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Abstract
Quantum Annealing (QA) relies on mixing two Hamiltonian terms, a simple driver and a complex
problem Hamiltonian, in a linear combination. The time-dependent schedule for this mixing is
often taken to be linear in time: improving on this linear choice is known to be essential and has
proven to be difficult. Here, we present different techniques for improving on the linear-schedule
QA along two directions, conceptually distinct but leading to similar outcomes: 1) the first
approach consists of constructing a Trotter-digitized QA (dQA) with schedules parameterized in
terms of Fourier modes or Chebyshev polynomials, inspired by the Chopped Random Basis
algorithm for optimal control in continuous time; 2) the second approach is technically a
Quantum Approximate Optimization Algorithm (QAOA), whose solutions are found iteratively
using linear interpolation or expansion in Fourier modes. Both approaches emphasize finding
smooth optimal schedule parameters, ultimately leading to hybrid quantum–classical variational
algorithms of the alternating Hamiltonian Ansatz type. We apply these techniques to MaxCut
problems on weighted 3-regular graphs with N = 14 sites, focusing on hard instances that exhibit a
small spectral gap, for which a standard linear-schedule QA performs poorly. We characterize the
physics behind the optimal protocols for both the dQA and QAOA approaches, discovering
shortcuts to adiabaticity-like dynamics. Furthermore, we study the transferability of such smooth
solutions among hard instances of MaxCut at different circuit depths. Finally, we show that the
smoothness pattern of these protocols obtained in a digital setting enables us to adapt them to
continuous-time evolution, contrarily to generic non-smooth solutions. This procedure results in
an optimized QA schedule that is implementable on analog devices.

1. Introduction

The steady advances of quantum computing and quantum technologies sparked great interest in exploring
applications to problems that might be out-of-reach for classical devices [1]. This interest extends across
various fields, including the simulation of quantum systems, quantum chemistry, and classical optimization
problems [2, 3]. While state-of-the-art quantum devices may still lack the required computational power to
surpass their classical counterparts and provide ground-breaking contributions to these interdisciplinary
problems [4, 5], it is crucial to carefully design quantum algorithms to optimally exploit the available
computational resources.

Quantum annealing (QA) [6–9] offers an approach for addressing these challenges by exploiting
adiabatic dynamics. In the standard framework, an interpolating Hamiltonian Ĥ(t) = (t/τ)Ĥtarg+
(1− t/τ)Ĥdrive is constructed, and the (allegedly) unitary Schrödinger evolution of the state |ψ(t)⟩ is followed
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from time t= 0 — where the ground state |ψ0⟩ of Ĥdrive is easy to prepare—to some suitably large annealing
time τ , with the goal of reaching the target ground state |ψtarg⟩ of Ĥtarg. If τ is larger than the timescale set by
the square of the inverse gap between the ground and first excited state, then the transition amplitude
between these two states is suppressed, and the system follows the instantaneous ground state for the whole
dynamics, finally reaching the target ground state.

In this flavor, which we shall dub linear-schedule QA, it remains unclear whether actual quantum
speed-up [10] should be expected. A notable example is provided by the provable quadratic speedup for the
Grover search problem [11, 12]. As pointed out long ago by Roland & Cerf [13], a linear-schedule QA of the
Grover problem would suffer from the instantaneous gap∆ closing as∆∼ 1/

√
Ns —where Ns = 2N is the

Hilbert space dimension for N qubits; this fact, together with the standard Landau–Zener [14] mechanism
predicting that τ ∝ 1/∆2, results in a total annealing time scaling as τ ∝ Ns. On the contrary, an appropriate
tailoring of the schedule s(t) in the interpolating Hamiltonian Ĥ(s(t)) = s(t)Ĥtarg +(1− s(t))Ĥdrive results in
the quadratic Grover speed-up, with τ ∝ 1/∆=

√
Ns. This example clearly shows that an improvement over

a linear schedule s(t) = t/τ can be essential to achieve quantum speed-up, whenever possible. How to do that
is a complicated issue, which we will partly address in the present paper.

On a broader perspective, there is a large body of literature showing that QA faces strong limitations in
the presence of exponentially small energy gaps, which can result in exponentially increasing annealing times
with system size [15–18]. Various techniques have been proposed to overcome this limitation within the
paradigm of continuous-time Schrödinger evolution, for instance employing the toolbox of quantum control
(QC) [19].

A general strategy would be to perform a state-dependent Shortcut to Adiabaticity (STA) [20], literally a
‘fast route’ to the ground state of the final target Hamiltonian in a shorter time τ , as compared to a slow QA
(adiabatic) evolution. A specific STA technique, known as transitionless or counter-diabatic driving [21, 22],
involves adding selected terms to the time-evolving Hamiltonian, which are designed to suppress transitions
out of the instantaneous ground state. However, exact implementations of this scheme are difficult in
many-body systems, as they require hard-to-devise non-local terms. Variational approaches have been
introduced [23–30] to overcome these difficulties.

Other techniques have been specifically introduced within the field of Adiabatic Quantum
Computation [9], including the addition of waiting times (pauses) in the schedule [31], reverse QA [32], or
the introduction of Hamiltonian terms that transform the nature of the critical points encountered during
the evolution, from 1st to 2nd order [33].

Various methods of QC appear particularly well-suited for achieving a ground-state STA, notably the
Chopped RAndom Basis (CRAB) algorithm [34, 35] and follow-up developments [36, 37]. In CRAB, the
various control functions are expanded in terms of a finite basis set of functions, usually a Fourier basis—but
polynomials have also been used [38] —, hence transforming the functional minimization problem into a
finite-dimensional optimization. Alternatively, a linear piece-wise decomposition of the schedule between a
series of randomly chosen points has been explored [39] to optimize a frustrated Ising ring model [17],
which shows an exponentially small gap in the excitation spectrum, thereby posing severe difficulties for QA.

Parallel developments in the field of Variational Quantum Algorithms (VQA) have approached the
problem from the alternative perspective of a digitized quantum evolution [40], whereby a series of different
unitary operators are applied to the initial simple-to-construct state |ψ0⟩. These approaches include the
Quantum Approximate Optimization Algorithm (QAOA) [41], originally introduced as an alternative to QA
for classical optimization problems, and the Variational Quantum Eigensolver (VQE) [42], specifically
aiming at solving quantum chemistry problems and, more generally, quantum ground state preparation.
These digitized techniques offer the practical advantage of a native digital setting that is well adapted to
universal gate-based [43] quantum computing hardware, and encompass a large class of hybrid
quantum–classical algorithms [44–46].

Yet, the trade-off between the expressivity and the trainability of parameterized quantum circuits remains
a substantial challenge for the practical implementation of this framework on real quantum devices [47, 48].
On top of the presence of statistical and physical noise, the optimization landscape of non-trivial (or
classically-simulable) parameterized quantum circuits is affected by the presence of low-quality local
minima [48] and vanishing gradients (barren plateaus) [49–51]. Several approaches to limit or avoid barren
plateaus have been proposed and applied to specific tasks [52–58]. At the same time, developing smart
initializations [59] or iterative optimization schemes [60] may prove essential to successfully train a VQA.

Quantum optimal control techniques may help, in this digital framework, to single out optimal or
nearly-optimal variational parameters that are smooth functions of the layer index, which have been
observed in several works [60–67]. Such smooth optimal solutions exhibit notable properties and have
proved effective in avoiding local minima [60] and circumventing barren plateaus [57]. Remarkably, it has
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been empirically demonstrated [57, 66] that this class of solutions is transferable across different problem
sizes, from small to large, for the quantum many-body ground state preparation at any point of the phase
diagram, highlighting their versatility and practical applicability in hybrid quantum–classical computing.

In this paper, we utilize established quantum optimal control methods to systematically generate smooth
optimal solutions for combinatorial optimization problems. For definiteness, our focus is on MaxCut
instances of weighted 3-regular graphs, i.e. graphs where each vertex has exactly three neighbors. However,
our techniques can be generalized to more complicated graph structures or even to other combinatorial
optimization problems. In particular, we select hard MaxCut instances characterized by a small energy gap, a
regime in which standard linear-scheduleQA is expected to yield poor performance. The rationale behind this
choice is that a closing gap is expected to occur in most real-world use cases of NP-hard classical optimization
problems tackled with QA, especially for growing system size [16]. As our results do not depend explicitly on
the regularity properties of the graphs, we expect similar outcomes for regular graphs of different degree.

We characterize the dynamics implemented by such smooth and optimal parameters, unveiling the
non-adiabatic mechanism that enables these techniques to outperform adiabatic protocols. Additionally, we
observe promising transferability results across different hard 3-regular instances with the same number of
vertices.

Although these techniques are applied in a discrete-time setting, making them suitable for digital devices,
we demonstrate that smooth solutions can be effectively transferred to analog devices with comparable
performance. This highlights the adaptability of smooth solutions for continuous-time QA, yielding an
optimized problem-dependent schedule s(t), thereby broadening their range of applicability across different
quantum computing platforms.

The paper is structured as follows. In section 2 we present the different methods we implemented to
generate smooth solutions. In section 3 we describe the MaxCut problem and the procedure utilized to single
out hard instances. In section 4 we present our results, and we draw a comparison among the different
techniques and their performance. We characterize the non-adiabatic mechanism associated with smooth
solutions and prove transferability among different hard instances. Finally, we implement these smooth
solutions in a continuous-time evolution framework, showing their suitability for analog quantum devices.
In section 5 we summarize the significance of our results and discuss possible future work.

2. FromQA to variational quantum algorithms

2.1. QA and optimal control
This section provides a concise summary of QA and quantum optimal control, focusing on a digitized
version of the quantum dynamics. We implemented an algorithm based on efficient matrix-vector
multiplication between digital evolution operators and states written in the computational basis. This allows
us to solve numerically the digital Schrödinger equation [68] and to compute the relevant observables.

In the standard formulation of QA, also implemented on analog quantum devices [69], the interpolating
Hamiltonian is Ĥ(s(t)) = s(t)Ĥtarg +(1− s(t))Ĥx. Here, Ĥtarg represents the target (or problem) Hamiltonian,
whose ground state is the desired outcome—typically formulated using spin-1/2 Pauli operators. Conversely,
the driver Ĥx acts as a non-commuting operator that introduces quantum fluctuations, often exemplified by
a transverse field term of the form Ĥx =−Γ0

∑
j σ̂

x
j . Ideally, QA relies on an adiabatic Schrödinger

dynamics [9] by slowly increasing s(t) from s(0) = 0 to s(τ) = 1 in a large total annealing time τ . This
dynamics starts from the trivial ground state of Ĥx, which we dub |Ψ0⟩, and following the instantaneous
ground state of Ĥ(s) would eventually lead to the target ground state. However, a critical challenge arises
from the necessity of exceedingly large annealing times τ that are required to adiabatically follow the
instantaneous ground state of Ĥ(s), especially when the system crosses a critical point or a first-order phase
transition [18] at some intermediate value sc, which is generally unknown. Adapting the schedule s(t) so as to
slow down in the proximity of sc is also generally unfeasible [70], so that one usually adopts a linear schedule
s(t) = t/τ , pushing τ to large values.

An optimal control problem can be similarly formulated. Let us assume, for definiteness, that we are
dealing with a classical optimization problem, mapped onto a diagonal Ĥtarg = Ĥz, which is simply built from
σ̂z operators. Although this formulation includes non-local models [71], we shall restrict our numerics to
MaxCut. The system follows a unitary Schrödinger dynamics

ih̄
d

dt
|Ψ(t)⟩= Ĥ(t) |Ψ(t)⟩ , (1)

3
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with a time-dependent Hamiltonian of the interpolating form

Ĥ(t) = Az (t) Ĥz +Ax (t) Ĥx , (2)

where we impose the boundary conditions Az(0) = 0, Ax(τ) = 0, and Az(τ)> 0. The goal is to determine the
optimal form of the two driving fields Az(t) and Ax(t) such that the variational energy

Efin (τ) = ⟨Ψ(τ) |Ĥz|Ψ(τ)⟩ (3)

isminimal. This optimal control problem can be formulated either for a predetermined total time τ , or by
including the optimization of τ itself as part of the task.

Such a functional minimization is generally intractable. To simplify it, we transform it into a
finite-dimensionalminimization by using the so-called CRAB algorithm [34–36, 72], i.e. we expand the fields
in terms of a selected discrete set of Nc basis functions {fn(t)}:

Ax (t) =
(
1− t

τ

)(
1+

Nc∑
n=1

Cx
n fn (t)

)

Az (t) =
t

τ

(
1+

Nc∑
n=1

Cz
n fn (t)

) . (4)

Notice that the fields automatically satisfy the two constraints Az(0) = 0 and Ax(τ) = 0, and reduce to the

linear schedule QA form, i.e. Az(t) = s(t) = t/τ and Ax(t) = 1− s(t), if all the expansion coefficients Cx/z
n are

set to zero. Concerning the basis functions, a common choice is given by Fourier modes. Here we take:

fn (t) = sin(ωnt) ωn =
πn

τ
(1+ rn) , (5)

where rn ∈ [− 1
2 ,

1
2 ] is a random number, introducing a multiplicative noise in the frequencies, which is useful

to improve the expressive power of this finite-dimensional Ansatz [34]. We dub this choice F-CRAB, where F
stands for Fourier. We have verified empirically that this works better than an additive noise
ωn = (π/τ)(n+ rn).

An alternative option consists of using

fn (t) = cos(n(1+ rn)arccos(t/τ)) , (6)

where rn ∈ [− 1
2 ,

1
2 ] is again a random number. For rn = 0, these functions coincide with the Chebyshev

polynomials of the first kind Tn(t/τ), while for rn ̸= 0 they are natural extensions of polynomials with
non-integer powers [73–75], often known as signomials. We refer to this choice as C-CRAB.

In both variants of the CRAB algorithm, the variational energy in equation (3) is optimized with respect

to the set of 2Nc expansion coefficients Cx/z
n . Instead of repeatedly performing multiple local optimizations

on the same energy landscape from various starting points, the strategy involves generating a new landscape
each time. This is achieved by selecting a different set of random frequencies [34].

To classically simulate the quantum dynamics in equation (1), a time-discretization is necessary: the
continuous-time dynamics is discretized by introducing a finite—in principle, sufficiently small—time-step,
denoted as∆t = τ/P. We define an associated time grid tm = (m− 1

2 )∆t, withm= 1 · · ·P, at which we

evaluate the fields, setting Ax/z
m = Ax/z(tm). We then approximate the fields as constant in each interval

[tm −∆t/2, tm +∆t/2]. The ensuing evolution operator over a time-step∆t is further approximated with a
first-order Trotter splitting:

e−i(θx
mĤx+θz

mĤz) ≈ e−iθx
mĤxe−iθz

mĤz def
= Û(θxm,θ

z
m) , (7)

where we defined (by setting h̄= 1)
θxm =∆tAx

m =
P−(m− 1

2 )
P ∆t

(
1+

Nc∑
n=1

Cx
nfn (tm)

)

θzm =∆tAz
m =

(m− 1
2 )

P ∆t

(
1+

Nc∑
n=1

Cz
nfn (tm)

) . (8)
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The time-discretized and Trotter-split Schrödinger evolution results in a digitized dynamics leading to the
final state

|ΨdQA

P (θ)⟩= Û(θxP,θ
z
P) · · · Û(θx1,θ

z
1) |Ψ0⟩ , (9)

where θ = (θx,θz). Note that θx = (θx1 · · ·θxP) and θz = (θz1 · · ·θzP) are both P-dimensional vectors, each
depending on the Nc expansion coefficients Cx = (Cx

1 · · ·Cx
Nc
) and Cz = (Cz

1 · · ·Cz
Nc
), respectively. Albeit we

denote this state with the apex dQA, an acronym for digitized QA [40, 76], this is actually a digitized version
of a generic optimal control dynamics, reducing to the linear-schedule digitized-QA of reference [76] only

when all the expansion coefficients Cx/z
n vanish.

Previous evidence on linear-schedule dQA [76] showed that even a first-order Trotter splitting is
adequate up to values of∆t of order 1. In principle, the order of the Trotter approximation could be
increased by utilizing, e.g. a second or fourth-order expansion. However, the focus here relies on the
optimization of the variational parameters in the digitized state rather than on approximating a prescribed
continuous-time evolution. Therefore, we keep the form of the state in Equations (7)-(9), since improving
the Trotter order would lead to the same alternating Ansatz structure [77], only at a higher depth.

Finally, to enlarge the variational manifold, it would be beneficial to include the time-step∆t as an
additional variational parameter. To keep a linear dependence of the angles in equation (8) on the set of
variational parameters, we rather fix∆t = 1, and introduce a new free parameter C0 as follows:

θxm =
P−

(
m− 1

2

)
P

(
C0 +

Nc∑
n=1

Cx
nfn (tm)

)

θzm =

(
m− 1

2

)
P

(
C0 +

Nc∑
n=1

Cz
nfn (tm)

) . (10)

This approach leads to a digitized version of quantum optimal control without a constraint on the time-step
∆t, while preserving the linear dependence of the angles on the variational parameters. Indeed, an optimal
protocol characterized by the 2Nc + 1 variational parameters C= (C0,C

x,Cz) is equivalent to the digitized
state with angles in equation (8), by identifying C0 with∆t and rescaling the other 2Nc parameters by its
value.

The variational energy for this digital optimal control problem is given by:

EdQA

P (C) = ⟨ΨdQA

P (θ) |Ĥz|ΨdQA

P (θ)⟩ , (11)

where the 2P parameters θ = (θx,θz) are regarded as functions of the 2Nc + 1 coefficients C= (C0,C
x,Cz).

Besides the clear benefit of digitization, which is the lower computational cost of a time-evolution in a
classical simulation, the digitized dynamics for a two-body Ĥz admits a standard decomposition into
elementary one- and two-qubit gates, amenable to direct implementation on gate-based devices [40]. As an
important side benefit, we can calculate analytically the gradients of the variational energy with respect to the
variational parameters C [78, 79], see appendix. A for details, hence allowing for faster gradient-based
optimization routines. If C∗ denotes the (local or global) optimal parameters found, the corresponding
variational energy is given by:

EfinP = EdQA

P (C∗) . (12)

Our practical implementation of the F-CRAB algorithm relies on an iterative procedure that is
particularly effective in obtaining smooth solutions. In operational terms, these are characterized by a regular
smooth pattern of each of the two optimal vectors (θx1 · · ·θxP) and (θz1 · · ·θzP), when plotted vs the layer index
m= 1 · · ·P. The rationale behind the implementation of an iterative scheme is that a direct optimization of
2Nc + 1 coefficients often gets trapped in a low-quality local minimum for large Nc. Even when optimal or
nearly-optimal solutions are found, these are characterized by irregular non-smooth behavior, namely
exhibiting sharp variations for a small increase ofm.

To address this issue, we start by optimizing the Nc = 2 case. By following the CRAB prescription, the
Nc = 2 frequencies are randomly generated for nr times, a new optimization of the 2Nc + 1= 5 coefficients is
performed for each realization, and the best result in terms of variational energy is selected. Then, we
optimize the cases N ′

c > Nc according to the following procedure. We use the optimal 2Nc + 1 parameters
obtained in the previous iteration as a warm start for the optimization of the new 2N ′

c + 1 coefficients,
initializing the remaining 2(N ′

c −Nc) coefficients to zero. Crucially, at each iterative step, the old Nc

5
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frequencies are kept fixed, whereas the new N ′
c −Nc frequencies are once again randomly generated for nr

times, selecting the optimal outcome with minimal variational energy.
We iterate this procedure, increasing the number of frequencies up toNc = P/2. We choose this threshold

as for Nc > P/2 we do not observe any significant performance improvement, compared with the increase of
computational cost. This iterative optimization involves a computational overhead; however, for large P, it
turns out to be sufficient to increase Nc in steps of 10 in order to obtain smooth optimal curves.

The occurrence of irregular solutions in a direct optimization for F-CRAB can be intuitively understood
by considering that, for large Nc, the Fourier expansion involves high-frequency modes that may induce fast
oscillations in the optimal parameters θ. Nevertheless, limiting the expansion to low-frequency modes does
not empirically guarantee a good performance in terms of variational energy. The relation between irregular
and smooth solutions is analyzed in greater detail in section 4.4.

Such an iterative procedure, as it turns out, is not needed for C-CRAB. Indeed, this method provides
high-quality smooth curves without any need for a warm-start: for each value of P and of Nc, we set a linear
dQA initial condition for the optimization, i.e. C0 = 1 and Cx = Cz = 0. This difference can be explained by
noting that the Chebyshev polynomials of degree n oscillate slower compared to the nth Fourier modes.

2.2. QAOA
The previous approach to the optimal control problem leads to a form of the variational state which is
identical to that of the Quantum Approximate Optimization Algorithm (QAOA) by Farhi et al [41]. The
QAOA state is expressed as:

|ΨQAOA

P (θ)⟩= Û(θxP,θ
z
P) · · · Û(θx1,θ

z
1) |Ψ0⟩ , (13)

where, again,

Û(θxm,θ
z
m) = e−iθx

mĤx e−iθz
mĤz . (14)

The difference is that, here, θ are interpreted as 2P free variational parameters, without any explicit reference
to time-dependent smooth control fields. Although the form of the state in equation (13) is identical to that
of the digitized optimal control state in equation (9), the idea behind the two approaches is, in principle,
different: the first strategy is based on the optimization of the expansion coefficients over a truncated basis of
smooth driving fields, while the QAOA strategy is, in principle, agnostic of any smoothness property of
optimal solutions. Nonetheless, smooth optimal solutions have been observed in the QAOA framework in
several case studies [57, 60–67, 80]. Here, the variational energy is defined as:

EQAOA

P (θ) = ⟨ΨQAOA

P (θ) |Ĥz|ΨQAOA

P (θ)⟩ , (15)

and if θ∗ denotes a (local or global) optimal solution, then the variational energy is given by:

EfinP = EQAOA

P (θ∗) . (16)

The minimization of this cost function is, in general, a highly non-trivial task since random-start local
optimization routines tend to get trapped into one of the many local minima of the 2P-dimensional search
space [48]. Moreover, most of this landscape is plagued by the phenomenon of barren plateaus [49], whereby
the gradients of the function to be minimized are exponentially small in the number of qubits.

Notice that digitized CRAB not only biases the search towards smooth solutions but also effectively
explores a restricted portion of the QAOA energy landscape. Combined with an iterative procedure such as
the one described for F-CRAB, digitized optimal control methods represent an effective way to optimize the
QAOA variational parameters. Previous research on QAOA proposed alternative iterative methods to cope
with the difficulties of an unfavorable optimization landscape, which are briefly reviewed below and
compared to CRAB in section 4.1.

2.2.1. Interpolation schemes
INTERP. One natural strategy is to proceed iteratively from a lower-Pminimum to larger P ′, for instance
P ′ = P+ 1, by appropriate interpolation of the known solution. More in detail, suppose that θ(∗,P) is a
previously determined (local or global) optimal schedule. Then, we can construct a candidate solution for
(P+ 1) with the following procedure. Define an initial 2(P+ 1)-dimensional vector θ(0,P+1) as follows (the
same expression applies both to θxm and θzm, hence we omit indicating the label x/z):

θ(0,P+1)
m =

m− 1

P
θ
(∗,P)
m−1 +

P−m+ 1

P
θ(∗,P)m , (17)

6
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wherem= 1, · · · ,P+ 1. Notice that, although in principle referenced in the foitula, θ(∗,P)0 and θ(∗,P)P+1 are

always multiplied by zero, hence they are irrelevant. In particular, θ(0,P+1)
1 = θ

(∗,P)
1 and θ(0,P+1)

P+1 = θ
(∗,P)
P . The

candidate solution θ(0,P+1) is utilized as a warm start for a local gradient-based optimization, yielding the
optimal θ(∗,P+1). This strategy was introduced in reference [60] and dubbed INTERP. In practice, it can be
applied starting e.g. from P= 2, and iterating the algorithm for increasing P= 3,4, · · · up to the desired final
value of Pmax. Alternatively, it can be slightly modified to allow for P ′ = P+∆P, with∆P> 1.
LogINTERP. An alternative construction, introduced in reference [61], proceeds by doubling P,

specifically by using an optimal solution at depth P to seed the optimization for depth 2P. We apply it in two
variants, each adapted to different boundary conditions for θz and θx.

Whenever the parameters are likely bound to vanish at the initial time-step, as for θz, we take as an initial
guess:  θ

(0,2P)
2m = θ

(∗,P)
m m= 1 · · ·P

θ
(0,2P)
2m−1 =

1
2

(
θ
(∗,P)
m−1 + θ

(∗,P)
m

)
m= 1 · · ·P

, (18)

where the boundary condition θ(∗,P)0 = 0 should be used. Alternatively, when the vanishing boundary
condition is at the final time-step, as for θx, we take as initial guess: θ

(0,2P)
2m−1 = θ

(∗,P)
m m= 1 · · ·P

θ
(0,2P)
2m = 1

2

(
θ
(∗,P)
m + θ

(∗,P)
m+1

)
m= 1 · · ·P

, (19)

where the boundary condition θ(∗,P)P+1 = 0 should be used. These qualitative features in the boundary
conditions for the optimal angles have been observed in QAOA-like numerics for a breadth of different
tasks [60, 65, 66, 81–84]. The optimal θ(∗,2P) is found by applying a local gradient-based optimization
starting from the guess θ(0,2P).

2.2.2. Fourier-based schemes
FOURIER. A strategy based on expansion in Fourier modes was introduced in reference [60], denoted as
FOURIER. It is based on the following parameterization:

θzm =

Nc∑
n=1

Cz
n sin

((
n− 1

2

)(
m− 1

2

)
π
P

)
θxm =

Nc∑
n=1

Cx
n cos

((
n− 1

2

)(
m− 1

2

)
π
P

) . (20)

Observe the similarities with the F-CRAB approach we discussed previously. Note, however, the absence of a
linear dQA-like term multiplying the Fourier decomposition, and also the fact that the Fourier frequencies
are fixed, and randomness is only used in searching for the optimal coefficients. Different variants of this
strategy postulate how the final required Pmax is reached starting from lower values, and how many Fourier
modes are allowed, either Nc = P, or a fixed predetermined value of Nc < P. Details are given in the original
reference [60], and summarized in App. B for convenience.

3. The maxcut problem

The MaxCut problem is a classical combinatorial problem in the NP-complete complexity class. It is defined
on a graph G of N vertices, with edges denoted as E . We consider weighted graphs, i.e. each edge ( j j ′) ∈ E is
associated to a weight Jjj′ randomly drawn in the interval [0,1] with uniform distribution. The goal is to find
a path which cuts the largest possible number of edges (more precisely, the largest sum of weights Jjj′) so that
the graph G is partitioned into two subgraphs. One way to proceed is to assign to each vertex a spin ↑ or ↓,
and cut the edges that link two vertices with different spin. In this way, we can reformulate the problem in
terms of the ground state search of an antiferromagnetic spin Hamiltonian

Ĥtarg = Ĥz =
1

2

∑
( j j ′)∈E

Jjj′
(
σ̂z
j σ̂

z
j′ − 1

)
, (21)
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Figure 1. A specific MaxCut instance with N= 14 vertices considered in our work. The red and the blue colors indicate the two
optimal partitions that solve the MaxCut problem. This instance has been examined in full detail also in reference [60], proving
particularly difficult for a linear-schedule QA approach due to a very small minimum gap.

Figure 2. Low-energy spectrum of the annealing Hamiltonian sĤz +(1− s)Ĥx as a function of s= t/τ , for the MaxCut instance
1. In the inset, we zoom on the closing gap, which is of order 10−3.

where each term in the sum has been rescaled and shifted to let the ground state energy coincide with
(minus) the maximum number of cut edges (for the unweighted case with Jjj′ = 1). The maximum energy is
Emax = 0, associated with the configuration where all the spins are identical (ferromagnetic state).

Figure 1 illustrates a specific MaxCut instance, previously analyzed in reference [60]. This instance is
particularly hard for a linear-schedule QA approach, as one quickly discovers by plotting the instantaneous
spectrum of the annealing Hamiltonian Ĥ(s) = sĤz +(1− s)Ĥx with s= t/τ , as shown in figure 2. In our
work, we focus on a set of similarly hard instances of the MaxCut problem with N = 14 vertices. To select
hard instances, we first generate several random 3−regular weighted graphs and compute the instantaneous
spectrum of the linear annealing Hamiltonian. In figure 3 we show the normalized cumulative distribution
of the minimum gaps for 100 random instances. We define as hard the instances having a minimum gap
∆min of the order∼ 10−3.

Since linear QA is not expected to solve these instances without resorting to very large values of the
annealing time τ , a MaxCut optimal solution may be obtained more effectively by employing the quantum
algorithms introduced in section 2. We tested our methods on a total of 10 hard instances.

As a figure of merit for the effectiveness of our techniques, we will mostly use the residual energy, defined
as a rescaled version of the variational energy in equations (12) and (16):

ϵresP =
EfinP − Emin

Emax − Emin
, (22)

where Emin and Emax are the minimum (ground-state) and maximum energy of the problem Hamiltonian in
equation (21). A traditional figure of merit used in the MaxCut literature [60] is r= EfinP /Emin. Notice that
Emin < 0 and 0< r< 1, with r approaching 1 as the solution improves. The two quantities are related as
1− r= ϵres since Emax = 0 when Jij > 0 (ferromagnetic state).
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Figure 3. Cumulative distribution of the minimum gaps of the annealing Hamiltonian for 100 weighted 3−regular graphs of
N= 14 vertices. A vertical dashed line indicates the small minimum gap for instance 1: similarly hard instances are selected for
our numerics. To compute the gap, we considered a linear annealing schedule.

An alternative figure of merit is the fidelity [43] between the final (optimal) state |ΨP⟩, and the exact
ground state of Ĥtarg:

F = |⟨Ψgs|ΨP⟩|2 . (23)

In principle, very good solutions in terms of residual energy ϵresP might have low fidelity, if the lowest excited
states of the target Hamiltonian are very close in energy to the ground state. In the context of the MaxCut
problems under consideration, we note that the infidelity, expressed as 1−F , gives results that are
qualitatively consistent with the residual energy ϵresP for all the methods investigated.

4. Results

4.1. Comparison of different methods
In this section, we compare the performance of the different methods illustrated in section 2. These include
dQA with a linear schedule (dQA-LIN) or using Fourier- or Chebyshev-based CRAB (dQA-F-CRAB,
dQA-C-CRAB) and QAOA-based techniques, in particular QAOA-INTERP, QAOA-LogINTERP, and
QAOA-FOURIER. For ease of presentation, we show results focusing on the instance 1 depicted in figure 1,
the main one considered also in reference [60]. We verified that our results are valid for all the other hard
instances analyzed (See appendix D for further analysis).

In figure 4, we compare residual energy and infidelity values obtained using the different methods. One
immediately observes that, for shallow circuits, P⩽ 20, all methods behave roughly in the same way. For
larger values of P, two methods get trapped into some kind of plateau: dQA-LIN and QAOA-INTERP.
Indeed, due to the small value of the minimum gap of the selected instance, the performance of a
linear-schedule digitized QA (dQA-LIN) is rather poor. Perhaps surprisingly, a similar saturation occurs for
QAOA-INTERP [60]. On the contrary, the two CRAB-based dQA, as well as QAOA-LogINTERP and
QAOA-FOURIER perform much better, as witnessed by decreasing values of ϵresP and infidelity 1−F , for
increasingly larger P. These methods show similar performance, and all provide smooth optimal schedules,
as shown in figure 5.

To conclude this section, we comment on the different performances of QAOA-INTERP and
QAOA-LogINTERP. In both methods, the initial guess for the gradient-based optimization routine at depth
P ′ > P is close to the optimal parameters from the previous iteration at depth P. However, for
QAOA-INTERP, since P ′ = P+ 1, only two points are added to the previous optimal solution θ∗,P: This does
not allow to perturb the previous sub-optimal solution enough to escape from the local minima encountered
at depth P. In contrast, for QAOA-LogINTERP, P ′ = 2P, and the number of parameters to optimize increases
by a factor of 2. This enables the gradient descent routine to explore more directions in parameter space,
making it easier to escape from local minima and to improve the quality of the solution.

9
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Figure 4. Residual energies (top) and infidelity (bottom) as a function of P for the instance 1 and for different methods. Lines are
guide to the eye. Infidelity and residual energy behave consistently. We see that digitized linear-schedule Quantum Annealing
(dQA-LIN), and QAOA-INTERP get stuck in a local minimum for large P. The four methods that perform better are
dQA-F-CRAB, dQA-C-CRAB, QAOA-FOURIER and QAOA-LogINTERP.

4.2. Eigenstate population and shortcut to adiabaticity
Here, we analyze the details of the dynamics implemented by the different methods presented above. In order
to describe the time evolution of the system, we introduce an effective Hamiltonian that generates the digital
dynamics:

Û(θxm,θ
z
m) = e−iθx

mĤx e−iθz
mĤz ≡ e−iĤeff

m . (24)

The effective Hamiltonian Ĥeff
m can be expressed in terms of Ĥx, Ĥz and their nested commutators, using the

Baker–Campbell–Hausdorff (BCH) formula:

Ĥeff
m = θxmĤx + θzmĤz −

i

2
θxmθ

z
m

[
Ĥx,Ĥz

]
+

1

12
(θxm)

2
θzm
[
Ĥx,
[
Ĥx,Ĥz

]]
− 1

12
θxm (θ

z
m)

2 [Ĥz,
[
Ĥx,Ĥz

]]
+ · · · .

(25)

We will truncate the previous equation to the third order—i.e. to the terms shown—and perform exact
diagonalization to obtain, at each time stepm, the instantaneous eigenvectors of Ĥeff

m . The choice of the
truncation order is justified by the fact that including higher order in equation (25) does not significantly
affect the values of the observables we computed.

Clearly, each protocol is characterized by a different effective Hamiltonian. The population of the jth
instantaneous effective eigenstate |ϕj

m⟩ is defined as:

pj (m) = |⟨ϕj
m|Ψm⟩|2, (26)

where, for each method, the state of the system at time stepm reads:

|Ψm⟩= Û(θxm,θ
z
m) · · · Û(θx1,θ

z
1) |Ψ0⟩ . (27)
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Figure 5. Optimal parameters obtained with different methods for instance 1 and P= 64. For C-CRAB, F-CRAB, and FOURIER,
the number of functional coefficients is Nc = P/2= 32.

Figure 6. Population of the instantaneous ground state and of the first two excited states as a function of the indexm for the
instance 1 as obtained using dQA-LIN. The vertical dashed line indicates where Ĥeff

m attains its minimum spectral gap. The
optimal time step for dQA-LIN is∆∗

t = 0.78. The adiabatic protocol implemented by dQA-LIN fails to largely populate the
ground state after the minimum gap.

In figure 6, we focus on dQA-LIN, and we show the first three instantaneous eigenstate populations pj(m)
for j = 0,1,2. Evidently, the system attempts to follow an adiabatic dynamics, maintaining a very high
population p0(m) for the instantaneous ground state until a small instantaneous gap is encountered: here,
the system undergoes a population inversion between the instantaneous ground state and the first excited

11
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Figure 7. Population of the instantaneous ground state and of the first two excited states as a function of the indexm for the
instance 1. We consider the same data as in figure 5. The vertical dashed lines indicate where the corresponding Ĥeff

m attain their
minimum spectral gap. In the four panels, each solution implements a different nonadiabatic protocol to reach the target ground
state atm= P.

state, which turns out to be the most populated state at the finalm= P. The four panels of figure 7 show the
same quantities referring to the four methods that provide better solutions for this instance. In these cases,
before the system reaches the minimum gap, there is a smooth population inversion between the
instantaneous ground state and the first excited state. Afterward, a second population inversion occurs in
correspondence with the minimum spectral gap of Ĥeff

m , yielding a large final overlap between the state of the
system and the target state. Remarkably, the system follows an STA path in order to achieve a large ground
state population at the final time stepm= P. These findings are consistent with the results of [60], obtained
using the first-order BCH formula and the QAOA-FOURIER method.

We verified that these four methods implement similar but quantitatively different non-adiabatic
protocols to solve the MaxCut problem. Due to the large dimension of the parameter space for P= 64, one
cannot exclude the existence of a path linking the minima in figure 5 without encountering a barrier in the
residual energy landscape. However, in appendix. C, we show that there is at least one direction along which
the minima are not pairwise connected. This emphasizes the absence of a single broad minimum basin in the
variational energy landscape to which all these optimal parameters belong.

We highlight that a similar non-adiabatic mechanism is observed for all the hard instances we examined.
Specifically, the optimal parameters derived from methods outperforming dQA-LIN consistently exhibit an
STA mechanism to avoid the lack of performance due to population inversion at the minimum gap.
Interestingly, the gap of the effective Hamiltonian remains small regardless of the optimized digital
dynamics. Rather than seeking an effective Hamiltonian with a large gap, the solution lies in inducing
smooth population inversion to achieve a large final overlap with the target state. This trend holds across all
the hard instances we considered.
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Figure 8. Plot of the mean differences∆ϵP,trans and∆ϵP,LO as a function of P for three different methods, see the main text for
details. We averaged over the 9 hard instances over which the parameters of instance 1 have been transferred. The error bars
indicate the standard deviation of the mean.

4.3. Transferability among hard instances
In this section, we focus on the transferability of the optimal parameters for dQA-C-CRAB, dQA-F-CRAB,
and QAOA-LogINTERP, which appear to be the most effective methods (QAOA-FOURIER turns out to be
more computationally expensive).

Numerous studies have explored parameter concentration and transferability for both unweighted [85,
86] and weighted MaxCut [87, 88], often focusing on the regime of small P and large N. Special attention is
devoted to typical instances drawn from a given distribution, also addressing problems beyond MaxCut or
two-bodies interactions [64, 80, 89, 90]. Here, we focus on the transferability of optimal-control solutions at
fixed circuit depth P among hard instances of 3-regular MaxCut with N = 14.

To evaluate it, we proceed as follows. First, we compute the residual energy for the 10 hard instances, for
fixed P and for each method:

Efin,kP =
⟨
Ψ

(k)
P

(
θ(k)

)
|Ĥ(k)

z |Ψ(k)
P

(
θ(k)

)⟩
, (28)

where k= 1, · · · ,10 labels the instance.
Next, we take the optimal parameters θ(1) of instance k= 1, and we compute the variational energy of the

instances k= 2, · · · ,10:

Efin,kP,trans =
⟨
Ψ

(k)
P

(
θ(1)

)
|Ĥ(k)

z |Ψ(k)
P

(
θ(1)

)⟩
, (29)

where |Ψ(k)
P (θ(1))⟩ is the variational state for the instance k with the optimal parameters of instance k= 1,

and Ĥ(k)
z is the corresponding target Hamiltonian.

Finally, we refine these transferred solutions by local optimization (LO), by considering the parameters
θ(1) as a warm-start for a local optimization of the other instances k= 2, · · · ,10, leading to final optimal
parameters θ(k)

LO . With these transferred-and-optimized parameters, we compute the energy:

Efin,kP,LO =
⟨
Ψ

(k)
P

(
θ(k)

LO

)
|Ĥ(k)

z |Ψ(k)
P

(
θ(k)

LO

)⟩
. (30)

Equation (22) is then used to calculate the residual energies ϵres,kP , ϵres,kP,trans and ϵ
res,k
P,LO .

We summarize these results in figure 8, where we show the average differences

∆ϵP,trans =
[
ϵres,kP,trans − ϵres,kP

]
av

∆ϵP,LO =
[
ϵres,kP,LO − ϵres,kP

]
av

(31)

as a function of P for dQA-C-CRAB, dQA-F-CRAB, and QAOA-LogINTERP. The average is computed over
the different hard instances we considered. We observe that, for small P, a direct transfer of the optimal
parameters of instance 1 provides residual energies very close to the optima. On the other hand, at large P, a
direct transfer of the optimal parameters of instance 1 does not guarantee a good residual energy ϵres,kP,trans.
Nonetheless, the transferred parameters turn out to be a good starting point, as witnessed by the fact that
ϵres,kP,LO is, on average, comparable (or even better, for small P) to ϵres,kP , with the extra advantage of being
computationally cheaper.
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Figure 9. (Top) The irregular optimal parameters for instance 1 obtained by implementing dQA-F-CRAB for P= 64 and Nc = 64
without any warm start. We also plot the linear interpolation θx(t) and θz(t) utilized in the continuous-time dynamics, for which
the x-axis should be intended as t/τ . (Bottom) The discrete populations pj(m) for the digitized dynamics with irregular
parameters.

4.4. Smoothness of the solutions and continuous-time annealing
In this section, we show the benefits of working with smooth optimal parameters. To draw a comparison, we
start by building an irregular set of optimal parameters for instance 1. This is done by implementing
dQA-F-CRAB for P= 64 and Nc = P, without any warm-start for the optimization, i.e. setting C0 = 1 and
Cx = Cz = 0 as initial conditions. The presence of high-frequency modes and the absence of a regularization
induced by the iterative warm-start induce sudden variations, as a function of the layer indexm, in the
optimal parameters θxm and θzm, shown in the top panel of figure 9. Despite its irregularity, such solution
provides a value of residual energy ϵresIRR = 0.00190, very close to that of the smooth solution for P= 64 and
Nc = P/2, ϵresP = 0.00183, shown in the top-right panel of figure 5. In the digital framework, the smooth and
the irregular solutions perform similarly, not only in terms of residual energy but also concerning the
instantaneous populations of the first eigenstates. The bottom panel of figure 9 shows that, after a fast
oscillatory phase, the population p1(t) of the first excited state becomes increasingly larger: the irregular
solution performs similar STA dynamics, featuring the same population inversion described in the previous
section for the smooth solution.

One of the key findings of our work is that only the smooth solutions can be used to define a valid
continuous-time optimal control, which might be applied in a realistic experiment with real-time quantum
dynamics. This procedure allows us to obtain an optimal QA schedule without the need for prior
information on the minimum gap. To show this, we consider the continuous-time evolution driven by the
annealing Hamiltonian Ĥ(t)

Ĥ(t) = (1− s(t)) Ĥx + s(t) Ĥz , (32)

where s(t) = θz(t)/(θx(t)+ θz(t)), with θx(t) and θz(t) obtained by interpolating the discrete optimal
parameters θxm and θzm. This interpolation is shown in figure 9(top panel) for the irregular solution.

The state |Ψ(t)⟩ is obtained by solving the Schrödinger equation (1). To do so, we efficiently simulate the
action of the full evolution operator using a scaling and squaring method, together with a truncated Taylor
series approximation [91], which does not involve any Trotterization. In this continuous-time simulation, we
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Figure 10. (Top) Ground and first excited state populations pj(t) for the continuous-time evolution obtained by interpolation of
the smooth digital parameters. (Bottom) The corresponding populations for the continuous-time evolution, as obtained by
interpolation of the irregular digital parameters.

used a sufficiently small integration time step (dtc = 0.1 proved to be small enough) and we considered a
total annealing time τ =

∑P
m=1(θ

x
m + θzm) [60]. Finally, we compute the average energy

Efin(τ) = ⟨Ψ(τ)|Ĥz|Ψ(τ)⟩, and the corresponding residual energy:

ϵres (τ) =
Efin (τ)− Emin

Emax − Emin
. (33)

Our simulations show that the continuous-time Schrödinger evolution with θx(t) and θz(t) obtained
from the smooth optimal digital schedule θxm and θzm yields a low residual energy , ϵres(τ) = 0.0078. On the
contrary, when θx(t) and θz(t) are obtained from the irregular optimal θxm and θzm shown in figure 9(top
panel), the result is very poor: ϵres(τ) = 0.2382.

This performance difference is also reflected in the population of the instantaneous eigenstates pj(t),
shown in figure 10. We define the populations in the continuous-time framework as:

pj (t) = |⟨ϕ j (t) |ψ (t)⟩|2, (34)

where |ϕ j(t)⟩ is the jth eigenvector of Ĥ(t). For smooth parameters (top panel), despite some minor
differences due to the time-discretization and Trotterization, the populations in the continuous-time
evolution show qualitatively the same behavior as those in the digital evolution (see figure 7): we retrieve the
STA protocol, which succeeds in largely populating the target state at the end of the time evolution.

On the other hand, the continuous-time evolution induced by the irregular parameters yields very
different population results: this can be observed by comparing the bottom panel of figure 10 to the bottom
panel of figure 9, showing the populations for discrete dynamics. Indeed, in the continuous-time evolution,
the population of the low-energy spectrum drastically decreases after the irregular phase, and other excited
states are significantly populated. As a consequence, the population inversion occurring at the minimum gap
does not effectively populate the ground state.
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We conclude that sharp variations in the time-dependent Hamiltonian controls affect the
continuous-time dynamics and result in a drastic loss of performance compared to the digital evolution. On
the other hand, optimal digital smooth solutions are suitable to approach the problem also in
continuous-time, and can possibly be refined by local optimization in continuous time.

5. Conclusions

We have presented a set of methods for constructing optimal QA schedules for hard MaxCut problems where
a small spectral gap is a bottleneck to standard adiabatic dynamics.

The methods utilized fall into two distinct categories. The first consists of constructing a Trotter-digitized
QA (dQA) with schedules parameterized in terms of Fourier modes or Chebyshev polynomials. These
parameterizations are adapted from the Chopped Random Basis (CRAB) technique, which is employed for
optimal control in continuous-time systems. The second category is based on the Quantum Approximate
Optimization Algorithm (QAOA) [41], where solutions are found iteratively using linear interpolations
(INTERP [60] or LogINTERP [61]) or expansions in Fourier modes (FOURIER [60]). In both cases, we have
emphasized the importance of smooth optimal parameters and found that the same physical mechanism is
behind the methods that perform better: a ‘shortcuts to adiabaticity’ dynamics, with a population inversion
occurring well before the minimum spectral gap is encountered.

Summarizing the performance of the various methods on the hard instances we considered, we have
found that QAOA-INTERP, based on iteratively increasing the layer depth at each step as P→ P ′ = P+ 1, is
not able to significantly outperform a linear-schedule dQA (dQA-LIN). On the contrary, its variant
(QAOA-LogINTERP) based on duplicating the layer depth at each step, P→ P ′ = 2P, is among the
best-performing methods. QAOA-FOURIER [60] also shows comparable performance, but its
implementation is rather time-consuming. Both digitized CRAB approaches, namely dQA-F-CRAB and
dQA-C-CRAB, perform equally well. The latter, in particular, requires the least computational resources to
attain smooth optimal solutions: for given P and Nc, dQA-C-CRAB finds optimal and smooth solutions
using a discrete linear schedule as the initial condition without any iterative warm start.

A noteworthy feature of the smooth optimal solutions is their transferability among hard instances of
MaxCut for fixed circuit depth P. Indeed, we find that the solutions found for a given instance perform
rather well, even without any further local optimization, on other hard 3-regular instances of N = 14
vertices. If further local optimization is performed, the transferred solution proves even better than what
would be obtained by directly optimizing the variational parameters for the target instance.

Finally, we find that smooth optimal protocols are a good starting point for a time-continuous schedule
to be implemented in an analog device. Remarkably, this provides an optimized QA protocol that improves
on the standard linear schedule, without requiring preliminary information on the instantaneous gap.

Regarding future work, we identify two promising avenues for exploration. The first avenue involves
applying the techniques discussed to one of the simplest models featuring an exponentially small spectral gap
in its spectrum: the frustrated Ising ring model, as introduced in [17] and further explored in [39]. The
second direction is to further explore the connection between our digitized solution and the ‘shortcut to
adiabaticity’ mechanism behind a continuous-time approach based on counter-diabatic driving [23]. Recent
work [65] has pointed out that the first-order correction in the BCH formula has exactly the same structure
and sign as an adiabatic gauge potential term realizing a counter-diabatic driving: we plan to explore this
connection between digitized and continuous-time dynamics further in the near future.
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Appendix A. Gradient-based optimization

Our classical simulations rely on BFGS as a gradient-based algorithm for local optimizations. To speed up the
simulation runs and to avoid numerical approximations of the gradient, we calculate the analytic expression
for the gradient of the variational energy in equation (11), exploiting the digitized form of the variational
state. Let Cj denote a generic parameter in the list C= (C0,C

x,Cz). Hence:

∂EdQA

P

∂Cj
=
⟨
ΨdQA

P |Ĥz|∂Ψ
dQA
P

∂Cj

⟩
+
⟨

∂ΨdQA
P

∂Cj
|Ĥz|ΨdQA

P

⟩
= 2Re

⟨
ΨdQA

P |Ĥz|∂Ψ
dQA
P

∂Cj

⟩
. (A1)

The derivative of the state follows from the chain rule. Let us denote by θαm the parameters, with α= x,z.
Then:

|∂Ψ
dQA
P

∂Cj
⟩=

∑
α=x,z

P∑
m=1

|∂Ψ
dQA
P

∂θα
m

⟩∂θ
α
m

∂Cj
. (A2)

The two ingredients appearing here are simple to calculate from equation (8):

∂θxm
∂C0

=
P−

(
m− 1

2

)
P

∂θzm
∂C0

=
m− 1

2

P

∂θxm
∂Cx

n

=
P−

(
m− 1

2

)
P

fn (tm)

∂θzm
∂Cz

n

=
m− 1

2

P
fn (tm)

. (A3)

The other ingredient, the state derivative, depends on the Trotter splitting performed. For simplicity, let us
focus on the lowest-order Trotter splitting. Define, form= 1 · · ·P, the shorthands:

Ûm = Û(θxm,θ
z
m) = e−iθx

mĤx e−iθz
mĤz ,

and

|Ψm⟩= Ûm · · · Û1|Ψ0⟩ . (A4)

Then:

i
⟨
ΨdQA

P |Ĥz|∂Ψ
dQA
P

∂θx
m

⟩
=
⟨
Ψm|Û†

m+1 · · · Û
†
PĤzÛP · · · Ûm+1Ĥx|Ψm

⟩
, (A5)

and

i
⟨
ΨdQA

P |Ĥz|∂Ψ
dQA
P

∂θz
m

⟩
=
⟨
Ψm−1|Û†

m · · · Û
†
PĤzÛP · · · ÛmĤz|Ψm−1

⟩
. (A6)

The complete gradient can thus be calculated efficiently in a classical simulation by storing intermediate
states |Ψm⟩ and combining them to compute each partial derivative.

Appendix B. The FOURIER approach of Zhou et al

We give here a few details on the implementation of the FOURIER method proposed in [60], reformulated
in a notation consistent with the previous sections.
a)Nc = P, without randomness. In this case, one should keep the number of Fourier terms Nc equal to

P and hence increase both by 1 at each step [60]. Suppose to have the optimal—most likely, locally
optimal—Fourier coefficients C(∗,P−1) at level P− 1. Then, take as an initial guess, for both Cz and Cx:

C(0,P) =
(
C(∗,P−1),0

)
, (B1)

and determine the new minimum C(∗,P) by a local search strategy starting from C(0,P).
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b)Nc = P, with randomness. As in a) above, consider a (local) optimal solution C(∗,P−1) and construct
a candidate initial point as in equation (B1), with a corresponding new mininum C(∗,P). On top of that,
multiple initial points are randomly generated (see below), starting from the best final solution C(B,P−1) kept
at each P: notice that C(B,P−1) might differ from C(∗,P−1). More precisely, starting from C(B,P−1), one should
generate R> 0 random candidate initial points, e.g. typically, R= 10, as follows:

C(0,P) =
(
C(B,P−1) +αr,0

)
. (B2)

Here, α is a real coefficient, typically set to 0.6, and r is a (P− 1)-dimensional vector of gaussian-distributed

random numbers with zero mean and variance given by rn = (C(∗,P−1)
n )2. An extra initial point is generated

with r= 0. Correspondingly, candidate final minima are found with a local optimization starting from each
of these R+ 1 initial points. The new C(B,P) at level P is selected as the best solution in a set of R+ 2
candidates comprising the R+ 1 minima just found, and the C(∗,P) generated as in a). Note that, for the next
iterative step, both C(∗,P) and C(B,P) need to be saved.
c)Nc fixed, with randomness. Everything is performed as in case b) above, only up to the value of

P= Nc. Beyond that, Nc stays unchanged while P is further increased up to the desired Pmax.

Appendix C. Local neighborhood of different optimal solutions

As the high complexity of the parameter landscape might hinder some connections among seemingly
different local minima, in the following we further investigate this issue. Starting from the behavior of the
residual energy in the neighborhood of these local minima, our goal is to determine whether the solutions we
find are actually distinct in the 2P-dimensional parameter space. In particular, we focus on the Hessian of the
residual energy ϵres(θ) as a function of the variational parameters θ. For each method described in section 2,
we evaluate the Hessian of the energy in the minimum ϵres(θ∗) using finite differences on top of the
analytical expression of the first-order gradient. The eigenvectors of the Hessian characterize the local
curvature of the residual energy: the corresponding eigenvalues allow us to determine the directions where
the curvature is locally maximum and minimum. In figure 11, we plot ϵres(θ) along these two directions.
Specifically, we plot the residual energy as a function of the displacements µ and ν along the direction of
maximum and minimum curvature, respectively. The displacements are evaluated from ϵres(θ∗), which is
therefore located in the origin µ= ν = 0. We see that, even in the direction of minimum local curvature ν, a
variation in the parameter θ results in a sizable variation of the residual energy. Intuitively, the four solutions
determined by the different methods appear to be isolated minima in the 2P-dimensional parameter space.

Furthermore, for each pair of local minima obtained through different methods, we focus on their
convex linear combination. More in detail, given two points in parameter space θ(1) and θ(2), we consider:

θ(12) (λ) = λ θ(1) +(1−λ) θ(2) (C1)

and we compute the corresponding residual energy as a function of the interpolating parameter λ ∈ [0,1].
We show the results in figure 12: each pair of optimal solutions is separated by a barrier where the residual
energy increases by an order of magnitude. This finding precludes the existence of a spherical broad
minimum in the variational energy landscape where two of these optimal local minima rely. However, we
stress that a complicated path in parameter space could connect two local minima without necessarily
crossing a residual energy barrier.

Appendix D. Performance over different instances

In this section, we summarize the performance of the methods presented in the main text on the 10 hard
instances we considered. In figure 13, we show the residual energies for dQA-C-CRAB, dQA-F-CRAB, and
QAOA-LogINTERP. Consistently with the results shown in the main text, these methods implement
‘shortcuts to adiabaticity’ protocols and outperform the linear dQA-LIN method. For each instance in exam,
dQA-C-CRAB, dQA-F-CRAB, and QAOA-LogINTERP consistently succeed in decreasing residual energy as
the circuit depth P increases. Empirically, a linear interpolation method, QAOA-INTERP, often performs
significantly worse. Finally, as expected, the residual energy of dQA-LIN reaches a plateau, stabilizing at a
constant value as P increases.
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Figure 11. The residual energy ϵresP (θ) for different methods along two directions in parameter space, µ and ν. These correspond,
respectively, to the direction of maximum and minimum curvature of ϵresP (θ) around the corresponding local minimum (see
figure 5), set at µ= ν = 0.

Figure 12. The residual energy ϵresP (θ12(λ)) along the direction λ linking two local minima in parameter space. The
corresponding optimal parameters are shown in figure 5.

Figure 13. Residual energy as a function of P for the 10 hard instances we considered and for different methods. For each instance,
these methods provide similar final results.
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