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We study by the Gutzwiller approximation the melting of the valence bond crystal phase of a
bilayer Hubbard model at sufficiently large inter-layer hopping. We find that a superconducting
domain, with order parameter d,2_,2, z being the inter-layer direction and r the intra-layer one,
is stabilized variationally close to the half-filled non-magnetic Mott insulator. Superconductivity
exists at half-filling just at the border of the Mott transition and extends away from half-filling into
a whole region till a critical doping, beyond which it gives way to a normal metal phase. This result
suggests that superconductivity should be unavoidably met by liquefying a valence bond crystal, at
least when each layer is an infinite coordination lattice and the Gutzwiller approximation becomes
exact. Remarkably, this same behavior is well established in the other extreme of two-leg Hubbard
ladders, showing it might be of quite general validity.

PACS numbers: 74.20.Mn, 71.30.+h, 71.10.Fd

I. INTRODUCTION

Since its original formulation in the early 60th’s, the
Gutzwiller variational approach!2:3 has proved to be one
of the simplest yet effective tools to deal with correlated
electron systems.

The basic idea of the method is to modify variation-
ally the weights of local electronic configurations with
respect to an uncorrelated wavefunction |¥y), for which
Wick’s theorem holds, according to the local interaction
terms. This is accomplished by means of the variational
wavefunction:

T6) = Pl¥o) = [ [ PrlWo), (1)
R

where Pr is an operator acting on the local Hilbert space
of the unit cell R. Both the uncorrelated wavefunction
|¥o) and the operators Pr must be determined varia-
tionally by minimizing the average energy. In general
the average energy can be calculated only numerically4
but in the limit of infinite coordination lattices, where a
lot of simplifications intervene® that allow for an explicit
analytical expression®78. This is rigorously valid only in
infinite coordination lattices, nevertheless it is commonly
used also in finite coordination ones, what is refereed to
as the Gutzwiller approximation because in a single band
model it happens to coincide with the approximation in-
troduced by Gutzwiller himself2.

In spite of its simplicity, many important concepts in
strongly correlated electron systems have originated from
Gutzwiller variational calculations or, which is equiv-
alent?19  from slave-boson mean-field theory?d. We
just mention the famous Brinkmann-Rice scenariol? of
the Mott transition. Therefore, even though more rig-
orous approaches have been developed meanwhile, like
DMFT!2 or LDA+U, there has been a continuous ef-
fort towards improving the original Gutzwiller wavefunc-
tion in finite dimensions'®, and extending the Gutzwiller

approximation to account for the exchange interaction
in multi-orbital models®18:1718 for the electron-phonon
couplingt?, for interfaces effects??, and also for more ab-
initio ingredients?!. A reason for this perseverance is
that the Gutzwiller wavefunction and approximation are
so simple and flexible to be adapted to many different
situations and provide without big numerical efforts rea-
sonable results.

In its simplest formulation, Eq. (), the form of inter-
site correlations within the Gutzwiller wavefunction are
controlled solely by the uncorrelated wavefunction |¥g).
This aspect should not be problematic if the main interest
is in the gross features near a Mott transition or when
a Hartree-Fock Slater determinant gives already a rea-
sonable description of the actual ground state, which can
only be improved by applying the operator P. However,
there are interesting cases where new types of correlations
may arise near a Mott transition that are not explicitly
present in the Hamiltonian. A known example are the
d-wave superconducting fluctuations that are believed to
emerge in the single band Hubbard model on a square lat-
tice close to the half-filled antiferromagnetic Mott insula-
tor22, and which are often invoked to explain high T, su-
perconductivity. A simple way to justify the emergence of
superconducting fluctuations is to take the large U limit
of the Hubbard model, which is known to correspond in
the low energy sector to the t-J model. Here, the antifer-
romagnetic exchange J provides an explicit attraction in
the inter-site singlet channel. This reflects the tendency
of neighboring sites to form spin singlets, which turns into
a true antiferromagnetic long-range order at half-filling
but may mediate superconductivity upon doping. In-
deed, the Gutzwiller approximation and equivalently the
slave-boson mean-field theory applied to the ¢-J model do
stabilize a d-wave superconducting phase away from half-
filling23, a result supported by direct numerical optimiza-
tions of |¥¢), with Pr projecting out doubly occupied
sites and |¥) a d-wave BCS-like wavefunction24:25:26:27,
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However, the simplest Gutzwiller approximation in the
pure Hubbard model away from half-filling does not sta-
bilize any superconducting phase, just because the on-site
repulsion U does not couple directly to the d-wave super-
conducting parameter. A way to improve the wavefunc-
tion allowing for inter-site spin-singlet correlations could
be using an enlarged non-primitive unit cell, with Pgr
in () acting on a cluster of sites. With this choice the
wavefunction |¥¢) breaks explicitly lattice translational
symmetry, so that one should properly modify the vari-
ational scheme not to get spurious results, just like any
other cluster technique?8:22:30,:31,32,33

Alternatively, one might consider different models that
are manageable with the simple wavefunction () and
which are expected to have a physical behavior similar
to the one looked for in the Hubbard model on a square
lattice. One case by now well known is that of two cou-
pled Hubbard or ¢-J chains. At half-filling, both models
are non-magnetic Mott insulators?4:32:36, The insulating
phase is a kind of short-range resonating valence bond
(RVB) spin-liquid®?, i.e. a spin-gaped state without any
symmetry breaking. Actually this state is adiabatically
connected to the trivial insulator for very large inter-
chain coupling, which is a collection of inter-chain dimers,
what can be denoted as a valence bond (VB) crystal.
Away from half-filling, dominant superconducting fluc-
tuations arise36:38:3%  with a two-chain analog of a two-
dimensional d-wave symmetry. The emergence of strong
superconducting fluctuations appears here as the natural
fate of doping the half-filled VB Mott insulator2’, real-
izing in one-dimension the RVB superconductivity sce-
nario proposed by Anderson? in the early days after the
discovery of high T, superconductivity. An immediate
question that arises is whether the above one-dimensional
behavior survives in higher-dimensions, namely how ro-
bust is the two-chain RVB scenario upon increasing di-
mensionality. This is actually the content of the present
work.

As a matter of fact, this question has been already
addressed several times in connection with high T, su-
perconductors, specifically analyzing a bilayer Hubbard
model by various techniques, including quantum Monte
Carlo#l:42:43:44.45 (QMC) and DMFT#647. In section [l
we shall discuss more in detail these early works while
introducing the model. More recently, the same problem
has been studied at half-filling by an improved Gutzwiller
approximationi®, which we present in section [ITltogether
with a further improvement that we use here to extend
that analysis away from half-filling. The results are pre-
sented in section [[V] while section [V]is devoted to con-
cluding remarks.

II. THE MODEL

Throughout this work we shall be interested in a bi-
layer Hubbard model described by the following Hamil-

tonian
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where t; > 0, ck .o and cg ;. create and annihilate, re-
spectively, an electron at site R in plane ¢ = 1, 2 with spin
o, NR,i = Z I{ ioCRio is the local occupation on layer
i, and U is the Hubbard repulsion on each lattice site. In
order to study the doped system it is more convenient to
work in the grand-canonical ensemble adding a chemical
potential term —u ) g ;nr,; to the model Hamiltonian
@). The particle number is then controlled by tuning p.
In Eq. @) ch creates an electron in layer ¢ and spin o
with momentum k, and e(k) € [-D, D] is the intra-layer
dispersion in momentum space, where D is half the band-
width that will be our unit of energy. The non-interacting
part of the Hamiltonian is better rewritten introducing
the bonding (e) and antibonding (o) combinations

1
T _ i T
Ck,eo’ - 75 (Ck,la + Ck,2a) )
1
T _ i T
Ck,oo’ - 75 (Ck,la - Ck,2a) )

through which

H;wp-l-’HJ_—Z Z ea(k

ko a=e,o

ck acrck ao’ (3)

where e.(k) = ek) —tL € [-D—t,,D—t,] and
co(k) =€(k) +t1L € [-D+1t1,D +1t,] are, respectively,
the bonding and antibonding band dispersions.

If U = 0 and the density is one electron per site, half-
filling, the model describes a metal until the two bands
overlap, i.e. t; < D, and a band insulator otherwise.

For U > D+t , the model becomes equivalent to two
Heisenberg planes coupled to each other by an inter-plane
antiferromagnetic exchange J; = 4¢2 /U. If each plane
is a square lattice with only nearest neighbor hopping
t, hence D = 4t, each Heisenberg model is character-
ized by a nearest neighbor antiferromagnetic exchange
J = 4t?/U. This model has been studied in detail by



quantum Monte Carlo*!44 and it is known to have a

quantum critical point that separates a a Neel antifer-
romagnet, for J; < 2.5520J, from a gaped spin-liquid
phase, for larger J,. The latter can be interpreted as
a kind of VB crystal, each bond being an inter-layer
singlet, adiabatically connected to the band insulator at
U = 0. In terms of the hopping parameters of the origi-
nal Hubbard bilayer, the critical point should correspond
to (tL/t)e = v/2.5220 ~ 1.5881. This value is in good
agreement with direct QMC simulations of the Hubbard
bilayer4242 which find (¢, /t). ~ 1.5 to 2. According to
these results, when 1.6 < (¢, /t) < 4 one could start at
U = 0 with a metallic phase, and, upon increasing U, find
a direct transition into the VB Mott insulator. However,
the story must become more complicated if the U = 0
Fermi surface at half-filling has nesting at the edge of
the Brillouin zone, as it happens for a square lattice with
only nearest neighbor hopping. In this case, the U = 0
and t; < 4t = D metal has a Stoner instability towards
Neel antiferromagnetism for arbitrary small U, so that
it is a priori not obvious that one could find any direct
metal to VB Mott insulator transition. In reality, both
cluster DMFT%? and QMC simulations find evidence that
such a transition does exist. Nevertheless, one may al-
ways bypass this problem assuming that the intra-layer
hopping is such as not to lead to any nesting, the latter
being more an accident than the rule in realistic systems.
In this case, which we will implicitly assume hereafter, it
is safe to believe that a direct transition at half-filling
from a metal to a VB Mott insulator does exist.

Within this scenario, the melting of the VB crystal
into a metallic phase can therefore occur either by dop-
ing away from half-filling but also upon decreasing U
below the Mott transition, still keeping half-filled den-
sity. In the latter case, a recent studyl® has shown that,
within the Gutzwiller approximation, the VB crystal first
turns into a superconducting phase that eventually gives
way to a normal metal upon further decreasing U. This
finding supports the RVB superconductivity scenario°
and shows that the one-dimensional behavior persists in
higher dimensions. It also agrees with the indication
of an enhanced pairing susceptibility obtained in earlier
studies by QMC3:48 However the lowest temperatures
attainable so far by QMC are still above the eventual
superconducting critical temperature, so that the exis-
tence of a true superconducting phase at half-filling is
numerically still an open issue. DMFT calculations, that
could in principle be carried out at zero temperature,
was performed?%47 but did not search explicitly for any
superconducting phase.

Away from half-filling, QMC indications of enhanced
pairing fluctuations are more convincing®42, although
the existence of a superconducting phase at low temper-
ature is still uncertain®3. This makes it worth addressing
this issue by the Gutzwiller approximation, which is not
as rigorous as QMC but at least can provide results at
zero temperature.

III. THE METHOD

In order to study the bilayer Hubbard model (2] away
from half-filling we adopt the Gutzwiller approximation
scheme developed in Refs. 18 to deal with the same model
at half-filling. The variational wavefunction that we use
has the form as in Eq. () where

1. Pr acts on the full Hilbert space that includes site
R in layer 1 and site R in layer 2;

2. |Wy) is allowed to be a BCS-wavefunction with sin-
glet order parameter in the channel ck 1?011 9yt

i i
CR,21R, 1

The most general expression for Pg is:

Pr = Z AR)r, T, |T1, R){T9, R, (4)
Iy,

where each state |I';,R) denotes a local two-site elec-
tronic configuration, and the matrix A(R) has to be vari-
ationally determined. Average values of operators on
the wavefunction () can be analytically computed in
infinite-coordination lattices provided the following con-

straints are satisfied by Pr8-17:18:
(Wo| Py Pr [¥o) = 1, (5)
(o] P Pr Cr [Wo) = (Wo| Cr |Wo), (6)

where Cr is the local single-particle density-matrix op-
erator with elements Ch7a0R7 5 and ckﬂach g @ and S
labeling single-particle states (both layer and spin in-
dices) and cha(cR_’a) creating(annihilating) an electron
in state « at site R. Expectation values of local operators
are then computed straightforwardly!® as ( PTORP )o =
<P;{ORPR>0 (hereafter (...)o denotes averages on the
uncorrelated wavefunction |¥), which can be easily com-
puted by means of Wick’s theorem). When calculating
the average of the inter-site density matrix, one finds that
the physical single-fermion operator acting on |¥q) is ef-
fectively replaced by a renormalized one acting on |¥q)
according to:

cho = D RR)agch s+ > QR)apcg g (7)
B B

where the renormalization matrices R and @) are deter-

mined by inverting the following set of equations*®:

(PhckoPreR 500 = D RR)ay (Ch . cr g0
Y
4+ QR)ay (crACr p)0s (8)
.
(PhckoPrek 500 =D RR)ay (chch )0

v

+) " QR)ay (g ok 5 )0- 9)



In Ref. 18, a different notation was used for the ma-
trices R and Q, namely R = v/Z and Q = vA. In
order not to generate any confusion with the definition
of a square root of a matrix, and also for keeping more
explicit the connection with slave-boson mean field the-
ory, we have preferred here to use R and Q. Despite
the considerable simplification introduced by the infinite-
coordination limit, the variational problem remains still
a difficult task to deal with because of the large size of
the local Hilbert space, which contains 16 states so that
A spans in principle 16 x 16 matrices.

A further simplification can be achieved with a proper
choice of the basis set spanning the local Hilbert space.
This can be done, for instance, by using from the begin-
ning the natural basis, i.e., the single-particle basis which
diagonalizes the variational density matrix (Cr )ot®. An
alternative and more efficient approach consists?? in
defining the local operator Pr in a mixed-basis repre-
sentation, namely expressing |I'1, R) = |I', R) in Eq. ()
in the original basis defined by the model Hamiltonian
and assuming that (I'2,R| = ({74}, R| are Fock states
in the natural basis, identified by the occupation numbers
o = 0,1. With this choice, one can use as variational
parameters just the eigenvalues of the density matrix, be-
cause the unitary transformation that relates the natural-
basis operators dg , to the original ones cg , needs not
to be known expliéitly. This simplifies conéiderably all
calculations. In the mixed original-natural basis repre-
sentation one introduces a new matrix

¢(R) = A(R) VP°(R), (10)
where A(R) is the variational matrix in the mixed-
basis representation and PY(R) is the uncorrelated
occupation-probability matrix, with elements

Plhyima R = (H{ma}, R)({7a}, Rl o
= 0(natimat Plany R),

being

PP R) gy =[] ("°(R)a)™ (1 -n"(R)a)" ™, (11)

and n°(R), the eigenvalues of the density matrix (to be
variationally determined). In terms of ¢, the constraints
to be imposed on the Gutzwiller wavefunction can be
recast as??:

Te(619) = 1, (12)
Tr (6f ¢ didy) = dasnd, (13)
Tr (¢>T¢d3dg) — 0, (14)

where, to simplify notations, we dropped the site-label
R, and we also introduced matrix representations of the
fermionic single-particle operators. The average of local

operators and the renormalization factors acquire very
simple expressions:

(PTOP)y = Tr <¢TO¢>, (15)
1

Rap = Tr ( ¢'cl ¢d > 16

’ n%(l—n%) 1“( ‘ ? (16)
1

Qap = 7ﬂ(¢f qudT). 17

’ n%(l—n%) ‘ 3) (1)

Through Egs. (I8) and ([I7) single-particle fermionic op-
erators are automatically mapped into renormalized op-
erators in the natural basis, and Eq. () is replaced by:

cf, Y Ragdli+ > Qapd,. (18)
B B

Note the presence of the latter term in the rhs of Eq. (I8]),
which makes it possible that a creation operator in the
original representation turns into an annihilation oper-
ator in the natural one. Its existence is a direct conse-
quence of allowing |¥g) to span also BCS-like wavefunc-
tions and/or Pgr to couple states with different particle
numbers. Should |¥y) describe a normal metal and Pr
be diagonal in the particle number, Q.3 would be strictly
zero, as was the case in Ref.|49. Therefore Eqgs. (I6), (I7)
and (I8) extend Egs. (A10) and (A18) of Ref. |49 to the
more general case in which superconductivity is allowed.

Practically, it is convenient?? to generate variational
matrices ¢ that directly satisfy Eqs. (I2)-({4) hence uni-
vocally determine the parameters nl, and only after im-
pose, by proper Lagrange multipliers, that the uncor-
related |¥g) has an average local density matrix with
eigenvalues n. We end mentioning that the elements

ér (n} = Ar{a} /Pfﬁ} of the matrix (I0) correspond to

the slave-boson saddle-point values within the mean-field
scheme recently introduced by Lechermann and cowork-
ersil,

It may happen that, in spite of all the above simplifica-
tions, the variational space thus generated is still unnec-
essarily large. For instance, if one looks for a variational
wavefunction that preserves particle number, all the el-
ements of A\ connecting subspaces of the local Hilbert
space with different particle numbers should be identi-
cally zero. Therefore it would be desirable to specialize
the general procedure sketched above in such a way that
symmetries can be built in the variational wavefunction
from the onset. In general, given a symmetry group Gy
that one would like to enforce, we must require, in addi-
tion to (@) and (@), that

[Pr,Go] =0, (19)
However, in the mixed representation there may be some

symmetry operations that can not be defined without an
explicit knowledge of the natural basis in terms of the



original one, which would make the whole method much
less efficient. If one decides not to implement these sym-
metries, but only those, symmetry group G C Gy, that
commute with the most general unitary transformation
U connecting original and natural basis, i.e.

[U7 G] =0,

compatibly with the variational ansatz, the above de-
scribed variational method can be still used with the fol-
lowing modification.

Let us assume this case and define a unitary operator
V' that transforms the Fock states in the original basis
into states that decompose the local Hilbert space in ir-
reducible representations of the group G. We define G
the representation of G in such a basis. Because of our
choice of the subgroup G, V' does right the same job even
in the natural basis, although this is unknown. Since
the trace is invariant under unitary transformations, all
formulas from ([I2) to (I7) remain the same even if the
variational matrix ¢ and the matrix representation of the
single fermion operators are defined in the states of the
irreducible representation, both in the original and nat-
ural basis, with the additional symmetry constraint

[¢,G] =0, (20)

which follows from ([9). We note that the matrix rep-
resentation of a single-fermion operator in these states
is readily obtained once V' is known, and is trivially the
same for both original and natural operators. Therefore
it is sufficient to create and store it at the beginning of
any calculation.

As an example, which is directly pertinent to this work,
let us consider G the group of spin SU(2) transforma-
tions. In this case an irreducible representation is read-
ily obtained and consists of states with fixed total spin
S and its z-projection S, of the general form |T', S, S, ),
where I' serves as an additional label to distinguish be-
tween different states with same S and S, in the original
representation. The operator V' is thus the unitary trans-
formation that connects Fock states in the original basis,
[{na}) to the states |T', S, S, ),

Vo {na}) =T, S, S,).

We use the same V' to generate from the Fock states in the
natural basis, which we remind is and remains unknown,
the states |T',.5,S.). It follows that, in order to preserve
full spin SU(2) symmetry,

ér,s,s.:7,5,5. = 055 05.5. Pr s:F.s (21)

is a block matrix.

IV. RESULTS

Let us turn now to study the bilayer Hubbard model
@) away from half-filling. As mentioned, the filling is

controlled by a chemical potential term —p) g, 7R,
that we add to the Hamiltonian (). We search for a
variational solution that allows for singlet superconduc-
tivity and doesn’t break spin-SU(2) symmetry. In this
case, the unitary transformation that would connect orig-
inal to natural bases, would leave spin SU(2) generators
invariant, so that the method described in the previous
section is applicable.

We already said that the Gutzwiller operator Pr in
@) acts on the whole local Hilbert space of two sites, R
in layer 1 and R in layer 2. The variational energy to
be minimized is then the sum of two terms. One is the
contribution of the local, same R but both layers, terms,
which, according to the results of the previous section,
reads:

Eloc =Tr

ot <7'lU +HL—p me) ¢] ;o (22)

Ri

where all operators are meant to be matrices in the lo-
cal representation invariant under SU(2) symmetry. The
other contribution to the total energy is the intra-layer
hopping FEjep. This can be shown to coincide with
the ground-state energy of a variational single-particle

Hamiltoniant8:

Hiop = D U T Ve, (23)
k

where 9 = (df ;1. df or.d_y 1 ).d_y5,) is the Nambu
spinor in momentum space and Tx a 4 x 4 matrix in
the natural basis that depends explicitly on momentum
and on some Lagrange multipliers. These are included
to enforces that the average of the single particle density
matrix on the ground state — to be identified with |¥q)
in () - is diagonal with matrix elements satisfying

<\Ijo|d;{io’dRia’|\I]0> =Tr (¢T¢diadza) = TL?
The matrix Ty has the general expression:

. e®Z+7  ek)A+4

Ty = . A N 24
« < AT + 51—zt —qp ) Y

where the 2 x 2 matrices 7 and B are the aforementioned

Lagrange multipliers, while Z and A have elements (la-

belled by j,1 = 1,2, the layer indices)

Zjy =

\
'M"’

(R R QuQ1),  (29)

=1

Ajy

|
VM”

(R, @i+ R,QL).  (26)

i=1

We solved numerically the variational problem as-
suming for simplicity a flat density of states with half-
bandwidth D (we do not expect the results to change



qualitatively by adopting a more realistic density of
states). In order to compare with the half-filling results
reported in Ref. [18, we fixed the value of the intra-dimer
hopping ¢, /D = 0.5 and solved the variational problem
for different values of U/D and p/D. Note that this value
in the case of a square lattice with nearest neighbor hop-
ping t corresponds to t; = 2t, above the critical value
for the stability at large U of the VB Mott insulator??.

At half-filling, /D = 0 and we recover all results of
Ref. [18. Specifically, we find a first order metal to VB
insulator transition. In the metallic phase just before the
transition, singlet superconductivity emerges. In Fig. [I]
we show as function of U/D the behavior of the inter-
layer, A and intra-layer, A, superconducting order pa-
rameters, defined as

AL = <‘I’G|C£,1¢Ch,u+C}{,2TC£,1¢|‘I’G>7 (27)
Ay = <\chlck,iTcTR’,i¢+c£’,i1‘c}(,i¢|\I]G>7 (28)

where R and R’ are nearest neighbor sites on layer
i = 1,2. We find that, near the first order transition
that we think identifies the actual Mott transition, both
order parameters are finite and have opposite sign, the
so-called d,2_,2> symmetry known to be dominant in the
two-chain model?, and which QMC simulations?3:48 in-
dicate as the leading pairing instability. The variational
energy that we obtain appears to be slightly lower than
that found in Ref. [18, as one could have expected due to
the larger number of variational parameters. Nonethe-
less, the critical U, at the Mott transition is only slightly
reduced to U./D ~ 2.02 for t; /D = 0.5. We note that
the phase at U > U,, that we believe is Mott insulat-
ing, still shows a finite superconducting order parameter
that dies out upon increasing U. As discussed in [18, we
think this might be a spurious result of our variational
approach that lacks intersite charge correlations crucial
in stabilizing a genuine Mott insulating phase'®.

We study finite hole doping by varying p/D < 0 at dif-
ferent values of U/D. Before discussing the variational
results, we briefly sketch the behavior of the doped non-
interacting system, U/D = 0. The inter-layer coupling
gives rise to bonding and antibonding bands, see Eq. (3]).
With the chosen value of t; = 0.5D, these bands overlap
at half-filling and the system displays a metallic behavior.
When the chemical potential is lowered, holes are injected
into the system inducing a depletion of both bands un-
til, at a given value of the chemical potential, the upper
(antibonding) band empties. For the chosen ¢, and for
a flat density of states the complete depletion of the an-
tibonding band happens at p = 0.5D, corresponding to
quarter filling n = 1. As a consequence, both the intra-
layer (Ehop) and inter-layer (£ ) hopping contributions
display a discontinuity in their first derivatives at quarter
filling, signaling that the antibonding band is no longer
contributing. The total energy however remains smooth
for any value of p (or equivalently n), as it should. When
U/D # 0, the behavior that we find depends crucially if
U is smaller or greater than U,., namely if the half-filled

SC order parameters

FIG. 1: (Color online) Inter-plane (blue circles) and, with re-
versed sign, intra-plane (red triangles) superconducting order
parameters at half-filling as function of U/D. The vertical
line indicates the first order transition that we think identi-
fies the on-set of Mott insulating behavior. Inset shows the
variational energy in units of D

FIG. 2: (Color online) Average density n summed over both
layer as a function of the chemical potential p < 0 for selected
values of interaction U/D.

state is a metal or an insulator.

A. Doping the metal at U < U,

As long as U < U,, any change of p induces a continu-
ous change in the total particle number; a finite com-
pressibility signal of a metallic behavior, as shown in
Fig. Alike the uncorrelated case, a cusp appears in
the evolution of n at quarter-filling, that we explain seem-
ingly as the depletion of the antibonding band. Indeed,
when U < U, the metallic solution evolves just like the
non-interacting case. The main effect of interaction is to
slightly reduce inter- and intra-layer hopping contribu-
tions with respect to their uncorrelated counterparts, as
shown in Fig. Bl where we plot the different contributions
Ehop, F1 and Ey to the variational energy. The intra-
layer hopping contribution E},, diminishes in absolute
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FIG. 3: (Color online) Left panel: The different contributions
to the variational energy as a function of doping for U/D =1
and per lattice site R, i.e. summed over both layer. As a ref-
erence, the behavior of non-interacting inter- and intra-layer
hopping contributions is plotted (dotted lines). In the inset
the total energy Eyar(n) = Eyar + pn is shown: despite the
cusp observed in the hopping contributions, the evolution of
Eyar(n) is smooth. Right panel: Occupation of the varia-
tional lower and upper bands as function of n. Dotted lines
represent average occupation of even and odd orbitals.

value with increasing doping because of the depletion of
the bands, as it occurs in the non-interacting system;
at quarter-filling it displays a cusp and correspondingly
the inter-layer hopping | starts to rapidly decrease, the
effects of U being more and more negligible as the low-
density regime is approached. In the right panel of Fig. Bl
we show the occupancies n? and n? of the variational
lower and upper bands, respectively, which are obtained
by diagonalizing the associated variational Hamiltonian,
Eq. 23), and actually coincide with the eigenvalues of
the single-particle density matrix. As in the uncorre-
lated system, the occupancy of the upper band vanishes
at quarter filling. We stress the fact that in the present
approach these states are variationally determined and
may not correspond to the even and odd combinations
of the original operators. However, as long as U < U,
we find that the average values of bonding and antibond-
ing band occupancies, n. and n,, almost coincide with,
respectively, n{ and n?.

Concerning superconductivity, we find that the inter-
layer order parameter, Eq. [21)), is extremely small, prac-
tically zero within our numerical precision, see Fig. Ml
The intra-layer order parameter strictly follows the inter-
layer one, hence is also zero.

B. Doping the VB Mott insulator at U > U.

When U > U, i.e. when the half-filled system is insu-
lating, the particle number remains stuck to its half-filled
value n = 2 until |p| < |p*| = (U — U,)/2. This simply
follows from the existence of the Mott gap at half-filling.
Upon doping, i.e. when |u| > |p*|, a metallic behavior is
clearly found. However, within our numerical precision
we can not establish whether the evolution from the insu-
lator to the metal occurs smoothly (yet with a diverging

compressibility) or through a weak first-order transition.
Till the largest value of U we considered, we could not
find any appreciable discontinuity in the evolution of n
at large doping, unlike for U < U, where a cusp is ob-
served at quarter filling. In addition, contrary to the
case U < U,, here we find a clear superconducting signal
between half and quarter filling, see e.g. the behavior of
A, Eq.R7 shown in Fig.[dl We note that A has a non-
monotonous behavior, first increases quite rapidly with
U and for larger values decreases. Like at half-filling, a
finite A, produces through Eq. ([I8)) also a finite intra-
layer A||, Eq. 28 not shown here, which happens to have
opposite sign.

Let us now consider in detail the energetic balance for
U > U, and its differences with respect to U < U,. At
very large U (not shown), as holes are injected into the
system, both intra- and inter-layer hopping contributions
first increase in absolute value, then saturate around ap-
proximatively quarter-filling, and eventually decrease as
the low-density regime is attained, as expected when ap-
proaching the bottom of the variational bands. In other
words, the behavior at large U between half- and quarter-
filling is quite different from the non-interacting case,
while becomes quite similar below. This points to a
very different influence of a strong interaction close to
half-filling and far away from it and, indirectly, empha-
sizes the role of the superconductivity that we find for
2>n>1 ForU 2 U, ie. closer to the half-filled
metal-insulator transition, the picture is slightly differ-
ent, as shown in Fig. [l for U/D = 3. To begin with,
at small dopings the system gains in intra-layer hopping
energy while the inter-layer one seems to be slightly re-
duced. Remarkably, even if the total energy is, within our
numerical accuracy, a smooth function of n, both hop-
ping contributions display a discontinuity at p/D ~ 1.28,
which corresponds to a local density of n ~ 1.27. Here
the occupation of the upper variational band goes to zero
(cfr. right panel of Fig. [), even though nothing simi-
lar occurs in the occupation of the physical antibonding
band. At this filling fraction, the inter-layer hopping en-
ergy gain has an upward jump, contrary to the intra-layer
one, even though further doping leads to a reduction of
both. A drop in the amplitude of the superconducting
order parameter A is also found at this point. Further
doping diminishes A, which vanishes approximatively
at quarter filling. A similar feature is observed in an-
other quantity. Indeed, just like n{ and n® may not
correspond to the occupation of the bonding and anti-
bonding bands, n® = n{ + nf, which is the average den-
sity of the BCS-like variational wavefunction, may differ
from the physical one. In the inset of Fig. [ we show
their difference for U/D = 3. We observe that they ac-
tually deviate when superconductivity is found and their
difference jumps down abruptly for n < 1.27.
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FIG. 4: (Color online) Superconducting inter-layer order pa-
rameter A for different U/Ds. In the inset we plot the differ-
ence between the local densities of the BCS variational wave-
function |¥o) and of the actual one |¥q), at U/D = 3.
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FIG. 5: (Color online) Left panel: Contributions to the varia-
tional energy as function of doping for U/D = 3. In the inset
the total energy Eyqr(n) = Eyer + pn is shown: despite the
discontinuities observed in the hopping contributions, the evo-
lution of E(n) is, to our numerical accuracy, smooth. Right
panel: Occupancies of lower, n{ and upper, n, variational
bands as function of n. Dotted lines represent average oc-
cupation of even, n., and odd, n,, orbitals. Note that the
insulating phase at half-filling is identified by the lower band
fully occupied and the upper one empty. The latter empties
again for doping 2 —n > 0.73.

V. CONCLUSIONS

In this work we have studied by means of an extension
of the Gutzwiller approximation the effect of doping a

bilayer Hubbard model. We have considered a value of
the inter-layer hopping ¢, such that, at half-filling, the
model should undergo a direct transition at U = U, from
a metal to a non-magnetic Mott insulator, a valence bond
crystal consisting of inter-layer dimers. This choice offers
the opportunity to study how a valence bond crystal lig-
uefies either by reducing the Coulomb repulsion keeping
the density fixed at one electron per site, or by adding
mobile holes. The melting upon decreasing U was already
shown® to lead to a superconducting phase intruding be-
tween the valence bond insulator at large U > U, and the
normal metal at weak U < U,.. Here we show that super-
conductivity arises also upon melting the valence bond
crystal by doping. In other words, the superconducting
dome that exists at half-filling close to U, extends into a
whole region at finite doping. The maximum supercon-
ducting signal is found at 20% doping, and beyond that
it smoothly diminishes, disappearing roughly at quarter
filling within our choice of parameters. These results are
appealing as they show that the well established behav-
ior of a two-leg Hubbard ladder!®:36:37:39 seems to survive
in higher dimensions, actually in the infinite-dimension
limit where our Gutzwiller approximation becomes ex-
act. It is obvious that, in spite of all improvements of the
Gutzwiller variational approach, to which we contribute a
bit with this work, this method remains variational hence
not exact. Therefore it is still under question if supercon-
ductivity indeed arises by metallizing the valence bond
Mott insulating phase of a Hubbard bilayer, which we
believe is an important issue of broader interest than the
simple bilayer model we have investigated2?. There are
actually quantum Monte Carlo simulations42:43:45:48 that
partially support our results as they show a pronounced
enhancement of superconducting fluctuations close to the
half-filled Mott insulator. However a true superconduct-
ing phase is still unaccessible to the lowest temperatures
that can be reached by quantum Monte Carlo. On the
other hand, dynamical mean field calculations, that can
access zero temperature phases, did not so far looked for
superconductivity®47. Therefore we think it would be
worth pursuing further this issue.
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