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Abstract
In the study of human behaviour, non-social targets are often used as a control for human-to-human interactions. However, 
the concept of anthropomorphisation suggests that human-like qualities can be attributed to non-human objects. This can 
prove problematic in psychological experiments, as computers are often used as non-social targets. Here, we assessed the 
degree of computer anthropomorphisation in a sequential and iterated prisoner’s dilemma. Participants (N = 41) faced three 
opponents in the prisoner’s dilemma paradigm—a human, a computer, and a roulette—all represented by images presented 
at the commencement of each round. Cooperation choice frequencies and transition probabilities were estimated within 
subjects, in rounds against each opponent. We found that participants anthropomorphised the computer opponent to a high 
degree, while the same was not found for the roulette (i.e. no cooperation choice difference vs human opponents; p = .99). The 
difference in participants’ behaviour towards the computer vs the roulette was further potentiated by the precedent roulette 
round, in terms of both cooperation choice (61%, p = .007) and cooperation probability after reciprocated defection (79%, 
p = .007). This suggests that there could be a considerable anthropomorphisation bias towards computer opponents in social 
games, even for those without a human-like appearance. Conversely, a roulette may be a preferable non-social control when 
the opponent’s abilities are not explicit or familiar.

Keywords  Prisoner’s dilemma · Social dilemma · Anthropomorphisation · Roulette · Computer · Cooperation · 
Competition · Social behaviour

Introduction

Anthropomorphisation is the tendency to attribute human-
like characteristics to non-human agents in order to ration-
alise their behaviour (Epley et al., 2007). While ‘human-
likeness’ has been coined as a purely physical attribute 
(measured from ‘very mechanical’ to ‘very human-like’, 
using the scale adopted by MacDorman, 2006), the concept 
of anthropomorphisation is more extensive than the mere 
perception of an agent as human-like, since it entails the 
combination of mind attributions (in terms of agency and 
experience) with perceived eeriness or familiarity. Due to 
the popularization of artificial intelligence in the twenty-
first century, our perception of the computer is likely to have 
become increasingly susceptible to anthropomorphisation. 
A computer can be perceived as an agent with human inten-
tions and reasoning, especially if programmed to act like a 
human, regardless of whether it indeed uses artificial intel-
ligence. It is now well established that the more human-like 
physical features a computer displays, the greater the the-
ory of mind process it elicits in the perceiver (Krach et al., 
2008). However, the degree to which the anthropomorphi-
sation of a computer is elicited without manipulation of its 
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physical features remains to be researched. At the same time, 
computer anthropomorphisation seems to be dependent on 
an individual’s a priori tendency to anthropomorphise other 
objects (de Kleijn et al., 2019). As a result, while comput-
ers may have had an appropriate role as non-social control 
conditions in psychological experiments some decades ago, 
the assumption that computers are not perceived to pos-
sess social features may not hold true in current times and 
should be questioned. This has important implications for 
the design of social psychology experiments, as well as for 
the design of novel human–computer interface devices.

A common psychological paradigm in which interacting 
with a computer has been used as a control condition for play-
ing with a human, with the goal of studying cognitive empa-
thy, mentalising, or theory of mind (virtually synonymous) 
processes (Mitchell et al., 2005), is the prisoner’s dilemma 
(PD) (Axelrod, 1984; Chong et al., 2007). The PD is part of 
a group of economic games representing theoretical mod-
els of economic behaviour (a.k.a. of game theory) (Richards 
& Swanger, 2006), which are used to provide insights into 
human socio-economic decision-making (Engemann et al., 
2012). The PD game (Declerck et al., 2013; Todorov et al., 
2011) involves two players who choose to either defect or 
cooperate, with the payoff being dependent upon their mutual 
choices (see payoff matrix in Fig 1, and Supplementary Mate-
rial for more details on the PD paradigm).

In general, people tend to adopt social rules to interact 
with humans and computers in contexts that require social 
decisions, like economic games. Computers, therefore, are 
able to elicit social responses, even if at a lesser extent com-
pared to living beings (Nass et al., 1994). However, how 

individuals choose to behave with a computer vs a human 
in the PD has not been extensively tested. It has been shown 
that when (male) participants played (as player 1) against a 
computer algorithm that mimicked human behaviour (recip-
rocating a defection move in 90% of the trials and coopera-
tion in 67% of the trials), they (1) were only slightly less 
likely (80% vs 89%) (Rilling et al., 2012) or equally likely 
(Rilling et al., 2014) to cooperate with a computer com-
pared to a human after a previous reciprocated cooperation, 
suggesting less loyalty to a computer player (Rilling et al., 
2012), but (2) were more likely to cooperate with a com-
puter than with a human, after a previous unreciprocated 
cooperation (Chen et al., 2016), suggesting less attribution 
of moral blame to the computer (Falk et al., 2008). Using 
the same data set as these studies, we also recently showed 
that playing against a computer (vs a human) increased the 
preference to unconditionally cooperate over the preference 
of pursuing a (more punishing) tit-for-tat strategy (whereby 
the subject mimics the opponent’s last move) (Neto et al., 
2020), which may additionally or alternatively suggest that 
there is a perception that the computer is less/not capable of 
learning by reward or punishment (Kiesler & Waters, 1995).

Even though differences in behavioural responses towards 
humans and computers have been found, their full extent may 
go undetected due to anthropomorphisation effects, whose 
impact should not be neglected, in social paradigms such as 
the PD. As such, it is important to investigate to what extent 
participants believe the computer will act like a human being 
(i.e. it is anthropomorphised); for example, in a decreasing 
degree of anthropomorphisation: from being guided by an arti-
ficial intelligence algorithm, to an explicitly pre-programmed 
algorithm, to a random response algorithm (i.e. like a roulette). 
A relatively high level of anthropomorphisation is more likely 
to trigger feelings and intentions typical of human social inter-
actions (Nass et al., 1994)—e.g. punishment, revenge, defence, 
or kindness and forgiveness—towards the computer.

We aimed to investigate, for the first time to our knowl-
edge, the degree of anthropomorphisation towards a com-
puter as opponent in an economic game, in terms of its 
automated perceived abilities, without varying the degree 
of any anthropomorphising physical features. We herein 
performed an analysis of the PD behaviour applied towards 
a human, a computer (as an agent putatively susceptible to 
anthropomorphisation), and a roulette (as an agent puta-
tively non-susceptible to anthropomorphisation). Although 
the computer and roulette opponents' different susceptibil-
ity to anthropomorphisation can be theoretically assumed, 
the current experiment is the first to address the assumption 
via behavioural testing. We analysed both the participants’ 
subjective perception of their anthropomorphisation bias and 
their cooperative behaviour towards the same opponents—as 
explicit and implicit indications of anthropomorphisation, 
respectively. This was done to provide a comprehensive 

Fig. 1   Prisoner’s dilemma payoff matrix. Each cell of the payoff 
matrix corresponds to a different outcome of a social interaction: 
both player 1 and player 2 choosing to cooperate (CC) pays €2 to both 
players; player 1 cooperating and player 2 defecting (CD) pays €0 to 
player 1 and €3 to player 2; player 1 defecting and player 2 cooperat-
ing (DC) pays €3 to player 1 and €0 to player 2; and both player 1 and 
player 2 defecting (DD) pays €1 to both players
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picture of the attitude towards a computer adversary in eco-
nomic games and social dilemmas. PD response behaviour 
(in terms of choice frequencies and transition probabilities) 
was contrasted, within subjects, between the three oppo-
nent conditions to assess the extent to which a computer 
player was anthropomorphised. On the other hand, the play 
order of opponents was contrasted between subjects. The 
play order factor was introduced to (1) evaluate if/how an 
anthropomorphisation attitude towards the computer or rou-
lette can be influenced by a previous game round with the 
roulette or computer, respectively (in particular, we posited 
that playing against a computer after a game round with a 
roulette might exacerbate the anthropomorphisation of the 
computer) and (2) to avoid confounding effects of opponent 
order when contrasting opponent conditions). Post-game 
anthropomorphisation-related subjective ratings of the oppo-
nents were also collected. We predicted that we would find 
(1) behaviour towards a human to be more similar to that 
towards a computer than to that towards a roulette; (2) that 
the similarity between the computer and human would be 
more accentuated for subjects that rated the computer with 
higher anthropomorphising characteristics; and (3) that this 
human–computer similarity was further accentuated when 
playing against a computer after playing against a roulette.

Methods

Participants

Forty-five male participants were recruited for the experi-
ment. From these, 41 male participants between 18 and 34 
years old (M = 22.96, SD = 4.52) were included in the analy-
sis (see Supplementary Material for the exclusion descrip-
tion). Recruitment was conducted using the lab’s public 
website shared through social media, university campus 
posters, and word of mouth. Upon giving written informed 
consent and completing the experiment, participants were 
compensated for their time with a gift voucher card accord-
ing to their gains during the games. The study was approved 
by a local ethics committee, in accordance with the Declara-
tion of Helsinki (revised 1983).

A sample size of 45 participants is in line with the result 
of an a priori power analysis (in G*Power software) for 
a paired t test, with two tails, alpha at .05, and power at 
.95, using a previous study’s (Rilling et al., 2014) reported 
effect size of d = .57 (Cohen, 1988) for an effect of oppo-
nent (human vs computer) on defection choices—which 
indicated an estimated sample size of 43. We further note 
that we employed a generalised estimating equation (GEE) 
model with a Poisson distribution, which is a more adequate 
approach for the analyses of count measures compared to 
models that consider a normally distributed response.

Experimental procedure

The experiment was conducted in a quiet room, lasting 
approximately 2 h. The experimental session started with 
demographic questions, followed by a training phase of 10 
min in which participants received PD game instructions 
and faced three simulated opponents with two trials each, 
totalling six trials. Participants were subsequently provided 
with the subjective rating questionnaires: Mind Attribution 
[from not at all (1) to extremely (7) (Gray et al., 2007); Rat-
ing for Human Likeness (from very mechanical (1) to very 
human-like (9)], Familiarity (from very strange (1) to very 
familiar (9)]; and Eeriness [from not eerie (0) to extremely 
eerie (10)] (MacDorman, 2006). More details are available 
as Supplementary Material.

Task paradigm and study design

The experimental paradigm was divided into three different 
rounds of 30 trials each. All subjects played the sequential 
and iterated version of the PD game (see Introduction and 
Supplementary Material for more details and Fig. 1 for the 
payoff matrix). For the within-subject variable ‘opponent’, 
each subject competed against three opponents: a (confed-
erate) human being, a roulette, and a computer. For the 
between-subject variable ‘play order’, opponents played 
one of two sequences: (1) human – computer – roulette 
(play-order HCR) or human – roulette – computer (play-
order HRC). Each trial proceeded as follows. Participants 
were presented with images of the opponents for 2 s before 
each round (Fig. 2). The human opponent was always pre-
sented first to act as a baseline to then compare the degree 
of anthropomorphisation of the non-human opponents. All 
participants were led to believe that the human opponent 
was a real person playing against them in another room, 
when in reality, all three opponents responded based on 
the same pre-coded algorithm. Non-human opponents 
were therefore balanced between participants (HCR or 
HRC) to curb any bias that might result from the order 
of opponent. Participants then versed the computer and 
the roulette players that were represented by the images 
shown in Fig. 2. Such vagueness was in order not to bias 
participants towards a particular profile of the opponents 
or a priori expectations regarding the opponents’ decisions. 
The algorithm randomly reciprocated defection moves 90% 
of the time and cooperation 67% of the trials with the first 
opponent choice always being cooperation (Rilling et al., 
2012). In addition, differently from the algorithm used 
in previous studies (Rilling et al., 2012), the opponent’s 
sequence of decisions was pre-established to guarantee a 
reciprocated cooperation for the first four trials minimum. 
The change was introduced to reduce the variability in ‘first 
impressions’ towards the opponents.
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Participants always played as player 1 (first mover), 
making their choice visible to player 2 (human, roulette, or 
computer) before player 2 made their own choice. Figure 2 
presents the timeline of the experiment and the opponents’ 
pictures. Additional details on the paradigm are provided as 
Supplementary Material.

Statistical analysis

All analyses were performed in R version 1.3.1093. A GEE 
was used to fit a generalised linear model (GLM), using 
the geeglm function from package geepack, version 1.3-1 
(Halekoh et al., 2006), to each of the dependent variables: 
choice frequencies (i.e. counts of cooperation [C] and defec-
tion [D] choices) and transition probabilities (i.e. counts of 
cooperation after each CC, CD, DC, and DD outcome), with 
an ‘unstructured’ correlation matrix. Given the nature of the 
dependent variables (i.e. counts), we considered the Pois-
son family of distributions to model the responses. Supple-
mentary Material provides the models, reasons for model 
choices, and their estimates. Post hoc analysis consisted in 
testing contrasts of the factor levels using the estimated mar-
ginal means (emmeans function) from the emmeans package. 
Contrasts were tested in the log scale with the p-values being 
adjusted for multiple comparisons using the Bonferroni 

correction. The final results were back-transformed to their 
original scale for a clear and more readable interpretation.

Using the afex package, subjective ratings of human-
likeness, familiarity, and eeriness were analysed through a 
mixed analysis of variance (ANOVA) with opponent as a 
within-subject factor and play order as a between-subject 
factor—with pairwise comparisons Bonferroni-corrected, 
and Greenhouse-Geisser corrected degrees of freedom for 
repeated-measures factors with more than two levels. The 
mind attribution questionnaire was similarly analysed, with 
mind dimension as the repeated measure factor having two 
levels: agency and experience. In addition, to understand 
the influence of each subjective rating on the count data, we 
fitted additional separate models with a three-way interac-
tion between the rating score, the play order and opponent 
factors for each decision count (i.e. cooperation and defec-
tion), as well as a two-way interaction between the rating 
score and opponent, again adopting the GEE method. With 
this analysis we were able to estimate whenever, for spe-
cific values of the subjective rating scores, the rate ratio 
between the decision count towards one opponent vs the 
other (in pairwise comparisons) was significantly different 
from 1 (i.e. whether their confidence interval contained the 
value 1). These results and the data quality-driven subjects’ 
exclusions are fully presented as Supplementary Material. 

Fig. 2   Trial timeline. Upper panel: Visual representation of the 
opponents: human, computer, and roulette from left to right. Lower 
panel: Each trial, beginning with a screen displayed for 2 s indicated 
the image of the opponent and the trial number. A screen of 5 s indi-
cated waiting time for participants/opponents to be connected online, 
immediately followed by a countdown screen going from 5 to 0, 
before starting the trial. Subsequently, the participant had to decide 
whether to cooperate or defect in a time window of 4 s (in case of 

no decision, defection would be the default answer). The participant’s 
choice was then highlighted and displayed for 1 s to be revealed to the 
opponent, which then had 4 s of time to make his choice immediately 
after a fixation cross which was displayed for 4 s. The outcome of the 
trial was then displayed for 4 s. The inter-stimulus interval consisted 
of a last fixation cross displayed for 4 s. Trials were approximately 20 
s long, one round lasted 12 min, and the three rounds had a total dura-
tion of 36 min
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Contrasts between factor levels in both GLMs and ANO-
VAs were obtained using the emmeans package. All reported 
p-values were adjusted for multiple comparisons using the 
Bonferroni correction and effects with a corrected p-value 
<.05 were considered statistically significant. Plots were 
generated using the ggplot2 package. The study data are 
available upon request to the corresponding authors. This 
study was not pre-registered.

Results

Behavioural anthropomorphisation measurements

Cooperation choice frequency  Cooperation choice towards 
the human opponent was 38% higher than towards the 
roulette (p = .001). Similarly, cooperation choice towards 
the computer was 41% higher than towards the roulette 
(p = .001). No significant cooperation choice differences 
were found between human and computer opponents (3%, 
p = .99). Cooperation choice was also similar between the 
two play orders (5%, p = .77). However, cooperation with 
human opponents was 35% higher than with the roulette 
(p = .03) in play-order HCR and 40% higher in play-order 

HRC (p = .02). In addition, only in play-order HRC, the 
cooperation choice towards the computer was 61% higher 
than towards the roulette (p = .007) (Table 1 and Fig. 3). 
Since results regarding defection choices are symmetrical to 
the above regarding cooperation as expected, they are added 
to the Supplementary Material, for completeness.

Transition probability of cooperation after a coopera‑
tion‑cooperation outcome  The analysis was run using data 
from 110 out of the 123 possible observations (i.e. num-
ber of rounds in which cooperation-cooperation outcomes 
occurred, among each opponent and each subject). The prob-
ability of cooperation after a CC outcome was similar among 
opponents (<5%, ps > .77), and between the two play orders 
(.004%, p = .97). No pairwise comparisons between oppo-
nents in each play order showed significance below p = .99, 
(<8%) (Supplementary Table S8).

Transition probability of cooperation after a coopera‑
tion‑defection outcome  The analysis was run using data 
from 67 out of the 123 possible observations (i.e. number of 
rounds in which cooperation-defection outcomes occurred, 
among each opponent and each subject). Probabilities of 
cooperation after a CD outcome were similar among oppo-
nents (<27%, ps > .17) and they did not significantly differ 

Table 1   Cooperation choice frequency estimated marginal means, and the effect of opponent on cooperation choice (pairwise comparisons) for 
each play order

Asterisks signal statistically significant effects (Bonferroni-corrected p < .05), accompanied by their direction. SE standard error; LCL/UCL 
lower/upper confidence levels

Cooperation choice frequency
Opponent Play order Rate SE LCL UCL
Human HCR 13.14 1.32 10.80 16.0

HRC 11.70 1.50 9.10 15.1
Computer HCR 12.10 1.49 9.50 15.4

HRC 13.45 1.93 10.16 17.8
Roulette HCR 9.71 1.34 7.40 12.7

HRC 8.35 1.87 5.38 12.9
Effect of opponent on cooperation choice frequency per play order
Opponent contrasts Ratio SE Z ratio p-value
HCR Human vs computer 1.09 0.11 0.79 .99

Human vs roulette 1.35 0.16 2.54 .03* (Hum > Rou)
Computer vs roulette 1.25 0.14 1.95 .15

HRC Human vs computer 0.87 .09 −1.33 .55
Human vs roulette 1.40 0.17 2.72 .02* (Hum > Rou)
Computer vs roulette 1.61 0.25 3.05 .01* (Com > Rou)

Main effect of opponent on cooperation choice frequency
Opponent contrasts Ratio SE Z ratio p-value
Human vs computer 0.97 0.07 −0.38 .99
Human vs roulette 1.38 0.12 3.72 .001* (Hum > Rou)
Computer vs roulette 1.42 0.14 3.62 .001* (Com > Rou)
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between the two play order sequences (22%, p = .17). No 
pairwise comparisons between opponents in each play order 
showed significance below p = .17 (<48%) (Supplementary 
Table S9).

Transition probability of cooperation after a defection‑cooper‑
ation outcome  The analysis was run using data from 61 out of 
the 123 possible observations (i.e. number of rounds in which 
defection-cooperation outcomes occurred, among each oppo-
nent and each subject). Probabilities of cooperation after a DC 
outcome were similar among the opponents (<7%, ps = .99) 
and between the two play order sequences (8%, p = .55). No 
pairwise comparisons between opponents in each play order 
showed significance below p = .10 (<34%) (Table S10).

Transition probability of a cooperation after a defec‑
tion‑defection outcome  The analysis was run using data 
from 89 out of the 123 possible observations (i.e. number 
of rounds in which defection- defection outcomes occurred, 
among each opponent and each subject). Probabilities of 
cooperation after a DD outcome were similar among oppo-
nents (<30%, ps <.28) and between the two play order 
sequences (8%, p = .60). However, (only) in play-order HRC 
the probability of cooperation after a DD outcome with 
computer opponents was 79% higher than with the roulette 
opponents (p = .007), while no difference was found between 
human and computer (29%, p = .22) or between human and 
roulette (28%, p = .64). No pairwise comparisons between 
opponents in play-order HCR showed significance below 
p = .60 (<40%) (Table 2).

Subjective anthropomorphisation ratings

Mind attribution questionnaire  We found a main effect of 
opponent on mind attribution ratings (F(1.46, 57) = 98.09, 
p < .001, η2p = 0.72), with the human receiving higher mind 
attribution than both the computer (p < .0001) and the rou-
lette (p < .0001), and the mind attribution towards the rou-
lette was significantly lower than that towards the computer 
(p < .003). A main effect of mind dimension on mind attribu-
tion was also found (F(1, 39) = 84.52, p < .001, η2p = 0.68), 
indicating that regardless of the opponent partner or the play 
order, agency was generally perceived as higher than expe-
rience (p = .026). An interaction between mind dimension 
and opponent on mind attribution was also found (F(1.90, 
73.97) = 27.72, p < .001, η2p = 0.42), showing that while 
agency attribution was equidistantly different between the 
three opponents (human > computer > roulette; each of the 
three pairwise comparisons—i.e. human vs computer, human 
vs roulette, and computer vs roulette—yielding p < .0001), 
experience attribution was four times higher in the human 
than both the computer opponent (p < .0001) and the rou-
lette opponent (p < .0001)—which were identical themselves 
(p = .999) (Table 3). None of the other main effects or interac-
tions were statistically significant (p > .14) (Fig. 4).

Human‑likeness  We found a main effect of opponent 
(F(1.43, 55.66) = 46.73, p < .001, η2p = .55) on human-like-
ness ratings, with the human opponent being perceived as 
more human-like than the computer (p < .0001) and more 
human-like than the roulette (p < .0001). On the contrary, the 

Fig. 3   Probability of cooperation. A Cooperation choice as a func-
tion of opponent and play order; B cooperation choice as a function 
of opponent. The blue bars indicate the confidence intervals for the 
EMMs, and the red arrows indicate the comparisons among them. 

If the arrow from one group’s mean overlaps with the arrow from 
another group’s mean, their difference is not statistically significant 
(Bonferroni-corrected p > .05). Asterisks signal statistically signifi-
cant effects. (**p < 0.001; * p < 0.05)
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computer and roulette were perceived as similarly human-
like (p = .999). All other main effects and interactions were 
not statistically significant (ps > .52) (Fig. 4).

Familiarity  We found a main effect of opponent on famili-
arity ratings (F(1.92, 74.77) = 5.18, p = .009, η2p = .12), 
with the human opponent being perceived as more famil-
iar than the roulette (p = .009) and the computer, even 
though the difference was only marginally significant 
(p = .06). On the contrary, the computer and roulette were 
perceived as similarly familiar (p = .999). All the other 
main effects or interactions were not statistically signifi-
cant (ps > .67) (Fig. 4).

Eerieness  Human, computer, and roulette opponents were 
perceived as equally not eerie, as indicated by the absence 
of a main effect or interaction (ps > .45) (Fig. 4).

Influence of subjective ratings on choice 
frequencies.

For specific values of the subjective rating scores, 
we estimated if the rate ratio between the decision 
count towards one opponent vs the other (in pairwise 
comparisons) was significantly different from 1 (i.e. 

whether their confidence interval contains the value 
1). Only participants that later attributed the highest 
human-likeness rating to the computer and the human 
(even though the human opponent was on average per-
ceived as more human-like than the computer), coop-
erated more with the computer than with the human 
(Mhuman-likeness rating range = 8–9; 95% CI rate-ratio [LCLrange: 
0.34–0.42; UCLrange: 0.96–0.98]). This only happened (at 
the highest human-likeness rating) when the computer 
opponent play was immediately preceded by the human 
opponent play (Fig. 5). When the computer was preceded 
by the roulette, participants who later attributed both high-
est or just medium-to-high human-likeness to the com-
puter and the human, cooperated more with the computer 
than with the human (Mhuman-likeness rating range = 4–9; 95% 
CI rate-ratio [LCLrange: 0.24–0.65; UCLrange: 0.89–0.93]) 
(Fig. 5). Similar computer and roulette human-likeness 
attribution ratings were also indicative of a higher coop-
eration towards the computer vs the roulette in both play 
orders.

In addition, the different decision choices towards 
computer and roulette became evident in the case of 
mind attributions but only when the computer opponent 
is preceded by the roulette one. In case of low experi-
ence attribution to computer and human opponents, the 

Table 2   Probability of cooperation after a defection-defection (DD) outcome estimated marginal means (EMMs), and effect of opponent on the 
probability of a cooperation after a DD outcome (pairwise comparisons), in each play order

Asterisks signal statistically significant effects (Bonferroni-corrected p < .05), accompanied by their direction. SE standard error; LCL/UCL 
lower/upper confidence levels

Transition probability of a cooperation after DD
Opponent Play order Rate SE LCL UCL
Human HCR 3.70 0.55 2.76 4.96

HRC 3.19 0.52 2.32 4.38
Computer HCR 2.63 0.64 1.64 4.22

HRC 4.46 0.65 3.36 5.92
Roulette HCR 2.78 0.57 1.87 4.15

HRC 2.49 0.43 1.78 3.48
Effect of opponent on transition probability of a cooperation after DD per play order sequence
Opponent contrasts Ratio SE Z ratio p-value
HCR Human vs computer 1.40 0.37 1.29 .60

Human vs roulette 1.33 0.33 1.15 .75
Computer vs roulette 0.95 0.29 −0.18 .99

HRC Human vs computer 0.71 0.14 −1.78 .22
Human vs roulette 1.28 0.26 1.24 .64
Computer vs roulette 1.79 0.34 3.04 .007*(Com > Rou)

Main effect of opponent on transition probability of cooperative choice after DD
Opponent contrasts Ratio SE Z ratio p-value
Human vs computer 1.0 0.16 0.01 .99
Human vs roulette 1.3 0.21 1.68 .28
Computer vs roulette 1.3 0.234 1.46 .44
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defection towards the computer was higher than towards 
the human (Mexperience rating range = 2.18–3.91; 95% CI rate-ratio 
[LCLrange: 0.35–0.60; UCLrange: 0.93–0.99]). At the low-
est experience attribution to computer and human oppo-
nents, the defection pattern is reversed (i.e. the defection 

towards the computer is lower than towards the human), 
(Mexperience rating range = 1.18–1.91; 95% CI rate-ratio [LCLrange: 
1.001 – 1.01; UCLrange: 1.78 – 1.94]). Only selected findings 
are summarised above; for detailed results, see the Sup-
plemental Online Material including Attachments 1 and 2).

Table 3   Mind attribution, human-likeness, familiarity, and eerieness ratings regarding the opponents

Asterisks signal statistically significant effects (Bonferroni-corrected p < .05), accompanied by their direction. SE standard error; LCL/UCL 
lower/upper confidence levels

Subjective ratings Opponent Mean SE LCL UCL
Mind attribution Agency Human 4.64 0.18 4.29 4.99

Computer 3.20 0.18 2.84 3.55
Roulette 1.72 0.18 1.37 2.07

Experience Human 4.12 0.18 3.77 4.47
Computer 1.24 0.18 0.89 1.59
Roulette 1.23 0.18 0.88 1.58

Human-likeness Human 6.10 0.32 5.46 6.74
Computer 2.98 0.32 2.34 3.61
Roulette 2.95 0.32 2.31 3.58

Familiarity Human 3.53 0.31 2.91 4.16
Computer 2.54 0.32 1.91 3.16
Roulette 2.25 0.32 1.62 2.87

Eeriness Human 3.84 0.41 3.02 4.66
Computer 4.37 0.41 3.54 5.19
Roulette 4.02 0.41 3.19 4.84

Main effect of opponent on mind attribution ratings
Opponent contrasts t DF d p-value
Human vs computer 10.04 78 1.86 .0001* (Hum > Com)
Human vs roulette 13.48 78 2.50 .0001* (Hum > Rou)
Computer vs roulette 3.44 78 0.64 .003* (Com > Rou)
Main effect of mind dimension on mind attribution ratings
Mind dimension t DF d p-value
Agency vs experience 2.3 38 2.94 .026* (agency > experience)
Interaction between mind dimension and opponent
Type of attribution Opponent contrast t DF d p-value
Agency Human vs computer 5.95 118 1.10 <.0001* (hum > com)

Human vs roulette 12.01 118 2.21 <.0001* (hum > rou)
Computer vs roulette 6.07 118 1.12 <.0001* (com > rou)

Experience Human vs computer 11.85 118 2.18 <.0001* (hum > com)
Human vs roulette 11.88 118 2.19 <.0001 * (hum > rou)
Computer vs roulette 0.03 118 0.01 .99

Main effect of opponent on human-likeness ratings
Opponent contrasts t DF d p-value
Human vs computer 8.33 78 1.89 <.0001* (Hum > Com)
Human vs roulette 8.41 78 1.90 <.0001* (Hum > Rou)
Computer vs roulette 0.08 78 0.02 .99
Main effect of opponent on familiarity ratings
Opponent contrasts t DF d p-value
Human vs computer 2.38 78 0.54 .06 (Hum > Com)
Human vs roulette 3.07 78 0.69 .009* (Hum > Rou)
Computer vs roulette 0.08 78 0.16 .99
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Fig. 4   Subjective anthropomorphisation ratings. A Mind attribution; 
B human-likeness; C familiarity; D eeriness. Scores are represented 
by box-and-whisker plot, with central lines indicating the mean par-

ticipant rating of each opponent. Asterisks signal statistically signifi-
cant effects. (***p < .0001; ** p < .001)

Fig. 5   Influence of human-likeness ratings on cooperation count fre-
quencies. A Play-order HCR; B Play-order HRC. The red line indi-
cates a rate ratio equal to 1, with no difference between the coopera-
tion count of the human and computer opponents. The dashed line 
indicates the rate ratio 95% CI upper and lower boundaries. The rate 

ratio is considered significantly different when at a certain value of 
the human-likeness ratings, their 95% CI upper and lower boundaries 
do not contain the value 1. A significant rate ratio smaller than 1 indi-
cates a cooperation count towards the computer opponent higher than 
towards the human opponent
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Discussion

In experimental psychology, computers are assumed to rep-
resent non-social or non-human agents and thus are often 
used in control conditions of social/human conditions in 
experimental paradigms (Chen et al., 2017; Neto et al., 2020; 
Rilling et al., 2012, 2018). Given the absence of support for 
the later premise, we designed the present study in order 
to challenge it. Besides an inquiry on subjective anthropo-
morphising attitude (i.e. explicit anthropomorphisation), we 
tested whether we could detect anthropomorphising behav-
iour (i.e. implicit anthropomorphisation) towards computer 
opponents in an economic game, by contrasting it with that 
towards humans and roulettes. Additionally, we utilised dif-
ferent opponent play order sequences, and no manipulation 
of its physical characteristics towards a human-like figure 
(which is already known to increase anthropomorphisation; 
Krach et al., 2008). [We note that while ‘human-likeness’ 
has been coined as a purely physical attribute, measured 
from ‘very mechanical’ to ‘very human-like’, using the scale 
adopted by MacDorman, 2006, the concept of anthropomor-
phisation is more extensive than the mere perception of an 
agent as human-like, as it entails the combination of mind 
attributions—in terms of agency and experience—with per-
ceived eeriness or familiarity]. We hope our findings will 
help inform the most appropriate choice of control condition 
(computer or roulette) in future neuroeconomic experimental 
paradigms and improve interpretation of existing literature.

In summary (and in detail below), we found that behav-
iour towards a human opponent almost always differed 
from that towards a roulette. On the contrary, the behaviour 
towards the computer opponent differed from that towards 
a roulette only when considering total cooperative choices 
and in the case of an immediate previous reciprocated defec-
tion. In both cases, the computer anthropomorphisation, as 
indicated by a higher cooperation behaviour, occurred when 
playing with a roulette preceded playing with a computer. 
This suggests people might tend to be forgiving and more 
readily create the basis for trust and cooperation when they 
are dealing with human beings, but also with computers (i.e. 
showing anthropomorphisation), especially when they are 
contrasted with a roulette via a recent interaction.

Similarity in cooperation towards computers 
and humans, and dissimilarity towards roulettes, 
may reflect anthropomorphisation

We found that behaviour, in terms of PD player 1 coopera-
tive choices, towards a computer was not significantly dif-
ferent than that towards a human opponent (Table 1). This 
result challenges the adequacy of computers as controls 
to human conditions, at least in a setting where no prior 

information on the attributes or modus operandi of the com-
puter is given to the study participant. It may indicate that 
the (commonly assumed) non-social attributes of a computer 
are not sufficiently perceived by study participants to make 
them behave significantly differently towards a computer 
versus a human in a social decision-making paradigm. On 
the other hand, behaviour towards a roulette was signifi-
cantly different than that towards a human. With roulettes, 
subjects mostly adopted the strategy of defecting (16% more 
than with the human) to gain at least €1 in each trial and 
ensure a minimum gain. This exemplifies the maximum-gain 
strategy (leading to Nash equilibrium) which occurs in sin-
gle-shot (i.e. non-iterative) versions of the PD. This suggests 
that the roulette—unlike the computer—was not perceived 
as able to account for the subject’s previous choices in the 
game (i.e. learn). In other words, whilst the roulette was not 
anthropomorphised, the computer was.

Anthropomorphisation of a computer may be 
augmented by recent interaction with roulette

Moreover, we observed that total cooperative behaviour (i.e. 
probability to cooperate across the whole game round) was 
profoundly affected by the computer vs roulette chronologi-
cal play order in the same session (Table 1). Specifically, 
cooperative behaviour towards the computer opponent was 
higher (61%) compared to that towards the roulette only 
when the subject had played against the roulette beforehand 
(i.e. HRC play-order); there was no difference in the reverse 
play order (i.e. HCR). In other words, playing with a roulette 
beforehand seems to increase the degree of anthropomorphi-
sation towards a computer in a subsequent game.

Anthropomorphisation of a computer is not affected 
by a previous outcome, except that of a reciprocated 
defection

When we tested the effect of opponent and of play order on 
the probability of cooperating after a specific trial outcome, 
the degree of anthropomorphisation depended on the type of 
outcome. When a participant’s cooperation was reciprocated 
(CC), the probability of cooperation in the following trial was 
similarly high for all opponents (Table S8). Likewise, when 
the participant’s cooperation was not reciprocated (CD), the 
probability of cooperation in the following trial was similarly 
low for either opponent (Table S9). This indicates the pre-
dominance of a tit-for-tat strategy (Neto et al., 2020). There-
fore, after these two outcome cases (CC and CD), either a 
roulette is also being anthropomorphised (which we think is 
unlikely) or evidence of anthropomorphisation (i.e. a higher 
similarity between computer and human opponent treatment 
than between human and roulette) is not detectable. Either 
way, any existing anthropomorphisation of the opponent did 
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not significantly influence choice after an outcome of coop-
eration reciprocation or cooperation betrayal.

When participants had adopted a defensive behaviour (i.e. 
a defection choice) and they were surprised by a cooperation 
choice by the opponent (i.e. DC), the probability of coop-
eration in the following trial was again equal for each oppo-
nent (Table S10). However, when the defective behaviour 
of the participant was reciprocated with a defection (DD), 
the probability of cooperation in the following trial with the 
computer opponent was higher (79%) than with the roulette 
opponent (Table 2), but only when playing with a computer 
occurred immediately after playing with a roulette (and not 
when it was preceded by playing with a human, i.e. HCR 
play-order). This also partially supports the presence of 
anthropomorphisation of the computer opponent, and that 
it is augmented by a previous interaction with a roulette—
‘partially’ because behaviour with a human opponent was 
intermediate; it was not significantly different from that 
towards the computer or roulette.

Behavioural anthropomorphisation is partially 
reflected in mind attribution subjective ratings

As we expected, mirroring the signs of anthropomorphi-
sation in the behavioural results, participants attributed 
the human opponent the highest perceived agency, fol-
lowed by the computer and then the roulette (the oppo-
nent accounted for 79% of the variance in mind attribution 
ratings unexplained by the mind dimension or the play 
order—a large effect size). Also, the agency scores of the 
three opponents were higher than their experience scores, 
indicating that all opponents were seen more as agents 
(i.e. deliberately making choices in the PD game) than as 
beings that experience emotions (Gray et al., 2007; Gray 
et al., 2011) (the mind dimension explained 68% of the 
variance in mind attribution ratings, left unexplained by 
play order or opponent—a large effect size). However, the 
computer was perceived as no different from the roulette 
in terms of experience attribution or human-likeness or 
familiarity, to our participants. We believe that this may be 
because when participants are requested to rate an inani-
mate agent (i.e. the computer or the roulette), they reply 
rationally counteracting the implicit perception occurred 
while playing the game. That is, in order to comply with 
common knowledge, participants might be lured to ration-
ally describe what a computer and a roulette are reason-
ably capable of. Likely as a consequence, our analysis 
of the influence of subjective ratings on cooperation and 
defection choices could not fully explain the anthropomor-
phisation process detected during the PD. Nevertheless, 
some interesting hints have emerged, as discussed next.

As expected, the human opponent was rated with the 
highest human-likeness attribution. However, in the rare 

case of similar high human-likeness attribution to human 
and computer, and where computer play was preceded by 
human play, the cooperation towards the computer was in 
fact significantly higher (36% to 43%) than towards the 
human. On the contrary, when the computer game was 
preceded by the roulette, the computer anthropomorphisa-
tion dramatically increased to the extent that not only at 
high but also at medium-to-high human-likeness attribu-
tion the cooperation towards the computer significantly 
surpassed (22% to 54%) cooperation towards the human. 
These results confirm the importance of play order, where 
a previous interaction with a roulette before the computer 
augments the computer’s anthropomorphisation.

As an additional indication of the importance of the 
play order in influencing the opponent subjective percep-
tions, when computer and human opponents were rated 
with low experience the defection towards the computer 
was significantly higher (23% to 41%) than towards the 
human (HCR play-order). This suggests—in an intuitively 
predictable manner—that when the computer is perceived 
as scarcely able to experience emotions the defective 
behaviour towards it increases, as compared to the human. 
Conversely, when the computer opponent is preceded by 
the roulette one, and computer and human opponents are 
rated with the lowest experience, subjects defected sig-
nificantly less (34% to 39%) with the computer than with 
the human. This confirms a predominant anthropomor-
phisation process of the computer opponent. The above 
subjective rating findings suggest that there are anthro-
pomorphising attitudes which may even lead subjects to 
surpass towards computers the cooperation degree they 
show towards humans. This is not unprecedented given a 
previous report of higher probability of cooperation after a 
previous cooperation-defection outcome with computer vs 
human (Chen et al., 2016). However, it may be confounded 
by the human always being the first opponent, and there-
fore the one with which participants were still adapting to 
the game and still ‘perfecting’ their strategy.

Choosing the best non‑social control condition 
in socio‑economic dilemmas

Once the validity of the computer opponent in economic 
games as a non-social control is questioned, the specific com-
parison between computer and roulette opponents, in the pre-
sent study, may represent a step forward in social economics 
research. We believe that the use of the roulette as an inde-
pendent opponent has been overlooked, leaving a gap in the 
available data on the exploration of its advantages compared to 
adopting a computer for this purpose. In one study, a roulette 
was used in the multiplayer game ‘Take Some’, an alternative 
version of the PD, with the only purpose of identifying a cut-
off number or threshold (Guyer et al., 1973). Alternatively, 
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roulette conditions have been used with the aim of control-
ling the response to monetary reinforcement, independent of 
any social interaction. Importantly, these control trials were 
designed as intrinsically different than the experimental trials 
against either human or computer opponents, preventing any 
comparisons with the latter (see Rilling et al., 2004; Sanfey 
et al., 2003, for further details of these control trials).

One solution for ensuring an adequate social control condi-
tion may be using a computer opponent condition where clear 
statements decreasing/limiting its agency degree would be pro-
vided, thus making them more suitable as non-social controls 
when confronted with human opponents. For example, it could 
be explained at the beginning of the economic game whether 
the computer follows an algorithm or mimics a roulette in its 
actions, without the need to add a roulette opponent to the 
design. Future studies should verify whether the present results 
can be modified by providing such brief a priori information.

There is one caveat regarding our study design, which 
may limit its comparability with the aforementioned studies 
(Neto et al., 2020; Rilling et al., 2012). In those studies, par-
ticipants met with human actors, i.e. confederates (matched 
for age and sex), before engaging in the PD paradigm. The 
act of engaging with the human opponent in the flesh may 
have strengthened the belief that an opponent will indeed be 
human, further personifying and differentiating the ‘human’ 
opponent from the computer. In contrast, in our study we 
told participants they would play with three different players 
from another room in the facility without providing addi-
tional details, apart from a photo of each. This was done to 
avoid noise arising from the variability with which the con-
federate would present himself day-to-day (regarding mood, 
politeness, clothing appearance, etc.).

Statistical approach to the prisoner’s dilemma data 
analysis

Although not the main goal of the present study, we herein 
provided new insight into the statistical analysis of PD 
data by suggesting what we believe to be a statistically 
more appropriate approach than those used in previous 
work. Because of the constraints of the algorithm which 
reciprocates cooperation 67% of the time and defection 
90%, the outcomes frequencies (i.e. CC, CD, DC, and DD) 
do not have equal occurrence. Hence, comparing outcome 
frequencies in an ANOVA, as commonly done in litera-
ture, is not the most appropriate statistical analysis choice. 
Both frequencies of cooperation and defection choices and 
the frequency of cooperation after each of the four possible 
outcomes are indeed ‘count’ data and, as such, need to be 
analysed with Poisson distributions. A normal distribution 
might be a fair approximation to a Poisson one only for 

data with a higher number of observations (i.e. above 30) 
than most behavioural studies collect.

Conclusion

The present research suggests special care in the design 
of non-human opponents as control conditions for human 
ones in socio-economic games, due to a potentially high 
anthropomorphising tendency towards computers by study 
participants. This pattern may be counteracted by providing 
prior details on the computer characteristics, leading to a 
change in mind attribution and consequently in the sub-
ject’s behavioural responses during the game. Future stud-
ies should be extended to the female population to verify 
whether men and women show different levels of anthropo-
morphisation of non-social opponents in economic games.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​023-​02071-y.

Acknowledgements  We thank Gonçalo Cosme for his technical sup-
port in the implementation of the paradigm, James Rilling for providing 
his original script of the Prisoner’s Dilemma that was later adapted for 
this study, and Andreia Santiago, Rafael Esteves and Sara Ferreira for 
participant recruitment.

Author contributions  CC designed the present study, collected most 
data, ran the statistical analysis, and drafted the manuscript. AF and LH 
implemented the original paradigm and questionnaires, and collected 
pilot data. MA provided guidance in statistical analysis and results 
reporting. DP supervised the study at all stages. All authors discussed, 
revised, and contributed to the final version of the manuscript.

Funding  CC was supported by the Fundação para a Ciência e Tecnologia 
(FCT) EXPL/PSI-GER/1148/2021 grant; and has been hired on the 2016 
Bial Foundation Psychophysiology Grant Ref. 292/16, and on the (FCT) 
LISBOA-01-0145-FEDER-030907 grant awarded to DP. ML was sup-
ported by FCT Grants UID/CEC/50021/2019 and UIDB/00006/2020. 
DP was also supported by a European Commission Marie Curie Career 
Integration grant (FP7-PEOPLE-2013-CIG-631952), and the FCT grant 
(IF/00787/2014) for other research costs.

Declarations 

Competing interests  The authors report there are no competing inter-
ests to declare.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

https://doi.org/10.3758/s13428-023-02071-y
http://creativecommons.org/licenses/by/4.0/


679Behavior Research Methods (2024) 56:667–679	

1 3

References

Axelrod, R. (1984). The evolution of cooperation. Basic Books.
Chen, X., Hackett, P. D., DeMarco, A. C., Feng, C., Stair, S., Haroon, E., 

Ditzen, B., Pagnoni, G., & Rilling, J. K. (2016). Effects of oxytocin 
and vasopressin on the neural response to unreciprocated coopera-
tion within brain regions involved in stress and anxiety in men and 
women. Brain Imaging and Behavior, 10(2), 581–593. https://​doi.​
org/​10.​1007/​s11682-​015-​9411-7

Chen, X., Gautam, P., Haroon, E., & Rilling, J. K. (2017). Within 
vs. between-subject effects of intranasal oxytocin on the neural 
response to cooperative and non-cooperative social interac-
tions. Psychoneuroendocrinology, 78, 22–30. https://​doi.​org/​
10.​1016/j.​psyne​uen.​2017.​01.​006

Chong, S. Y., Humble, J., Kendall, G., Li, J., & Yao, X. (2007). The 
Iterated Prisoner’s Dilemma: 20 Years On. https://​doi.​org/​10.​
1142/​97898​12770​684_​0001

Cohen, J. (1988). Statistical power analysis for the behavioural sci-
ences (2nd ed.). Lawrence Erlbaum Associates.

de Kleijn, R., van Es, L., Kachergis, G., & Hommel, B. (2019). 
Anthropomorphization of artificial agents leads to fair and 
strategic, but not altruistic behavior. International Journal of 
Human-Computer Studies, 122, 168–173. https://​doi.​org/​10.​
1016/J.​IJHCS.​2018.​09.​008

Declerck, C. H., Boone, C., & Emonds, G. (2013). When do peo-
ple cooperate? Brain and Cognition. https://​doi.​org/​10.​1016/j.​
bandc.​2012.​09.​009

Engemann, D. A., Bzdok, D., Eickhoff, S. B., Vogeley, K., & Schil-
bach, L. (2012). Games people play—toward an enactive view 
of cooperation in social neuroscience. Frontiers in Human Neu-
roscience, 6, 148. https://​doi.​org/​10.​3389/​fnhum.​2012.​00148

Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On Seeing Human: 
A Three-Factor Theory of Anthropomorphism. Psychological 
Review. https://​doi.​org/​10.​1037/​0033-​295X.​114.4.​864

Falk, A., Fehr, E., & Fischbacher, U. (2008). Testing theories of fair-
ness-intentions matter. Games and Economic Behavior, 62(1), 
287–303. https://​doi.​org/​10.​1016/j.​geb.​2007.​06.​001

Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions of mind 
perception. Science, 315(5812), 619. https://​doi.​org/​10.​1126/​
scien​ce.​11344​75

Gray, K., Knobe, J., Sheskin, M., Bloom, P., & Barrett, L. F. (2011). 
More than a body: mind perception and the nature of objectifi-
cation. Journal of Personality and Social Psychology, 101(6), 
1207–1220. https://​doi.​org/​10.​1037/​a0025​883

Guyer, M., Fox, J., & Hamburger, H. (1973). Format Effects in the 
Prisoner’s Dilemma Game. Journal of Conflict Resolution, 
17(4), 719–744. https://​doi.​org/​10.​1177/​00220​02773​01700​407

Halekoh, U., Højsgaard, S., & Yan, J. (2006). The R package geepack 
for generalized estimating equations. Journal of Statistical Soft-
ware. https://​doi.​org/​10.​18637/​jss.​v015.​i02

Kiesler, S., Sproull, L., & Waters, K. (1996). A prisoner’s dilemma 
experiment on cooperation with people and human-like comput-
ers. Journal of Personality and Social Psychology, 70(1), 47.

Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., & Kircher, 
T. (2008). Can machines think? Interaction and perspective 

taking with robots investigated via fMRI. PLoS One, 3(7), 
e2597. https://​doi.​org/​10.​1371/​journ​al.​pone.​00025​97

MacDorman, K. (2006). Subjective ratings of robot video clips for 
human likeness, familiarity, and eeriness: An exploration of the 
uncanny valley. ICCS/CogSci-2006 Long Symposium: Toward 
…. https://​doi.​org/​10.​1093/​scan/​nsr025

Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2005). Forming 
impressions of people versus inanimate objects: Social-cogni-
tive processing in the medial prefrontal cortex. NeuroImage, 
26(1), 251–257. https://​doi.​org/​10.​1016/j.​neuro​image.​2005.​01.​
031

Nass, C., Steuer, J., & Tauber, E. R. (1994). Computers are Social 
Actors. Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems., 72–78.

Neto, M. L., Antunes, M., Lopes, M., Ferreira, D., Rilling, J., & 
Prata, D. (2020). Oxytocin and vasopressin modulation of pris-
oner’s dilemma strategies. Journal of Psychopharmacology. 
https://​doi.​org/​10.​1177/​02698​81120​913145

Richards, H., & Swanger, J. (2006). The dilemmas of social democ-
racies: Overcoming obstacles to a more just world. Lexington 
Books.

Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E., & 
Cohen, J. D. (2004). The neural correlates of theory of mind 
within interpersonal interactions. NeuroImage, 22(4), 1694–
1703. https://​doi.​org/​10.​1016/j.​neuro​image.​2004.​04.​015

Rilling, J. K., DeMarco, A. C., Hackett, P. D., Thompson, R., Ditzen, 
B., Patel, R., & Pagnoni, G. (2012). Effects of intranasal oxy-
tocin and vasopressin on cooperative behavior and associated 
brain activity in men. Psychoneuroendocrinology, 37(4), 447–
461. https://​doi.​org/​10.​1016/j.​psyne​uen.​2011.​07.​013

Rilling, J. K., DeMarco, A. C., Hackett, P. D., Chen, X., Gautam, 
P., Stair, S., Haroon, E., Thompson, R., Ditzen, B., Patel, R., & 
Pagnoni, G. (2014). Sex differences in the neural and behavioral 
response to intranasal oxytocin and vasopressin during human 
social interaction. Psychoneuroendocrinology, 39(1), 237–248. 
https://​doi.​org/​10.​1016/j.​psyne​uen.​2013.​09.​022

Rilling, J. K., Chen, X., Chen, X., & Haroon, E. (2018). Intrana-
sal oxytocin modulates neural functional connectivity during 
human social interaction. American Journal of Primatology, 
80(10), e22740. https://​doi.​org/​10.​1002/​ajp.​22740

Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & 
Cohen, J. D. (2003). The neural basis of economic decision-
making in the Ultimatum Game. Science, 300(5626), 1755–
1758. https://​doi.​org/​10.​1126/​scien​ce.​10829​76

Todorov, A., Fiske, S. T., & Prentice, D. A. (2011). Social neu-
roscience: toward understanding the underpinnings of the 
social mind (Vol. 49, Issue 01). Oxford University Press. 
https://​doi.​org/​10.​5860/​choice.​49-​0570

Open practices statement  The data and materials for this study are 
available from the corresponding authors upon reasonable request. 
The study was not pre-registered.

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11682-015-9411-7
https://doi.org/10.1007/s11682-015-9411-7
https://doi.org/10.1016/j.psyneuen.2017.01.006
https://doi.org/10.1016/j.psyneuen.2017.01.006
https://doi.org/10.1142/9789812770684_0001
https://doi.org/10.1142/9789812770684_0001
https://doi.org/10.1016/J.IJHCS.2018.09.008
https://doi.org/10.1016/J.IJHCS.2018.09.008
https://doi.org/10.1016/j.bandc.2012.09.009
https://doi.org/10.1016/j.bandc.2012.09.009
https://doi.org/10.3389/fnhum.2012.00148
https://doi.org/10.1037/0033-295X.114.4.864
https://doi.org/10.1016/j.geb.2007.06.001
https://doi.org/10.1126/science.1134475
https://doi.org/10.1126/science.1134475
https://doi.org/10.1037/a0025883
https://doi.org/10.1177/002200277301700407
https://doi.org/10.18637/jss.v015.i02
https://doi.org/10.1371/journal.pone.0002597
https://doi.org/10.1093/scan/nsr025
https://doi.org/10.1016/j.neuroimage.2005.01.031
https://doi.org/10.1016/j.neuroimage.2005.01.031
https://doi.org/10.1177/0269881120913145
https://doi.org/10.1016/j.neuroimage.2004.04.015
https://doi.org/10.1016/j.psyneuen.2011.07.013
https://doi.org/10.1016/j.psyneuen.2013.09.022
https://doi.org/10.1002/ajp.22740
https://doi.org/10.1126/science.1082976
https://doi.org/10.5860/choice.49-0570

	Computer anthropomorphisation in a socio-economic dilemma
	Abstract
	Introduction
	Methods
	Participants
	Experimental procedure
	Task paradigm and study design
	Statistical analysis

	Results
	Behavioural anthropomorphisation measurements
	Subjective anthropomorphisation ratings
	Influence of subjective ratings on choice frequencies.

	Discussion
	Similarity in cooperation towards computers and humans, and dissimilarity towards roulettes, may reflect anthropomorphisation
	Anthropomorphisation of a computer may be augmented by recent interaction with roulette
	Anthropomorphisation of a computer is not affected by a previous outcome, except that of a reciprocated defection
	Behavioural anthropomorphisation is partially reflected in mind attribution subjective ratings
	Choosing the best non-social control condition in socio-economic dilemmas
	Statistical approach to the prisoner’s dilemma data analysis

	Conclusion
	Acknowledgements 
	References


