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1 Introduction

Celestial holography aims at establishing a holographic description of quantum gravity in
four-dimensional asymptotically flat spacetime in terms of a two-dimensional conformal
field theory, called celestial CFT (or CCFT for short), living on the boundary celestial
Riemann surface. This program exploits the richness of the asymptotic symmetry structure
of the spacetime [1–6] to constrain the potential candidate for the celestial dual theory.
Conformal symmetries of the CCFT are induced by superrotations which are part of the
(extended) Bondi-Metzner-Sachs (BMS) asymptotic symmetries in the bulk theory [5, 7–
10]. In celestial holography, each scattering particle in the bulk spacetime is associated
to an operator that lives on the boundary celestial Riemann surface. In those terms, soft
theorems in the bulk spacetime, corresponding to Ward identities of the gravitational S-
matrix for the extended BMS symmetries, are implemented by 2d currents in the CCFT;
see [11] for a review. In particular, the supertranslation current has Ward identities that are
equivalent to the leading soft graviton theorem [6, 12], while the sub-leading soft theorem
is obtained by the insertion of a holographic stress-tensor [13]. A natural basis to describe
massless asymptotic particles in celestial holography can be obtained by applying a Mellin
transform with respect to the energy of the external particle, which maps energy eigenstates
to boost eigenstates and hence makes the conformal properties more manifest [4, 14–17].

In [18], the coadjoint representation of the BMS group in four dimensions has been
constructed. It acts on a set of conformal fields that have been identified with local expres-
sions of the solution space of non-radiative asymptotically flat spacetimes at null infinity
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through a (pre-)momentum map. In presence of radiation, the transformation of the grav-
itational solution space becomes more complicated and the coadjoint representation of the
BMS group is not sufficient to describe it. Furthermore, the BMS surface charges become
non-integrable [19] and one needs additional inputs to select a meaningful integrable part.
The algebra requires the use the modified Barnich-Troessaert bracket [20], leading to a
field-dependent 2-cocycle (see also [21] for a detailed analysis from double-soft limits of
amplitudes). As shown in [22, 23], the latter can be re-absorbed in the definition of the
modified bracket by using the Noetherian split between integrable and non-integrable parts.

Instead of working with local expressions of the solution space at finite value of retarded
time u, one could consider fluxes that correspond to integrated expressions over u. This
point of view is closer to the spirit of celestial holography where the retarded time does
not appear explicitly in the CCFT. It was shown in [24, 25] that, provided one chooses
an appropriate integrable part in the BMS surface charges, the algebra of associated BMS
fluxes closes under the standard bracket. The prescription that we consider here is based
on [25, 26] and has the following important properties: (i) the flux algebra closes under
the standard bracket, (ii) the fluxes vanish when evaluated on vacuum solutions (namely
solutions with identically vanishing Riemann tensor that are constructed in [27–29]), (iii)
the fluxes vanish for non-radiative spacetime solutions, (iv) the fluxes are finite provided
one chooses the appropriate falloffs in u.

In this paper, we identify some non-local combinations of the solution space of four-
dimensional asymptotically flat spacetimes that transform in the coadjoint representation
of the extended BMS group in presence of radiation. We call these expressions the BMS
momentum fluxes since they are involved in the BMS fluxes discussed in [25]. The inclusion
of the superrotations in the analysis requires a meticulous treatment of the 2d Liouville
stress-tensor discussed in [26, 27]. In a second step, we propose a new prescription to split
the fluxes into soft and hard parts, so that the associated soft and hard phase spaces fac-
torize. We then relate the soft BMS momentum fluxes with the supertranslation operator
and the stress-tensor of the CCFT. We provide the precise expressions of these CCFT
currents in terms of the bulk metric and deduce their transformation laws under extended
BMS transformations. Finally, from the BMS flux algebra, we deduce the OPEs of the
BMS momentum fluxes and recover the OPEs of the CCFT operators.

2 Asymptotically flat spacetimes

In this section, we describe the bulk side of the celestial holographic description by review-
ing the analysis of four-dimensional asymptotically flat spacetimes at null infinity, denoted
I +, in Bondi gauge [1–3]. We mainly follow the notations and conventions of [5, 26]. In
Bondi coordinates (u, r, xA), xA = (z, z̄), the spacetime metric reads as

ds2 = e2β V

r
du2 − 2e2βdudr + gAB

(
dxA − UAdu

) (
dxB − UBdu

)
, (2.1)

where β, V , gAB, UA are functions of (u, r, xA) and the transverse metric gAB satisfies the
determinant condition

∂r
[
r−4 det(gAB)

]
= 0. (2.2)
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We consider the asymptotically flat spacetimes satisfying the boundary conditions

β=O
(
r−1

)
,

V

r
=−1+O

(
r−1

)
, UA =O

(
r−1

)
, gAB = r2q̊AB+rCAB+O

(
r−1

)
,

(2.3)
where

q̊ABdx
AdxB = 2

(
ΩSΩ̄S

)−1
dzdz̄, ΩS = 1 + zz̄√

2
= Ω̄S (2.4)

is unit sphere metric and CAB(u, x) is a 2-dimensional symmetric traceless tensor called
the asymptotic shear. Let us make some comments on the choice of falloffs (2.3), (2.4):
• We allow for possible puncture singular violations of the above boundary conditions to

accommodate with the Witt⊕Witt superrotations symmetries [5, 7, 8] that we discuss
below. In particular, we consider the topology of the 2-punctured sphere as celestial
Riemann surface S ' I +/R [18].

• Possible relaxations of the above boundary conditions have been considered recently in
the literature allowing for variations of the transverse boundary metric. These lead to
enhancement of the asymptotic group with Diff(S2) superrotations [26, 30–32] and/or
Weyl rescaling symmetries [5, 22, 33, 34] (see also [35] for a review). While the case
that we discuss here is the most natural to study the celestial holography since it readily
implies the conformal symmetries on the celestial Riemann surface, we will comment on
these extensions in the discussion section.

• In the above conditions, we set the order r0 in the expansion of gAB to zero. Turning on
this term would bring some log r terms in the expansion that we want to avoid [5, 36, 37].
For discussions on polyhomogeneous spacetimes, see e.g. [38–45].

Solving Einstein’s equations in vaccuum with vanishing cosmological constant for the
boundary conditions (2.3) yields the following expansions [5, 36]:

V

r
= −1 + 2M

r
+O

(
r−2

)
, β = 1

r2

[
− 1

32C
ABCAB

]
+O

(
r−3

)
,

gAB = r2q̊AB + rCAB +O
(
r−1

)
,

UA = − 1
2r2DBC

AB − 2
3

1
r3

[
NA − 1

2C
ABDCCBC

]
+O(r−4),

(2.5)

where M = M(u, x) is the Bondi mass aspect, NA = NA(u, x) is the angular momentum
aspect. The 2-sphere indices in (2.5) are lowered an raised with q̊AB and its inverse, and
DA is the Levi-Civita connection on the celestial Riemann surface associated to q̊AB. The
Bondi mass and angular momentum aspects satisfy the time evolution equations

∂uM = −1
8NABN

AB + 1
4DADBN

AB,

∂uNA = DAM + 1
16DA

(
NBCC

BC
)
− 1

4N
BCDACBC −

1
4DB

(
CBCNAC −NBCCAC

)
− 1

4DBD
BDCCAC + 1

4DBDADCC
BC ,

(2.6)
with NAB = ∂uCAB the Bondi news tensor.
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The residual diffeomorphisms that preserve the Bondi gauge (2.1) and falloff condi-
tions (2.3) are generated by vectors fields ξ = ξu∂u + ξz∂ + ξz̄∂̄ + ξr∂r whose components
read as

ξu =
(
ΩSΩ̄S

)− 1
2 T + u

2
(
DzY +Dz̄Ȳ

)
,

ξz = Y +O
(
r−1

)
ξz̄ = Ȳ +O

(
r−1

)
,

ξr = −r2
(
DzY +Dz̄Ȳ

)
+O

(
r0
)
,

(2.7)

where T = T (z, z̄) is the supertranslation parameter and Y = Y(z), Ȳ = Ȳ(z̄) are the
superrotation parameters satisfying the conformal Killing equation

Dz̄Y = 0, DzȲ = 0. (2.8)

Using the modified Lie bracket [ξ1, ξ2]? = [ξ1, ξ2] − δξ1ξ2 + δξ2ξ1 where the last two terms
take into account the field-dependence of the asymptotic Killing vectors (2.7) at subleading
order in r [5, 46], the asymptotic Killing vectors (2.7) satisfy the commutation relations[

ξ
(
T1,Y1, Ȳ1

)
, ξ
(
T2,Y2, Ȳ2

)]
?

= ξ
(
T12,Y12, Ȳ12

)
, (2.9)

with

T12 =Y1∂T2−
1
2∂Y1T2−(1↔ 2)+c.c., Y12 =Y1∂Y2−(1↔ 2), Ȳ12 = Ȳ1∂̄Ȳ2−(1↔ 2)

(2.10)
where c.c. stands for complex conjugate terms. This corresponds to the extended BMS
algebra, namely

bms4 =
(
Witt⊕Witt

)
+ s∗, (2.11)

where s∗ stands for the (possibly singular) supertranslations.
For convenience, we introduce the notations f = (ΩSΩ̄S)− 1

2T + u
2 (DzY + Dz̄Ȳ) and

Y A = (Y, Ȳ). Under residual gauge diffeomorphisms (2.7), the solution space transforms
infinitesimally as

δ(f,Y )CAB =
[
f∂u + LY −

1
2DCY

C
]
CAB − 2DADBf + q̊ABDCD

Cf,

δ(f,Y )NAB = [f∂u + LY ]NAB −
(
DADBDCY

C − 1
2 q̊ABDCD

CDDY
D
)
,

δ(f,Y )M =
[
f∂u + LY + 3

2DCY
C
]
M

+ 1
8DCDBDAY

ACBC + 1
4N

ABDADBf + 1
2DAfDBN

AB,

δ(f,Y )NA =
[
f∂u + LY +DCY

C
]
NA + 3MDAf −

3
16DAfNBCC

BC

− 1
32DADBY

BCCDC
CD + 1

4
(
2DBf +DBDCD

Cf
)
CAB

− 3
4DBf

(
DBDCCAC −DADCC

BC
)

+ 3
8DA

(
DCDBfC

BC
)

+ 1
2

(
DADBf −

1
2DCD

Cf q̊AB

)
DCC

BC + 1
2DBfN

BCCAC .

(2.12)
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As one can see from the second expression above, the Bondi news NAB transforms
inhomogeneously under superrotations. As discussed in [26], one can define the physical
news N̂AB as

N̂AB (u, x) = NAB(u, x)−Nvac
AB (x), (2.13)

with

Nvac
AB (x) =

[1
2DAΦDBΦ−DADBΦ

]TF
, Φ(z, z̄) =ϕ(z)+ϕ̄(z̄)+ln

(
ΩSΩ̄S

)
, (2.14)

where TF stands for the trace-free part. Nvac
AB is the stress-tensor for a 2d Euclidean

Liouville theory living on the celestial Riemann surface with Lagrangian

L[Φ] =
√
q̊

(1
2DAΦDAΦ + R̊Φ

)
. (2.15)

The Liouville scalar field Φ is called the “superboost field” and it encodes the refrac-
tion/velocity kick memory effects [26]. It satisfies the equation of motion

2Φ = R̊ = 2ΩSΩ̄S∂∂̄ ln
(
ΩSΩ̄S

)
= 2 (2.16)

and transforms as
δ(f,Y )Φ = Y ADAΦ +DAY

A (2.17)

or, equivalently, δ(f,Y )ϕ = Y∂ϕ + ∂Y, δ(f,Y )ϕ̄ = Ȳ ∂̄ϕ̄ + ∂̄Ȳ, under residual gauge diffeo-
morphisms (2.7). Notice that the Liouville equation (2.16) is consistent with the action of
the symmetries since δf,Y (2Φ− R̊) = (LY +DAY

A)(2Φ− R̊). As a consequence of (2.16)
and (2.17), the Liouville stress-tensor (2.14) satisfies DANvac

AB = 0 and transforms as

δ(f,Y )N
vac
AB = LYNvac

AB −
(
DADBDCY

C
)TF

. (2.18)

One can show that it is related to the trace-free part of the Geroch tensor ρAB [24, 47–49].
The interest of the physical news (2.13) is that it transforms homogeneously, i.e.

δ(f,Y )N̂AB = [f∂u + LY ] N̂AB, (2.19)

so that N̂AB = 0 is a meaningful condition to impose in presence of superrotations to define
non-radiative spacetimes.

In addition to the boundary conditions (2.3), one also imposes the following falloff
conditions when u→ ±∞ that are compatible with the action of superrotations [24–26, 50]:

NAB =Nvac
AB +o

(
u−2

)
, CAB = (u+C±)Nvac

AB−2(DADBC±)TF +o
(
u−1

)
, (2.20)

where C± correspond to the values of the supertranslation field at I +
± that encodes the

displacement memory effect [51]. We have the transformation

δ(f,Y )C± =
(
ΩSΩ̄S

)− 1
2 T + Y A∂AC± −

1
2DAY

AC±. (2.21)

As discussed in [24, 50], the falloffs (2.20) are stronger than those considered in e.g. [26],
but we found that they are necessary for the finiteness of the flux related to superrotations
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that we will introduce in section 4. The falloffs (2.20) imply that, at the corners I +
± , the

spacetime is non-radiative (N̂AB|I +
±

= 0) and the physical asymptotic shear defined by
ĈAB = CAB − uNvac

AB is purely electric, i.e.[(
DBDC −

1
2N

vac
BC

)
ĈCA −

(
DADC −

1
2N

vac
AC

)
ĈCB

] ∣∣∣
I +
±

= 0. (2.22)

One can check that this condition is preserved under BMS transformations. It generalizes
the standard electricity condition considered e.g. in [6] in presence of superrotations [24–26].

3 Conformal fields on the celestial Riemann surface

We now set up the stage for the boundary side of the celestial holography framework. From
the previous section, we infer that the celestial Riemannian surface S ' I +/R can be taken
as the 2-punctured Riemann sphere endowed with the fixed Euclidian metric (2.4) [18]. It
is convenient to complexify S and treat the coordinates z and z̄ independently. From the
boundary point of view, one can consider the “extended conformal transformations” that
preserve the conformal class of the metric (2.4). They are defined as the combined action
of conformal coordinate transformations z′ = z′(z) and z̄′ = z̄′(z̄) and Weyl rescalings that
induce the following transformations on the conformal factor:(

ΩΩ̄
)′ (

z′, z̄′
)

=
(
ΩΩ̄
)

(z, z̄)
(
∂z′

∂z

)(
∂z̄′

∂z̄

)
e−2ER(z′,z̄′), (3.1)

where ER(z, z̄) is the real Weyl rescaling parameter.1 These transformations preserve the
particular representative (2.4) of the conformal class provided

eER(z′,z̄′) = (1 + zz̄)
(1 + z′z̄′)

√(
∂z′

∂z

)(
∂z̄′

∂z̄

)
. (3.2)

Infinitesimally, the extended conformal transformations (3.1) satisfying (3.2) are generated
by the conformal Killing vectors Y(z)∂+ Ȳ(z̄)∂̄ induced on S from the bulk superrotations
defined in (2.7).

A conformal field of weights (h, h̄) is defined as a field φh,h̄(x) on S which transforms as

φ′
h,h̄

(
x′
)

=
(
∂z

∂z′

)h ( ∂z̄
∂z̄′

)h̄
φh,h̄ (x) (3.3)

under transformations (3.1) with the constraint (3.2). One can then define a spin weight
J and a boost weight/conformal dimension ∆ as usual:

J = h− h̄, ∆ =
(
h+ h̄

)
. (3.4)

As explained in [18, 33], there is a one-to-one map between conformal fields and weighted
scalars with spin weight s = J and boost weight w = −∆. The weighted scalar point of

1The parametrization of the Weyl rescaling in (3.1) is precisely the one considered in [18, 22, 33]. It is
related to the parametrization used in [5, 34] through a redefinition of the parameters.
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view is the one that naturally arises when starting from the solution space of gravity [52–
54]. However, it can be easily related to the conformal field point of view by using the
conformal factor of the metric. In the present paper, we choose to work in the latter
framework which is more adapted to celestial holography.

It will turn out to be useful to introduce the following derivative operators:

Dφh,h̄ = [Dz − h∂Φ]φh,h̄, D̄φh,h̄ =
[
Dz̄ − h̄∂̄Φ

]
φh,h̄, (3.5)

which act on (h, h̄) conformal fields to give conformal fields of weights (h + 1, h̄) and
(h, h̄+ 1), respectively. They satisfy D(ΩSΩ̄S) = 0 = D̄(ΩSΩ̄S). These operators coincide
with the Weyl covariant derivative operators introduced in [18] for the framework that
we are considering here; i.e. with fixed representative (2.4). In particular, the Liouville
field introduced in (2.14) naturally arises as part of the Weyl connection. Furthermore,
the operators (3.5) also correspond to the Witt ⊕Witt version of the Diff(S2)-covariant
derivative introduced in [24] (see also [50]). One can check that[

D , D̄
]
φh,h̄ = 0. (3.6)

We assume that the conformal fields can be expanded in formal series as

φh,h̄(z, z̄) =
∑
k,l

ak,l h,h̄Zk,l, h,h̄Zk,l = z−h−kz̄−h̄−l, (3.7)

where the coefficients ak,l ∈ C satisfy appropriate conditions [55, 56]. If h, h̄ are integers
(resp. half integers), then k, l are taken to be integers (resp. half integers). The residues
of φh,h̄(z, z̄) with respect to z and z̄ are defined as

Resz
[
φh,h̄ (z, z̄)

]
=
∑
l

a1−h,lz̄
−h̄−l, Resz̄

[
φh,h̄(z, z̄)

]
=
∑
k

ak,1−h̄z
−h−k. (3.8)

From the residue theorem, we have the fundamental relations∮
C

dz

2iπ φh,h̄ (z, z̄) = Resz
[
φh,h̄ (z, z̄)

]
,

∮
C

dz̄

2iπ φh,h̄ (z, z̄) = Resz̄
[
φh,h̄ (z, z̄)

]
, (3.9)

where C is a contour around the puncture. Notice that total derivative terms can be
discarded in the contour integrals since there is no log z terms in the expansion (3.7). We
use the notation

∫
S

dzdz̄
(2iπ)2 =

∮
C
dz
2iπ
∫
C
dz̄
2iπ to designate the integral over the celestial Riemann

surface S.2 The expansion (3.7) is inverted by the relation

ak,l =
∫
S

dzdz̄

(2iπ)2 z
k+h−1z̄l+h̄−1φh,h̄ (z, z̄) . (3.10)

2Notice that the standard normalization for the measure on the celestial sphere is such that∫
S
idzdz̄ (ΩSΩ̄S)−1 =

∫ π

0
dθ sin2 θ

∫ 2π

0
dφ = 4π

when using stereographic coordinates z = cot
(
θ
2

)
e−iφ, z̄ = cot

(
θ
2

)
eiφ.
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The formal Dirac delta-functions are defined as the following formal distributions [55, 56]:

δ (z − w) = z−1 ∑
k∈Z

(
z

w

)k
, δ (z̄ − w̄) = z̄−1 ∑

k∈Z

(
z̄

w̄

)k
. (3.11)

They satisfy the useful properties
∮
C
dz
2iπ δ(z−w)φh,h̄(z, z̄) = φh,h̄(w, z̄), δ(z−w) = δ(w−z),

(z−w)δ(z−w) = 0, ∂zδ(z−w) = −∂wδ(z−w), together with the corresponding relations
for δ(z̄ − w̄). We write the delta-function on the celestial Riemann surface as

δ2 (z − w) = δ (z − w) δ (z̄ − w̄) , (3.12)

so that
∫
S

dzdz̄
(2iπ)2 φh,h̄(z, z̄)δ2(z − w) = φh,h̄(w, w̄).

4 Generators and momenta

We now identify the parameters of the extended BMS algebra and some non-local combi-
nations of the solution space introduced in section 2 from bulk considerations, as conformal
fields on the celestial Riemann surface in the sense of section 3. The conformal weights of
the various fields discussed in this paper are summarized in table 1.

Let us start with the bms4 symmetry parameter given in equation (2.7).3 The super-
translation parameters T (z, z̄) can be seen as real conformal fields of weights (−1

2 ,−
1
2) [18].4

They can be expanded in formal series as in (3.7):

T (z, z̄) =
∑
k,l

tk,lTk,l, Tk,l = − 1
2 ,−

1
2
Zk,l = z

1
2−kz̄

1
2−l, (4.1)

with k, l half-integers and t̄k,l = tl,k so that T is real. Notice that the four Poincaré
translations are spanned by T 1

2 ,
1
2
, T 1

2 ,−
1
2
, T− 1

2 ,
1
2
and T− 1

2 ,−
1
2
.

Superrotations are parametrized by the complex conformal fields Y(z), Ȳ(z̄) of weights
(−1, 0) and (0,−1), respectively [18]. The infinitesimal actions of superrotations on a
conformal field φh,h̄(z, z̄) are given by

δYφh,h̄ = Y∂φh,h̄ + h∂Yφh,h̄, δȲφh,h̄ = Ȳ ∂̄φh,h̄ + h̄∂̄Ȳφh,h̄. (4.2)

These are the infinitesimal analogues of (3.3). Superrotation vector fields can be expanded
as in (3.7):

Y(z) =
∑
m

ymYm, Ym = z1−m, Ȳ(z̄) =
∑
m

ȳmȲm, Ȳm = z̄1−m, (4.3)

where m ∈ Z and ym, ȳm are complex numbers. The six global Lorentz parameters are
spanned by Y−1, Y0, Y1, and their complex conjugates. In terms of (4.3), equation (4.2)
can be rewritten as

δYmφh,h̄ = z1−m∂φh,h̄+h(1−m)z−mφh,h̄, δȲmφh,h̄ = z̄1−m∂̄φh,h̄+h̄(1−m)z̄−mφh,h̄
(4.4)

3In this paper, since we are focusing on the conformal field point of view, we do not write the “ ˜ “
notation above the conformal fields, which contrasts with the convention used in [18].

4The choice of conformal weights for the symmetry parameters will be justified later through the pairing
between generators and momenta in (5.1).
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or, equivalently,

δYm

(
h,h̄Zk,l

)
= − (k + hm) h,h̄Zm+k,l, δȲm

(
h,h̄Zk,l

)
= −

(
l + h̄m

)
h,h̄Zk,l+m. (4.5)

For convenience, the bms4 commutation relations (2.9) and (2.10) can be rewritten using
the notations ξ(T , 0, 0)→ T , ξ(0,Y, 0)→ Y, ξ(0, 0, Ȳ)→ Ȳ, [., .]? → [., .]. We have

[Y1,Y2] = Y1∂Y2 − Y2∂Y1,
[
Ȳ1, Ȳ2

]
= Ȳ1∂̄Ȳ2 − Ȳ2∂̄Ȳ1, [T1, T2] = 0,

[Y1, T2] = Y1∂T2 −
1
2∂Y1T2,

[
Ȳ1, T2

]
= Ȳ1∂̄T2 −

1
2 ∂̄Ȳ1T2.

(4.6)

In terms of expansions (4.1) and (4.3), these commutation relations become [5, 57]

[Ym,Yn] = (m− n)Ym+n,
[
Ȳm, Ȳn

]
= (m− n) Ȳm+n,

[Ym,Tk,l] =
(1

2m− k
)

Tm+k,l,
[
Ȳm,Tk,l

]
=
(1

2m− l
)

Tk,m+l,[
Ym, Ȳn

]
= 0 = [Tk,l,Tr,s] .

(4.7)

Let us now define the BMS momentum fluxes as particular non-local combinations of
the solution space data of asymptotically flat spacetimes appearing in (2.5) and interpret
them as conformal fields on the celestial Riemann surface S.

First, the supermomentum flux P(z, z̄) is defined by

P = 1
4πG

∫ +∞

−∞
du∂uM= M

4πG
∣∣∣I +

+

I +
−

, M=
(
ΩSΩ̄S

)− 3
2
[
M+ 1

8
(
CzzN

zz
vac+Cz̄z̄N z̄z̄

vac

)]
,

(4.8)
which corresponds to the difference of values of the supermomentum M(u, z, z̄) between
the two non-radiative asymptotic regions I +

± . Here we used the prescription of [25, 26]
to define the supermomentum in terms of the solution space. The supermomentum flux
P(z, z̄) can be seen as a (J = 0) conformal field of weights (3

2 ,
3
2). Indeed, under infinitesimal

BMS transformations, one can deduce from (2.12) and (2.20) that

δ(T ,Y,Ȳ)P =
[
Y∂ + Ȳ ∂̄ + 3

2∂Y + 3
2 ∂̄Ȳ

]
P, (4.9)

which is the expected infinitesimal transformation law for a (3
2 ,

3
2) conformal field (see (4.2)).

For later purposes, it is useful to split the supermomentum flux into soft and hard parts
involving linear, respectively quadratic, terms in N̂AB inside the integral. We prescribe

P = Psoft + Phard (4.10)

with

Psoft = 1
16πG

∫ +∞

−∞
du
(
ΩSΩ̄S

)− 3
2
[(
D2
z −

1
2N

vac
zz

)
N̂ zz +

(
D2
z̄ −

1
2N

vac
z̄z̄

)
N̂ z̄z̄

]
,

Phard = − 1
16πG

∫ +∞

−∞
du
(
ΩSΩ̄S

)− 3
2
[
N̂zzN̂

zz
]
.

(4.11)
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Notice that the fluxes of supermomenta defined as in (4.11) are finite in u and vanish in
stationary configurations where N̂AB = 0, which is a desirable physical requirement [19, 26].
One can show that the soft and the hard parts transform separately as in (4.9), namely

δ(T ,Y,Ȳ)Psoft/hard =
[
Y∂ + Ȳ ∂̄ + 3

2∂Y + 3
2 ∂̄Ȳ

]
Psoft/hard. (4.12)

They can therefore be both interpreted as conformal fields of weights (3
2 ,

3
2), which justifies

the specific split between hard and soft parts in (4.11). In terms of the superrotation-
covariant derivative operators introduced in (3.5), the soft part can be elegantly rewritten as

Psoft = D2 ¯N (0) + D̄2N (0), N (0) = 1
16πG

∫ +∞

−∞
du
(
ΩSΩ̄S

) 1
2 N̂zz, (4.13)

where the leading soft mode of the news tensor N (0)(z, z̄) is a (3
2 ,−

1
2) conformal field.

Moreover, using the electricity condition (2.22) encoded in the falloffs (2.20), we have
D2 ¯N (0) = D̄2N (0) and

Psoft = 2D2 ¯N (0)

= 1
8πG

(
ΩSΩ̄S

) 1
2
(
D2
z −

1
2N

vac
zz

) [
∆CNvac

z̄z̄ − 2D2
z̄∆C

]
,

(4.14)

with ∆C = C+ − C− the difference of the supertranslation field between the future and
past corners of I +.

Second, the super angular momentum flux is parametrized by the equivalence classes
[J ] and [J̄ ] for the equivalence relation [18]

J ≡ J + DL, J̄ ≡ J̄ + D̄L̄. (4.15)

These equivalence classes can be seen as complex conformal fields of weights (1, 2) and
(2, 1), respectively. In terms of the gravitational data, we define

J = 1
8πG

∫ +∞

−∞
du ∂uN = N

8πG
∣∣∣I +

+

I +
−

, (4.16)

which corresponds to the difference of values between I +
± of the super angular momentum

N (u, z, z̄) defined by

N =
(
ΩSΩ̄S

)−1
[
Nz̄ − uΩ3

SDz̄M+ 1
4Cz̄z̄Dz̄C

z̄z̄ + 3
16Dz̄ (CzzCzz)

]
+ u

4
(
ΩSΩ̄S

)−1
Dz

[(
D2
z −

1
2N

vac
zz

)
Czz̄ −

(
D2
z̄ −

1
2N

vac
z̄z̄

)
C z̄z

]
.

(4.17)

We have the analogous complex conjugate relations for J̄ (z, z̄) and N̄ (u, z, z̄). Here we
used a prescription based on [25, 26, 58] to define the super angular momentum.5 Under

5The prescription (4.17) for the super angular momentum differs from the one proposed in [25] by
magnetic contributions of the shear that do not play any role at I +

± , but that allow to have vanishing
fluxes for stationary solutions N̂AB = 0 (see [59] for a detailed discussion).
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infinitesimal BMS transformations acting through (2.12), the super angular momentum
flux transforms as

δ(T ,Y,Ȳ)J = Y∂J + Ȳ ∂̄J + ∂YJ + 2∂̄ȲJ + 1
2T ∂̄P + 3

2 ∂̄T P , (4.18)

together with the complex conjugate relation for J̄ . For future purposes, it is useful to
split the super angular momentum flux into soft and hard parts; we propose

J = Jsoft + Jhard (4.19)

with

Jsoft = − 1
16πG

∫ +∞

−∞
du
(
ΩSΩ̄S

)−1
[
u
(
D3
z̄ − 2Nvac

z̄z̄ Dz̄ −Dz̄N
vac
z̄z̄

)
N̂ z̄z̄

+N z̄z̄Dz̄

[(
D2
z̄ −

1
2N

vac
z̄z̄

)
C−

]
+ 3Dz̄N

z̄z̄
(
D2
z̄ −

1
2N

vac
z̄z̄

)
C−

]
,

Jhard = 1
8πG

∫ +∞

−∞
du
(
ΩSΩ̄S

)−1
[

3
4 Ĉz̄z̄Dz̄N̂

z̄z̄ + 1
4N̂

z̄z̄Dz̄Ĉz̄z̄ + u

4Dz̄

(
N̂z̄z̄N̂

z̄z̄
)

+ 1
2N

z̄z̄Dz̄

[(
D2
z̄ −

1
2N

vac
z̄z̄

)
C−

]
+ 3

2Dz̄N
z̄z̄
(
D2
z̄ −

1
2N

vac
z̄z̄

)
C−

]
(4.20)

and the complex conjugate relations for J̄soft and J̄hard. Notice that the fluxes of super
angular momenta (4.20) are finite thanks to the stronger u-falloffs that were taken (2.20)
and vanish in stationary configurations where N̂AB = 0 [19, 26]. One can show that the
soft and the hard parts transform separately as in (4.18), namely

δ(T ,Y,Ȳ)Jsoft =Y∂Jsoft+Ȳ ∂̄Jsoft+2∂̄ȲJsoft+∂YJsoft+
1
2T ∂̄Psoft+

3
2 ∂̄T Psoft,

δ(T ,Y,Ȳ)Jhard =Y∂Jhard+Ȳ ∂̄Jhard+2∂̄ȲJhard+∂YJhard+ 1
2T ∂̄Phard+ 3

2 ∂̄T Phard,
(4.21)

which implies that Jsoft and Jhard (J̄soft and J̄hard) can be seen separately as conformal
fields of weights (1, 2) (respectively (2, 1)). The transformations (4.21) justify the specific
choice of split prescribed between soft and hard parts in (4.20). In particular, the terms
involving the supertranslation field C− at I +

− ensure that the expressions transform as
they should under supertranslations.6 In terms of the derivative operators (3.5), the soft
part can be rewritten as

Jsoft = −D̄3N (1) − D̄3C N (0) − 3D̄2C D̄N (0),

N (1) = 1
16πG

∫ +∞

−∞
du (ΩSΩ̄S)uN̂zz, C =

(
ΩSΩ̄S

) 1
2 C−,

(4.22)

where the subleading soft mode of the news tensor N (1)(z, z̄) is a (1,−1) conformal field
and C (z, z̄) is a (−1

2 ,−
1
2) conformal field.

6One could have replaced C− by C+ in the expressions (4.20) without affecting the result (4.21).
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As already mentioned, the prescription for the BMS momenta (4.8) and (4.17) that we
are using here have all the desired properties, including finiteness in u, vanishing for non-
radiative solutions, vanishing for vacuum configurations and closure under the standard
bracket when considering the integrated fluxes over I + (see section 5). Concerning the
splits between soft and hard parts in (4.11) and (4.20), they differ from those originally
proposed in [6, 9, 12] (see also [11]) by terms involving the memory fields ϕ(z), ϕ̄(z̄) and
C− that label the vacuum degeneracy [27–29]. When setting ϕ = 0 = ϕ̄ (Nvac

AB = 0) and
C− = 0, we consistently recover the standard expressions. The additional terms that we
have allow us to obtain better transformation laws (4.12) and (4.21) under the action of
BMS symmetries. As we will see in section 6, this will be of major importance to identify
the CCFT operators in the solution space of gravity that obey the desired constraints and
transformation properties.

5 BMS flux algebra

When using covariant phase space methods [60–63], BMS surface charges are non-integrable
due to the presence of radiation [19, 20]. Defining meaningful finite charges requires to
impose additional criteria to isolate a specific integrable part (see e.g. [22, 23, 25, 26, 64–
66] for recent proposals of such criteria and [67, 68] for the implication of the various
expressions on observational data). Here, we follow the prescription of [25, 58, 59] (see also
footnote 5) to select the integrable part and define the “finite” charges. The fluxes are then
obtained by expressing the finite surface charge integrals as volume integrals over I +. In
terms of the generators and flux of momenta that were introduced in section 4, the BMS
fluxes read as7

F(T ,Y,Ȳ) =
∫
S

dzdz̄

(2iπ)2

[
T P+YJ̄ +ȲJ

]
= 1

8πG

∫
I +

du
dzdz̄

(2iπ)2 ∂u
[
2TM+YN̄+ȲN

]
.

(5.1)
As mentioned above, the conformal weights of the BMS parameters (T ,Y, Ȳ) are com-
pletely determined by those of the measure dzdz̄ and the momentum fluxes (P, [J ], [J̄ ])
by requiring that the total flux F(T ,Y,Ȳ) has vanishing conformal weights; see table 1.

The expression (5.1) can be seen as a pairing 〈·, ·〉 between the BMS generators of the
algebra and the momentum fluxes:

bms∗4×bms4 7→R :
((
P, [J ] ,

[
J̄
])
,
(
T ,Y, Ȳ

))
→F(T ,Y,Ȳ) = 〈

(
P, [J ] ,

[
J̄
])
,
(
T ,Y, Ȳ

)
〉,
(5.2)

where bms∗4 denotes the dual of bms4. Indeed, it is linear in both entries and non-degeneracy
comes from the fact that we have considered equivalence classes [J ] and [J̄ ] of super angular
momentum fluxes (4.15). Using this pairing, the transformations laws (4.9) and (4.18) can
be interpreted as the coadjoint representation of bms4 [18]. In particular, it has been
shown in that reference that there exists a (pre-)momentum map between the solution
space of non-radiative asymptotically flat spacetimes and the dual of the global BMS

7Notice that to obtain the standard normalization for the BMS fluxes, one should multiply the expres-
sion (5.1) by a global factor −4iπ2 (see also footnote 2).
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algebra so(3, 1) + s. Here, we have extended these results for radiative spacetimes and for
extended BMS algebra (Witt ⊕Witt) + s∗ by considering the fluxes on I +, which are
u-integrated expressions in terms of the solution space, rather than surface charges. These
results rely crucially on the falloff conditions (2.20) at the corners of I + and the fact that
the BMS fluxes are determined by the values of the surface charges at the corners.

Now, using the basis dual to the one used for the expansion of the generators in (4.1)
and (4.3) [18], it is instructive to expand the BMS momentum fluxes as in (3.7):

P(z, z̄) =
∑
k,l

pk,lT
k,l
∗ , T k,l

∗ = 3
2 ,

3
2
Z−l,−k = z−

3
2 +lz̄−

3
2 +k,

J (z, z̄) =
∑
m

jmYm∗ , Ym∗ = 1,2Z0,−m = z−1z̄−2+m,

J̄ (z, z̄) =
∑
m

j̄mȲm∗ , Ȳm∗ = 2,1Z−m,0 = z−2+mz̄−1.

(5.3)

with p̄k,l = pl,k so that P is real. In terms of the above expansions, the infinitesimal
variations (4.9) and (4.18) are encoded in the coadjoint representation of bms4, written
ad∗, as follows [18]:

ad∗YmY
n
∗ = (−2m+ n)Yn−m∗ , ad∗ȲmȲ

n
∗ = (−2m+ n) Ȳn−m∗ ,

ad∗YmT k,l
∗ =

(
−3

2m+ k

)
T k−m,l
∗ , ad∗ȲmT k,l

∗ =
(
−3

2m+ l

)
T k,l−m
∗ ,

ad∗Tk,lT
r,s
∗ =

(
r − 3k

2

)
δsl Yr−k∗ +

(
s− 3l

2

)
δrkȲs−l∗ ,

ad∗YmȲ
n
∗ = 0 = ad∗ȲmȲ

n
∗ , ad∗Tk,lY

m
∗ = 0 = ad∗Tk,lȲ

m
∗ .

(5.4)
Similarly, the soft/hard BMS fluxes

F
soft/hard

(T ,Y,Ȳ) =
∫
S

dzdz̄

(2iπ)2

[
T Psoft/hard + YJ̄soft/hard + ȲJsoft/hard

]
(5.5)

play the role of pairing for the soft/hard sectors. As discussed in section 4, since the soft
and hard parts of the momentum fluxes transform separately as (4.9) and (4.18) (see (4.12)
and (4.21)), they also transform in the coadjoint representation of bms4 for the appropriate
pairing (5.5).

We define the bracket between the BMS fluxes as{
F(T1,Y1,Ȳ1), F(T2,Y2,Ȳ2)

}
= δ(T1,Y1,Ȳ1)F(T2,Y2,Ȳ2). (5.6)

As shown in [25], the BMS fluxes (5.1) satisfy the algebra{
F(T1,Y1,Ȳ1), F(T2,Y2,Ȳ2)

}
= −F[(T1,Y1,Ȳ1),(T2,Y2,Ȳ2)], (5.7)

which implies that the bracket (5.6) corresponds to the Kirillov-Kostant Poisson bracket
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on bms∗4. In terms of the momentum fluxes, the bracket (5.6) can be written explicitly as{
J̄ (z, z̄) , J̄ (w, w̄)

}
= δ2 (z − w) ∂wJ̄ (w, w̄) + 2∂wδ2 (z − w) J̄ (w, w̄) ,{

J̄ (z, z̄) ,J (w, w̄)
}

= δ2 (z − w) ∂wJ̄ (w, w̄) + ∂wδ
2 (z − w) J̄ (w, w̄) ,{

P (z, z̄) , J̄ (w, w̄)
}

= 1
2δ

2 (z − w) ∂wP (w, w̄) + 3
2∂wδ

2 (z − w)P (w, w̄) ,{
J̄ (z, z̄) ,P (w, w̄)

}
= δ2 (z − w) ∂wP (w, w̄) + 3

2∂wδ
2 (z − w)P (w, w̄) ,

{P (z, z̄) ,P (w, w̄)} = 0,

(5.8)

together with the complex conjugate relations. In particular, these relations reproduce the
desired variations (4.9) and (4.18). Similarly, the flux algebra (5.7) can be written in terms
of the momentum fluxes as{

J̄ (z, z̄) , J̄ (w, w̄)
}

= −
[
J̄ (z, z̄) + J̄ (w, w̄)

]
∂zδ

2 (z − w) ,{
J̄ (z, z̄) ,J (w, w̄)

}
= −

[
∂zδ

2 (z − w)J (z, z̄)− ∂z̄δ2 (z − w) J̄ (w, w̄)
]
,{

P (z, z̄) , J̄ (w, w̄)
}

= −
[1

2P (z, z̄) + P (w, w̄)
]
∂zδ

2 (z − w) ,

{P (z, z̄) ,P (w, w̄)} = 0,

(5.9)

together with the complex conjugate relations.
The bracket that has been considered up to this point is associated with the total

BMS flux (5.1). However, as discussed around equation (5.5) above, one could study the
soft/hard sectors separately and consider the appropriate induced bracket on each of them.
More explicitly, assuming that the soft and hard sectors factorize [50], we have{

F soft(T1,Y1,Ȳ1),F
hard
(T2,Y2,Ȳ2)

}
= 0,

{
F
soft/hard

(T1,Y1,Ȳ1),F
soft/hard

(T2,Y2,Ȳ2)

}
=−F soft/hard[(T1,Y1,Ȳ1),(T2,Y2,Ȳ2)],

(5.10)
where the second relation is straightforwardly obtained by using the first of (5.10), the
definition of the bracket (5.6) and the results (4.12) and (4.21). Henceforth, (5.8) and (5.9)
can be specified to soft/hard sectors separately. In the following, since we want to relate
the BMS flux algebra with the CCFT currents, we will focus on the soft sector.

6 Momentum fluxes and CCFT operators

One of the starting points of celestial holography was the remarkable observation that
Weinberg’s leading soft graviton theorem could be reformulated as the Ward identity aris-
ing from the insertion of a (3

2 ,
1
2) Kac-Moody current P (z, z̄), called the supertranslation

operator [6, 12]. Similarly, it was later shown that the subleading soft graviton theorem [69]
could be rewritten as an insertion of a (2, 0) operator T (z), identified as the stress-tensor
of the celestial CFT, reproducing the Ward identity of a 2d CFT [13]. Although the super-
translation operator P (z, z̄) and the stress-tensor T (z) play a fundamental role in celestial
holography, their precise relation to the bulk solution space in presence of superrotations
(with the inclusion of Nvac

AB for consistency of the phase space) and their transformation
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properties under the extended BMS symmetries have not yet been explicitly worked out.
In this section, we explore these aspects and relate the BMS momentum fluxes introduced
above with these CCFT operators.

The supertranslation operator P (z, z̄) and its complex conjugate P̄ (z, z̄) of weights
(3

2 ,
1
2) and (1

2 ,
3
2), respectively, can be related to the soft supermomentum flux Psoft(z, z̄) as

Psoft(z, z̄) = D̄P (z, z̄) + DP̄ (z, z̄), (6.1)

where the derivative operators D and D̄ are defined in (3.5). From (4.11) and (6.1), one
deduces the explicit expression of P (z, z̄) and P̄ (z, z̄) in terms of the bulk metric:

P (z, z̄) = D̄N (0)

= 1
16πG

∫ +∞

−∞
du (ΩSΩ̄S)

1
2
[(
Dz̄ + 1

2 ∂̄Φ
)
N̂zz

]
= 1

16πG(ΩSΩ̄S)
1
2
(
Dz̄ + 1

2 ∂̄Φ
)
[∆CNvac

zz − 2D2
z∆C],

(6.2)

together with the complex conjugate expression for P̄ (z, z̄). To obtain the last equality, we
used the falloffs (2.20). Comparing with (4.14), one can rewrite (6.1) as

Psoft(z, z̄) = 2D̄P (z, z̄) = 2DP̄ (z, z̄), (6.3)

which is a direct consequence of the electricity condition (2.22). Notice that the expression
of the supertranslation operator (6.2) that we are using is compatible with the one initially
proposed in [6, 12] when setting Nvac

AB = 0. The additional terms that we have allow us
to have nicer transformation laws under the action of BMS symmetries. In particular, the
supertranslation operator is an actual Virasoro primary rather then a descendent thanks
to the use of the derivative operators (3.5). Indeed, an explicit computation gives

{F soft(T ,Y,Ȳ), P} = δ(T ,Y,Ȳ)P = Y∂P + Ȳ ∂̄P + 3
2∂YP + 1

2 ∂̄ȲP (6.4)

or, equivalently,

{Psoft(z, z̄), P (w, w̄)} = 0,

{J̄soft(z, z̄), P (w, w̄)} = δ2(z − w)∂wP (w, w̄) + 3
2∂wδ

2(z − w)P (w, w̄),

{Jsoft(z, z̄), P (w, w̄)} = δ2(z − w)∂w̄P (w, w̄) + 1
2∂w̄δ

2(z − w)P (w, w̄).

(6.5)

We have the analogous results for P̄ .
The stress-tensor of the CCFT is encoded in the complex conformal fields T (z) and

T̄ (z̄) of weights (2, 0) and (0, 2), respectively. We observe that it can be constructed from
the super angular momentum flux introduced in section 4 as

T (z) =
∮
C

dz̄

2iπ J̄soft(z, z̄), T̄ (z̄) =
∮
C

dz

2iπ Jsoft(z, z̄). (6.6)
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Since total derivatives can be dropped out, the definition (6.6) does not depend on the
particular representatives of Jsoft(z, z̄) and J̄soft(z, z̄) in the equivalent classes (4.15).
The stress-tensor is related to the soft part of the flux for superrotations in (5.5) through

F softY =
∫
S

dzdz̄

(2iπ)2 Y (z) J̄soft (z, z̄) =
∮
C

dz

2iπ Y(z)T (z) (6.7)

and the complex conjugate relation for F softȲ . One can recognize the last expression in (6.7)
as the soft part of the superrotation charge [9, 13]. From (4.20) and (6.6), one deduces the
explicit expression of T in terms of the bulk metric:

T (z) =− 1
16πG

∮
C

dz̄

2iπ

∫ +∞

−∞
du
(
ΩSΩ̄S

)−1
[
u
(
D3
z−2Nvac

zz Dz−DzN
vac
zz

)
N̂ zz

+N zzDz

[(
D2
z−

1
2N

vac
zz

)
C−

]
+3DzN

zz
(
D2
z−

1
2N

vac
zz

)
C−

]
.

(6.8)

We have the complex conjugate expression for the anti-holomorphic T̄ (z̄). The relation (6.8)
agrees with the one first proposed in [13] when setting Nvac

AB = 0 = C−. The decoration
with the terms involving the memory fields is turned on once we are considering a vacuum
that is not global Minkowski space [27–29] and allows us to have nicer transformation laws.
An explicit computation shows that{

F soft(T ,Y,Ȳ), T
}

= δ(T ,Y,Ȳ)T = Y∂T + 2∂YT +
∮
C

dz̄

2iπ

[1
2T ∂Psoft + 3

2∂T Psoft
]

(6.9)

or, equivalently,

{Psoft (z, z̄) , T (w)} = 1
2δ (z − w) ∂wPsoft (w, z̄) + 3

2∂wδ (z − w)Psoft (w, z̄) ,{
J̄soft (z, z̄) , T (w)

}
= δ2 (z − w) ∂wT (w) + 2∂wδ2 (z − w)T (w) ,

{Jsoft(z, z̄), T (w)} = 0.

(6.10)

We again have the analogous results for T̄ .
Finally, using once more the definitions (6.1) and (6.6), the commutation relations (6.5)

and (6.10) lead to

{P (z, z̄) , P (w, w̄)} = 0,{
P (z, z̄) , P̄ (w, w̄)

}
= 0,

{T (z) , P (w, w̄)} = δ (z − w) ∂wP (w, w̄) + 3
2∂wδ (z − w)P (w, w̄) ,{

T̄ (z̄) , P (w, w̄)
}

= δ (z̄ − w̄) ∂w̄P (w, w̄) + 1
2∂w̄δ (z̄ − w̄)P (w, w̄) ,

{T (z) , T (w)} = δ (z − w) ∂wT (w) + 2∂wδ (z − w)T (w) ,{
T̄ (z̄) , T (w)

}
= 0.

(6.11)
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φh,h̄ T Y P J N (0) N (1) C P T D dz

h −1
2 −1 3

2 1 3
2 1 −1

2
3
2 2 1 −1

h̄ −1
2 0 3

2 2 −1
2 −1 −1

2
1
2 0 0 0

J 0 −1 0 −1 2 2 0 1 2 1 −1
∆ −1 −1 3 3 1 0 −1 2 2 1 −1

Table 1. Conformal weights (h, h̄) and spin/boost weights (J,∆).

The other relations can be obtained by complex conjugation and antisymmetry of the
bracket.

The conformal weights (h, h̄) and spin/boost weights (J,∆) of the relevant objects dis-
cussed in this paper are summarized in table 1 (see also [18]). Under complex conjugation,
we have (h, h̄) = (h̄, h), (J,∆) = (−J,∆).

7 Constraints on CCFT

Up to this stage, all the results have been obtained from gravitational bulk computations.
Some non-local combinations of the solution space have been identified as conformal fields
on the celestial Riemann surface whose transformation laws are induced by bulk diffeo-
morphisms. In this construction, a phase space structure has emerged naturally from the
BMS flux algebra. We now study the implications of these results at the quantum level
and derive the OPEs between the various conformal operators.

Using standard arguments [56], one can deduce the singular parts of the OPEs between
the operators associated with BMS momentum fluxes by starting from their commutation
relations (5.8). We have explicitly

J̄ (z, z̄) J̄ (w, w̄) ∼ 2
(z − w)2 (z̄ − w̄)

J̄ (w, w̄) + 1
(z − w) (z̄ − w̄)∂wJ̄ (w, w̄) ,

J̄ (z, z̄)J (w, w̄) ∼ 1
(z − w)2 (z̄ − w̄)

J̄ (w, w̄) + 1
(z − w) (z̄ − w̄)∂wJ̄ (w, w̄) ,

P (z, z̄) J̄ (w, w̄) ∼ 3/2
(z − w)2 (z̄ − w̄)

P (w, w̄) + 1/2
(z − w) (z̄ − w̄)∂wP (w, w̄) ,

J̄ (z, z̄)P (w, w̄) ∼ 3/2
(z − w)2 (z̄ − w̄)

P (w, w̄) + 1
(z − w) (z̄ − w̄)∂wP (w, w̄) ,

P (z, z̄)P (w, w̄) ∼ 0,

(7.1)

together with the complex conjugate relations. The notation “∼” means equality modulo
expressions that are regular as (z, z̄)→ (w, w̄). The third OPE in (7.1) can be deduced from
the fourth one using P(z, z̄)J̄ (w, w̄) = J̄ (w, w̄)P(z, z̄). We will avoid writing redundant
OPEs in the following.

As a consequence of the factorization between hard and soft sectors in the phase space
discussed at the end of section 5, the above OPEs can be written for hard and soft BMS
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momentum fluxes separately. From now on, since we want to find constraints on the CCFT
from celestial currents, we will restrict ourselves to the soft sector. The OPEs between
soft BMS momentum fluxes and the CCFT operators can be readily deduced from (6.5)
and (6.10), leading to:

Psoft (z, z̄)P (w, w̄) ∼ 0,

J̄soft (z, z̄)P (w, w̄) ∼ 3/2
(z − w)2 (z̄ − w̄)

P (w, w̄) + 1
(z − w) (z̄ − w̄)∂wP (w, w̄) ,

Jsoft (z, z̄)P (w, w̄) ∼ 1/2
(z − w) (z̄ − w̄)2P (w, w̄) + 1

(z − w) (z̄ − w̄)∂w̄P (w, w̄) ,

Psoft (z, z̄)T (w) ∼ 3/2
(z − w)2Psoft (w, z̄) + 1/2

(z − w)∂wPsoft (w, z̄) ,

J̄soft (z, z̄)T (w) ∼ 2
(z − w)2 (z̄ − w̄)

T (w) + 1
(z − w) (z̄ − w̄)∂wT (w) ,

Jsoft (z, z̄)T (w) ∼ 0.

(7.2)

Finally, using the commutation relations (6.11), one obtains the OPEs between CCFT
operators:

P (z, z̄)P (w, w̄) ∼ 0,

P (z, z̄) P̄ (w, w̄) ∼ 0,

T (z)P (w, w̄) ∼ 3/2
(z − w)2P (w, w̄) + 1

(z − w)∂wP (w, w̄) ,

T̄ (z̄)P (w, w̄) ∼ 1/2
(z̄ − w̄)2P (w, w̄) + 1

(z̄ − w̄)∂w̄P (w, w̄) ,

T (z)T (w) ∼ 2
(z − w)2T (w) + 1

(z − w)∂wT (w) ,

T̄ (z̄)T (w) ∼ 0.

(7.3)

These results are compatible with those given in [57]. They also match with the OPEs
found in [10] that were derived from collinear and conformally soft limits of amplitudes, up
to the fact that the supertranslation operator that we are considering here is a Virasoro
primary rather than a descendant.

Let us now elaborate more on the constraints involving the celestial CFT operators and
momentum flux operators with generic conformal operators. To simplify the discussion,
we set the memory fields to zero, i.e. ϕ = 0 = ϕ̄ (Nvac

AB = 0) and C− = 0. In celestial
holography, a massless particle of energy ω involved in a scattering process in 4d flat space
is associated to an operator O(ω, z, z̄) (which can depend on other quantum numbers, which
are omitted in this notation), where (z, z̄) labels the point on the celestial sphere where the
particle exits (or enters) spacetime [11, 70]. Instead of working in the usual momentum
basis, a promising celestial dictionary involves the Mellin representation [14–16]

Oh,h̄ (z, z̄) =
∫ ∞

0
dω ω∆−1O (ω, z, z̄) , (7.4)
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which trades the energy ω for the conformal dimension ∆ = h+~. Celestial operators (7.4)
indeed enjoy the property of transforming as 2d quasi-primaries. The so-called conformally
soft limits [71], for which the conformal dimension takes specific values, lead to 2d currents
on the CCFT; see e.g. [71–80].

It was shown that the OPEs involving the components of the CCFT stress-tensor8 T (z),
T̄ (z̄) and celestial operators Oh,h̄ representing gauge bosons and gravitons are given by

T (z)Oh,h̄ (w, w̄) ∼ h

(z − w)2Oh,h̄ (w, w̄) + 1
(z − w)∂wOh,h̄ (w, w̄) ,

T̄ (z)Oh,h̄ (w, w̄) ∼ h̄

(z̄ − w̄)2Oh,h̄ (w, w̄) + 1
(z̄ − w̄)∂w̄Oh,h̄ (w, w̄) ,

(7.5)

which implies that these operators are Virasoro primaries. These expressions were derived
from collinear and conformally soft limits of Einstein-Yang-Mills amplitudes in [10, 81].
We deduce from (7.5) that OPEs involving the super angular momentum flux are of the
following form:

J̄ (z, z̄)Oh,h̄(w,w̄)∼ h

(z−w)2(z̄−w̄)Oh,h̄(w,w̄)+ 1
(z−w)(z̄−w̄)∂wOh,h̄(w,w̄),

J (z, z̄)Oh,h̄(w,w̄)∼ h̄

(z−w)(z̄−w̄)2Oh,h̄(w,w̄)+ 1
(z−w)(z̄−w̄)∂w̄Oh,h̄(w,w̄).

(7.6)

While superrotations lead to the expected expressions (7.5) in a CFT, it is a notorious
fact in celestial holography that supertranslation symmetry is more subtle to deal with. It
particular, it has been shown that the insertion of the supertranslation operator P (z, z̄)
into a celestial correlation function gives [10, 71]:

P (z, z̄)Oh,h̄(w, w̄) ∼ 1
(z − w)Oh+ 1

2 ,h̄+ 1
2
(w, w̄). (7.7)

This OPE relationship is nothing but the celestial consequence of Weinberg’s leading soft
graviton theorem, as it can be readily obtained from a Mellin transform of the Ward
identity associated to supertranslation symmetry [6, 12]. As one can see from (7.7), the
action of supertranslations (even global ones) leads to a shift of (1

2 ,
1
2) in the conformal

weights of celestial operators. Now one can deduce9 the generic form of the OPE between
the supermomentum flux operator P(z, z̄) and a celestial operator Oh,h̄(w, w̄):

P(z, z̄)Oh,h̄(w, w̄) ∼ 1
(z − w)(z̄ − w̄)Oh+ 1

2 ,h̄+ 1
2
(w, w̄). (7.8)

This formula agrees with the expression found in [10], which was obtained by taking suc-
cessive commutators involving the zero-mode of P and the stress-tensor.

8This operator is actually obtained from the shadow of the conformally soft operator with ∆ = 0 [17, 71].
9To do so, we act on (7.7) with the formal anti-derivative 2π∂−1

z̄ =
∫
d2y 1

z−y and make use of formulae
for 2d conformal integrals as in [82].
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8 Discussion

We now conclude by discussing some possible extensions and consequences of the results
presented in this work.

Surface charges versus fluxes. We have argued that the fluxes are more natural objects
from the point of view of the CCFT than the surface charges at fixed value of the retarded
time u. In particular, the fluxes are completely determined by the values of the surface
charges at the corners I +

± of null infinity, which are non-radiative regions of the spacetime.
The statement of the closure of the flux algebra (5.7) can then be recast as the closure of
the surface charge algebra at I +

± , without the need of modified bracket or the appearance
of 2-cocycle. This echoes with recent works suggesting that symmetries are encoded at
the corners of hypersurfaces [66, 83–88]. The price to pay for considering fluxes at I +

instead of surface charges is that we lose information on the local flux-balance laws such
as the Bondi mass loss formula. Henceforth, both point of views are complementary: the
integrated fluxes describe the state of a system, while the surface charges point of view
provides information on its dynamics.

Central charge in the CCFT. In the AdS3/CFT2 correspondence, the central charge
of the boundary CFT2 can be read from the Brown-Henneaux central extension [89]. The
latter appears classically by computing the charge algebra of large diffeomorphisms in
asymptotically AdS3 spacetimes. One might expect that a similar feature would hold in the
present context, namely that the possible CCFT2 central extension appears in the classical
bulk computation of the charge algebra. However, as stated in (5.7), the BMS flux algebra
closes under the standard Peierls bracket and does not exhibit a central term. This indicates
that at least the garden-variety type of central charge of the CCFT2 vanishes, which is in
agreement with the results found in [10] from computing the TT OPE (see also (7.3)). Let
us notice that there is still an imprint of central extension in the transformation of the
Liouville stress-tensor that exhibits a Schwarzian derivative (see equation (2.18)).

From extended to generalized BMS. In this paper, we have considered gravity in
asymptotically flat spacetimes with a fixed boundary structure. Allowing for some singu-
lar punctures on the celestial Riemann surface enables to include the whole Witt ⊕Witt
superrotations in the asymptotic symmetry algebra, leading to the extended BMS alge-
bra [5, 7, 8]. If fluctuations of the transverse boundary metric qABdxAdxB are permitted
on the phase space (but keeping a fixed determinant √q =

√
q̊), one gets instead the

generalized BMS algebra Diff(S2)+s where the superrotations Diff(S2) are smooth diffeo-
morphisms on the celestial sphere [26, 30–32]. Note that these smooth superrotations can
be extended to all diffeomorphisms with isolated singularities, written Diff(S2)∗, if the
celestial sphere admits some punctures. The latter singular extension is relevant when
considering Ward identities of the S-matrix and the relation with subleading soft graviton
theorems [9, 30, 31, 75]. In particular, we have Witt ⊕Witt ⊂ Diff(S2)∗, which implies
that a notion of conformal field can still be defined: a conformal field φh,h̄(z, z̄) transforms
as in (3.3) under the subgroup of conformal coordinate transformations accompanied by
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a compensating Weyl rescaling to maintain a fixed determinant. The fluxes of charges
associated with generalized BMS take the form

F gen(T ,Y,Ȳ) =
∫
S

dzdz̄

(2iπ)2

[
T P + YJ̄ + ȲJ

]
, (8.1)

where the superrotation generators Y = Y(z, z̄) are now (possibly singular) functions of
(z, z̄) on the celestial Riemann surface. Consequently, since there is no constrain on Y, one
does not need to quotient the super angular momentum fluxes J (z, z̄) and J̄ (z, z̄) by the
equivalence relation (4.15). In this generalized BMS case, the precise expressions of P, J
and J̄ in terms of the solution space and their split into hard/soft sectors can be deduced
from the analysis displayed in e.g. [24–26]. They should be such that (4.9), (4.12), (4.18)
and (4.21) still hold, so that the results of section 5 concerning the BMS flux algebra
remain valid.

As argued in [75], a natural object in this context is the shadow transform10 of the
stress-tensor, which leads to an operator T̃ of weights (−1, 1):

T̃ (w, w̄) = 3
2π

∫
d2z

(w − z)2

(w̄ − z̄)2T (z). (8.2)

It has the following OPE:11

T̃ (w, w̄)Oh,h̄(z, z̄) ∼ −2h(w − z)
(w̄ − z̄) Oh,h̄(z, z̄) + (w − z)2

(w̄ − z̄) ∂zOh,h̄(z, z̄). (8.3)

Using the observations relating the shadow stress-tensor with the soft part of the super-
rotation charge that were made in [17, 75], (8.2) can be identified (up to a factor) with
F gen,soft
Y= (z−w)2

(z̄−w̄)

. It would be interesting to explore the shadow supermomenta and super angular

momenta, which are operators of weights (−1
2 ,−

1
2) and (0,−1). More generally, it would

be enlightening to have a full control of shadow transformations from the bulk gravitational
phase space point of view.

From generalized to Weyl BMS. A new enhancement of the generalized BMS sym-
metries has been found recently by allowing the determinant √q of the boundary metric
to fluctuate on the phase space [22]. This asymptotic symmetry algebra contains the Weyl
rescaling symmetries discussed in [5, 33, 34] and has the following semi-direct structure:[

Diff(S2) + Weyl
]

+ s. (8.4)

It was shown that the charges and fluxes associated with Weyl rescaling symmetries were
non-vanishing, which suggests the presence of an additional term in the flux (8.1). It
would be interesting to repeat the analysis of the present paper for this case and use the
framework developed in [18, 87] to treat conformal coordinate transformations and Weyl
rescalings separately.

10The shadow transform is defined as Õ1−h,1−h̄(w, w̄) =
∫
d2z (w − z)2h−2(w̄ − z̄)2h̄−2Oh,h̄(z, z̄) [82], up

to a normalization factor which can be chosen in such a way the shadow operation squares to one.
11It can be obtained from shadowing the T (z) OPE, or read from expressions involving the ∆ → 0

conformally soft operator in refs. [10, 17, 90].
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