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Abstract

Despite the considerable body of research dedicated to the field of neurodegeneration, the gap in knowledge on the prion
protein and its intricate involvement in brain diseases remains substantial. However, in the past decades, many steps forward
have been taken toward a better understanding of the molecular mechanisms underlying both the physiological role of the
prion protein and the misfolding event converting it into its pathological counterpart, the prion. This review aims to provide
an overview of the main findings regarding this protein, highlighting the advantages of many different animal models that
share a conserved amino acid sequence and/or structure with the human prion protein. A particular focus will be given to the
species Danio rerio, a compelling research organism for the investigation of prion biology, thanks to its conserved orthologs,
ease of genetic manipulation, and cost-effectiveness of high-throughput experimentation. We will explore its potential in
filling some of the gaps on physiological and pathological aspects of the prion protein, with the aim of directing the future

development of therapeutic interventions.
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Introduction

The human PRNP gene, located on chromosome 20, encodes
a 253 amino acid precursor protein containing two exons, with
the entire coding region being delimited in the second one, thus
excluding possible alternative splicing [1]. The mature cellular
prion protein (PrPC) is formed by the removal of N-terminal and
C-terminal signal peptides (amino acids 1-22 and 232-253), and
by the addition of a glycosylphosphatidylinositol (GPI)-anchor
at the C-terminus, which attaches the protein to the outer leaflet
of the plasma membrane [2—4].

The structure of PrP€ is now well characterized, showing
a N-terminal domain, consisting of an octarepeat region and
a hydrophobic section, and a C-terminal domain, containing
three a-helices (a1-3), three short segments of B-strands (30
[5], B1, and B2), a disulfide bridge between amino acids 179
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and 214 which comprises two N-linked glycosylation sites
at the amino acids 181 and 197 [2, 6-9].

The cellular prion protein is an ubiquitously expressed
protein mainly found in brain tissue, largely in the gray mat-
ter, but also in non-neuronal cells such as choroid plexus
cells, ependymal cells, and endothelial cells of brain vessels
[2, 6, 10]. Moreover, its expression has been reported in
astrocytes [11-15], oligodendrocytes [15, 16], and microglia
[10], in cells of the immune system like lymphocytes and
mast cells [17, 18], and in many other body compartments
such as heart, liver, intestine, and kidney [6, 12, 16, 18].

This widely spread expression suggests a plethora of
physiological functions in which PrP may be involved [6],
among which neuritogenesis [19, 20], cell signaling [21, 22],
cell adhesion [19, 23], response against stress [24—-26], cir-
cadian rhythms [27], recovery from sleep deprivation [28],
neural stem differentiation in the central nervous system [15,
29, 30], myelination in the peripheral nervous system [31],
and synaptic plasticity [32].

However, this protein aroused interest among research-
ers mainly for its role in neuropathology. In fact, the cel-
lular prion protein (PrP®) can structurally convert into a
misfolded isoform, commonly termed PrP Scrapie (PrP°),
through a posttranslational process during which it acquires
a higher p-sheet content [8, 33-35]. This proteinaceous
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infectious particle devoid of nucleic acid, formed largely, if
not entirely, by the cumulation of PrP%, is defined as prion
[36], characterized by transmissibility among individuals
from the same and often different species and resistance to
proteinases, heat, or conventional decontamination meth-
ods that modify nuclei acids (distinguishing it from viruses,
plasmids, and viroids) [37]. Aggregation of prions in the
central nervous system is the molecular hallmark of prion
diseases, a class of rapidly progressive and transmissible
neurodegenerative disorders affecting humans and other
mammal species [2, 33, 38]. These diseases, which are also
called transmissible spongiform encephalopathies (TSEs),
include among others Creutzfeldt-Jakob disease (CJD),
kuru, Gerstmann—Striussler—Scheinker syndrome (GSS),
and fatal familial insomnia (FFI) in humans, and scrapie,
bovine spongiform encephalopathy (BSE), and chronic wast-
ing disease (CWD) in animals [39].

Both in humans and animals, this misfolded protein can
also act as a template, recruiting other cellular PrP mol-
ecules and converting them into their pathological coun-
ter forms in a deleterious cascade of events, enabling the
disease to spread [40]. Moreover, many neurodegenerative
diseases, such as Alzheimer, Parkinson, and frontotemporal
dementia, show a similar prion-like protein misfolding and
aggregation mechanisms [41]. In addition, the cellular prion
protein seems to act as a toxicity-transducing receptor for the
fibrillar aggregates involved in these diseases [42]. Specifi-
cally, in neuronal cells, PrPC can mediate the toxic effects
exerted by prions [43, 44], B-amyloid [45, 46], tau [47-49],
a-synuclein [50, 51], and TDP-43 [52].

The rapid intercourse of prion diseases, as well as the
involvement in other neurodegenerative diseases, opened a
new series of questions concerning this protein.

In the majority of human cases, prion diseases arise spo-
radically with the spontaneous conversion of PrP€ into PrP5
[38, 53-55], while a smaller percentage is inherited, asso-
ciated with mutations in the open reading frame of PRNP
[39, 56]. In both cases, solving the 3-dimensional structure
of PrP is crucial to discover the biochemical mechanisms
leading to their misfolding.

Few data are available on the 3D structure of PrP%, since
X-ray crystallography or NMR spectroscopy have to face
the problem of the insolubility of the scrapie form, besides
the heterogeneity of the samples [57, 58]. However, -sheet
enrichment, as a result of the PrPC-PrP®° conversion process,
has been demonstrated by optical spectroscopy and struc-
tural prediction methods through the combination of com-
putational analysis and available biochemical and genetic
data [59, 60]. The beta structures, arranged to form left-
handed B-helices [61], have been also characterized with
low-resolution techniques [62] and secondarily proven with
the analysis of seeded fibrils exploited to label structures in
brain tissue [63, 64]. Cryo-EM measurements showed that
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PrP5° may have a four-rung B-solenoid architecture arrange-
ment [65], which could explain the high content of 3-sheets
and the resistance to protease digestion [58], specificities
that differentiate it from the physiological counterpart.
However, this structure has been doubted [66], highlighting
the unresolved issues still ongoing on the matter. Recently,
Cryo-EM high-resolution structures of mammalian prions
have become increasingly more available [67-69], provid-
ing important clues on the structural characteristics that may
account for their pathogenicity [70]. Despite paving the way
for interesting future directions, significant gaps in under-
standing the molecular characterization of different strains,
as well as the replication mechanisms and the species trans-
missibility barrier, still persist.

On the contrary, taking advantage of different animal
species, in which PrPC structure is conserved, a consist-
ent amount of structural data is available for the cellular
isoform [1, 3, 7, 8, 34, 35, 71-73], on which studies have
been strongly focusing to better understand the biochemical
mechanisms leading to the misfolding event.

Conserved PrP Structure Among Different
Animals

The primary structure of PrP€ is highly conserved among
different mammals [34, 71, 72, 74], allowing the usage of
different animal models to get new insights into the molecu-
lar mechanisms leading to the pathology.

Bacterially expressed recombinant PrP (recPrP), despite
lacking Asn-linked glycosylation at residues 181 and 197 [75],
is structurally equivalent to PrP€, and it has been used to gain
more structural insights into the 3D structure by NMR and
X-ray crystallography. The full-length form of PrP has a peculiar
structure, conserved among different species: the N-terminal
domain (amino acids 23—127) is intrinsically disordered and
unstructured, while the C-terminus (amino acids 128-231) is
folded into a globular conformation, with predominantly alpha-
helical conformations and little 3 sheet content [8, 73, 76].

As described above, the N-terminal is characterized by
an octapeptide region, with a distinctive consensus sequence
(PHGGGWGQ), which is a determinant in metal binding
through the histidine residues, and it is involved in stabiliz-
ing the full-length protein, preserving its native folding [71,
77-79]. In addition, the hydrophobic section, in a region
denoted as the non-octarepeat (non-OR) region, was evalu-
ated for the association between histidine residues and cop-
per binding in the conversion propensity of PrP€ to PrPS,
with controversial results [7, 9, 71, 79-81].

The first animal PrP structures characterized with NMR were
mouse PrP (MoPrP) [82] and hamster PrP (ShPrP) [83], both
showing a high 3D similarity with human PrP (HuPrP) [8]. Both
full-length proteins have overlapping structural domains with
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the human 3D assembly, along with the metal binding regions
discussed above, a fundamental similarity allowing animal
studies to be reliable also for human purposes.

The NMR structures of other mammals have been
resolved, such as cats, dogs, pigs, and the two polymor-
phisms in sheep, which all share a specific conserved archi-
tecture of the globular domain with some local structural
variations accounting for the different disease susceptibili-
ties [84]. The rabbit, which instead is proven not to be sus-
ceptible to prion diseases [85], has some specific character-
istics, such as the unique distribution of surface electrostatic
potential, that could account for the missed conversion [86].
This last specific example further explains why structural
studies are of fundamental importance for understanding the
molecular mechanism of pathological conversion.

The species barrier in prion diseases, a complex and
multifaceted mechanism, can be influenced by various fac-
tors, including the degree of homology of the prion proteins
between the recipient and host species [72, 87], prompting
the need for an analysis on the amino acid level.

The evolutionary conservation of the prion protein was
addressed, finding a high level of amino acid sequence iden-
tity within mammals and birds: in particular, the high degree
of conservation of the flexible N-terminal domain highly
suggests its biological relevance [72].

The amino acid sequence of full-length PrP is almost
identical among mammals (Fig. 1).

The 3D structure similarity and almost identical
amino acid sequence, besides their natural availability
and easy maintenance, led rodent models, and mainly
the mouse one, to be the most utilized throughout the
years.

In particular, a great advantage was brought by transgenic
PrP knockout mice generated with homologous recombination
in embryonic stem cells, by disrupting the open reading frame,
such as the Ziirich I or Edinburgh lines, or by an extensive
deletion of the gene, such as the Ziirich II or Nagasaki [37,
88]. The heterogenous genetic background of the different
lines, along with the different phenotypic effects due to
probable off-target effects, hampered the physiological
research on the protein [89]. To solve this problem, a Ziirich
IIT line was generated with the TALEN-genome-based
technology, allowing a line that lacks the genetic confounders
and artifactual phenotypes of non—co-isogenic Prnp~'~ lines
[88]. The development of new knockout models, together
with recent genomics developments, ushered the way to new
experimental tests which started to bridge some of the gaps
that this raging disease had opened. Specifically, genome
editing techniques allowed a better understanding of the
physiological role of PrP¢ [22, 28, 31, 90-93], more insights
on the specific regions of the protein that could be involved in
the prion conversion [94—101], and addressed some questions
regarding the species barrier in terms of transmissibility
[102-107].
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Fig. 1 Multiple alignment showing the high similarity between PrP sequences among mammals. Red corresponds to highly conserved columns,
while blue corresponds to less conserved ones (see the “Methods” section for program reference)
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Beyond the Mammalian Prion Proteins:
Zebrafish

Our knowledge, in parallel, has been expanding toward
the use of other animal models, not only among mammals,
but also birds, reptiles, amphibs, and fish. In fact, species’
evolutionary distance from humans also showed the
conserved 3D structure of PrP obtained from NMR studies.
For example, chickens, turtles, and frogs clearly show
extensive similarities with the 3D structure of human
PrP, despite the lower amino acid matching profile [108].
More recently, Danio rerio has attracted attention among
researchers, showing different homologs of the cellular prion
protein, all with their own characteristics and similarities.

Danio rerio, commonly known as zebrafish, is a tropical
omnivorous freshwater fish originating in northern India. This
species has acquired a great biomedical importance, as shown
by its increased usage as a research model throughout the years
[109]. There are several reasons which make the zebrafish
a great model for mirroring the development, in health or
disease, of species of interest for humans. For example, a
great advantage is given by the rapid ex utero development,
as well as the low cost and extremely small size. The range
of few millimeters to 3—5 cm in length, together with the high
reproduction rate, allows large-scale genomic studies, since
a great amount of animals can be housed in the same space
[110]. Moreover, the optically transparent embryos, genetically
tractable [111], permit the real-time imaging of the various
developmental stages, allowing to visualize phenotypes
in vivo at single-cell resolution [112]. Furthermore, their
high tolerance to DMSO allows drug discovery studies very
early in the disease process, assessing, besides their effective
functioning, also their possible off-target effects [113, 114].

So, even if this model was perfectly fit for developmen-
tal studies, it is nowadays largely used also to get more
insights into many of the human diseases [114-117].

Gene maps showed that there are many blocks of con-
served syntenies between the two species, and zebrafish
chromosomes (similar also in number) are orthologous to
many human chromosomes. However, gene orders were
often inverted and transposed, meaning that chromosome
inversions have frequently been fixed in diverging popula-
tions in the lineage leading to zebrafish [118]. Moreover,
the zebrafish reference genome sequence compared to the
human genome showed that 70% of human genes have at
least one zebrafish ortholog [119].

As the purpose of the review is addressing the potential
of the model in studying prion diseases, it is important
to specify that the brain has been classified as one of the
zebrafish organs more similar to the human one [120, 121],
recognizing that it can be exploited for modeling human
neurodegenerative disorders.
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With these premises, the solved neural development
pattern, a well-characterized neuroanatomy, and the fully
sequenced genome were a unique starting point for the inves-
tigation of the human prion-related pathobiology: although
no prion replication has been found in this animal model to
date, mutant strains and transgenic fish lines have become
primary research tools to investigate the implications of spe-
cific genes or molecular pathways in the resembled mam-
malian pathology.

Zebrafish has two main PrP orthologs, defined as PrP1
and PrP2, which are twice the length of the mammalian
protein but resemble many features of PrP structure [122].

Downstream of each fish PrP loci identified duplicated
genes encoding short GPI-anchored polypeptides, sug-
gested as PrP-like genes, denoted as PrP-rel-1 and PrP-rel-2
[122—-124]. The latter, called PrP3 [125], has been investi-
gated due to its structural peculiarities, which will be fur-
ther discussed here, while PrP-rel-1 will be set aside for the
purpose of this review.

To first assess the importance of the zebrafish model to
study the physiological function of PrP and its involvement
in prion pathology, it is crucial to understand how consistent
the homology with the mammalian protein is, to justify the
parallelism (the sequences are compared in Fig. 2).

Both PrP1 and PrP2 show the highest similarity in the
C-terminal domain, with the latter being slightly more analo-
gous to human PrP (HuPrP) than the former. In the N-termi-
nal domain, PrP1 has a repeat region (9 long repeats) similar
to the octarepeat region of HuPrP, which is instead not found
in PrP2. However, a Tyr-Pro-rich domain consisting in 18
hexapeptide repeats plus seven repeats with an irregular
amino acid sequence length was identified in PrP2 as well.
Still, none of them shows the presence of histidine residues
in the repeat domain, further distancing the similarity with
the possible conversion agents involved in the mammalian
pathology [124]. Interestingly, the unique feature of both
isoforms is the presence of a highly conserved 13 residue
stretch between the repetitive region and the hydrophobic
motif, which have neither predicted secondary structures nor
similarity to known proteins [122].

PrP3 seems instead more distant, lacking some distinctive
elements of mammalian PrP including the repeat domain
before the hydrophobic central motif [124, 126]. However, a
hexapeptide repeat domain was found after the hydrophobic
motif, rich in histidine residues, highlighting a possible
similarity with the human PrP, despite its different position
[127, 128]. In detail, the structure was firstly predicted based
on the NMR structure solved for HuPrP, and both PrP1 and
PrP2, respectively 606 and 567 amino acids in length, show
a signal peptide (residues 1-23/1-19, respectively), a long
stretch of repeats (53-335/74-246), a hydrophobic central motif
(379-395/299-315), two cysteine residues possibly implicated
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Fig.2 Comparison between human and zebrafish full-length PrP homologs. Red corresponds to highly conserved columns, while blue corre-
sponds to less conserved ones (see the “Methods” section for program reference)

in the formation of the disulfide bond (residues 463 and
554/399 and 509), two asparagine residues that are significant
putative N-glycosylation sites (residues 367 and 445/438 and
443), and a predicted hydrophobic C-terminal transmembrane
region (residues 592-606/549-567). PrP3, instead, appears
more evolutionary distant than the other variants, not only for
the inversed position of the repeat domain and the hydrophobic
region, but also for the absence of two of the three o helices and
the second f strand [124]. However, it is included in the family
of short GPI-anchored proteins, since it contains PrP features
such as a highly conserved hydrophobic domain, a -1 stretch,
and degenerated repeats [122].

Into the Physiology: PrP1 and PrP2

To assess the functions of PrP1 and PrP2, it is crucial to
explore the developmental expression pattern of the two iso-
forms. This is particularly important due to the high similar-
ity of the two aminoacidic sequences, possibly highlighting
redundant functionalities. The different expressions in the
nervous system could raise some questions on the evolu-
tionary purposes of having two separate homologs, pointing
toward unique and specific functions for each of them.
PrP1 transcripts were first detected with in situ hybridi-
zation in the floor plate [124], a specialized glial structure
situated at the ventral-most part of the vertebrate neural
tube that controls the regional differentiation of neurons in
the nervous system [129], but this signal is lost after 3 days
post-fertilization (dpf). From 48 h post-fertilization (hpf) to
the larval stages, a strong signal is identified in cranial gan-
glia, including the trigeminal ganglia and their projections,
while by 8 dpf, the cranial cavity shows PrP1 transcripts.

Differently, a high level of PrP2 mRNA is detected in blas-
tomeres and in the embryo from the mid-blastula transition
to the end of the segmentation period [124], even if in the
early mid-blastula stage, other authors identified the pres-
ence of PrP1 instead, leading to conflicting results [130].
Moreover, up to larval stages, and later in development, the
expression pattern of PrP2 is widely distributed, detected in
several distinct anatomical structures, and extensively spread
not only in the nervous system but also in other body com-
partments [124, 130].

As commonly accepted, there is an important difference
not only in the spatial distribution, but also in the temporal
expression development of the two isoforms: in fact, PrP1
has a highly spatially restricted expression in the central
and peripheral nervous systems in the very early stages of
development, suggesting an implication in cell division
and migration in the entire embryo, while PrP2 transcripts
are found widely distributed within the CNS and in other
anatomical structures more in the later stages, specifically
upregulated in the developing nervous system [124, 130,
131].

Comparing the expression pattern of these two PrP
orthologs provides relevant information on the relationship
between evolutionary expression and functions, consider-
ing the structural similarities or differences among diverse
PrPs [132]: the specific role of distinctive motifs could be
addressed with models, such as the zebrafish.

To summarize, if the aminoacidic sequence and the
defined structure point toward an overlapping between the
functionalities of PrP1 and PrP2, the dissimilar spatiotem-
poral expression patterns, instead, lead the researchers to
believe that these isoforms may not have the same evolu-
tionary purpose.
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To better investigate their unique roles, two KO models
were generated. However, the main issue encountered with
KO zebrafish models was the complete absence of the
foreseen overt phenotypes, suggesting gene compensation
mechanisms [126, 133]. Following this, morpholino (MO)
antisense oligomers became the tool of choice for zebrafish
gene knockdown (KD) [134], enabling the interference
with PrP without altering their sequence [135], even if the
potential of off-target effects should be further addressed
[136].

In addressing the role of PrP1, different concentrations
of MO were used in the early development of the embryos
and, oppositely to KO studies which did not show any clear
phenotype [126], the KD resulted in necrosis and develop-
mental abnormalities, expressed mainly as alterations in
CNS morphology [131, 137].

PrP2 KD, differently, mainly led to phenotypically defec-
tive midbrain and hindbrain development, with histochemi-
cal studies showing altered trigeminal ganglion morphology,
reduced number of peripheral neurons and apoptotic cells
with hyper-condensed nuclei [125]. In PrP2 KO studies,
instead, the brain anatomy seemed conserved [133], thus
further highlighting the probable gene compensation mecha-
nisms underlying the development of the zebrafish devoid
of the prion protein.

To additionally rule out the redundancy of zebrafish PrP
functionalities, other selective KD of PrP1 and PrP2 and
relative rescue experiments were performed. It was, for
example, shown that PrP1 is selectively implicated in the
gastrulation event, since the KD of this gene lethally arrested
it, while PrP2 left the gastrulation process unchanged, while
showing morphological defects [130]. This further high-
lighted the diverse implications of the two isoforms, seeing
PrP1 more involved in the embryonic development, while
PrP2 in neuronal differentiation and brain morphogenesis,
coherent with the different expression pattern discussed
above.

More in detail, the effect of PrP1 on the epiboly, a specific
stage of the gastrulation process, was not only rescued by
the addition of PrP1 transcripts, but partially also of both
PrP2, still highlighting the similarity in the sequences, and
surprisingly of mouse PrP [130]; this latter evidence showed
that the zebrafish PrP and mouse PrP may not be that distant
as theoretically suggested by the sequence comparison.

Since key factors that may play a role in gastrulation cell
movements are the cell-cell adhesion processes [138], the
implication of PrP1 was specifically addressed, showing how
its absence caused important defects due to the progressive
loss of E-cadherin from cell contacts [130, 131, 139]. Inter-
estingly, selective depletion of the repetitive or the globular
domains of PrP1 equally affected the epiboly, but the locali-
zation pattern was continuous when the former was deleted,
while punctate when the latter was eliminated. The same

@ Springer

punctate distribution was observed in PrP2 and mouse PrP
globular domain KD: it may be concluded that the globular
domain, as a conserved functionality among species, is cru-
cial to ensure a continuous localization pattern. However,
since WT PrP1 normally distributes in puncta, it can be also
suggested that the long repeat domain of PrP1 has a stronger
clustering activity than that of mouse PrP or PrP2 and that
its globular domain is not strong enough to counteract the
effect of the N-terminal motif [139].

Despite this difference with mouse PrP, PrP1 recalls the
same cell-adhesion functions seen in mammalian studies,
since, among the different PrPC protein interactors, the neu-
ronal cell adhesion molecule (NCAM) has been extensively
characterized in vitro, in cell-based assays, and in vivo [140,
141]. Moreover, the role of PrP® in E-cadherin-mediated
cell—cell contact formation was confirmed in several human
epithelial cell lines [142].

Taken together, these data suggest both similarities and
dissimilarities between zebrafish and mammalian PrP, which
need to be further investigated to better characterize the
efficiency of these models, especially when addressing the
pathology: however, PrP1 is so far proven to be certainly
linked to the mammalian functions.

KO studies were able to clarify the non-redundant
functions of the two zebrafish isoforms when investigating
the posterior lateral line, a mechano-sensory system
which exhibits a strong expression of PrP2 up to later
developmental stages [124, 130]. In particular, the number
of neuromasts was oppositely affected by the deletion of
PrP1 or PrP2 genes, with the former deletion decreasing,
while the latter increasing the number of these sensory
organelles [126]. This reduction was also confirmed by
knocking down PrP2, showing that this protein is necessary
for the correct formation and stabilization of neuromasts
in the migration process [143]. Since the number of
neuromasts appears to be increased in transgenic zebrafish
lacking p-secretase [144], the protease generating the
mature -amyloid from the B-amyloid precursor protein, a
possible link between zebrafish PrP and Alzheimer could
be further addressed.

Moreover, seizure susceptibility, typical of diseases such
as Alzheimer’s disorder, was strongly increased in PrP2
KO [126, 133], and interestingly, the deletion of both PrP1
and PrP2 genes decreased such effect, as if the simultane-
ous deletion of PrP1 was somehow hindering the outcome
[126]. The role of PrP€ in modulating seizures and neuronal
activity has been already seen in mouse models [145], sug-
gesting a strong conserved function in neuronal maintenance
and synaptic activity. As evidence of the implication of PrP2
in these functions, KO studies showed that transgenic fish
exhibit learning deficiencies and age-dependent memory
decline, implicating that PrP€ loss of function could be
involved in disease-associated symptoms [146, 147]. Neural
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excitability mainly related to NMDA receptors was inves-
tigated in zebrafish prion proteins: PrP2 absence, both KO
and KD, seems to disrupt the receptor dynamic [133], pro-
viding an explanation of the increased seizure susceptibility
discussed above. Interestingly, the mammalian protein has
been proved to also modulate these glutamatergic recep-
tors, but through different molecular mechanisms: in fact,
the mammalian protein is known to modulate NMDA recep-
tors by binding copper via the repetitive region, exerting
neuroprotection [148-153]. As already discussed, PrP2 has
a partially equivalent repeat domain, but the lack of histidine
residues resulted in the inability to bind copper, suggesting
other molecular mechanisms exploited to exert the same
mammalian function.

In summary, PrP2 is not only the most similar in sequence
and structure, but it also parallels the mammalian PrP
functions and exhibits very similar loss of function effects
caused by its reduction. However, the molecular mechanisms
underlying these functions may be distant between the
species due to important protein structural dissimilarities,
such as the presence or absence of histidine residues in the
repeat domain.

In conclusion, the physiological functions of PrP¢ have
a great overlap in the zebrafish model, both in PrP1 and
PrP2, but the link between the structural conversion and the
pathological phenotype may be harder to address.

Into the Pathology: PrP3

PrP3 could be possibly implicated in prion-related pathol-
ogy, even if, as addressed previously, the aminoacidic
sequence is distant to the mammalian counterpart, com-
pared to the other homologs.

Interestingly, differently from PrP1 and PrP2, PrP3
showed the presence of histidine residues in the repeat
domain (a comparison between repeat domains of the three
isoforms is shown in Fig. 3). These histidines, which are
numerous and in close vicinity, have been discovered to
be potentially related to the pathological side of PrP, since
they are able to bind copper and zinc as in the mammalian
species [127, 128, 154]. The NMR structure of the frag-
ment encompassing the copper binding site of this isoform
has been solved, and the intra- and inter-repeat copper
binding modes resulted to be even more effective than
those of the mammalian octarepeat region [128]. Moreo-
ver, also the structural delineation of Zn?* binding with
the repeat domain of PrP3 was confirmed by NMR and
molecular dynamics calculations [127]. The repeat domain
in PrP3 is found after the hydrophobic region, an impor-
tant structural difference to the mammalian protein that
could lead to different pathological inferences [122, 124].

Although this disparity should distance the implication
of this short protein in prion diseases, its relevance may
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Fig.3 Zoom into the amino acids 53-335 of PrP1 to show the 9 long
repeats, amino acids 74-246 of PrP2 to show the 18 hexapeptides,
and amino acids 62—79 of PrP-rel-2 to show the 3 hexapeptides. The
first line of each image represents the sequence anchor on which the

repetitions are compared. Red shows mismatching amino acids, while
gray is for identicalities (see the “Methods” section for program refer-
ence)
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still be addressed due to the PrP-like structural character-
istics, such as a highly conserved hydrophobic domain, a
B-1 stretch, and degenerated repeats [122, 124, 155].

Though, since it lacks some of the basic structural motifs, as
already discussed, it was initially predicted to be an unstructured
protein: however, their mammalian homologue Shadoo appeared
to influence biological and pathogenic activities of PrP in vivo
[156], further increasing potential importance.

PrP3 exhibits noticeable presence in embryonic cells before
24 h post-fertilization (hpf), but its expression diminishes
in the developing brain as development progresses, being
undetectable at 3 days post-fertilization (dpf). However, it is
notably abundant in the central area of the pectoral fin buds,
where PrP3 transcripts surpass those of PrP2. Additionally,
PrP3 is found in the heart and branchial arches. Unlike PrP2,
PrP3 is not found in significant levels in the central nervous
system, kidney, liver, or posterior intestine during embryonic
and larval stages. Consequently, the expression pattern of
zebrafish PrP3 contrasts with that of tetrapod PrP, as it lacks
prominent expression in the CNS [124].

Still, this PrP-like protein has not been consistently inves-
tigated so far, so many questions are yet to be answered.

Conclusions: Is Zebrafish a Useful Research
Model for Prion Diseases?

The primary pathophysiological characteristic of mam-
malian PrP involves the development of a misfolded, self-
aggregating neurotoxic conformer.

Despite the absence of confirmed prion replication in
zebrafish, the understanding of this phenomenon remains
considerably limited compared to studies conducted in
mammals. Additionally, the use of various mammal animal
protein feeds in fish raises concerns about the potential con-
tamination with mammalian prions, highlighting the need
for cautious consideration [157].

To ascertain the suitability of zebrafish as a model for
prion disease research, several factors need a thorough
examination in light of the aforementioned evidence.

Firstly, while zebrafish PrP1 and PrP2 exhibit limited
homology with their mammalian counterparts in terms of
amino acid sequence, the 3D structural resemblance, along
with their distribution patterns, offers an avenue for inves-
tigating the physiological functions of these proteins. This
similarity may provide insights into the roles of these pro-
teins, given the ease of managing zebrafish models.

The existence of two orthologs enables separate explora-
tion of the molecular mechanisms underlying PrP1 func-
tions, particularly during early gastrula, and those of PrP2,
which are pertinent to developing neurons. This unique setup
allows for a more nuanced understanding of the intricate
interactions guiding specific events during development, a
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task that might be more challenging in mammalian models
where a single protein must fulfill diverse functions across
various stages.

Furthermore, the conserved 3D structure hints at the
potential for zebrafish PrP to undergo conformational
changes parallel to those seen in prion diseases, suggesting
a novel path for studying prion pathology and its genetic
underpinnings. This possibility could be further explored
by efficiently inoculating transgenic zebrafish expressing
mouse or human PrP with prions. Nevertheless, uncertain-
ties persist regarding PrP3 and other prion-related proteins,
which exhibit lower sequence homology and less conserved
structures compared to mammalian PrP. Despite this, PrP3
retains important motifs observed in mammalian PrP, and
specifically a repeat domain rich in histidine residues, which
are central to prion disease studies. This further highlights
the potential for zebrafish to acquire and possibly transmit
prions, making it a potentially promising model for prion
research, despite the absence of evidence regarding this
capacity.

Regardless, while the inability to replicate prions may
seem like a limitation, it does not necessarily preclude the
model from shedding light on the pathological aspects of
prion diseases. By assessing the similarities between the
zebrafish and mammals in terms of protein structure, func-
tion, and biochemical pathways, researchers can explore the
underlying mechanisms of prion pathology.

Of a great impact are the studies on protein—protein
interactions, pathways, and exchanges with cell compartments,
but also those on protein misfolding when undergoing
conformational changes and the consequent neurotoxic effects
induced.

The availability of a large number of zebrafish at a
relatively low cost facilitates high-throughput genetic screens
and sophisticated experiments, including real-time imaging
of living animals, to elucidate physiological mechanisms
relevant to prion pathology.

Furthermore, by unveiling the molecular and cellular
processes involved in prion pathogenesis, researchers can
identify novel targets for drug development and test the
efficacy of therapeutic interventions. Additionally, these
models can serve as platforms for screening candidate
compounds and assessing their ability to modulate prion-
related processes, ultimately leading to the development of
effective treatments. Zebrafish’s tolerance to DMSO opens
avenues for testing anti-prion therapeutic targets based on
the specific molecular patterns identified.

In conclusion, the zebrafish model holds great promise:
if it is primarily utilized thus far to unravel the physiological
roles of PrP in the neuronal system, its potential extends
to bridging the gap between physiological and pathological
aspects of prion diseases, with the ultimate goal of informing
therapeutic interventions.
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Methods

PubMed was extensively used for this manuscript, mainly
with the advanced literature search (*protein name*) AND
(species of interest).

UniProt was used to obtain all the amino acid sequences
of the proteins mentioned in the manuscript, and COBALT:
Multiple Alignment Tool was utilized for the comparison,
as shown in figures. Links are as follows: https://www.unipr
ot.org/ and https://www.ncbi.nlm.nih.gov/tools/cobalt/re
cobalt.cgi.
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