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Ele
tron quasiparti
les are progressively weakened by 
orrelations upon approa
hing a 
ontinuos

Mott metal insulator transition in a bulk solid. We show that 
orresponding to the bulk weakening,

a dead layer forms below the surfa
e of the solid, where quasiparti
les are exponentially suppressed.

The surfa
e dead layer depth is a bulk property, and diverges when the Mott transition is approa
hed.

We des
ribe this phenomenon in a Hubbard model within a self-
onsistent Gutzwiller approximation.

Photoemission data of Rodolakis et al. in V2O3 appear to be in a

ord with this physi
al pi
ture.

PACS numbers: 73.20.-r, 71.30.+h, 71.10.Fd

The Mott transition[1℄ where a latti
e of atoms or

mole
ules abandons the metalli
 state and turns insu-

lating due to ele
tron-ele
tron repulsion, has a very intu-

itive physi
al explanation. Ele
tron motion in the latti
e

is 
aused by kineti
 energy, and favored by ele
tron-ion

energy be
ause the same ele
tron 
an feel in this way

the attra
tion of more than one nu
leus. It is opposed

by Coulomb repulsion, higher for itinerant ele
trons due

to the higher 
han
e of 
ollision during motion. When

the �rst two terms (whi
h form the band energy) prevail,

the system is a band metal; otherwise the ele
trons lo
al-

ize, and we have an insulator. Despite that 
on
eptual

simpli
ity, properties of Mott insulators and espe
ially

of the strongly 
orrelated metalli
 state 
lose to a Mott

transition remain quite di�
ult to 
apture both theo-

reti
ally and experimentally. Theoreti
ally, the reason

is that the Mott transition is a 
olle
tive phenomenon,

whi
h es
apes single-parti
le or mean �eld theories su
h

as Hartree-Fo
k or DFT-LDA approximations. Experi-

mentally, 
ompli
ations su
h as magnetism, latti
e dis-

tortions, et
., often 
onspire to mask the nature of metal

insulator transitions.

Fresh progress on this problem has 
ome in the last two

de
ades with dynami
al mean �eld theory (DMFT)[2℄,

whi
h in the standard Hubbard model showed that, as

the ele
tron-ele
tron repulsion parameter U in
reases,

the initial band-metal evolves �rst to a strongly 
or-

related metal well before the Mott transition. In the

strongly 
orrelated metal the ele
tron spe
tral fun
tion

undergoes a profound 
hange exhibiting well formed, lo-


alized Mott-Hubbard bands 
oexisting with delo
alized,

propagating quasiparti
les � the latter narrowly 
entered

in energy near the Fermi level. Only su

essively do

the quasiparti
les disappear as the Mott transition takes

pla
e when U is in
reased to rea
h U = Uc. This in-

triguing predi
tion � simultaneous metalli
 and insulat-

ing features, though on well separated energy s
ales �

has stimulated a 
onsiderable experimental e�ort to re-

veal 
oexisting quasiparti
les and Mott-Hubbard bands

in strongly 
orrelated metals[3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄.

A large amount of work has been done on V2O3, the

prototype 
ompound where a Mott transition was �rst

dis
overed[13℄ and studied theoreti
ally[14, 15℄. At the

metal-insulator transition of (V1−xCrx)2O3, early pho-

toemission experiments[16, 17, 18, 19℄ failed to reveal

the sharp quasiparti
le peak predi
ted by DMFT. The

ele
troni
 spe
trum was simply dominated by the lower

Mott-Hubbard band with barely a hint of metalli
 weight

at the Fermi energy. A similar puzzle was a
tually re-

ported mu
h earlier in f -ele
tron materials[20℄, and soon

as
ribed to large surfa
e e�e
ts in the presen
e of strong


orrelations[21℄; the same 
on
lusion rea
hed by more re-


ent photoemission experiments[3, 4, 6, 7, 11, 12, 22℄. In

V2O3, using higher kineti
 energy photo-ele
trons, whose

es
ape depth is larger, a prominent quasiparti
le peak 
o-

existing with in
oherent Mott-Hubbard bands was even-

tually observed [5, 10, 23℄. Quasiparti
le suppression

in surfa
e-sensitive probes was attributed[23℄ to surfa
e-

modi�ed hamiltonian parameters, the redu
ed atomi
 
o-

ordination pushing the surfa
e 
loser to the Mott tran-

sition than the underlying bulk. Larger ele
troni
 
orre-

lations at the surfa
e have been dis
ussed by several au-

thors through ad-ho
 formulations of DMFT[25, 26, 27℄.

There is general agreement on intrinsi
ally di�erent

quasiparti
le properties near a surfa
e, even if all hamil-

tonian parameters were to remain identi
ally the same

up to the outermost atomi
 layer[25℄.

This 
on
lusion, although not unexpe
ted, raises a

more fundamental question. A metal does not possess

any intrinsi
 length-s
ale at long distan
es other than

the Fermi wavelength. Thus an imperfe
tion like a sur-

fa
e 
an only indu
e at large depth a power-law de
ay-

ing disturban
e su
h as that asso
iated with Friedel's os-


illations. Sin
e one does not expe
t Luttinger's theo-

rem to break down, even in a strongly 
orrelated metal

these os
illations should be 
ontrolled by the same Fermi

wavelength as in the absen
e of intera
tion, irrespe
tively

of the proximity of the Mott transition. However, a

http://arxiv.org/abs/0901.2706v1
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strongly 
orrelated metal does possess an intrinsi
 energy

s
ale, the parametri
 distan
e of the Hamiltonian from

the Mott transition, where that distan
e 
ould be asso-


iated with a length s
ale. The surfa
e as a perturbation

should alter the quasiparti
le properties within a depth


orresponding to that length, a bulk property in
reasing

near the Mott transition, unlike the Fermi wavelength

that remains 
onstant. In this respe
t, it is not a priori


lear whether the re
overy of bulk quasiparti
les spe
-

tral properties with in
reasing depth should be stri
tly

power-law, 
ompatible with the 
ommon view of a metal

as an inherently 
riti
al state of matter, or whether it

should be exponential, as one would expe
t by regard-

ing the Mott transition as any other 
riti
al phenomena

where power laws emerge only at 
riti
ality. We �nd here

in the simple half-�lled Hubbard model that the quasi-

parti
le spe
tral weight below the surfa
e is a
tually re-


overed exponentially inside the bulk with a length-s
ale

that depends only on the bulk properties and diverges

approa
hing the 
ontinuous Mott transition.

To address the generi
 surfa
e features of a a strongly


orrelated metal, we study the simplest Hamiltonian ex-

hibiting a Mott transition, namely the Hubbard model

at half-�lling

H = −t
∑

<RR′>σ

c†
RσcR′σ +H.c.+

∑

R

UR nR↑nR↓, (1)

where< RR
′ > are nearest neighbor sites, c†

Rσ 
reates an

ele
tron at site R with spin σ and nRσ = c†
RσcRσ. Con-

ventionally, the Mott transition of the half-�lled Hubbard

model is studied restri
ting to the paramagneti
 se
tor of

the Hilbert spa
e[2, 14, 15℄ so as to avoid spurious e�e
ts

due to magnetism. We assume a 
ubi
 latti
e of spa
ing

a with periodi
 boundary 
onditions in x and y dire
-

tions and open boundary 
onditions in the z dire
tion,

in an N -layer slab geometry with two surfa
es at z = 0
and z = N a. The Hubbard ele
tron-ele
tron intera
tion

parameter UR is U everywhere ex
ept at the top sur-

fa
e layer(z = 0), where it takes a generally higher value

Us > U . In this way we 
an 
ompare e�e
ts at the ideal

lower surfa
e (z = N a), where UNa = U , with the more


orrelated upper surfa
e (z = 0). DMFT[2℄ o�ers an ideal

tool to atta
k this model in the paramagneti
 se
tor, as-

suming a lo
al self-energy that depends on the layer index

z[25, 26, 27℄. However, a full DMFT 
al
ulation of this

sort is numeri
ally feasible only for a small number of

layers, e.g. N = 20 as in Ref.[28℄, making the 
riti
al

regime near the Mott transition hard to a

ess. As a

useful approximate alternative, one 
an resort to the so-


alled linearized DMFT[25, 29℄ to treat moderately larger

sizes. We de
ided to adopt a di�erent method altogether,

the Gutzwiller variational approximation[30℄. Despite its

limitations (stati
 mean �eld 
hara
ter; inability to de-

s
ribe the insulating phase) it is known to provide a good

des
ription of quasiparti
le properties 
lose to the Mott

transition[2℄ with very little size-limitations, and great

simpli
ity and �exibility (it may treat intersite intera
-

tions, any kind of latti
e, et
.). We study (1) by means

of a Gutzwiller type variational wavefuntion

|Ψ〉 =
∏

R

PR |Ψ0〉, (2)

where |Ψ0〉 is a paramagneti
 Slater determinant. The

operator PR has the general expression

PR =

2
∑

n=0

λn(z) |n,R〉〈n,R|, (3)

where |n,R〉〈n,R| is the proje
tor at site R = (x, y, z)
onto 
on�gurations with n ele
trons, and λn(z) are

layer-dependent variational parameters. We 
al
ulate

average values on |Ψ〉 using the so-
alled Gutzwiller

approximation[31, 32℄, (for details see e.g. Ref.[30℄,

whose notations we use hereafter), and require that

〈Ψ0|P
2
R
|Ψ0〉 = 1, 〈Ψ0|P

2
R
nRσ|Ψ0〉 = 〈Ψ0|nRσ|Ψ0〉. (4)

Be
ause of parti
le-hole symmetry, 〈Ψ0|nRσ|Ψ0〉 = 1/2,
from whi
h it follows that Eq. (4) is satis�ed if λ2(z) =
λ0(z), λ1(z)

2 = 2 − λ0(z)
2
. The average value of (1) is

then[30, 33℄

E =
〈Ψ|H |Ψ〉

〈Ψ|Ψ〉
=

∑

R

UR

4
λ0(z)

2
(5)

−t
∑

<RR′>σ

R(z)R(z′) 〈Ψ0|c
†
RσcR′σ +H.c.|Ψ0〉,

where R(z) = λ0(R)
√

2− λ0(R)2 plays the role of a

wavefun
tion renormalization fa
tor. Its square is the

a
tual quasiparti
le weight, Z(z) = R2(z), sin
e quasi-

parti
le 
reation renormalizes into R(z) c†
Rσ in Fermi liq-

uid theory. One 
an invert this equation to express λ0(z)
as fun
tion of R(z), whi
h be
ome the a
tual variational

parameters together with the Slater determinant |Ψ0〉. In
order to minimize E in Eq. (5) we assume that the Slater

determinant |Ψ0〉 is built with single-parti
le wavefun
-

tions that, be
ause of the slab geometry, have the general

expression φǫk||
(R) =

√

1/A eik||·R φǫk||
(z), where A is

the number of sites per layer and k|| the momentum in

the x-y plane. The stationary value of E with respe
t to

variation of φǫk||
(z) and R(z) 
orresponds to the 
oupled

equations
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ǫ φǫk||
(z) = R(z)2 ǫk||

φǫk||
(z)− t R(z)

∑

p=±

R(z + p a)φǫk||
(z + p a), (6)

R(z) =
4
√

1−R(z)2

U(z)A

occupied
∑

ǫk||

[

− 2R(z) ǫk||
φǫk||

(z)2 + t φǫk||
(z)

∑

p=±

R(z + p a)φǫk||
(z + p a)

]

, (7)

Figure 1: (Color online) The quasiparti
le weight Z(z) =
R2(z) as fun
tion of the 
oordinate z perpendi
ular to the

surfa
e (in units of the latti
e spa
ing) for a 100-layer slab.

The intera
tion parameter at z = 0 is Us = 20t, while the

bulk U is 15.98t in the upper panel and 15t in the lower one

(while Uc =16). The insets show the behavior of Z 
lose to the

two surfa
es; the highest 
urve 
orresponding to the bulk-like

surfa
e, the other to Us = 20t.

where ǫk||
= −2t (cos kxa+ cos kya) and the sum in

Eq. (7) runs over all pairs of

(

ǫ,k||

)

that are o

u-

pied in the Slater determinant |Ψ0〉. The �rst equa-

tion has the form of a S
hr÷dinger equation that the

single-parti
le wavefun
tions φǫk||
(z) must satisfy, de-

pending parametri
ally on R(z). The se
ond equa-

tion has been intentionally 
ast in the form of a map

Rj+1(z) = F [Rj(z), Rj(z + a), Rj(z − a)] whose �xed

point we have veri�ed to 
oin
ide with the a
tual solution

of (7) in the parameter region of interest. Eqs. (6) and

(7) 
an be solved iteratively as follows. First solve the

S
hr÷dinger equation at �xed Rj(z); next �nd the new

Rj+1(z) using the old Rj(z) and the newly determined

wavefun
tions φǫk||
(z). With the new Rj+1(z), repeat

the above steps and iterate until 
onvergen
e. Be
ause

of the large number of variational parameters, this iter-

ative s
heme is mu
h more e�
ient than � while fully

equivalent to � a dire
t minimization of E, Eq. (5).

In Fig. 1 we plot Z(z) = R2(z), experimentally the to-

tal spe
tral weight 
arried by quasiparti
les, 
al
ulated

U = 15 t

U = 15.98 t

Figure 2: Quasiparti
le weight dependen
e on the distan
e z

from the surfa
e for two di�erent bulk U values and for two


ases: one where only the �rst layer has Us = 20 t > U (upper


urve in ea
h panel), the other where �ve surfa
e layers have

Us = 20 t.

as fun
tion of z (in units of the latti
e spa
ing a) for

Us = 20t, for two di�erent bulk values 15t and 15.98t of U
below the 
riti
al Mott-transition value Uc = 16t. Com-

ing from the bulk, the quasiparti
le weight Z(z) de
reases
monotoni
ally on approa
hing both surfa
es, where it at-

tains mu
h smaller values than in bulk. As expe
ted,

the more 
orrelated surfa
e has a smaller quasiparti
le

weight, Z(0) < Z(N). Note however that so long as the

slab interior (the �bulk�) remains metalli
, the surfa
e

quasiparti
le weight never vanishes no matter how large

Us[25℄. Mathemati
ally, this follows from Eq. (7), whi
h

is not satis�ed by 
hoosing R(0) = 0 while R(z > 0) 6= 0.
Physi
ally, some metalli
 
hara
ter 
an always tunnel

from the interior to the surfa
e, so long as the bulk is

metalli
. The quasiparti
le weight approa
hes the sur-

fa
e with upward 
urvature when U is 
losest to Uc, up-

per panel in Fig. 1, whereas the behavior is linear well be-

low Uc, as found earlier within linearized DMFT[25℄. We

note that an upward 
urvature is in better a

ord with

photoemission spe
tra of Rodolakis et al. on V2O3[34℄.

The 
urvature be
omes more manifest if the number of

surfa
e layers where Us > U is in
reased, as shown in

Fig. 2. Next, we analyse the dependen
e of R(z) at large
distan
e 1 << z << N/2 below the surfa
e. As Fig. 3

shows, we �nd no tra
e of a power law, and R is best �t

by an exponential R(z) = Rbulk+

(

Rsurf−Rbulk

)

e−z/λ
,

where Rbulk is the bulk value (a fun
tion of U only) and

Rsurf < Rbulk. Rsurf now depends on both U and on

Us, and vanishes only when Rbulk does at U > Uc. A de-

tailed study by varying U and Us shows that the surfa
e
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Figure 3: Log s
ale plot of Rbulk − R(z) versus z for U =
15.99, Us = 20t and for di�erent thi
knesses of the slab N =
60, 100, 200, 400.

�dead layer� thi
kness λ depends only on bulk properties

and diverges at the Mott transition as λ ∝ (Uc − U)
−ν

.

Numeri
ally we �nd ν = 0.53± 0.3 ≃ 0.5, a typi
al mean

�eld exponent[28℄. The same 
on
lusion 
an a
tually be

drawn by analysing Eqs. (6) and (7) deep inside the bulk.

We note that the pre
ise behavior at the outermost sur-

fa
e layers would in a real system depend on details, su
h

as la
k of ele
tron-hole symmetry and/or surfa
e dipoles,

not in
luded in our model. However, we believe that the

exponential behavior and its divergen
e at a 
ontinuous

Mott transition should be generi
 and universal, and thus

independent of these and other details. In 
on
lusion, we

have shown in a simple approximation the existen
e in

the Hubbard model of strongly 
orrelated metals of a

�dead layer� below the 
rystal surfa
e. Within this layer

� whose depth is a bulk property and not a surfa
e prop-

erty of the metal � the quasiparti
le weight de
ays ex-

ponentially on approa
hing the surfa
e. The dead layer

thi
kness λ inversely depends on the distan
e in parame-

ter spa
e to the bulk 
ontinuous Mott transition, where it

diverges 
riti
ally. The physi
al signi�
an
e of λ is that

of a 
orrelation length of the bulk metalli
 state, where

the quasiparti
le weight a
ts as an order parameter, 
rit-

i
ally vanishing at a 
ontinuous Mott transition. Like

other features of the Hubbard model, this result should

we believe 
arry over to real systems with an ideal Mott

transition, not obs
ured by e.g., symmetry breaking phe-

nomena like magneti
 order, provided that the 
riti
al

region is not preempted by a strong �rst order jump,

like that in the α-γ transition of Ce. It 
ould therefore

apply to high temperature V2O3 near the paramagneti


metal-insulator weakly �rst order line, notwithstanding


ompli
ations in
luding orbital degenera
y, Hund's rules,

and 
oupling to the latti
e (see e.g. Ref.[35℄ and refer-

en
es therein). We thus expe
t a surfa
e dead layer in

the metal phase of V2O3 , with thi
kness in
reasing (al-

though not diverging be
ause of the �rst order transi-

tion) on approa
hing the Mott transition line. The asso-


iated paper by Rodolakis et al. reports photoemission

eviden
e whi
h lends some support to this pi
ture. It is

also interesting to note that an anomalously thi
k sub-

surfa
e dead layer has long been observed in mixed valent

YbInCu4[36℄, with a depth not smaller that 60Å[37℄.
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ussions whi
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study. E.T. gratefully a
knowledges the Laboratoire de

Physique des Solides and the Université Paris-Sud for

hospitality during the period where this work began.
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