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Abstract
A multicomponent mixture of Janus colloids with distinct catalytic coats and phoretic mobilities is
a promising theoretical system to explore the collective behavior arising from nonreciprocal
interactions. An active colloid produces (or consumes) chemicals, self-propels, drifts along
chemical gradients, and rotates its intrinsic polarity to align with a gradient. As a result the
connection from microscopics to continuum theories through coarse-graining couples densities
and polarization fields in unique ways. Focusing on a binary mixture, we show that these couplings
render the unpatterned reference state unstable to small perturbations through a variety of
instabilities including oscillatory ones which arise on crossing an exceptional point or through a
Hopf bifurcation. For fast relaxation of the polar fields, they can be eliminated in favor of the
density fields to obtain a microscopic realization of the Nonreciprocal Cahn–Hilliard model for
two conserved species with two distinct sources of non-reciprocity, one in the interaction
coefficient and the other in the interfacial tension. Our work establishes Janus colloids as a versatile
model for a bottom-up approach to both scalar and polar active mixtures.

1. Introduction

As a route to manifesting active matter systems [1], the breaking of action-reaction symmetry in effective
interactions, or non-reciprocity, has recently garnered increased attention [2]. Reciprocity in interactions is
synonymous with the existence of an interaction potential. If the concept of an effective free energy cannot
be applied, as is very likely to be the case for interactions driven by chemicals [3, 4], social interactions [5],
velocity fields [6–8], or information transfer [9–11] non-reciprocity will inevitably emerge, whether or not it
is significant at long timescales [12].

In a system of particles without an intrinsic polarity, non-reciprocity is apparent only in active mixtures
which allow breaking Newton’s third law in pairwise interactions. For example, activity manifests in the
formation of novel bound states in collections of uniformly coated active colloids [13–16]. Striking collective
behavior emerges in large collections of chemically active colloids [17–20] involving chasing dynamics.
Continuum theories that minimally capture the essence of nonreciprocal interactions in scalar mixtures have
been proposed [21, 22] and are being explored intensely [23–25]. In polar active matter, with orientation as a
relevant degree of freedom, non-reciprocity can be incorporated in a multitude of ways—directly in the
alignment rules [26, 27], through a dependence of the spin–spin interactions on spatial anisotropy [28–30],
or through quorum sensing [61]. Explorations of the collective behavior of systems with polar, nematic, or
chiral order constitute an active sub-field of research [10, 26, 31]. Novel steady states arise in all the examples
mentioned here due to the simultaneous breaking of parity and time reversal symmetry leading to chiral
motion in polar mixtures [6, 26], traveling waves in scalar mixtures [21], and stress–strain cycles in odd
solids [32, 33] relating this class of phenomenon to odd response [34].

A few examples of experimental systems that exhibit nonreciprocal interactions are—active Janus
colloids [35–37], light actuated colloids with a vision cone [38, 39], and dusty plasma [40]. In this work, we
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will focus on Janus colloids, where nonreciprocal interactions between densities and polarities are realized
through chemical field-mediated interactions. The nonequilibrium active dynamics of self-propelled Janus
colloids are due to self-phoresis [35], which harnesses the force-free mechanism of diffusiophoresis at
microscopic lengthscales [4, 41]. These particles are able to catalyze a chemical reaction on their surface
which modifies the density profile of the involved reactants and products [42]. Depending on the
geometrical properties of the colloid, changes in these chemical substrates’ concentration may lead to the
particle net motion [43]. Moreover, the coupling of different colloids to the same substrates induces an
effective long-ranged interaction among different particles.

The versatility of a system of Janus colloids arises from the variety in their dynamical response [44, 45].
In a collection of identical colloids, possible collective dynamics include system-wide phase separation,
pattern formation with a selected lengthscale, and oscillations similar to the Jeans instability in gravitational
systems as explored in [44]. Numerical solutions of the dynamics for chemorepulsive colloids in [46, 47]
show that the linear instabilities indeed pave the route to dynamic aggregates, and spatiotemporal patterns
including traveling waves. For two interacting Janus colloids, the interplay of orientational dynamics,
self-propulsion, and drift produces a complex effective potential landscape leading to bound orbits with
internal jiggling and chiral bound state [48].

In this paper, we have studied the collective behavior of two species of phoretic colloids starting from
their microscopic dynamics and building the continuum field theories. In section 2, we introduce the model
of multi-species Janus colloids. In section 3, we discuss the linear stability analysis of the two-species case,
while in appendix C the one-species one. Finally in section 4, we study what happens to the two-species
system whenever the polarization fields relax fast enough so that they can be adiabatically eliminated.

2. Multi-species Janus particles

We study the dynamics of n different species of Janus colloids [44, 49] interacting with a chemical substrate.
These particles are sensitive to the spatial gradient of the substrate and respond accordingly in two different
ways: (i) their velocity varies proportionally to the gradient of the chemical concentration (chemotactic
drift), (ii) they re-orient along it (chemotactic alignment). Moreover, each Janus particle contributes to the
production (or consumption) of the substrate particles. This inhomogeneity in the chemical in the proximity
of the Janus particle’s surface produces a slip velocity, which induces self-propulsion in the direction of the
particle’s axis [43]. An effective nonreciprocal interaction between the two species follows from the direct
interplay with the chemical. We describe the system by looking at the 3-dimensional dynamics of Janus
colloids of species a ∈ {1,2, . . . ,n} with position ra and orientation na which specifies the direction of
self-propulsion. They evolve in time according to the Langevin equations

dra
dt

=−µa∇c+ vana + ξa,

dna
dt

= ωa× na

= (Ωana×∇c+ ζa)× na

=Ωa (I− nana) ·∇c+ ζa× na,

(1)

here I denotes the 3-dimensional identity matrix, and va the self-propulsion speed. The sign of the
chemotactic mobility µa prescribes whether the particle moves following increasing (µa < 0) or decreasing
(µa > 0) gradients of the substrate density field c(r, t). Similarly, the coefficient Ωa leads to alignment
(Ωa > 0) or anti-alignment (Ωa < 0) of the particle velocity along the gradient∇c(r, t). In writing
equation (1) we ignore terms that are quadratic in na, keeping only those that are leading order in na. This
simplification is consistent with ignoring nematic order during coarse-graining as we will discuss later; we
refer to appendix A for more details. The fluctuating nature of equation (1) is encoded in the Gaussian white
noises ξa(t) and ζa(t), characterized by zero mean and variance

⟨ζa,i (t)ζb,j (t)⟩= 2Dr,aδab δij δ (t− t ′) , and ⟨ξa,i (t)ξb,j (t)⟩= 2Daδab δij δ (t− t ′) , (2)

where the labels i, j identify the 3-dimensional space components of the vectors. Da and Dr,a are the
translational and rotational diffusion coefficients of the Janus particles computed according to
D= kBT/6πηR and Dr = kBT/8πηR3 where R, kBT and η represent, respectively, the colloidal size, the
temperature and the viscosity of the surrounding fluid. Note that the conservation of the modulus |na|2 = 1
from equation (1) implicitly assumes the Stratonovich representation of the stochastic differential equation
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[50, 51]. The set of dynamical equation (1) is completed by including the evolution of the non-conserved
substrate density field c(t), which is given by

∂tc−Dc

(
∇2−κ2

)
c=

∑
[αaρa−βa∇· pa] . (3)

The fields ρa(r, t) and pa(r, t) denote respectively the particle density and the polarization field associated
with the species a, and they are defined as follows

ρa =

⟨∑
i

δ (r− ra,i)

⟩
, pa =

⟨∑
i

na,iδ (r− ra,i)

⟩
, (4)

where i runs over all particles of the a−th species, and the average is evaluated with respect to the noise
realizations. As clear from equation (3), the substrate diffuses with diffusion constant Dc and degrades
exponentially over the timescale 1/Dcκ

2, associated with the screening lengthscale κ−1. We also assume that
Janus particles constitute point-like sinks or sources for the substrate. If the sign of the parameter αa in
equation (3) is positive (negative) the particles of species a produce (consume) the substrate. Similarly, the
dipole term βa accounts for the head-tail asymmetry in the production (or consumption) along na. If βa > 0
the Janus particles produce more (or consume less) substrate around the catalytic cap of na, while they
produce less (or consume more) otherwise. We represent this in figures 1(a) and (b), where, the net
production of the chemical (α> 0) is modulated along its symmetry axis by the sign of β. In figure 1(c), we
consider the joint effect of the production of the chemical and chemotaxis for two different species of Janus
colloids, marked by the two different blue and green colors. In particular, we assume the scenario represented
in figure 1(a), where the chemical gradient grows in the self-propelling direction. If we consider the
interactions to be pairwise, given a Janus particle in the picture, the bold blue and green arrows identify the
net qualitative force due to the colloid of the same color along the dotted line. In the case where µ1,2 > 0, the
particles, being a source of chemical, are effectively repelled by each other. If µ2 < 0 changes sign, green
colloids are attracted by other particles, while blue continue to be repelled: this is a prototypical
manifestation of effective nonreciprocal interactions. In the last case, being µ1,2 < 0, the particles are all
effectively attracted by each other. Similarly, in figure 1(d), we represent the effect of pairwise chemotactic
alignment for the two species of particles. Whenever Ω1,2 > 0 the particles tend to align following higher
gradients of the chemical concentration∇c, which in this example coincides with the self-propelling
direction (tiny arrow), while they anti-align along it otherwise.

To give an idea of the typical order of magnitude of the latter parameters for real experimental systems,
we report in table 1 those for two different types of half-coated Janus colloids [37]. In both cases, each
particle presents a metallic face, respectively, platinum and copper, and one made of an insulating one, i.e.
SiO2. The metallic half catalyzes the decomposition of the substrate molecules of hydrogen peroxide H2O2
into oxygen O2 and water H2O. Other experimental works, considering variations on the colloids’ design,
report (phoretic) coefficients of the same magnitude [36, 52, 53]. We have quoted values for micrometer
sized swimmers in table 1, however we note that they typically depend on size R as well. Other parameters
remaining constant, v and µ are independent of R (although v can have a crossover to a R−1 dependence at
large R [54]), while Ω, α, β vary as R−1, R2 and R3 respectively, see appendix A2.

Our goal is to characterize the various dynamical steady states by looking at the effect of chemically
mediated interactions on the particle distribution ρa and orientation pa. It follows from equation (4) that pa
and ρa are coupled fields, for instance, pa vanishes at a point where ρa is zero. As we discuss in appendix A, ρa
and pa are respectively the zeroth and first moment in na of the joint probability density
Pa = ⟨

∑
i δ(r− na,i)δ(r− ra,i)⟩. In general, one can construct an infinite hierarchy of equations where the

time evolution of them−th moment of n depends on them ′−th moment, withm ′ ⩾m. In the spirit of
describing the collective behavior and keeping only the most relevant fields, i.e. those reflecting conservation
laws or broken symmetry in the system, we restrict our analysis to the first and second moments of the
orientation n by truncating the corresponding hierarchy of infinitely many equations in the nmoment
expansion [3]; the details of the derivation are reported in appendix A. Thus, we get equations for the
coarse-grained fields ρa and pa

∂tρa =−∇ · (vapa−µaρa∇c)+Da∇2ρa, (5)

∂tpa =
(
−2Dr,a +Da∇2

)
pa +µa∇· (pa∇c)+

2

3
Ωaρa∇c−

va
3
∇ρa, (6)

that allow us, together with equation (3), to describe the macroscopic behavior of the system under the
assumption of negligible nematic order parameterQa = ⟨

∑
i (na,ina,i− I/3)δ(r− ra,i)⟩. Equation (5)

describes the conserved evolution of the particle density ρa via three different contributions: the first
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Figure 1. Schematic showcasing the complexity in the dynamics that can be harnessed to tune the system to the collective behavior
of choice. (a) Shows a Janus colloid that produces a chemical field (profile shown by red heatmap) with rate α> 0. β determines
the asymmetry in production along the polarity n. (b) Is similar to (a) but with the sign of β reversed thus flipping the profile of
the chemical field in (a). (c) Lists all possible types of center-to-center interaction between two different species of Janus colloids
(blue and green) due to chemotactic drift. To fix ideas, we illustrate pairwise interactions only, and the two involved particles are
joined by a dotted black line. For both µa positive (negative), all interactions are repulsive (attractive). For sign(µ1) ̸= sign(µ2),
nonreciprocal interactions emerge where one species chases the other. (d) Shows the effect of chemotactic alignment: whenever
Ωa is positive (negative), particles re-orient towards (away from) high-density regions resulting in a novel form of orientational
order. Orientational dynamics leads to effective pairwise attraction-repulsion or chasing depending on the sign ofΩa.

accounts for advection of particles because of self-propulsion, the second is the effect of chemotaxis, and the
third is translational diffusion. Similarly, in equation (6) for the polar field pa, the first term represents the
effect of orientational and translational diffusion. By its very definition in equation (4), pa is coupled with
ρa—consequently, both diffusion and phoretic drift of ρa affect pa through the second and the third terms
respectively. To the lowest order in spatial gradients, pa rotates to align with the local substrate gradient, an
effect that is encoded in the third term proportional to the coefficient of alignment Ωa. Finally, the last term
can be interpreted as a pressure term that measures how self-propulsion influences local order.

2.1. Linearized dynamics
In general, equations (5) and (6), complemented with equation (3) constitute a set of 2n+ 1 nonlinear
partial differential coupled equations for an equal number of scalar and vector fields. A great reduction of
their complexity is achieved by studying their linearized form, by looking at perturbations with respect to a
simple and physically relevant solution. We perform linear stability analysis of equations (3), (5) and (6) by
considering small perturbations around the spatially homogeneous solution

ρa = ρ̄a, pa = 0, c= c̄=

∑
aαaρ̄a
Dcκ2

, (7)

corresponding to a state where the n species are well mixed, i.e. there are modulations in the density, and no
orientational order is present. The stationary substrate density c̄> 0 is constant, as its net production by
Janus colloids is balanced by its degradation rate. We are interested in solutions that are perturbations of
equation (7) in the form of

ρa (r, t) = ρ̄a + δρa (r, t) , pa (r, t) = δpa (r, t) , c(r, t) = c̄+ δc(r, t) . (8)
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We can now build the dynamical equations for δρa, δpa and δc by discarding contributions that are higher
than the linear order in the perturbations. This procedure leads to the following set of linearized equations

∂tδρa (r, t) = µaρ̄a∇2δc(r, t)+Da∇2δρa (r, t)− va∇· δpa (r, t) ,

∂tδpa (r, t) =−
va
3
∇δρa (r, t)+

2

3
Ωaρ̄a∇δc(r, t)+

(
Da∇2− 2Dr,a

)
δpa (r, t) ,

∂tδc(r, t) =−Dc

(
κ2−∇2

)
δc(r, t)+

∑
a

[αaδρa (r, t)−βa∇· δpa (r, t)] .
(9)

The system of equation (9) represents the starting point to discuss the linear stability of the disordered state
and the onset of order in the system. Although linear, the current form of equation (9) is still very complex
due to the large number of fields involved and the related parameters. A further simplification follows from
the physical assumption that the deviations of the substrate density δc from the space homogeneous solution
relax much faster than those of the density and polarization field of the Janus particles, that is ∂tδc(r, t)≃ 0,
or equivalently

Dc

(
κ2−∇2

)
δc(r, t) =

∑
a

[αaδρa (r, t)−βa∇· δpa (r, t)] . (10)

As reported in table 1, this assumption can be justified by the fact that Dc≫ Da, as a consequence of the fact
that Janus colloids orders of magnitude larger than substrate molecules. Furthermore, it is convenient to
express the time evolution of δρa(k, t), δpa(k, t), and δc(k, t) in terms of their Fourier modes, whose
dynamics directly follow from equations (9) and (10) as

∂tδρa (k, t) =−k2 [µaρ̄aδc(k, t)+Daδρa (k, t)]− va (ik) · δpa (k, t) ,

∂tδpa (k, t) =−
ik

3
[vaδρa (k, t)− 2Ωaρ̄aδc(k, t)]−

(
Dak

2+ 2Dr,a

)
δpa (k, t) ,

Dc

(
κ2+ k2

)
δc(k, t) =

∑
a

[αaδρa (k, t)−βa (ik) · δpa (k, t)] ;

(11)

as a convention the Fourier transform of a given function f(r) reads f(k)≡
´ +∞
−∞ dre−ik·r f(r). For the sake of

completeness, we mention that the closure of the set linearized equations at the nematic fieldQa order would
simply lead to renormalization of Dr,a to Dr,a + k2v2a/(45Dr,a), thus leaving the qualitative behavior of the
system unaltered.

We can reduce the degrees of freedom of the problem by looking at the transverse and longitudinal
components of δpa(k, t). The initial value of the perturbation δpa(k, t) in the direction transverse to the wave
vector k decays with relaxation time Dr,a +Dak2, which remains positive and finite at all wave numbers.
Moreover, the dynamics of δρa(k, t) and δc(k, t) in equation (11) depends on those of δpa(k, t) only via
ik · δpa(k, t), i.e. the divergence of the polar field in real-space coordinates. Accordingly, we decompose the
polar field along k̂= k/k and in the transverse direction as

δpa (k, t) =
(
k̂ · δpa (k, t)

)
k̂+

(
I− k̂k̂

)
· δpa (k, t)

= δp∥,a (k, t) k̂+ δp⊥,a (k, t) ,
(12)

where δp∥,a(k, t) is the parallel (longitudinal) component of δpa(k, t) to k̂ and δp⊥,a(k, t) is a vector which

belongs to the plane perpendicular to k̂ (transverse component). As anticipated, one can check that the
perpendicular component δp⊥,a(k, t) of the polar field is decoupled from the other fields and it relaxes
exponentially in time according to ∂tδp⊥,a(k, t) =−(Dak2+ 2Dr,a)δp⊥,a(k, t). Finally, by substituting the
explicit expression of δc(k, t) in equation (11) for δρa(k, t) and δpa(k, t), the dynamics of the system are
encoded in those of the two slow (scalar) fields

∂tδρa (k, t) =
∑
b

[
k2Gttab (k) δρb (k, t)+ ikGtrab (k) δp∥,b (k, t)

]
,

∂tδp∥,a (k, t) =
∑
b

[
ikGrtab (k) δρb (k, t)+Grrab (k) δp∥,b (k, t)

]
,

(13)

where we have defined the k−dependent matrices of the inter-species couplings
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Gttab (k)≡−Daδab−µaρ̄aαb/
[
Dc

(
κ2+ k2

)]
,

Grtab (k)≡−δabva/3+ 2Ωaρ̄aαb/
[
3Dc

(
κ2+ k2

)]
,

Gtrab (k)≡−vaδab +µaρ̄aβb k
2/
[
Dc

(
κ2+ k2

)]
,

Grrab (k)≡−
(
Dak

2+ 2Dr,a

)
δab + 2Ωaρ̄aβb k

2/
[
3Dc

(
κ2+ k2

)]
. (14)

All the elements of these interaction matrices have a similar structure

Gab = single particle dynamics+mobility coefficient for species a× activity coefficient for species b. (15)

The dynamical matrices in equation (14) are not symmetric, which means that the effective interactions
between the various species, following from the different coupling with the chemical substrate, are
nonreciprocal. Note that while the homogeneous production/consumption rate αa contributes at all scales,
the dipole contribution proportional to βa is expected to be sub-leading in the macroscopic limit k→ 0, as it
scales as k2.

In the next two sections, we present a stability analysis of the two-species system in two particularly
significant cases. In the first we consider the fully coupled dynamics focusing mainly on the simpler case
where the bare translational and rotational diffusivities of the species are identical. In this case, the dynamics
reduce to the coupled dynamics of a conserved and a non-conserved field which can undergo an instability to
a spontaneously oscillating state. In the second case, we assume that the timescales D−1

r,a are smaller than all
other timescales in the system, such that the polarization fields can be enslaved to the density ones to obtain
the equations for two active densities, representing a microscopic realization of the nonreciprocal
Cahn–Hilliard (NRCH) model [21].

3. Coupled dynamics of two species

Here we simplify our analysis by restricting to the case of two species of Janus colloids. This represents the
simplest, yet physically relevant, system of Janus particles that display nonreciprocal interactions due to
phoretic coupling between similar types of fields—the density fields or the polar fields. To reduce the large
parameter space, we first assume equal diffusivity D1 = D2 = D, orientational noise timescale
Dr,1 = Dr,2 = Dr for the two species, and equal self-propelling velocity v1 = v2 = v, while allowing the
phoretic mobility coefficients to be different. The dynamics of the system are described by the spectral
properties of the full dynamical matrix G, which is here defined via equation (14) as

G (k) =

(
k2Gttab (k) ikGtrab (k)

ikGrtab (k) Grrab (k)

)
. (16)

In particular, the eigenvalues of G quantify the rate with which the different modes in the linearized system of
equations grow or decay exponentially with time. In addition, complex eigenvalues imply an oscillatory
response to perturbations. Here we list the four eigenvalues Λi(k) with i = 1− 4 of the G matrix. The first
pair of eigenvalues Λ1,2 are

Λ1,2 (k) =−
(
Dr + k2D±

√
∆1 (k)

)
, ∆1 (k) = (Dr)

2− k2v2

3
, (17)

and they are associated with stable modes that are independent of the phoretic effects. The second pair of
eigenvalues Λ3,4 are

Λ3,4 (k) =−
(
Dr +Dk2+

K(k) ρ̄

2

α ·µ−β ·Ω
Dc

±
√
∆2 (k)

)
,

∆2 (k) =

(
ρ̄K(k)

α ·µ−β ·Ω
2Dc

)2
+
ρ̄K(k)

Dc

[
v

(
α ·Ω+

k2

3
β ·µ

)
−Dr (β ·Ω+α ·µ)

]
+∆1 (k) ,

(18)

where we define the screening parameter K(k) = k2/(k2+κ2), total average density ρ̄= ρ̄1+ ρ̄2, and we
group the phoretic coefficients for the two species as pairs of numbers which we write in a compact manner
adapting the vector notation α= (α1,α2), β = (β1,β2), µ= (ρ̄1µ1ρ̄

−1, ρ̄2µ2ρ̄
−1),

Ω= (ρ̄1Ω1ρ̄
−1, ρ̄2Ω2ρ̄

−1)/3. The factor K(k) is determined by the relative magnitude of two fundamental
lengthscales of the model: k−1 denoting the lengthscale at which we probe our system, and κ−1 the typical
range of phoretic interactions. Importantly, for k≪ κ we obtain informations about the collective
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Table 1.Here we report the parameters from the experimental study of two types of Janus particles carried out in [37]. The two
diffusivities are computed according to D= kBT/6πηR and Dr = kBT/8πηR3 where kBT and η represent, respectively, the temperature
and the viscosity of the surrounding fluid. Note that Dc ≫ D, following from the different sizes of the colloids and the substrate
molecules. The value of screening length κ−1 is estimated by considering that a 3% hydrogen peroxide solution stored at room
temperature under normal conditions can be expected to decay at a rate of 0.5% per year [55]. Note that whereas the screening length is
very large for hydrogen peroxide, this should be considered as an estimate for the upper limit of this length scale, as other chemical
substrates might be considerably less stable (also when impurities are present in the case of hydrogen peroxide itself), and consequently
there might be other situations where this length scale is comparable to, or even smaller than, our observation scale. Therefore, it is
justified for us to look at all possible cases, namely k≪ κ, k∼ κ, and k≫ κ. We refer to appendix A.1.1 for the evaluation of the
production rates α and β.

Parameters Pt@SiO2 Cu@SiO2

v 3µms−1 3µms−1

Dc 2× 103µm2 s−1 2× 103µm2 s−1
R 1.5µm 1.5µm
D−1

r 25s 25s
D 0.12µm2 s−1 0.12µm2 s−1

κ−1 3.5 m 3.5 m
ρ̄ 3.37× 10−3µm−3 3.37× 10−3µm−3

µαρ̄/(DcDr) 1.9 −3.8
βΩρ̄/(DcDr) 0.78 −15.2

(system-size) behavior, and K vanishes as (k/κ)2. For k≫ κ the factor K tends to unit, meaning that we are
looking at lengthscales of the particle-size order, compatibly with the fact that interactions are not screened.

We recall that the linear regime relies on the condition of steady chemical density
c̄= (ρ̄1α1+ ρ̄2α2)/(Dcκ

2)⩾ 0, which is obtained by the balance of net positive production of the substrate
via the activity of the Janus colloids and its spontaneous degradation, expressed by κ> 0. Contrarily to the
eigenvalues Λ1,2, the pair Λ3,4 depends on the phoretic coefficients. This implies that the mode structure of
the linearized dynamics splits into two parts. The first set of modes Λ1,2 describes the linear response of a
self-propelled polar field coupled to a density field and no other source of activity or interaction. On the
other hand, Λ3,4 receives contributions from groups of phoretic parameters whose relative magnitudes can
be tuned to give rise to linear instabilities. The reason behind this partition at the linear level is the
consideration of a single chemical species c which leads to the factorized structure in the dynamical matrix
discussed in equations (14) and (15). We will show later in this section that this decomposition does not hold
if the diffusivities and the self-propelling velocities of the two species are unequal. For k≪ κ, as K(k)
approaches the ratio k2/κ2, and the pair Λ3,4 approaches Λ1,2, i.e. phoretic effects are suppressed in dynamics
occurring at lengthscales much larger than κ−1.

We will now discuss the instabilities indicated by Λi and how they can be tuned. We keep in mind that the
behavior at small k has the most predictive power in determining the nonequilibrium steady states exhibited
by the system. The eigenvectors corresponding to Λi contain information about the combination of fields
whose perturbations show exponential growth. However, the complexity of the problem allows us to make
only the following comment. At vanishing k - i.e. at system-size legthscales - the system is described by two
conserved modes (Λ1,3) (a combination of the two density fields) and two non-conserved modes (Λ2,4)
(combination of polarization fields). This point will be clear from the Taylor expansion in k. An exponential
growth in the conserved modes could lead to active phase separation. The growth of fluctuations in the
non-conserved modes, presumably leading to a growth in the longitudinal part of p leads to a relatively
unexplored type of orientational order called asters [28].

We start by showing that Λ1,2 is always stable at small k. Taylor expanding Λ1,2 we find

Λ1 (k) =−2Dr− k2
(
D− v2

6Dr

)
+O

(
k4
)
,

Λ2 (k) =−k2Deff (0)+O
(
k4
)
,

(19)

where we introduce the effective diffusivity modified by dynamics of the polarization field as for an active
Brownian particle, Deff(k)≡ D+ v2/[3(2Dr +Dk2)] [56–59]. Deff(k) is always greater than zero meaning that
density perturbations eventually decay. Note however that the polarization field can show patterning at
values of k≈ 2Dr(D− v2/6Dr)

−1.

3.1. Instabilities inΛ3,4

The eigenvalues Λ3,4 depend on all possible pairings of phoretic mobilities and chemical activity which are
four in total. α ·µ and β ·µ arise from particle drift in response to isotropic and anisotropic chemical
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Figure 2. The axes are expressed in units of ρ̄/Dr, the velocity in
√
DDr, and k/κ= 1. The magenta area is associated with a

homogeneous phase. The dashed blue line identifies exceptional points: it separates real and complex oscillating modes, that, if
unstable, could lead to ‘Spontaneous Oscillations’ (blue area). In the ‘Unstable I’ region (orange area) the conserved mode is
unstable and the non-conserved mode is stable; it becomes unstable in the ‘Unstable II’ phase. (a) corresponds to large values of
v/
√
DDr. Assuming αa > 0 and βa > 0, the homogeneous phase is stable forα ·µ> 0, i.e. for effective repulsive interaction

among particles. Forα ·µ< 0 and β ·Ω< 0, the colloids experience attractive interaction and re-orient away from high-density
regions: this could lead to a homogeneous phase whenever the latter dominates the former, to spontaneous oscillations if they are
counterbalanced, or to the creation of asters otherwise. For β ·Ω> 0 andα ·µ< 0, both chemotactic drift and alignment tend
to aggregate particles, thus leading to an instability of the density mode. In (b) v/

√
DDr takes smaller values. The main difference

from (a) consists in the fact that a locally ordered phase can arise only for strong enough aligning interaction β ·Ω> 0 compared
with orientational diffusion; we refer to figure 3 for details. The blue and yellow triangles identify a reasonable value for the
experimental system of Janus colloids corresponding to table 1. They give an idea of the order of magnitude for the phoretic
effects for a typical half-coated Janus particle.

production respectively. Similarly, α ·Ω and β ·Ω quantify alignment with substrate gradient whether
isotropic and anisotropic respectively. We first show a stability diagram spanned by K(k)α ·µ/Dc and
K(k)β ·Ω/Dc; the details about the construction of the phase diagram are discussed in appendix B. The
phase diagram assumes a fixed value of k, however, its structure is qualitatively the same for a generic choice
of the wave vector. Both Λ3,4 are positive in the ‘Unstable II’ green area in figure 2, corresponding to an
instability in both the density and the polar fields, presumably a state with phase separation coupled with
aster formation. The ‘Unstable I’ orange area refers to the instability of the conserved mode only, resulting in
phase separation driven by phoretic activity. These two unstable regions are separated by the line along which
Λ3= 0, and Λ4 < 0. Here, Λ3,4 are complex numbers for∆2 < 0, which can happen only when
(α ·µ−β ·Ω)< 0. The homogeneous phase is ‘Stable’ in the magenta region of figure 2 case of incoherent
self-propulsion (β ·Ω< 0) and chemotactic repulsion (α ·µ> 0). The boundary (dashed blue line)
between the green and the blue regions is made of exceptional points: they separate the unstable complex,
associated with ‘Spontaneous Oscillations’, and unstable real modes. Using parameters listed in table 1, we
illustrate that the phase diagram is accessible by considering a collection of Janus colloids that are composites
of Pt and SiO2 or Cu and SiO2 [37]. The blue and yellow markers in figure 9(a) correspond to Pt-SiO2 and
Cu-SiO2 composite colloids respectively. The parameters themselves, and thus the positions of the markers
provide rough estimates of the real system. However, by tuning free parameters such as the average
composition, catalytic activity [53] or self-propulsion [53] it should be possible to cross phase boundaries
and explore different types of dynamical behaviour.

We display and discuss some possible mechanisms leading to aster phases (‘Unstable II’) and their
associated oscillating version (‘Spontaneous oscillations’) in figure 3. In particular, the theory predicts two
types of asters depending on the interplay between the strength of orientational diffusion and phoretic
effects. For sufficiently large values of v, as in figures 2(a) and 3(a), effective attraction and anti-alignment
interactions leads to outward-oriented asters, while for small values of v, see figures 2(b) and 3(b),
inward-oriented clouds of particles originate from anti-chemotaxis and phoretic alignment. In both
scenarios the onset of local polar order is ensured by fluctuations of particle densities. The blue and the
magenta regions in figure 2 are separated by the pale yellow line, where Λ3,4 are purely imaginary: this purely
oscillatory state is strongly affected by the nonlinearities in equations (5) and (6).

The modes Λ3,4 possess a complex structure that is visible in the myriad effects that emerge at
different lengthscales. For finite κ and vanishing k, we Taylor expand the non-conserving eigenmode as
Λ3 =−2Dr− k2D ′ +O(k4), with a modified diffusion coefficient

8
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Figure 3. In (a), we sketch a representation of the ‘Unstable II’ and ‘Spontaneous Oscillating’ phases corresponding to the phase
diagram in figure 2(a). At sufficiently large values of v/

√
DDr, the instability in the polarization mode occurs forα ·µ< 0 and

β ·Ω< 0. This corresponds to the case where Janus colloids are overall attracted by each other, while they point away from the
high concentration region of the chemical substrate, hence of colloids themselves. Accordingly, the ‘Unstable II’ phase is
associated with clusters of particles pointing away from the core high-concentration region. Following [44], we refer to these
locally oriented states as asters. If the effect of alignment increases in strength, the particles manage to escape the cluster.
Importantly, for β ·Ω< 0 the colloids tend to re-orient away from their self-propulsion axis, making the ballistic configuration
unstable. This effect, together with chemotactic attraction, does not allow the cluster to expand too much, thus leading to
‘Spontaneous Oscillations’. For strong orientational diffusion, this outward-oriented cluster is not expected: orientation would be
randomized, no orientational order would arise, and no significant fraction of particles would leave the cluster momentarily and
give rise to oscillations. What happens for large values of Dr (small v/

√
DDr) is displayed in (b), which refers to the phase

diagram appearing in figure 2(b). Here, particles are repelled by each other (α ·µ> 0) while they tend to align towards each
other direction. Therefore, a cloud of inward-pointing particles is expected. As repulsion is increased, the cloud becomes more
sparse, while self-propulsion may lead particles to come closer again, thus resulting in a breathing aster ‘Spontaneous Oscillating’
phase. Note that here, contrary to the previous case, sufficiently strong chemotactic alignment and orientational diffusion give
rise to sensibly distinguishable effects on the dynamics of the colloids.

D ′ =
ρ̄Ω

κ2Dc
·
(

v

2Dr
α−β

)
− v2

6Dr
+D. (20)

An instability at k→ 0 is ruled out by Dr, which is constrained to be positive. However, D′ can change sign
signaling an instability at finite k≈

√
|Dr/D ′|. At low k, the conserved mode is Λ4 =−k2D ′ ′ +O(k4), where

the modified diffusion constant is

D ′ ′ = Deff (0)+
ρ̄α

κ2Dc
·
(
µ− v

2Dr
Ω

)
, (21)

and it can change sign leading to active phase separation when the effect of the phoretic interaction prevails
over diffusion. D′′ retains its positive sign if the combinations α ·µ and α ·Ω are positive and negative
respectively—significant departures can cause D′′ to flip sign and signal an instability. The first contribution
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Figure 4. Here we present two instances of the κ-dependence of the eigenvalues Λ3,4 in equation (18) for the two-species case. In
(a), corresponding to small-v limit, as κ decreases, the system displays oscillations at decreasing values of k. The parameters are
here chosen to be Dc/D= 10, v/

√
DDr = 0.1, ρ1/ρ2 = 5,α ·µρ̄/(DcDr) = 25, β ·Ωρ̄/(DcDr) = 16/15. In (b), corresponding

to the large v-limit, as the effect of screening increases oscillations occur at larger values of k. The associated parameters are
Dc/D= 10, v/

√
DDr = 300, ρ1/ρ2 = 5,α ·µρ̄/(DcDr) = 250, β ·Ωρ̄/(DcDr) = 633. The eigenvalues Λ3,4 are in units of Dr,

while k and κ in units of
√

Dr/D.

in D′′ arises from interactions between colloids when each acts as a point source of chemicals. The
interactions are analogous to screened electrostatic ones, where the positive (respectively, negative) sign of µa

determines whether the interactions are repulsive (attractive). This scenario is in contrast with the expected
phenomenology, where colloids interact via long-ranged chemical fields leading to gravitational collapse or
electrostatic screening [60]. This contribution can be understood as the screened analog of a Keller-Segel-like
interaction, which was reported for the single species case in [44]. The second term is a combination of the
collective turning of the polarization to point towards a local accumulation of the substrate and consequent
drift in that direction due to self-propulsion; for single-species case, see [44] and appendix C. To summarize,
at the smallest values of k, only the conserving mode can trigger instability.

Complex modes arise when the discriminant in equation (18) becomes negative, i.e.∆2 < 0. As
∆2(0) = D2r is a positive quantity, it can change sign only at finite k, meaning that the response is oscillatory
only at finite lengthscales. These exceptional points, at which the complex eigenvalues emerge, are given by
the roots of the cubic equation∆2(k2) = 0. They are denoted by the dashed line in the phase diagram in
figure 2. As seen in the expression for∆2 in equation (18), if v is negligible, it is approximately a function of
k/κ, and not just k. This means that the value of k where the exceptional points appear scales with κ,
approaching k→ 0 as κ→ 0, i.e. for long-range interactions. This effect can be visualized in figure 4(a),
where we show how reducing the value of κ, the eigenvalues—in this case, associated with a stable disordered
phase—become complex at smaller values of k. As κ→ 0,∆2 approaches a finite value such that the model
predicts (almost) global oscillations with frequency

√
|∆2|, for example at k= κ
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∆2 (κ) = ρ̄2
(
α ·µ−β ·Ω

4Dc

)2
+D2r +

ρ̄

2Dc
[vα ·Ω−Dr (β ·Ω+α ·µ)]+O

(
κ2
)
. (22)

In this regime, complex eigenvalues emerge when the combination (β ·Ω+α ·µ)> 0, ensuring that
∆2 < 0. Even in the absence of chemotactic alignment (Ωa = 0), we obtain an (unstable) oscillating phase for
α ·µ sufficiently negative. Being Λ4 associated with the non-conserved mode in the system, we deduce that
an interplay of two fields is essential for oscillations. The oscillations are spontaneous if the real part of Λ3,4 is
negative, which is given according to equation (18) by

Re(Λ3,4) =−Dr−Dk2+
K(k) ρ̄

Dc
(α ·µ−β ·Ω) . (23)

The condition Re(Λ3,4) = 0—the green line in figure 2—corresponds to the threshold of a Hopf bifurcation.
Orientational diffusion stabilizes the homogeneous disordered phase at k= 0, hence spontaneous oscillations
also occur only at finite k and for (β ·Ω−α ·µ)< 0. We expect a regime that should be dominated by phase
separation as well as aster formation. If the contribution of D and v in Λ3,4 are non-negligible, the
eigenmodes Λ3,4 depend both on k and κ creating the possibility of oscillatory instabilities at finite k that are
controlled by v and the combination

(
α ·Ω+ k2β ·µ/3

)
. In this regime of parameters, - as we showcase in

figure 4(b) - as the screening parameter κ decreases, oscillations may emerge at increasing values of k.
As a concluding remark, we mention that the eigenvalues Λ3,4 are formally similar to the one-species

case; we refer to appendix C for the details. This similarity becomes a qualitative equivalence whenever it is
possible to factor out the scalar product of the vectorial production rates and phoretic interactions α, β, µ
andΩ. For instance, if α1 = α2 and β1 = β2 we have α ·µ= αµeff, α ·Ω= αΩeff, β ·µ= βµeff, and
β ·Ω= βΩeff such that µeff and Ωeff can be interpreted as one species effective phoretic couplings.

For the general case Dr,1 ̸= Dr,2, D1 ̸= D2 and v1 ̸= v2 all four eigenvalues may be unstable, and the
picture becomes richer. We represent an instance of this behavior in figure 5(a), which displays the region of
the phase diagram where eigenvalues are all unstable for a given value of k. To fix ideas, if we set αa,βa > 0,
all the modes are unstable for sufficiently high and negative values of µa and Ωa: particles are expected to
aggregate because of chemotaxis, while their orientation is expected to point away from the induced
high-density region. These facts, together with diffusion, now occurring over different timescales for the two
species, lead to a strongly unstable phase. In figures 5(b) and (c), we plot the four eigenvalues of the
dynamical matrix as a function of the wave vector k for two specific choices of the parameter values of the
phase diagram in figure 5(a).

To summarize the main points in this section, we find that phase separation driven by phoretic
interactions emerges as the dominant behavior at the largest lengthscales. Oscillations, which can also be
spontaneous, occur generically at finite wave numbers. At precisely κ= 0, both the conserving and the
non-conserving modes can be unstable. In this regime, we truly have two hydrodynamic modes: one
corresponding to number conservation, and the other an order parameter field that can undergo a phase
transition and pick up a finite value.

4. Adiabatic elimination of the polarization fields: coupled active densities

As discussed in the previous section, the dynamical properties of the two species of Janus particles are
described by the conserved slow density mode ρa(r, t) and the longitudinal part of the non-conserved
polarization field p∥,a(r, t). Strictly speaking, δp∥,a is a slow variable at lengthscales that are small compared
to the screening length κ−1. While probing the dynamics at the largest lengthscales, and for finite κ−1, we
can assume that δp∥,a relaxes faster than δρa and express the former in terms of the latter. Equivalently, the
field δp∥,a(k, t) in equation (13) adapts instantaneously to the time variations of δρa(k, t) according to

δp∥,a (k, t) =−ik
∑
b

Γab (k)δρb (k, t) . (24)

The matrix Γ appearing in equation (24) is defined in terms of those appearing in equation (14) as
Γ(k)≡ [Grr(k)]−1Grt(k). Explicitly, its entries are given by

Γab (k)≡
2

3D̄a (k)

(va
2
δab− ρ̄aΩaΠb (k)

)
, (25)

where D̄a(k) = 2Dr,a +Dak2, and the redefined substrate production rate Πa(k) reads

Πa (k)≡
1

κ2Dc + k2 [Dc− 2(ρ̄1β1Ω1/D̄1 (k)+ ρ̄2β2Ω2/D̄2 (k))/3]

(
αa− k2

vaβa
3D̄a (k)

)
. (26)
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Figure 5. In panel (a) we show the phase diagram for generic values of the non-active parameters D, Dr, and v. In this case, the
system may display four unstable modes. For instance, in the diagram of panel (a): the yellow area 2 corresponds to two complex
unstable and real unstable eigenvalues, while the green one 3 to four complex unstable eigenvalues. The violet area 1 indicates the
region of the parameters where at least one eigenvalue is stable. The parameters are given by D2/D1 = 1, Dr,2/Dr,1 = 1.2,
v1/

√
D1Dr,1 = 10, v2/v1 = 2, and k/κ= 2.5 . The axes of (a) are in units of ρ̄/Dr,1. In panels (b) and (c) we represent the real

and imaginary parts of the four eigenvalues of the dynamical matrix for the parameters corresponding to the bullet and star
symbol in the phase diagram as a function of k. The vertical black line identifies the value of k/κ of the phase diagram in the (a)
panel. The eigenvalues are in units of Dr,1.

The matrix Γ quantifies the linear response matrix connecting the polar field to variations of the density,
while Πa(k) is the effective rate of substrate production by species a. We now investigate the behavior of the
system in this regime, where the only relevant fields are the densities of the two species of particles. A
necessary condition for this approximation to hold is to have positive eigenvalues of Grr(k), thus ensuring the
relaxation of the polar field in equation (13). The enslaving fails when the determinant of Grr vanishes, which
happens when one or both the eigenvalues of Grr are null. Large enough Dr,a rules out this possibility,
ensuring the validity of the enslaving. As discussed in the previous section, the approximation holds also for
sufficiently large κ2, ruling out aster condensation. The denominator of Πa(k) is proportional to the
determinant of Grr, which is positive whenever the relaxation approximation holds. Therefore, the sign of
Πa(k) follows from those of αa, βa, the wave vector k, and their relative amplitude. Note that in the case of
uniform production or consumption of the chemical βa = 0, the fast relaxation approximation is well
defined and the effective production rate reduces to Πa(k) = αa/[Dc(k2+κ2)], whose sign depends only on
that of αa. Substituting the expression of the polar field in equation (24) in the equation for δρa(k, t) in
equation (13), one finds

∂tδρa (k, t) = k2
∑
b

Gab (k) δρb (k, t) , (27)

where we have introduced the effective diffusion matrix G(k)≡ Gtt(k)+Gtr(k)Γ(k). One can show that the
entries of G(k) can be expressed as

Gab (k) =−δabDeffa (k)− ρ̄aMa (k)Πb (k) , (28)

where, we define an effective mobilityMa and an effective diffusivity Deffa as

Ma (k)≡ µa−
2

3

vaΩa

D̄a (k)
, Deffa (k) = Da +

v2a
3D̄a (k)

. (29)

Interestingly enough, the matrix G(k) inherits the same factorized structure as its building blocks in
equation (14), i.e. a diagonal contribution coming from diffusion and self-propulsion, and contributions are
multiples of phoretic mobility and chemical production rate as in equation (15). Note that, while Deffa is
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always positive, the sign of the effective mobilityMa depends on the relative amplitudes of the phoretic drift
and alignment interactions. By splitting the symmetric and antisymmetric parts of the dynamical matrix G as

G =−

(
Deff1 + ρ̄1M1Π1 ρ̄1M1Π2

ρ̄2M2Π1 Deff2 + ρ̄2M2Π2

)
=

(
d1 χ+ψ

χ−ψ d2

)
, (30)

one can identify self-interaction species term da = Gaa, the symmetric (reciprocal) contribution to the
interaction between the two different species χ = (G12+G21)/2, and its anti-symmetric (nonreciprocal) one
ψ = (G12−G21)/2. By its definition, χ is symmetric under the exchange of the coefficients of the two species,
while ψ reverses sign under the same transformation. At leading order of a small-k expansion the
non-reciprocity parameter ψ(k) reads

ψ (k) =ψ0+ k2ψ2+O
(
k2
)
,

ψ0 =− 1
2κ2Dc

[
(ρ̄1µ1α2− ρ̄2µ2α1)−

(
ρ̄1α2

v1Ω1
3Dr,1

− ρ̄2α1
v2Ω2
3Dr,2

)]
,

ψ2 =− 1
12κ2Dc

[
ρ̄1v1Ω1D1α2

(Dr,1)
2 − ρ̄2v2Ω2D2α1

(Dr,2)
2 −

(
ρ̄1µ1

v2β2
Dr,2

− ρ̄2µ2
v1β1
Dr,1

)
+

v1v2
3Dr,1Dr2

(ρ̄1Ω1β2− ρ̄2Ω2β1)

]

− ψ0
κ2Dc

(
Dc − ρ̄1

β1Ω1
3Dr,1

− ρ̄2
β2Ω2
3Dr,2

)
,

(31)

where the first term identifies the macroscopic effective nonreciprocal interaction between the two different
species. The parameter ψ0 has been introduced in [21, 22] in a minimal model for nonreciprocal interaction
between multiple species, called the NRCH model. The introduction of this term in a phase-separating
system of many conserved densities leads to arrested phase separation, broken spatial parity, and broken
time-reversal symmetry, producing traveling waves and patterns. The second term couples the two species at
the fourth order in gradients and can be interpreted as a nonreciprocal surface tension [61]. Interestingly
enough, for Ωa = βa = 0, the expression of ψ simplifies to

ψ =− ρ̄1µ1α2− ρ̄2µ2α1
2Dc (κ2+ k2)

, (32)

indicating that uniformly coated colloids interacting via a screened chemical field generates nonreciprocal
couplings and all orders in gradients, the two nonreciprocal at lowest order in gradients are related simply as
ψ2 =−ψ0κ−2. Non-zero βa and Ωa take us away from the simple relation between ψ0 and ψ2, which can
now be tuned independently of one another.

The self interaction da and the reciprocal interaction χ can be expanded similarly as da = da,0+ da,2k2,
and χ = χ0+χ2k2. The coefficient da,0 is the strength of self-interaction for species a, while χ0 is the
effective reciprocal interaction. The terms occurring at higher orders in gradients, namely d2,a, and χ2 are the
coefficients for interfacial tension. Recall that the eigenmodes in the previous section had contributions from
symmetric combinations of the phoretic parameters which could be written as dot products such as α ·µ.
Similar simple relations hold for the elements of G. We can express da, ψ, and χ compactly by introducing
the following matrices

σ1 =

(
0 1
−1 0

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, (33)

and the vectors of parameters

Ω ′ =

(
v1ρ̄1Ω1
ρ̄Dr,1

,
v2ρ̄2Ω2
ρ̄Dr,2

)
, β ′ =

(
v1β1
Dr,1

,
v2β2
Dr,2

)
, Ω ′ ′ =

(
ρ̄1D1Ω1

ρ̄(Dr,1)
2 ,
ρ̄2D2Ω2

ρ̄(Dr,2)
2

)
, and

Ω ′ ′ ′ =

(
ρ̄1Ω1
ρ̄Dr,1

,
ρ̄2Ω2
ρ̄Dr,2

)
, (34)

and the auxiliary scalar functions

A0 (M) =− ρ̄

2κ2Dc

(
µ ·M ·α− 1

3
Ω ′ ·M ·α

)
=− ρ̄

2κ2Dc

(
µ− 1

3
Ω ′
)
·M ·α, (35)

A2 (M) =− ρ̄

12κ2Dc

(
Ω ′ ′ ·M ·α−µ ·M ·β ′ +

v1v2
Dr,1Dr2

Ω ·M ·β
)
− A0 (M)

κ2Dc

(
Dc− ρ̄β ·Ω ′ ′ ′) . (36)
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Finally, we can write the coefficients of the model as follows

ψ0 = A0 (σ1) ,

χ0 = A0 (σ2) ,

d1,0 =−Deff1 (0)+A0 (I+σ3) ,

d2,0 =−Deff2 (0)+A0 (I−σ3) ,

ψ2 = A2 (σ1) ,

χ2 = A2 (σ2) ,

d1,2 =−D1v21/
[
12(Dr,1)

2
]
+A2 (I+σ3) ,

d2,2 =−D2v22/
[
12(Dr,2)

2
]
+A2 (I−σ3) .

(37)

In equation (37), ψ0,2 are pseudoscalars while the rest are scalar in the exchange of the two species.

4.1. Stability diagram
The linear stability of the homogeneous state is determined by the eigenvalues Λ1,2(k) of G(k) which can be
expressed compactly in terms of the effective mobility ρ̄aMa and the production rate Πa(k) as

Λ1,2 =−
(
Deff1 +Deff2 + ρ̄1M1Π1+ ρ̄2M2Π2

2
±
√
∆

)
∆=

(
Deff1 + ρ̄1M1Π1−Deff2 − ρ̄2M2Π2

2

)2
+ ρ̄1M1Π1ρ̄2M2Π2.

(38)

The growth rates of the eigenmodes are then given by k2Λ1,2(k) which vanish as k→ 0, as a result of number
conservation. For purely reciprocal interactions corresponding to ψ= 0, G is symmetric and the eigenvalues
are always real. Another case where the eigenvalues are always real is for equal effective diffusivities
Deff1 = Deff2 = Deff. In this case, G is a rank one tensor of the form

G =−DeffI− (ρ̄1M1, ρ̄2M2)
T
(Π1,Π2) . (39)

The eigenmodes are Λ1 =−Deff, Λ2 =−(Deff+ trG) =−(Deff+ ρ̄1M1Π1+ ρ̄2M2Π2). Λ1(k)< 0 is the
stable mode, while Λ2(k) can be positive and trigger an instability for Deff >−(ρ̄1M1Π1+ ρ̄2M2Π2). For
Deff1 ̸= Deff2 , and considering equation (38), it is clear that complex eigenvalues can occur only if

χ2−ψ2 = ρ̄1M1Π1ρ̄2M2Π2 < 0, (40)

whenever the nonreciprocal coupling exceeds its reciprocal counterpart; this condition is sufficient for
d1 = d2. Henceforth, without any loss of generality, we always assume that δD= D1−D2 > 0.

Similarly to section 3, we first present the phase diagram in the plane of parameters ρ̄aMaΠa. In figure 6,
the region where the eigenvalues are complex lies on the convex side of the parabola. The homogeneous state
is stable in the magenta part. Both Λ1,2 are unstable in the green region and signal an instability leading to
phase separation. In the orange region, one of the two eigenvalues leads to an instability. In the purple
region, the two eigenvalues are complex and unstable leading to oscillating densities. The phase diagram has
the same topology for all values of k.

We will now discuss how the instabilities appear at different lengthscales, i.e. as k is varied. Alternatively,
if one keeps all the other parameters fixed and considers the eigenvalues as a function of k only, the system
state can pass through different phases, described as a state curve parameterized by k. Next, we will discuss
the instabilities that occur as k→ 0 and at finite k and illustrate them on the phase diagram in figure 6 using
state curves.

4.2. Instabilities at vanishing k
We expand Λ1,2 in a Taylor series to obtain the following general expression at zeroth order in k

Λ1,2 (0) =

{
trG(0)
2 ∓

√
∆(0) for∆(0)> 0

trG(0)
2 ∓ i

√
−∆(0) for∆(0)< 0

, (41)

where∆(k)≡ (trG/2)2− detG. The coefficients in equation (41) are

trG (0) =−1
2

[
Deff1 (0)+Deff2 (0)+

ρ̄α

Dcκ2
· (µ−Ω)

]
, (42)

and

∆(0) = [trG (0)]2+
(
µ1−

v1Ω1
3Dr,1

)(
µ2−

v2Ω2
3Dr,2

)
ρ̄1α1ρ̄2α2

(Dcκ2)
2 . (43)
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Figure 6. Phase diagram from the linear stability analysis. The magenta area identifies the values of ρ̄1M1Π1 and ρ̄2M2Π2

corresponding respectively to a linear stable regime. The ‘Unstable I’ (orange) region corresponds to the case where the system
presents one unstable and one stable mode. In the ‘Unstable II’ (green) one, the modes are still real but both unstable. In the
correspondence of the blue region of the phase diagram, ‘Spontaneous Oscillations’ arise in the system, meaning the two
eigenvalues are complex conjugate with positive real part (unstable). The parabola separates the parameter space between real and
complex eigenvalues. The axes are in units of D1.

Figure 7. A type of instability (type II) that may occur in our conserved system can be attained whenever the eigenvalues are
already unstable at small values of k, i.e. Re(Λ2(0))> 0. In (a) and (b) we show, respectively, the real and imaginary parts of the
most unstable eigenvalue Λ2 at the onset of the instability, which is triggered by variations of the parameter µ2. In (c) the
equivalent parametric plot of the state curve described by the system in the phase diagram is showcased: the initial point of the
trajectory lies in the instability region and eventually ends in the stable one. The parameters are given by: Dc/D1 = 10,
D2/D1 = 0.75, Dr,2/Dr,1 = 2, v1/

√
D1Dr,1 = 0.7, v2 = 1.1, ρ̄1/ρ̄2 = 1, α1/Dr,1 = 200, α2/Dr,1 = 25, β1/

√
D1Dr,1 = 17.5,

β2/
√

D1Dr,1 = 35.5, µ1/(D1/ρ̄1) =−1,Ω1(ρ̄1
√

D1Dr,1) = 7.1,Ω2(ρ̄1
√

D1Dr,1) = 3.5. In panels (a) and (b) k is in units of κ
and the eigenvalue k2Λ2 in units of Dr,1. Similarly, µ2 is in units of D1/ρ̄1. As k varies, the phase diagram slightly changes
quantitatively but not qualitatively, thus we draw it for a fixed value of k. In this figure, it has been chosen k/κ= 10. Note that for
all the choices of the parameters in this figureM1(k)M2(k)< 0 for any value of k. Accordingly, we anticipate from section 4.4 that
the associated instabilities lead to an effective aggregation of the particles. We refer to figures 10(b) and (d) for further details. The
axes are in units of D1.

A system-wide instability arises whenever Re(Λ2) is positive, resulting in bulk phase separation of the two
species. At large k, the eigenvalues are stable and real, ensuring the system’s stability at small lengthscales.
Accordingly, ReΛ2 attains its maximum value at kc. As the instability is turned off, kc→ 0 and the value of the
associated lengthscale k−1c diverges since the maximum of the most unstable eigenvalue vanishes, i.e.
ReΛ2(kc→ 0)→ 0. This corresponds to a type II of instability according to the Cross and Hohenberg
classification [62]. If at the onset of the instability Λ2 is real, it is further classified as stationary, while in its
complex counterpart as oscillatory. We show an instance of this type of instability in figure 7. In panels (a)
and (b) we showcase the real and imaginary parts of the most unstable mode Λ2, and how instability is
triggered while varying the µ2 parameter. In this specific case, we have an instance of stationary instability.
However, being∆(0) a nonlinear combination of the phoretic parameters, an oscillatory instability develops
for a large part of the parameter space, e.g. for µa,Ωa > 0,∆(0)< 0 if
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sign(µ1− v1Ω1/3Dr,1) ̸= sign(µ2− v2Ω2/3Dr,2) , (44)

provided that both species produce chemicals, i.e. αa > 0. The associated system-wide oscillations occur with
an angular frequency

√
|∆(0)|. Another way to visualize the onset of the instability is displayed in

figure 7(c), where we show how, by varying k, the parameters ρ̄aMa(k)Πa(k) describe a state curve in the
phase diagram, corresponding to the green curve in figure 7(a). At k= 0 the system is the unstable region of
parameters (orange area), and as the value of k increases it crosses the complex unstable region (blue area),
then the complex stable region (magenta area). Note that, as a consequence of diffusion, at large k the system
is always stable, as it can be seen from limk→∞ ρ̄aMa(k)Πa(k) = 0. Note that as the value of k is varied, also
the phase diagram changes. However, these changes are barely perceivable compared to the ρ̄aMaΠa ones.
This fact allows us to give a meaningful qualitative representation of the k-parametrized state curve while
drawing the diagram at a fixed value of k.

4.3. Finite wavelength instabilities
Instabilities in the system may also occur for Re(Λ2(0))< 0, i.e. the species are not separated at the
macroscopic scale but produce patterns with a specific lengthscale. To characterize this type of instability, it is
necessary to expand Λ1,2 up to k2

Re(Λ1,2) =


trG(0)
2 ∓

√
∆(0)+ k2

4

[
(trG) ′ ′ (0)∓ ∆ ′ ′(0)√

∆(0)

]
+O(k4) for∆(0)> 0

trG(0)
2 + k2

4 (trG)
′ ′
(0)+O(k4) for∆(0)< 0

, (45)

where ′ denotes the derivative with respect to k. The expressions for terms that contribute at quadratic order
in k are given by

(trG) ′ ′ (0) =−2

{
− D1v21
12(Dr,1)

2 −
D2v22

12(Dr,2)
2 +

ρ̄α

Dcκ2
·
[
Ω ′ ′

6
− 1

κ2

(
µ− Ω ′

3

)]}
,

∆ ′ ′ (0) =

[
Deff1 (0)−Deff2 (0)+

ρ̄

Dcκ2

(
µ− Ω ′

3

)
·σ3 ·α

]
×

{
− D1v21
12(Dr,1)

2 −
D2v22

12(Dr,2)
2 +

ρ̄α

Dcκ2
·
[
Ω ′ ′

6
− 1

κ2

(
µ− Ω ′

3

)]}

+ 2
ρ1α1ρ2α2

(Dcκ2)
2

{(
µ1−

v1Ω1
3Dr,1

)
v2Ω2D2

6(Dr,2)
2 +

(
µ2−

v2Ω2
3Dr,2

)
v1Ω1D1

6(Dr,1)
2

− 2

κ2

(
µ1−

v1Ω1
3Dr,1

)(
µ2−

v2Ω2
3Dr,2

)}
.

(46)

Note that the eigenmodes are invariant if the species indices 1 and 2 are swapped.∆ ′ ′(0) is invariant as it is a
product of two quantities both of which reverse sign when under the swap 1←→ 2. The system is stabilized
at the shortest lengths by diffusive processes. A finite wavelength instability is triggered in the system if the
most unstable mode Re(Λ2) becomes null at k= k− and then acquires a positive value. It reverses its sign
again at k= k+. In this case, there exists a wave number kc intermediate between k− and k+ where Re(Λ2)
attains its maximal value, physically associated with pattern formation at the lengthscale k−1c . An
approximate expression for k− can be retrieved from equation (45) as

k− =


2

√
− trG(0)/2−

√
∆(0)

(trG) ′ ′(0)−∆ ′ ′(0)/
√
∆(0)

for∆(0)> 0√
−2 trG(0)

(trG) ′ ′(0) for∆(0)< 0,

(47)

given that the square root exists.
At arbitrary k, this type of behavior is well represented in figure 8, where we provide a few examples of

the onset of the instability. Note that if the eigenvalues are real at k= k−(respectively, k+) then Λ2= 0 and
Λ1 ⩽ 0(⩾ 0), and the state curve crosses the line corresponding to detG = 0 at k−(respectively, k+) from its
stable (unstable) side. This case is represented in figures 8(b) and 9(a). If the eigenvalues are complex
conjugate at k±, then Λ1/2(k±) =±i Im(Λ1/2(k±)) and the state curve crosses the line corresponding to
trG = 0; this case is shown in figures 8(c), (d) and 9(b) [23, 61]. As shown in figures 8(e), (f) and 9(c), a
scenario which is a mixture of the two above can also arise: for example, at small wave numbers the system
shows stable oscillations, while pattern formation appears at finite values of k> 0. In general, the system
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Figure 8.We represent different instances of the onset of Turing instability, upon variation of the µ2 parameter. Whenever an
instability arises it is characterized by the real part of the most unstable mode Re(Λ2) becoming positive. In panel (a), we consider
the case where Deff1 = Deff2 : the eigenvalues are both real and instability may occur only because of the mode associated with Λ2.
The parameters are given by: Dc/D1 = 10, D2/D1 = 1, ρ̄2/ρ̄1 = 1v1/

√
D1Dr,1 = 0.45, v2/v1 = 1, Dr,2/Dr,1 = 1, α1/Dr,1 = 3,

α2/Dr,1 = 0.2, β1/
√

D1Dr,1 = 4.5, β2/
√

D1Dr,1 =−2.3, µ1ρ̄1/D1 = 10,Ω1(ρ̄1
√

D1Dr,1) = 11.2,Ω2(ρ̄1
√

D1Dr,1) =−22.4.
Similarly, µ2 is in units of D1/ρ̄1. In (b), the two effective diffusivities are different and the eigenvalues are still real. The
parameters in panel (b) differing from those in (a) are: D2/D1 = 0.75, Dr,2 = 2, v2/v1 = 1.5. In panels (c) and (d) we represent
respectively the real and imaginary parts of Λ2 in the case where for all values of k the eigenvalues are complex conjugate,
corresponding to an oscillatory Turing instability. The parameters differing from (b) are: α1/Dr,1 = 40, α2/Dr,1 = 5,
β1/

√
D1Dr,1 = 3.5, β2/

√
D1Dr,1 = 7.1, µ1ρ̄1/D1 =−5,Ω1(ρ̄1

√
D1Dr,1) = 14.1,Ω2(ρ̄1

√
D1Dr,1) = 7.1. Similarly, (e) and (f)

correspond to the case where the system presents stable complex eigenvalues at small values of k, while the instability is associated
with a stationary pattern. The parameters differing from (c) and (d) are α1/Dr,1 = 25, α2/Dr,1 = 1, β1/

√
D1Dr,1 = 2.8,

Ω1(ρ̄1
√

D1Dr,1) = 7.1,Ω2(ρ̄1
√

D1Dr,1) = 14.1. As in figure 7,M1(k)M2(k)< 0 for any value of k, and the associated
instabilities lead to aggregation.

parameters can be tuned in such a way that the local negative maximum Re(Λ2(kc)) becomes positive and
global, thus leading to instability. This type of instability is a conserved version of the well-known Turing or
type I instability. Contrarily to the standard Turing instability, in our model, it can be attained also for
Deff1 = Deff2 . Similarly to the type II instability, it can be stationary or oscillatory.

4.4. Effective interaction
To grasp the mechanisms that may lead to these types of instabilities, in the next section we describe the type
of nonreciprocal interactions that may arise between the two species of Janus colloids. We are now interested
in looking at which of the two system modes, in the unstable regime, dominates the linear instability and
how it affects the growth of the relative concentration of the two species δρ1(k, t)/δρ2(k, t). In particular, its
sign sρ(k, t) = sign(δρ1(k, t)/δρ2(k, t)) gives information on the type of instability: if negative, there will be a
local depletion of one species in favor of the other one, meaning separation, otherwise local growth of
concentration leads to aggregation.

We show in appendix D that sρ(k, t) can be factorized as sρ(k, t) = sM sm(k, t), and it is given by

sM = sign(M1/M2) , and sm = sign

(
Deff1 + ρ̄1M1Π1−Deff2 − ρ̄2M2Π2− 2

√
∆

M1Π1

)
. (48)

It can be easily checked that in the unstable regime of the phase diagram, for ρ̄2M2Π2(k)> 0 the factor
sm(k)< 0 and one has that the sign of the instability is opposite that of the ratio of the effective mobilities
sρ =−sM, while for ρ̄2M2Π2(k)< 0 the type of instability is reversed, i.e. sρ = sM. Therefore, aggregation of
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Figure 9. Phase diagram representation of the Turing instability. These three figures show how, by keeping all system parameters
fixed, k2Re(Λ2) describes a state curve as k is varied in the phase diagram. Similarly to figure 6, the magenta area corresponds to
the stable region of the homogeneous disordered state, while blue and orange refer respectively to complex and real unstable
eigenvalues. The parametric curves correspond in panels in (a), (b) and (c) respectively to the unstable (green) ones in
figures 8(b)–(f). All three curves start at k= 0 on the stable side of the phase diagram, and they end up in the origin, stable point
of the phase diagram, as ρ̄aMaΠa → 0 as k→∞, while they cross to the instability region at intermediate values of k. This is the
benchmark of the Turing instability. As in figure 7, the phase diagram changes very little as k is changed, and for simplicity, we
have set k/κ= 10. The axes are in units of D1.

Figure 10. In (a) and (c) we display the phase diagram of the effective interactions: the orange area represents the stable
homogeneous phase, which is divided by the unstable phase by the red dashed line. The nature of the unstable non-oscillatory
regime is captured by the relative sign sM of the effective mobilities ρ̄aMa: the magenta region corresponds to the separation of the
two species (sρ(k)< 0), the green one to aggregation (sρ(k)> 0). In (b) and (d), we show the emerging effective interactions
corresponding to (a) and (c) respectively. Specifically, in (b) the effective interaction between the two type particles for sM > 0 and
for sM < 0 in (d). The red arrows indicate the direction of the reciprocal interaction between particles of the same species, on the
other hand, the black ones refer to nonreciprocal interactions between particles of different species. The axes are in units of D1.
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Figure 11.We showcase the phase difference in equation (49) between the two species in the oscillating state. (a) displays the
phase difference in the region of complex eigenvalues: on the left of the dashed line, the eigenvalues are unstable, stable otherwise.
(b) represents∆φ for different values of ρ̄2M2Π2 as a function of ρ̄1M1Π1. The dashed vertical line separates values of∆φ
corresponding to unstable eigenvalues (on the left) and to stable ones (on the right). The axes are in units of D1.

the two-particle species, or equivalently sρ > 0, is expected for ρ̄2M2Π2(k)< 0 whenever sM > 0 or for
ρ̄2M2Π2(k)> 0 if sM < 0 (green area in figure 10); particles separate otherwise (magenta area in figure 10).
The type of effective interaction between the two species depends on the sign of the mobilities ρ̄aMa and the
production rate Πa(k). In particular, if ρ̄aMa > 0 the particle of species a will move towards regions where
the density of the substrate c(r, t) decreases, which means that the particle is attracted by consumers of the
substrate with production rate Πb(k)< 0 and repelled by producers with Πb(k)> 0. The details of all the
possible interactions between the two species are reported in figure 10. Because of the assumption
Deff1 > Deff2 , the dynamics of the first species are faster than that of the second species, and it responds faster to
the presence of chemical gradients, leading to the prevailing of effective interaction felt by the first species
with respect to the second one. Referring to figure 10, this explains why independently of the type of effective
interaction experienced by the second species, if the first species is attracted (respectively repelled) by the
second one the system displays aggregation (respectively separation).

In the unstable oscillatory regime (blue area in figure 10) there is an alternation of depletion and
aggregation in time. The evolution of these two density perturbations can be characterized by looking at
their phase and amplitude as δρ1,2(k, t)e−k2trG/2 = A1,2 cos(

√
|∆|k2t+φ1,2). Albeit the two perturbations

are destined to grow exponentially, in this linear approximation the relative amplitude of the oscillations
A1/A2 is constant in time, and it depends on the initial value of the perturbation. On the other hand, the
phase difference∆φ = φ1−φ2 is independent of the initial perturbation, and it is given by

tan∆φ =−
2
√
|∆|

G11−G22
=−

√
−1− 4ρ̄1M1Π1ρ̄2M2Π2

(δD+ ρ̄1M1Π1− ρ̄2M2Π2)
2 . (49)

The phase difference, as shown in figure 11, takes value in (−π/2,0): in the unstable region (trG > 0) the
phase difference is always above−π/2, while it is in quadrature only in the stable phase for trG = 0,
compatibly with ρ̄1M1Π1 ∈ (−δD,0) and ρ̄2M2Π2 ∈ (0, δD).

5. Conclusions

In this work, we have shown how effective nonreciprocal interactions arise in a collection of two types of
Janus colloids coupled to the same chemical substrate. Including two species represents the minimal
requirement for nonreciprocal couplings between number density fields. We refer to figure 12 for a synoptic
sketch of our main results. First, we have introduced the corresponding single-particle dynamics, describing
a set of Janus colloids that can move and re-orient along the gradient of a chemical substrate, which is
produced or consumed by the colloids themselves. From this microscopic description, we have derived the
hydrodynamic equations for the relevant slow modes, i.e. the particle density and the polarization field for
each species, which capture the collective behavior of the system. We have derived the corresponding
equations for small deviations from the spatially homogenous and orientationally disordered state, allowing
us to establish the linear stability of this phase. Janus particles with chemical field-mediated effective
interactions are analogous to screened Coulombic systems. The eigenvalues determining the linear stability
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Figure 12. Synoptic diagram of the main results of the paper. We schematize our work’s logical flow and results. We have started
from two sets of coupled nonlinear differential equations, each describing the time evolution of the density and polarization field
for a given species of Janus colloids. Then, we have discussed their linearization around a homogeneous disordered state. We have
split the analysis into two different parameters’ regimes: (i) we have first considered equal diffusivities and self-propelling
velocities for the two species, (ii) then the limit of fast relaxation of the polarization field.

of the system assume simple forms when the translational and rotational diffusion coefficients and
self-propelling velocities are equal. Eigenvalue analysis predicts phase separation as the most robust behavior
at the largest lengthscales with a diffusion coefficient whose sign is controlled both by the chemotactic drift
and the angular rotation. At the scale of the screening length, phoretic coupling between number and
orientation fields leads to oscillations. Oscillations appear either through the mechanism of Hopf bifurcation
or when the system crosses an exceptional point. Two pairs of complex eigenvalues appear in the most
generic case, a scenario where two density fields and two orientation fields undergo oscillations.

For large rotational diffusivity, the polar fields simply follow the density gradients. In this scenario, the
polarization degrees of freedom can be expressed in terms of the density by an adiabatic approximation. The
resulting equations for the two density fields are linearized around the homogeneous solution yield
expressions for the interaction coefficients featuring wave-vector-dependent activity and mobility
coefficients. The interplay among the associated effects leads to a nonreciprocal interaction between particles
of the same or different species leading to aggregation or separation phenomenon. We have found different
types of short-wavelength, stationary, or oscillatory instabilities [24, 61]. In particular, contrary to what
happens in standard Turing instability, we get such instability even in the case of equal effective diffusivities,
as a consequence of the wave-vector-dependence of the phoretic parameters. The analysis provides a direct
link to the NRCH model [21, 22], and suggests that nonreciprocity should be incorporated in the surface
tension to approach a more complete theoretical framework for scalar active densities. Recent papers have
elucidated that NRCH serves as a minimal model for known systems such as active-passive mixtures,
mass-conserving reaction-diffusion systems, and active gels [24, 63]. To the best of our knowledge, our paper
is the first work that starts from the microscopic model of a chemically active swimmer including
self-propulsion and orientational dynamics to enumerate the various contributions to effective intra-species
and inter-species interactions (both reciprocal and nonreciprocal) in terms of single-particle phoretic or
enzymatic activity [64, 65] and mobilities thus providing several routes to realizing the NRCH. In general,
the speed of self-propulsion and chemical activity could depend on the number densities thus providing a
route observing the effect of nonlinearity in nonreciprocal interactions [25].

An explicit manifestation of non-reciprocity is to enforce reactive couplings between thermodynamic
fluxes that should not be so coupled. Gradients of chemical potentials should be coupled dissipatively with
symmetric coefficients [66], while velocity fields and density are advectively coupled through coefficients of
the same magnitude [67–70]. Our system presents two scenarios when Onsager’s principle is violated in both
forms—cross-couplings between densities of different species and coupling between the longitudinal
component of the polarization with density.

Taking cues from the analysis, it is important to explore the full dynamical behavior of the system
through a solution of the equations presented here or in agent-based simulations of the microscopic model.
A condensation of the longitudinal component of the polarity only, a state called asters in [44] deserves a
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thorough study examining questions such as long-range correlations [71–73]. We expect a proliferation of
defects for a single species, somewhat similar to and yet distinct (i.e. occurring through a different
mechanism) from the defects observed in a Malthusian flock [74]. For two species, where the stability
analysis shows all modes to be unstable, we speculate a state with interacting defects. Our work can be
generalized in several ways—to multicomponent mixtures interacting with several substrates [20], coupling
the mixture to a momentum-conserving fluid [75, 76], dynamics at an interfaces and close to
boundaries [77–80], and entropy production [81, 82]. Several aspects of our work can be generalized to
other versions of tactic systems—whether it is phototaxis [60, 83] or quorum sensing [84]. Finally, our work
illustrates that the physics of active mixtures represents a rich area of research and presents many predictions
that can be tested in experiments [37, 85, 86].

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix A. Coarse-graining of the Langevin dynamics

In this section, we show how to derive equations (5) and (6). We start by considering the evolution of
Pa(r,n, t), the probability density of a particle of species a ∈ {1, . . . ,n} to be at position r and orientation n
at time t, defined as

Pa (r,n, t) =

⟨
Na∑
i=1

δ (r− ra,i)δ (n− na,i)

⟩
, (A.1)

for a set of Na Janus colloids of species a, where the average is taken with respect to the noise contribution to
the dynamics. Then, considering that the process in equation (1) follows Stratonovich convention of
stochastic calculus, it can be easily shown that Pa(r,n, t) satisfies the following Fokker–Planck equation

∂tPa (r,n, t) =−∇ · {[van−µa∇c]Pa (r,n, t)}+Da∇2Pa (r,n, t)

−R · [Ωa (n×∇c)Pa (r,n, t)]+Dr,aR2Pa (r,n, t) ,
(A.2)

whereR≡ n×∇n is the orientational gradient operator. The first line on the right-hand side of
equation (A.2) describes the contribution to the probability flux due to drift and diffusion of the particle
position, whereas the second line to alignment interaction and diffusion of its orientation.

In order to find an equation for ρa and pa, we restrict our analysis to the first and second moments of the
orientation n by closing the corresponding hierarchy of infinite many equations for the moments generated
from equation (A.2). We start by integrating equation (A.2) with respect to n, which leads to the time
evolution of density of the particles ρa(r, t)≡

´
|n|=1 dnPa(r,n, t) of species a in equation (5). Similarly, one

can calculate the dynamics of the polarization field pa(r, t)≡
´
|n|=1 dnnPa(r,n, t) as

∂tpa =−∇ · [vaQa−µapa∇c]−
va
3
∇ρa +Ωa

[
2

3
ρa∇c−∇c ·Qa

]
+
(
Da∇2− 2Dr,a

)
pa, (A.3)

where we have introduced the nematic tensorQa(r, t) =
´
|n|=1 dn (nn− I/3)Pa(r,n, t).

In the evaluation of equation (A.3), which is obtained by multiplying by n equation (A.2) we have
calculated the following non trivial integrals:

(i) The first contribution that we consider is the i-component of

−
ˆ
|n|=1

dn niR· [(n×∇c) Pa (r,n, t)] =

ˆ
|n|=1

dn
(
Rjni

)
(n×∇c)j Pa (r,n, t)

=−(∂mc)

ˆ
|n|=1

dn nknl (δilδkm− δimδkl) Pa (r,n, t)

=−
(
∂jc
) ˆ

|n|=1
dn
(
ni nj− δi j

)
Pa (r,n, t)

=

[
2

3
ρa (r, t)∇c−∇c ·Qa (r, t)

]
i

.

(A.4)

On the right hand side of the first line we exploit the fact thatRi satisfies the typical properties of
gradient operator (that is, chain differentiation rule and hence integration by part), and the relation
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Rinj =−ϵijknk. The second line is obtained by contraction of the Levi Civita symbol
ϵjikϵjlm = δilδkm− δimδkl. The last equality follows from the definition of the particle density ρa and the
3-dimensional nematic tensorQa.

(ii) The second non-trivial term contributing to the pa dynamics is given by the one associated with angular
diffusion, given by

ˆ
|n|=1

dn ni R2Pa (r,n, t) =

ˆ
|n|=1

dn Pa (r,n, t)R2ni =−2pa,i, (A.5)

that simply follows from the relationR2ni =−2ni.

Closure in the moment expansion can be attained by considering the case where the nematic order is
negligibleQa = 0. This truncation of the hierarchy of n-moments in (A.2) simplifies equation (A.3) for p
to (6).

A.1. Microscopic origin of phoretic interactions
The phoretic couplings µa, Ωa, and the production rates αa, and βa can be expressed in terms of microscopic
parameters describing the geometric distribution of the mobility µ(a) and activity α(a) on the surface of
spherical Janus particles. If we restrict to a mobility µ(a) and activity α(a) that is axis-symmetric with respect
to na, they are parametrized along the surface of the Janus particle only via cosθ, where θ denotes the angle
with respect to the symmetry axis. It is then convenient to expand µ(a)(cosθ) and α(a)(cosθ) in Legendre
polynomials according to

µ(a) (cosθ) =
∞∑

m=0

Pm (cosθ)µ
(a)
m , α(a) (cosθ) =

∞∑
m=0

Pm (cosθ)α
(a)
m , (A.6)

where Pm(cosθ) is themth degree Legendre polynomials, and the coefficients µ
(a)
m and α(a)

m are given by

µ(a)
m =

(
m+

1

2

)ˆ π

0
dθ sinθPm (cosθ)µ

(a) (cosθ) , α(a)
m =

(
m+

1

2

)ˆ π

0
dθ sinθPm (cosθ)α

(a) (cosθ) .

(A.7)

It can be shown that the velocity va and angular velocity ωa [43, 49] due to phoretic interaction with the
chemical substrate are given by

va (r, t) =−µ(a)
0 ∇c(r, t)+

3

10
µ
(a)
2

(
nana−

I
3

)
·∇c(r, t) , ωa =−

3µ(a)
1

4Ra
na×∇c(r, t) , (A.8)

where Ra is the radius of the colloid. From last equation we immediately read the coefficients µa = µ
(a)
0 and

Ωa =−3µ(a)
1 /(4Ra) appearing in equation (1), while µ

(a)
2 = 0 if we assume hemispherically coated Janus

colloids.

A.2. Equation for the chemical substrate
The set of dynamical equations is completed by the evolution of the substrate density field c(r, t), which is
given by

∂tc−Dc

(
∇2−κ2

)
c=Π(r, t) =

n∑
a=1

[
αaρa−βa∇· pa +O

(
R5a
)]
, (A.9)

where Ra is the radius of the a−species Janus particle, and Π the local production rate of chemical substrate.
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The average production rate Π(r, t) can be expressed by integrating the contribution coming from the
local production rate α(a)(cosθia), parametrized by θia , the angle between a point on the surface of each
ia ∈ {1, . . . ,Na} Janus colloid and its axis, i.e.

Π(r, t) =

⟨
n∑

a=1

Na∑
ia=1

ˆ
|Ria |=Ra

δ (r− ria −Ria)α
(a) (cosθia)

⟩

=

⟨
n∑

a=1

R2a

Na∑
ia=1

∞∑
m=0

α(a)
m

ˆ π

0
dθia sinθia

ˆ 2π

0
dφia Pm (cosθia)

[
1−Rar̂ia ·∇+O

(
R2a
)]
δ (r− ria)

⟩

=
n∑

a=1

4πR2a

⟨
Na∑
ia=1

∞∑
m=0

α(a)
m

{
δm,0−

Ra

3
δm,1 (nia ·∇)+O

(
R2a
)}

δ (r− ria)

⟩

=
n∑

a=1

4πR2a

[
α
(a)
0 ρa (r, t)−Ra

α
(a)
1

3
∇· pa (r, t)+O

(
R2a
)]
,

(A.10)

where r is a point on the surface of the particle, ria the location of the center of the ia-th particle of species a,
and Ria = r− ria is a point on the particle in the particle’s reference frame. In the second line, we expand the
activity α(a) in Legendre polynomials according to equation (A.6), we Taylor-expand the Dirac delta for
Ra≪ r, and we make the surface integral explicit. The last two lines follow from integration and the
definition of ρa and pa. From the above equation, we read

αa = 4πR
2
aα

(a)
0 , βa =

4

3
πR3aα

(a)
1 . (A.11)

Appendix B. Construction of the phase diagram

We now discuss the steps that we follow to construct the stability phase diagram presented in the main text.
We consider a two-dimensional linear with the associated two eigenvalues

Λ1,2 =
trG
2
∓
√
∆, with ∆=

(
trG
2

)2
− detG. (B.1)

We now summarise the results of the eigenvalue analysis in a stability diagram. Generically, we can
distinguish three significant regions denoted by R∆,1,2 delimited by curves C∆,1,2:

R∆ : ∆⩽ 0,
R1 : trG (k) = Λ1+Λ2 < 0,

R2 : detG (k) = Λ1Λ2 > 0,

C∆ : ∆ = 0,

C1 : trG = 0,

C2 : detG = 0.

(B.2)

R∆,1,2 identify the regions with real eigenvalue, positive trace of G and positive determinant detG
respectively. The intersection of R1 and R2 identifies the stability region of the system. The region R∆

corresponds to the region of complex eigenvalues. The boundary C∆ is the line of exceptional points, where
the eigenvalues are equal. Note that R∆ is always contained in R2, implying that by crossing the portion of C1
belonging to R∆ the stability of the system changes. To illustrate one application of the considerations above,
as an example, we construct in detail the phase diagram shown in figure 6.

We can easily determine the topology of these regions in the plane of the parameters (ρ̄1M1Π1, ρ̄2M2Π2)
while keeping Deff2 and δD> 0 fixed. It can be simply checked from equation (38) for∆, that this curve is a
parabola defined for ρ̄1M1Π1 ⩽ 0 with symmetry axis ρ̄2M2Π2+ ρ̄1M1Π1 = 0 and vertex (−δD/4, δD/4). It
is represented in figure 6 by the blue dashed curve: the interior of the parabola corresponds to complex
eigenvalues, while its complementary R∆ to the region of real eigenvalues.

Along the curve C1 defined by the line ρ̄2M2Π2+ ρ̄1M1Π1+Deff1 +Deff2 = 0, the eigenvalues
Λ1,2 =±

√
ρ̄1M1Π1ρ̄2M2Π2 are equal and opposite. A complex conjugate pair of Λ1,2 change their sign on

crossing C1. Thus C1 lying in R∆ represents points where Hopf bifurcation occurs dividing it into two
regions—one where oscillations grow and the other where they decay. A pair of real Λ1 are equal and
opposite on the curve C1, which means it lies in the region where one of the eigenmodes is unstable.
Moreover, C1 is parallel to the axis of symmetry of C∆, such that they intersect only at one point
P⋆ =

(
−(Deff1 )2/δD,(Deff2 )2/δD

)
where the eigenvalues are both null (blue star in figure 6). In figure 6 this

former branch of C1 is represented by the pale green semi-line that originates from P⋆.
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The expression of the curve C2 is given by line ρ̄1M1Π1/Deff1 + ρ̄2M2Π2/Deff2 + 1= 0 and its
corresponding eigenvalues read Λ1 = trG and Λ2= 0. Note that C2 is tangent to C∆ at P⋆ where also Λ1= 0.
Thus, as in the case of C1, the point P⋆ splits C2 into two semi-lines with different behavior: one for
ρ̄1M1Π1 > (Deff1 )2/δD where Λ1 is stable (red semi-line in figure 6) and the other that lays in the (real)
instability region. Indeed, for ρ̄1M1Π1 > (Deff1 )2/δD above C2 we have real and stable eigenvalues, that
become unstable below.

Similar considerations allow us to obtain the phase diagrams in figure 2.

Appendix C. Details of single species dynamics

Already at its linear description in equation (9), it is a very hard task to deal with the complexity of the
multi-species dynamics. For this reason, it is useful to get some insights from the single component case.
Indeed, as we have anticipated in section 3, it allows us to qualitatively understand certain simplified regimes
of the multi-species case. For the one species case, the linearized dynamics of a perturbation to the
homogeneous solution ρ(r, t) = ρ̄, p(r, t) = 0, and c(r, t) = c̄= αρ̄/(Dcκ

2) is then given by

∂tδρ(k, t) =−k2 [µρ̄δc(k, t)+Dδρ(k, t)]− ikvδp∥ (k, t) ,

∂tδp∥ (k, t) =−
ik

3
[vδρ(k, t)− 2Ωρ̄ δc(k, t)]−

(
2Dr +Dk2

)
δp∥ (k, t) ,

δc(k, t) =
αδρ(k, t)− ikβδp∥ (k, t)

Dc (κ2+ k2)
, ∂tδp⊥ (k, t) =−

(
2Dr +Dk2

)
δp⊥ (k, t) .

(C.1)

Note that, to ensure the physical requirement c̄> 0 of positive substrate density, this description entails a
positive α> 0 and κ ̸= 0: the substrate is on average created by the Janus colloids, and its dynamics has to be
screened. Equation (C.1) tells us that perturbation to the homogeneous density profile δρ(k, t) is influenced
only by the component along k of the polar field, while its orthogonal contribution δp⊥(k, t) is exponentially
suppressed over time due to angular diffusion. For this reason, we restrict our analysis to the evolution of δρ
and δp∥.

Accordingly, we can express the linearized dynamics of the system as

∂t
(
δρ(k, t) , δp∥ (k, t)

)T
= G (k)

(
δρ(k, t) , δp∥ (k, t)

)T
, (C.2)

where we identify the one-species dynamical matrix as

G (k) =−

 Dk2+K(k) ρ̄µα
Dc

ik
(
v−K(k) ρ̄µβ

Dc

)
ik
(

v
3 −K(k) 2ρ̄Ωα

3k2Dc

)
2Dr +Dk2−K(k) 2ρ̄Ωβ

3Dc

 , (C.3)

with K(k)≡ k2/(k2+κ2). We recall that, at the single particle level, the phoretic drift µ and alignment
interaction Ω determine how the Janus particles respond to the gradient distribution of the substrate∇c: for
positive values of µ the particles escape from high c-concentration regions, while they point towards high
concentration region for µ< 0; for Ω> 0 particles align along∇c (high concentration) and anti-align
otherwise. For β > 0 more substrate particles are produced in the orientation n direction, they are consumed
in the opposite case.

Therefore, we can interpret the Gij element of the dynamical matrix G as the response coefficient of the
i-field to a j-field small perturbation, where i= 1 and i= 2 identify respectively the density and polar field
fluctuations. Note that the phoretic contribution to G appears only via one of the two production rates α and
β, and only one of the chemotactic interactions µ and Ω. This is a consequence of the linearized dynamics
and it allows us to consider one type of phoretic effect at the time to the i-field, depending on the nature of
the j-field perturbations to the homogeneous phase. To better understand the effect of these response
coefficients we refer to figure C1, where we display the effect of these (linearized) effective interactions on the
stability of the homogeneous phase:

• The first elementG11measures how small density fluctuations are amplified or suppressed while considering
no perturbation to its disordered orientational component. This channel of interaction is associatedwith the
effect of the homogeneous production of chemicals, parametrized by α, and the chemotactic drift µ. This
diffusion channel (shown on the top left of figure C1(a)) stabilizes the homogeneous phase for µ> 0 because
of chemorepulsive interactions, whereas it can lead to aggregation in the case of effectively chemoattractive
ones for µ< 0. In figure C1(b) we mark in yellow the region of parameters where G11 becomes negative:
phoretic interaction may lead to a negative effective diffusivity.
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Figure C1. In panel (a), we show all the possible channels of effective interactions in G due to phoretic effects. On the top left we
represent the effect of phoresis on the effective diffusivity of the linearized dynamics corresponding to G11. The first column
identifies the type of perturbation to the homogenous phase: in this case a local collection of Janus colloids with random
orientation n (black arrow) producing the chemical substrate in a homogeneous way (yellow area) in a concentration higher than
ρ̄. In the second and third columns, the effect of the chemotactic drift µ∇c is shown, whose orientation is represented by the blue
arrows. Similarly, in the top right corner, we account for the advective channel due to chemotactic drift and asymmetric
production chemical described by the parameter β (green area). On the bottom left, we display the effect of α and the
chemotactic alignment (red arrows) to the pressure channel. Finally, the bottom right panel sketches the effect of the effective
interactions on rotational diffusion. In panel (b), we show the regions of the phase diagram—similar to the one in
figure 2—where the elements of the dynamical matrix Gij lead to a change of sign of the diffusivity and velocity positive terms at
the single phoretic channel level, that is, when they are interpreted as the response coefficient of the i-field to the solely j-field
perturbation. Here we have defined the auxiliary parameters σ = α/β and∆σ(k) = 2Dr − v[σ+ k2/(3σ)], that together with
the combination of parameters on the axes of the phase diagram, uniquely characterize the system.

• The second channel, described by G12, tells us how a small perturbation to the orientational disorder can
affect the density in terms of βµ. To fix ideas we set β > 0 (top right of figure C1(a)), corresponding to the
asymmetric production of chemicals along the self-propelling direction n. If we consider as a perturbation
of the polar field the local alignment of a set of Janus colloids, we get that the effect of chemorepulsion
tends to reduce the effective self-propelling velocity, whereas it increases for µ< 0. We refer to this channel
of interaction as the advective one, since here phoretic interactions contribute to the advective part of the
density dynamics. The red region in figure C1(b) corresponds to G12/(ik) negative, i.e. when the effective
self-propelling velocity becomes negative.
• The third channel of interaction, associated to G21 (bottom left in figure C1(a)), can be interpreted as a
pressure term, in analogy with the case of Toner Tu type of equations [71–73]. In particular, self-propulsion
acts as a mechanism to restore orientational disorder due to possible local perturbation of the density field.
The phoretic contribution to this mechanism is represented byΩα, that is to the homogenous production of
chemicals and the alignment interaction. IfΩ> 0 Janus particles point towards high concentration regions
of chemical leading to larger values of δp∥ and possibly to aggregation of particles. On the other hand, if
Ω< 0 particles point away from high concentration regions, thus destroying local order. Also in this case
phoretic interaction may lead to a negative value of the net velocity G21/(ik) (green area in figure C1(b)).
Indeed, in the limit of fast relaxation of the polar field, e.g. Dr +Dk2≫ 2K(k)Ωβ/(3Dc) (G22 < 0), we get
δp∥(k, t)≃−(G21/G22)δρ(k, t) and ∂tδρ(k, t) = (detG/G22)δρ(k, t). If (for simplicity) we set β= 0, it is then
apparent that the stability of the effective diffusivity detG/G22 = G11− v[vk2/3−K(k)2Ωα/(3Dc)]/(2Dr +
Dk2) depends crucially on the sign and intensity of G21.
• Finally, the term G22 identifies the contribution of alignment interaction to the effective orientational dif-
fusivity. Namely, it carries information about how the polar field is affected by local orientational order. As
for G12 we first set β > 0 (bottom right of figure C1(a)): in the case of locally ordered particles, forΩ> 0 the
particles are most likely be already aligned to high concentration regions thus creating aggregation, align-
ment, and instability in the homogeneous phase; for Ω< 0 the particles start to rotate since chemical is
produced in correspondence of n while the same n tries to escape high concentration regions, thus stabil-
izing disordered configurations. In general, as βΩ> 0 phoretic interactions favor local orientational order,
while they stabilize the homogeneous phase for βΩ< 0. The blue region in figure C1(b) denotes the region
of parameters where the effective orientational diffusivity becomes negative because of phoretic interactions.

It is worth noting that all the phoretic contributions in G are proportional to K(k)ρ̄/Dc: their contributions
become stronger for a higher concentration of particles and increasing values of substrate screening length
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1/κ. The region of parameters corresponding to the instability of each of these channels is highlighted in
figure C1(b). Then, the full phase diagram (the light blue shaded curves in figure C1(b)) is not just given by
the superposition of the four individual response coefficients Gij, but from their interplay. This mixture of
different channels is captured by the eigenvalues of the dynamical matrix G(k). They can be expressed via the
trace trG and determinant detG of G as

Λ1/2 (k) =
trG (k)∓

√
(trG (k))2− 4detG (k)

2

=−
[
Dr + k2D+

K(k)

2

ρ̄

Dc

(
µα− 2

3
Ωβ

)
±
√
∆(k)

]
,

(C.4)

with discriminant∆(k) explicitly given by

∆(k) =

[
Dr + k2D+

K(k)

2

ρ̄

Dc

(
µα− 2

3
Ωβ

)]2
−
(
k2D+K(k)

ρ̄µα

Dc

)(
2Dr +Dk2−K(k)

2ρ̄Ωβ

3Dc

)
−
(
v−K(k)

ρ̄µβ

Dc

)(
k2v

3
−K(k)

2ρ̄Ωα

3Dc

)
.

(C.5)

Note that the presence of the conserved field density δρ(k, t) implies that one of the eigenvalues must
vanish at k= 0. This property is satisfied by Λ2(k) and reveals an important feature of the unscreened (κ= 0)
case, i.e. in the limit k→ 0 and κ→ 0 do not commute. Indeed, if one takes the limit κ→ 0 before setting
k= 0, K(k) = 1 becomes constant, inconsistently with Λ2(0) = 0. The first eigenvalue Λ1(k) is associated
with a non-conserved mode that at k= 0 reduces to Λ1(0) =−2Dr, reflecting the fact that angular diffusion
stabilizes the homogeneous disordered phase. At small wave numbers and screened interactions κ> 0, the
eigenvalues behave as

Λ1 (k) =−2Dr− k2
[
ρ̄Ω

3Dcκ2
(−2β+ vα)− v2

6Dr
+D

]
+O

(
k4
)
,

Λ2 (k) =−k2
[
ρ̄α

Dcκ2

(
µ− vΩ

3Dr

)
+Deff (0)

]
+O

(
k4
)
.

(C.6)

It as apparent from equation (C.6) that for small values of k the first eigenvalue Λ1(k) is stable due to the
angular diffusion, while the eigenvalue Λ2(k) associated with the conserved field is stable for

ρ̄α

Dc

(
µ− vΩ

3Dr

)
+κ2Deff (0)⩾ 0. (C.7)

The last relation states that, at the macroscopic scale, the homogeneous phase is stable if, even in the case
of effective attractive interaction among the particles, i.e. α(µ− vΩ/(3Dr))< 0, the traslational and
orientational noise prevails. For fully unscreened interactions k≫ κ≃ 0 and K(k)≃ 1, at leading order in
κ/k the eigenvalues become

Λ1,2 =−

Dr +
ρ̄

2Dc

(
µα−

2

3
Ωβ

)
±

√[
Dr +

ρ̄

2Dc

(
µα−

2

3
Ωβ

)]2
−

ρ̄µα

Dc

(
2Dr −

2ρ̄Ωβ

3Dc

)
−
(
v−

ρ̄µβ

Dc

)
2ρ̄Ωα

3Dc

 ,

(C.8)

which implies that, in the case of long-range interactions among the Janus colloids, at a large enough scale
the system presents two non-conserved modes that can be both stabilized by strong enough orientational
disorder. Physically, being the number of particles a conserved quantity, in the limit k→ 0 there must always
be a conserved mode that vanishes as k2, signaling that the unscreened regime holds only for κ≪ k and k
very small. Notably, the very same behavior has been found in the two species case in section 3.1 for equal
diffusivity and self-propelling velocity between the two species.
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Appendix D. Effective interaction

Here we complement the calculations missing in section 4.4. We are interested in solving the linear system in
equation (27) with initial conditions δρ(k,0) in the unstable regime. In particular, we need an expression for
the ratio δρ1(k, t)/δρ2(k, t) in the large t limit. This is captured by the ratio of the elements of the eigenvector
corresponding to the eigenvalue Λ2, associated with the most unstable mode which dominates the dynamics.
The eigenvectors are given by

ê1,2 (k) =

(
Deff1 +ρ̄1M1Π1−Deff2 −ρ̄2M2Π2

2 ±
√
∆

ρ̄2M2Π1

)
. (D.1)

In the non-oscillatory regime, the relative amplitude of the two density perturbations is given by

δρ1 (k, t)

δρ2 (k, t)
=
ρ̄1M1

ρ̄2M2

Deff1 + ρ̄1M1Π1−Deff2 − ρ̄2M2Π2− 2
√
∆

2ρ̄1M1Π1
, (D.2)

at leading order in ek
2Λ2t.

In the unstable oscillatory regime (blue area in figure 10) there is an alternation of depletion and
aggregation in time according to

δρ1 (k, t)

δρ2 (k, t)

=

sin
(√
|∆|k2t

)[
δρ1 (k,0)

(
−Deff1 +Deff2 − ρ̄1M1Π1+ ρ̄2M2Π2

)
− δρ2 (k,0)2ρ̄1M1Π2

]
+2
√
|∆|δρ1 (k,0)cos

(√
|∆|k2t

)
sin
(√
|∆|k2t

)[
δρ2 (k,0)

(
Deff1 −Deff2 + ρ̄1M1Π1− ρ̄2M2Π2

)
− δρ1 (k,0)2ρ̄2M2Π1

]
+2
√
|∆|δρ2 (k,0)cos

(√
|∆|k2t

) ,

(D.3)

where the common exponentially growing factor ek
2trG/2 cancel in the ratio. To better characterize this

(linearly) oscillating phase we look at the rescaled variables δρ1,2(k, t)e−k2trG/2, whose time evolution
describes an ellipse. The evolution of these two periodic trajectories can characterized by looking at their
phase and amplitude as δρ1,2(k, t)e−k2trG/2 = A1,2 cos(

√
|∆|k2t+φ1,2), where

tanφ1 =
δρ1 (k,0)(G11−G22)+ δρ2 (k,0)2G12

2
√
|∆|δρ1 (k,0)

,

tanφ2 =−
δρ2 (k,0)(G11−G22)− δρ1 (k,0)2G21

2
√
|∆|δρ2 (k,0)

,

A1 = 2

√
G12
[
(δρ1 (k,0))

2G21+ δρ1 (k,0)δρ2 (k,0)(G11−G22)+ (δρ2 (k,0))
2G12

]
,

A2 = 2

√
G21
[
(δρ1 (k,0))

2G21− δρ1 (k,0)δρ2 (k,0)(G11−G22)+ (δρ2 (k,0))
2G12

]
,

(D.4)

where we recall that complex eigenvalues exist only for ρ̄1M1Π1 < 0 and ρ̄2M2Π2 > 0.
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