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Topologically isotopic and smoothly inequivalent 2–spheres
in simply connected 4–manifolds whose complement has

a prescribed fundamental group

RAFAEL TORRES

We describe a procedure to construct infinite sets of pairwise smoothly inequivalent 2–spheres in sim-
ply connected 4–manifolds, which are topologically isotopic and whose complement has a prescribed
fundamental group that satisfies some conditions. This class of groups include cyclic groups and the
binary icosahedral group. These are the first known examples of such exotic embeddings of 2–spheres
in 4–manifolds. Examples of locally flat embedded 2–spheres in a nonsmoothable 4–manifold whose
complements are homotopy equivalent to smoothly embedded ones are also given.

57K45, 57R55; 57R40, 57R52

1 Main results

The first main result of this note is the following theorem.

Theorem A Fix p � 2. There is an infinite set

fSn;p W n 2 Zg

of smoothly embedded 2–spheres in 2CP2 # 4CP2 that satisfies the following properties:

� Any two elements are topologically isotopic.

� There is a diffeomorphism of pairs

.2CP2 # 4CP2;Sn1;p/! .2CP2 # 4CP2;Sn2;p/

if and only if n1 D n2.

� The fundamental group of the complement is

�1.2CP2 # 4CP2
n �.Sn;p//D Z=p

for every n 2 Z.

� ŒSn;p �¤ 0 2H2.2CP2 # 4CP2IZ/ for every n 2 Z.

� Surgery along each of these 2–spheres yields an infinite set of pairwise homeomorphic and pairwise
nondiffeomorphic closed smooth 4–manifolds with fundamental group Z=p.
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Theorem A provides the first known example of an infinite set of 2–spheres smoothly embedded in a
simply connected 4–manifold that are pairwise topologically isotopic, pairwise smoothly inequivalent and
having a complement with finite cyclic fundamental group. Schwartz [2019, Theorem 2] pointed out the
existence of closed simply connected 4–manifolds containing pairs of smoothly embedded 2–spheres that
are both smoothly equivalent and topologically isotopic, but not smoothly isotopic. Examples of these
exotic embeddings of 2–spheres in closed 4–manifolds with simply connected complement have been
constructed by Akbulut [2015] and Auckly, Kim, Melvin and Ruberman [Auckly et al. 2015]. Exotic
embeddings of surfaces with positive genus in simply connected 4–manifolds and complement having
nontrivial fundamental group were found by Kim [2006] and Kim and Ruberman [2008]. An ingredient
in the proof of Theorem A is of independent interest: we point out in Theorem 1 that constructions of
inequivalent smooth structures on simply connected 4–manifolds of Fintushel and Stern [2011; 2012] can
be extended to produce such structures on 4–manifolds with nontrivial fundamental group too.

The second main result provides a construction procedure for topologically equivalent yet smoothly
inequivalent homologically essential 2–spheres whose complement can be chosen to have the same
fundamental group as a wide range of Q–homology 4–spheres. We work with the modified Seiberg–
Witten SW0X invariant of a closed 4–manifold X as defined, for example, in [Fintushel et al. 2007,
Section 2], and denote by BX the set of basic classes.

Theorem B Let fZn W n 2 Zg be an infinite set of closed smooth simply connected 4–manifolds with
pairwise different integer invariants

(1-1) Sn DmaxfjSW0Zn
.kZn

/j W kZn
2BZn

g;

which are pairwise homeomorphic to a given closed 4–manifold Z and such that the connected sum
Zn # S2 �S2 is diffeomorphic to Z # S2 �S2 for every n 2 Z. Let M be a closed smooth 4–manifold
with H�.M IQ/ŠH�.S

4IQ/ and set � WD �1M . Suppose that there is a loop ˛ �M and a choice of
framing such that

(1-2) S2
�S2

DM n �.˛/[D2
�S2:

There is an infinite set
fSn;� W n 2 Zg

of smoothly embedded 2–spheres in Z # S2 �S2 that satisfies the following properties.

� There is a homeomorphism of pairs

.Z # S2
�S2;Sn1;�/! .Z # S2

�S2;Sn2;�/

for every ni 2 Z.

� There is a diffeomorphism of pairs

.Z # S2
�S2;Sn1;�/! .Z # S2

�S2;Sn2;�/

if and only if n1 D n2.
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� The fundamental group of the complement is

�1.Z # S2
�S2

n �.Sn;�//D �

and its homology class satisfies

ŒSn;� �¤ 0 2H2.Z # S2
�S2
IZ/

for every n 2 Z.

� Surgery along each of these 2–spheres yields an infinite set fZn #M W n 2Zg of pairwise nondiffeo-
morphic closed smooth 4–manifolds with fundamental group � that are pairwise homeomorphic to
the connected sum Z # M .

See [Fintushel et al. 2007, Proof of Theorem 1] for details on the definition of the invariant (1-1). Fintushel
and Stern [2011; 2012] constructed infinite sets as in the hypothesis of Theorem B for Z DCP2 # kCP2

for 2 � k � 7. Baykur and Sunukian [2013] showed that Fintushel and Stern’s examples become
diffeomorphic after a connected sum with a single copy of S2�S2. Examples of Q–homology 4–spheres
M that satisfy the hypothesis are spun 4–manifolds with the fundamental group of any lens space and
the Poincaré homology 3–sphere. A similar result holds if (1-2) is substituted for the nontrivial bundle
S2 z�S2. It is possible to strengthen the conclusion of Theorem B to topologically isotopic 2–spheres,
although we do not pursue this endeavor here; see Sunukjian [2015].

A contribution of this note is to point out the simplicity of the proofs of Theorems A and B. The reader
will notice that the 4–manifolds in the last clause of Theorem B are smoothly reducible (see [Gompf and
Stipsicz 1999, Definition 10.1.17]), while those in the last clause of Theorem A are not. We explain in
Remark 10 how an instance of Theorem B implies the claims on the existence of the homeomorphism
of pairs and the nonexistence of the diffeomorphism of pairs of Theorem A. An independent proof
of Theorem A is given in Section 2.7 as well. The following consequence of Theorem B is another
contribution.

Corollary C Let G be a finite cyclic group or the icosahedral group

G D hg1;g2 W g1
5
D .g1g2/

2
D g2

3
i:

There is an infinite set of smoothly embedded 2–spheres in 2CP2 # 4CP2 that are pairwise topologically
equivalent , yet pairwise smoothly inequivalent , and the fundamental group of the complement is G.

These are the first examples of exotic embeddings of 2–spheres in simply connected 4–manifolds whose
complement has a fundamental group isomorphic to the binary icosahedral group among several other
choices of groups. We exhibit interesting smooth embeddings of nullhomotopic 2–spheres in the fourth
main result of this note.
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Theorem D There is an infinite set

(1-3) fSn W n 2 Zg

of 2–spheres smoothly embedded in 2CP2 # 4CP2 that satisfies the following properties.

� The fundamental group of the complement of an element in (1-3) is

�1.2CP2 # 4CP2
n �.Sn//D Z

and ŒSn�D 0 2 �2.2CP2 # 4CP2/ for every n 2 Z.

� There is a diffeomorphism of pairs

.2CP2 # 4CP2;Sn1
/! .2CP2 # 4CP2;Sn2

/

if and only if n1 D n2.

Notice that elements in (1-3) do not bound a smoothly embedded 3–ball in 2CP2 # 4CP2. The smoothly
inequivalent embeddings of homotopically trivial 2–spheres of Theorem D are related to a construction
of an infinite set of closed smooth 4–manifolds with infinite cyclic fundamental group and the homology
of the connected sum 2CP2 # 4CP2 # S1 �S3, which is given in Theorem 2.

While any 2–sphere in a closed simply connected 4–manifold can be assumed to be regularly immersed,
Hambleton and Kreck [1993b] and Lee and Wilczyński [1990; 1997] completely characterized when
a homology class of nonzero divisibility can be represented by a locally flat embedded 2–sphere. The
fifth and last result to be mentioned in this introduction records the existence of a myriad of explicit
examples of locally flat embedded 2–spheres in closed simply connected 4–manifolds whose exteriors
are homotopy equivalent but not homeomorphic.

Theorem E For every p � 2, there is a locally flat embedded 2–sphere

(1-4) Sp � �CP2 # CP2

whose complement has finite cyclic group Z=p, and it is homotopy equivalent to the complement of a
smoothly embedded 2–sphere

(1-5) S 0p �CP2 # CP2:

Theorem E is essentially derived from an existence result of nonsmoothable Q–homology 4–spheres due
to Hambleton and Kreck [1993a]. Other interesting examples were found by Kasprowski, Lambert-Cole,
Land and Lecuona [Kasprowski et al. 2021].
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2 Proofs

2.1 Infinitely many inequivalent smooth structures

Fintushel and Stern [2012, Theorem 1] showed that there is a nullhomologous 2–torus T smoothly
embedded in CP2 # 3CP2 such that performing surgeries on T results in infinitely many inequivalent
smooth structures on CP2 # 3CP2. We point out that changing the coefficients of the torus surgery on T

introduces homotopically nontrivial loops to the resulting 4–manifold, and their procedure also yields
infinitely many smooth structures on 4–manifolds with prescribed cyclic fundamental group. The latter
will serve as raw material to construct the knotted 2–spheres.

We introduce terminology to state the result and follow the notation in [Fintushel and Stern 2012, Section 3].
Let T � X be a smoothly embedded 2–torus with trivial tubular neighborhood �.T / D T 2 � D2.
Let fa; bg be loops in T that form a symplectic basis of �1T D Z2, and let fS1

a ;S
1
b
g be loops in

@�.T / D T 2 � @D2 D T 2 � S1 that are homologous to a and b, respectively. The meridian of T is
denoted by �T and it is any curve in the same isotopy class of the curve fxg�@D2 � @�.T /. The smooth
4–manifold

(2-1) XT;S1
b
.p=n/ WD .X n �.T //[' .T

2
�D2/;

where the gluing diffeomorphism satisfies '�.Œ@D2�/DnŒS1
b
�CpŒ�T �, is said to be obtained by performing

a p=n–torus surgery to X on T along the curve b.

We first consider the case of finite cyclic fundamental group and postpone the infinite cyclic case to the
end of the section.

Theorem 1 Fix p � 2. There is a smoothly embedded nullhomologous 2–torus T �CP2 # 3CP2 and a
nullhomologous curve in its complement S1

b
�CP2 # 3CP2 n �.T / such that performing a p=n–torus

surgery to CP2 # 3CP2 on T along S1
b

yields an infinite set

(2-2) fXT;S1
b
.p=n/ W n 2 Zg

of pairwise nondiffeomorphic 4–manifolds such that every element is homeomorphic to the connected
sum

(2-3) CP2 # 3CP2 #†p;

where †p is a Q–homology 4–sphere with fundamental group �1†p D Z=p.

Proof The only contribution in this note to the work of Fintushel and Stern [2011; 2012] that provides a
proof of Theorem 1 is the change in a coefficient of the torus surgery. We then employ a homeomorphism
criteria of Hambleton and Kreck to pin down the homeomorphism class of the closed 4–manifolds that
are constructed this way. Set X WD CP2 # 3CP2 so to not overload the notation. Fintushel and Stern
[2012, Theorem 1.1] showed the existence of a nullhomologous torus T � X and the curve b � T

Algebraic & Geometric Topology, Volume 24 (2024)
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with framing S1
b
� X n �.T / as in the statement of Theorem 1. Build XT;S1.p=n/ as in (2-1). Since

ŒT �D 0 2H2.X IZ/, we have that H1.XT;S1
b
.p=n/IZ/D Z=p for every n 2 Z; in this notation, p D 0

corresponds to Z. We now fix p � 2.

To see that the fundamental group of XT;S1
b
.p=n/ is Z=p, we take a closer look at the construc-

tions of Fintushel and Stern [2011; 2012], where six torus surgeries along six nullhomologous 2–tori
fT1;i ;T2;i W i D 1; 2; 3g are performed to X to produce a symplectic 4–manifold Q with fundamental
group �1.Q/DZ6 and that contains six Lagrangian 2–tori fL1;i ;L2;i W i D 1; 2; 3g [Fintushel and Stern
2011, Proposition 7; 2012, page 77]. The complements of these 2–tori are the same, ie

(2-4) X n

3[
iD1

.�.T1;i/t �.T2;i//DQ n

3[
iD1

.�.L1;i/t �.L2;i//:

By applying six surgeries to the symplectic 4–manifold Q along the Lagrangian 2–tori with a given choice
of surgery curves [Fintushel and Stern 2011, Theorem 2], one obtains an infinite set of inequivalent smooth
structures on X . The first five surgeries are j1=1j–torus surgeries, while the last one is a 1=n–torus surgery
[Fintushel and Stern 2011, page 1685]. In particular, this infinite set can be obtained by performing
torus surgeries to X on six nullhomologous 2–tori. For our purposes, we perform the first five surgeries
verbatim as in the proof of [Fintushel and Stern 2011, Theorem 2], but change the surgery coefficients of
the sixth surgery to perform a p=n–torus surgery in order to obtain an infinite set

(2-5) fXT;S1
b
.p=n/ W n 2 Zg

for a fixed p � 2. It follows from the Seifert–van Kampen theorem that the fundamental group is
�1.XT;S1

b
.p=n// D Z=p [Baldridge and Kirk 2009, page 321] for every n 2 Z; a detailed account

on the computation of the fundamental group of the 4–manifolds obtained with such a change in the
surgery coefficient can be found in several places in the literature, for example [Akhmedov and Park
2010, page 595; Baldridge and Kirk 2009, Section 5]. We have explained so far that six surgeries on six
nullhomologous 2–tori in X as in [Fintushel and Stern 2011, Theorem 2] produce an infinite set (2-5) of
4–manifolds with fundamental group Z=p.

We now appeal to the main result of Fintushel and Stern [2012, Section 8], which is that the first five
surgeries on X do not change the diffeomorphism type of X and, thus, there is a single nullhomologous
2–torus T � X along with a nullhomologous curve S1

b
� X n �.T / such that a 1=n–torus surgery

produces an infinite set of smooth structures on X , as we had mentioned before [Fintushel and Stern
2012, Theorem 1.1]. Thus, we conclude that each element in the set (2-5) is obtained by performing a
p=n–torus surgery on T �X along S1

b
.

We now argue that these 4–manifolds are homeomorphic to (2-3). An inclusion-exclusion argument
indicates that the Euler characteristic is unchanged under torus surgeries, ie

(2-6) �.XT;S1
b
.p=n//D �.X /D 6:

Algebraic & Geometric Topology, Volume 24 (2024)
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Novikov additivity [Gompf and Stipsicz 1999, Remark 9.1.7] implies

(2-7) �.XT;S1
b
.p=n//D �.X /D�2;

and we conclude that the second Stiefel–Whitney class of XT;S1
b
.p=n/ does not vanish employing a result

of Rohklin; see [Gompf and Stipsicz 1999, Theorem 1.2.29]. A classification result of Hambleton and
Kreck [1993a, Theorem C] allows us to conclude that the 4–manifold XT;S1

b
.p=n/ is homeomorphic to

CP2 # 3CP2 #†p , where †p is a closed smooth 4–manifold with Euler characteristic two and signature
zero for every n 2 Z and p � 2.

To argue that we have constructed infinitely many 4–manifolds that are pairwise nondiffeomorphic, we com-
pute their Seiberg–Witten invariants using an argument well documented in the literature [Akhmedov et al.
2008; Baldridge and Kirk 2009; Fintushel et al. 2007; Fintushel and Stern 2011; 2012]. We reproduce the
argument here for the sake of completeness, which requires us to describe the relation between the Seiberg–
Witten invariants of the 4–manifolds XT;S1

b
.p=n/, X and XT;S1

b
.0=1/. Given a characteristic element

k0 2H2.XT;S1
b
.0=1/IZ/, there are unique characteristic elements kX 2H2.XT;S1

b
.1=0/IZ/DH2.X IZ/

and kp=n 2H2.XT;S1
b
.p=n/IZ/ [Akhmedov et al. 2008, Remark 4; Fintushel and Stern 2011, page 64].

The 4–manifolds XT;S1
b
.1=0/DX and XT;S1

b
.0=1/ will have at most one basic class up to sign in our

setting; cf [Akhmedov et al. 2008; Fintushel and Stern 2011; 2012]. As described in [Fintushel and
Stern 2012, Section 3], the 4–manifold XT;S1

b
.0=1/ has infinite cyclic fundamental group and it admits a

symplectic structure [Fintushel and Stern 2012, Section 4]; cf [Fintushel et al. 2007, Section 3]. A result
of Taubes [1994] says that the canonical class k0 D �c1.XT;S1

b
.0=1// is a basic class of XT;S1

b
.0=1/

and SWXT;S1
b
.0=1/.˙k0/ D ˙1. Moreover, the adjunction inequality — see [Akhmedov et al. 2008,

Section 2.1] — implies that k0 2B is the only basic class up to sign.

It follows that there is a unique kp=n 2BXT;S1
b
.p=n/ up to sign for every n� 1, and the product formula

of Morgan, Mrowka and Szabó [Morgan et al. 1997, Theorem 1.1] yields

(2-8) SWX
T;S1

b

.p=n/.kp=n/D p �SWX .kX /C n �
X

i

SWX
T;S1

b

.0=1/.k0C i ŒT0�/:

There is a 2–torus Td �XT;S1
b
.0=1/ that is geometrically dual to the core 2–torus T0 �XT;S1

b
.0=1/ of

the surgery. Along with this fact, an adjunction inequality argument implies that the sum on the right-hand
side of (2-8) contains at most one nonvanishing term; see [Akhmedov et al. 2008, Section 4.1] for the
argument. We have the equality

(2-9) SWX
T;S1

b

.p=n/.kp=n/D p �SWX .kX /C n �SWX
T;S1

b

.0=1/.k0/

and we conclude that there is an infinite set of pairwise nondiffeomorphic closed 4–manifolds (2-2).

What is obtained when we set p D 0 in the statement of Theorem 1 and the previous proof, is an infinite
set fXT;S1

b
.0=n/ W n 2 Z� f0gg of pairwise nondiffeomorphic closed 4–manifolds with infinite cyclic

fundamental group and the same homology of the connected sum 2CP2 # 4CP2 # S1�S3; see Fintushel
and Stern [2012, Theorem 1.1].
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Theorem 2 There is a smoothly embedded nullhomologous 2–torus T �CP2 # 3CP2 and a nullhomol-
ogous curve in its complement S1

b
�CP2 # 3CP2 n �.T / such that performing a 0=n–torus surgery to

CP2 # 3CP2 on T along S1
b

yields an infinite set

(2-10) fXT;S1
b
.0=n/ W n 2 Z�f0gg

of pairwise nondiffeomorphic 4–manifolds with infinite cyclic fundamental group and such that every
element has the homology of the connected sum

(2-11) 2CP2 # 4CP2 # S1
�S3:

Similar statements to Theorems 1 and 2 for further choices of homeomorphism types of 4–manifolds
with cyclic fundamental group are produced by employing other results of Fintushel and Stern [2012].

2.2 2–spheres whose complement has a prescribed fundamental group

Let X be a closed smooth 4–manifold whose fundamental group has a presentation

(2-12) �1X D hg1; : : : ;gj W r1; : : : ; rki

such that adding the relation g1 D 1 to it for a given generator g1, one obtains the trivial group. Cyclic
groups and the group hg1;g2 W g1

5 D .g1g2/
2 D g2

3i are examples of such groups.

Let ˛1 �X be a based loop whose homotopy class is Œ˛1�D g1 2 �1X . Build the closed smooth simply
connected 4–manifold

(2-13) Z WDX n �.˛1/[ .D
2
�S2/

and consider the belt 2–sphere

(2-14) S WD f0g �S2
�D2

�S2
�Z:

Further information is needed on the framing of the loop ˛1 � X to pin down the diffeomorphism or
homeomorphism type of Z. Once this is taken care of, this process provides a 2–sphere (2-14) smoothly
embedded in Z and whose complement has fundamental group G. A topological construction of locally
flat 2–surfaces in topological 4–manifolds is obtained by using locally flat embedded submanifolds in
the surgery (2-13); see [Freedman and Quinn 1990, Section 9.3] for existence and uniqueness results on
tubular neighborhoods of locally flat embedded submanifolds.

We set some notation and construct the 2–spheres of Theorem A using this procedure in the following
example. It includes the choice of framing on the loop whose homotopy class generates the fundamental
group.

Example 3 Fix p � 2 and an integer n 2 Z. Consider the 4–manifold XT;S1
b
.p=n/ in the set (2-2) and

let yT � XT;S1
b
.p=n/ be the core 2–torus of the surgery. Let ˛ � XT;S1

b
.p=n/ be a loop such that the

4–manifold

(2-15) Zn;p WD .XT;S1
b
.p=n/ n �.˛//[ .D2

�S2/

Algebraic & Geometric Topology, Volume 24 (2024)
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is simply connected and consider the belt 2–sphere

(2-16) Sn;p WD f0g �S2
�D2

�S2
�Zn;p:

Notice that the loop ˛ lies on the boundary of @�. yT /. The framing on the loop ˛ is induced by the product
framing of core torus of the p=n–torus surgery. The complement of the 2–sphere (2-16) has fundamental
group

(2-17) �1.Zn;p n �.Sn//D Z=p;

and the homology class of (2-16) satisfies ŒSn;p �¤ 0 2H2.Zn;pIZ/. Moreover, the 4–manifold Xn;p is
recovered by applying surgery to Zn;p along Sn;p.

2.3 The ambient 4–manifold of Theorems A and D

We prove in this section that the 2–spheres (2-16) of Example 3 are all smoothly embedded in 2CP2#4CP2,
and postpone to Section 2.7 the proof that they are pairwise smoothly inequivalent.

Proposition 4 The 4–manifold Zn;p from (2-15) is diffeomorphic to the connected sum 2CP2 # 4CP2

for every n 2 Z and a fixed p � 2. In particular , there is an infinite set

(2-18) fSn;p W n 2 Zg

of 2–spheres smoothly embedded in Z D 2CP2 # 4CP2 such that the complement Z n �.Sn;p/ has
fundamental group Z=p for every n 2 Z.

Proof We use an argument due to Moishezon [1977, Lemma 13] (see also Gompf [1991, Lemma 3])
and work of Baykur and Sunukjian [2013] to establish the diffeomorphism type of our 4–manifolds. We
follow the notation in [Gompf 1991, Lemma 3], fix an n 2 Z and a p � 2, and consider the 4–manifold
XT;S1

b
.p=n/ in (2-2) that is constructed from CP2 # 3CP2 using torus surgeries and the 4–manifold

Zn;p built in (2-15). Perform a torus surgery to XT;b.p=n/ which identifies the loop that generates its
fundamental group with the normal disk to the 2–torus to obtain a simply connected 4–manifold yN ; this
gluing map is described on [Gompf 1991, page 101]. The latter 4–manifold can also be obtained by
applying a torus surgery to CP2 #3CP2. Moishezon’s argument implies that Zn;p is obtained from yN by
doing surgery along a loop [Gompf and Stipsicz 1999, Section 5.2], ie Zn;pDN �D yN #S2�S2 [Gompf
and Stipsicz 1999, Propositions 5.2.3 and 5.2.4]. Results of Baykur and Sunukjian [2013, Section 3]
imply that yN # S2 �S2 is diffeomorphic to CP2 # 3CP2 # S2 �S2 D 2CP2 # 4CP2. Since the choice
of n and p was arbitrary, we conclude that Zn;p is diffeomorphic to 2CP2 # 4CP2 for every n 2 Z and
p � 2.

A tweak to the proof of Proposition 4 pins down the diffeomorphism type of the 4–manifolds constructed
in the proof of Theorem D.

Algebraic & Geometric Topology, Volume 24 (2024)
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2.4 Topological isotopy

Locally flat embeddings of 2–spheres in 4–manifolds whose complement has finite cyclic fundamental
group have been studied by Lee and Wilczynśki [1990] and Hambleton and Kreck [1993b, Theorem 4.5].
The next result from their work is of particular importance for our purposes.

Theorem 5 (Lee–Wilczyński, Hambleton–Kreck) Let X be a closed simply connected topological 4–
manifold such that b2.X / > j�.X /jC2 and let h2H2.X IZ/ be a homology class of nonzero divisibility
p ¤ 0. Let S1;S2 �X be locally flat embedded 2–spheres with homology classes

ŒS1�D ŒS2�D h 2H2.X IZ/;

and whose complement has fundamental group �1.X n �.S1//D Z=p D �1.X n �.S2// for p � 2. If

(2-19) b2.X / > max
0�j<p

j�.X /� 2j .p� j /.1=p2/h � hj;

then there is a topological isotopy between S1 and S2.

Notice that our ambient 4–manifold 2CP2 # 4CP2 is within the range of the hypothesis of Theorem 5.
Moreover, the homology class of the belt 2–sphere (2-16) of Example 3 has nonzero divisibility and
self-intersection zero by construction. We conclude that the 2–spheres that were constructed in the
previous sections are all topologically isotopic to each other by Theorem 5.

Corollary 6 The infinite set fSn;p W n 2 Zg of Proposition 4 is made of smoothly embedded 2–spheres
in 2CP2 # 4CP2 that are pairwise topologically isotopic.

2.5 Some examples of F–homology 4–spheres

Constructions of 4–manifolds that have the same F–homology as S4 are not scarce in the literature.
For example, a surgery theory construction of Q–homology 4–spheres with finite cyclic fundamental
group is given by Hambleton and Kreck [1993a, Proposition 4.1]. Their examples include 4–manifolds
with nonvanishing Kirby–Siebermann invariant and they admit no smooth structure. We describe two
constructions of such objects in this section.

The first involves doing surgery on the product of a 3–manifold with a circle. Spun closed smooth
4–manifolds form a classical set of examples of 4–manifolds that share the homology of S4 with F–
coefficients and whose fundamental group is a 3–manifold group. We briefly recall their construction and
suppose that N is a closed orientable 3–manifold. A homology 4–sphere †N with fundamental group
�1†N D �1N is constructed as

(2-20) †N WD .N �S1/ n �.fptg �S1/[id .D
2
�S2/;

where we use the identity map to identify the common boundary. There is another choice of framing, yet
results of Plotnick [1986] state that there is a unique diffeomorphism class of (2-20) for the 3–manifolds
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employed in this paper. If N is an F–homology 3–sphere, then †N is an F–homology 4–sphere. There
are two principal choices of 3–manifold used in the proofs of our results:

� For N DL.p; 1/, we obtain a Q–homology 4–sphere †L.p;1/ with fundamental group

�1†L.p;1/ D Z=p:

� For N D†.2; 3; 5/, we obtain a Z–homology 4–sphere ††.2;3;5/ with fundamental group

�1††.2;3;5/ D ha; b W a
5
D .ab/2 D b3

i:

A second construction of smooth Q–homology 4–spheres with finite cyclic fundamental group is through
handlebodies. Gompf and Stipsicz’s [1999, Figure 5.46] depiction of a pair of orientable S2–bundles
over RP2 describes a handlebody of a pair of Q–homology 4–spheres with fundamental group of order
two whose second Stiefel–Whitney class can be chosen to vanish or not depending on the n–framing
of one of the two 2–handles. Handlebodies of pairs of Q–homology 4–spheres f†p;n W n 2 f0; 1gg with
fundamental group

�1†p;n D Z=p

for every p � 2 and second Stiefel–Whitney class

w2†p;n D n

consisting of one 0–handle, one 1–handle, one 0–framed 2–handle, one n–framed 2–handle, one 3–handle,
and one 4–handle are drawn as a straight-forward extension of the p D 2 case [Gompf and Stipsicz 1999,
Figure 5.46].

2.6 2–spheres in simply connected 4–manifolds via F–homology 4–spheres

The 4–manifolds of the previous section and the procedure of Section 2.2 yields knotted 2–spheres
smoothly embedded in the total space of an S2–bundle over S2. The case of most interest for us is
summarized in the following lemma.

Lemma 7 [Sato 1991, Section 3] There is a smoothly embedded 2–sphere Sp ,! S2 � S2 whose
complement has fundamental group Z=p for every p � 2.

There is a smoothly embedded 2–sphere SG ,! S2 � S2 whose complement has fundamental group
G D ha; b W a5 D .ab/2 D b3i or Z=p.

A variation of the proof of Proposition 4 yields a proof of Lemma 7 by using Moishezon’s argument [1977],
a lemma of Gompf [1991, Lemma 1.6] and a result of Akbulut [1999, Theorem]; cf [Tange 2014]. Another
proof of Lemma 7 is obtained by using handlebodies [Akbulut 1999; 2016; Gompf and Stipsicz 1999].

2.7 Proof of Theorem A

We collect the results of previous sections into a proof of the following theorem, which is equivalent to
Theorem A.
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Theorem 8 Fix p � 2. There is an infinite set

(2-21) fSn;p � 2CP2 # 4CP2
W n 2 Zg

made of topologically isotopic 2–spheres whose complement has fundamental group Z=p, and for
which doing surgery on each element yields the infinite set (2-2) of pairwise nondiffeomorphic smooth
4–manifolds in the homeomorphism class of CP2 # 3CP2 #†p.

In particular , there is a diffeomorphism of pairs

(2-22) .2CP2 # 4CP2;Sn1;p/! .2CP2 # 4CP2;Sn2;p/

if and only if n1 D n2, and the infinite set (2-21) consists of pairwise smoothly inequivalent 2–spheres.

Proof The infinite set (2-21) was constructed in Section 2.2. The fundamental group of the complement
of any 2–sphere is a prescribed finite cyclic group; see Example 3. Corollary 6 says that elements in
(2-21) are pairwise topologically isotopic. As indicated in Example 3, the 4–manifold XT;S1

b
.p=n/ in the

infinite set (2-2) is obtained by carving out a tubular neighborhood �.Sn;p/ of a 2–sphere in (2-21) from
2CP2 # 4CP2, and capping off the boundary with S1 �D3. Given that the infinite set (2-2) is made
of pairwise nondiffeomorphic 4–manifolds, we conclude that the infinite set (2-21) is made of pairwise
smoothly inequivalent 2–spheres.

Remark 9 A minor modification to the previous argument yields a proof of Theorem D.

2.8 Proof of Theorem B

Let fZn W n 2 Zg be an infinite set of pairwise nondiffeomorphic 4–manifolds in the homeomorphism
class of Z. Taking a connected sum with any Q–homology 4–sphere M yields an infinite set

(2-23) fZn # M W n 2 Zg

of reducible pairwise nondiffeomorphic 4–manifolds that are pairwise homeomorphic to Z # M . The
smooth structures are distinguished with the Seiberg–Witten invariant of the connected sums using the
fact that b1.M /D 0D bC

2
.M / and results of Kotschick, Morgan and Taubes [Kotschick et al. 1995]. By

hypothesis, there is a SpinC–structure on Zn for which the Seiberg–Witten invariant SWZn
is nonzero.

As explained in [Kotschick et al. 1995, Proof of Proposition 2], the SpinC–structure can be extended to
the connected sum Zn # M and conclude that there is a SpinC–structure for which SWZn#M D SWZn

.
This implies that the infinite set fZn # M W n 2 Zg consists of pairwise nondiffeomorphic 4–manifolds
that are pairwise homeomorphic to Z # M .

We do surgery along the loop ˛ �Zn # M as in the hypothesis of Theorem B verbatim to the procedure
described in Example 3 to construct an infinite set

(2-24) fSn;� W n 2 Z; � D �1M g
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of smoothly embedded 2–spheres in Z#S2�S2 whose complement has fundamental group �D�1M . By
construction we obtain a homeomorphism of pairs between .Z#S2�S2;Sn1;�/ and .Z#S2�S2;Sn2;�/

for every ni 2 Z. Surgery on the belt 2–sphere Sn;� �Z # S2 �S2 gives us Zn # M back. Since the
infinite set (2-23) is made of pairwise nondiffeomorphic 4–manifolds, we conclude that there is no
diffeomorphism of pairs

(2-25) .Z # S2
�S2;Sn1;�/! .Z # S2

�S2;Sn2;�/

if n1 ¤ n2.

Remark 10 We elaborate on an argument to prove Theorem A by using the construction procedure of
Theorem B. The ingredients that satisfy the hypothesis of the latter are the following. Take the infinite set
fZn W n 2Zg of pairwise nondiffeomorphic 4–manifolds that are homeomorphic to CP2 # 3CP2 that was
constructed by Fintushel and Stern [2012]. These 4–manifolds have different Seiberg–Witten invariant. A
result of Baykur and Sunukjian [2013] implies that Zn # S2 �S2 is diffeomorphic to 2CP2 # 4CP2 for
every n 2 Z. As the 4–manifold M in the statement of Theorem B, use the Q–homology 4–sphere †p;0

that was discussed in Section 2.6 with �1†p;0 D Z=p. Build the infinite set

(2-26) fZn #†p;0 W n 2 Zg

of closed reducible 4–manifolds that are homeomorphic to CP2 # 3CP2 #†p;0. The set (2-26) consists
of pairwise nondiffeomorphic 4–manifolds, where the diffeomorphism classes are distinguished by their
Seiberg–Witten invariants [Kotschick et al. 1995, Proposition 2]. Proceed as in the proof of Theorem B
and build an infinite set (2-24) of pairwise smoothly inequivalent 2–spheres. These submanifolds have
the required properties by construction and they are pairwise topologically isotopic by Theorem 5.

2.9 Proof of Corollary C

We check that the hypothesis of Theorem B are met in these cases. As the infinite set fZn W n 2 Zg we
can take the infinite inequivalent smooth structures on CP2 # 3CP2 constructed by Fintushel and Stern
[2012]. Work of Baykur and Sunukjian [2013, Theorem] implies that Zn # S2�S2 D 2CP2 # 4CP2 for
every n 2 Z; this connected sum is the simply connected 4–manifold in the statement of Corollary C.
The Q–homology 4–spheres with the desired fundamental group were constructed in Section 2.5; see
Lemma 7.

2.10 Proof of Theorem E

Hambleton and Kreck [1993a, Proposition 4.1] used surgery to prove the existence of a Q–homology
4–sphere Mp with nonzero second Stiefel–Whitney class w2.Mp/¤ 0, nonvanishing Kirby–Siebenmann
invariant KS.Mp/ ¤ 0, and fundamental group �1Mp D Z=p for every p � 2. Carve out the loop in
Mp whose homotopy class generates the group �1Mp D Z=p, and glue back a locally flat copy of
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D2�S2 to obtain a simply connected 4–manifold yM with Euler characteristic �. yM /D �.Mp/C 2D 4,
signature �. yM /D �.Mp/, second Stiefel–Whitney class w2. yM /¤ 0 and Kirby–Siebenmann invariant
KS. yM /¤ 0. A result of Freedman and Quinn [1990, Section 10.1] states that yM is homeomorphic to the
connected sum �CP2 # CP2 of the Chern manifold and the complex projective space with the opposite
orientation for every p � 2; cf [Gompf and Stipsicz 1999, Theorem 1.2.27]. The fundamental group of
the complement of the belt 2–sphere Sp of the surgery is isomorphic to �1Mp D Z=p.

To produce the smoothly embedded 2–sphere S 0p �CP2 # CP2 as in (1-5) and prove the last clause of
Theorem E, perform surgery to the smooth Q–homology 4–sphere †p;1 described in Section 2.6.
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