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1 Introduction

The determination of the number density of radio sources as a function of their flux density has
been central in the understanding of the nature and evolution of extragalactic radio sources
for more than 60 years [1]. At radio frequencies, cosmological studies have been heavily based
on debating source counts and the contribution of sources to the sky brightness temperature.

In the faintest regime, the connection of counts with the isotropic radio background is
somewhat puzzling. Indeed, an apparent bright high Galactic latitude diffuse radio zero level
has been reported by different experiments (see [2] for a recent review). The ARCADE 2
collaboration highlighted the fact that such emission is significantly brighter than expected
contributions both of Galactic and extragalactic origin [3]. The isotropic component that can
be isolated from radio images after subtracting foreground Galactic emission is a factor of
a few larger than the total contribution obtained from extrapolating the number counts of
extragalactic sources in the faint (observationally unreached) brightness regime.

It is well known that relevant statistical information about below-threshold cosmological
source populations residing in our Universe can be inferred by studying fluctuations in
astronomical images, in particular, from pixels that do not belong to detected sources [1, 4–7].
A widely used approach is to compute the n-point correlation functions (with n from 1 up
to 3 or 4) and from them to infer the number density of sources as a function of flux and
cosmological redshift. For radio interferometric images, these computations are “disturbed”
by the fact that the space of the physical description (i.e., the celestial sphere) does not
correspond to the “space” where data are taken (as for any interferometer). The link is given
by a Fourier transform, and different physical angular scales are mixed in the data. Radio
imaging is nowadays well studied and developed to tackle this issue, nevertheless, there are
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a few intrinsic limitations (e.g., observationally, one cannot access all the scales needed in
the transformation) that are difficult to overcome, especially when dealing with fluxes close
to the root-mean-square (rms) noise of an image.

The machine-learning-based approach we devise in this work aims at a two-fold improve-
ment with respect to traditional state-of-the-art approaches. On one side, we want to fully
exploit the statistical power of the observational data around/below the detection threshold,
e.g., without relying on a single estimator, such as the 1- or 2-point correlation, and, on the
other side, we aim at mitigating observational issues, which, as we just mentioned, might
be severe in the case of radio interferometric images.

For this purpose, we construct a convolutional neural network (CNN). The CNN is trained
using simulations of the radio sky that encompass diverse source number counts, with the
goal of making the algorithm extract the precise source number counts from a generic image.

The details about the architecture and the implementation of the CNN are reported
in section 2. In section 3, we describe both the models of source catalogs we considered
to build theoretical skies and how the simulations are performed, including observational
effects. This allows us to define the training, validation, and test sets. The results in section 4
evaluate the CNN performance and detail an empirical outline for uncertainty determination
on our simulated testing sets as well as for future use on real-world maps. A summary of the
main achievements of the paper and an outlook concerning the application of the method
to real data are presented in section 5.

2 Analysis pipeline

Our goal is to construct a supervised regression task by training a CNN capable of inferring
the source count at low flux densities s from interferometric images and their residuals (defined
in section 3.1), such as those of the Evolutionary Map of the Universe (EMU) radio survey [8].
The goal is to have the network learn (and output) the source counts in 10 logarithmically
spaced flux bins between 10−4 and 10−6 Jy. The bins that serve as target labels for the
regression task are reported in table 1. To adequately capture the features of the data and to
generate outputs that are meaningful, one must carefully monitor certain aspects of neural
network training. ‘Over-fitting’ for example, is an issue that can occur when a deep neural
network is sufficiently complicated that it simply learns the training data in a 1–1 fashion.
This causes the network to lose all inferential capability and results in the network not being
able to extrapolate to data samples that it has not seen before. To prevent this, one may
stop training early whilst monitoring network performance on a separate ‘validation set’ of
data that is withheld from the training process. Another way to circumvent overfitting is to
incorporate hidden layers in the network with dropout, which involves randomly dropping out
(setting to zero) some fraction of a layer’s neurons during training to prevent co-adaptation
of neurons in a layer and to make the model more robust by forcing the network not to
learn the training data exactly. Furthermore, the hyperparameters of the neural network
that control the learning rate, number of hidden layers batch size, convolutional layer kernel
size etc. should be optimized to achieve optimal performance. For regression tasks, this is
usually done by determining the reconstruction (See figure 6) for several hyperparameter set
benchmarks. We detail the optimal network architecture applied to this study in section 2.1.
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Bin # Bin centers (µJy) Bin edges (µJy)
1 1.26 [1.00, 1.58]
2 2.00 [1.58, 2.51]
3 3.16 [2.51, 3.98]
4 5.01 [3.98, 6.31]
5 7.94 [6.31, 10.00]
6 12.59 [10.00, 15.85]
7 19.95 [15.85, 25.12]
8 31.62 [25.12, 39.81]
9 50.12 [39.81, 63.10]
10 79.43 [63.10, 100.00]

Table 1. Flux bin centers and edges used in our supervised 10-class regression task.

2.1 Neural network architecture

The CNN architecture is depicted in figure 1 and was implemented in Tensorflow 2 [9].
The size of the input layer is 128 × 128 × 2, where 128 × 128 is the number of pixels
of each simulated image, and the factor 2 accounts for the fact the interferometric radio
images are simultaneously parsed into the network with their corresponding residuals. The
training+testing set contains O(105) objects, see section 3 for more details on the data
generation. The input layer is followed by three hidden layers: two 2D max-pooling (orange
in figure 1) and LeakyReLU (yellow) sequences with 0.25 dropout which are subsequently
flattened into a dense layer with a ten-dimensional output with linear activation, corresponding
to each flux bin of the regression task. The training was optimized over 33 epochs with a
batch size of 100, learning rate = 0.001, and LeakyRelU negative slope coefficient of 0.2. We
adopt a mean squared error (MSE) loss function and use train/validation split of 97/3%.
We monitor training by implementing an early stopping criterion to ensure no over-fitting
occurs. Results of the model testing are described in section 4.

3 Data sets

We perform the simulations of the observed radio sky using the ASKAPsoft tool [10]. The
reason for this choice is two-fold. On one hand, even though we aim at devising a generic
approach, suitable for any radio interferometric survey, we need to focus on a given telescope, in
order to accurately and realistically introduce observational effects in our images. The ASKAP
telescope is one of the current world-leading radio telescopes available and is accompanied by
a well-developed simulation pipeline. The second reason stems from the fact that the largest
(in terms of sky coverage) radio survey, ongoing at the time of writing, is provided by the
EMU observations, conducted with the ASKAP telescope. Therefore, despite the developed
method will have wider applicability, we test it by simulating images similar to the ones being
observed by EMU at 940 MHz, which will offer an immediate future application.
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Figure 1. A schematic of the analysis pipeline conducted in this study. (1) Sample spectra in
the training domain defined in figure 2 are taken and used to generate full realised simulation
maps and their residuals(as described in section 3.1) of which are divided in to semi-stochastic
sub-realisations of dimentionality 128×128 pixels. (2) We train a convolutional neural network (CNN)
which simultaneously takes as inputs the sub-map and its corresponding residual, to output the
number of sources in 10 logarithmically spaced flux bins. The neural network is trained with an
MSE (L2) objective loss as shown above. The optimal architecture hyper-parameters are given in
the text. We further analyse the distribution of the CNN reconstruction capability on testing data
the CNN is not trained on in order to empirically ascertain the uncertainty with which we can make
predictions given real data. (3) A further 160 maps from the prior spectra domain are generated.
The average map-wide reconstruction (detailed in section 4.2) is determined and ±1σ confidence and
minimum width Bayesian credible interval (HDI) at 68% containment are calculated as estimations
of uncertainty sensitivity for a real experiment. (4) Finally, pseudo-experiments are conducted and
real-world analogue spectra are determined with the corresponding bin-by-bin uncertainty.

3.1 Simulation pipeline

Our simulation pipeline consists of four steps. Our first task is to create a suitable catalog of
sources in the sky with known source counts. As a starting point, we take the Tiered Radio
Extragalactic Continuum Simulation (T-RECS) simulated “medium” catalog of extra-galactic
sources [11], scaled to a frequency of 940 MHz. This catalog spans 25 deg2 and contains
about 30 million sources with a flux lower limit of 10−8 Jy. We truncate the catalog to only
include sources with flux densities ranging from 10−6 to 10−2 Jy. This will be approximately
the range of pixel values for our input images. Larger values are possible because a pixel
will in general contain multiple sources. The lower limit allows us to have catalogs with
manageable file sizes, including only relevant sources, while thanks to the upper limit we avoid
the presence of individual very bright sources that would require a specific cleaning procedure
to mitigate side lobes, something doable for a single image obtained from observations, but
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Figure 2. Differential number counts used to create the training sets (green lines) as a function of
the flux density. The T-RECS spectrum at 940 MHz is shown in black. With red pentagons, we
report the measurement of source counts of [12], derived from observations with the same properties
as those simulated here. For reference, and in order to understand where physical models should lie,
we show deeper measurements from [7] (blue points, derived at 1.4 GHz, rescaled here at 940 MHz),
as well as the region obtained with the P(D) method on the same data [7] (blue band).

not for a high number of simulated images.1
The differential number count of sources extracted from the T-RECS catalog n(s) =

dN(s)/ds at 940 MHz is shown in black in figure 2. We create new catalogs for the training
set with a variety of n(s) by modifying the T-RECS one, as shown in figure 2. We choose
the following functional form with two free parameters α and s0

n(s) =
(

1 + s0
s

)α

nTRECS(s) . (3.1)

For given α and s0 we determine the total number of sources to be included in the simulation.
Then we arbitrarily select a sample from the T-RECS catalog with the desired number of
sources. We take the size of the sources from the T-RECS catalog and it turns out they
are all essentially point-like for the angular resolution we are considering. To each source,
we assign a new flux at random, such that the differential source counts over the whole
image reproduces eq. (3.1) with the desired values of α and s0. The number of sources in
any given catalog ranges from ∼ 4 × 104 to ∼ 1 × 107, which means that a good sampling
of the flux distribution is guaranteed.

The second step of the simulation pipeline involves turning such catalogs into a sky
model, i.e., into a theoretical image with sources projected on the sky. This is done with the

1When dealing with observational data of a survey like EMU, one can check whether the subtraction
of individual bright sources might affect the results, by comparing “quiet” regions with regions where such
subtraction has been performed.
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tool cmodel of the ASKAPsoft package [10], choosing to center the field at typical RA and
DEC coordinates of ASKAP observations, namely RA=21h and DEC=-55°.

Next, the observation is simulated, the output being the visibilities with telescope noise
included. We perform the simulation through the tool csimulator by setting 6 hours of
observation in continuum-wide mode with 1 channel of 288 MHz centered around 940 MHz.
The antenna locations, feed locations, and other relevant definitions are taken as for the
default ASKAP pipeline [13].

In the last step, the visibilities are converted to a celestial image, the so-called dirty
image. Subsequently, deconvolution with the point spread function is performed with the
CLEAN algorithm. The residuals, i.e. the difference between the CLEANed and dirty images,
are also stored for use in the analysis. For all these tasks we employ the tool cimager. We
apply a Wiener filter with robustness equal to zero, as in [12], and a 30′′ × 30′′ Gaussian
taper for preconditioning our images, which is then approximately the size of our beam.
For dealing with non-coplanarity, we apply a w-projection with 129 planes. We run the
CLEAN algorithm with scales [0,3,10] pixels and a loop gain of 0.3. We perform 3 major
cycles, each consisting of a maximum of 15000 minor cycles. A major cycle is exited when
a 15% or 0.3 mJy CLEAN limit is reached.

The rms noise level of our images, determined as the rms of an image with no sources
run through the pipeline described above, is 23 µJy/beam, in good agreement with ex-
pectations [12].

3.2 Train and test sets

Our training and validation sets span 28 pairs of α and s0, see eq. (3.1), leading to the models
depicted as green lines in figure 2. For each pair, we generate 2 source catalogs, using the
Monte Carlo sampling described above. For each of the four cases with the lowest source
counts, we generate 2 additional catalogs, in order to improve statistics. Furthermore, we
create one catalog with s0 = 0, corresponding to the T-RECS flux spectrum, for a total of
65 catalogs. The training set generated from the catalogs consists of 65 of 25 deg2 images,
each made of 25602 pixels, for a pixel size of about 7′′ × 7′′.

In figure 2, the aforementioned models are compared with three different determinations
of the differential source counts from existing observations. Red pentagons show the counts
obtained by the EMU Pilot survey at 940 MHz from [12]. As already mentioned above, the
EMU observations have been producing images with properties similar to the ones simulated
in this work. We see from figure 2, that the extraction of the source count with “traditional
techniques” (i.e., “counting” detected sources) can be performed down to ∼ 10−4 Jy (i.e.,
about 5 times the rms noise). The method proposed here aims at significantly extending
this range towards lower fluxes.

The blue points in figure 2 show the measurement from [7], taken at 1.4 GHz and derived
with observations deeper than the EMU ones. We scaled the measurement to 940 MHz
adopting a frequency dependence s ∼ ν−0.7. They are plotted in order to guide our eyes
toward the physical models that are more plausible. On the other hand, the blue points
shouldn’t be directly compared with our findings, since, as said, we are not simulating the
corresponding observational setup, but the one of the EMU survey. The same argument
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Figure 3. Example realizations of the data used to train the CNN. Left: 128 × 128 sub-image,
processed with normalization and stretching, as described in the text in section 3.2. Right: Residual
image obtained applying the CLEAN algorithm, as introduced in the text.

applies to the blue band, which shows the determination of the differential source counts
obtained from the P(D) technique, using the same observations [7]. The so-called P(D)
method [4] allows to constrain the source counts from the statistics of pixel intensities in
confusion-limited radio maps, reaching fluxes down to a factor of a few below the noise level,
see e.g. [1, 5–7]. In this sense, the machine learning technique proposed in this work can be
seen as alternative or complementary to a P(D) analysis. Although our results shouldn’t
be directly compared with the blue band, we use it to identify the “most likely” region
where the real source count is expected to lie, which we call the region of interest (ROI),
and use it to define some benchmark scenarios. Unfortunately, a similar P(D) band from
EMU data is not available at the time of writing.

As shown in figure 2, our training models, span a large range of source counts, even
beyond those allowed by the aforementioned measurements. Large data variety is important
for adequate training of the CNN. It serves to improve the ability of the network to generalize
to features it has not seen before. In other words, it prevents over-fitting, which occurs when
the neural network simply learns the training data [14].

We found that significant improvement, of the order of ∼ 20%, in reconstruction accuracy
arose when additional information from the image residuals was fed to the neural network.
Thus, for each realization, we consider two images, the CLEANed image and residuals.
Implementing this approach was inspired by refs. [5, 6], where information on the residuals
was supplied to enhance the P(D) reach.

CNN’s are more efficiently trained with small-size images. One must take care to
optimize the available information present in the image, whilst simultaneously allowing for
network performance. Therefore, we split each image into 400 sub-images, for a total of
26000 sub-images. Example realizations of these sub-images are displayed in figure 3. We
show a CLEANed sub-image (left) and its corresponding residuals (right). The sub-images
underwent minimal pre-processing, namely, we first normalized the images by the maximum
pixel value of the whole training set and then applied a square root stretch of all pixel values
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Figure 4. Models of the testing set. The thick blue lines represent the test set used to ascertain the
network’s extrapolation ability when n(s) is not of the form of eq. (3.1). The thick red lines (both
solid and dashed) are the flux spectra falling within the P(D) region shown in figure 2. The thick
dashed lines (one red, one black) correspond to the images used to recreate a real analysis pipeline
with the results displayed in figure 9.

pi → √
pi (where pi corresponds to the value of the flux in pixel i, where any negative pixel

values were set to zero2). This transformation reduces the dynamic range of pixel values
in the image and was observed to maximize the regression power of the CNN.3 Residuals
were also normalized the images by the maximum pixel value over the whole training set.
For testing the model performance in section 4, we additionally generate 57 maps with
spectral parameters in the same range as the training set. Moreover, we generate 100 maps
sampling four indicative number count distributions that fall within the ROI around the
P(D) shown in figure 2. Finally, we also generate three images whose flux spectra do not
have the functional shape in eq. (3.1), see figure 4 and section 4.3. The total testing set
then comprises 160 maps, and thus 64000 sub-images.

3.3 Labels

The CNN is trained on the sub-images discussed in the previous section. The labels for the
supervised regression task are the number of sources in the 10 flux bins for each sub-image.
The process of splitting the full map into 400 sub-images causes each sub-image to contain a
sample of the total number of map-wide sources. The labels are then stochastically distributed
around some mean (in an approximately Gaussian way), with this mean corresponding to
the true source count numbers for an entire map, as shown in figure 5. This distinction is

2All image pre-processing and manipulation was performed using the astropy module [15].
3This transformation is by no means unique or optimal. However a logarithmic transformation, for example,

was observed to give inferior results.
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Figure 5. Variability of labels among sub-images belonging to the same 25 deg2 image. The green
lines represent the 400 sub-images, while the thick black line is their average. The model used here is
the T-RECS one, reported with a black line in figure 2.

important to make, since the model prediction uncertainties to be discussed in section 4
necessarily need to take simulation uncertainties into account in a meaningful way.

Note that results are shown either in terms of n(s) or N(s), the two being related
by: n(s) = N(s)/∆s/∆Ω, where ∆s is the flux bin, see table 1, and ∆Ω is the angular
size of the sub-image.

4 Results

To evaluate the adequacy of the proposed approach, in view of a future application of the
method to real data, we thoroughly test the model’s performance both on the whole test set,
as well as on the subset of test images corresponding to the ROI alone. The prescription we
adopt aims to systematically determine an estimate of the model’s accuracy, namely how well
it predicts the number of sources in each flux bin, as well as the uncertainty on this prediction.
In this section, we first display measures of the model’s reconstruction performance after
being fed testing sub-image sets, followed by a detailed measure of the uncertainty on the
bin-by-bin predictions for an entire map which will serve as a more realistic test-bed for
the model’s performance on real data.

4.1 Reconstruction accuracy

A preliminary check of model performance is the reconstruction residual in each flux bin.
It is shown on the left panel of figure 6. Here the vertical axis shows the reconstruction
in the sub-images of our test sets

∆R = N ijk
predicted − N ijk

true , (4.1)
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Figure 6. Left: Test set sub-image reconstruction residuals ∆R defined in eq. (4.1). The points
correspond to the mean of the distribution with 400 Nset entries and the error bars are computed as
the standard deviation of the cases overshooting the mean (upper bar) and undershooting the mean
(lower bar). The complete testing set, corresponding to α and s0 values in the full training domain,
are displayed in blue. The testing sub-set corresponding to spectra within the ROI are displayed in
red. Right: The same as the left panel but for the relative reconstruction residual for each sub-image
Z, defined in eq. (4.2). The large separation between the mean Z and 0 for the first bins originates
from the systematic over-reconstruction observed for models with very low counts.

where i labels the sub-images (i = 1, .., 400), j the flux bin (j = 1, .., 10) and k the image
in our test set (k = 1, .., Nset). The estimator we plot in figure 6 is the mean over all the
images and sub-images in the test set, and the error bars are the standard deviations. We
distinguish testing sets by color. The blue points correspond to the ensemble of α and s0
values covering the whole training domain, whilst the red points correspond to the subset
of test spectra that fall in our ROI, i.e., around the P(D) region of figure 2, shown with
red lines in figure 4. We computed upper error bars from the standard deviation of cases
overshooting the mean value and lower error bars for undershooting cases. We see that for the
brightest bins the error bars are rather symmetric, which reflects the fact that the underlying
distributions are fairly Gaussian. In the case of the faintest flux bins, the distributions have
more pronounced tails, which lead to asymmetric errors. In these absolute terms, i.e., in
terms of the direct output of the CNN, we observe a systematic increase in reconstruction
accuracy in higher flux bins. On the other hand, it is more meaningful to show the relative
reconstruction accuracy, reported on the right panel of figure 6, in terms of

Z =
N ijk

predicted − N ijk
true

N ijk
true

, (4.2)

showing again the average over all the images and sub-images in the test set as the prediction
estimator and computing errors as the standard deviations. Here it is evident that, when
considering the entire test set and the faintest flux bins, the upper error is more pronounced
than the lower error. This arises because the CNN prediction for the lowest curves in figure 4
is significantly overshooting the true value, inducing a significant upper tail in the distribution.
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Figure 7. Absolute value of the average (map-wide) relative reconstruction residuals Z̄ (eq. (4.3)) in
each target bin as a function of N̄true. In blue, we show |Z̄| for maps from the entire domain of models
that were used for training, while in red we show |Z̄| for the 100 maps that correspond to the region
surrounding the extrapolated region of P(D) [7]. Dark blue and light red stars indicate Z̄ > 0, while
light blue and dark red diamonds indicate Z̄ < 0. For illustration purposes, the horizontal dashed line
marks |Z̄| = 0.3, i.e., a 30% deviation from the true value. The vertical dotted line marks the average
N̄true over the images of the training set for each flux bin.
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In the first flux bins an average overestimation is observed in the right panel of figure 6,
driven by models with low counts. On the other hand, the mean value of ∆R in the left
panel of figure 6 is dominated by models with large counts, for which the CNN tends to
underestimate the true values.

In a real experiment, one is of course not interested in the predicted spectrum of each
sub-image, but rather of the full aggregated 25 deg2 map made by 400 sub-images. Therefore,
in order to ascertain the bin-by-bin reconstruction accuracy across the simulated testing
maps, we build the relative reconstruction residual in the flux bin j averaged over the
sub-images in a given image k:

Z̄ = 1
400

400∑
i=1

N ijk
predicted − N ijk

true

N ijk
true

, (4.3)

and show it in figure 7 as a function of the average number of sources of each sub-image
inside an image, i.e, for given j and k, N̄true = ∑400

i=1 N ijk
true/400.

From this plot, we can verify that the worst performance is for images with few sources
and for low fluxes. The trend for the model to have less precise reconstruction on the images
that have lower statistics is the manifestation of an issue called ‘data scarcity’ in deep learning.
In this situation, the neural network’s performance can suffer due to a lack of representative
examples. We have done our best to circumvent this issue by providing ample training data for
the model in the form of 400 sub-images per map. This indeed cures the issue for high fluxes.
For the first flux bins, the impact of noise is severe and we reach the limit of applicability
of our technique, i.e., for low fluxes and a low number of sources, it becomes too difficult
for the CNN to disentangle between noise and source fluctuations, and there is a systematic
over-prediction due to misinterpretation of noise fluctuations (recall that negative pixels
are set to zero in the CLEANed images). However, this happens only for extreme models,
corresponding to the lowest curves in figure 2. For models in the ROI around the extrapolated
P(D) [7], that are shown with red markers in figure 7, this issue dissipates across all bins, as
the number of sources in these distributions was adequately large and representative.4

Conversely, for large number of sources, the CNN tends to under-predict the counts.
This becomes relevant when the number of sources is larger than 103 and is due to confusion.
Indeed, each sub-map of our simulations is composed of ∼ 103 beams. To tackle this issue
one could increase the resolution of the simulated images, but, again, this is not an issue
for the physically plausible models.

Another important test we identified is to show that the neural network had not simply
learned the functional form of the spectra presented in the training set (or ones very similar),
which we will address later in section 4.3.

4.2 Uncertainty estimation

In order to more quantitatively assess the level of the uncertainties that one would have when
using our network to analyze real data, we empirically build the probability distribution

4In general, various techniques such as data augmentation, transfer learning, and domain adaptation can
be used to improve the neural network’s ability to generalize to new and unseen data. We leave the use of
these methods to future work. For example, domain adaptation is potentially useful in this area, where one
can make use of the raw source images as the ‘source domain’ in such an approach [16].
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Figure 8. Distributions of the average test map reconstruction for each map in the full test set
(entire spectral domain). The blue bands indicate the minimum width Bayesian credible interval
containment at 68% and the light red regions are ±1 standard deviation estimators for the samples in
the distribution. For our study, we adopt the conservative uncertainties shown by the red bands as
the uncertainty in the neural network’s prediction for the number of sources in a given flux bin for a
given map. For illustration the red vertical line denotes the average ∆R̄ in each bin.

function of the average reconstruction error ∆R̄, i.e., of the reconstruction error of eq. (4.1)
averaged over the entire map, ∆R̄ = ∑400

i=1(N ijk
predicted − N ijk

true)/400, for a given image k and
flux bin j. For the whole test set comprising 160 maps (64000 sub-images), covering the
same range of models as the training set, see figure 4, we calculate the distribution of the
expected reconstruction error for each bin, by building a histogram including the ∆R̄ values
of each map, in order to objectively, in the frequentist sense, determine the variance of the
predictions. We assume that the representative uncertainty in our map-wide prediction is
given asymptotically (in the limit of infinite representative testing data) by the uncertainty
in ∆R̄. This ensures a conservative estimate of the network map-wide performance once all
sub-images have been aggregated, and also allows to account for the systematic sampling
uncertainty that arises from the uncertainty on the labels of each sub-image in the training set;
Recall, the labels in each sub-image are stochastic due to the nature of the image generation
(see section 3), and so the mean reconstruction per map is also systematically affected by this
source of error. The results are shown in figure 8 for each bin. The distributions are highly
non-Gaussian. We therefore display two uncertainty measures, given by a) the minimum
width Bayesian interval (blue bands) or Highest Density Interval (HDI), defined as the
narrowest credible interval containing 68% probability that can be constructed taking the
histogram as the posterior distribution, and b) the standard deviation estimator over all
maps in the test set (light red bands). The minimum width Bayesian interval turns out to be
significantly more constraining, while the standard deviation estimator is more conservative.

We then consider two arbitrary models, one belonging to the ROI and one outside, shown
with bold dashed lines in figure 4. In figure 9, we report their reconstructed counts, showing
the Bayesian and frequentist-derived uncertainties as error bars. To see the impact of the
label systematic sampling uncertainty mentioned above on the overall error, we compute it
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Figure 9. Simulated realizations of a real experiment. Shown are the predicted (dots) map-wide flux
spectra with associated true labels (solid black line) corresponding to two images in the test set. The
systematic map-wide label uncertainty is negligible, but accounted for by the displayed error bars.
Top: Predicted flux spectrum for a map in the P(D) ROI. Bottom: Predicted spectrum for a map
outside the ROI. The corresponding flux spectra are shown in figure 4. The red and blue error bars
are the ±1σ and ±HDI/2 prediction uncertainties, respectively. They are derived from the red and
blue contours of the distributions in figure 8.

as the standard deviation of the mean true count value: σL =
√∑400

i=1(N ijk
true − N̄ jk

true)2/400.
It turns out to be negligible if compared to the error bars in figure 9.

Figure 9 demonstrates that the CNN is performing well, at least in the ROI, and that the
estimate of the uncertainty is reliable/conservative when considering the standard deviation.

4.3 Verification of model generalization

To test the model’s extrapolation capability and coverage, we included three maps with spectra
that deviate significantly from any of the functional forms of the training set. These models
are shown with bold blue lines in figure 4. We verified that the CNN can reliably reconstruct
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Figure 10. The same as figure 7, but the red markers now correspond to the test spectra shown with
bold blue lines in figure 4, with highly non-trivial functional forms. The reconstruction performance
at low source count follows the same trends as the rest of the testing set. As in figure 7, dark blue
and light red stars indicate Z̄ > 0, while light blue and dark red diamonds indicate Z̄ < 0.
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the number counts for those cases, that are drastically different from what it has seen before.
We show the result in figure 10, where the new models are reported with red makers, while
blue markers are the same as in figure 7, reported for comparison. We observe that their
reconstruction accuracy aligns with the one of the models with α and s0 as in the training set.

5 Conclusions and outlook

In this work, we have investigated a machine-learning-based approach to extract the differential
number counts of sources from interferometric radio maps. In order to probe the feasibility of
the method we have trained and tested a CNN on simulated radio images. More specifically,
we have employed the ASKAPsoft tool [10] to simulate EMU observations at 940 MHz
performed by the ASKAP telescope. The synthetic images have an rms noise of 23 µJy/beam
and have been generated for a variety of differential number count distributions, shown in
figure 2. Each simulated image span 25 deg2 and has been divided into 400 sub-images,
representing different statistical realizations of the underlying source distribution. A total of
26000 sub-images has been used for training and validation and a sample of 64000 sub-images
for testing. The algorithm has been trained in order to reconstruct the source counts in 10
flux bins between 10−6 and 10−4 Jy. The measurement of the number counts from sources
detected in the EMU Pilot survey [12], shown in figure 2, reaches fluxes down to ∼ 10−4 Jy,
which corresponds roughly to 5 times the rms noise of EMU observations [12].

The goal of our analysis is to investigate whether a machine-learning approach can be
used to improve the determination of the source counts with respect this ‘traditional’ method,
extending the reach at lower fluxes.

Our results can be understood from figures 7, 8 and 9. We have found that for source
count distributions favored by a P(D) analysis at 1.4 GHz [7] (see the blue band in figure 2
and red stars in figure 7), the CNN algorithm can reconstruct the source counts with an
accuracy better than ∼30% in the whole flux range probed by our analysis. For much lower
(higher) counts, the accuracy significantly degrades because of the impact of noise (confusion),
especially in the low flux bins. From the distributions in figure 8, we have derived the count
uncertainty in each flux bin to be assigned to a generic measurement. In units of the counts
of physically motivated models, such as the T-RECS one (black curve in figure 2) or the ones
favored by the P(D) (red curves in figure 4), such uncertainty is ≲ 30% down to 10−5 Jy
(i.e., down to fluxes that are one order of magnitude below the threshold in [12]) and better
than a factor of 2 down to 10−6 Jy, see upper panel in figure 9. These results show that
the proposed machine-learning method provides a good reconstruction of the source count
distribution in the unresolved regime, with performance comparable (or possibly better) than
the P(D) technique [1]. On the other hand, as shown in figure 7, the CNN algorithm tends
to predict a level of source counts close to the one favored by the P(D) analysis, leading to a
systematic under-prediction (over-prediction) of the counts for models with a large (small)
number of sources. We plan to investigate further to this behavior in future work, in order to
improve the accuracy of our machine-learning method. Within the current analysis, such a
trend is accounted for by our estimate of the uncertainty of the predictions, and therefore
of the performance of the CNN algorithm.
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Finally, a thorough comparison and investigation of the complementarity with the P(D)
analysis will be the next methodological step for assessing the usefulness of the machine-
learning method. On the observational side, the EMU Main Survey has started, and images
are currently being collected. They will be the arena where to test the proposed CNN
approach on real data in the immediate future.
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