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Abstract
Parameter space reduction has been proved to be a crucial tool to speed-up the execution
of many numerical tasks such as optimization, inverse problems, sensitivity analysis, and
surrogate models’ design, especially when in presence of high-dimensional parametrized
systems. In this work we propose a new method called local active subspaces (LAS), which
explores the synergies of active subspaces with supervised clustering techniques in order
to carry out a more efficient dimension reduction in the parameter space. The clustering is
performed without losing the input–output relations by introducing a distance metric induced
by the global active subspace.We present two possible clustering algorithms: K-medoids and
a hierarchical top–down approach, which is able to impose a variety of subdivision criteria
specifically tailored for parameter space reduction tasks. This method is particularly useful
for the community working on surrogate modelling. Frequently, the parameter space presents
subdomains where the objective function of interest varies less on average along different
directions. So, it could be approximated more accurately if restricted to those subdomains
and studied separately. We tested the new method over several numerical experiments of
increasing complexity, we show how to deal with vectorial outputs, and how to classify the
different regions with respect to the LAS dimension. Employing this classification technique
as a preprocessing step in the parameter space, or output space in case of vectorial outputs,
brings remarkable results for the purpose of surrogate modelling.
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1 Introduction

Parameter space reduction [1, 2] is a rapidly growing field of interest which plays a key role
in fighting the curse of dimensionality. The need of reducing the number of design inputs
is particularly important in engineering for advanced CFD simulations to model complex
phenomena, especially in the broader context of model order reduction [3–6] and industrial
numerical pipelines [7–9].

Active subspaces [1] is one of the most used techniques for linear reduction in input
spaces. It has been proved useful in many numerical tasks such as regression, using a multi-
fidelity data fusion approach with a surrogate model built on top of the AS as low-fidelity
model [10], shape optimization [11–13] and a coupling with the genetic algorithm to enhance
its performance [14, 15], inverse problems [16], and uncertainty quantification [17]. It has
also been used to enhance classical model order reduction techniques such as POD-Galerkin
[18], and PODwith interpolation [19, 20]. Other attempts towards nonlinear parameter space
reduction have been proposed recently: kernel-based active subspaces [21], nonlinear level-
set learning [22], and active manifold [23] are the most promising. In [24], instead, they
project the input parameters onto a low-dimensional subspace spanned by the eigenvectors
of the Hessian corresponding to its dominating eigenvalues.

In thisworkwepropose a new local approach for parameter space dimensionality reduction
for both regression and classification tasks, called local active subspaces (LAS). In our work
we do not simply apply a clustering technique to preprocess the input data, we propose
a supervised metric induced by the presence of a global active subspace. The directions
individuated by local active subspaces are locally linear, and they better capture the latent
manifold of the target function.

From a wider point of view, there is an analogy between local parameter space reduction
and localmodel order reduction.With the latter,wemeanboth a spatial domain decomposition
approach for model order reduction of parametric PDEs in a spatial domain � ⊂ R

d and
a local reduction approach in the parameter space. As representatives methods for the first
paradigm we report the reduced basis element method [25], which combines the reduced
basis method in each subdomains with a mortar type method at the interfaces, and more in
general domain decomposition methods applied to model order reduction. For the second
approach we cite the interpolation method in the Grassmannian manifold of the reduced
subspaces [26]; in particular in [27] the K-medoids clustering algorithm with Grassmann
metric is applied to the discrete Grassmann manifold of the training snapshots as a step to
perform local model order reduction. With this work we fill the gap in the literature regarding
localization methods in the context of parameter space reduction.

Other methods have been developed in the last years exploiting the localization idea.
We mention localized slice inverse regression (LSIR) [28] which uses local information
of the slices for supervised regression and semi-supervised classification. LSIR improves
local discriminant information [29] and local Fischer discriminant analysis [30] with more
efficient computations for classification problems. The main difference between slice inverse
regression (SIR) [31] and AS is in the construction of the projection matrix. While SIR needs
the elliptic assumption, AS exploits the gradients of the function of interest with respect
to the input parameters. Recently, a new work on the subject was disclosed [32]. Here we
emphasize the differences and the original contributions of our work: (1) we implemented
hierarchical top–down clustering applying K-medoids with a new metric that includes the
gradient information through the active subspace. In [32] they employed hierarchical bottom-
up clustering with unweighted average linkage and a distance obtained as a weighted sum of
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the Euclidean distance of the inputs and the cosine of the angle between the corresponding
gradients; (2) we included for vector-valued objective functions and answered questions
about the employment of the new method to decrease the ridge approximation error with
respect to a global approach; (3) we also focused on classification algorithms and we devised
a method to classify the inputs based on the local active subspace dimension with different
techniques, including the use of theGrassmannianmetric; (4) our benchmarks include vector-
valued objective functions from computational fluid dynamics. We also show that clustering
the outputs with our classification algorithms as pre-processing step leads to more efficient
surrogate models.

Thiswork is organized as follows: in Sect. 2we briefly review the active subspacesmethod,
inSect. 3we introduce the clustering algorithmsused and the supervised distancemetric based
on the presence of a global active subspace, focusing on the construction of response surfaces
and providing theoretical considerations. In Sect. 4 we present the algorithms to exploit LAS
for classification. We provide extensive numerical results in Sect. 5 from simple illustrative
bidimensional dataset to high-dimensional scalar and vector-valued functions. Finally, in
Sect. 6 we draw conclusions and future perspectives.

2 Active Subspaces for Parameter Space Reduction

Active subspaces (AS) [1] are usually employed as dimension reduction method to unveil a
lower dimensional structure of a function of interest f , or provide a global sensitivitymeasure
not necessarily aligned with the coordinate axes [33]. Through spectral considerations about
the second moment matrix of f , the AS identify a set of linear combinations of the input
parameters along which f varies the most on average.

We make some general assumptions about the inputs and function of interest [1, 33, 34].
Let us introduce the inputs as an absolutely continuous random vector X with values in R

n

and probability distribution μ. We represent with X ⊂ R
n the support of μ and as such

our parameter space. We want to compute the active subspace of a real-valued function
f : (X ,B(Rn),μ) → R, where B(Rn) is the Borel σ -algebra of R

n . We denote with x ∈ X
an element in the space of parameters and with {xi }i a set of realizations of X.

An extension to vector-valued functions has beenpresented in [34] and extended for kernel-
based AS in [21]. Even if in this section we focus only on scalar functions, the following
considerations can be carried over to the multivariate case without too much effort.

Let � be the second moment matrix of ∇ f defined as

� := Eμ [∇x f ∇x f
T ] =

∫
(∇x f )(∇x f )

T dμ, (1)

where Eμ denotes the expected value with respect to μ, and ∇x f = ∇ f (x) =[
∂ f
∂x1

, . . . ,
∂ f
∂xn

]T
is the column vector of partial derivatives of f . Its real eigenvalue decom-

position reads � = W�WT . We can retain the most energetic eigenpairs by looking at the
spectral decay of the matrix �. The number r of eigenpairs we select is the active subspace
dimension, and the span of the corresponding eigenvectors defines the active subspace. The
partition is the following

� =
[
�1

�2

]
, W = [W1 W2] , (2)
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where�1 = diag(λ1, . . . , λr ), andW1 contains the first r eigenvectors arranged by columns.
With this matrix we can project the input parameters onto the active subspace, and its orthog-
onal complement, that is the inactive subspace, as follows:

Y = Pr (X) = W1WT
1 X ∈ R

n, Z = (I − Pr )(X) = W2WT
2 X ∈ R

n, (3)

with Pr : R
n → R

n the linear projection operator Pr := W1WT
1 . The selection of the active

subspace dimension r can be set a priori, or by looking at the presence of a spectral gap [1],
or by imposing a cumulative energy threshold for the eigenvalues.

We will consider the problem of ridge approximation [35] in our applications. The AS
are, in fact, the minimizers of an upper bound of the ridge approximation error.

Definition 1 (Ridge approximation) Given r ∈ N, r � n and a tolerance ε ≥ 0, find the
profile function h : (Rn,B(Rn),μ) → R and the r -rank projection Pr : R

n → R
n such that

the following upper bound on the ridge approximation error is satisfied

Eμ[‖ f − h ◦ Pr‖22] ≤ ε2, (4)

where ‖·‖2 is the L2-norm of R.

For a fixed projection Pr the optimal profile h̃ is given by the conditioned random variable
Eμ[ f |Pr ]. Under the additional assumptions on the probability distribution μ, reported in
Sect. 6.1 of the Appendix, the AS can indeed be defined as a minimizer of an upper bound
of the ridge approximation error [1, 21, 34, 36]. The proof is a direct consequence of the
Poincaré inequality and standard properties of eigenspaces, and for this specific version of
the theorem it can be found in [36].

Theorem 1 (Definition of AS through ridge approximation) The solution Pr of the ridge
approximation problem in Definition 1, with optimal profile h̃ = Eμ[ f |Pr ], is the orthogonal
projector to the eigenspace of the first r-eigenvalues of � ordered by magnitude

�vi = λivi ∀i ∈ {1, . . . , n}, P̃r =
r∑
j=1

v j ⊗ v j ,

with r ∈ N chosen such that

Eμ

[
‖ f − h̃‖22

]
≤ C(CP , τ ) argmin

P2=P,P=PT ,
rank(P)=r

Eμ[‖(I d − P)∇ f ‖2] 1
1+τ

≤ C(CP , τ )

(
m∑

i=r+1

λi

) 1
1+τ

≤ ε2.

with C(CP , τ ) a constant depending on τ > 0 related to the choice of μ and on the Poincaré
constant CP , and h̃ = Eμ[ f |σ(Pr )] is the conditional expectation of f given the σ -algebra
generated by the random variable Pr ◦ X.

To ease the notation, in the following we will consider only the first three classes of
probability distribution in the assumptions of Sect. 6.1 in the “Appendix”, such that τ = 0.
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3 Localized Parameter Space Reduction

Sometimes we do not have a priori knowledge about the target function’s behaviour in a
particular parameter space region. This could lead to a poor selection of the parameters
range, hugely affecting optimization tasks. In these cases, a preprocessing of the data using a
clustering technique could be highly beneficial. With a clustering of the input parameters, we
can treat each subregion separately, and thus capture more accurately the target function’s
variability. This is always true for any function of interest, but for functions with global
lower intrinsic dimensionality we can exploit such structure to enhance the clustering. To this
end, we propose a new distance metric for K-medoids and hierarchical top–down clustering
methods which exploits the global active subspace of the target function. By applying AS on
each cluster we find the optimal rotation of the corresponding subregion of the input domain,
which aligns the data along the active subspace of a given dimension.

In this section, we make some theoretical considerations regarding ridge approximation
applied to partitions of the parameter space and review three clustering methods [37]: K-
means, K-medoids, and hierarchical top–down clustering [38, 39]. We are going to use
K-means as the baseline since the input parameter space is assumed to be a hyperrectangle.
This assumption covers the majority of the practical test cases in the reduced order modeling
community.

3.1 Ridge Approximation with Clustering and Active Subspaces

Regardless of the choice of clustering algorithm, given a partition of the parameter space we
want to perform ridge approximation with AS in each subdomain. We will introduce some
definitions andmake some remarks to clarify the setting. The function of interest f represents
scalar outputs, but the following statements can be extended to vector-valued outputs as well.

Definition 2 (Local ridge approximation with active subspaces) Given a partition of the
domain P := {Si }i∈{1,...,d} and a map r : P → {1, . . . , nr }, nr � n representing the local
reduced dimension, the local ridge approximation with active subspaces of ( f , μ) is the
function RAS(r , f ,μ) : X ⊂ R

n → R that is defined locally for every Si ∈ P as

g|Si = Eμi [ f |Pr(Si ),i ], (5)

whereμi := (1/μ(Si )) ·μ|Si ∈ R
n , and Pr(Si ),i : Si ⊂ R

n → R
n is the orthogonal projector

with rank r that satisfies the minimization problem:

Pr(Si ),i = argmin
P2=P,P=PT ,
rank(P)=r

Eμi ‖(I d − P)∇ f ‖2. (6)

With this definition we can state the problem of local ridge approximation with active
subspaces.

Problem 1 (Minimizers (P, r) of the ridge approximation error) Find the partition P of the
domain X ⊂ R

n and the local reduced dimension map r : P → {1, . . . , nr }, nr � n, such
that the L2-error between the objective function f and its local ridge approximation with
active subspaces is minimized.

Eμ

[‖ f − RAS(r , f )‖2] =
∑
Si∈P

Eμ

[‖ f |Si − Eμi [ f |Pr(Si ),i ]‖2
]
. (7)
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Assuming that the subspace Poincaré inequality [36] is valid also for ( f ,μ) restricted to
the elements of the partition P , a straightforward bound is obtained by applying the Poincaré
inequality for every element of the partition

Eμ

[‖ f − RAS(r , f )‖2] =
∑
Si∈P

Eμ

[‖ f |Si − Eμi [ f |Pr(Si ),Si ]‖2
]

�
∑
Si∈P

Eμ

[‖(I d − Pr(Si ),i )∇ f ‖2] .

To obtain the previous upper bound, we made an assumption about the Poincaré subspace
inequality that in general is not satisfiedby anyprobabilitymeasureμ chosen: the assumptions
on the probability distributions {μi }di=1 in Sect. 6.1 of the Appendix have to be satisfied at
each subdomain {Si }di=1.

For the moment we will consider the local reduced dimension map r constant and, in
general, the codomain of r is a subset of {1, . . . , nr }, nr � n.

The previous bound suggests that a good indicator for refinement could be represented by
the sum of the residual eigenvalues {λSi , j }mj=rSi

of the local correlation matrices, for every

Si ∈ P:

Eμ

[‖ f − RAS(r , f )‖2] �
∑
Si∈P

m∑
j=r(Si )+1

λSi , j .

We also have the following immediate result that hints to indefinitely many successive
refinements to lower the L2-error ridge approximation error.

Remark 1 (Relationships between the upper bounds of consecutive refinements) Considering
the sum over the number of refined clusters cl ∈ {1, . . . , d} we have that

∫
X

‖(I d − Pr )∇ f ‖2 dμ =
d∑

cl=1

∫
Scl⊂X

‖(I d − Pr )∇ f ‖2 dμ

≥
d∑

cl=1

∫
Scl⊂X

‖(I d − Pr ,cl)∇ f ‖2 dμ, (8)

since the projectors {Pr ,cl}cl∈{1,...,d} are the minimizers of

Pr ,cl = argmin
P2=P,P=PT ,
rank(P)=r

∫
Scl⊂X

‖(I d − P)∇ f ‖2 dμ. (9)

TheRHSofEq. 8 can be used as indicator for refinement.We remark that since the refinements
increase the decay of the eigenvalues in the RHS of Eq. 8, the choice of the dimension of the
active subspace may be shifted towards lower values to achieve further dimension reduction
for the same accuracy, as we are going to show in the numerical experiments, in Sect. 5.

Unfortunately, the minimizers of the ridge approximation error and of the upper bound
are not generally the same:

argmin
{Pr(Si ),i }Si∈P

Eμ

[‖ f − RAS(r , f )‖2] 
= argmin
{Pr(Si ),Si }Si∈P

∑
Si∈P

Eμi

[‖(I d − Pr(Si ),i )∇ f ‖2] .

There is a counterexample for the non localized case in [34]. We start from this counterex-
ample to show that in general the L2-error of the local ridge approximation does not decrease
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between consequent refinements, even if the indicator from the RHS of Eq. 8 does, as stated
in the previous remark.

Corollary 1 (Counterexample for indefinite refinement as optimal clustering criterion) Let
P = {A, B,C} be a partition of X = [−1, 1]2 such that A = [−1, ε] × [−1, 1], B =
[−ε, ε] × [−1, 1], and C = [ε, 1] × [−1, 1]. Let μ be the uniform probability distribution
on X . The objective function we want to approximate is

f : X ⊂ R
2 → R, f =

⎧⎪⎨
⎪⎩
x1 + ε, x ∈ A,

x1(x1 + ε)(x1 − ε) cos(ωx2), x ∈ B,

x1 − ε, x ∈ C,

(10)

with local reduced dimension map r(A) = r(B) = r(C) = 1. There exist ε > 0, ω > 0,
such that

Eμ

[‖ f − RAS(r , f ,μ)‖2] ≥ Eμ

[‖ f − Eμ

[
f |P1,X

] ‖2] ,

where P1,X is the optimal projector on the whole domain X with one-dimensional active
subspace.

Proof The proof is reported in Sect. 6.3 of the Appendix. ��
The heuristics behind the previous proof rests on the fact that ridge approximation with
active subspaces performs poorly when the objective function has a high variation. The
counterexample is valid whenever the global projector P1,X is the minimizer of a local L2

ridge approximation error for which the minimizer of the gradient-based indicator in Eq. 8
does not coincide. This leaves us with an indicator in Eq. 8 that does not guarantee a non
increasing L2-error decay for subsequent refinements, but is nonetheless useful in practice.

We conclude the section with some remarks about the response surface design through
the ridge approximation with active subspaces.

Remark 2 (Approximation of the optimal profile) In practice we do not consider the optimal
profile h(y) = Eμ [ f |σ(Pr )] (y) but we employ the approximation h(y) = f (y) = f (Prx).
The reason lies on the fact that to approximate the optimal profile at the values {yi }i , additional
samples from the conditional distribution p(z|yi = Prx) must be obtained; even if the
accuracy of the ridge approximation could benefit from it, this is not always possible in
practice because of the difficulty to sample from the conditional distribution or because of
computational budget constraints.

If the data is split in training, validation, and test set, the local R2 score on the validation
set can be used as indicator for refinement.

Remark 3 (Estimator based on local R2 scores) The R2 score of a single cluster can be
written with respect to the R2 scores {R2

l }l∈{1,...,d} relative to the clusters of the subsequent
refinement. Let the sum be over the refinement clusters l ∈ {1, . . . , d}, we have

R2 = 1 − E[‖ f − E[ f |Pr ]‖2]
Var( f )

= 1 −
d∑

l=1

E[‖ f |Sl − E[ f |Pr ,l ]‖2]
Var( f )

= 1−
d∑

l=1

Var( f |Sl )
Var( f )

· E[‖ f |Sl − E[ f |Pr ,l ]‖2]
Var( f |Sl )

=1−
d∑

l=1

Var( f |Sl )
Var( f )

· (1−R2
l ), (11)
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which, substituting with the empirical variance, becomes

R2
emp = 1 −

d∑
l=1

Varemp( f |Sl )
Varemp( f )

· (1 − R2
emp;l) · Nl − 1

N − 1
, (12)

where R2
emp;l is the empirical local R2 score relative to cluster number l. The definition

can be extended for component-wise vector-valued objective functions f . The numerical
results shown in Sect. 5 consider the mean R2 score along the components when the output
is vectorial.

In practice every expectation is approximated with simple Monte Carlo, and without the
number of training samples increasing, the confidence on the approximation is lower and
lower, the more the domain is refined. This is taken into consideration while clustering,
fixing a minimum number of samples per cluster for example.

The Sect. 6.2 in the Appendix clarifies the link between the number of Monte Carlo
samples, the numerical method chosen for the discretization of the integral Eμ [∇ f ⊗ ∇ f ],
and the approximation of the active subspace. For example for deterministic models, one
could employ the more efficient Sobol’ sequence or a Latin hypercube sampling; if f is more
regular and the parameter space dimension is not too high one could employ tensor product
Gauss quadrature rule. See for example [33].

Before introducing the clustering algorithms we will employ, we specify that the partition
P = {Si }i∈{1,...,d} is defined by the decision boundaries of the clustering algorithm chosen.

3.2 K-means Clustering

We recall the K-means clustering algorithm. Let {xi }Ni=1 be a set of N samples in R
NF ,

where NF denotes the number of features. The K-means algorithm divides this set into K
disjoint clusters S = {S j }Kj=1, with Sl ∩ Sm = ∅ for 1 ≤ l,m ≤ K and l 
= m. The
partitioning quality is assessed by a function which aims for high intracluster similarity and
low intercluster similarity. For K-means this is done by minimizing the total within-cluster
sum-of-squares criterion WT , which reads as

WT (S) :=
K∑
j=1

W (S j ) =
K∑
j=1

∑
xi∈S j

‖xi − c j‖2L2 , (13)

where c j is the centroid describing the cluster S j . A centroid of a cluster is defined as the
mean of all the points included in that cluster. This means that the centroids are, in general,
different from the samples xi .

K-means is sensitive to outliers, since they can distort the mean value of a cluster and thus
affecting the assignment of the rest of the data.

3.3 K-medoids Clustering with Active Subspaces-BasedMetric

In order to overcome some limitations of the K-means algorithm, such as sensitivity to
outliers, we can use K-medoids clustering technique [38, 40–42]. It uses an actual sample as
cluster representative (i.e. medoid) instead of the mean of the samples within the cluster.

Following the notation introduced in the previous section, letm j be the medoid describing
the cluster S j . The partitioning method is performed by minimizing the sum of the dissimi-
larities between the samples within a cluster and the corresponding medoid. To this end, an
absolute-error criterion E is used, which reads as
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E(S) :=
K∑
j=1

E(S j ) =
K∑
j=1

∑
xi∈S j

‖xi − m j‖. (14)

By looking at the formula above it is clear that the use of a data point to represent each cluster’s
center allows the use of any distance metric for clustering. We remark that the choice of the
Euclidean distance does not produce the same results as K-means because of the different
references representing the clusters.

We propose a new supervised distance metric inspired by the global active subspace of
the function f we want to approximate. We define a scaled L2 norm using the eigenpairs of
the second moment matrix of ∇ f , which is the matrix from which we calculate the global
active subspace:

‖xi − x j‖� =
√

(xi − x j )TW�WT (xi − x j ), (15)

where � stands for the diagonal matrix with entries the eigenvalues of Eq. (1), andW is the
eigenvectorsmatrix from the decomposition of the covariancematrix.Aswe are going to show
in Sect. 5 this new metric allows a better partitioning both for regression and classification
tasks by exploiting both global and local informations. For insights about the heuristics behind
it, we refer to remark 5.

To actually find the medoids the partitioning around medoids (PAM) algorithm [38] is
used. PAM uses a greedy approach after the initial selection of the medoids, also called
representative objects. The medoids are changed with a non-representative object, i.e. one of
the remaining samples, if it would improve the clustering quality. This iterative process of
replacing the medoids by other objects continues until the quality of the resulting clustering
cannot be improved by any replacement. Algorithm 1 presents this approach with pseudo-
code.

Algorithm 1 K-medoids algorithm with AS metric.

Input: set of samples {xi }Ni=1 ∈ R
NF

number of clusters K
distance metric d defined in Eq. (15)

Output: set of clusters S = {S j }Kj=1
1: select initial cluster medoids
2: repeat
3: assign each sample to its closest medoid using the distance metric d
4: randomly select K non-representative objects
5: swap the medoids with the new selected objects by minimizing Eq. (14)
6: until clustering quality converges

3.4 Hierarchical Top–Down Clustering

In this section,wepresent hierarchical top–downclustering [38, 39], and exploit the additional
information from the active subspace, as done for K-medoids. In the following sections, we
refer to this technique with the acronym HAS.

In top–down hierarchical clustering, at each iteration the considered clusters, starting
from the whole dataset, are split further and further based on some refinement criterion, until
convergence. A nice feature of hierarchical clustering algorithms, with respect to K-means
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and K-medoids, is that the number of clusters can be omitted. Moreover, by stopping at
the first refinement and forcing the total number of clusters to be the maximum number of
clusters specified, HAS can be seen as a generalization of the previous methods: for this
reason, we wanted to make the implementation consistent with K-means and K-medoids
with AS induced metric as close as possible, as shown in the numerical results in Sect. 5.

Pushing further the potential of clustering algorithms applied to local dimension reduction
in the parameter space, HAS is a versatile clustering method that takes into account the
variability of the AS dimension along the parameter space. The price paid for this is the
overhead represented by the tuning of some hyper-parameters introduced later.

A schematic representation of the algorithm of top–down clustering is reported in Algo-
rithm 2. The design is straightforward and it employs a tree data structure that assigns at each
node a possible clustering of the whole dataset: consequent refinements are represented by
children nodes down until the leaves of the tree, that represent the final clusters.

Remark 4 (Normalization of the clusters at each refinement iteration) Each cluster, at every
refinement step, is normalized uniformly along dimensions onto the hyper-cube domain
[−1, 1]n , even if the subdomain identified by the cluster is not a hyperrectangle. Another
possible choice for normalization is standardization, centering the samples with their mean
and dividing them by their standard deviation.

Algorithm 2 Hierarchical top–down algorithm.

Input: set of samples S = {xi }Ni=1 ∈ R
NF

maximum number of clusters K
range of number of children {nchildmin , nchildmax }
minimum number of elements in a cluster nel
indicator for refinement I
distance metric d
minimum and maximum AS dimensions rmin , rmax
score tolerance ε

Output: refinement tree T
1: add the initial cluster S to FIFO queue q = {S}
2: while q 
= ∅ do
3: take S j , the first element from queue q
4: apply the refinement function in algorithm 3 to S j to get {Si }i
5: add {Si }i to the queue q
6: if the score tolerance ε is reached or other constraints are violated then
7: break
8: end if
9: end while

The procedure depends on many parameters that have to be tuned for the specific case
or depend a priori on the application considered: the maximum number of clusters (K ), the
minimum and maximum number of children nodes (nchildmin , nchildmax ), the tolerance for the
score on the whole domain (ε), the minimun and maximum dimension of the active subspace
(rmin, rmax ), and the minimum number of elements (nel ) of each cluster (usually nel > r ,
where r is the local AS dimension).

More importantly the method is versatile for the choice of clustering criterion, indicator
for refinement (I ), distance metric (d , from Eq. (15)) and regression method. In the following
sectionswe considerK-means andK-medoidswith the active subspaces distance as clustering
criterion (see Sect. 3.3), but other clustering algorithms could in principle be applied at each
refinement.
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Algorithm 3 Refinement function.

Input: cluster S = {xi }Ni=1 ∈ R
NF

number of clusters per tree refinement level K
range of number of children {nchildmin , nchildmax }
minmum number of elements in a cluster nel
indicator for refinement I
distance metric d
minimum and maximum AS dimensions rmin , rmax

Output: {S j }nchildj=1 , the children of cluster S

1: set best score to b = 0
2: for each nchild from nchildmin to nchildmax do

3: apply the chosen clustering algorithm (e.g. K-medoids) with nchild clusters and metric d to obtain the

clusters {S j }nchildj
4: evaluate the estimator of the error I for the refinement {S j } j , considering also the minimum and

maximum reduced dimensions rmin , rmax
5: if I > b and the minimum number of elements nel is not reached and the maximum number of clusters

K is not reached then
6: save the best refinement {S j } j and update the best score b
7: end if
8: end for

Remark 5 (Heuristics behind the choice of the active subspaces metric for K-medoids)
Having in mind that the optimal profile h(y) = Eμi [ f |Pr(Si ),i ](y) from Definition 2 is
approximated ash(y) = f (y) = f (Prx) as reported inRemark2,we can argue that clustering
with the AS metric from Eq. (15) is effective since, for this choice of the metric, the clusters
tend to form transversally with respect to the active subspace directions. This is because the
metric weights more the components with higher eigenvalues. So clustering with this metric
reduces heuristically also the approximation error induced by the choice of the non-optimal
profile.

Other clustering criterions employed must satisfy the subspace Poincaré inequality for
each cluster. Regarding the regression method we employ Gaussian process regression
with RBF-ARD kernel [43]. The procedure for response surface design with Gaussian pro-
cesses and ridge approximation with active subspaces can be found in [1, 21]. As for the
indicator for refinement (I), the local R2 score in Remark 3 is employed to measure the
accuracy of the ridge approximation against a validation dataset and the estimator from
the RHS of Eq. 8 is used to determine the dimension of the active subspace of each clus-
ter.

Here, we make some considerations about the complexity of the algorithm. For each
refinement, considering an intermediate cluster of K elements, the most expensive tasks
are: the active subspace evaluation O((K/m)np2 + (K/m)n2 p + n3) (the first two costs
refer to matrix multiplications, while the third for eigendecomposition), the clustering
algorithm, for example K-medoids with AS distance O(K (K − m)2), and the Gaus-
sian process regression O((K/m)3 p3), where p is the dimension of the outputs and
m = nchildmin and M = nchildmax are the minimum and maximum number of children
clusters, for a more compact notation. In the worst case the height of the refinement
tree is l = logm N/nel where nel is the minimum number of elements per cluster.
In Sect. 6.4 we report the detailed computational costs associated to each refinement
level.
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4 Classification with Local Active Subspace Dimension

A poor design of the parameter space could add an avoidable complexity to the surrogate
modeling algorithms. Often, in practical applications, each parameter range is chosen inde-
pendently with respect to the others. Then, it is the responsibility of the surrogate modeling
procedure to disentangle the correlations among the parameters. However, in this way, look-
ing at the response surface from parameters to outputs, regions that present different degrees
of correlation are treated indistinctly. In this matter, a good practice is to study as a pre-
processing step some sensitivity measures, like the total Sobol’ indices [33] among groups
of parameters, and split the parameter space accordingly in order to avoid the use of more
expensive surrogate modeling techniques later. Sobol’ indices or the global active subspace
sensitivity scores give summary statistics on the whole domain. So in general, one could
study the parameter space more in detail, classifying nonlinearly regions with respect to the
complexity of the response surface, if there are enough samples to perform such studies.

We introduce an effective approach to tackle the problem of classification of the parameter
spacewith respect to a local active subspace information.With the latterwemean twopossible
alternatives.

Definition 3 (Local active subspace dimension) Given a threshold ε > 0, the pairs of inputs
and gradients {(Xi ,dYi )}i associated to an objective function of interest f : X ⊂ R

n → R,
the size of the neighbourhood of sample points to consider N ≥ n, and a subsampling
parameter p ∈ N, p ≤ N , the local active subspace dimension ri associated to a sample
point Xi ∈ X is the positive integer

ri = argmin
1≤r≤p

{
tr

(
(I d − Pr )

(
1

p

∑
i∈J

dYi ⊗ dYi

)
(I d − Pr )

)
≤ ε

∣∣∣∣ J ∈ C(N , p)

}
,

where C(N , p) is the set of combinations without repetition of the N elements of the
Euclidean neighbourhood of Xi in p classes and Pr is the projection onto the first r ein-
genvectors of the symmetric positive define matrix

1

p

∑
i∈J

dYi ⊗ dYi .

Definition 4 (Local active subspace) Given the pairs of inputs and gradients {(Xi ,dYi )}i
associated to an objective function of interest f : X ⊂ R

n → R, the size of the neighbour-
hood of sample points to consider N ≥ n, and a fixed dimension p ∈ N, 1 ≤ p ≤ N , the
local active subspace Wi associated to a sample point Xi ∈ X is the matrix of the first p
eigenvectors of the spectral decomposition of

1

N

∑
i∈U

dYi ⊗ dYi , (16)

whereU is the neighbourhood of sample points ofXi with respect to the Euclidean distance.
In practice, we choose p close to the global active subspace dimension. The pairs {(Xi ,Wi )}i
can be thought as a discrete vector bundle of rank p and {Wi }i can be thought as a subset
of points of the Grassmannian Gr(N , p), that is the set of p-dimensional subspaces in an
N -dimensional vector space.

Starting from the pairs of inputs-gradients {(Xi ,dYi )}i , the procedure follows these steps:
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1. Each parameter sample is enriched with the additional feature corresponding to the local
active subspace dimension fromDefinition 3 or the local active subspace fromDefinition 4,
represented by the variable Z.

2. Each sampleXi is labelled with an integer li that will be used as classification label in the
next step. To label the pairs {(Xi ,Zi )}i we selected K-medoids with the Grassmannian
metric

d((Xi ,Zi ), (X j ,Z j )) = ‖Zi − Z j‖F , (17)

where ‖·‖F is the Frobenius distance, in case Zi represents the local active subspace
or spectral clustering [39] in case Zi is the local active subspace dimension. In the last
case, the labels correspond to the connected components of the graph built on the nodes
{(Xi ,Zi )}i with adjacency list corresponding to the nearest nodes with respect to the
distance

d((Xi ,Zi ), (X j ,Z j )) =
{

∞, Zi 
= Z j

‖Xi − X j‖, Zi = Z j
, (18)

where ‖·‖ is the Euclidean metric in R
n . The connected components are obtained from

the eigenvectors associated to the eigenvalue 0 of the discrete Laplacian of the graph [39].
Summarizing, we employ two labelling methods: K-medoids in case Zi represents the
local active subspace (Definition 4) Wi or spectral clustering in case Zi represents the
local active subspace dimension (Definition 3).

3. A classification method is applied to the inputs-labels pairs {(Xi , li )}i . Generally, for our
relatively simple applications we apply a multilayer perceptron with 1000 hidden nodes
and 2 layers.

Remark 6 (Grassmann distance) In general regarding the Definition 4, the dimension p could
be varying among samples Xi and one could use a more general distance with respect to the
one from Eq. (17) that can have as arguments two vectorial subspaces of possibly different
and arbitrary large dimensions.

Remark 7 (Gradient-free active subspace) In general both the response surface design and
the classification procedure above can be carried out from the pairs {(Xi ,Yi )}i of inputs,
outputs instead of the sets {(Xi ,dYi )}i of inputs, gradients. In fact, the gradients {dYi } can
be approximated in many different ways [1] from {(Xi ,Yi )}i . In the numerical results in
Sect. 5 when the gradients are not available they are approximated with the gradients of the
local one-dimensional polynomial regression built on top of the neighbouring samples.

5 Numerical Results

In this section we apply the proposed localized AS method to some datasets of increasing
complexity.Weemphasize that the complexity is not only definedby thenumber of parameters
but also by the intrinsic dimensionality of the problem.We compare the clustering techniques
presented inSect. 3, andwe showhow the active subspaces-based distancemetric outperforms
the Euclidean one for those functions which present a global lower intrinsic dimensionality.
We remark that for hierarchical top–down clustering we can use both metrics, and we always
show the best case for the specific dataset.

We start from a bidimensional example for which we can plot the clusters and the regres-
sions, and compare the different techniques. Even if it is not a case for which one should use
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Algorithm 4 Classification with local features from the AS information.
Input: inputs-gradients pairs {(Xi , dYi )}i∈I as training dataset

local features based on AS information {Zi }i∈I
labelling method based on the distance d from Eqs. (17) or (18)
classification method taking the inputs-labels pairs {(Xi , li )}i∈I Output: predictor for new

test inputs and classes of the training dataset.
1: for each i ∈ I do
2: evaluate feature Zi from (Xi , dYi ) and the neighbouring points of Xi
3: end for
4: initialize the |I | × |I | distance matrix M associated to {(Xi ,Zi )}i∈I
5: for each i ∈ I do
6: for each i ≤ j ∈ I do
7: M(i, j) = d((Xi ,Zi ), (X j ,Z j ))
8: end for
9: end for
10: use the labelling method with input M , to assign a label li for each (Xi ,Zi )
11: train the classification method with the inputs-labels pairs {(Xi , li )}i∈I

parameter space dimensionality reduction we think it could be very useful for the reader to
understand also visually all the proposed techniques. For the higher dimensional examples
we compare the accuracy of the methods in terms of R2 score and classification performance.
All the computations regarding AS are done with the open source Python package1 called
ATHENA [44], for the classification algorithms we use the scikit-learn package [45], and for
the Gaussian process regression GPy [46].

We suppose the domain X to be a n-dimensional hyperrectangle. we are going to rescale
the input parameters X to [−1, 1]n .

5.1 Some Illustrative Bidimensional Examples

We start by presenting two bidimensional test cases to show every aspect of the methodology
together with illustrative plots. First we analyse a case where a global active subspace,
even if present, does not provide a regression accurate enough along the active direction, in
Sect. 5.1.1. Then we consider a radial symmetric function for which, by construction, an AS
does not exist, in Sect. 5.1.2, and the use of K-means is instead preferable since we cannot
exploit a privileged direction in the input domain.

5.1.1 Quartic Function

Let us consider the following bidimensional quartic function f (x) = x41 − x42 , with x =
(x1, x2) ∈ [0, 1]2. In Fig. 1 we can see the contour plot of the function, the active subspace
direction — translated for illustrative reasons — and the corresponding sufficient summary
plot of the global active subspace, computed using 400 uniformly distributed samples. With
sufficient summary plot we intend f (x) plotted against the input parameters projected onto
the active subspace, that isWT

1 x. It is clear how, in this case, a univariate regression does not
produce any useful prediction capability.

Let us apply the clustering techniques introduced in the previous sections fixing the number
of clusters to 4. In Fig. 2 we can clearly see how the supervised distance metric in Eq. (15)
acts in dividing the input parameters. On the left panel we apply K-means which clusters

1 Available at https://github.com/mathLab/ATHENA/.
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Fig. 1 On the left panel the contour plot of the quartic function and in orange the global active subspace
direction. On the right panel the sufficient summary plot resulting projecting the data onto the global AS

Fig. 2 Comparison between the different clusters obtained by K-means (on the left), K-medoids (middle
panel), and hierarchical top–down (on the right) with AS induced distance metric defined in Eq. (15) for the
quartic test function. In orange the global active subspace direction. Every cluster is depicted in a different
color (color figure online)

the data into 4 uniform quadrants, while in the middle and right panels we have K-medoids
and hierarchical top–down, respectively, with a subdivision aligned with the global AS. We
notice that for this simple case the new metric induces an identical clustering of the data.
In Fig. 3 we plotted the sufficient summary plots for each of the clusters individuated by
K-medoids or hierarchical top–down in Fig. 2. By using a single univariate regression for
each cluster the R2 score improves a lot with respect to a global approach (see right panel of
Fig. 1).

We can also compare the R2 scores for all themethods, using a test datasets of 600 samples.
In Fig. 4 we report the scores for K-means, K-medoids and for hierarchical top–down with
AS-based distance metric. The score for the global AS, which is 0.78, is not reported in Fig. 4
for illustrative reasons. The results are very similar due to the relatively simple test case, but
we can see that even with 2 clusters the gain in accuracy is around 23% using the metric in
Eq. (15).

The hierarchical top–down clustering method was ran with the following hyper-
parameters: the total number of clusters is increasing from 2 to 10, the minimum number of
children equal to the maximum number of children equal to 3, uniform normalization of the
clusters, theminimum size of each cluster is 10 elements, the clusteringmethod is K-medoids
with AS distance, the maximum active subspace dimension is 1.
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Fig. 3 Local sufficient summary plots for the 4 clusters individuated by K-medoids or hierarchical top–down
in Fig. 2 (colors correspond) (color figure online)

Fig. 4 R2 scores comparison between local versions varying the number of clusters for the quartic function.
Global AS has a score equal to 0.78

Fig. 5 On the left panel the hierarchical top–down clustering with heterogeneous AS dimension and R2 score
equal to 1. On the right panel the labels of the local AS dimension from Definition 3

Then we want to increase the accuracy of the regression for a fixed number of clusters
equal to 3, loosing in some regions the reduction in the parameter space. Starting from the
clustering with hierarchical top–down and 3 clusters of dimension 1, the AS dimension of
each of the 3 clusters is increased if the threshold of 0.95 on the local R2 score is not met.
In general, the local R2 score is evaluated on a validation set, for which predictions from the
local response surfaces are obtained, after each validation sample is classified into one of the
3 clusters.
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Fig. 6 R2 scores comparison between global AS and local versions varying the number of clusters for the
isotropic model function. Global AS corresponds to no clustering

The 3 clusters are reported in Fig. 5 on the left. The R2 score on the test set is 1, instead of
around 0.97 from Fig. 4. To obtain this result, the central cluster AS dimension is increased
from 1 to 2. We compare the clustering with respect to the classification of the local AS
dimension with algorithm 4 using as features the local AS dimension as defined in Defini-
tion 3, on the right of Fig. 5. Actually, algorithm 4 is stopped after the plotted labels are
obtained as the connected components of the underlying graph to which spectral clustering is
applied: no classification method is employed, yet. It can be seen that hierarchical top–down
clustering with heterogeneous AS dimension is more efficient with respect to the classes of
algorithm 4, regarding the number of samples associated to a response surface of dimension
2.

5.1.2 Radial Symmetric Cosine

This example addresses the case for which an active subspace is not present. This is due to
the fact that there are no preferred directions in the input domain since the function f has
a radial symmetry. For this case the exploitation of the supervised distance metric does not
provide any significant gain and K-means clustering works better on average, since it does
not use the global AS structure. The model function we consider is f (x) = cos(‖x‖2), with
x ∈ [−3, 3]2.

In Fig. 6 we compare the R2 scores for K-means, K-medoids with AS-based metric, and
hierarchical top–down with Euclidean metric. We used 500 training samples and 500 test
samples. We see K-medoids has not a clear behaviour with respect to the number of clusters,
while the other methods present a monotonic trend and better results on average, especially
K-means. On the other hand local models improve the accuracy considerably, even for a
small number of clusters, with respect to a global model.

In this case the specifics of hierarchical top–down clustering are: the minimum number
of children is equal to the maximum, the minimum number of elements per cluster is 10, the
clustering method chosen is K-means, the normalization employed it the uniform one, and
the total number of clusters is increasing from 2 to 11.

5.2 Higher-Dimensional Datasets

In this sectionwe considermore interesting benchmarks, forwhich dimension reduction in the
parameter space is useful since the starting dimension of the parameter space is higher.We test
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Fig. 7 Mean accuracy study for a training dataset increasing in size from 50 to 500 samples. The test set is
made of 1000 independent samples. The classification accuracy for the procedures of connected component
classification (in blue) and local AS dimension classification (in orange) are both shown (color figure online)

the classification procedure in algorithm 4 with an objective function with 6 parameters and
defined piecewise as a paraboloid with different AS dimensions.We also test the procedure of
response surface design with local AS, with a classical 8-dimensional epidemic benchmark
model.

5.2.1 Multi-dimensional Hyper-Paraboloid

The objective function f : [−4, 4]6 → R we consider is defined piecewise as follows

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x21 if x1 > 0 and x2 > 0,

x21 + x22 if x1 < 0 and x2 > 0,

x21 + x22 + x23 if x1 > 0 and x2 < 0,

x21 + x22 + x23 + x24 if x1 < 0 and x2 < 0.

(19)

In the 4 domains inwhich f is defineddifferently,we expect anASdimension ranging from
1 to 4, respectively. We employed Algorithm 4 using the local AS dimensions as additional
features, from Definition 3: the values of the hyper-parameters are the following: ε = 0.999,
N = 6, p = 4. In Fig. 7 we plot the accuracy of the classification of the labels, associated
to the connected components of the graph built as described in Algorithm 4, and also the
accuracy of the classification of the local active subspace dimension, that takes the values
from 1 to 4. The test dataset for both the classification errors has size 1000. The score chosen
to asses the quality of the classification is the mean accuracy, that is the number of correctly
predicted labels over the total number of labels. For both the classification tasks 100 train
samples are enough to achieve a mean accuracy above 80%.

We remark that every step is applied to a dataset of samples in a parameter space of
dimension 6, even if, to get a qualitative idea of the performances of the method, in Fig. 8
we show only the first two components of the decision boundaries of the 4 classes for both
the previously described classification problems.

5.2.2 Ebola Epidemic Model

In this section we examine the performance of the proposed methods over the dataset created
with the SEIR model for the spread of Ebola.2 The output of interest in this case is the basic

2 The dataset was taken from https://github.com/paulcon/as-data-sets.
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Fig. 8 On the left panel, the decision boundaries of the 4 classes associated to the connected components
of the graph built as described in Algorithm 4. On the right panel, the decision boundaries of the 4 classes
associated to the local AS dimension from 1 to 4. The datasets has dimension 6, only the first two components
of the decision boundaries and of the test samples are plotted

reproduction number R0 of the SEIR model, described in [47], which is computed using 8
parameters as follows

R0 = β1 + β2ρ1γ1
ω

+ β3
γ2

ψ

γ1 + ψ
. (20)

As shown in previous works, this function has a lower intrinsic dimensionality, and thus a
meaningful active subspace, in particular of dimension 1. To evaluate the performance of the
local AS we compute the R2 score, as in Eq. (11), varying the number of clusters from 2 to
10 for all the methods presented. The test and training datasets are composed by 500 and
300, respectively, uniformly distributed and independent samples. The results are reported
in Fig. 9, where as baseline we reported the R2 for the GPR over the global AS. We can see
how the use of the AS-based distance metric contributes the most with respect to the actual
clustering method (compare K-medoids and hierarchical top–down in the plot). K-means,
instead, does not guarantee an improved accuracy (for 4 and 9 clusters), and in general the
gain is limited with respect to the other methods, especially for a small number of clusters
which is the most common case in practice, since usually we work in a data scarcity regime.
The results for K-medoids and top–down are remarkable even for a small amount of clusters
with an R2 above 0.9 and an improvement over 10% with respect to the global AS, which
means that no clustering has been used.

The hyper-parameters for the hierarchical top–down algorithm are the following: the
maximum local active subspace dimension is 1, the maximum number of children is equal
to the number of total clusters, the minimum number of children is 2 at each refinement
level, the minimum number of elements per cluster is 10, and the clustering method for each
refinement is K-medoids with AS distance.

5.3 Datasets with Vectorial Outputs

In this section we want to show how hierarchical top–down clustering and the classification
procedure of algorithm 4 can be combined to improve the overall reduction in the parameter
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Fig. 9 R2 scores comparison between global AS and local versions varying the number of clusters for the
Ebola spread model. Global AS corresponds to no clustering

space, for a fixed lower threshold in the R2 score. For the response surface design with active
subspaces for vectorial outputs we refer to [21, 34].

5.3.1 Poisson Equation with Random Diffusivity

Let us consider the stochastic Poisson problem on the square x = (x, y) ∈ � := [0, 1]2,
defined as: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (κ ∇u) = 1, x ∈ �,

u = 0, x ∈ ∂�top ∪ ∂�bottom,

u = 10y(1 − y), x ∈ ∂�left,

n · ∇u = 0, x ∈ ∂�right,

(21)

with homogeneous Neumann boundary condition on ∂�right, and Dirichlet boundary con-
ditions on the remaining part of ∂�. The diffusion coefficient κ : (�,A, P) × � → R,
withA denoting a σ -algebra, is such that log(κ) is a Gaussian random field, with covariance
function G(x, y) defined by

G(x, y) = exp

(
−‖x − y‖2

β2

)
, ∀ x, y ∈ �, (22)

where the correlation length isβ = 0.03.We approximate this randomfieldwith the truncated
Karhunen-Loève decomposition as

κ(s, x) ≈ exp

(
m∑
i=1

Xi (s)γiψ i (x)

)
, ∀(s, x) ∈ � × �, (23)

where (Xi )i∈1,...,m are independent standard normal distributed random variables, and the
eigenpairs of theKarhunen-Loèvedecompositionof the zero-mean randomfieldκ are denoted
with (γi ,ψ i )i∈1,...,m . The parameters (Xi )i∈1,...,m=10 sampled from a standard normal distri-
bution are the coefficients of the Karhunen-Loève expansion, truncated at the first 10 modes,
so the parameter space has dimension m = 10.

The domain � is discretized with a triangular unstructured mesh T with 3194 triangles.
The simulations are carried out with the finite element method with polynomial order 1.
The solution u is evaluated at 1668 degrees of freedom, thus the output is vectorial with
dimension d = 1668. As done in [21, 34], the output is enriched with the metric induced by
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Fig. 10 Subdivision of the spatial domain � in 6 clusters based on the Grassmann distance from Definition 4,
i.e. the clusters correspond to the connected components of the graph built on top of the degrees of freedom
with adjacency list determined using as distance Definition 4

the Sobolev space H1(�) on to the finite element space of polynomial order 1: the metric is
thus represented by a d×d matrixM obtained as the sum of themass and stiffnessmatrices of
the numerical scheme and it is involved in the AS procedure when computing the correlation
matrix E

[
Df M Df T

]
, where Df is the m × d Jacobian matrix of the objective function

f : R
10 → R

d , that maps the first m = 10 coefficients of the Karhunen-Loéve expansion
(Xi )i∈1,...,m to the solution u. The Jacobian matrix is evaluated for each set of parametric
instances with the adjoint method, as in [21].

Since the output is high-dimensional we classified with Algorithm 4 the output space in
6 clusters, using the Grassmann distance from Eq. (17), as shown in Fig. 10.

Afterwards we applied hierarchical top–down clustering to every one of the 6 triplets of
inputs-outputs-gradients, obtained restricting the outputs and the gradients to each one of the
6 clusters. The specifics of hierarchical top–down clustering we employed are the following:
the minimum and maximum number of children for each refinement are equal to the total
number of clusters, which is 4, the minimum number of elements in each cluster is 10, and
the clustering algorithm chosen is K-medoids with the AS distance. The size of the training
and test datasets is respectively of 500 and 150. The gradients are evaluated with the adjoint
method. Since the output is vectorial we employed the mean R2 score, where the average is
made among the components of the vectorial output considered.

Then for every lower threshold on the R2 score we increase one by one the dimension of
the 6 × 4 local clusters, until all the R2 scores of each of the 6 triplets are above the fixed
threshold. The same procedure is applied to the whole dataset of inputs-outputs-gradients
but executing hierarchical top–down clustering just once, for all the output’s components
altogether.

The results are reported in Fig. 11. In the case of the clustered outputs, the local dimension
of each one of the 6 clustered outputs times 4 local clusters in the parameter space, for a total
of 24 local clusters, are weighted with the number of elements of each cluster. In the same
way the 4 clusters of the case with unclustered outputs is weighted with the number of the
elements of each one of the 4 clusters. It can be seen that for every fixed threshold, there is
an evident gain, with respect to the dimension reduction in the parameter space, in clustering
the outputs and then performing hierarchical top–down clustering in the parameter space.
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Fig. 11 In orange the local AS dimensions weighted on the number of elements of each of the 4 clusters in the
parameter space, obtained with hierarchical top–down clustering. In blue the local AS dimensions weighted on
the number of elements of each of the 4 clusters in the parameter space, obtained with hierarchical top–down
clustering, times 6 clustered outputs (see Fig. 10) for a total of 24 terms in the weighted average (color figure
online)

5.3.2 Shape Design of an Airfoil

For this vectorial test case we consider the temporal evolution of the lift coefficient of a
parametrized NACA airfoil. Here we briefly present the problem we solve to create the
dataset, we refer to [48] for a deeper description.

Let us consider the unsteady incompressible Navier–Stokes equations described in an
Eulerian framework on a parametrized space-timedomain S(μ) = �(μ)×[0, T ] ⊂ R

2×R
+.

The vectorial velocity field u : S(μ) → R
2, and the scalar pressure field p : S(μ) → R

solve the following parametric PDE:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + ∇ · (u ⊗ u) − ∇ · 2ν∇su = −∇ p in S(μ),

∇ · u = 0 in S(μ),

u(t, x) = f(x) on �in × [0, T ],
u(t, x) = 0 on �0(μ) × [0, T ],
(ν∇u − pI)n = 0 on �out × [0, T ],
u(0, x) = k(x) in S(μ)0

. (24)

Here, � = �in ∪ �out ∪ �0 denotes the boundary of �(μ) composed by inlet boundary,
outlet boundary, and physical walls, respectively. With f(x) we indicate the stationary non-
homogeneous boundary condition, and with k(x) the initial condition for the velocity at
t = 0. The geometrical deformation are applied to the boundary �0(μ). The undeformed
configuration corresponds to the NACA 4412 wing profile [49, 50]. To alter such geometry,
we adopt the shape parametrization and morphing technique proposed in [51], where 5 shape
functions are added to the airfoil profiles. They are commonly called Hicks-Henne bump
functions. Let yu and yl be the upper and lower ordinates of the profile, respectively. The
deformation of such coordinates is described as follows

yu = yu +
5∑

i=1

ciri , yl = yl −
5∑

i=1

diri , (25)

where the bar denotes the reference undeformed state. The parameters μ ∈ D ⊂ R
10 are the

weights coefficients, ci and di , associated with the shape functions ri . In particular we set
D := [0, 0.03]10. The explicit formulation of the shape functions can be found in [51]. For
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Fig. 12 In orange the local AS dimensions weighted on the number of elements of each of the 2 clusters in the
parameter space, obtained with hierarchical top–down clustering. In blue the local AS dimensions weighted on
the number of elements of each of the 2 clusters in the parameter space, obtained with hierarchical top–down
clustering, times 2 clustered outputs for a total of 4 terms in the weighted average (color figure online)

this datasets, the Reynolds number is Re = 50000. The time step is dt = 10−3 s. For other
specifics regarding the solver employed and the numerical method adopted we refer to [48].

As outputs we considered the values of the lift coefficient, every 15 time steps from 100ms
to 30000 ms, for a total of 1994 components. Even in this case the output is classified with
Algorithm 4 with distance defined in Definition 3. The values of the lift coefficient physically
interesting are collected at last, after an initialization phase. Nonetheless for the purpose of
having a vectorial output we considered its value from the time instant 100ms. The procedure
finds two classes and splits the ordered output components in two parts: from the component 0
to 996, the local AS dimension is 1, for the remaining time steps it is higher. So we can expect
an improvement on the efficiency of the reduction in the parameter space when considering
separately these two sets of outputs components as Fig. 12 shows. The weighted local AS
dimension is in fact lower when using clustering, for every minimum R2 threshold.

6 Conclusions and Perspectives

In this work we present a new local approach for parameter space reduction which exploits
supervised clustering techniques, such as K-means, K-medoids, and hierarchical top–down,
with a distancemetric based on active subspaces.We called thismethod local active subspaces
(LAS). The proposed metric tend to form the clusters transversally with respect to the active
subspace directions thus reducing the approximation error induced by the choice of the non-
optimal profile.

The theoretical formulation provides error estimates for the construction of response
surfaces over the local active subspaces. We also present a classification approach to capture
the optimal AS dimension for each cluster and can be used as a preprocessing step, both
for the inputs and the vectorial outputs, for the construction of more accurate regressions
and surrogate modeling. The proposed approach is very versatile, especially the hierarchical
top–down clustering which can incorporate quite different criteria. The methodology has
been validated over a vast range of datasets, both scalar and vector-valued, showing all the
strengths and a possible weakness, in case of radial symmetric functions. In all the test cases
LAS achieved superior performance with respect to the classical global approach.

Possible future lines of research can focus on the study of the extension of this methods to
nonlinear parameter space reduction techniques, or on the use of more advanced clustering
criteria.
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Appendix

6.1 Subspace Poincaré Inequality

The probabilistic Poincaré inequality for conditional probability densities or subspace
Poincaré inequality [36] is valid at least for the following classes of absolutely continuous
probability densities μ with p.d.f. ρ.

Assumption 1 The p.d.f ρ : X ⊂ R
n → R satisfies one of the following:

1. X is bounded connected open with Lipschitz boundary, ρ is the uniform density distribu-
tion.

2. X is convex and bounded, ∃ δ, D > 0 : 0 < δ ≤ ‖ρ(x)‖L∞ ≤ D < ∞ ∀x ∈ X ,
3. X = R

n , ρ(x) ∼ exp(−V (x)) where V : R
n → (−∞,∞] , V ∈ C2 is α-uniformly

convex,

uTHess(V (x))u ≥ α‖u‖22, ∀x,u ∈ R
n, (26)

where Hess(V (x)) is the Hessian of V (x).
4. X = R

n , ρ(x) ∼ exp(−V (x)) where V is a convex function. In this case we require also
f Lipschitz continuous.

The last class of p.d.f. provides aweaker bound (Lemma 4.3, [36]) on the ridge approximation
error. For the previous classes i ∈ {1, 2, 3, 4} of p.d.f. an upper bound of the Poincaré constant
CP,i is also provided:

CP,1 = CP,1(�), CP,2 = Ddiam(X )

πδ
, CP,3 = 1

α
, (27)

while the upper bound for CP,4 requires the definition of other quantities and is proved in
Lemma 4.4 [36].

6.2 Generalization of the Upper Bound on the Approximation of the Active
Subspace

We want to make some brief considerations about the accuracy of the active subspace as
eigen subspace of the correlation matrix approximated with Monte Carlo. If we use the
notation W1 ∈ R

n×r ,W2 ∈ R
n×(n−r) for the active and inactive subspaces (i.e. Pr =

W1WT
1 , I d − Pr = W2WT

2 ) and Ŵ1 ∈ R
n×r , Ŵ2 ∈ R

n×(n−r) for the approximated active
and inactive subspaces, we can bound the approximation error as done by Constantine in [1]:
assuming f Lipschitz continuous, with high probability the following inequality is valid,

dist(Im(W1), Im(Ŵ1)) � 4L
√
n(log(n))

1
2

N
1
2 λ1(λr − λr+1)

, (28)

where L is the Lipschitz constant of f , {λ1, . . . λn} are the non-negative eigenvalues of
Eμi [∇ f ⊗ ∇ f ] ordered decreasingly, and N is the number of Monte Carlo samples.

The bound in Eq. (28) is obtained from Corollaries 3.8 and 3.10 in [1]. It is founded on a
matrix Bernstein inequality for a sequence of random uniformly bounded matrices (Theorem
6.1, [52]) and on the Corollary 8.1.11 from [53] that holds a bound on the sensitivity of
perturbation of an invariant subspace.
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From Corollary 8.1.11 of [53], a bound on the approximation error of the active subspace
W1 can be obtained making explicit ‖WT

2 EW1‖F with respect to the chosen numerical
method for the discretization Ĉ of the integral C = Eμi [∇ f ⊗ ∇ f ]: in [1] this has been
done for the Monte Carlo method. In practice we could use quasi Monte Carlo sampling
methods with Halton or Sobol’ sequences [33], since

‖WT
2 EW1‖F ≤ √

r(n − r)‖WT
2 EW1‖max

�
√
r(n − r)D∗({xi }i ) · maxi, j∈{1,...,n}(VHK(∇ fi∇ f j ))

� 2
√
r(n − r)D∗({xi }i ) · max(| f |) · maxi∈{1,...,n}(VHK(∇ fi ))

� 2
√
r(n − r) · maxi∈{1,...,n}(VHK(∇ fi ))

log(N )n

N
,

where VHK is the Hardy–Krause variation and D∗({xi }i ) is the star discrepancy of the quasi
random sequence {xi }i . For the above result we have imposed X = [0, 1]n but it can be
extended to different domains [54]. Thus we obtain the bound

dist(Im(W1), Im(Ŵ1)) � 4‖WT
2 EW1‖F

λr − λr+1

� 8L
√
r(n − r) · maxi∈{1,...,n}(VHK(∇ fi ))

λr − λr+1
· log(N )n

N
. (29)

Other numerical integration rules can be chosen so that different regularity conditions on
the objective function may appear on the upper bound of the error, as the Lipschitz constant
on Eq. (28) or the Hardy–Krause variation on Eq. (29). If the regularity of f is Cs , we can
also apply tensor product quadrature formulae or Smolyak’s sparse quadrature rule [33]. For
high-dimensional datasets and f less regular, the estimate in Eq. (28) is the sharpest.

6.3 Proof of Corollary 1

Proof Let us use the notation h1(x1) := x1(x1 + ε)(x1 − ε), and h2(x2) := cos(ωx2), it can
be shown that

Eμ [∇ f ⊗ ∇ f ] =
∫
B

(
(h′

1)
2(h2)2 h1h′

1h2h
′
2

h1h′
1h2h

′
2 (h1)2(h′

2)
2

)
dμ(x) + μ(A ∪ C) ·

(
1 0
0 0

)

=
⎛
⎝ 2

5ε
5
(
1 + sin(2ω)

2ω

)
0

0 4
105ω

2ε7
(
1 − cos(2ω)

2ω

)
⎞
⎠ + μ(A ∪ C) ·

(
1 0
0 0

)
,

thus, since we are considering a one dimensional active subspace, the active eigenvector
belongs to the set {(1, 0), (0, 1)}. Similarly we evaluate

EμB [∇ f |B ⊗ ∇ f |B] =
⎛
⎝ 8

5ε
4
(
1 + sin(2ω)

2ω

)
0

0 16
105ω

2ε6
(
1 − cos(2ω)

2ω

)
⎞
⎠ ,

EμA [∇ f |A ⊗ ∇ f |A] = EμC [∇ f |C ⊗ ∇ f |C ] =
(
1 0
0 0

)
,

and conclude that there exist ε > 0, ω > 0 such that:
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Table 1 Computational complexity of hierarchical top–down clustering

Step Cost Description

Root O(Nnp2 + Nn2 p + n3) AS

O(N3 p3) GPR

First refinement O(N (N − k)2) K-medoids

k from m to M O((N/k)np2 + (N/k)n2 p + n3) AS

O((N/k)3 p3) GPR

Intermediate refinements – –

Last refinement O((N/kl−1)((N/kl−1) − k)2) K-medoids

k from m to M O((N/kl )np2 + (N/kl )n2 p + n3) AS

for each one of the ml−1 clusters O((N/kl )3 p3) GPR

2

5
ε5

(
1 + sin(2ω)

2ω

)
+ 4(1 − ε) ≥ 4

105
ω2ε7

(
1 − cos(2ω)

2ω

)
, (30)

8

5
ε4

(
1 + sin(2ω)

2ω

)
≤ 16

105
ω2ε6

(
1 − cos(2ω)

2ω

)
, (31)

for example ε ∼ 10−2, ω ∼ 104 (approximately 10ε−2 ≤ ω2 ≤ 10ε−7). In this way, using
the notations of Definition 2, we have

P1,X = e1 ⊗ e1, P1,A = P1,C = e1 ⊗ e1, P1,B = e2 ⊗ e2,

and it follows that

Eμ

[‖ f − RAS(r , f )‖2] = Eμ

[
f 2|B

] = (1/μ(X ))‖h1‖2L2(X ,λ)
‖h2‖2L2(X ,λ)

,

Eμ

[‖ f − Eμ [ f |Pr ] ‖2
] = (1/μ(X ))‖h1‖2L2(X ,λ)

‖h2 − (1/μ(X ))

∫
h2dx2‖2L2(X ,λ)

= (1/μ(X ))‖h1‖2L2(X ,λ)

(
‖h2‖2L2(X ,λ)

− 7

16

(∫
h2dx2

)2
)

,

where λ is the Lebesgue measure. ��

6.4 Computational Complexity of Hierarchical top–down

In Table 1 we report the computational complexity of the hierarchical top–down clustering
algorithm. We report the costs divided by level of refinement.
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