius of AdSd+1 to be 1. Then the partition function of single-particle states z(β) and
the multi-trace Fock-space partition function are respectively

z(β) =
∑
i

e−β∆i

(1− e−β)d
, Z(β) = exp

[ ∞∑
n=1

1

n
z(nβ)

]
. (2.101)

34In our conventions conformal dimensions in the free theory are half-integers.
35To start with, the HKLL procedure cannot be implemented at subleading orders in 1/N due to the

many stringy fields present in the bulk. Therefore, the issue of non-commutativity with the Hamiltonian
does not stand out like it does in the case of Einstein gravity.
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It is now straightforward to do the analytic continuation

Z(β + iT ) = exp

{ ∞∑
n=1

∑
i

e−(nβ+inT )∆i

(1− e−nβ+inT )d

}
. (2.102)

For scalar BPS operators dual to SUGRA modes, ∆i is integer. Then it is obvious that

the SFF R(T ) =
∣∣∣Z(β+iT )Z(β)

∣∣∣2 has periodicity T = T + 2π, as expected. What we want to
estimate is the decay rate of the SFF at early times, and how close to 0 the SFF drops
between the recurrences.

First, we notice that the partition function factorizes to a product over ∆i. Hence we
can study the behavior of a given ∆i and we drop the sum over i. If we first take the small
β limit, before analytically continuing, we find

Z(β) ∼ exp

ï
ζ(d+ 1)

1

βd

ò
. (2.103)

Using this approximation we find that for early times

R(T ) ∼ e−
d(d+1)ζ(d+1)

βd+2 T 2

. (2.104)

As expected the decay is controlled by the variance of H. Of course, if we use the high-
temperature approximation (2.103) to perform the analytic continuation, then we do not
see the recurrences. At high temperatures, the SFF starts decaying quite rapidly, stays
close to zero for a while, and then goes back to 1 every T = 2π × integer. To find an
estimate of how closely it approaches zero it is convenient to evaluate it at T = π. Suppose
that the conformal dimension is an even integer. Then we find

R(π) =
exp
î
2
∑∞

n=1
1
n

e−nβ∆

(1−(−1)ne−nβ)d

ó
exp
î
2
∑∞

n=1
1
n

e−nβ∆

(1−e−nβ)d
ó ∼ e−(2−2−d)ζ(d+1) 1

βd
− 1

2d
log β∆

2 (2.105)

So we see significant suppression at small β, though, of course, the suppression does not
scale like e−N2 .

We expect a similar qualitative behavior for R(T ) for generic pure states of similar
energy as the states studied above (namely high energy states whose energy scales as
O(N0)): they will have recurrences every 2π, but the return probability will quickly decay
to small values for 0 < t < 2π. If we use (2.47) for such states, with t∗ ∼ O(1) < π, then
the commutator with H will be suppressed by a factor of the order of (2.105) rather than
e−N

2 . Note that this is not good enough, since the commutator we are trying to cancel
is O(1/N), which in the large N limit is much smaller than the suppression controlled by
(2.105).

2.5.5 Kourkoulou-Maldacena states in SYK model

The SYK model is a quantum mechanical model of N Majorana fermions interacting with
random interactions which is given by the Hamiltonian

H =
∑
iklm

jiklm ψiψkψlψm , (2.106)
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where ψi are the Majorana fermions {ψi, ψj} = δij , and the coupling jiklm has drawn from
the distribution

P (jiklm) ∼ exp
(
−N3j2iklm/12J

2
)
, (2.107)

leading to disorder average of

jiklm = 0, j2iklm =
3!J2

N3
. (2.108)

In a particular realization of the couplings, we consider pure states which are obtained
by using the Jordan-Wigner transformation and combining pairs of Majorana fermions into
qubit like operators and choosing states with definite eigenvalues for the σ3 components
of all qubits. These states are denoted by |Bs⟩, where s = (s1, s2, ..., sN/2) with sk = ±1,
and they satisfy the relations below

Sk |Bs⟩ = sk |Bs⟩ , (2.109)

where Sk = σk3/2 ≡ 2i ψ2k−1ψ2k is the spin operator. By choosing all possible combinations
of the {sk}’s we get a basis of the Hilbert space whose dimension is 2N/2 (N is an even
integer number). We further evolve these states over some distance l in Euclidean time
in order to get low energy states |Bs,l⟩ = e−lH |Bs⟩ which we will refer to as Kourkoulou-
Maldacena (KM) states. To stay in the low-energy regime where the SYK model exhibits
conformal invariance we take 1≪ lJ ≪ N [175].

As discussed in [175] the KM states can be thought of as a toy model of pure black hole
microstates which are out of equilibrium and which contain excitations behind the horizon.
Hence they are states which exhibit time-dependence and our general formalism should be
applicable. We start by discussing the behavior of the return probability for these states.

Analytical computation of the return probability at large N

We start with the normalization of the KM states. In the large N limit, due to the
approximate O(N) symmetry of the theory it can be shown [175] that

⟨Bs,l |Bs,l⟩ = ⟨Bs| e−2lH |Bs⟩ = 2−N/2Z(β) , (2.110)

where β = 2l [175]. The return probability then in the large N limit is given by

R(T ) =
∣∣∣⟨Bs,l|e−iHT |Bs,l⟩⟨Bs,l |Bs,l⟩

∣∣∣2 = ∣∣∣Z(β + iT )

Z(β)

∣∣∣2. (2.111)

In a low-temperature expansion, the partition function can be estimated [208] using the
Schwarzian approximation to be

Z(β) ∝ e
2
√
2π2αS

N
βJ

(βJ)3/2
. (2.112)

Using (3.65) we find for the return probability

R(T ) =
1

(1 + T 2

β2 )3/2
e
−(4

√
2π2αS

N
Jβ3

)T 2

, (2.113)
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which is compatible with (2.34), after we take into account the different N -dependence in
the SYK model vs N = 4 SYM.

We can now try to test the more general decay of the inner product between states in
time-shifted code subspaces (2.37). Let us denote the unit-normalized KM states as

(2.114)

|s,l⟩ =
|Bs,l⟩√

⟨Bs,l|Bs,l⟩
, and denote their time-dependence as |B̂s,l(T )⟩ = e−iHT |“Bs,l⟩. We

consider an operator A(t) which is a simple combination of the fermions, so that the state
A(t)|B̂s,l⟩ is in the code subspace. Then we write

⟨“Bs,l(0)|A(t)|“Bs,l(T )⟩ = ⟨“Bs,l(0)|“Bs,l(T )⟩ × ⟨Bs,l(0)|A(t)|Bs,l(T )⟩⟨Bs,l(0)|Bs,l(T )⟩
. (2.115)

Let us focus on the last ratio. We can rewrite it as

⟨Bs,l(0)|A(t)|Bs,l(T )⟩
⟨Bs,l(0)|Bs,l(T )⟩

=
⟨Bs|e−(l+iT

2
)HA(t− T

2 )e
−(l+iT

2
)H |Bs⟩

⟨Bs|e−(l+iT
2
)He−(l+iT

2
)H |Bs⟩

, (2.116)

which depends holomorphically on l + iT2 , so we can evaluate if by analytic continuation.
All in all we find

⟨“Bs,l(0)|A(t)|“Bs,l(T )⟩ = ⟨“Bs,l(0)|“Bs,l(T )⟩ × ï⟨B̂s,l(0)|A(t− T

2
)|B̂s,l(0)⟩

ò
l→l+iT

2

. (2.117)

At large N and for flip-invariant operators [175] we can also write this as

⟨“Bs,l(0)|A(t)|“Bs,l(T )⟩ = ⟨“Bs,l(0)|“Bs,l(T )⟩ × ⟨A(t− T

2
)⟩β|β→β+iT , (2.118)

where in the last term we first compute the thermal 1-point function ⟨A(t − T
2 )⟩β as a

function of β and then analytically continue β.
As an example, we consider the case where A = ψk(t)ψk(t′) (no summation over k

implied). Following [175] we have for real time and large N

⟨“Bs,l(0)|ψk(t)ψk(t′) |“Bs,l(0)⟩ = Gβ(t− t′) , (2.119)

where, for t > t′, we have

Gβ(t− t′) =
π1/4√
2βJ

e−iπ/4√
sinh[π(t− iϵ)/β]

, (2.120)

Therefore, using (2.117) we get

⟨“Bs,l(0)|ψk(t)ψk(t′)|“Bs,l(T )⟩ = ⟨“Bs,l(0)|“Bs,l(T )⟩ Gβ+iT (t− t′) , (2.121)

where the last term can be computed as the analytic continuation of (2.120).
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Figure 2.1: The blue lines are the numerical results for the variance of Hamiltonian as a
function of β while the yellow ones are the Schwarzian approximation ∆H2 = 0.396N/β3.

Similarly for A = ψ2k−1(t)ψ2k(t′)Sk we have [175]

⟨“Bs,l(0)|ψ2k−1(t)ψ2k(t′)Sk|“Bs,l(0)⟩ = −2iskGβ(t)Gβ(t′) +O(1/N), (2.122)

hence

⟨“Bs,l(0)|ψ2k−1(t)ψ2k(t′)Sk|“Bs,l(T )⟩ = ⟨“Bs,l(0)|“Bs,l(T )⟩× (2.123)

×
ï
−2iskGβ+iT (t−

T

2
)Gβ+iT (t

′ − T

2
) +O(1/N)

ò
. (2.124)

The examples (2.121) and (2.123) are consistent with our general expectations, see (2.37)
and (2.38).

Some numerical checks

In this subsection we perform some simple numerical checks of (2.37) and (2.40), as well
as the behavior of the operators (2.47) for KM states in the SYK model. The first step is
to select an appropriate value for the inverse temperature β = 2l. The early time decay of
the return probability is

R(T ) = e−∆H2T 2
. (2.125)

Earlier we used the Schwarzian approximation to compute the partition function (3.65)
from which we can also get the variance

∆H2 = 4
√
2π2αS

N

β3
= 0.396

N

β3
. (2.126)

We compare this result with a numerical computation of the variance ∆H2 for a KM state
constructed from |Bs⟩ = |+−−...−⟩. This is shown in Figure 4.4. In Figure 4.6, we show
the value of the plateau for the KM state, as defined in (2.35) for various values of N and
β. For the range of values of N we are interested in, we can take the inverse temperature
to be β = 5, which is the value we will use in what follows.

In Figure 4.2 we can see the return probability as a function of t for different values of
N for the corresponding KM state. As discussed in subsection 2.2.6, we expect that the
overlap between any state in the code subspace at t = 0 will and the one at t = T will also
decay exponentially fast. We can encode the overlap between all such pairs of states by

Rcode(T ) =
1

dcode
Tr[PTP0] . (2.127)
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Figure 2.2: The plateau height R̄ as a function of l = β/2 .

JT

R
(T
)

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

N=14

N=16

N=18

N=20

N=20

N=24

Figure 2.3: Return probability as a function of T for different values of N

For the numerical computation we need to make some choice about the code subspace. One
condition is that the dimension dcode of the code subspace should satisfy dcode ≪ 2N/2. As
an example, and for the purpose of the numerical computation, we can define the code
subspace as

Hcode = span{Oi11 ...O
ik
k |Bs⟩; ij = 0, 1} , (2.128)

for some choice of the operators Oi. Here Dcode = 2k the value of k should be such that
D ≪ 2N/2. Note that the states in (2.128) are generally not orthonormal but it is easy to
write a projector on the code subspace in terms of elements of this basis, see [209] for a
related discussion.

In Fig. 4.7, we see plots of the behavior of Rcode(T ) as a function of time for some
specific choices of such a code subspace:

• a : the dimension of the code subspace is D = 8 and the operators are chosen to be

O1 = ψ1(t = 0), O2 = ψ1(t = 0.1), O3 = ψ1(t = 0.5).

• b : the dimension of the code subspace is D = 8 and the operators are chosen to b

O1 = ψ1(t = 0), O2 = ψ1(t = 0.1), O3 = h.

• c : the dimension of the code subspace is D = 16 and the operators are chosen to be

O1 = ψ1(t = 0), O2 = ψ1(t = 0.1), O3 = ψ1(t = 0.5), O4 = ψ1(t = 1).

where in case (b) the operator h is the normalized Hamiltonian

h =
1√
N

(H − ⟨H⟩). (2.129)



2.5. EXAMPLES 97

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

R
  

  
(T

)
co

d
e

JT
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

N=14

N=16

N=18

N=20

(a)
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

N=14

N=16

N=18

N=20

0 20 40 60 80 100

0.2

0.4

0.6

0.8

R
  

  
(T

)
co

d
e

JT

(b)

R
  

  
(T

)
co

d
e

JT
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

N=14

N=16

N=18

N=20

(c)

Figure 2.4: Rcode(T ) as a function of T for three different examples of codesubspaces in
the form of (2.128).
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Figure 2.5: Results for the code subspace (2.130). (a) Rcode(T ) as a function of T . (b)
The blue line is ⟨ψ3(0)ψ3(t)⟩ as a function of t, while in the case of the yellow line, ψ3(0)
is replaced by the dressed operator obtained from our proposal. Here N=20.

We finally check that the operator (2.47) has similar correlators as the boundary-dressed
operator. We take the code subspace as

Hcode = span{|Bs⟩,O1|Bs⟩, ...Ok|Bs⟩, h|Bs⟩, hO1|Bs⟩, ...hOk|Bs⟩}, (2.130)

where the dimension of the code subspace is dcode = 2(k+ 1)≪ 2N/2. In Fig. 4.8, we plot
the result for the case of k = 5 and where the operators chosen to be

O1 = ψ1(t = 0), O2 = ψ1(t = 2), O3 = ψ1(t = 4) O4 = ψ1(t = 6), O5 = ψ1(t = 8)

for N = 20 (dcode = 12 ≪ 210) are plotted. One can see from Fig.2.5b that the state-
dressed operator for ψ3 has approximately the same correlation function as the original
one.

2.5.6 Holographic boundary states

The KM states discussed in the previous section can be thought of as certain a-typical black
hole microstates in the context of SYK/AdS2. Interesting analogs in higher dimensional
examples of AdS/CFT can be found by considering boundary states in CFTs [210–212]. A
boundary state characterizes boundary conditions which can be imposed on a boundary of
space-time on which the CFT lives. For each allowed boundary condition, we can evolve
the state along the Euclidean time to suppress the high-energy contributions and obtain a
state of finite energy which is called a regularized boundary state of the CFT.

For holographic theories, the CFT path integral maps onto the gravity path integral.
Therefore, we will be able to make use of the AdS/CFT correspondence to deduce the
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corresponding geometries if we can choose a state for which we can understand a gravity
prescription for dealing with the boundary condition at the initial Euclidean time. As
discussed in [213], we can describe boundary states by starting with the TFD state of two
CFTs labeled by L and R

|TFD(β/2)⟩ = 1

Z

∑
i

e−βEi/4 |Ei⟩L ⊗ |Ei⟩R , (2.131)

and then project the TFD state onto some particular pure state |B⟩ of the left CFT. As a
result, we obtain a pure state of the right CFT given by

|ΨB,β⟩ =
1

Z

∑
i

e−βEi/4⟨B |Ei⟩ |Ei⟩ . (2.132)

If the temperature is high enough, the TFD state is dual to the maximally extended
AdS-Schwarzschild black hole in the bulk. The geometry which is dual to these regularized
boundary states is expected to contain a significant portion of the left asymptotic region.
Therefore, in a holographic CFT, this class of regularized boundary states can be regarded
as microstates of a single-sided black hole. These black hole microstates can be thought of
as black holes with end of the world (EOW) branes on the left side.36 Generally the EOW
brane configuration is time-dependent at the macroscopic level. Hence these are states
with energy and energy variance compatible with (2.18) and (2.20), so we expect to be
able to apply our construction and define operators (2.47). As we will discuss in the next
section, one way to think of them is that the gravitational dressing has been moved over
to the EOW brane.

Computation of the return probability and correlators

First, we define unit-normalized boundary states

|“Ba(0)⟩ = e−
βH
4 |Ba⟩»

⟨Ba| e−
βH
2 |Ba⟩

. (2.133)

Then we want to show that return probability of a boundary state

R(T ) = |⟨“Ba(0) |“Ba(T )⟩ |2 , (2.134)

decays exponentially fast at early time. For boundary states in holographic 2d CFTs we
have (??)

G(β) = ⟨Ba|e−
βH
2 |Ba⟩ ≃ e

π2c
6β . (2.135)

where we have taken the CFT to be defined on a spatial circle of length 2π. For small T
we have

R(T ) =
|G(β + 2iT )|2

|G(β)|2
≃ e−

4π2c
3β3

T 2

. (2.136)

36Proving from first principles that boundary states dual to EOW branes exist is far from trivial. It has
been investigated from a bootstrap perspective in [214], where it was suggested that such boundary states
must be extremely fine-tuned. In [215], the full classification of boundary states in large N symmetric
orbifolds was carried out, and typical boundary states are not of this form.
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The energy variance of the boundary state can be easily computed from (2.135) and we
find

∆H2 = ⟨H2⟩ − ⟨H⟩2 = 4π2c

3β3
, (2.137)

so the initial decay (2.136) is, not surprisingly, consistent with (2.32), (2.34) and (2.137).
In higher dimensional cases we can read from (E.13)

G(β) = e
αd
βd−1 , (2.138)

thus

R(T ) =
|G(β + 2iT )|2

|G(β)|2
≃ exp

ï
− αd
βd+1

4d(d− 1)T 2

ò
. (2.139)

We can again check that

∆H2 = ⟨H2⟩ − ⟨H⟩2 = αd
βd+1

4d(d− 1), (2.140)

which is compatible with (2.139).
We now proceed with checking that the other states in the code subspace around a

boundary state are orthogonal to the time evolved code subspace. Consider for example
the state O(t, x)|“Ba⟩. Following similar reasoning as in subsection 2.5.5 we can show that

|⟨“Ba(0)|O(t, x)|“Ba(T )⟩|2 = ⟨“Ba(0)|O(t, x)|“Ba(T )⟩ ⟨O(t− T

2
, x)⟩β→β+2iT . (2.141)

where ⟨“Ba(0)|O(t, x)|“Ba(T )⟩ = Ga(I,β+2iT )
Ga(I,β)

. More generally

⟨“Ba(0)|O(t1, x1)O(t2, x2)...O(tn, xn)|“Ba(T )⟩ =
⟨“Ba(0)|O(t, x)|“Ba(T )⟩⟨O(t1 − T

2
, x1)O(t2 −

T

2
, x2)...O(tn −

T

2
, xn)⟩β→β+2iT . (2.142)

Thus, as long as the analytical continuation of the correlation function in β does not
introduce any surprising N -dependent factors we will get the expected behavior (2.38).
We now check this condition for low-point functions in 2d boundary states.

Here we assume that for a holographic CFT, and if we are working in the large N limit,
the 1-point function of light conformal primaries can be computed by a method of images.
Then for a 1-point function of a scalar primary O with dimension ∆ on a boundary state
we have

⟨“Ba(0)|O(t, x)|“Ba(0)⟩ = AO

(βπ cosh[
2π
β t])

∆
. (2.143)

for some constant AO which depends on the boundary state a and the operator O. After
the analytic continuation necessary for (2.141) we find

⟨O(t− T

2
, x)⟩β→β+2iT =

AO

( (β+2iT )
π cosh[ 2π

(β+2iT )(t−
T
2 )])

∆
. (2.144)

Hence we notice that the results (2.141),(2.144) are consistent with our general expectations
(2.37),(2.38).



100 CHAPTER 2. LOCALIZATION OF INFORMATION IN QUANTUM GRAVITY

We can also check 2-point functions, which we can compute in the large N limit. First
we compute the 2-point function on the boundary state, using the method of images

⟨“Ba(0)|O(t1, x1)O(t2, x2)|“Ba(0)⟩ =
+∞∑

n=−∞

1∣∣β
π sinh

Ä
π
β [(x1 − x2 + 2πn)− (t1 − t2)]

ä∣∣2∆ ± 1∣∣β
π cosh

Ä
π
β [(x1 − x2 + 2πn)− (t1 + t2)]

ä∣∣2∆ ,
(2.145)

After the analytic continuation necessary for (2.142) we find from (2.145) that we do not
notice any unexpected behavior of this part of the correlator as T increases, so the result
(2.142) is dominated by the decay of the return probability, and is consistent with our
expectations (2.37),(2.38).

2.6 Black Hole microstates

One question that is particularly interesting is whether we can apply our construction to
black hole microstates. We have already mentioned in section 2.2.1 that there are various
classes of black hole microstates, some of which have macroscopic time dependence and
some of which do not. We will now discuss these various cases in more detail and interpret
our operators for these types of states.

2.6.1 States with macroscopic time-dependence

We will start with the simplest situation: states with macroscopic time dependence. This
can be visible outside the horizon, for example, black holes in the presence of infalling
matter. Alternatively, it can be that the geometry appears to be static outside the horizon
but there is no corresponding Killing isometry in the interior. As the first case is more
straightforward, we focus on the second case. Two examples of such states are boundary
states of the CFT, corresponding to end-of-the-world branes inside the horizon, which have
already been discussed in the previous section. A second example is states prepared by
the Euclidean path integral on some surfaces of higher topology. The dual geometries
have topology behind the horizon and are often referred to as geons [179, 216, 217]. It
is worth re-emphasizing that both of these states are usually prepared by the Euclidean
path integral and are in fact very a-typical states, even if the CFT 1-point functions are
very close to those in a thermal state (or said differently, even if the classical geometry is
exactly that of a black hole outside the horizon).

Both of these examples involve pure states |Ψ0⟩ that have a large energy variance,
of order N2, such that the return probability will decay as (2.33). We can thus apply
our construction to build local operators that are not dressed to the boundary CFT. The
interpretation is that the operators are dressed with respect to the time-dependence of
the interior. Consider for example the genus-2 geon in d = 2, which is prepared by the
Euclidean path integral on half of a genus-2 surface [179, 218]. Microscopically, the state
can be described by

|Ψ0⟩ ∼
∑
i,j

Ciije
−Eiβi/2−Ejβj |Ej⟩ , (2.146)

where ∼ indicates that we have not been careful about the parametrization of the genus-2
surface, but βi,j are related to the moduli of the surface. The un-normalized overlap of
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this state corresponds to a genus-2 partition function in the dumbbell channel, where βj
parametrizes the length of the two handles, and βi parametrizes the length of the neck
between them.

It is not straightforward to write down a metric that covers the entire space-time of
such states. Outside the horizon whose size is controlled by βj , they look exactly like
the BTZ geometry. Inside the horizon, they have macroscopic time-dependence. A nice
coordinate patch that covers the Wheeler-de Witt patch of the t = 0 slice of the geometry
can be written down in a very simple form

ds2 = −dt2 + cos2 t dΣ2
2 , (2.147)

where dΣ2
2 is the constant negative curvature metric on half of a genus-2 surface. This

coordinate patch covers the entire t = 0 slice of the geometry, which is precisely half
of a genus-2 surface. The neck corresponds to the horizon, and there is topology (one
handle) behind the horizon. From this metric, we explicitly see the time dependence of the
geometry, even if a metric for the full spacetime is hard to write down. The interpretation
of our operator is that the dressing is to the time-dependence of the geometry that sits
inside the horizon. For end-of-the-world brane geometries, the situation is similar and the
operator is dressed to the end-of-the-world brane.

2.6.2 Typical states

The question we would now like to ask is whether our prescription works in typical black
hole microstates. Contrary to states with end-of-the-world branes or topology behind the
horizon, it seems reasonable to expect that typical states should also look like the thermal
state a finite distance inside the black hole (see for example [100, 101]).

Whether or not our prescription works depends on the definition of a typical black
hole microstate, and in particular on the energy spread we are choosing. One possibility
is to define typical states using an ensemble of energy eigenstates with spread O(N0) in
energy (recall that there are still eS with S ∼ O(N2) states in this energy band). In
that situation, our prescription does not work, as the variance of energy is O(N0) and the
return probability will not decay fast enough. Another possibility is to consider typical
states with an energy spread similar to that of the canonical ensemble, that is

(∆E)2 ∼ O(N2) . (2.148)

For such states, the return probability will decay following the behavior (2.33). Therefore,
we can follow our prescription and define the operators in the same way and they will
satisfy the two properties of commuting with the Hamiltonian to all orders in 1/N and
acting like HKLL operators to leading order at large N .

While these operators are certainly diff-invariant, since they are operators defined in
the CFT, the bulk interpretation of their gravitational dressing on typical black hole mi-
crostates is not entirely clear. When the gravitational configurations are macroscopically
time-dependent, our operators are dressed with respect to the features of the geometry.
The typical states are still time-dependent, but only microscopically, as it seems plausi-
ble to assume that macroscopically they are featureless. In some sense our operators are
dressed to the microscopic time-dependence of the state (the phases of the ci in (2.19)),
but it is unclear exactly what that means in the bulk.
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Notice however, that if we start with a particular typical pure state |Ψ0⟩ and act with
a unitary made out of the operator (2.47), associated to that state, then the predictions for
what an infalling observer jumping into the black hole will see are unambiguous. For exam-
ple, the operators (2.47) will generally create an excitation in the bulk and the location in
time relative to that of the infalling observer who jumps from the boundary at a particular
boundary time, can be unambiguously computed for each state |Ψ0⟩ and corresponding
operators (2.47). We emphasize that for this interpretation it is important to remember
that the operators (2.47) are state-dependent and cannot generally be promoted to a single
operator which acts in a specific way globally on most typical states.

We briefly comment on black hole interior reconstruction. Suppose we start with a
typical black hole microstate with energy spread of order (2.20). If we assume that the
interior geometry contains part of the left asymptotic region, then the possibility of remov-
ing the dressing of the operators implies that we can deform the state behind the horizon
by creating some particles there, in such a way that these excitations cannot be detected
from the boundary CFT by the measurement of single-trace correlators, including the
Hamiltonian, in the 1/N expansion. This was also discussed in [219, 220]. We emphasize
that this does not contradict the statements made in [12, 100, 101] that for typical states
with microcanonical energy spread, it is impossible to add excitations without affecting
single-trace correlators.

2.6.3 Two entangled CFTs

Similar considerations apply to geometries with two asymptotically AdS regions. Consider
two non-interacting CFTs with total Hamiltonian H = HL+HR. We take the full system
to be in a pure state |Ψ0⟩ which may be entangled, but we will assume the pattern of
entanglement is generic. In particular, we do not consider states like the thermofield-
double which have a very fine-tuned structure of entanglement. We can imagine the state
|Ψ0⟩ to be, for example, UL |TFD⟩, where UL is a complicated random unitary acting on
the left CFT. In this case we can consider the following generalization of our construction.
Let us consider the 2-parameter family of time-shifted states

e−i(TLHL+TRHR)|Ψ0⟩.

We start with an HKLL operator Φ dressed with respect the to left system, which commutes
with HR but not HL. We now consider the following generalization of the operators (2.47)

Φ̂ = c

∫
dTLdTRe

−i(TLHL+TRHR)P0ΦP0e
i(TLHL+TRHR) (2.149)

using P0 = PL0 ⊗ PR0 and [Φ, PR0 ] = 0 then

Φ̂ = c

∫
dTLe

−iTLHLPL0 ΦP
L
0 e

iTLHL ⊗
∫
dTRP

R
TR

(2.150)

The resulting operator commutes with both HL and HR on the relevant code subspaces.
In this case, the operator is not dressed with respect to the overall time-dependence of the
full system, but rather to the time dependence of the “left” subsystem.

There are states with special entanglement pattern such as the TFD state, which was al-
ready discussed in section 2.5.2. The generalized return amplitude ⟨Ψ0|e−i(HLTL+HrTR)|Ψ0⟩
which is a function of TL and TR does not decay in all directions for these special states.
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For example, in the TFD state it is constant along the line TL = −TR. In those cases we
cannot set both commutators with HL, HR to zero. So we can move the dressing from one
side to another if we wish to, but there it is always dressed to one of the boundaries. This
happens because the TFD state has a symmetry, it is annihilated by HL −HR.

2.6.4 Island discussion

Our prescription is also useful to resolve some paradoxes in the context of black hole
evaporation and islands. Consider a setup where a holographic CFT is coupled to a bath
such that the bulk description is given by an evaporating black hole. After the Page time,
a non-trivial quantum extremal surface appears in the bulk delimiting an island, i.e. a
part of the interior of the black hole that is encoded in the bath degrees of freedom rather
than in those of the CFT [221, 222].

There is an apparent tension in this context related to gravitational dressing [223]. If
we create an excitation in the island by acting with a local operator ϕisland, where does
the gravitational dressing go? It appears that the only place for the dressing to go is the
boundary CFT. But this implies that the local operator will have the property

[ϕisland, HCFT] ̸= 0 . (2.151)

But this seems to be inconsistent because since the operator is in the island, it should be
reconstructable from the bath degrees of freedom, and commute with the CFT degrees of
freedom.

Our operators provide a way out of this paradox. We can apply our prescription above
in terms of two entangled systems with a generic pattern of entanglement (there is a
subtlety here since the bath and CFT are actually coupled rather than non-interacting,
but we can treat this interaction as weak). In that case, even if we did start with an
operator that had a non-trivial commutator (2.151), we would engineer a new operator
that commutes with HCFT up to exponentially small corrections. This new operator is
now dressed with respect to the radiation, rather than the boundary CFT.

The interpretation of the dressing is similar to that of the typical states. While it
would be tempting to imagine dressing the operator to the quantum extremal surface, the
bulk geometry only has extremely slow time-dependence so it is unclear if time-dependent
features of the geometry are sharp enough to dress with respect to them. It appears
that the dressing is towards the microscopic time-dependence of the radiation. The story
becomes less subtle if we consider a doubly holographic model (see for example [38, 224]).
In that case, the dressing to the bath can be directly geometrized in the higher-dimensional
geometry. Our operators can perhaps be thought as a counterpart of the operators in the
doubly-holographic setup, but in cases where the dressing cannot be so easily geometrized.

Finally, we would like to clarify the distinction between reconstruction and dressing.
To make things simple, let us consider the TFD state and consider an HKLL operator on
the left ϕL. This operator is dressed to the left CFT. Now we run our protocol, and as
explained above, we can move the dressing to the right. The operator ϕ̂L now commutes
with HL but no longer with HR [195]. This does not mean that it can be reconstructed
from the right degrees of freedom, but that it can be detected from the right CFT via
the Gauss law tail. It is still mostly built from the left CFT degrees of freedom, only its
dressing has been pushed to the right.
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Chapter 3

Generalized continuous Matrix
Product States

In this chapter, we introduce two new classes of continuous matrix product states. First,
we start by briefly reviewing the tensor network in physics.

3.1 Brief review of the tensor network in physics

Tensor Network states are the entanglement-based ansatz that has arisen in recent years
based on the renormalization group (RG) ideas and later on developed using tools and con-
cepts from quantum information theory. The main examples include matrix product states
(MPS) [225], projected entangled-pair states (PEPS) [226], and multiscale entanglement
renormalization ansatz (MERA) [227]. By construction, they obey the entropy/area law
[228–231] and are able to encode both global and local symmetries [232–236]. Therefore,
they provide an efficient class of symmetric variational ansatz to approximate the ground
state of the local Hamiltonian. In general, the understanding of the low-energy behavior
of many-body quantum systems is one of the major challenges of modern physics, both
in high-energy and condensed matter physics. There are plenty of methods based on RG
introduced to tackle this problem. To study the weakly coupled system, one can use the
momentum space RG [237–241]. But instead, in the case of the strongly interacting sys-
tems where the perturbation theory fails, this question is usually addressed by real-space
RG methods.

In the case of the many-body system on the lattice, Kadanoff’s spin-blocking idea [242]
was replaced by Wilson’s real space RG [241] which is improved later by White’s den-
sity matrix renormalization group (DMRG) [243, 244]. This technique is extraordinarily
powerful in the study of quantum systems on the 1-D lattice. It has been generalized
as tensor renormalization group (TRG) by Levin and Nave [245] to study the Euclidean
path integral of 1-D quantum systems or the 2-D classical lattice models. Although, both
the DMRG and TRG are very successful, they provide a coarse-grained system that still
contains irrelevant microscopic information which implies the breakdown of both methods
at criticality [245], and the resulting RG flow has the wrong structure of noncritical fixed
points [246]. In the context of wave functions, this problem was resolved with the intro-
duction of entanglement renormalization (ER) by Vidal [227]. A key aspect of ER is the
ability to remove the short-range entanglement at each coarse-graining step by introducing
a disentangler operator. This leads to the restoration of scale-invariant at criticality and
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results in a proper RG flow with the correct structure of fixed points both at criticality and
off criticality. More recently, this technique has been adapted to tackle the same problem
in TRG in the context of the Euclidean path integral of quantum many-body systems and
the partition function of a classical statistical system by removing short-range correlations
this time from the partition function, known as tensor network renormalization (TNR)
[247]. ER and TNR represent a powerful alternative to Wilsonian real-space RG methods
in the context of the wave function and partition function respectively.

Beginning with the DMRG, it has been shown that this technique can be understood as
a variational method within the class of MPS [248]. In addition, it justifies the point that
DMRG is powerful just in one spatial dimension because of the area law. More generally,
any variational class corresponds to an RG scheme. As another important example, the
ER is naturally associated with the class of MERA [227].

Tensor Network formalism can be also applied to study the low-energy limit of quantum
field theories (QFTs) after an appropriate discretization of the theory on the lattice [249–
254]. However, the symmetries of spacetime in this way will be destroyed. Thus, it
would be desirable to work directly in the continuum which can provide a powerful non-
perturbative approach for studying the strongly interacting QFTs. In the last decade, the
generalization from lattice to continuum has been done for some classes of tensor network
states [81, 255–258]. In particular, the continuous version of MPS and MERA, known as
cMPS [81] and cMERA [255]. To date, only the Gaussian cMERA is well-understood,
which limits the interest of cMERA to use as a variational ansatz to study the strongly
coupled QFTs. Instead, cMERA has already attracted considerable attention in the context
of holography [79, 259–271]. On the other hand, the cMPS provides a variational class
of non-Gaussian wave functional which is just adapted to the non-relativistic interacting
QFTs in 1 + 1 dimensions. In the case of relativistic QFTs, the cMPS construction suffers
from regularization ambiguity. One can still use cMPS to study the low energy limit of
the theory in practice by introducing a UV cut-off [272, 273]. But still by construction,
using the cMPS approach, one can not capture the short-distance behavior of the system.
Moreover, defining a UV cut-off by itself is in contrast with the purpose of working directly
in the continuum.

In this chapter, we will propose the class of boundary cMPS by following the same logic
as the one that has been defined to create the class of standard cMPS. But, this time we
replace the non-relativistic vacuum with one of the boundary states in 2 dimension CFT.
Moreover, motivated by [274], we study the one-parameter family of cMPS generated
by ER which maps a free non-relativistic theory at the IR scale to a free relativistic
theory at UV. We will find that at the UV scale, the resulting wave functional is exactly
the variational ansatz known as relativistic cMPS (RCMPS) introduced in [274] which is
adapted to relativistic QFTs in 1 + 1 dimensions. In the following, one can find the brief
review of the ER and the class of cMPS that we need in the main discussion of the paper
and introduce the notation there.

3.2 Continuous Matrix Product States

The family of MPS [275–277] is probably the most famous example of Tensor Network
states. This is because it is behind some very powerful methods to simulate the one-
dimensional quantum many-body systems.

MPS are a special class of tensors that can be written as products over many rank-3
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tensors, See Fig. 4.3. Each square have represent a rank-3 tensor (rank-2 for the left
and right boundaries) Asjαj ,αj+1 . The vertical lines represent the physical indices and the

Figure 3.1: (a) MPS class of Tensor Network. (b) A rank-3 tensor.

horizontal lines are called ancillary indices. The MPS diagram in Fig. 4.3 is a rigorous
representation of the mathematical expression

Cs1s2...sN =
∑
{α}

As1α1
[1]As2α1α2

[2]...A
sN−1
αN−2αN−1 [N − 1]AsNαN−1

[N ]. (3.1)

where αi ∈ {1, ..., Di}. MPS can represent any quantum state of the many-body Hilbert
space just by increasing sufficiently the value of Di. To see that, consider a quantum
many-body system of N particles. Let us take

|ψ⟩ =
d−1∑

s1,...,sN=0

Cs1,...,sN |s1⟩ ⊗ ...⊗ |sN ⟩ (3.2)

be the state of the N qudit (d-dimensional quantum systems). The state is completely
specified by knowledge of the rank-N tensor C. One can obtain the MPS representation
by breaking the wave function into small pieces. By starting from the first index and split
it out from the rest and perform a singular value decomposition, we can get the Schmidt
decomposition. We can now perform successive singular value decomposition along the
indices and obtain that

|ψ⟩ =
d−1∑

s1,...,sN=0

As1 [1]As2 [2]...AsN−1 [N − 1]AsN [N ] |s1⟩ ⊗ ...⊗ |sN ⟩ . (3.3)

We can redefine the first and last tensors as

As1 [1] −→ ⟨vL|As1 [1]
AsN [N ] −→ AsN [N ] |vR⟩ .

(3.4)

Thus, the tensors As1 [1] and AsN [N ] are the rank-2 tensors as well. Therefore, we have

Cs1,...,sN = ⟨vL|As1 [1]As2 [2]...AsN−1 [N − 1]AsN [N ] |vR⟩ . (3.5)

Moreover, one can take the periodic boundary condition by putting N +1 ≡ 1. As a result

Cs1,...,sN = Tr
[
As1 [1]As2 [2]...AsN−1 [N − 1]AsN [N ]

]
. (3.6)

For states that are translationally symmetric, we can choose

As[1] = As[2] = ... = As[N ] ≡ As (3.7)
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and take all Di equal to single D. In the end, the MPS representation can be obtained as

|ψ⟩ =
d−1∑

s1,...,sN=0

Tr
[
BAs1As2 ...AsN−1AsN

]
|s1⟩ ⊗ ...⊗ |sN ⟩ (3.8)

where the information about the boundary conditions is encoded in the matrix B. We
have B = I in the case of periodic boundary conditions and B = |vR⟩ ⟨vL| in the case of
open boundary conditions. As it is mentioned, every state can be generally written in the
MPS form with D growing exponentially with the particle number N . However, MPS is
practical when D is small. It is particularly useful for dealing with the ground state of a
one-dimensional quantum spin model.

The continuum limit of MPS known as countinuous MPS (cMPS) was proposed in [81]
by Verstraete and Cirac. It is originally introduced as a variational ansatz for the ground
state of non-relativistic QFT Hamiltonians in 1 + 1 dimensions.

To find a generalization of MPS in the continuum limit, one can approximate the QFT
on a line of length L by a lattice with lattice spacing ϵ and N = L/ϵ sites. At each site
of the lattice, there is a bosonic (or fermionic) mode ai obeys the commutation relation
[ai, a

†
j ]± = δij . Therefore, the Hilbert space spanned by {|ni⟩} while |ni⟩ corresponding to

having ni particles on that site. For the many-body state we have

|i1, i2, ..., iN ⟩ = a†i11 a†i22 ...a†iNN |0⟩ , (3.9)

where |0⟩ = ⊗Nn=1 |0⟩n is the vacuum that

aj |0⟩ = 0 ∀j. (3.10)

On the lattice, we can define a certain family of MPS as

A0
i = I + ϵQ(iϵ)

Ani =
1

n!

(√
ϵR(iϵ)

)n
n ≥ 1.

(3.11)

For higher n, the matrices An have been determined by the requirement that a doubly
occupied site gives the same physics as 2 bosons on 2 neighboring sites in the limit ϵ→ 0.
By taking the ϵ→ 0 limit of this specific class of MPS, we can find the class of cMPS as

|ψ[Q,R]⟩ = Traux
{
BP exp

∫ L/2

−L/2
dx

(
Q(x)⊗ I +R(x)⊗ ψ†(x)

)}
|Ω⟩ (3.12)

where Traux denotes a partial trace over the auxiliary system where the matrices Q and
R act. For the translational invariant cMPS the matrices Q, R are position independent.
The field ψ(x) is the continuum limit of the rescale modes ψ(iϵ) = ai/

√
ϵ, that satisfying

[ψ(x), ψ†(y)]± = δ(x − y), and |Ω⟩, the empty vacuum is the continuum limit of |0⟩ that
defined as

ψ(x) |Ω⟩ = 0 ∀x. (3.13)

One can express the expectation value of local operators and in particular, the Hamil-
tonian on the cMPS representation of the ground state in terms of the matrices Q and R.
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Specifically, all normal ordered correlation functions of local field operators can be deduced
from a generating functional as

⟨: F [ψ†(x), ψ(y)] :⟩ = F
[ δ

δj̄(x)
,

δ

δj(y)

]
Zj̄,j

∣∣
j̄,j=0

, (3.14)

while its explicit form can be given in terms of the cMPS matrices Q and R as

Zj̄,j = Tr
{
B ⊗ B̄P exp

[ ∫
dx T + j(x) R⊗ I + j̄(x) I ⊗ R̄

]}
(3.15)

where
T = Q⊗ I + I ⊗ Q̄+R⊗ R̄ (3.16)

is the cMPS transfer matrix [278].
In order to find the cMPS approximation of the ground state, it is just needed to

minimize the expectation value of the Hamiltonian over the cMPS matrices Q and R. After
that, correlation functions can be straightforwardly computed. The cMPS representation
has gauge freedom

Q(x) −→ g(x)Q(x)g−1(x)− dg(x)

dx
g−1(x)

R(x) −→ g(x)R(x)g−1(x)
(3.17)

that one can use to impose certain conditions on the cMPS matrices, including symmetry
conditions. Moreover, for the continuum version, the left orthogonality condition of MPS
can be read as

Q(x) +Q†(x) +R†(x)R(x) = 0 (3.18)

for all x. A better approximation of the ground state can be found by increasing D. In
the last decade, several optimization algorithms have been developed to study a number of
theories, both bosonic and fermionic [272, 279–290]. The cMPS provides an efficient vari-
ational ansatz for non-relativistic QFTs. It is not adapted to relativistic theories because
of a lack of sensitivity to short-distance behavior.

3.3 Regularized Boundary States

Regularized boundary states play a crucial role in understanding the behavior of CFTs
in the presence of boundaries. These boundary states capture the impact of boundary
conditions on the CFT living on the boundary, allowing us to study various physical
phenomena related to open quantum systems or the presence of interfaces.

The regularization process involves evolving the boundary state along Euclidean time,
effectively smearing out high-energy contributions, and ensuring that the state possesses
finite energy. This regularization is essential to render the theory well-defined and to make
physical predictions that are consistent and meaningful.

Regularized boundary states are valuable tools in exploring the physics of CFTs in var-
ious contexts, such as boundary critical phenomena, quantum entanglement at boundaries,
and interface dynamics in condensed matter systems. They provide a natural framework to
understand the interplay between bulk and boundary degrees of freedom and the emergence
of universal features near the boundary.
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Moreover, regularized boundary states facilitate the study of entanglement entropy
and entanglement spectra at the interface between different phases of matter, helping to
reveal the underlying quantum phase transitions and topological properties of the system.
They also find applications in holography, where they correspond to boundary states of
the corresponding AdS in the AdS/CFT correspondence, connecting insights from gravity
and quantum field theory.

3.3.1 Boundary states in 2D CFT

In a 2D CFT, boundary states are required to fulfill the condition stated in [291]

(Ln − L̃n) |B⟩ = 0. (3.19)

Here, Ln and L̃n represent the Virasoro generators associated with the left and right-
moving sectors, respectively, and |B⟩ denotes the boundary state. Within any Verma
module, a straightforward solution to these conditions can be found as follows

|Ih⟩ =
∑
k⃗

|⃗k, h⟩L ⊗ |⃗k, h⟩R, , (3.20)

Here, |⃗k, h⟩L is a linear combination of Virasoro descendants of the primary state |h⟩, which
is characterized by an infinite-dimensional vector k⃗ = (k1, k2, ...) with non-negative integer
components. We recognize these states by considering descendants of the following form:

...LKn−n ...L
K1
−1 |h⟩L, (3.21)

where we construct an orthonormal basis, ensuring that L⟨k⃗, h|k⃗′, h⟩L = δ
k⃗,k⃗′

.
The state |Ih⟩ is referred to as the Ishibashi state associated with the primary state

|h⟩L, where the states |⃗k, h⟩ represent descendants built upon the primary state labeled by
h. It is readily apparent that the following relation holds:

Ln|Ih⟩ = L̃n|Ih⟩. (3.22)

The Ishibashi states exhibit maximum entanglement between the left-moving and right-
moving sectors. Furthermore, linear combinations of Ishibashi states also satisfy the con-
straint (F.5).

Physical boundary states are expressed as specific linear combinations of Ishibashi
states, referred to as Cardy states:

|Ba⟩ =
∑
h

Ca,h |Ih⟩ , . (3.23)

To be considered as physically valid, these boundary states must fulfill a consistency con-
dition related to open-closed duality, which emerges from the partition function on a finite
cylinder, as described in [291].

The Cardy states become singular due to the divergent norm of the Ishibashi states. To
address this, one can introduce regularized boundary states by evolving them in Euclidean
time:

|Ba,β⟩ = e−
β
4
Hc |Ba⟩ , (3.24)

where β is a positive constant and Hc = L0 + L̃0 − c
12 . This regularization ensures that

the state (F.4) remains space-translationally invariant on the circle but becomes time-
dependent.
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3.3.2 Entanglement entropy of boundary states

Let us start with the massless Dirac fermion theory in 2d. The system is in the boundary
state e−ϵH |B⟩ in either the Dirichlet or Neumann boundary condition. We need to calculate
the entanglement entropy SA when A is an interval. In [292] based on the work in [293],
the entanglement entropy SA for the corresponding set of states has been calculated. It
has been shown that

SA ∼ O(1). (3.25)

Since we need to introduce the cut-off ϵ used as the damping factor, we have the ambiguity
of shifting ϵ. This means that O(1) entropy can be changed by the choice of the UV
cut-off and d this is enough to argue that boundary states essentially have no real-space
entanglement.

3.3.3 Holographic boundary states

In holographic theories, the gravity path integral can be related to the CFT path integral
through the AdS/CFT correspondence. Consequently, by selecting an appropriate state
with a well-understood gravity prescription for handling the boundary condition at the
initial Euclidean time, we can derive the corresponding geometries. Cooper et al. [213]
discussed the method of describing boundary states by initiating with the Thermofield
Double (TFD) state of two CFTs denoted as L and R

|TFD(β/2)⟩ = 1

Z

∑
i

e−βEi/4 |Ei⟩L ⊗ |Ei⟩R . (3.26)

Subsequently, we perform a projection of the TFD state onto a specific pure state |B⟩
belonging to the left CFT. Hence, the outcome is a pure state in the right Conformal Field
Theory (CFT) represented as

|Ba,β⟩ =
1

Z

∑
i

e−βEi/4⟨Ba |Ei⟩ |Ei⟩ . (3.27)

In case of a sufficiently high temperature, the TFD state corresponds to the maximally
extended AdS-Schwarzschild black hole in the bulk according to the duality. The geometry
associated with these regularized boundary states is anticipated to encompass a substan-
tial portion of the left asymptotic region. Thus, the state ρ ∝ e−ϵH |B⟩ ⟨B| e−ϵH , which
corresponds to a 2d CFT on a strip of width 2ϵ, has a gravity dual described by a section
of the Euclidean BTZ black hole. The metric of the Euclidean black hole is given as

ds2 = R2
(h(z)dt2

z2
+

dz2

h(z)z2
+
dx2

z2

)
, h(z) = 1− π2z2

4ϵ2
(3.28)

where R is the AdS radius and the ranges of the coordinates (t, z, x) are −2ϵ ≤ t ≤ 2ϵ
with periodicity of 4ϵ, 0 < z ≤ 2ϵ/π and −∞ < x <∞. Consequently, in the context of a
holographic CFT, this set of regularized boundary states can be considered as microstates of
a single-sided black hole. These black hole microstates can be conceptualized as black holes
accompanied by end-of-the-world (EOW) branes positioned on the left side. Typically, the
EOW brane setup manifests as a time-dependent configuration on a macroscopic scale.
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3.4 Bulding a class of cMPS over the boundary states

As it has been discussed in Sec. 3.3.2, the entanglement entropy of spatial regions in
boundary states vanishes. Therefore, there exists a set of operators denoted as O(x) such
that

O(x) |Ba,β⟩ = 0 ∀x. (3.29)

Let us consider a boundary state |Ba,β⟩ in 2 dimensions. One can approximate the
QFT on a special line in 2 dimensions by a lattice spacing ϵ and N = L/ϵ sites. One set
of basis can be given as

O†i1(ϵ)O†i2(2ϵ)...O†iN (Nϵ) |Ba,β⟩ (3.30)

and the MPS representation of one such class of states is given as

|Ψ⟩ =
∞∑

i1,...,iN=0

Tr
[
BAi1Ai2 ...AiN

]
O†i1(ϵ)O†i2(2ϵ)...O†iN (Nϵ) |Ba,β⟩ . (3.31)

Define a specific class of MPS as

A0(nϵ) = I + ϵQ(nϵ)

A1(nϵ) =
√
ϵR(nϵ)

Ak(nϵ) = A1(nϵ)k/k!.

(3.32)

To find an explicit form of the MPS representation in the continuum limit one can introduce

|Ψ⟩ =
∞∑
n=0

|Ψn⟩ (3.33)

while

|Ψn⟩ =
∑

i1+...+iN=n

Tr
[
BAi1Ai2 ...AiN

]
O†i1(ϵ)O†i2(2ϵ)...O†iN (Nϵ) |Ba,β⟩ . (3.34)

For n = 0 and small value of ϵ we have

|Ψ0⟩ = Tr
[
BA0(ϵ)...A0(Nϵ)

]
|Ba,β⟩

= Tr
[
B(I + ϵQ(ϵ))...(I + ϵQ(Nϵ))

]
|Ba,β⟩

= Tr
[
BP exp

( N∑
m=1

ϵQ(mϵ)
)]
|Ba,β⟩

(3.35)

where P is the path order. In the ϵ→ 0 limit, we reach

|Ψ0⟩ = Tr
[
BP exp

( ∫ L

0
dxQ(x)

)]
|Ba,β⟩ . (3.36)

Then we consider n = 1 term

|Ψ1⟩ =
∞∑
j=1

Tr
[
BA0(ϵ)...A0((j − 1)ϵ)A1(jϵ)A0((j + 1)ϵ)...A0(Nϵ)

]
O†(jϵ) |Ba,β⟩

=

N∑
j=1

ϵTr
[
BPe

∑j−1
m=1 ϵQ(mϵ)R(jϵ)Pe

∑N
m=j+1 ϵQ(mϵ)]O†(jϵ) |Ba,β⟩

(3.37)



3.5. HOLOGRAPHIC INTERPRETATION OF THE BOUNDARY CMPS 113

and in the ϵ→ 0 limit, we get

|Ψ1⟩ =
∫ L

0
dx Tr

[
BP

{
e
∫ L
0 dsQ(s)R(x)

}]
O†(x) |Ba,β⟩ . (3.38)

For a generic n, one can find that

|Ψn⟩ =
1

n!

∫ L

0
dx1dx2...dxn Tr

[
BP

{
e
∫ L
0 dsQ(s)R(x1)...R(xn)

}]
O†(x1)...O

†(xn) |Ba,β⟩ .

(3.39)
Therefore, we find

|Ψ⟩ =
∞∑
n=0

∫
0≤x1≤...≤xn≤L

dx1...dxn Φn(x1, ..., xn)O
†(x1)...O

†(xn) |Ba,β⟩ (3.40)

while
Φn(x1, ..., xn) = Tr

[
BP

{
e
∫ L
0 Q(s)dsR(x1)...R(xn)

}]
. (3.41)

We can rewrite (3.40) as

|Ψ⟩ =
∞∑
n=0

1

n!

∫ L

0
dx1...dxn Traux

[
BP

{
(e

∫ L
0 dxQ(x) ⊗ I)(R(x1)...R(xn)⊗O†(x1)...O

†(xn))
}]
|Ba,β⟩

=Traux

[
BP

{
e
∫ L
0 dx Q(x)⊗I

∞∑
n=0

1

n!

∫ L

0
dx1...dxn R(x1)...R(xn)⊗O†(x1)...O

†(xn)
}]
|Ba,β⟩

=Traux

[
BP

{
e
∫ L
0 dx Q(x)⊗I

∞∑
n=0

1

n!

( ∫ L

0
dxR(x)⊗O†(x)

)n}] |Ba,β⟩
(3.42)

and finally one can find the representation of the boundary cMPS (BCMPS) as

|Ψa,β⟩ = Traux

[
BP exp

∫ L

0
dx

(
Q(x)⊗ I +R(x)⊗O†(x)

)]
|Ba,β⟩ . (3.43)

3.5 Holographic interpretation of the boundary cMPS

3.5.1 Continuous measurement

In this section, based on [294], we provide a natural physical interpretation of this varia-
tional class.

In the context of cavity electrodynamics, we can directly understand the bulk and
boundary fields as follows[295–298]: think of the cavity modes as the auxiliary system and
the quantum field as describing the photons escaping from the cavity.

One can start by describing how we measure something, like a physical observable "M",
on a quantum system with D levels. This approach is called "von Neumann’s prescription"
[299]. We attach a quantum system with a continuous degree of freedom, known as meter,
in a fiducial state vector |0⟩ and couple it with the system for some time t according to
the interaction HI = M ⊗ p. If initially, the system is in the state |ϕ⟩, then after the
interaction the state is

e−itHI |ϕ⟩ |0⟩ =
D∑
j=0

ϕj |mj⟩ |x = mjt⟩ (3.44)
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while M |mj⟩ = mj |mj⟩ and the initial state in the basis of the eigenstate of M is written
as |ϕ⟩ =

∑D
j=1 ϕj |mj⟩.

The main idea in [294] is to reverse von Neumann’s measurement approach. Instead of
focusing on the system as the primary element, we treat the meter as the central system
A, and the original system becomes an extra part B. This approach allows us to view it
as a state creation tool: we can create various quantum states for meter A by using the
measurement approach and then either remove or measure system B. This way, we can
generate quantum states for a system with a continuously changing characteristic.

To proceed, let us consider a family of D×D complex matrices R(x), x ∈ [0, L] which
we measure at time t = x on B. B additionally evolve with a Hamiltonian K(x). The total
Hamiltonian is given by

H(t) = K(t)⊗ I +HI (3.45)

where HI = iR(x)⊗O†(x) + h.c.. Integrating the Schrodinger equation for (3.45) we get

U(L) = P exp−i
∫ L

0
ds
(
K(s)⊗ I + iR(s)⊗O†(s)− iR†(s)⊗O(s)

)
(3.46)

The evolution (3.46) prepare the class of BCMPS. If we initialize the meter A in the specific
boundary state |Ba,β⟩A and system B in the initial state |vi⟩ we have

U(L) |vi⟩ ⊗ |Ba,β⟩A (3.47)

Using the Baker-Hausdroff formula, we have

exp
(
ds
(
K(s)⊗ I +R(s)⊗O†(s)− iR†(s)⊗O(s)

))
=exp

(
ds
(
K(s)⊗ I +R(s)⊗O†(s)

))
× exp

(
ds− iR†(s)⊗O(s)

)
× exp

(1
2
dsds′ [iR†(s)⊗O(s),K(s′)⊗ I +R(s′)⊗O†(s′)]

)
=exp

(
ds
(
K(s)⊗ I +R(s)⊗O†(s)

))
× exp

(
ds− iR†(s)⊗O(s)

)
× exp

(
− 1

2
dsR†(s)R(s)⊗ I + 1

2
dsds′[iR†(s),K(s′)]⊗O(s)

1

2
dsds′[iR†(s), iR(s′)]⊗O†(s′)O(s) + ...

)
.

(3.48)

Consider the fact that
eO(x) |Ba,β⟩ = |Ba,β⟩ , (3.49)

we reach to

U(L, 0) |vi⟩ ⊗ |Ba,β⟩ = P exp−i
∫ L

0
ds
(
Q(s)⊗ I +R(s)⊗O†(s)

)
|vi⟩ ⊗ |Ba,β⟩ (3.50)

while
Q(x) = −iK(x)− 1

2
R†(x)R(x). (3.51)
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After projecting the system B on the final state |vf ⟩, we will reach to the class of BCMPS

|Ψa,β⟩ = ⟨vf |U(L, 0) |vi⟩ |Ba,β⟩ = TrB

[
BP exp−i

∫ L

0
ds
(
Q(s)⊗ I +R(s)⊗O†(s)

)]
|Ba,β⟩

(3.52)
while the matrix B here is

B = |vi⟩ ⟨vf | . (3.53)

Thus, a BCMPS like the class of cMPS can be found from a continuous measurement and
the dynamic of system B described by a Lindblad equation.

3.5.2 A toy model for evaporating black hole

In Sec. 3.3.3 we saw that a given regularized boundary state of a CFT can be written as
a TFD state of two CFTs, let us refer to them as left and right CFTs while right CFT
stands for the original one, projecting on the corresponding boundary state.

In Sec. 3.3.3, we discussed that at high temperature a regularized boundary state is
dual to a microstate of a single-sided black hole. Therefore, the class of BCMPS can be
dual to the microstate of the black hole coupled to an ancilla that can represent a bath
that absorbs Hawking radiation.

Figure 3.2: BCMPS as a toy model for evaporating black hole

⟨vf |U(L, 0) |vi⟩ |Ba,β⟩ = ⟨vf | ⟨Ba|U(L, 0)⊗ I |vi⟩ |TFD(β)⟩

= ⟨vf | ⟨Ba| P exp
(∫ L

0
dt Q(t)⊗ ILR +R(t)⊗O†

R(t)⊗ IL
)
|vi⟩ |TFD(β)⟩

(3.54)

while Q(t) = −iK(t) − 1
2R

†(t)R(t). The interpretation is that at the time t = 0 we put
the ancilla in the state |vi⟩ and two CFTs in the TFD state. They coupled together via
the evolution

Htot = K(t)⊗ ILR + iR(t)⊗O†
R(t)⊗ IL − iR

†(t)⊗OR(t)⊗ IL (3.55)
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u

uIR

uUV

cMPS[Q,R]

relativistic cMPS[Q̃, R̃]

e−i
∫
du(K(u)+L)

Figure 3.3: Entanglement renormalization group flow of the class of cMPS

In the end, we project the ancilla and left CFT on the states |vf ⟩ and |Ba⟩ respectively.
The two CFTs are dual to an eternal black hole if the temperature is high enough. Thus,
the ancilla can be interpreted as the bath that interacts with the bulk and absorbs the
Hawking radiation.

3.6 cMERA RG flow of the class of cMPS

The cMPS representation is a mathematical framework used in the context of QFT. It’s
a way of describing the ground state of a non-relativistic QFT as a special kind of state
generated by transforming the ground state of the free part of the non-relativistic QFT’s
Hamiltonian, i.e. |Ω⟩ in (??).

Now, when we’re dealing with relativistic QFT, things get more complicated due to the
relativistic nature of the theory. However, this interpretation of cMPS suggests a way to
adapt it to represent the ground state of a relativistic QFT. This adaptation involves trans-
forming the ground state of the free relativistic QFT in a certain manner. Interestingly,
there exists a concept known as cMERA RG flow. This concept establishes a connection
or flow between the ground states of the non-relativistic and relativistic free theories. In
simpler terms, it provides a way to relate the ground states of these two different types of
quantum field theories.

In the context of this discussion, the focus is on studying a particular family of cMPS
that evolves using the corresponding cMERA evolution. This means we’re investigating
how a specific set of cMPS changes or transforms as we apply the principles of cMERA,
particularly in the context of the ground states of both non-relativistic and relativistic
free quantum field theories. In summary, this discussion revolves around using the cMPS
framework to represent ground states in QFT, extending it to relativistic cases, and ex-
ploring the connections and transformations between these states through the concept of
cMERA RG flow.

There is a cMERA RG flow that relates the ground states of the non-relativistic and
relativistic free theories to each other To do this, we start by placing the vacuum of the
cMPS representation at the "IR level" in the cMERA framework. In simpler terms, we’re
setting up our system with the non-relativistic vacuum state as a starting point. Then,
we follow this process as we move up to the "UV level" within the cMERA framework.
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At this UV level, the goal is to reach the vacuum state of the free relativistic quantum
field theory. In the following, we study the one-parameter family of the cMPS evolves with
the corresponding cMERA evolution. The cMERA formalism was originally formulated
for infinite systems [255]. However, its generalization to systems with open boundary
conditions [300] and on a finite circle [301] has been introduced more recently. First, we
work in the thermodynamic limit, i.e., L→∞, and after that, we will discuss the extension
for the theories defined on a finite circle. To proceed, we should find the generator of the
RG flow in the case that we are interested in, i.e. the cMERA generator of mapping the
IR state |Ω⟩ to the ground state of the relativistic field theory.

Consider the free scalar field in the 1 + 1 dimension. The Hamiltonian is given by

Hf.b. =
1

2

∫
dx

[
π2(x) + (∂xϕ(x))

2 +m2ϕ(x)2
]

(3.56)

where the field operator and its conjugate momentum satisfy [ϕ(x), π(y)] = iδ(x − y).
One can expand them in terms of creation and annihilation operators ak and a†k satisfying
[ak, a

†
k′ ] = 2πδ(k − k′). The ground state of the theory is known to be the Fock space

vacuum denoted by |0⟩a while ak |0⟩a = 0 for all k.
In order to specify the cMERA representation of the ground state, we need to first

define the unentangled reference state |Ω⟩ which is the same as the vacuum of the cMPS
state in terms of the fundamental fields of the given theory. In general, one can define a
Gaussian factorized state with width ∆−1 as ψ(x) |Ω⟩ = 0 for all x, while [255]

ψ(x) =

…
∆

2
ϕ(x) + i

…
1

2∆
π(x). (3.57)

Notice that the operator (3.57) here is equivalent to the cMPS operators ψ(x). By substi-
tuting (3.57) into (F.4) and (F.5), we have the form of the cMERA Hamiltonian in terms
of ϕ and π. The function g(k, u) in (F.5) is assumed to be real-valued in the form

g(k, u) = χ(u)Θ(1− |k|/Λ), (3.58)

where Θ(x) is the step function. By considering

|ψ(u = 0)⟩ = |0⟩a (3.59)

in (F.1), we find an ansatz to represent the exact ground state of the theory as a circuit
cMERA. As the last step, one should apply the variational principle and minimize the
energy

E = ⟨ψ(u = 0)|Hf.b. |ψ(u = 0)⟩ (3.60)

to exactly find ∆ and χ(u).
In order to do the calculation, it is useful to go to the interaction picture where L can

be understood as the free part of the cMERA Hamiltonian while K(u) is the interacting
part. One can rewrite the unitary evolution in scale in the interaction picture as

U(u1, u2) = e−iu1L Û(u1, u2) e
iu2L

= e−iu1L Pe−i
∫ u1
u2

K̂(u) du
eiu2L (3.61)
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where K̂(u) = eiuLK(u)e−iuL can be read off as

K̂(u) =
i

2

∫
dk g(ke−u, u)

(
a†ka

†
−k − a−kak

)
. (3.62)

Finally, by requiring δE/δχ(u) = 0 for every u, we find that

∆ =
√

Λ2 +m2 (3.63)

and
χ(u) = Λ2e2u/2(Λ2e2u +m2). (3.64)

Before going ahead to find the RG flow of the class of cMPS, in order to find the
renormalized operators via the evolution in scale, it is good to know that

e−iuLψ(k)eiuL = e−u/2ψ(ke−u) (3.65)

and under the action of Û(u, uIR)Ç
ak
a†−k

å
−→
Å

cosh θ(u) − sinh θ(u)
− sinh θ(u) cosh θ(u)

ãÇ
ak
a†−k

å
(3.66)

where θ(u) =
∫ u
uIR

ds g(ke−s, s) and θ(u = 0) = ln
»

∆
ωk

, while ωk =
√
k2 +m2 [263].

Now, we are ready to define a one-parameter family of states by relating them to the
IR state through the entangling evolution in scale as

|Ψ(u)⟩ = U(u, uIR) |ψ[Q,R]⟩ . (3.67)

Here, |Ψ(uIR)⟩ = |ψ[Q,R]⟩ is the standard class of cMPS which is suitable for the ground
state of the non-relativistic QFT and U(u, uIR) is the cMERA RG flow that maps the
state |Ω⟩ to the ground state of the free relativistic theory, i.e. |0⟩a = U(0, uIR) |Ω⟩.

In the standard cMPS, one can explicitly expand the path order in (E.11) and obtain

|ψ[Q,R]⟩ =
∞∑
n=0

1

n!

∫ ∞

−∞
dx1dx2...dxn

Φn(x1, x2, ..., xn)ψ
†(x1)ψ

†(x2)...ψ
†(xn) |Ω⟩

(3.68)

while
Φn(x1, ..., xn) = Tr[P{e

∫∞
−∞Q(y)dyR(x1)...R(xn)}]. (3.69)

Therefore, the one-parameter family of states in (3.67) can be read as

|Ψ(u)⟩ =
∞∑
n=0

1

n!

∫ ∞

−∞
dx1dx2...dxn

Φn(x1, x2, ..., xn) U(u, uIR) ψ
†(x1)ψ

†(x2)...ψ
†(xn) |Ω⟩

(3.70)

Therefore, to find the explicit form of |Ψ(u)⟩, it is enough to determine the transformation
of the ψ†(x1)...ψ

†(xn) |Ω⟩ under the action of unitary evolution which is

U(uIR, u)ψ
†(x1)...ψ

†(xn) |Ω⟩ =
ψ†(x1, u)...ψ

†(xn, u) |ψ(u)⟩ ,
(3.71)
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where we define
ψ†(x, u) = U(u, uIR)ψ

†(x)U−1(u, uIR) (3.72)

and
|ψ(u)⟩ = U(u, uIR) |Ω⟩ . (3.73)

In particular by using (3.65) and (3.66), one can obtain that at the UV scale

ψ(x, u = 0) = euIR/2a(xeuIR) (3.74)

where
a(x) = 1/

√
2π

∫
dkeikxak (3.75)

is defined to be the Fourier transform of the annihilation operator ak. By construction, we
also have

|ψ(0)⟩ = |0⟩a . (3.76)

In the end, we obtain the UV state as

|Ψ(u = 0)⟩ = |Ψ[Q̃, R̃]⟩ = Traux

{
P exp

∫ ∞

−∞
dx(

Q̃(x)⊗ I + R̃(x)⊗ a†(x)
)}
|0⟩a

(3.77)

while Q̃(x) and R̃(x) in terms of the Q(x) and R(x) can be given as

Q̃(x) = e−uIRQ(xe−uIR) R̃(x) = e−uIR/2R(xe−uIR). (3.78)

It is nothing but the class of RCMPS introduced in [274] as an ansatz to approximate
the ground state of a relativistic QFT without requiring any additional UV cut-off, and
thus, the result is valid even at high momenta. As the operator a(x) has the same algebra
as ψ(x), RCMPS inherits the properties of the class of cMPS by replacing ψ(x) with
a(x). Specifically, the correlation function of the a(x), a†(x) can be obtained via the same
generation functional (3.15). The only important point is that since a(x) is not local
in terms of ϕ and π, the computation of the expectation value of the Hamiltonian is
more difficult than in the non-relativistic cases. Moreover, the naive optimization, which
works well for the standard cMPS, fails for RCMPS and one should use some more precise
methods like the tangent space approach [302]. In [274], RCMPS was used to study the
self-interacting ϕ4 theory and provided some remarkable results.

Finally, one can also check the cMERA RG flow of the Hamiltonian. We define the
Hamiltonian as H(u = 0) = Hf.b. Here, Hf.b. represents the Hamiltonian of the free boson
system in a relativistic context given in (E.20). At the IR scale, we will get

H(uIR) = U †(u = 0, uIR)H(u = 0)U(u = 0, uIR) (3.79)

One can explicitly find that at the IR scale, we reach exactly the Hamiltonian of the
non-relativistic free boson as

H(uIR) =
1

2m̃

∫
dx ∂xψ

†(x)∂xψ(x) + µ

∫
dx ψ†(x)ψ(x), (3.80)

while m̃ = me2uIR and µ = m is the so-called chemical potential. Thus, |Ω⟩ is really
represent the ground state of the free non-relativistic field theory.
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3.7 RCMPS for Fermionic Theories

The free relativistic fermions in the 1 + 1 dimensions given by Dirac Hamiltonian

HDirac =

∫
dx [ψ̄(x)σ2∂xψ(x) +mψ̄ψ] (3.81)

where ψ = (ψ1, ψ2)
T is the two-component complex fermions and ψ̄ = ψ†σ3. Here, one

can choose the unentangled state as

ψ1(x) |Ω⟩ = 0 = ψ†
2(x) |Ω⟩ . (3.82)

The standard class of cMPS is defined as

|ψ[Q,R1, R2]⟩ = Traux
{
P exp

∫
dx

(
Q(x)⊗ I

+R1(x)⊗ ψ†
1(x) +R2(x)⊗ ψ2(x)

)}
|Ω⟩ .

(3.83)

To find the related class of states appropriate for relativistic theories, we need to find the
exact form of the RG flow such that |0⟩ = U(u = 0, uIR) |Ω⟩, where |0⟩ is the exact ground
state of the Dirac Hamiltonian. The entangler is given as

K(u) = i

∫
dkg(k, u)

(
ψ†
1ψ2(k) + ψ1(k)ψ2(k)

†). (3.84)

In this case, the Bogoliubov angle is antisymmetric and we can suppose its form as

g(k, u) = kχ(u)θ(1− |k|/Λ). (3.85)

The same as free bosons, one can find χ(u) by minimizing the expectation value of the
Hamiltonian [255]. Moreover, one can derive that

e−iuLψ1,2(k)e
iuL = e−u/2ψ1,2(ke

−u) (3.86)

while ψi(k) is the Fourier transform of ψi(x) , and under the action of the unitary evolution
in the interaction pictureÅ

ψ1(k)
ψ2(k)

ã
−→
Å
cos θf (u) − sin θf (u)
sin θf (u) cos θf (u)

ãÅ
ψ1(k)
ψ2(k)

ã
(3.87)

where
θf (u) =

∫ u

uIR

dsg(ke−s, s) (3.88)

and θf (u = 0) = 1
2 arcsin(−k/ωk). By considering (3.83) as the IR state, we can find the

fermionic RCMPS at UV scale, i.e., u = 0 as

|Ψ[Q̃, R̃1, R̃2]⟩ = Traux
{
P exp

∫
dx

(
Q̃(x)⊗ I

+R̃1(x)⊗ b†1(x) + R̃2(x)⊗ b2(x)
)}
|0⟩ .

(3.89)

while Q̃ and R̃ defined by (E.13), and b1,2(x) are the Fourier transform of the b1,2(k) which
can be found in terms of ψ1,2(k) as

b1(k) = αkψ1(k) + βkψ2(k)

b2(k) = −βkψ1(k) + αkψ2(k)
(3.90)
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while

αk =− k/
»
k2 + (ωk −m)2

βk =(m− ωk)/
»
k2 + (ωk −m)2.

(3.91)

One can check that [H, b†1(k)] = ωkb
†
1(k) and [H, b2(k)] = ωkb2(k) or in other words, the

set of operators b1,2(k) are the modes diagonalizing the Dirac Hamiltonian.

3.8 RCMPS on a Circle

Finding the RCMPS on a circle requires having the cMERA RG flow for relativistic free
fields on the circle. In [301], it has been shown that if a Gaussian cMERA describes the
ground state of a theory on a line, the ground state of the same theory on a circle has a
cMERA representation as well. Furthermore, the cMERA entangler can be obtained using
the method of images. The unentangled reference state is defined as

ψ(x) |Ωc⟩ = 0 (3.92)

for x ∈ [0, lc) when ψ(x) is again given by (3.57). The entangler has the form of

Kc(u) =
i

2

∑
n∈N

g̃c(n, u)[ψ†
nψ

†
−n − ψnψ−n] (3.93)

where

ψn = 1/
√
lc

∫ lc

0
dxe−iknxψ(x) (3.94)

for n ∈ Z and kn = 2πn/lc. The entangling profile on the circle is defined as

g̃c(x, u) = 1/
√
lc
∑
n

eiknxg̃c(n, u) (3.95)

can be obtained from the one on the line g(x, u) through the method of images as

g̃c(x, u) =
∑
n∈Z

g(x+ nlc, u). (3.96)

It implies that g̃c(n, u) = g(k, u)
∣∣
k=kn

. Following the procedure described above, one can
generalize RCMPS to an ansatz as a variational class to approximate the ground state of
the relativistic theory on a finite circle as

|Ψ[Q,R]⟩c = Traux
{
Pe

∫ lc
0 dx

(
Q̃(x)⊗I+R̃(x)⊗ac†(x)

)}
|0c⟩a (3.97)

where ac(x) |0c⟩a = 0 for all x ∈ [0, lc) and ac(x) is defined as the Fourier transform of the
modes which diagonalize the free theory on the circle [301].
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Chapter 4

Krylov complexity of the Matrix
Quantum Mechanic

In this chapter, we report the Krylov complexity study of the matrix quantum mechanics.
After reviewing the concepts related to the study of Krylov complexity we first, study the
simple example of the collection of the harmonic oscillators and then, we go through the
matrix model.

4.1 Krylov Complexity

We start with the definition of the notion of the Krylov complexity. It is defined as the
recursion method in [303] and recently has been used in [304].

4.1.1 Krylov state complexity

Consider a quantum system with a time-independent Hamiltonian H. A state |ψ(t)⟩ is
time evolved under the Schrodinger equation i∂t |ψ(t)⟩ = H |ψ(t)⟩. Its solution |ψ(t)⟩ =
e−iHt |ψ(0)⟩ has a formal power series expansion

|ψ(t)⟩ =
∞∑
n=0

(it)n

n!
|ψn⟩ (4.1)

while |ψn⟩ = Hn |ψ(0)⟩. The time-evolved state is a linear combination of

|ψ(0)⟩ , |ψ1⟩ = H |ψ(0)⟩ , |ψ2⟩ = H2 |ψ(0)⟩ , ... . (4.2)

The subspace Hψ which is spanned by (4.2) is called Krylov subspace. Notice that in
general, this basis is not orthogonal. The Gram-Schmidt procedure applied to |ψn⟩ generate
an orthogonal basis K = {|Kn⟩ : n = 0, 1, 2, ...,Kψ} when we define Kψ = dimHψ for one
subspace of the full Hilbert space explored by the evolution of |ψ(0)⟩ = |K0⟩. In general,
this code subspace can be infinite dimension.

Using the ordinary inner product, one can orthogonalize the basis (4.2) through the
Lanczos algorithm:

1. b0 ≡ 0, |K−1⟩ = 0

2. |K0⟩ ≡ |ψ(0)⟩ , a0 = ⟨K0|H |K0⟩

123
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3. For n ≥ 1, |An⟩ = (H − a0) |Kn−1⟩ − bn−1 |Kn−2⟩

4. Set bn =
√
⟨An|An⟩

5. If bn = 0 stop, otherwise set |Kn⟩ = 1
bn
|An⟩, an = ⟨Kn|H |Kn⟩ and go to step 3

[305].

In the case that Kψ is finite, the Lanczos algorithm will end at some point that bKψ = 0.
The result of the Lanczos algorithm is two sets of Lanczos coefficients {an} and {bn}.

We can expand the time-evolved state in terms of the Krylov basis as

|ψ(t)⟩ =
Kψ−1∑
n=0

ϕn(t) |Kn⟩ (4.3)

by substituting it into the Schrodinger equation, one gets

ϕ̇n(t) = anϕn(t) + bn+1ϕn+1(t) + bnϕn−1(t) (4.4)

and the initial condition is ϕn(0) = δn,0.
The Krylov state complexity of the state |ψ(t)⟩ is defined as

Cψ(t) ≡
Kψ−1∑
n=0

n|ϕn(t)|2. (4.5)

4.1.2 Krylov operator complexity

Similar to the Krylov state complexity, we can define Krylov complexity for quantum
operators. Motivated by the time evolution of the operators , one can create the Krylov
basis for a given operator in terms of the nested commutators with the Hamiltonian as
they determine the time Taylor expansion of the Heisenberg operator.

Consider a time-independent Hamiltonian of a quantum system H and a given Hermi-
tian operator O. The operator undergoing a Heisenberg evolution

O(t) = eitHO(0)e−itH . (4.6)

Just as states evolved under the Hamiltonian operator, operators evolved under the Liou-
villian operator L ≡ [H, .]

O(t) =eitHO(0)e−itH = O(0) + it[H,O(0)] + ...

=
∞∑
n=0

(it)n

n!
LnO(0) ≡ eiLtO(0)

(4.7)

This is a linear combination of the sequence of operators

O, LO = [H,O], L2O = [H, [H,O]], ... (4.8)

where O stands for O(0) [306]. The linear span of operators forms an invariant subspace
HO. A convenient way to study the growth of a simple operator is to realize them as states,
O ≡ |O⟩, and to introduce a notion of an inner product. It can be any non-degenerate



4.1. KRYLOV COMPLEXITY 125

inner product in the operator algebra such as the trace inner product for finite-dimensional
Hilbert space (also known as infinite temperature inner product or Frobenius norm)

⟨O|O′⟩ = Tr[O†O′]

Tr[I]
(4.9)

and we write ||O|| = ⟨O|O⟩1/2 for the norm [307]. Thereby any operator within this
subspace can be thought of as a vector in the linear vector space. Such a vector space
endowed with a valid inner product is called the Krylov subspace.

The set of operators (4.8) are not orthogonal. The idea is to apply the Gram-Schmidt
to orthogonalize it. As in the case of the state complexity, it is called Lanczos algorithm.
It is as follows

1. b0 ≡ 0, O−1 ≡ 0

2. O0 = O/||O||

3. For n ≥ 1 : An = LOn−1 − bn−1On−2

4. Set bn = ||An||

5. If bn = 0 stop; otherwise set On = An/bn and go to step3 [305].

The output of the algorithm is a sequence of positive numbers, {bn}, called the Lanczos
coefficients and an orthogonal set of operators {On}KO−1

n=0 called the Krylov basis.
The time-evolved operator can now be expanded on the Krylov basis

O(t) = eiHtO0e
−iHt =

KO−1∑
n=0

inϕn(t)On (4.10)

where ϕn(t) can be thought of as the wavefunction over the Krylov basis. From the
orthogonality, we obtain

ϕn(t) = i−n⟨On|O(t)⟩. (4.11)

The time evolution of the operator follows

dO(t)

dt
=

∑
n

in
dϕn(t)

dt
On

= i[H,O(t)] = iLO(t) =
∑
n

in+1ϕn(t)LOn
(4.12)

thus via the Heisenberg equation ϕn(t) satisfies the equation

∂tϕn(t) = bnϕn−1 − bn+1ϕn+1 (4.13)

with boundary condition ϕ−1(t) = 0 and ϕn(t = 0) = δ0,n. From unitarity, since the initial
operator is normalized at the first step of the Lanczos algorithm, the wavefunction ϕn(t)
is normalized at all times

∑KO−1
n=0 |ϕn(t)|2 = 1.

Krylov complexity or K-complexity is defined as the time-dependent average position
over the Krylov chain

CK(t) = ⟨O(t)|n |O(t)⟩ =
∑
n

n|ϕn(t)|2 (4.14)
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which can be viewed as the expectation value of the Krylov operator

KO =
∑
n

n |On⟩ ⟨On| . (4.15)

Intuitively, CK(t) describes the mean width of a wavepacket in the Krylov space and hence
quantitatively measures how the size of the operator increases as time goes by [308].

4.1.3 Krylov operator complexity over pure and mixed states

Given an normalized operator O, by acting the operator on a pure state |ψ⟩, one can
construct a state

|O⟩ := O |ψ⟩ Ln |O⟩ := [H, [H, ...[H,O]]] |ψ⟩ . (4.16)

The choice of pure state |ψ⟩ depends on the two-point function of the operator that we
have in hand. For example, when we have the zero-temperature two-point function of O,
one can take the state |ψ⟩ to be the ground state of the theory.

A time-dependent state |O(t)⟩ := O(t) |ψ⟩ for O(t) = eLtO can be expanded by Ln |O⟩.
Although they do not create on an orthonormal basis. We need to apply the Gram-Schmidt
procedure to make them orthogonal. By using it, one can obtain the Krylov basis |On⟩
such that ⟨Om |On⟩ = δm,n as follows

|O0⟩ = |O⟩ L |On⟩ =
n+1∑
i=0

hi,n |Oi⟩ . (4.17)

This construction of the basis is called Arnoldi iteration for general matrices. If ⟨Om| L |On⟩
is a Hermitian matrix, then (4.17) is simplified as

L |On⟩ = an |On⟩+ bn |On−1⟩+ bn+1 |On+1⟩ (4.18)

⟨On| L |Om⟩ =

â
a0 b1 0 0 . . .
b1 a2 b2 0 . . .
0 b2 a2 b3 . . .
0 0 b3 a3 . . .
...

...
...

...
. . .

ì
(4.19)

while |O−1⟩ = 0. As before, this construction is called the Lanczos algorithm.
If |ψ⟩ is an eigenstate of H, let us say H |ψ⟩ = λ |ψ⟩, we have

⟨Om| L |On⟩ = ⟨ψ|O†
m(H − λ)On |ψ⟩ (4.20)

which is Hermitian. Assuming that O and H are Hermitian and we have an appropriate
inner product by trace and Hermitian conjugation, we find that

an = 0. (4.21)

an is the Hamiltonian eigenvalue in the absence of bn, which would be not directly related
to the spreads of operators. On the other hand, bn, especially at large n, represents how
much the operator spreads into an orthogonal direction in the Hilbert space at a later time.
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By introducing an inner product between operators at finite temperature one can gen-
eralize the above procedure

⟨A |B⟩β :=
1

Z
Tr

(
e−βHA†B

)
, Z = Tr

(
e−βH

)
(4.22)

where β is the inverse temperature. We define

⟨A| Ln |B⟩β := ⟨A |LnB⟩β = ⟨LnA |B⟩β . (4.23)

Once the inner product is defined, one can construct the Krylov basis as ⟨Om |On⟩ = δm,n.
On top of it

Lmn = ⟨Om|L|On⟩ =
1

Z
Tr[e−βH(O†

mHOn −O†
mOnH)] (4.24)

which is Hermitian. Hence, one can use the Lanczos algorithm instead of the Arnoldi
iteration. For mixed states, it is more convenient that define the Lanczos coefficients in
terms of operators as

O−1 = 0, O0 = O

LOn = anOn + bnOn−1 + bn+1On+1.
(4.25)

One can also obtain
⟨Om| Ln |On⟩ = (Ln)mn. (4.26)

In the zero temperature limit, this reduces to the Lanczos algorithm for the pure state case
when |ψ⟩ is the ground state of the theory and in the infinite temperature limit, it reaches
the discussion of the Krylov operator complexity [309].

4.1.4 Recursion Method and Moment Expansion

This part is mostly based on [303].
The dynamical behavior of a quantum system is determined by its Hamiltonian H and

the operator A representing the observable we’re interested in tracking over time. Our
objective is to compute the dynamical correlation function ⟨A(t)A(0)⟩ , which provides
insights into how A evolves with time. Here, we assume that the correlators are even in
the time. This evolution is governed by the Heisenberg equation of motion:

dA

dt
= i[H,A] (4.27)

Here, the commutator [H, .] , known as the quantum Liouvillian operator L, plays a crucial
role. It’s a Hermitian superoperator. The formal solution to the equation of motion is
expressed as:

A(t) = eiLtA(0). (4.28)

To implement the recursion method effectively, besides H and A, we need to define an
inner product for operators within the Hilbert space associated with H and A. This choice
influences the nature of the resulting dynamic correlation function.

The heart of the Liouvillian representation in the recursion method lies in the orthog-
onal expansion of the observable under examination:

A(t) =

∞∑
k=0

ϕk(t)Ak. (4.29)
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For classical systems, Ak comprises an orthonormal set of functions in phase space. In
contrast, for quantum systems, it constitutes an orthonormal set of operators. Regardless,
these sets span a Hilbert space, typically of infinite dimensionality. The Liouvillian operator
acts on the vectors Ak within this space. The orthogonal expansion is executed in two
successive steps.

• Determine a particular orthogonal basis Ak in the Hilbert space of the dynamical
variables by applying the Gram-Schmidt procedure with the Liouvillian L as the
generator of the new direction.

• Insert the expansion (4.29) into the equation of motion to obtain a set of differential
equations for the time-dependent coefficients ϕk(t).

As the first step, we note that the general inner product between the vectors A and
iLA for arbitrary A vanishes

⟨A, iLA⟩ = 0. (4.30)

This simplifies the Gram-Schmidt orthogonalization process and results in the subsequent
set of recurrence relations for the vectorsAk

Ak+1 = iLAk +∆kAk−1, k = 0, 1, 2, ... (4.31)

∆k =
⟨Ak, Ak⟩
⟨Ak−1, Ak−1⟩

k = 1, 2, 3, .. (4.32)

with A−1 = 0 and A0 = A. The sequence of numbers ∆k contains all the information for
the reconstruction of the fluctuation function ⟨A(t), A(0)⟩.

In the second step, we plug in the orthogonal expansion (4.29) into the equation of
motion. The differential operator acts on the ϕk(t) and the Liouvillian acts on the Ak,
which yields the following set of coupled linear differential equations for the function ϕk(t):

dϕk(t)

dt
= ϕk−1(t)−∆k+1ϕk+1(t), k = 0, 1, 2, ... (4.33)

with ϕ−1 ≡ 0, ϕk(0) = δk,0. Unlike the vectors Ak, the functions ϕk(t) can not be deter-
mined recursively.

If our goal is to determine the fluctuation function of the dynamical variable A(t), then
it is sufficient to know just one of the functions ϕk(t). Follows directly from the orthogonal
expansion

ϕ0(t) =
⟨A(t), A(0)⟩
⟨A(0), A(0)⟩

. (4.34)

There is a way to calculate the ∆k sequence for specific correlation functions of a given
model system. It is called the moment expansion. The normalized fluctuation function
can be expanded in a Taylor series

ϕ0(t) =
∞∑
k=0

i2kt2k

(2k)!
M2k (4.35)

with M0 ≡ 1. The coefficients M2k are the frequency moments of the normalized spectral
density

M2k = ⟨ω2k⟩ =
∫ ∞

−∞

dω

2π
ω2kf(ω) = i2k

[ d2k
dt2k

ϕ0(t)
]
t=0

, k = 1, 2, ... (4.36)
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while
f(ω) =

∫ ∞

−∞
dωeiωtϕ0(t). (4.37)

for a given set of moments M2k, k = 0, 1, ...,K with M0 = 1 the first K coefficients ∆n are
determined by

M
(n)
2k =

M
(n−1)
2k

∆n−1
−
M

(n−2)
2k

∆n−2
, ∆n =M

(n)
2n (4.38)

for k = n, n + 1, ...,K and n = 1, 2, ...,K, and with set values M (0)
2k = M2k,M−1

2k = 0,
∆−1 = ∆0 = 1.

The set of coefficients ∆n is equivalent to the square of the set of bn as discussed earlier.
Recursion method of the quantum Hamiltonian system in its ground state:
This application of the recursion method is tailored for investigating dynamic corre-

lation functions within the quantum Hamiltonian system’s ground state. An essential
preliminary step in more practical scenarios involves identifying the ground state wave
function of the system.

For a given quantum Hamiltonian H and its ground state wave function |ϕ0⟩, our goal
is to determine the normalized correlation function of the dynamical variable represented
by the Hermitian operator A

C(t) =
⟨ϕ0|A(t)A(0) |ϕ0⟩
⟨ϕ0|A(0)A(0) |ϕ0⟩

(4.39)

In such a case the result of the Lanczos algorithm is two sets of coefficients ak and bk. The
relation between the moments and these sets of coefficients are most conveniently expressed
in terms of two arrays of auxiliary quantities L(n)

k and M (n)
k :

Given a set of moments M0 ≡ 1, M1, ...,M2K+1 the coefficients a0, ..., aK and b1, ..., bK
are obtained by initializing

M (0) = (−1)kk, L
(0)
k = (−1)k+1Mk+1 (4.40)

for k = 0, ..., 2K and then applying the recursion relations [309]

M
(n)
k = L

(n−1)
k − L(n−1)

n−1

M
(n−1)
k

M
(n−1)
n−1

L
(n)
k =

Mn
k+1

M
(n)
n

−
M

(n−1)
k

M
(n−1)
n−1

(4.41)

for k = n, ..., 2K − n+ 1 and n = 1, ..., 2K. The resulting coefficients are

bn =

»
M

(n)
n , an = −L(n)

n , n = 0, ...K. (4.42)

4.2 Simple example: Krylov Complexity of free field theory

For a single harmonic oscillator, the Euclidean two-point function must obey the equation

(
− d2

dτ2
+ ω2

)
⟨X(τ)X(0)⟩ = δ(τ). (4.43)
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The solution to this equation is

C0(τ) = ⟨X(τ)X(0)⟩ = 1

2ω
e−ω|τ | (4.44)

which can also be found by using the path integral method. To find the finite-temperature
two-point function, one can use the method of images

Gβ(τ) =

∞∑
n=−∞

C0(τ + nβ). (4.45)

For simplicity, consider the case that 0 < τ < β, then we have

G0(τ) =
−1∑

n=−∞

1

2ω
eω(τ+nβ) +

∞∑
n=0

1

2ω
e−ω(τ+nβ)

=
eβω−τω

2ω(−1 + βω)
+

eτω

2ω(−1 + βω)
.

(4.46)

Therefore, the thermal correlator is given as

Tr(e−βHX(t)X(0)) = Gβ(t) =
eβω−itω

2ω(−1 + βω)
+

eitω

2ω(−1 + βω)
(4.47)

In order to find the complexity we can use the inner product which can be motivated
or inspired by a two-sided correlator on the TFD state or KMS inner product as

⟨O1, O2⟩ = Tr(e−βH/2O†
1e

−βH/2O2) (4.48)

To find the inner product between the single harmonic oscillator and its time-shifted we
can use the thermal two-point function and shift the time as t→ t− iβ/2

Tr(e−βH/2X(t)e−βH/2X(0)) = Gβ(t− iβ/2) =
eβω/2

2ω(−1 + eβω)
eitω +

eβω/2

2ω(−1 + eβω)
e−itω

(4.49)
considering a free quantum field on a circle of length L. We can expand it in modes and

get a collection of harmonic oscillators with frequency ωj . In the following, we consider a
J number of modes over the ground state and thermal states respectively.

4.2.1 Krylov complexity of the operator X over the ground state

The correlator for J different modes of harmonic oscillator in the ground state is

C(t) =
1

N

J∑
j=1

1

2ωj
e−iωjt (4.50)

while N in the normalization factor such that C(t = 0) = 1. The moments are

Mn =
1

N

J∑
j=1

1

2ωj

(−iωj)n

in
. (4.51)

Here both sets of odd and even moments are nonzero, thus we get the nonzero values for
both sets of an and bn. In Fig. 4.1, one can find the non-zero value of an and bn for
different value of J .

In Fig. 4.2, one can find the Krylov complexity for the limit J →∞.
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Figure 4.1: The non-zero values of an and bn for different J . The plots of an are on top
of each other for different values of J , and only the number of nonzero values of an will
increase as one increases the J .
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Figure 4.2: Krylov complexity as a function of time for the free field theory over the ground
state in the limit J →∞
.
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Figure 4.3: The non-zero bn for different value of J .

4.2.2 Krylov complexity of the operator X over the thermal state

To find the correlator we use the inner product defined in (4.48). The correlator for J
different mode of the harmonic oscillator in the thermal state with inverse temperature β
is given by

C(t, β) =
1

N

J∑
j=1

eβωj/2

2ωj(−1 + eβωj )
eitωj +

eβωj/2

2ωj(−1 + eβωj )
e−itωj (4.52)

while
ωj = j

π

2L
(4.53)

and N the normalization factor such that C(t = 0, β) = 1. The moments are

Mn =
1

N

J∑
j=1

eβωj/2

2ωj(−1 + eβωj )

[(−iωj)n
in

+
(−iωj)n

in

]
. (4.54)

One can calculate the Lanczos coefficients using (4.42). As it is clear M2n+1 = 0 and thus

an = 0 ∀n. (4.55)

In Fig. 4.3 and 4.4, one can see the behavior of the non-zero bn for different values of J
and β. In general, in this case, bn has two branches. For small n, it increases linearly, and
at some point, it starts to decrease and goes to zero. The number of non-zero valued bn
increases as we increase the J and it is almost twice the value of J for this range of β.
Considering both positive and negative modes in the thermal case, the number of non-zero
bn is equal to the number of different modes ( in this case 2J). As β increases, the linear
behavior of the plots is dominant, and for β = 10 in Fig.4.4 one can see that we just have
two linear branches. Moreover, by increasing the β the branches get more separated, and
in the high value of β, it means the small value of T the second branch is getting to vanish
and we will reach the one linear branch as in the ground state. However, for a fixed β, the
slopes of two branches remain constant. As one can see in the 4.3 that the linear growth
part of the plots for different J are on top of each other.

In Fig. 4.5, one can see the behavior of bn when J →∞. It contains two linear branches
and the slopes of two branches for different values of β are different. Finally, in Fig. 4.6,
one can see the behavior of the Krylov complexity for different values of β. As correlators
are periodic in time, the Krylov complexity is also periodic with period of 4L.
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Figure 4.4: The non-zero bn for β = 10 and different value of J . They contain two linear
branches with the same slopes but the numbers of non-zero value of bn depend on J and
it increases when J increases.
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Figure 4.5: The non-zero bn for the J goes to infinity limit.
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Figure 4.6: Krylov complexity as a function of time for different values of β.

In [310], the authors discussed the simple example of harmonic oscillator analytically.
In particular, they find that for a very generic choice for the frequency of the modes, only
the first 2J Lancsoz coefficients are nonzero. For just one harmonic oscillator the theory
describes with the Hamiltonian

H =
1

2
(X2 + P 2) (4.56)

while [X,P ] = iℏ. The position operator can be written in terms of the creation and
annihilation operator X =

»
ℏ
2(a + a†). The calculation for the momentum operator

is similar to the position operator. From the partition function, one can include the
normalization factor

tr(e−βH) =
1

2 sinh
Ä
βℏ
2

ä . (4.57)

we find

||X||2 = ||P ||2 = ℏ
2 sinh

Ä
βℏ
2

ä . (4.58)

One can apply the Lanczos algorithm starting from a normalized operator

O0 =

 
2 sinh(βℏ/2)

ℏ
X (4.59)

The first recursion gives

O1 = −i

 
2 sinh(βℏ/2)

ℏ
P (4.60)

while
b1 = ℏ (4.61)
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Then the second operator in the recursion actually vanishes A2 = 0, b2 = 0. So the
harmonic oscillator is a rather trivial model with the Lanczos algorithm terminating at the
second step.

To generalize this case, consider a quantum system of N decoupled harmonic oscillators
of different frequencies

H =
J∑
i=0

1

2
(P 2

i + ω2
iX

2
i ) (4.62)

with a properly normalized initial operator

O0 =
J∑
i=1

Xi. (4.63)

It is easy to compute the moments in the case

Mn =
1

N
(ℏn

J∑
i=1

ωni ), n : even (4.64)

The determinant in
b2n1 b

2(n−1)
2 ...b2n = det

(
M(i+j)

)
0≤i,j≤n (4.65)

vanishes for
n ≥ 2J, (4.66)

so the Lanczos algorithm terminates at the 2J steps with b2J+1 = 0.
For a more general discussion on free theory, one can look at [311]. They consider

free massive scalar and Dirac fermion in d spacetime dimension. In the first case, Lancsoz
coefficients split into even and odd branches, growing linearly with n albeit with different
intercepts. bn grows linearly with the universal slope, but even and odd branches have
different finite terms. In the second case of free massless fermions C(t) is not an even
function, hence besides bn, Lancsoz coefficients also include an. In [311], one can see the
numerical results as a function of β.

They also consider a CFT on a sphere and calculate Lancsoz coefficients and Krylov
complexity associated with the thermal two-point function of the model. They consider 4d
free massless scalar compacted on a S3. The corresponding two-point function has some
singularity on the imaginary time axis. The correlator is in terms of a parameter R which
is the radius of S3 measured in the units of β which is the radius of S1. Their numerical
results are good for R < 1. The Lanczos coefficients split into even and odd branches which
grow linearly with n but with different slopes. The same as our results in the thermal case.
The behavior of Krylov complexity is the same as the β around one of our results (see Fig.
4.6).

4.3 Matrix Quantum Mechanics

This chapter is based on [312, 313]. The one dimension takes to be timelike and the
Lagrangian defines the theory

L = Tr
(1
2
Ṁ2(t)− V (M)

)
(4.67)
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where M is a Hermitian matrix variable. The Lagrangian is invariant under a global U(N)
symmetry, M → U−1MU with the conserved U(N) angular momentum

J = i[M, Ṁ ]
dJ

dt
= 0. (4.68)

The quantum theory then is defined by the Hamiltonian

H = Tr
(
− 1

2

∂2

∂M2
+ V (M)

)
(4.69)

and we restrict ourselves to the singlet sector J | ⟩ = 0.
A set of basic singlet vertex operators is given by

ϕm = Tr(Mm). (4.70)

To work with the collective field theory approach, a natural set of singlet operators is given
by the vertex operators

ϕk = Tr(eikM ) (4.71)

and one considers the collective field as its Fourier transform

ϕ(x) =

∫
dk

2π
e−ikxϕk =

∫
dk

2π
e−ikxTr(eikM ). (4.72)

In terms of the eigenvalues
M = U−1diag(λi)U (4.73)

one has ϕk =
∑N

i=1 e
ikλi and thus

ϕ(x) =
N∑
i=1

δ(x− λi). (4.74)

ϕ(x) is simply the density of eigenvalues λi. The Collective field is constrained by

ϕ(x) ≥ 0,

∫
ϕ(x)dx = N (4.75)

and other constrained which disappear as N →∞.
To reformulate the theory with ϕ as the coordinate, one not only needs to change

variables in the Hamiltonian but also to rescale the wavefunctions by the Jacobian of the
transformation from M to ϕ. While the Jacobian is singular for finite N , the N →∞ may
be found from the hermiticity of the Hamiltonian. One can compute

ω(k, ϕ) = − ∂2

∂M2
ϕk = k2

∫ 1

0
dαϕαkϕk(1−α)

Ω(k, k′;ϕ) =
∂ϕk
∂M

∂ϕ′k
∂M

= kk′ϕk+k′

(4.76)

One can easily verify the following useful identity

ω(k, ϕ) =

∫
dk′Ω(k, k′, ϕ)

1

|k′|
ϕ−k′ (4.77)
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The Fourier transform of ω(k, ϕ) is the singular form

ω(x, ϕ) = 2∂x

∫
ϕ(x)ϕ(y)

x− y
dy (4.78)

In the end, one can write down the following field theory Hamiltonian

Hϕ =

∫
dx

(1
2
∂xΠϕ∂xΠ+ V (ϕ)ϕ(x)−µF

(
ϕ(x)− N

V

)
+

1

2

∫
dx ϕ(x)

( ∫
dy

ϕ(y)

x− y
)2) (4.79)

where Π is the momentum conjugation to ϕ, −i δ
δϕ(x) and µF represent a multiplier for the

density constraint and we also have some additional singular terms associated with the
derivative terms. The kinetic energy piece is local. The effective potential is given by

Veff =
1

2

∫
dxϕ(x)

( ∫
dy

ϕ(y)

x− y
)2 − ∫

(µF − V (x))ϕ(x) dx (4.80)

One can evaluate the integral and find

Veff =

∫
dx

(π2
6
ϕ3(x)−

(
µF − V (x)

)
ϕ(x)

)
(4.81)

We also have two other terms which are of lower order

∆V =
1

2

∫
y=x

dx ϕ(x)∂x∂y ln(x− y) +
1

2

∫
∂Ω

∂ϕ

∫
ln |x− y|ϕ(y). (4.82)

They do not contribute to the planar limit but begin to contribute in the first torus
correction.

We should find the classical equation of motion. Since the constraints (4.75) should
satisfy, the ground state has ∂Π/∂x = 0 and in the leading order minimize

V (ϕ)− µF
∫
ϕ(x) dx. (4.83)

This gives

ϕ0(x) =

{
1
π

√
2(µF − v(x)) |x| < Λ

0 |x| > Λ
(4.84)

where Λ is the point at which the square root vanishes. the planar ground state energy is
then given by

E0,GS = µF −
1

3π

∫
dx

(
2(µF − v(x))

)3/2
. (4.85)

We now proceed to the computation of the propagator. This corresponds to the study
of fluctuations in the collective field method. By shifting the field

ϕ(x, t) = ϕ0(x) + ξ(x, t) (4.86)

the propagator is determined by the quadratic action

S =

∫
dxdt

(1
2
∂−1
x

1

ϕ0(x)
∂−1
x +

1

2
π2ϕ0(x)ξ

2
)
. (4.87)
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It is convenient to introduce a new variable q as

q =
1

π

∫ x dx

ϕ0(x)
. (4.88)

For a classical particle moving in the potential v(x), q is the time taken for the particle to
go from the origin to the point x. The range of q is given by −L < q < L where 4L is the
time period of the classical motion and it is determined by

1

π

∫ Λ

0

dx

ϕ0(x)
= L (4.89)

where ±Λ are the turning points of the classical motion. by redefining the field variable

ξ =
1

ϕ0(x)
η (4.90)

we will give

S = π3
∫
dt

∫ L

−L
dq

(1
2
∂−1
q η̇∂−1

q η̇ − 1

2
η2
)
. (4.91)

Notice that the background field ϕ0(x) has disappeared. The only remnant is the new
integration region (−L,L) for the variable q. With the further transformation

η = ∂qψ (4.92)

the action is brought into the form

S = π3
∫
dt

∫ L

−L
dq

(1
2
(∂tψ)

2 − 1

2
(∂qψ)

2
)

(4.93)

the propagator of the scalar field ψ(q, t) are obtained by implementing the constraint

d

dt

∫
dx ϕ(x) = 0 (4.94)

which leads to the Dirichlet boundary condition on ψ : ψ(−L, t) = ψ(L, t) = 0. The small
fluctuation eigenfunctions are found to be

ψj(q) =

{
1√
L
sin
Ä
jπq
L

ä
j = 0, 1, 2, ...

1√
L
cos

(
(j + 1

2)
πq
L

) (4.95)

with the frequencies

ωj =
jπ

2L
= jωc j = 0, 1, 2, ... . (4.96)

The propagator is then

D(t− t′; q, q′) =
∫
dE

π
eiE(t−t′)

∑
j

ψj(q)ψj(q
′)

E2 − ω2
j + iϵ

. (4.97)

To find the two-point function in the matrix model, we have

Tr(Mn) = (−i)n∂
nϕk
∂kn

∣∣∣
k=0

. (4.98)
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In terms of the collective field, one can find that

TrMn(t) =

∫
dx xnϕ(x, t), (4.99)

therefore
⟨TrMn(t)TrMm(0)⟩ =

∫
dxdx′ xnx′m⟨ϕ(x, t)ϕ(x′, 0)⟩. (4.100)

By substituting ϕ(x, t) = ϕ0(x) +
1

ϕ0(x)
∂qψ(x, t) = ϕ0(x) + ∂xψ(x, t), we reach to

⟨ϕ(x, t)ϕ(x′, 0)⟩ = ϕ0(x)ϕ0(x
′) + ∂x∂x′⟨ψ(x, t)ψ(x′, 0)⟩ (4.101)

and thus

⟨TrMn(t)TrMm(0)⟩ =
∫
dxdx′ xnx′m ϕ0(x)ϕ0(x

′)+∫
dxdx′ xnx′m ∂x∂x′⟨ψ(x, t)ψ(x′, 0)⟩

(4.102)

and the connected two-point function in terms of the propagator in (4.97) can be written
as

⟨TrMn(t)TrMm(0)⟩c =
∫
dqdq′ xn[q]x′m[q′] ∂q∂q′D(t; q, q′). (4.103)

To evaluate the integration over E in (4.97) for t > 0 we can take the integration over
upper half plane and in the case of t < 0 over the lower half plane and we will find that

D(t; q, q′) = θ(t)
∑
j

ψj(q)ψj(q
′)e−iωjt

iωj
+ θ(−t)

∑
j

ψj(q)ψj(q
′)eiωjt

iωj
(4.104)

From now on we assume that t > 0 and thus

D(t; q, q′) =
∑
j

e−iωjt

iωjL

(
sin

Å
jπq

L

ã
sin

Å
jπq′

L

ã
+ cos

Å
(j +

1

2
)
πq

L

ã
cos

Å
(j +

1

2
)
πq′

L

ã)
(4.105)

therefore

⟨TrMn(t)TrMm(0)⟩c

=

∫
dqdq′ xn[q]x′m[q′]

(∑
j

e−iωcjtjπ2

iωcL3
cos

Å
jπq

L

ã
cos

Å
jπq′

L

ã
+
∑
j

e−iωc(j+1/2)2tjπ2

iωcjL3
sin

(
(j + 1/2)

πq

L

)
sin

Å
(j + 1/2)

πq′

L

ã)
=
∑
j

e−iωcjtjπ2

iωcL3

∫
dqxn[q] cos

Å
jπq

L

ã∫
dq′x′n[q′] cos

Å
jπq′

L

ã
+
∑
j

e−iωcjt(j + 1/2)2π2

iωcjL3

∫
dqxn[q] sin

(
(j + 1/2)

πq

L

)∫
dq′x′n[q′] cos

Å
(j + 1/2)

πq′

L

ã
(4.106)
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4.3.1 Collective field theory formalism

Broadly, the collective approach involves a variable transformation. Consider an operator
Hamiltonian

Ĥ =
1

2

N∑
i=1

P 2
i + V (q1, ..., qM ) (4.107)

in a manner that allows its representation using an infinite set of new variables

ϕ(x) = f(x, q1, ..., qM ). (4.108)

This set would be generally over-complete for finite M . One can make a standard canonical
transformation and express the theory using ϕ(x). Thus, the wave function of the theory
should be written in terms of ϕ(x). this can come about as a restriction on invariant singlet
subspace of the full Hilbert space. On the wave functional, the kinetic term takes the form

K ≡ −1

2

∑ ∂2

∂q2i
=

1

2

∫
dx ω(x, ϕ)

δ

δϕ(x)
− 1

2

∫
dxdy Ω(x, y, ϕ)

δ

δϕ(x)

δ

δϕ(y)
(4.109)

where

ω(x, ϕ) =
∑
i

∂2i f(x, q)

Ω(x, y, ϕ) =
∑
i

∂if(x, q)∂if(y, q)
(4.110)

The kinetic term in the new collective representation is not Hermitian. It is because of the
fact that the new scalar product involves a Jacobian.

Using a similar transformation, one finds the following Hermitian Hamiltonian

H =
1

2
Π Ω Π+

1

8
(ω +

∂Ω

∂ϕ
)Ω−1(ω +

∂Ω

∂ϕ
) + V [ϕ]− 1

4

δω

δϕ
− 1

4

∂2Ω

∂ϕ∂ϕ
(4.111)

whith ϕ(x) and Π(x) being a conjugate set of fields variables when Π(x) = −iδ/δϕ(x).

4.3.2 Quadratic Potential

We start with the free theory. Taking v(x) = x2, we have

ϕ0(x) =
1

π

√
2µF − 2x2, (4.112)

thus the x variable in terms of q can be find as

x[q] =
√
muF sin

Ä√
2q
ä
. (4.113)

We have −π
2 < q < π

2 and so
L =

π

2
√
2
. (4.114)

In the end, for free theory, we find that

⟨TrMn(t)TrMm(0)⟩c =
16

π
(
√
µF )

m+n

∫
dq sinm(

√
2q) cos

Ä
2
√
2jq
ä∫

dq′ sinn(
√
2q′) cos

Ä
2
√
2jq′
ä (4.115)
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For some value of m, n, the result is as below

⟨TrM2(t)TrM2(0)⟩c =
1

2
µ2Fπe

−i
√
2t

⟨TrM4(t)TrM4(0)⟩c =
1

2
µ4Fπe

−i
√
2t +

1

16
µ4Fπe

−i2
√
2t

⟨TrM6(t)TrM6(0)⟩c =
225

512
µ6Fπe

−i
√
2t +

9

64
µ6Fπe

−i2
√
2t +

3

512
µ6Fπe

−i3
√
2t

(4.116)

4.3.3 Quatric Potential

Now let us consider the interacting theory, the simplest potential is

v(x) = x2 + gx4 (4.117)

and we set 2µF = 1 here. Hence, we have

q =

∫
dx√

1− 2x2 − 2gx4
(4.118)

by change of variable t =
√
2gx/

√
−1 +

√
1 + 2g we will reach to

q =

√
−1 +

√
1 + 2g√

2g

∫ t

0

dt′√
(1− t′2)(1 + 1+g−

√
1+2g

g t′2)

=

√
−1 +

√
1 + 2g√

2g
F (t,−1 + g −

√
1 + 2g

g
)

=

√
−1 +

√
1 + 2g√

2g
F (

√
2gx√

−1 +
√
12g

,−1 + g −
√
1 + 2g

g
)

(4.119)

where
F (x,m) =

∫ x

0

dt√
(1− t2)(1−mt2)

(4.120)

is the elliptic integral of the first kind. The turning point of the classical particle is at
Λ = 1√

2g
√

−1+
√
1+2g

. Therefore

L =

√
−1 +

√
1 + 2g√

2g

∫ 1

0

dt√
(1− t2)(1 + 1+g−

√
1+2g

g t2)
=

√
−1 +

√
1 + 2g√

2g
K(
−(g + 1) +

√
1 + 2g

g
)

(4.121)
where

K(m) =

∫ 1

0

dt√
(1− t2)(1−mt2)

(4.122)

is the complete elliptic integral of the first kind. Solving x in terms of q, one can find that

x[q] =
1√
2g

»
−1 +

√
1 + 2g sn

( 1√
2g

»
−1 +

√
1 + 2g(1+

√
1 + 2g) q|1

g
(−(1+g)+

√
1 + 2g)

)
(4.123)

where sn(z|m) is the Jacobi elliptic function.
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In order to find the connected two-point function, we need to calculate
∫
dqxm cos(jπq/L).

To proceed, we can use the series definition of The Jacobi elliptic function

sn(z|m) =
2π√

mK(m)

∞∑
n=0

q(m)n+1/2

1− q(m)2n+1
sin

Å
(2n+ 1)

πz

2K(m)

ã
(4.124)

In our case m = 1
g (−(1 + g) +

√
1 + 2g), and L/K(m) = 1√

2g

√
−1 +

√
1 + 2g. Let us first

calculate the two-point function for the singlet TrM2. Thus, we have∫
dqx2[q] cos(jπq/L) = − 1

2L

∞∑
n,l=0

q(m)n+l+1

(1− q(m)2n+1)(1− q(m)2l+1)∫ L

−L
dq sin

(
(2n+ 1)

πq

2L

)
sin

(
(2l + 1)

πq

2L

)
cos

Å
jπq

L

ã
.

(4.125)

We have∫ L

−L
sin

(
(2n+ 1)

πq

2L

)
sin

(
(2l + 1)

πq

2L

)
cos

Å
jπq

L

ã
=

L

2π

{sin(j + l − n)π
j + l − n

+
sin(j − l + n)π

j − l + n
− sin(1− j + l + n)π

1− j + l + n
− sin(1 + j + l + n)π

1 + j + l + n

}
(4.126)

and in the end ∫ L

−L
dq x2[q] cos

Å
jπq

L

ã
= −1

4
{2Aj +Bj} (4.127)

while

Aj =
∞∑
l=0

q(m)2l+1+j

(1− q(m)2l+2j+1)(1− q(m)2l+1)

Bj =

j−1∑
l=0

q(m)j

(1− q(m)2l+1)(1− q(m)2j−2l−1)
.

(4.128)

Finally, we reach to

⟨TrM2(t)TrM2(0)⟩c =
∞∑
j=1

−ijπ
8L2

e
−iπjt
2L {2Aj +Bj}2 (4.129)

4.4 Krylov complexity for MQM via the Lanczos algorithm

Now it is time to attempt to find the notion of Krylov complexity for the MQM.

4.4.1 Over the Ground State

The correlator in the ground state is

C(t) =
1

N

∑
j

−ijπ
8L2

e−ijπt/2L{2Aj +Bj}2 (4.130)
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Figure 4.7: The moments and Lanczos coefficients for different values of g.

while N is the normalization factor such that C(t = 0) = 1. The moments are given by

Mn =
1

N

∑ −ijπ
8L2

{2Aj +Bj}2(
−ijπ
2L

)n
1

in
. (4.131)

In Fig. 4.7, one can see the moments and Lanczos coefficients of the matrix quantum
mechanics in the ground state for different values of g. The Lanczos coefficients have a
linear behavior in that the absolute value of the slope increases for higher values of the g
parameter. The slopes of the an coefficients are negative while in the case of bn, they are
positive.

Finally, in Fig. 4.8, one can find the Krylov complexity for different values of g.
The peak of the complexity grows while g increases. The complexity is periodic as the
correlation function is periodic. However, we should consider the behavior of the complexity
as a function of time for the time less than the radius of convergence in the time direction.
The period of complexity is related to the L and it decreases while g increases and it is
expected that it saturates for infinite g.

4.4.2 Over the Thermal State

The correlator for the inner product (4.48) at inverse temperature β is

C(t, β) =
1

N ′

∑
j

jπ

8L

eβπj/4L

−1 + eβπj/2L
{2Aj +Bj}2[e−iπjt/2L + eiπjt/2L]. (4.132)

Thus, the moments are given by

Mn =
1

N ′

∑
j

jπ

16L

eβπj/4L

−1 + eβπj/2L
{2Aj +Bj}2

((iπj/2L)n
in

+
(−iπj/2L)n

in

)
. (4.133)
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Figure 4.8: Krylov complexity of the matrix quantum mechanics in the ground state as a
function of time for different values of g.
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Figure 4.9: The moments and Lanczos coefficients for different values of g.

As it is obvious from the formula odd moments are zero and thus the set of the Lanczos
coefficients

an = 0. (4.134)

In Fig. 4.9, one can see the plots for the set of bn and the even moments in this case.
The bn coefficients have two linear branches with two different positive slopes. One of the
slopes is almost the same for different values of g while another slope increases while the g
parameter grows. In other words, one slope is a function of g while another one is constant
and g-independent. (Look at the example in chapter 4 in [303])f

In Fig. 4.10 and 4.11, one can see the Krylov complexity of the matrix quantum
mechanics over the thermal states for different values of β and g. For a fixed β, the
periodicity of the Krylov complexity decreases as g increases. In this case, unlike over the
ground state, the peak of the complexity remains the same for different values of g and β.
Moreover, for the fixed g, the periodicity remains the same for different values of β.



4.4. KRYLOV COMPLEXITY FOR MQM VIA THE LANCZOS ALGORITHM 145

10 20 30 40
0.1 t

0.2

0.4

0.6

0.8

1.0

K[t]

g=2

g=10

g=100

Figure 4.10: Krylov complexity of the matrix quantum mechanics in the thermal state as
a function of time for different values of g at β = 1.
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Figure 4.11: Krylov complexity for different values of β.
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4.5 Toda chain flow in Krylov space and radius of conver-
gence of Krylov complexity

4.5.1 Toda chain flow in Krylov space

This section is mostly based on [314].
They begin by reviewing the basics of the recursion method. First, we start with the

time-correlation function of some operator A,

C(t) = ⟨A(t), A⟩ (4.135)

it is defined based on the Hermitian form in the space of operators

⟨A,B⟩ ≡ tr(A†ρ1Bρ2) = ⟨B,A†⟩∗ (4.136)

here ρ1, ρ2 are some hermitian positive semi-definite operators which commute with the
Hamiltonian H.

It is convenient to introduce
qn = ln⟨An, Am⟩ (4.137)

such that
Gnm = ⟨An, Am⟩ = δnmen (4.138)

In [314], authors focus on the Euclidean time evolution. For a given O(t) where t is
Euclidean time, an operator evolved in Minkowski time is O(−it).

The adjoin action of H in the Krylov basis An can be represented by Jacobi matrix L,

[H,An] =
∑
m

LnmAm, L = gMg−1

g = (eq0/2, eq1/2, ...)

M =

â
a0 b1 0 0 . . .
b1 a2 b2 0 . . .
0 b2 a2 b3 . . .
0 0 b3 a3 . . .
...

...
...

...
. . .

ì
.

(4.139)

As a generalization of (4.138) we define

Gnm(t) = ⟨An(t), Am⟩ (4.140)

and evolution in terms of the Lanczos coefficient

G(t) = geMtgT (4.141)

the original correlation function is then

C(t) = G00(t) = ⟨A0, A0⟩(eMt)00 (4.142)

Lanczos coefficients an, bn can be promoted to be t-dependent.
Therefore, we can apply the recursion method to define the Krylov basis starting from

the same initial A for any given value of t. This defines the orthogonal basis Atn, At0 ≡ A,

Gnm
t ≡ ⟨Atn, Atm⟩t = δnme

qn(t) (4.143)
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where an(t), bn(t) and qn are now t-dependent and thus M(t) and g(t) are time-dependent
as well.

An important obsevation is that Gnm(t) and Gtnm written in terms of two different
bases An, Atn. They are related by a change of coordinates

G(t) = z(t)GtZ(t)T

An =
∑
m

znm(t)Atm.
(4.144)

The basis Atn has been transformed into basis An = At=0
n by the matrix z(t). One can

express Gt in terms of g(t)

G(t) = g(0)eM(0)tg(0)T = Z(t)g(t)g(t)T z(t)T . (4.145)

Explicit time dependence of G(t) provides that

d

dt
(G−1Ġ) = 0. (4.146)

It follows that qn(t) satisfies the Toda equation. The relation between an, bn, and qn is
given by

an(t) ≡ q ṅ,

bn(t) ≡ e(qn+1−qn)/2.
(4.147)

One can introduce τn =
Furthermore, since e−qn(0)/2An and e−qn(t)/2A

t
n(t/2) are orthonormal bases, they must

be related by an orthogonal transformation QT ( for more detail look at [314])∑
m

QTnm(t/2)e
qm(0)/2Am = e−qm(t)/2Atn(t/2) (4.148)

Evolving this equation in time by −t/2. We find

eM(0)t = Q(t)R(t), RT (t/2) = g−1(0)Z(t)g(t). (4.149)

This QR decomposition of eM(0)t [315].
In [314], the authors apply the relation of Lanczos coefficients to the Toda chain to

clarify chaos in quantum many-body systems. An accurate counting of nested commutators
appearing in the Taylor series expansion of C(t) will be singular at some finite t = t∗.

In general, chaotic behavior is reflected by the linear growth of both an and bn. While
the slope of an can not exceed twice the slope of bn.

To study the singular behavior of the time-correlation function, we assume that C(t) =
G00(t) together with its derivatives are smooth functions for 0 ≤ t < t∗, and diverges at
t = t∗. From here follows that Gnm(t) are regular for 0 ≤ t < t∗. Using QR decomposition,
we have

R00(t/2)
2 = C(t)/C(0) (4.150)

and conclude that R00(t) is regular for 0 ≤ t < t∗/2 and diverge at t = t∗/2. We can
decompose A(t) into orthogonal Krylov basis

eq0/2A(t) =
∑
n

ϕn(t)(e
q0/2An) (4.151)
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while
ϕn(t) = R00(t)Qn0(t) (4.152)

This is a manifestation of delocalization in Krylov space. At t = t∗/2, the operator A(t)
spreads across the whole Krylov space.

Just note that this singularity is along the imaginary axis as we consider the Euclidean
time.

4.5.2 Radius of convergence of the Krylov complexity

The Krylov complexity is defined in (4.14) can be written in terms of ϕn. Thus, in case
that in our calculation, the coefficients ϕn are regular in the time-band 0 ≤ t ≤ t∗/2. Thus
the Krylov complexity is also regular in this time band and the radius of convergence for
Krylov complexity is t∗/2. While t∗ is the radius of convergence of the correlation function.

Now in the MQM model we consider in this project, first we should find the radius f
convergence of the correlator.

For a given series
lim
n∞
|an+1

an
| < 1. (4.153)

In the case of MQM over the ground state we have

an =
−iπ
8L2

n(2An +Bn)
2e−iπtn/2L (4.154)

therefore
lim
n∞
|an+1

an
| = n+ 1

n
e−iπt/2L

(2An+1 +Bn+1

2An +Bn

)2
< 1. (4.155)

After analytically continuation of t, for a complex z = x+ iy, one can get

|eπy/2L| = |e−iπz/2L| (4.156)

Therefore
y <

2L

π
lim
n→∞

ln
( n

n+ 1

( 2An +B − n
2An+1 +Bn+1

)2) (4.157)

Thus the radius of convergence of correlation function C(t) is at most

t∗ =
2L

π
lim
n∞

ln
( n

n+ 1

( 2An +B − n
2An+1 +Bn+1

)2) (4.158)

In Fig. 4.8, one can see that the first peak of the Krylov complexity for all values of g
is approximately at t∗/2. The radius of convergence of the Krylov complexity is discussed
in the previous part.



Chapter 5

Conclusion

• Petz map and holography, EWR: The discussion of EWR in the last section is generic
and applies to any desired region on the boundary. In particular, the region can even
be disconnected. For example, let us consider the union of two disjoint intervals
A = AL ∪ AR, Fig. 5.1, on a Cauchy slice of a 2d holographic CFT dual to AdS3

in the bulk. If the regions AL, AR are sufficiently small, the entanglement wedge
of A is union of the entanglement wedges of AL and AR, denoted by aL and aR,
individually, i.e. the union of two AdS-Rindler wedges. It is well known [93, 316] that
as we increase the size of the region A, the extremal surface changes discontinuously
and in the new configuration the entanglement wedge of A becomes larger and in
particular larger than the causal wedge of A.

Figure 5.1: The entanglement wedge of a two disjoint intervals A = AL ∪ AR in AdS3/
CFT2. (a) The entanglement is the region bounded by the boundary region A and the
minimal area co-dimension 1 surface in the bulk, with the same boundary as A. Thus
EA = aL ∪ aR. (b) As one increases the sizes of AL and AR, the minimal area surface
changes and the entanglement wedge is no longer just aL ∪ aR, rather it is all of the shade
region, that is EA = aL ∪ aR ∪ EM .

An important question is understanding the nature of observables in the region which
is in the entanglement wedge, but not the causal wedge. The Petz formula gives in

149
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principle a CFT representation of these observables, but their microscopic nature
is not understood. To make the question more precise, notice that from the point
of view of the bulk there is a well defined Bogoliubov transformation between the
bulk global modes and the modes in regions aL, aR, bU , bD, EM (see Fig. 5.1)
. The modes in aR, aL, bU , bD can be related to modes of single trace operators
in the corresponding boundary regions AL, AR, BU , BD. Entanglement wedge
reconstruction and the Petz formula suggests that the modes d, which we take to
be localized only in EM , should also be representable in region A = AL ∪ AR, but
the nature of these observables remains mysterious. Of course the modes d are
precisely the modes which are in the entanglement wedge but not the causal wedge
of A = AL ∪AR.

One possibility is that the d modes in region EM are combinations of complicated
operators in region AL and AR

d =
∑
ij

cij O
AL
i ⊗OARj

where OAL,Ri are complicated gauge invariant operators. By complicated we mean
that they are not single-trace or low-multi-trace operators. In this scenario, while
each OAL,Ri by themselves do not behave like GFFs, the particular combination above
is expected to behave like a GFF in the large N limit.

Another intriguing possibility is that the modes d are operators which are gauge
invariant, but they are made out of constituents in regions AL, AR which are not
separately gauge invariant. This seems natural from the point of view of, for example,
the free O(N) model. In that case we have operators like

∑
L,R ϕ

i(x)ϕi(y), with
x ∈ AL and y ∈ AR, which are O(N) invariant but the individual constituents are
not, see also discussion in [317].

A difficulty with the second possibility is that in a proper gauge theory one would
expect that non-gauge invariant operators in regions AL, AR have to be connected by
Wilson lines which will have to go through the regions BU or BD.1 If the operators
in EM are actually dual to gauge invariant Wilson line operators with end points in
AL and AR, this would imply that they cannot strictly commute with all operators
in regions BU and BD, as generally the Wilson lines can be detected by operators
in regions BU or BD. This seems to contradict the conventional understanding
of EWR, as in the scenario described above the operators on EM would not be
entirely supported in region AL, AR since the Wilson lines are passing through the
complementary regions.

It would be interesting to explore whether a particular combination of such Wilson
lines connecting the individual non-gauge invaritant constituents can be constructed,
where commutators of this combination with all simple operators in region BU , BD
are sufficiently suppressed at large N . This might not directly contradict the argu-
ments supporting EWR. For example, the equality of relative entropies [16] has been
established at large N and the arguments are not expected to generalize to imply
equality including exponentially suppressed corrections2. This might suggest a re-

1In the O(N) model the symmetry is global hence no Wilson line is necessary.
2For example, at finite N we expect that the bulk geometry is fully quantum and it is not even clear

how one can define the entanglement wedge.
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finement of EWR where bulk operators are mostly supported in AR ∪ AL, allowing
some form of Wilson lines connecting the two regions.

In any case, the nature of observables in the entanglement wedge but not the causal
wedge, like the operators d in this case, remains somewhat mysterious and further
study of their properties is necessary.

• Petz map and holography, Black hole interior: In order to study the evaporating
black hole in AdS, one can use absorbing boundary conditions. In [37, 39], it has
been shown that exactly at Page time, there is a phase transition in the location of
the quantum extremal surface. The new Ryu-Takayanagi surface lies slightly inside
the black hole event horizon. Thus after Page time, some parts of the interior are now
encoded in the early Hawking radiation, or in other words, it can be reconstructed
through the bath.

In order to study the reconstruction of the interior, let us first consider a general
entangled system. The CFT can be entangled with another CFT or a collection of
qubits. we refer to another system as a bath. Here, we consider the entangled state
as

|Ψen⟩ =
∑
i

αi |ψi⟩ ⊗ |̃i⟩ (5.1)

where αi are some coefficients, |ψi⟩ are orthonormal states in the original CFT, and
|̃i⟩ are states in the bath. The sum can be over a small number of states or an
exponentially large number.

We denote the coarse-grained algebra of the original CFT as Acg and the operator
algebra of the bath as B. We define

Abdy = Acg ⊗ B. (5.2)

The code subspace here is the set of states obtained by acting the algebra Abdy over
the state |Ψen⟩. The corresponding subspace has the structure of a Hilbert space
that can be made via GNS construction

HGNSen
∼= Abdy |Ψen⟩ . (5.3)

This set of states generally is bigger than Acg |Ψen⟩ and in some specific cases like
when the entangled state is TFD state, these two sets coincide.

In general, as it was discussed in [14], the GNS Hilbert space can be decomposed into
the direct sum of HjΨen while all are closed under the action of the coarse-grained
algebra

HGNSen = ⊕jHjψen . (5.4)

For each j, one can identify a unique state |ψjen⟩ ∈ Hjψen which is an equilibrium
state with respect to Acg

|ψjen⟩
∣∣
Acg = ρcth (5.5)

and entire Hjψen can be generated by acting with Acg on |ψjen⟩.
For the exterior of the black hole, the same as (1.143), we have the mapping R∗

ext :
Aext → Acg and from its ρ-dual, we can find the Petz map from the operator algebra
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of the interior to the commutant of the representation of the coarse-grained algebra
on the boundary

R∗
in : Ain →M′

cg. (5.6)

The interior part of a Cauchy slice at late time can be divided into the island and
the remaining part of the interior which can be reconstructed from the original CFT.
Thus we consider Ain = Aisland ⊗Ain−CFT . The algebra M′

cg is the representation
of the A′

cg = B ⊗Afg while Afg is the fine-grain algebra of the original CFT.

In the GNS Hilbert space R∗
in can be obtained from the direct sum of the mapping

in each Hjen as
R∗
in = ⊕jR∗

in,j (5.7)

Each R∗
in,j can be obtained from the same approach as obtaining the Petz dual

map in modular theory. In each mapping R∗
in,j depending on the structure of the

entanglement in |ψjen⟩, the interior can be map to the commutant of the Acg in the
Hjen that can be the representation of a subalgebra of the fine-grained algebra or the
algebra of the bath system.

From the island conjecture, it is expected that

R∗
in(a) = ⊕jR∗

in,j(a) ∈ Afg ∀a ∈ Ain,CFT
R∗
in(a) = ⊕jR∗

in,j(a) ∈ B ∀a ∈ Aisland
(5.8)

Up to this point, there is not exist any microscopic proof of the island conjecture
in the literature. Doing the exact calculation of the Petz map reconstruction of an
evaporating black hole can be a good check of the island conjecture.

• Locality and gravitationally dressed operator: we have presented a construction of
CFT operators that act as local bulk operators in a code subspace, but commute with
the Hamiltonian to all orders in the 1/N expansion. The gravitational interpretation
of such operators is that they are bulk local operators that are gravitationally dressed
to features of the state, in particular its time dependence. Because the operators are
constructed directly in the CFT, they are manifestly diffeomorphism-invariant. We
conclude with some open questions.

It would be interesting to understand if there is a natural way to identify operators
whose commutators is zero to all orders in 1/N with both H and other single-trace
operators in the time band, thus proving the conjecture that the time-band algebra
has a commutant in the 1/N expansion.

It would also be interesting to understand how to analyze states with very small
energy variance, for instance typical black hole microstates in the sharp microcanon-
ical ensemble [100, 101, 162], energy eigenstates, or even empty AdS. In these cases
the return amplitude does not decay fast enough and the construction (2.47) cannot
be applied. These are also the states where there is no semi-classical feature of the
state to dress with respect to, or in other words there is no bulk observer. It may be
interesting to clarify the role of the observer, perhaps as in [318], towards identifying
a commutant for the time-band algebra in those states.

• Generalization of the continuous matrix product states: In this paper, we could ob-
tain the class of RCMPS via an RG flow generated by an appropriate cMERA circuit.
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They can be used to approximate the ground states of the relativistic QFTs in 1+1 di-
mensions containing both bosonic theories like the sine-Gordon model and fermionic
ones such as the Gross-Neveu and Thirring models. Moreover, since the Gaussian
cMERA is known in higher dimensions for all bosonic, fermionic, and gauge fields
[255, 319], the procedure above can provide a way to find appropriate wave function-
als for relativistic theories in higher dimensions, especially, the relativistic version of
the continuous PEPS in 2 + 1 dimensions. Furthermore, an alternative approach to
RCMPS for relativistic theories is the interacting cMERA (icMERA) [320]. It can be
found by modifying the entangler and going beyond the Bogoliubov transformation
by adding the terms generate n-tuplet transformation in fields. Thus, the icMERA
evolution is the combination of two Gaussian and non-Gaussian unitaries, exactly
the same as RCMPS. However, for icMERA, the important point is the fact that to
date, we do not know for a given theory, up to what n-tuplet interacting terms are
exactly needed to capture the full non-perturbative structure of the theory. But in
the case of RCMPS, the form of the ansatz is fixed for all the families of the relevant
theories. On the other hand, there is freedom in choosing the entangling profile of
the entangler operator of the cMERA. In particular, there is a specific choice that
leads to another class of states called magic cMERA [321] which is already shown
that has the same UV structure as the standard cMPS. Moreover, its entangler by it-
self has the continuous matrix product operator representation. Therefore, studying
the connection between them might even help us for a better understanding of the
interacting disentangler. In the end, we would like to point out that since cMERA
is connected to AdS/CFT, it would be desirable to study the possible gravity dual
of the states of the form of RCMPS.

• Krylov complexity of the matrix quantum mechanics:

Here we mention some questions remain about the Krylov complexity of the MQM
model. First is the reason that we have two linear branches over the thermal case. In
both models that have been studied in the case of the thermal case where we use the
two-sided inner product, two branches appear. Moreover is there any models that
we have more than two branches or not?

Second, how can we calculate the Krylov complexity of the model after t∗/2? To see
the long-time behavior of the complexity we need to find a way to go beyond this
limit. What about the result that in other papers have been found for the Krylov
complexity? Are their result in the radius of convergence of the Krylov complexity?

Third, it has been known or conjectured in the literature that for the chaotic system
the Lancsoz coefficients bn grow linearly. Here we can see the linear growth of bn
happen for the MQM model which is not chaotic, it is rather solvable. IS it the case
that it can be the case not just for the chaotic system or the conjecture needs some
modification.
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Appendix A

Tomita-Takesaki theory in a nutshell

In this section, we briefly review the Tomita-Takesaki theory. It is mostly based on [119,
133, 322].

The set of all bounded, linear operators acting on a Hilbert spaceH is denoted by L(H).
A subset A ⊂ L(H) which is closed under Hermitian conjugation, addition, multiplication,
and closed under the weak convergent limit that also contains the unit operator is called
a von Neumann algebra. For a given A, the set of all bounded operators which commute
with every elements of A is called the commutant of A

A′ = {b ∈ L(H)|ab = ba,∀a ∈ A} (A.1)

which itself is a von Neumann algebra. For any von Neumann algebra A on H, we have
A′′ = (A′)′ = A. Another von Neumann algebra which is induced by A is the center of
the algebra, denoted by ZA = A ∩A′.

A representation of the algebra A in a Hilbert space H is a map π from the algebra
to the bounded operators on H such that π(ab) = π(a)π(b) and π(a∗) = π(a)†. The map
π is unital if π(I) = I. A linear form over A is a function from algebra to the complex
numbers ϕ : A → C such that

ϕ(αa+ βb) = αϕ(a) + βϕ(b) ∀a, b ∈ A, α, β ∈ C.

It is called positive if ϕ(aa∗) ≥ 0,∀a ∈ A, and normalized if ϕ(I) = 1. A normalized,
positive linear form is called a state on a von Neumann algebra.

Following the GNS construction, for each positive linear form ϕ over A, one can build
a Hilbert space Hϕ and a representation πϕ of the algebra A by linear operators acting on
Hϕ. The state ϕ defines a Hermitian scalar product on A as

⟨a|b⟩ = ϕ(a∗b) ∀a, b ∈ A. (A.2)

A vector |Ψ⟩ ∈ H is called cyclic for an algebra A if the set of a |Ψ⟩ for a ∈ A are dense
in H and separating if the condition a |Ψ⟩ = 0 implies that a = 0. If |Ψ⟩ is cyclic and
separating for A, it is also for A′. And naturally, a representation π is called cyclic if there
exists a vector |Ψ⟩ in the representation space H such that π(A) |Ψ⟩ is dense in H. The
GNS construction provides a cyclic representation with the cyclic vector |Ψ⟩ which

ψ(a) = ⟨Ψ|πψ(a)|Ψ⟩ (A.3)
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that is familiar form of the expectation values in quantum mechanics. For the faithful
linear form, we will identify A with πψ(A).

Moreover, there is a correspondence between superoperators on A and linear operators
acting on H. A linear map from algebra to itself T : A → A is called a superoperator. A
superoperator is called unital if T (I) = I and ϕ-preserving if ϕ(T (a)) = ϕ(a) for all a ∈ A.
For a generic von Neumann algebra, every normal superopeartor has a corresponding
operator in the GNS Hilbert space. However, the converse does not always hold, like the
local algebra of QFT. Although, in matrix algebra, the correspondence is one-to-one. The
GNS Hilbert space operator Tψ ∈ L(Hψ) corresponding to the superoperator T is defined
in such a way that

Tψ(a |Ψ⟩) = T (a) |Ψ⟩ (A.4)

for all a ∈ A. If T is unital, Tψ leaves |Ψ⟩ invariant and if T is ψ-preserving, T †
ψ also leaves

|Ψ⟩ invariant.
Before proceeding, to have more intuition, let us first consider the Type I von Neuman

algebra, i.e. the algebra of d×d complex matrices acting irreducibly on the Hilbert space K
of a d-level system, denoted by L(K). In such a system, states are described by a positive,
semi-definite, Hermitian operator of trace one ρ ∈ L(K), which is called density matrix.
The set of all density matrices on K denoted by S(K). Corresponding to the state ρ, one
can define a map ϕρ : L(K)→ C given by ϕρ(a) = tr(ρa), such that for any observable on
the system gives us its expectation value on the state ρ.

Given a density matrix
ρ =

∑
i

λ2i |i⟩ ⟨i| (A.5)

We can always purify the state by coupling it with a second system with the Hilbert space
K′ such that dim K′ ≥ rank ρ. The Schmidt decomposition always guarantees that there
exists such a system that equality holds. Here, we take K′ = span{|i′⟩} to be isomorphic
to K. The state ρ on K can be purified by a vector

|ρ1/2⟩ =
∑
i

λi |i⟩ |i′⟩ ∈ K ⊗ K′ (A.6)

such that ρ = trK′ |ρ1/2⟩⟨ρ1/2|. Therefore, we can consider A = L(H) ⊗ IK′ as a von
Neumann algebra on K ⊗ K′ = Hρ. Here, the commutant is simply A′ = IK ⊗ L(K′)
(Sometimes, for simplicity, we just refer them as A = L(K) and A′ = L(K′)). The vector
|ρ1/2⟩ is cyclic and separating for the algebra A if and only if ρ is full-rank. We have also

ϕρ(a) = tr(ρa) = ⟨ρ1/2|(a⊗ I)|ρ1/2⟩ (A.7)

for all a ∈ A. Thus, following the GNS construction, we can find a cyclic representation
of A with the cyclic vector |ρ1/2⟩. The map from A → Hρ defined as

a −→ |a⟩ρ =
(
a⊗ I

)
|ρ1/2⟩ =

∑
i

λi
(
a |i⟩

)
|i′⟩ , (A.8)

and Hρ is nothing but the set of vectors
(
a⊗ I

)
|ρ1/2⟩ endowed with the inner product

⟨a|b⟩ρ = ϕρ(a
†b) = tr

(
ρa†b

)
= ⟨ρ1/2|

(
a†b⊗ I

)
|ρ1/2⟩. (A.9)



157

In addition, for every a ∈ A, there exists an operator a′m ∈ A′ that creates the same vector
in the Hρ as a

(a⊗ I) |ρ⟩ = (I ⊗ a′m) |ρ⟩ (A.10)

which is called the mirror operator of a and it is given by

a′m = ρ1/2aTρ−1/2, (A.11)

where transpose is taken in the ρ eigenbasis.
More generally, one can consider a generic algebra A on some Hilbert space H, and for

every cyclic and separating state |Ψ⟩ for A on H creates a GNS Hilbert space. There is a
classification of von Neumann algebras on finite-dimensional Hilbert space corresponding
to the center of the algebra. One special case is when the center is trivial ZA = {λI}.
In such a case the algebra is called a factor. If A is a factor on H, there always exists
a tensor factorization of Hilbert space H = HA ⊗ HĀ such that A is just the set of all
linear operators on one tensor factor A = L(HA)⊗ IĀ. For a generic case that A is not a
factor, there is a decomposition of the Hilbert space as H = ⊕α(HAα ⊗HĀα) which A is
block-diagonal A = ⊕α

(
L(HAα)⊗ IĀα

)
.

Here, the set of states on the algebra A is the intersection of the algebra with the set
of states on the Hilbert space S(A) = A ∩ S(H). Any state ρ ∈ S(A) is connected with
the standard definition of state on von Neumann algebra by linear form ϕρ(a) = tr(ρa) for
all a ∈ A. Moreover, for any state ρ on H, there exists a unique restriction ρ

∣∣
A on S(A)

such that
ϕρ|A(a) = ϕρ(a) ∀a ∈ A. (A.12)

For now, consider a factor A = L(HA)⊗ IĀ on H = HA⊗HĀ and a state ρ on H. The
restricton of any ρ ∈ S(H) on A is

ρ
∣∣
A = ρA ⊗

1

|Ā|
IĀ, (A.13)

that ρA ≡ trĀρ is the reduced density matrix of the subsystem A and |Ā| = dim(HĀ). One
can follow the discussion above for ρA and create the GNS Hilbert space representation
of A = L(HA) as HρA = A |ρ1/2A ⟩. If ρA is full-rank and the two tensor factors have the
same dimensionality, this GNS Hilbert space is isomorphic to the original H. Otherwise,
it is isomorphic to one subspace of H.

Let us look at some important superoperators and their corresponding operators in the
GNS Hilbert space:

An important anti-linear superoperator which defines complex conjugation is the mod-
ular map S(a) = a†. Its GNS Hilbert space operator correspondence, called Tomita
operator Sρ : Hρ → Hρ, acts as

Sρ
(
a⊗ I

)
|ρ1/2⟩ =

(
a† ⊗ I

)
|ρ1/2⟩. (A.14)

It is clear that S2
ρ = I, thus Sρ is invertible. We also have Sρ|ρ1/2⟩ = |ρ1/2⟩. As Sρ is

anti-linear, the S†
ρ is defined by

⟨a|S†
ρ b⟩ρ = ⟨Sρ a| b⟩∗ρ = ⟨b|Sρ a⟩ρ (A.15)

for all a, b ∈ A. The Tomita operator for the commutant A′ is S′
ρ = S†

ρ.
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Another important anti-linear superoperator is the one-to-one corresponding map Jρ :
A → A′ between operators in A and A′, such that

Jρ(|i⟩ ⟨j|) = |i′⟩ ⟨j′| . (A.16)

The operator corresponding to it is the anti-linear map Jρ : Hρ → Hρ called modular
conjugation that acts on the GNS Hilbert space as

Jρ
(
a⊗ I

)
|ρ1/2⟩ =

(
I ⊗ (a†)T

)
|ρ1/2⟩ (A.17)

where the transpose is in the ρ eigenbasis. In other words in this basis, Jρ acts as

Jρci |i⟩ |j′⟩ = c∗i |j⟩ |i′⟩ . (A.18)

It also leaves |ρ1/2⟩ invariant.
We also have the relative modular operator Dσ|ρ : A → A as an superoperator on

A defined as Dσ|ρ(a) = σaρ−1, where ρ and σ are two full-rank density matrices. Its
corresponding operator on the GNS Hilbert space is ∆σ|ρ : Hρ → Hρ. Since by definition,
we have

∆σ|ρ
(
a⊗ I

)
|ρ1/2⟩ =

(
Dσ|ρ(a)⊗ I

)
|ρ1/2⟩. (A.19)

One can find ∆σ|ρ = σ ⊗ ρ−1 using the mirror operator. In case σ is the same as ρ, the
operator

∆ρ = ρ⊗ ρ−1 (A.20)

corresponding to Dρ(a) = ρaρ−1 is called modular operator. It leaves |ρ1/2⟩ invariant.
One can check that

∆ρ =SρS
†
ρ

Jρ =∆1/2
ρ Sρ

Sρ = Jρ∆
1/2
ρ = ∆−1/2

ρ Jρ.

(A.21)

One can also show that

Jρ A Jρ = A′ Jρ A′ Jρ = A (A.22)

and
∆z
ρ A ∆−z

ρ = A ∆z
ρ A′ ∆−z

ρ = A′, (A.23)

for all z ∈ C. If we write ∆ρ = e−Kρ , where Kρ is called the modular Hamiltonian, the
later equation can be interpreted as

eiKρtAe−iKρt = A eiKρtA′e−iKρt = A′ (A.24)

for z = −it which says both A and A′ are closed under time evolution using the modular
Hamiltonian.

It is good to note it now that for every isometry v′ ∈ A′, the vector v′|ρ1/2⟩ or v′m|ρ1/2⟩
is also a purification of ρ in Hρ. These vectors are also cyclic and separating for the algebra
A. Thus, one could start from one of them instead of |ρ1/2⟩ and build Hρ by acting the
elements of A on it. Actually, it comes from the point that while the eigenbasis of ρ is the
preferred basis for K, we still have the freedom to choose a basis for K′. Here, acting with
the isometry v′ is indeed related to the change of basis in K′. To have just one unique
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vector corresponding to any state ρ, we can use the modular conjugation operator defined
in (A.17) or (A.18), fix this operator, and choose the vector which is invariant under Jρ.
The set of all vectors that are invariant under Jρ is called the natural cone. The states
on A are in one-to-one correspondence with the vectors in the natural cone. Take |e⟩ to
be the vector corresponding to the maximally mixed state in the natural cone. For every
σ ∈ S(A), the vector (σ1/2 ⊗ I) |e⟩ is also in the natural cone:

Jρ(σ
1/2 ⊗ I) |e⟩ = (I ⊗ (σ1/2)T ) |e⟩ = (σ1/2 ⊗ I) |e⟩ . (A.25)

The vector |e⟩ itself is given as |e⟩ = (ρ−1/2⊗ I)|ρ1/2⟩ in Hρ. Thus, the unique purification
of the state σ in the natural cone is

|σ1/2⟩ =
(
σ1/2ρ−1/2 ⊗ I

)
|ρ1/2⟩ = ∆

1/2
σ|ρ |ρ

1/2⟩. (A.26)

Thus, we reach to Jρ|σ1/2⟩ = ∆
1/2
σ|ρ |ρ

1/2⟩, that also holds in infinite dimensional system.
We usually consider the von Neumann algebra in its standard form which is defined as

(A,H, J,PA) where the algebra A acts on the Hilbert space H, J is a anti-linear, unitary
involution and PA is the natural cone which is invariant by J .

Finally, we note that although in a finite-dimensional system the Hilbert space approach
and algebraic approach are equivalent, in an infinite dimension like QFT, it is not the case.
In QFT, there is even no tensor factorization of the Hilbert space and Indeed the algebraic
approach is appropriate to work in. For an open region, O in the Minkowski spacetime,
AO is defined to be the algebra of operators supported only in O which is called the local
algebra of the quantum field theory. AO is also a von Neumann algebra that has the
properties below:

1. For O1 ⊂ O2, we have AO1 ⊂ AO2 .

2. If O1 and O2 are spacelike seperated, we have [AO1 ,AO2 ] = 0.

3. If O′ denote the causal complement of O, then A′
O = AO′ , that is called Hagg duality.

4. If we denote the causal completion of O as Õ, then we have AÕ = AO.

An important statement for local algebra in QFT is the Reeh-Schlieder theorem. It says
that the vacuum vector |Ω⟩ is cyclic and separating for the local algebra in any region O.
It means that to generate the full vacuum sector of the Hilbert space, one needs to act just
with the operator restricted to any arbitrary open region. Therefore, although there is not
any notion of trace or tensor factorization in QFT, the Tomita-Takesaki theory provides
us with a powerful tool to define the quantum information quantities also in QFT.

As we had in Sec. ??, an important quantity to study the recoverability of the quantum
channels in the theory of quantum error correction is the relative entropy which is defined
in (??). But since, the expression in (??) can be used just for the Type I von Neumann
algebra, to use the theory of QEC to study of QFTs and gravity, we need to generalaize
the definition of relative entropy such that it can be applied for a generic type of von
Neumann algebra. One can check that the relative entropy can be also rewritten in terms
of the relative modular operator in the GNS Hilbert space as

S(ρ|σ) = −⟨ρ1/2| log∆σ|ρ|ρ1/2⟩. (A.27)
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By using the expression (A.27), the relative entropy was generalized to the general v.
Neumann algebras by Araki [323, 324] using relative modular hamiltonians. And in the
case of the local algebra in QFTs, the suitable definition of the relative entropy between
two states |Ψ⟩ and |Φ⟩ for measurements in the spacetime region O is define as

SO(Ψ|Φ) = −⟨Ψ| log∆Φ|Ψ(O)|Ψ⟩. (A.28)



Appendix B

Changing the variance of H

We would like to understand whether the variance of the energy is accessible within semi-
classical gravity, simply from the geometry, or whether it requires more knowledge and
in particular, the knowledge of the bulk quantum state for the fields propagating on the
background. As we will see, knowledge of the quantum state seems to be required to
extract the variance.

The quantity we would like to compute is

⟨Ψ0|H2|Ψ0⟩ − ⟨Ψ0|H|Ψ0⟩2 ≡ ⟨Ψ0|H2|Ψ0⟩c . (B.1)

This is a connected correlation function in holography, which usually would be compute
from the 2-point function of the associated propagating fields on the relevant background.
This 2-point function is sensitive both to the geometry and to the bulk quantum state
of the propagating fields. However, here the situation is more subtle because we are not
studying the local correlation function of an operator, but rather the 2-point function
of the spatial integral of a local operator. In this particular case, the situation is a lot
more confusing because the dual bulk field would be the s-wave graviton, which is not a
propagating degree of freedom in gravity.

So what computes this variance? We will not be able to answer this question, and
we believe it to be an interesting open problem which we hope to return to in the future.
Nevertheless, we will study some particular states that should be interpreted as adding
an s-wave graviton in the bulk. Even though this mode doesn’t propagate, we will see
that adding it can affect the CFT variance. We will consider two types of deformations
of the thermofield double (TFD) state, both of which are related to adding an integrated
stress-tensor operator on the cylinder that prepares the TFD state. Let us start with some
basics. We consider the TFD state

|TFD⟩ = 1√
Z

∑
i

e−βEi/2 |Ei⟩ |Ei⟩ . (B.2)

We assume that the partition function has the usual large N behavior

Z(β) = exp

ï
N2

Å
F0(β) +

1

N2
F1(β) + ...

ãò
, (B.3)

from which we can compute

⟨Hn⟩β = (−1)n 1

Z

dn

dβn
Z . (B.4)
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where H is HL or HR. We have

⟨TFD|H |TFD⟩ = ⟨H⟩β = −N2F ′
0 − F ′

1 , (B.5)

⟨TFD|H2 |TFD⟩ − ⟨TFD|H |TFD⟩2 = ⟨H2⟩β,c ≡ ⟨H
2⟩β − ⟨H⟩

2
β . (B.6)

We have
⟨H2⟩β,c = N2F ′′

0 + F ′′
1 . (B.7)

Now, consider the following state

|ψ⟩ = H |TFD⟩ . (B.8)

We now have
⟨ψ|ψ⟩ = ⟨H2⟩β (B.9)

Let us now see how the energy and variance of the state have evolved. We have

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

=
⟨TFD|H3 |TFD⟩
⟨TFD|H2 |TFD⟩

=
⟨H⟩3β + 3 ⟨H2⟩β,c ⟨H⟩β + ⟨H3⟩β,c

⟨H⟩2β + ⟨H2⟩β,c
, (B.10)

where we defined
⟨H3⟩β,c ≡ ⟨H

3⟩β − 3 ⟨H2⟩β,c ⟨H⟩β − ⟨H⟩
3
β . (B.11)

Large N factorization implies that we can expand this answer and we find

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

= ⟨H⟩β + 2
⟨H2⟩β,c
⟨H⟩β

+ · · ·

= −N2F ′
0 − F ′

1 − 2
F ′′
0

F ′
0

+ · · · . (B.12)

We see that we obtain the TFD answer, up to a correction term, which is of size N0. This
means we have not changed the geometry classically, but only added a quantum particle
on top of the TFD state. Similarly, one can compute

⟨ψ|H2 |ψ⟩
⟨ψ|ψ⟩

−
Å⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

ã2
=
⟨H⟩4β + 6 ⟨H2⟩β,c ⟨H⟩

2
β + · · ·

⟨H⟩2β + ⟨H2⟩β,c
−
Ä
⟨H⟩2β + 4 ⟨H2⟩β,c + · · ·

ä
= ⟨H2⟩β,c + · · ·
= N2F ′′

0 + · · · (B.13)

We see that that the energy has changed at N0, but the variance has not changed at
order N2, only at order N0. So this state modifies both the variance and the energy at
subleading order compared to the TFD. We will now build a state that modifies the energy
at subleading order, but the variance at leading order compared to the TFD.

Consider the state

|ϕ⟩ = (H − ⟨H⟩β) |TFD⟩ . (B.14)

We now have
⟨ϕ|ϕ⟩ = ⟨H2⟩β,c , (B.15)
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and we can now compute the energy in this state:

⟨ϕ|H |ϕ⟩
⟨ϕ|ϕ⟩

=
⟨H3⟩β − 2 ⟨H2⟩β ⟨H⟩β + ⟨H⟩

3
β

⟨H2⟩β,c
= ⟨H⟩β+

⟨H3⟩β,c
⟨H2⟩β,c

= −N2F ′
0−F ′

1−2
F ′′′
0

F ′′
0

+ · · · .

(B.16)
We see that this state modifies again the energy only at order N0, and in a slightly different
way than the previous state. In a similar way, we compute the variance and find

⟨ϕ|H2 |ϕ⟩
⟨ϕ|ϕ⟩

−
Å⟨ϕ|H |ϕ⟩
⟨ϕ|ϕ⟩

ã2
= ⟨H⟩2β + 3 ⟨H⟩2β,c +

2 ⟨H3⟩β,c ⟨H⟩β + ⟨H4⟩β,c
⟨H2⟩β,c

−
Ç
⟨H⟩β +

⟨H3⟩β,c
⟨H2⟩β,c

å2

= 3 ⟨H2⟩β,c +
⟨H4⟩β,c
⟨H2⟩β,c

−
Ç
⟨H3⟩β,c
⟨H2⟩β,c

å2

= 3N2F ′′
0 +

3(F ′′
0 )

2F ′′
1 − (F ′′′

0 )2 + F ′′
0 F

′′′′
0

(F ′′
0 )

2
+ ... (B.17)

One can see that the change in the variance is order N2 (it is three times the variance of
the TFD state), so this is a modification of the variance at the order we were looking for.

From this, we can conclude that the semi-classical geometry is not enough to extract the
variance of the energy. The quantum state of the bulk fields is equally important. For the
state |ϕ⟩, we have the same leading large N properties, but a different quantum state for
the graviton. The fact that it is the s-wave of the graviton that enters is still puzzling, and
it would be interesting how to propertly quantize this non-propagating degree of freedom.
We leave this for the future.
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Appendix C

Boosts in global AdS

As we have discussed in section 2.2, the conformal generators on the d-dimensional cylinder
R×Sd−1 organize themselves as time-translations, rotations, and 2d remaining generators
which correspond to boosts in the dual AdS geometry. The goal of this section is to
discuss whether there exist states that can preserve the boost symmetry. As we have
seen throughout the paper, symmetries that are broken by semi-classical states allow us
to specify bulk points by dressing the location of a bulk point to the feature of the state
that breaks the symmetry. It is important to understand which symmetries are broken,
and which symmetries can be preserved by semi-classical states. For time translations and
rotations, this is straightforward, but it is somewhat more subtle for boosts, which is the
purpose of this section.

The 2d boost generators can be realized as d non-independent copies of SL(2,R) [182].
For simplicity, we will study the case of AdS3, but the higher dimensional versions follow
in a straightforward manner. In d = 2, the two copies of SL(2,R) are well-known and cor-
respond to the left and right moving sectors of conformal transformation. The generators
are given by L−1, L0, L1 and L̄−1, L̄0, L̄1. Time-translations and rotations are obtained by
the combinations

H = L0 + L̄0 , J = L0 − L̄0 . (C.1)

The four residual generators correspond to boosts in AdS3. For explicit expressions, see
[325]. We would now like to analyze whether non-trivial states can be annihilated by
these boosts. As a starting point, notice that there are obviously CFT states which are
annilitated by L−1 and L̄−1: primary states. However, we would like to consider generators
that can be exponentiated to norm-preserving group elements. This means the generators
should be Hermitian. The generators L−1 and L̄−1 do not satisfy this property. However,
we can assemble them into the combinations

L+ = L−1 + L1 , L− = i(L−1 − L1) (C.2)

Using that L†
−1 = L1, we see that L± are hermitian operators and can thus be exponenti-

ated to form unitaries.
The question we would like to ask is whether there are states in the Hilbert space that

are eigenstates of L±. We will see that the only finite energy eigenstates of these operators
are those where the left-moving part of the CFT is in the vacuum. To see this, we consider
the commutator

[L+, L−] = 4iL0 (C.3)
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Suppose now that |ψ⟩ is a normalizable eigenstate of —say— L+. Computing the expec-
tation value of this equation we find

⟨ψ|L0|ψ⟩ = 0 (C.4)

From the positivity of the energy spectrum this is possible only if L0|ψ⟩ = 0. The only
states with this property are states where the left moving sector of the CFT is in the
vacuum.

Non-trivial states will thus break boost invariance, which can be use to specify the
radial location of an operator. For the construction of operators presented in this paper,
this would require considering the states obtained by acting with the unitary operators on
semi-classical states |ψ0⟩ as

e−iγL± |ψ0⟩ , (C.5)

and studying the generalized return probability

R(γ) ≡
∣∣∣⟨ψ0| e−iγL± |ψ0⟩

∣∣∣2 . (C.6)

These return probabilities have not been studied but for semi-classical states, it is natural
to expect them to be exponentially small for γ ∼ O(1).



Appendix D

Early time decay of the return
probability

We wish to estimate the early time decay of the return probability (2.31). We will see that
at very early times, namely t ∼ 1

N , we can find the decay purely from large N factorization.
We will first recall a general property of coherent state overlaps which follows from large
N factorization, and then adapt the situation slightly to the return probability.

D.0.1 Overlap of coherent states and large N factorization

Coherent states of quantum gravity in AdS/CFT can be described by states prepared by
a Euclidean path integral with sources turned on for single-trace operators. These states
are thus given by

|λ⟩ = e
∫
x0<0 dx

dλ(x)O(x) |0⟩ , (D.1)

where we have not written the appropriate time-ordering which is left implicit. We will
now show that the overlap is given by

⟨λ1|λ2⟩ = e
∫

Rd λ
∗
1(y)λ2(x)⟨O(y)O(x)⟩ +O(1/N) , (D.2)

where it should be understood that y is integrated over the upper half plane while x is
integrated over the lower half plane.

We can explicitly expand out the integrals of the bra and the ket states, and use large
N factorization: this implies that the operators should be paired up and contracted using
Wick’s theorem, up to 1/N corrections. At a given power in the source, we will have a
term of the form Å∫

dxdy

ãk 1

(k!)2
λ∗1(y)

kλ2(x)
k ⟨0| Ok(y)Ok(x) |0⟩ . (D.3)

We can now apply Wick’s theorem and findÅ∫
dxdy

ãk 1

(k!)2
λ∗1(y)

kλ2(x)
k ⟨0| Ok(y)Ok(x) |0⟩ = 1

k!

Å∫
dxdyλ∗1(y)λ2(x) ⟨0| O(y)O(x) |0⟩)

ãk
,

which we can re-exponentiate to find (D.2). Note that we have not written the normal-
ization of the states, which takes care of the Wick contraction between any two operators
living both in the lower half plane, or upper half plane. Similarly, terms which have a
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different powers of upper and lower operators do not give contributions to leading order
at large N because we cannot pair the operators and use Wick’s theorem.

For this to work, we have implicitly assumed that λ ∼ O(N0). To see this, note that
the connected correlation functions of higher-point operators are suppressed by 1/N , but
also have more sources than lower-point functions. If we scale the sources as λ ∼ N1/2,
which is the correct scaling to induce O(1) back-reaction on the dual spacetime1, we have
to be more careful, as some of the terms we dropped involving connected correlators will
be the same size as the Wick contractions. For example, we have

λ∗1(y)λ2(x) ⟨O(y)O(x)⟩ ∼ N2 (D.4)
(λ∗1(y)λ2(x))

2 ⟨O(y)O(y)O(x)O(x)⟩c ∼ N2 . (D.5)

This means that we cannot truncate to the sector of Wick contraction, and we must resum
the entire expansion. Note however that the contributions corresponding to loop diagrams
in AdS are still suppressed by 1/N , so we are resumming tree-level diagrams to build the
backreacted geometry.

The upshot of this analysis is that we can use large-N factorization to easily compute
the overlap of coherent states, but only if the sources are O(1), in which case the exponent
in the exponential is also O(1). If we try to make the sources scale with N , the exponent
will be of order N2 and then infinitely many contributions must be resummed. We will
now apply this logic to the return probability.

D.0.2 The return probability

We can now apply the same logic as above, taking the operator e−iHT to be seen as an
imaginary Euclidean source for the Hamiltonian (which is the integral of the stress-tensor).
We want to compute

R(T ) = ⟨Ψ0|e−iHT |Ψ0⟩⟨Ψ0|eiHT |Ψ0⟩ . (D.6)

Applying the logic above, we would find that to leading order we have

R(T ) = e−iT ⟨Ψ0|H0|Ψ0⟩eiT ⟨Ψ0|H0|Ψ0⟩ = 1 +O(1/N) . (D.7)

So we see that the candidate leading term vanishes, and we must go to the next order.
This is due to the nature of the return probability, which is a square of overlaps. A quick
expansion of the exponentials shows that at order T 2, we have

T 2
(
− ⟨Ψ0|H2|Ψ0⟩+

(
⟨Ψ0|H|Ψ0⟩

)2)
= −T 2∆H2 . (D.8)

For reasons similar to those explained above, this term can be exponentiated such that we
find

R(T ) = e−T
2∆H2

+O(1/N) . (D.9)

As in the previous section, we can only trust this approximation if the exponent is O(1).
Because we are considering states that have ∆H ∼ N2, we see that we can trust this
exponential decay of the return probability for time scales up to t ∼ 1/N .

For larger time scales, it may still hold, but it cannot be justified based solely on large
N factorization. It is instructive to consider the case of the thermofield double state and

1For operators that have unit 2-point function.
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the spectral form factor, as we already discussed in section 2.5.2. For simplicity, we set
d = 2 where we have

Z(β) = e
c
12

4π2

β . (D.10)

The spectral form factor then gives

R(T ) = e
π2c
3

Ä
1

β+IT
+ 1
β−iT

ä
= e

2π2c
3

β

β2+T2 . (D.11)

We can expand this expression in T , as long as T ≪ β, to find

R(T ) ≈ Z(β)2e−
2π2c

3
T2

β3 . (D.12)

We find the exponential decay that goes like T 2. What is important is that even though T
must be much smaller than β, it is allowed to scale as N0. This cannot be justified solely
from large N factorization but still holds in this particular context. We expect the return
probability to satisfy this property for holographic states more generally.
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Appendix E

Notes on boundary states

Some useful references for this section are [178, 291, 326, 327].

E.0.1 Boundary states in 2D CFT

Boundary states in a 2d CFT need to satisfy [291]

(Ln − L̃n) |B⟩ = 0. (E.1)

In any Verma module, one can find a simple solution to these conditions as

|Ih⟩ =
∑
k⃗

|⃗k, h⟩L ⊗ |⃗k, h⟩R , (E.2)

where |⃗k, h⟩L is a linear combination of Virasoro descendants of the primary state |h⟩
characterized by an infinite dimensional vector k⃗ = (k1, k2, ...) with non-negative integer
components. We identify these states by starting with descendants of the form

...LKn−n ...L
K1
−1 |h⟩L . (E.3)

and forming an orthonormal basis selected such that L⟨k⃗, h|k⃗′, h⟩L = δ
k⃗,k⃗′

.
The state |Ih⟩ is called the Ishibashi state for the primary state |h⟩L, where the states

|⃗k, h⟩ are the descendant on top of the primary labeled by h. It can be seen easily that

Ln|Ih⟩ = L̃n|Ih⟩ . (E.4)

It is clear that the Ishibashi states have maximal entanglement between the left-moving
and right-moving sectors. Linear combinations of the Ishibashi states satisfy the constraint
(F.5) as well.

Physical boundary sates are given by special linear combinations of Ishibashi states
which are called Cardy states

|Ba⟩ =
∑
h

Ca,h |Ih⟩ . (E.5)

Physical boundary states should satisfy a consistency condition of the partition function
on a finite cylinder related to open-closed duality [291].

The Cardy states are singular because the norm of the Ishibashi states is divergent.
One can define regularized boundary states by evolving in Euclidean time as

|Ba,β⟩ = e−
β
4
Hc |Ba⟩ , (E.6)
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where β is a positive constant and Hc = L0 + L̃0 − c
12 . Since [L0 − L̃0, Hc] = 0, the state

(F.4) is still space-translational invariant on the circle, but it is time-dependent.
Ishibashi states are orthogonal to each other. The amplitude of Euclidean time evolu-

tion by β/2 between two such states is computed as

⟨Ik|e−βHc/2|Il⟩ = δklχk(e
−β/2) . (E.7)

χk is the character for the primary k. On the other hand, the Cardy states are not
orthogonal to each other but satisfy the open-closed duality relation as follows

⟨Ba|e−
β
2
Hc |Bb⟩ =

∑
k

N
(k)
a,b Trk[e

− 4π2

β
Ho ] (E.8)

where Ho = Lo − c
24 denotes the Hamiltonian in the dual channel, characterized by the

boundary conditions a, b. On the right hand side, Trk[...] denotes a trace in the sector
associated to a primary k as well as its descendants. Moreover, N (k)

a,b counts the degeneracy
of sectors which belong to the primary k with boundary conditions a and b.

In the high temperature limit β → 0, we find that

⟨Ba|e−
β
2
Hc |Bb⟩ ≃ N

(km)
a,b e

− 4π2

β
(h

(min)
a,b − c

24
)
, (E.9)

where km is the lightest primary among those satisfy N (km)
a,b ̸= 0, whose conformal dimen-

sion is denoted as h(min)a,b .
We can estimate the inner products between two normalized boundary states in this

limit as

⟨ψa|e−
β
2
Hc |ψb⟩ =

⟨Ba|e−
β
2
Hc |Bb⟩»

⟨Ba|e−
β
2
Hc |Ba⟩⟨Bb|e−

β
2
Hc |Bb⟩

≃ δa,b +N
(km)
a,b e

− 4π2

β
h
(min)
a,b . (E.10)

Note that N (0)
a,a = 1. In this way, a large gap in the open string channel leads to a large

exponential suppression of off-diagonal elements of inner products.
In holographic BCFT, the inner product between two boundary states can be com-

puted by evaluating the gravity action on the dual background. When we consider the
gravity dual of a cylinder, there are two candidates of classical gravity solutions depending
on whether the end of the word brane is connected or disconnected which are called con-
nected and disconnected solutions. When we consider the overlap for an identical boundary
condition a, then both the connected and disconnected solution are allowed. In the limit
β → 0, the connected solution is favored and one can find that

⟨Ba|e−
β
2
Hc |Ba⟩ ≃ e

π2c
6β . (E.11)

We will use it later to calculate the return probability for boundary states. In addition to
it, one can find the inner product between two boundary states with different boundary
conditions. In this case, only the disconnected solutions are allowed and

⟨Ba|e−
β
2
Hc |Bb⟩ ≃ e

cβ
12

+S
(a)
bdy+S

(b)
bdy , (E.12)

where S(i)
bdy, i = a, b are the boundary entropies [178].
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E.0.2 Boundary states in higher dimensions

One can generalize to higher dimensions and define a boundary state |Ba⟩ as a state
associated to a (d − 1)-dimensional boundary in d-dimensional CFT [178, 328]. Taking
the boundary to be a torus Td−1, the inner product between two boundary states in
a holographic BCFT can be computed as a partition function on a d-dimensional open
manifold Iβ/2 × Td−1 where Iβ/2 is a length β/2 interval. As in the 2d case, there are two
bulk solutions, a connected and a disconnected one. In the β → 0 limit the connected
solution is dominant and one can find the inner product between two identical boundary
states using the gravity solution as

⟨Ba|e−
β
2
Hc |Ba⟩con ≃ eαd/β

d−1
, (E.13)

where

αd = (4ζ(T ))d
Rd−1

16GN
Ld−1 , (E.14)

where R is the AdS radius, L is the length of the compactified spatial directions and ζ(T )
is a function of tension which is defined when T < 0 as

ζ(T ) ≡ Γ(1/d)Γ(1/2)

Γ(1/d+ 1/2)

R|T |
d(d− 1)

(1− R2T 2

(d− 1)2
)1/d−1/2F (1, 1/d, 1/2 + 1/d; 1− R2T 2

(d− 1)2
) ,

(E.15)
and when T > 0, ζ(T ) = 2π

d − ζ(−T ). The tension takes values in the range |T | < d−1
R .

For d > 2, ζ(T ) non-trivially depends on T and there is an upper bound of the tension
T < T∗ which T∗ > 0 and ζ(T∗) = 0 [178].

E.0.3 Correlation functions in BCFTs

Let us first start with the simplest case where the CFT is defined on the upper half plane
and the boundary state |B⟩ is placed along the real axis. We consider the 1-point function
of a local operator placed at z in the upper half plane. In the case of a CFT on the plane,
the 1-point function of a primary operator in the vacuum is required to vanish by the
symmetries. These are partly broken in a BCFT. The remaining symmetries constraint
the 1-point function to have the form

⟨O(z)⟩UHP =
AO

(2 Im(z))∆
, (E.16)

where AO is determined by the details of the theory and the precise boundary state in
question. One could think of this as the boundary providing a source for the operator O.

The 2-point function of a primary operator in a BCFT is more complicated than the
case with no boundaries where it is exactly fixed by the symmetries. Non-trivial informa-
tion about the operator content and OPE coefficients is necessary to compute the 2-point
function exactly in a BCFT. We assume that for large N holographic CFTs the large N
2-point function takes the form

⟨O(z1)O(z2)⟩UHP = ⟨O(z1)⟩UHP ⟨O(z2)⟩UHP + ⟨O(z1)O(z2)⟩ ± ⟨O(z1)O(z∗2)⟩ , (E.17)

where
⟨O(z1)O(z2)⟩ =

1

|z1 − z2|2∆
, (E.18)
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where the contribution from an image insertion placed at z∗2 . The sign of the last term is
governed by the boundary conditions, being either Dirichlet (−) or Neumann (+).

Mapping the z coordinate to a new coordinate w by

w → z = exp(2πw/β + i2π/4) , (E.19)

we can map the upper half plane to the a strip of width β/2, where the positive (negative)
real axis is mapped to the lower (upper) edge of the strip.

Since primary operators continue to transform in the usual way, the correlation func-
tions now transform to

⟨O(w)⟩strip =
AO

(βπ cos[
2π
β τ ])

∆

⟨O(w1)O(w2)⟩connected
strip =

1

|βπ sinh[
π
β (w1 − w2)]|2∆

± 1

|βπ cosh[
π
β (w1 − w̄2)]|2∆

,

(E.20)

where the second line is only the connected piece of the large N 2-point function [210].
Higher order correlation function can be found through large N factorization.

Correlation functions on a state defined on a circle by

|Bβ⟩ = e−βH/4 |B⟩ , (E.21)

can be thought of as correlation function on a cylinder of width β/2 where the boundary
state is placed on both sides. We can instead consider a strip of width β/2, from τ = −β/4
to τ = β/4 with periodicity x ∼ x + R. We choose R = 2π for simplicity from now on.
In large N holographic CFTs correlation functions on the cylinder can be found from the
correlation function on the strip using the method of images

⟨O(w1)O(w2)⟩connected
cylinder =

∞∑
n=0

⟨O(w1 + 2πn)O(w2)⟩connected
strip . (E.22)



Appendix F

Entanglement Renormalization in
Continuum

cMERA [255] was originally introduced as an ansatz wave functional for the ground states
of QFT Hamiltonians. The same as the ER that corresponds to MERA tensor network,
the continuous version of it implements a real-space RG in the continuum. MERA on
a lattice can also be visualized as a quantum circuit [329]. In this representation, the
physical state can be obtained by evolving a simple product state with no entanglement
that factories with respect to the lattice sites -usually considered as "all sites 0"- by a
unitary operator to create entanglement at different scales. The generalization to the
continuum is conceptually straightforward. To describe cMERA first assume a QFT and
impose a UV cut-off Λ. It is required to start with a finite Λ in order to define the process
but, in the end, it can be sent to infinity. One parameter family of scale-dependent states
is produced through continuous unitary evolution in scale u as

|Ψ(u)⟩ = U(u, uIR) |Ω⟩ = Pe
−i

∫ u
uIR

(K(s)+L) ds |Ω⟩ (F.1)

where the symbol P is path ordering and |Ω⟩ is the IR state that is the continuum limit of
a product state on the lattice that contains no entanglement between spatial regions, and
the UV state is what describes the system we are studying, usually, the ground state of the
system. Moreover, it has been shown that any spacetime symmetry of the ground state
is also a symmetry of the cMERA representation of it [330]. Only the difference between
UV and IR limits is fixed as uUV − uIR = O(log ξΛ) when ξ is the correlation length of
the theory. It is convenient to set uUV = 0 and uIR = −O(log ξΛ) . For critical systems
uIR → −∞.

On the other hand, L is the generator of the scale transformation in spacial directions
and K(u) is the so-called entangler (or disentangler, depending on the direction of the
RG flow) which contains the variational parameters of the cMERA. The IR state is scale-
invariant, thus

L |Ω⟩ = 0. (F.2)

Consider a set of field operators of the theory ψ(x), ψ†(x) satisfying [ψ(x), ψ†(y)]± =
δ(x − y) with +(−) for fermions (bosons). If the IR state is the vacuum of this set of
annihilation and creation operators i.e.

ψ(x) |Ω⟩ = 0, ∀x, (F.3)
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the generator of scale transformation can be read as

L = − i
2

∫
ψ†(x)x

dψ(x)

dx
− xdψ

†(x)

dx
ψ(x) dx. (F.4)

Although some steps have been taken towards finding the form of the entangler operator
for interacting theories, both at the perturbative level [17, 331, 332] and non-perturbatively
[320], it has only been explicitly studied for free theories [255, 319]. The entangler operator
for quadratic interactions is the generator of Bogoliubov transformation given by

K(u) =
i

2

∫
dk

(
g(k, u)ψ†

kψ
†
−k − g

∗(k, u)ψ−kψk
)

(F.5)

where ψk = 1√
2π

∫
dx e−ikxψ(x) and g(k/Λ, u) is even and odd in its first argument for

bosons and fermions, respectively. Finally, we mention that the cMERA unitary process
provides a RG flow for the operators as

dO(u)

du
= −i[K(u) + L ,O(u)] (F.6)

when the physical or bare operators of the theory are defined at the UV scale.
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