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Electron quasiparticles are progressively weakened by correlations upon approaching a continuos
Mott metal insulator transition in a bulk solid. We show that corresponding to the bulk weakening,
a dead layer forms below the surface of the solid, where quasiparticles are exponentially suppressed.
The surface dead layer depth is a bulk property, and diverges when the Mott transition is approached.
We describe this phenomenon in a Hubbard model within a self-consistent Gutzwiller approximation.
Photoemission data of Rodolakis et al. in V203 appear to be in accord with this physical picture.

PACS numbers: 73.20.-r, 71.30.+h, 71.10.Fd

The Mott transition@] where a lattice of atoms or
molecules abandons the metallic state and turns insu-
lating due to electron-electron repulsion, has a very intu-
itive physical explanation. Electron motion in the lattice
is caused by kinetic energy, and favored by electron-ion
energy because the same electron can feel in this way
the attraction of more than one nucleus. It is opposed
by Coulomb repulsion, higher for itinerant electrons due
to the higher chance of collision during motion. When
the first two terms (which form the band energy) prevail,
the system is a band metal; otherwise the electrons local-
ize, and we have an insulator. Despite that conceptual
simplicity, properties of Mott insulators and especially
of the strongly correlated metallic state close to a Mott
transition remain quite difficult to capture both theo-
retically and experimentally. Theoretically, the reason
is that the Mott transition is a collective phenomenon,
which escapes single-particle or mean field theories such
as Hartree-Fock or DFT-LDA approximations. Experi-
mentally, complications such as magnetism, lattice dis-
tortions, etc., often conspire to mask the nature of metal
insulator transitions.

Fresh progress on this problem has come in the last two
decades with dynamical mean field theory (DMFT)[2],
which in the standard Hubbard model showed that, as
the electron-electron repulsion parameter U increases,
the initial band-metal evolves first to a strongly cor-
related metal well before the Mott transition. In the
strongly correlated metal the electron spectral function
undergoes a profound change exhibiting well formed, lo-
calized Mott-Hubbard bands coexisting with delocalized,
propagating quasiparticles — the latter narrowly centered
in energy near the Fermi level. Only successively do
the quasiparticles disappear as the Mott transition takes
place when U is increased to reach U = U.. This in-
triguing prediction — simultaneous metallic and insulat-
ing features, though on well separated energy scales —
has stimulated a considerable experimental effort to re-
veal coexisting quasiparticles and Mott-Hubbard bands

in strongly correlated metals[@, @, B, , ﬁ, , @, , , ]
A large amount of work has been done on V30Os, the
prototype compound where a Mott transition was first
discoveredﬁ] and studied theoreticallym, ﬁ] At the
metal-insulator transition of (V;_,Cr,)20s3, early pho-
toemission experimentsm, , @, @] failed to reveal
the sharp quasiparticle peak predicted by DMFT. The
electronic spectrum was simply dominated by the lower
Mott-Hubbard band with barely a hint of metallic weight
at the Fermi energy. A similar puzzle was actually re-
ported much earlier in f-electron materialsm, and soon
ascribed to large surface effects in the presence of strong
correlations; the same conclusion reached by more re-
cent photoemission experimentsﬂg, @, , ﬁ, , ,]. In
V103, using higher kinetic energy photo-electrons, whose
escape depth is larger, a prominent quasiparticle peak co-
existing with incoherent Mott-Hubbard bands was even-
tually observed E, , ] Quasiparticle suppression
in surface-sensitive probes was attributed@] to surface-
modified hamiltonian parameters, the reduced atomic co-
ordination pushing the surface closer to the Mott tran-
sition than the underlying bulk. Larger electronic corre-
lations at the surface have been discussed by several au-
thors through ad-hoc formulations of DMFT@, , ]
There is general agreement on intrinsically different
quasiparticle properties near a surface, even if all hamil-
tonian parameters were to remain identically the same
up to the outermost atomic layer[lﬁ].

This conclusion, although not unexpected, raises a
more fundamental question. A metal does not possess
any intrinsic length-scale at long distances other than
the Fermi wavelength. Thus an imperfection like a sur-
face can only induce at large depth a power-law decay-
ing disturbance such as that associated with Friedel’s os-
cillations. Since one does not expect Luttinger’s theo-
rem to break down, even in a strongly correlated metal
these oscillations should be controlled by the same Fermi
wavelength as in the absence of interaction, irrespectively
of the proximity of the Mott transition. However, a
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strongly correlated metal does possess an intrinsic energy
scale, the parametric distance of the Hamiltonian from
the Mott transition, where that distance could be asso-
ciated with a length scale. The surface as a perturbation
should alter the quasiparticle properties within a depth
corresponding to that length, a bulk property increasing
near the Mott transition, unlike the Fermi wavelength
that remains constant. In this respect, it is not a priori
clear whether the recovery of bulk quasiparticles spec-
tral properties with increasing depth should be strictly
power-law, compatible with the common view of a metal
as an inherently critical state of matter, or whether it
should be exponential, as one would expect by regard-
ing the Mott transition as any other critical phenomena
where power laws emerge only at criticality. We find here
in the simple half-filled Hubbard model that the quasi-
particle spectral weight below the surface is actually re-
covered exponentially inside the bulk with a length-scale
that depends only on the bulk properties and diverges
approaching the continuous Mott transition.

To address the generic surface features of a a strongly
correlated metal, we study the simplest Hamiltonian ex-
hibiting a Mott transition, namely the Hubbard model
at half-filling

H=—t Z ckgcR,g + H.c. + Z Ur nrinry, (1)
<RR'>0 R

where < RR’ > are nearest neighbor sites, CTRU creates an
electron at site R with spin ¢ and nr, = kg, Con-
ventionally, the Mott transition of the half-filled Hubbard
model is studied restricting to the paramagnetic sector of
the Hilbert spaceﬂ, @, ﬁ] S0 as to avoid spurious effects
due to magnetism. We assume a cubic lattice of spacing
a with periodic boundary conditions in x and y direc-
tions and open boundary conditions in the z direction,
in an N-layer slab geometry with two surfaces at z = 0
and z = N a. The Hubbard electron-electron interaction
parameter Ur is U everywhere except at the top sur-
face layer(z = 0), where it takes a generally higher value
Us > U. In this way we can compare effects at the ideal
lower surface (z = N a), where Uy, = U, with the more
correlated upper surface (z = 0). DMFT[2] offers an ideal
tool to attack this model in the paramagnetic sector, as-
suming a local self-energy that depends on the layer index

é 27). However, a full DMFT calculation of this
sort is numerically feasible only for a small number of
layers, e.g. N = 20 as in Ref.@], making the critical
regime near the Mott transition hard to access. As a
useful approximate alternative, one can resort to the so-
called linearized DMFT[23,[29] to treat moderately larger
sizes. We decided to adopt a different method altogether,
the Gutzwiller variational approximation@]. Despite its

limitations (static mean field character; inability to de-
scribe the insulating phase) it is known to provide a good
description of quasiparticle properties close to the Mott
transition[@] with very little size-limitations, and great
simplicity and flexibility (it may treat intersite interac-
tions, any kind of lattice, etc.). We study (II) by means
of a Gutzwiller type variational wavefuntion

R

where |¥y) is a paramagnetic Slater determinant. The
operator Pr has the general expression

PR—Z/\

R)(n, R/, (3)

R)(n,R| is the projector at site R = (z,y, 2)
onto configurations with n electrons, and \,(z) are
layer-dependent variational parameters. We calculate
average values Onéj using the so-called Gutzwiller
approximation[31, [32], (for details see e.g. Ref.[3(],
whose notations we use hereafter), and require that

where |n,

(Po| PR |Wo) =1, (¥o|PR nRo|Wo) = (Polnro|Vo). (4)
Because of particle-hole symmetry, (¥o|nro|¥o) = 1/2,
from which it follows that Eq. (@) is satisfied if Aa(z) =

)\lé = 2 — \o(2)2. The average value of () is
then |

(V| H W) Ur
B = oot =3 R 5
Z R(z <‘I’0|CRGCR1 + H.c.|Uy),
<RR'>0o
where R(z) = Ao(R)y/2 — Xo(R)? plays the role of a

wavefunction renormalization factor. Its square is the
actual quasiparticle weight, Z(z) = R?(z), since quasi-
particle creation renormalizes into R(z) chg in Fermi lig-
uid theory. One can invert this equation to express Ag(z)
as function of R(z), which become the actual variational
parameters together with the Slater determinant |¥o). In
order to minimize E in Eq. (@) we assume that the Slater
determinant |¥y) is built with single-particle wavefunc-
tions that, because of the slab geometry, have the general
expression ¢ex, (R) = /1/Ae™ IR ¢y (2), where A is
the number of sites per layer and k| the momentum in
the z-y plane. The stationary value of E with respect to
variation of ¢k, (z) and R(z) corresponds to the coupled
equations
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Figure 1: (Color online) The quasiparticle weight Z(z) =

R*(2) as function of the coordinate z perpendicular to the
surface (in units of the lattice spacing) for a 100-layer slab.
The interaction parameter at z = 0 is Us = 20¢, while the
bulk U is 15.98¢ in the upper panel and 15¢ in the lower one
(while U. =16). The insets show the behavior of Z close to the
two surfaces; the highest curve corresponding to the bulk-like
surface, the other to Us = 20t.

where e = —2t(coskza+ coskya) and the sum in

Eq. [@ runs over all pairs of (e,kj) that are occu-
pied in the Slater determinant |¥g). The first equa-
tion has the form of a Schreoedinger equation that the
single-particle wavefunctions qSEkH(z) must satisfy, de-
pending parametrically on R(z). The second equa-
tion has been intentionally cast in the form of a map
Rj11(z2) = F[R;(2),Rj(#+a),R;(z — a)] whose fixed
point we have verified to c01nc1de Wlth the actual solution
of (@) in the parameter region of interest. Eqs. (@) and
(@ can be solved iteratively as follows. First solve the
Schreedinger equation at fixed R;(z); next find the new
Rj11(z) using the old R;(z) and the newly determined
wavefunctions ¢e (2). With the new R;,1(z), repeat
the above steps and iterate until convergence. Because
of the large number of variational parameters, this iter-
ative scheme is much more efficient than — while fully
equivalent to — a direct minimization of E, Eq. (&).

In Fig. Mwe plot Z(z) = R?(z), experimentally the to-
tal spectral weight carried by quasiparticles, calculated

(2) ex;, Peiey (2)? + t Pk, (2 Z

(2 +pa) da (2 +pa), (6)

Z+pCL (béku(z'i_pa) (7)
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Figure 2: Quasiparticle weight dependence on the distance z
from the surface for two different bulk U values and for two
cases: one where only the first layer has Us = 20 ¢ > U (upper
curve in each panel), the other where five surface layers have
Us =20 t.

as function of z (in units of the lattice spacing a) for
Us = 20t, for two different bulk values 15¢ and 15.98t of U
below the critical Mott-transition value U. = 16t. Com-
ing from the bulk, the quasiparticle weight Z(z) decreases
monotonically on approaching both surfaces, where it at-
tains much smaller values than in bulk. As expected,
the more correlated surface has a smaller quasiparticle
weight, Z(0) < Z(N). Note however that so long as the
slab interior (the “bulk”) remains metallic, the surface
quasiparticle weight never vanishes no matter how large
U, M] Mathematically, this follows from Eq. (@), which
is not satisfied by choosing R(0) = 0 while R(z > 0) # 0.
Physically, some metallic character can always tunnel
from the interior to the surface, so long as the bulk is
metallic. The quasiparticle weight approaches the sur-
face with upward curvature when U is closest to U, up-
per panel in Fig.[Il whereas the behavior is linear well be-
low U., as found earlier within linearized DMFT@]. We
note that an upward curvature is in better accord with
photoemission spectra of Rodolakis et al. on V503 @]
The curvature becomes more manifest if the number of
surface layers where Ug > U is increased, as shown in
Fig.[2l Next, we analyse the dependence of R(z) at large
distance 1 << z << N/2 below the surface. As Fig.
shows, we find no trace of a power law, and R is best fit

by an exponential R(z) = Rpuir+ (Rsurf —Rbulk> e #/A,

where Rpqx is the bulk value (a function of U only) and
Reury < Rpuik- Rsury now depends on both U and on
Us, and vanishes only when Rp,, does at U > U,. A de-
tailed study by varying U and U, shows that the surface
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Figure 3: Log scale plot of Rpux — R(z) versus z for U =
15.99, Us = 20t and for different thicknesses of the slab N =
60, 100, 200, 400.

“dead layer” thickness A depends only on bulk properties
and diverges at the Mott transition as A oc (U, —U)™".
Numerically we find v = 0.53 +£0.3 ~ 0.5, a typical mean
field exponent@]. The same conclusion can actually be
drawn by analysing Eqgs. (6)) and (@) deep inside the bulk.
We note that the precise behavior at the outermost sur-
face layers would in a real system depend on details, such
as lack of electron-hole symmetry and/or surface dipoles,
not included in our model. However, we believe that the
exponential behavior and its divergence at a continuous
Mott transition should be generic and universal, and thus
independent of these and other details. In conclusion, we
have shown in a simple approximation the existence in
the Hubbard model of strongly correlated metals of a
“dead layer” below the crystal surface. Within this layer
— whose depth is a bulk property and not a surface prop-
erty of the metal — the quasiparticle weight decays ex-
ponentially on approaching the surface. The dead layer
thickness A inversely depends on the distance in parame-
ter space to the bulk continuous Mott transition, where it
diverges critically. The physical significance of \ is that
of a correlation length of the bulk metallic state, where
the quasiparticle weight acts as an order parameter, crit-
ically vanishing at a continuous Mott transition. Like
other features of the Hubbard model, this result should
we believe carry over to real systems with an ideal Mott
transition, not obscured by e.g., symmetry breaking phe-
nomena like magnetic order, provided that the critical
region is not preempted by a strong first order jump,
like that in the a-vy transition of Ce. It could therefore
apply to high temperature VoO3 near the paramagnetic
metal-insulator weakly first order line, notwithstanding
complications including orbital degeneracy, Hund’s rules,
and coupling to the lattice (see e.g. Ref.[35] and refer-
ences therein). We thus expect a surface dead layer in
the metal phase of VoO3 , with thickness increasing (al-
though not diverging because of the first order transi-
tion) on approaching the Mott transition line. The asso-
ciated paper by Rodolakis et al. reports photoemission

evidence which lends some support to this picture. It is
also interesting to note that an anomalously thick sub-
surface dead layer has long been observed in mixed valent
YbInCuy|36], with a depth not smaller that 60A[37].
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