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Abstract. The subject of this work is the analysis and implementation of stabilized finite el-
ement methods on anisotropic meshes. We develop the anisotropic a priori error analysis of the
residual-free-bubble (RFB) method applied to elliptic convection-dominated convection-diffusion
problems in two dimensions, with finite element spaces of type Qk, k ≥ 1. In the case of P1 fi-
nite elements, relying on the equivalence of the RFB method to classical stabilized finite element
methods, we propose a new rule, justified through the analysis of the RFB method, for selecting the
stabilization parameter in classical stabilized methods on two-dimensional anisotropic triangulations.
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1. Introduction. Elliptic convection-diffusion problems arise in a vast number
of applications, and their stable, accurate, and efficient solution is of significant the-
oretical and practical interest. From the computational point of view, problems of
this kind become particularly challenging when convection dominates diffusion in the
sense that the Péclet number, which measures the magnitude of the convective vec-
tor field over the length scale of the computational domain relative to the size of
the diffusion coefficient, is large. Convection-dominated diffusion equations exhibit
features which resemble those of the reduced, first-order hyperbolic equation arising
from the second-order elliptic convection-diffusion equation on neglecting the diffu-
sion term. For example, the solution may contain thin internal layers within the
computational domain; also, due to the singular perturbation nature of an elliptic
convection-dominated diffusion problem, the solution may exhibit thin boundary lay-
ers along sections of the boundary of the computational domain which correspond to
the outflow part of the boundary for the reduced problem. As a result of this, on
meshes which do not resolve internal and boundary layers, standard Galerkin finite
element methods have poor stability and accuracy properties. The difficulties typ-
ically manifest themselves as large, maximum-principle-violating, oscillations in the
numerical solution which occur predominantly along the characteristics of the reduced
problem.

The situation may be remedied by using a classical stabilized finite element
method (such as a streamline-diffusion method or a Galerkin least-squares method) or
a residual-free-bubble (RFB) finite element method; we refer to the monograph [28]
for an extensive survey of the literature. Due to the presence of anisotropic numerical
dissipation terms in the direction of the characteristics of the reduced equation whose
role is to suppress undesirable numerical oscillations, these methods are capable of
delivering accurate numerical solutions even on shape-regular computational meshes
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whose granularity is relatively coarse compared to the thickness of internal and bound-
ary layers. Alternatively, motivated by the fact that internal and boundary layers are
highly localized and anisotropic, one may choose to use a standard Galerkin finite
element method, albeit on a stretched, anisotropic, or layer-adapted (and, certainly,
non-shape-regular) computational mesh (see, for example, the discussion in [28] on
Shishkin-type meshes).

In recent years, there have been attempts to employ these remedies simulta-
neously; see, for example, the work of Apel and Lube [3] and Micheletti, Perotto,
and Picasso [25] concerning classical stabilized finite element methods on anisotropic
meshes. The developments in the present article are in a similar spirit.

The objective of this paper is twofold. We aim to develop the a priori error anal-
ysis of the RFB method for two-dimensional elliptic convection-dominated diffusion
equations on anisotropic partitions. Specifically, we aim to bound the error by appro-
priately weighted norms of directional derivatives of the solution, so as to incorporate
the anisotropic nature of the solution into the bounds. On the one hand, our results
complement the work in [3, 25] on the a priori error analysis of classical stabilized
finite element methods over anisotropic meshes; on the other hand, they extend earlier
results by Brezzi, Marini, and Süli [7], Brezzi and Marini [8], and Sangalli [29] on the
a priori error analysis of RFB methods on shape-regular triangulations.

Anisotropy also has to be taken into account in the selection of parameters appear-
ing in stabilized finite element methods, such as streamline-diffusion-type methods.
The second key objective of the paper is to use the stabilizing term derived from the
RFB method to redefine the mesh Péclet number and propose a new choice of the
streamline-diffusion (SD) parameter that is suitable for use on anisotropic partitions.
The proposed choice of the SD parameter improves earlier suggestions based on the
a priori analysis of the streamline-diffusion method (cf. [3, 23, 25]).

The paper is structured as follows. The first part of this work is concerned with the
analysis of stabilized finite element methods on anisotropic computational meshes: We
consider the anisotropic a priori error analysis of the RFB method applied to elliptic
convection-dominated convection-diffusion problems in two dimensions. In the second
part of the paper, in the case of P1 finite elements on triangular meshes, appealing to
the equivalence of the RFB method to classical stabilized finite element methods, we
propose a new rule, justified through the analysis of the RFB method, for selecting the
stabilization parameter in classical stabilized methods on two-dimensional anisotropic
triangulations; we then relate our work to existing developments on classical stabilized
finite element methods on anisotropic meshes, including [3, 23, 25].

2. Statement of the problem. Let Ω ⊂ R
2 be a bounded open polygonal

domain. We consider the model elliptic boundary-value problem

(2.1)

{
find u ∈ V = H1

0(Ω) such that

Lu := −εΔu + a · ∇u = f in Ω,

where ε is a positive parameter, a ∈ [W1,∞(Ω)]2, with div(a) ≤ 0 in Ω, and f be-
longs to L2(Ω). The homogeneous Dirichlet boundary condition u|∂Ω = 0 has been
assumed here only for ease of presentation. We normalize the problem by requiring
that ‖a‖L∞(Ω) ≤ 1. Our focus of interest is the convection-dominated regime, namely,
when 0 < ε � 1; thus we assume, without loss of generality, that ε ∈ (0, 1]. The ex-
tension of the results of this paper to the, more general, convection-diffusion-reaction
equation −εΔu+ a · ∇u+ cu = f in Ω, subject to a homogeneous Dirichlet boundary
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condition on ∂Ω, is straightforward, provided that div(a) − 2c ≤ 0 in Ω. Below, we
shall briefly comment on the case when div(a)−2c ≤ −2c0 in Ω, where c0 is a positive
constant.

The variational formulation of the boundary-value problem (2.1) is

(2.2)

{
find u ∈ V such that

L(u, v) = (f, v) ∀v ∈ V,

where

(2.3) L(w, v) := ε

∫
Ω

∇w · ∇v dx +

∫
Ω

(a · ∇w) v dx

is a continuous and coercive bilinear form on V × V and (·, ·) denotes the L2 inner
product over Ω.

The existence and uniqueness of a solution to (2.2) (that is, of a weak solution
to (2.1)) are well-known consequences of the Lax–Milgram lemma; for a more general
existence and uniqueness result, see [19, Theorem 8.6].

We consider finite element discretizations of (2.2) over conforming partitions Th
of Ω consisting of affine-equivalent quadrilateral or triangular elements. We shall
not assume that the family of partitions {Th}h>0 is shape-regular, because we wish to
allow anisotropic local refinements in parts of the computational domain where special
features of the exact solution, such as thin layers, are detected. Our only assumption
will be the existence of a positive constant c ≤ 1 such that

(2.4) ε ≤ chγ ,

for all element edges γ in the partition; here hγ represents the length of γ. This is
a reasonable assumption when dealing with the analysis of stabilized finite element
methods for convection-dominated diffusion problems such as our model problem,
which exhibits boundary layers whose thickness is commensurate with ε � 1: For,
if we could afford to solve the problem on meshes whose granularity is smaller than
ε, then we would not need to use a stabilized method in the first place. Thus, our a
priori error bounds, developed under the hypothesis (2.4), will be of a preasymptotic
nature: Since the lower bound ε � 1 on chγ is fixed, we will not let hγ tend to zero.

An optimal mesh (in terms of the number of degrees of freedom required to ob-
tain a given accuracy) must mimic the behavior of the solution to (2.1). Such an
optimal mesh would, in general, be designed through successive mesh refinements/de-
refinements. In early stages of the mesh adaptation process, the use of a stabilized
finite element method is mandatory, since on coarse meshes classical Galerkin finite
element approximations of (2.1) will exhibit large maximum-principle-violating nu-
merical oscillations when ε � 1, hence the need for sharp preasymptotic error bounds
for stabilized finite element methods. In later stages of the mesh refinement process,
when the mesh has been adapted to the solution, the stabilized method could be
simplified, for instance, by omitting the stabilization term, as was done in [10].

We denote by λ1 and λ2 some characteristic dimensions of a generic element
T ∈ Th, to be defined on a case-by-case basis; λ1 and λ2 are used to group the
elements according to the following rule (which defines the subpartitions T1 and T2):

1. T ∈ T1 if λ1 ≤ λ2;
2. T ∈ T2 if λ2 < λ1.

An admissible structured mesh and its subpartitions are shown in Figure 2.1.
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T1 T1

T2 T1

Fig. 2.1. A locally anisotropic partition and its subpartitions T1 and T2.

Given k ≥ 1, let Pk denote the space of algebraic polynomials of degree ≤ k, and
let Qk denote the space of algebraic polynomials of degree ≤ k with respect to each
variable. Further, let FT : T̂ → T be the affine transformation mapping the reference
element onto T ∈ Th.

The residual-free-bubble space is defined as follows (see [7]):

(2.5) VRFB :=
{
v ∈ V : v|e ∈ Pk for each edge e of T and any element T ∈ Th

}
.

We note that the space VRFB is infinite-dimensional, admitting the representation

(2.6) VRFB = V k
h + Bh,

where V k
h is the classical finite element space given by

V k
h :=

{
vh ∈ H1

0(Ω) :

{
vh|T ∈ Pk if T is a triangle
vh|T ◦ FT ∈ Qk if T is a parallelogram

}
,

and

(2.7) Bh :=
⊕
T∈Th

H1
0(T )

is the space of all bubble functions in V ; i.e., all function with zero trace on the skeleton
of the partition Th.

The RFB approximation of (2.2) is defined as the Galerkin approximation of (2.2)
in the space VRFB:

(2.8)

{
find uRFB ∈ VRFB such that

L(uRFB, v) = (f, v) ∀v ∈ VRFB.

Since VRFB is infinite-dimensional, the formulation (2.8) does not represent a numer-
ical method in the classical sense. In fact, a numerical algorithm can be devised from
(2.8) through static condensation of the bubble component ub of the solution uRFB,
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which belongs to the infinite-dimensional space Bh, and then discretizing the result-
ing infinite-dimensional problem over the finite-dimensional space V k

h . For instance,
if k ≤ 2, the sum in (2.7) is direct, and hence we then have the following unique
decomposition of the RFB solution:

uRFB = uh + ub.

Consequently, by testing in V k
h and then in Bh, we can split (2.8) into the following

two problems:

L(uh, vh) + L(ub, vh) = (f, vh) ∀vh ∈ V k
h ,(2.9)

L(uh, vb) + L(ub, vb) = (f, vb) ∀vb ∈ Bh.(2.10)

Equation (2.10) is referred to as a bubble equation as it is equivalent to solving, in
each element T ∈ Th, the boundary-value problem

(2.11)

{
Lub = f − Luh in T,
ub = 0 on ∂T

for the “fine-scale” bubble component ub of the approximate solution uRFB in terms
of the “coarse-scale” piecewise polynomial component uh of uRFB. The static con-
densation procedure corresponds to eliminating ub from (2.9) in favor of uh using
(2.11). This can be done by numerically solving a finite number of independent local
problems such as (2.11); this then leads to a (fully discrete) numerical algorithm. An
instance of such a procedure is discussed in section 6 of this paper. For further details,
we refer the reader to [9, 7].

The general a priori error analysis of the RFB method on shape-regular partitions
is due to Brezzi, Marini, and Süli [7]; it was shown there that if u ∈ Hk+1(Ω), then the
numerical solution uRFB delivered by the RFB method satisfies the following optimal
asymptotic error bound in the energy norm:

(2.12) ε1/2|u− uRFB|1,Ω ≤ Chk+1/2‖u‖Hk+1(Ω),

where h represents the characteristic size of the partition.
The technique used here to extend the a priori error analysis of the RFB method

to anisotropic partitions is different from the one employed in [7]. Instead, we follow
the approach adopted by Sangalli [29] to subsequently rederive and localize the results
presented in [7]. The key idea of Sangalli’s approach, and of the analysis below, is to
exploit the approximation properties of the space VRFB. To do so, Sangalli explicitly
constructs a projector from H1 onto the RFB space in a certain ε-weighted H1 norm.
A similar approach is followed by Risch in [27].

A second key ingredient of our analysis is the use of anisotropic approximation
results. These must be employed in order to derive an a priori error bound in terms
of appropriately weighted norms of directional derivatives of the exact solution u.

3. Structured quadrilateral partitions. We begin with the case of axiparallel
rectangular elements, leaving the treatment of more general partitions to subsequent
sections.

In this case it is natural to define λ1 = h1 and λ2 = h2, where h1 and h2 denote
the dimensions of the generic element T ∈ T in the x1 and x2 coordinate directions,
respectively.
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3.1. Notations and preliminary results. Let T̂ = (−1, 1)2 be the master

element. Given a function v ∈ H1(T ), we consider v̂ ∈ H1(T̂ ), the function associated

to v through the affine transformation FT which maps T̂ into T ; hence v̂ := v ◦ FT .
Further, we denote by i∗ = 3 − i the complementary index to i with respect to the
set {1, 2}.

Since T is a rectangle, the usual scaling properties for functions v ∈ H1(T ) yield

‖v‖2
0,T =

1

4
h1h2‖v̂‖2

0,T̂
,(3.1) ∥∥∥∥ ∂v∂xi

∥∥∥∥2
0,T

=
hi∗

hi

∥∥∥∥ ∂v̂∂x̂i

∥∥∥∥2
0,T̂

, i ∈ {1, 2}.(3.2)

We will also need some scaling properties for functions defined over edges of the
elements T ∈ Th. The trace of a function belonging to the space H1(T ) = W1,2(T )
and, more generally, to the Sobolev space W1,p(T ), 1 ≤ p < ∞, is characterized in
terms of the fractional-order Sobolev space W1−1/p,p(∂T ), which, for p > 1, can be
defined using the real method of function space interpolation; see, e.g., Adams [1].

The space Ws,p(∂T ), 0 < s < 1, can also be characterized in terms of an intrinsi-
cally defined norm. For instance, for every s ∈ (0, 1), the norm ‖ ·‖s,∂T and seminorm
| · |s,∂T of the Sobolev space Hs(∂T ) = Ws,2(∂T ) of fractional order s are defined by

‖v‖s,∂T :=

{
‖v‖2

0,∂T +

∫
∂T

∫
∂T

|v(x) − v(y)|2
|x− y|1+2s

dσ(x) dσ(y)

}1/2

=
{
‖v‖2

0,∂T + |v|2s,∂T
}1/2

,(3.3)

where dσ denotes the one-dimensional Hausdorff measure of ∂T . This definition can
be extended to portions of ∂T .

The trace theorem (again, see [1]) ensures that the trace of a function v ∈ Hs(T )
belongs to Hs−1/2(∂T ), s ∈ (1/2, 1], and that there exists a constant C, independent
of v, such that

(3.4) ‖v‖s−1/2,∂T ≤ C‖v‖s,T ∀v ∈ Hs(T ).

Let γ be an edge of T ∈ Th and γ̂ = F−1
T (γ) the corresponding edge of T̂ . Scaling

the Sobolev seminorm | · |s,γ , 0 ≤ s ≤ 1, from γ̂ to γ, we have

(3.5) |v|2s,γ =

(
hγ

2

)1−2s

|v̂|2s,γ̂ ∀v ∈ Hs(γ),

where, as before, hγ = |γ|. The scaling property (3.5) will be used to prove the
following anisotropic trace inequalities which are refinements of the usual ones valid
for axiparallel domains.

Lemma 3.1. Let v ∈ H1(T ), where T is an axiparallel rectangle in R
2, and let

γi be an edge of T parallel to the ith coordinate axis, with hi = |γi|, i = 1, 2. The
following trace inequalities hold:

‖v‖2
0,γi

≤ 1

hi∗
‖v‖2

0,T + 2 ‖v‖0,T ‖vxi∗ ‖0,T , i = 1, 2;(3.6)

|v|21/2,∂T ≤ C

(
1

h1h2
‖v‖2

0,T +
h1

h2
‖vx1‖

2
0,T +

h2

h1
‖vx2‖

2
0,T

)
,(3.7)

where the constant C is independent of h1 and h2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1660 ANDREA CANGIANI AND ENDRE SÜLI

Proof. The proof of (3.6) can be found, for instance, in [17]. To prove (3.7), we

apply (3.5) with s = 1/2 to scale from ∂T to ∂T̂ and the trace inequality (3.4) to

shift from ∂T̂ to T̂ , and, finally, we use (3.1) and (3.2) to scale back from T̂ to T :

|v|21/2,∂T = |v̂|21/2,∂T̂ ≤ ‖v̂‖2
1/2,∂T̂ ≤ C ‖v̂‖2

1,T̂

= C
(
‖v̂‖2

0,T̂ + ‖v̂x1
‖2
0,T̂ + ‖v̂x2

‖2
0,T̂

)
= C

(
1

h1h2
‖v‖2

0,T +
h1

h2
‖vx1

‖2
0,T +

h2

h1
‖vx2

‖2
0,T

)
and hence the desired result for any v ∈ H1(T ).

We shall also require the following trace-lifting lemma (see, e.g., Sangalli [29]).

Lemma 3.2. Given a function ŵ0 ∈ H1/2(∂T̂ ) and a real parameter t, with

0 < t ≤ 1, there exists ŵ ∈ H1(T̂ ) such that ŵ = ŵ0 on ∂T̂ and

(3.8) t |ŵ|21,T̂ + t−1 ‖ŵ‖2
0,T̂ ≤ C

(
t |ŵ0|21/2,∂T̂ + ‖ŵ0‖2

0,∂T̂

)
,

where the constant C is independent of t and ŵ0.

3.2. The projection error. Let us consider the function space Hr1,r2(T ) of
dominant mixed smoothness, defined by

Hr1,r2(T ) :=
{
v ∈ L2(T ) : Dr1

x1
v, Dr2

x2
v, Dr1

x1
Dr2

x2
∈ L2(T )

}
.

It is known that if ri > 1/2, i = 1, 2, then Hr1,r2(T ) is continuously embedded into
the space C(T ) of uniformly continuous functions on T (see, for example, [32, Chapter
2, Theorem 2.2.3]). Trivially, Hr+1(T ) is continuously embedded into H1,1(T ) for any
r ≥ 1.

We begin by introducing a suitable interpolant from Qk of a generic function in
H1,1(T )— the tensor-product H1-projection operator Πk, as has been defined in [17]
(see also [31, 18]), by means of truncated Legendre expansions.

Definition 3.3. Let Ln denote the Legendre polynomial of degree n on the open
interval I = (−1, 1). We define the L2-projection operator

π̃k : L2(I) → Pk(I)

by

π̃kv(x) :=

k∑
n=0

anLn(x),

where

an :=
2n + 1

2

∫
I

v(x)Ln(x) dx.

Further, we define the H1-projection operator

π̂k : H1(I) → Pk(I)

by setting, for any v ∈ H1(I),

π̂kv(x) :=

∫ x

−1

π̃k−1(v
′)(η) dη + v(−1), x ∈ (−1, 1).
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A convenient feature of the above definition is that it can be easily extended to the
multidimensional setting by means of a tensor-product construction; this is achieved
at the cost of assuming additional regularity (viz. assuming H1,1-regularity instead of
H1-regularity).

Definition 3.4. Let T̂ = (−1, 1)2. We define the tensor-product projection
operator

Π̂k : H1,1(T̂ ) → Qk(T̂ )

by

Π̂k := π̂x1

k ◦ π̂x2

k ,

where π̂x1

k , π̂x2

k denote the one-dimensional H1-projection operators from Definition 3.3,
and the superscripts xi, i = 1, 2, indicate the directions in which the one-dimensional
projections are applied.

The above definition is easily extended to a generic axiparallel rectangle T as
follows.

Definition 3.5. Let T ∈ Th. We define the tensor-product projection operator

Πk : H1,1(T ) → Qk(T )

by setting, for any v ∈ H1,1(T ),

Πkv := Π̂kv̂ ◦ F−1
T .

By virtue of being of tensor-product type, the projection Πk admits anisotropic
error bounds. As a matter of fact, it is better-behaved than the L2-projection operator
when bounds on the derivatives of the interpolation error are needed. The relevant
approximation properties of Πk are summarized in the next lemma.

Lemma 3.6. Suppose that T is an axiparallel rectangle and v ∈ Hr+1(T ), with
1 ≤ r ≤ k—and thereby v ∈ H1,1(T ). Then, for any s with 0 ≤ s ≤ r, the following
error bound holds:

‖v − Πkv‖2
0,T ≤ Φ2(k, s)

((
h1

2

)2s+2

‖∂s+1
x1

v‖2
0,T +

(
h2

2

)2s+2

‖∂s+1
x2

v‖2
0,T

)

+ Φ2(k, s− 1) min
i, j = 1, 2

i �= j

(
hi

2

)2(
hj

2

)2s

‖∂s
xj
∂xiv‖2

0,T ,

and, for any i = 1, 2,

‖∂xi(v−Πkv)‖2
0,T ≤ Φ1(k, s)

(
hi

2

)2s

‖∂s+1
xi

v‖2
0,T +Φ2(k, s−1)

(
hi∗

2

)2s

‖∂s
xi∗

∂xi
v‖2

0,T ,

where

Φ1(k, s) :=

(
Γ(k − s + 1)

Γ(k + s + 1)

)1/2

, Φ2(k, s) :=
Φ1(k, s)√
k(k + 1)

,

and Γ is the Gamma function.
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The proof of the interpolation error bounds stated in the above lemma has been
given by Georgoulis in [17] (see also [18]), where such results are presented in a much
more general setting.

Remark. Interpolation error bounds similar to those in Lemma 3.6 are provided,
although for a different interpolation operator, by Apel [2, Theorem 2.7]. These, too,
are limited to rectangular elements and are obtained as improvements of the general
but slightly less sharp bounds presented in earlier sections of [2]; see also section 4
(especially Theorem 4.10) in the recent work of Georgoulis, Hall, and Houston [16]
concerning interpolation results on anisotropic nonaxiparallel meshes. For a recent
survey of anisotropic mesh adaptivity and anisotropic interpolation error estimates,
particularly on triangular meshes, we refer to the work of Huang [21].

3.3. Error bound. Suppose that the bounded polygonal domain Ω ⊂ R
2 is a

finite union of axiparallel rectangles. We begin the error analysis with the construction
of a suitable projector P : H1

0(Ω) ∩ H2(Ω) → VRFB, whose definition is based on the
H1,1-projection operator Πk described above and the trace-lifting lemma, Lemma 3.2.

Given v̂ ∈ H1,1(T̂ ) ⊂ H1(T̂ ), let ŵ ∈ H1(T̂ ) be the function obtained by applying
Lemma 3.2 with

ŵ0 = (v̂ − Π̂kv̂)|
∂T̂

, t =
ε

hi
.

We note that t ≤ 1 due to assumption (2.4). We define PT̂ v̂ ∈ H1(T̂ ) by

(3.9) PT̂ v̂ := v̂ − ŵ,

and let PT v = PT̂ v̂ ◦ F−1
T . Finally, for v ∈ H1

0(Ω) ∩ H2(Ω), we define Pv ∈ H1
0(Ω)

elementwise by (Pv)|T = PT (v|T ), T ∈ Th; recall that v|T ∈ H2(T ) ⊂ H1,1(T ), so
this definition is meaningful. It is clear from this construction that, for every element
T ∈ Th, PT : H1,1(T ) → VRFB|T , and P : H1

0(Ω) ∩ H2(Ω) → VRFB.
The main task in the a priori error analysis is to bound the quantity EP

T (v) defined
for v ∈ H1,1(T ) by

(3.10) EP
T (v) := ε|v − PT v|21,T + ε−1‖v − PT v‖2

0,T .

To this end, let us assume that T ∈ Ti, with i ∈ {1, 2}. Using (3.1) and (3.2), and
noting that for T ∈ Ti we have hi ≤ hi∗ , it follows that

EP
T (v) = ε

hi

hi∗
‖(v̂ − PT̂ v̂)x̂i∗ ‖2

0,T̂
+ ε

hi∗

hi
‖(v̂ − PT̂ v̂)x̂i‖2

0,T̂
+

ε−1hi∗hi

4
‖v̂ − PT̂ v̂‖

2
0,T̂

≤ Chi∗

(
ε

hi
|v̂ − PT̂ v̂|

2
1,T̂

+

(
ε

hi

)−1

‖v̂ − PT̂ v̂‖
2
0,T̂

)
.(3.11)

Hence, by applying (3.8) in (3.11) with ŵ = v̂ − PT̂ v̂, we have

(3.12) EP
T (v) ≤ C

(
ε
hi∗

hi
|v̂ − Π̂kv̂|21/2,∂T̂ + hi∗‖v̂ − Π̂kv̂‖2

0,∂T̂

)
.

We are now in a position to prove the following result which justifies our choice
of the projector P .
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Lemma 3.7. Let T ∈ T and v ∈ Hr+1(T ), with 1 ≤ r ≤ k, and consider the
quantity EP

T (v) defined by (3.10). If T ∈ Ti, i ∈ {1, 2}, then

EP
T (v) ≤ C

22r+1

(
Φ12(k, r)

(
h2r+1
i ‖∂r+1

xi
v‖2

0,T +
h2r+2
i∗

hi
‖∂r+1

xi∗
v‖2

0,T

)

+
5

2
Φ2(k, r − 1)

(
h2r−1
i h2

i∗‖∂r
xi
∂xi∗ v‖2

0,T + hih
2r
i∗ ‖∂xi∂

r
xi∗

v‖2
0,T

))
,(3.13)

where Φ12(k, r) := 2Φ1(k, r) + Φ2(k, r)/2.
Proof. Assume that T ∈ Ti, i ∈ {1, 2}, and let ∂xi

T and ∂xi∗T be the collec-
tion of the edges of T parallel to the xi and xi∗ coordinate directions, respectively.
From (3.12), upon returning to ∂T using (3.5) and applying the trace inequalities of
Lemma 3.1, we have

EP
T (v) ≤ C

(
ε
hi∗

hi
|v − Πkv|21/2,∂T + 4‖v − Πkv‖2

0,∂xi∗ T + 4
hi∗

hi
‖v − Πkv‖2

0,∂xi
T

)
≤ C

((
ε

h2
i

+
1

hi

)
‖v − Πkv‖2

0,T + ε
h2
i∗

h2
i

‖(v − Πkv)xi∗ ‖2
0,T + ε‖(v − Πkv)xi

‖2
0,T

+
hi∗

hi
‖v − Πkv‖0,T ‖(v − Πkv)xi∗ ‖0,T + ‖v − Πkv‖0,T ‖(v − Πkv)xi

‖0,T

)
≤ C

((
ε

h2
i

+
1

hi

)
‖v − Πkv‖2

0,T

+

(
ε
h2
i∗

h2
i

+
h2
i∗

hi

)
‖(v − Πkv)xi∗ ‖2

0,T + (ε + hi) ‖(v − Πkv)xi
‖2
0,T

)
.

With assumption (2.4) this bound may be written

EP
T (v) ≤ C

(
1

hi
‖v − Πkv‖2

0,T +
h2
i∗

hi
‖(v − Πkv)xi∗ ‖2

0,T + hi‖(v − Πkv)xi
‖2
0,T

)
.

Thus, we have bounded EP
T (v) in terms of the H1-projection error. The required

bound (3.13) follows by applying the projection error bounds from Lemma 3.6.
We are ready to prove the following a priori error bound for the RFB method in

the energy norm ε1/2| · |1,Ω.
Theorem 3.8. Let u ∈ V be the solution of (2.2) and uRFB ∈ VRFB the RFB

solution defined by (2.8). Assume that the partition Th consists of axiparallel rectangles
and that there exists a constant c ∈ (0, 1] such that, for any T ∈ Th, ε ≤ cmin{h1, h2}.
Finally, let T1 be the subpartition given by all T ∈ Th such that h1 ≤ h2, and let
T2 := Th \ T1.

If u ∈ H1
0(Ω) ∩ Hk+1(Ω), then there exists a positive constant C, independent of

ε, k and of the mesh dimensions, such that for any 1 ≤ r ≤ k

(3.14)

ε1/2|u− uRFB|1,Ω ≤ C
Φ̄(k, r)

2r+1/2

2∑
i=1

( ∑
T∈Ti

(
h2r+1
i ‖∂r+1

xi
u‖2

0,T +
h2r+2
i∗

hi
‖∂r+1

xi∗
u‖2

0,T

+ hih
2r
i∗ ‖∂xi∂

r
xi∗

u‖2
0,T + h2r−1

i h2
i∗‖∂r

xi
∂xi∗u‖2

0,T

))1/2

,
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where Φ̄(r, k) := max{Φ12(k, r),
5
2Φ2(k, r − 1)}. The constant C depends only on the

constant in the trace inequality (3.7) and on the constant in Lemma 3.2.
Proof. We consider the decomposition

u− uRFB = (u− Pu) + (Pu− uRFB),

where P is the approximation operator described in the previous section. By em-
ploying the coercivity of L and the Galerkin orthogonality property, on recalling that
Pu ∈ VRFB, we have that

ε|u− uRFB|21,Ω ≤ L(u− uRFB, u− uRFB)

= L(u− uRFB, u− Pu).

Thus, on applying the Cauchy–Schwarz inequality to L(u−uRFB, u−Pu) after rewrit-
ing it explicitly using the definition of the bilinear form (2.3), we get

ε|u− uRFB|21,Ω ≤
∑
T∈Th

(
ε

∫
T

∇(u− uRFB) · ∇(u− PTu) dx

+

∫
T

a · ∇(u− uRFB)(u− PTu) dx

)
≤
∑
T∈Th

(
ε1/2|u− uRFB|1,T

)(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)

≤ ε1/2|u− uRFB|1,Ω

(∑
T∈Th

(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)2)1/2

.

Next, we split the sum on the right-hand side between the subpartitions T1 and T2 to
obtain

ε1/2|u− uRFB|1,Ω ≤ C
∑
i=1,2

(∑
T∈Ti

EP
T (u)

)1/2

,

with EP
T (u) as in (3.10). The required bound now follows from (3.13).

Remark. When the problem (2.1) is strongly convection-dominated, the solution
is highly anisotropic locally. For this reason it is crucial that the error is bounded
by appropriately weighted norms of directional derivatives of the solution, as in our
error bound (3.14). We also observe that, if the partition is shape-regular, our error
bound collapses to the isotropic error estimate (2.12).

We conclude the section with a remark on the extension of the above bound to the
case when, in addition to diffusion and convection terms, the equation also contains
a reaction term. Suppose therefore that −εΔu + a · ∇u + cu = f in Ω, subject to
u = 0 on ∂Ω, with 2c− div(a) ≤ −2c0 in Ω, where c0 is a positive constant. Arguing
similarly as in the proof above, we then obtain
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ε|u− uRFB|21,Ω + c0‖u− uRFB‖2
0,Ω

≤ ε1/2|u− uRFB|1,Ω

(∑
T∈Th

(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)2)1/2

+ ‖c‖L∞(Ω)‖u− uRFB‖0,Ω

(∑
T∈Th

‖u− PTu‖2
0,T

)1/2

≤
(
ε|u− uRFB|21,Ω + c0‖u− uRFB‖2

0,Ω

)1/2
×
(∑

T∈Th

(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)2
+

‖c‖2
L∞(Ω)

c0
‖u− PTu‖2

0,T

)1/2

.

The rest of the argument, based on bounding the second factor on the right-hand side
in the final inequality, proceeds as in the proof of Theorem 3.8.

4. Affine partitions. We now discuss the case of partitions Th consisting of
affine-equivalent (triangular or quadrilateral) elements. As before, our assumptions
on the partition are conformity and that (2.4) holds.

The following a priori error analysis is based on Lemma 3.2 and on the tech-
nique introduced by Formaggia and Perotto [14] (see also the references therein and
Micheletti, Perotto, and Picasso [25]) to prove anisotropic error estimates for the in-
terpolation error. More precisely, we will employ suitable scaling properties derived
in [14] in terms of certain characteristic quantities of the affine transformation FT .
A limitation of the approach is that only an a priori error bound in terms of the
H2-seminorm can be obtained, so this analysis applies only in the case when k = 1.
An extension of the bounds presented here to the case when k ≥ 1 can be carried out
using the techniques developed in section 2.2 of the paper of Huang [20].

Let FT (x̂) = M x̂ + t (we omit the dependence of M and t on T to simplify
the notation). As the matrix M is invertible, it admits a unique polar decomposition
M = BZ, where B is symmetric and positive definite and Z is orthonormal.

Further, B is factorized as B = RTΛR, where Λ is diagonal with positive de-
creasing entries (the eigenvalues of B) and R is orthonormal (with rows which are the
eigenvectors of B). Hence,

Λ =

[
λ1 0
0 λ2

]
, R =

[
rT

1

rT
2

]
,

where λ1 ≥ λ2 and r1, r2 are the eigenvalues and eigenvectors of B, respectively. The
above decomposition corresponds to the singular value decomposition M = RTΛQ,
with Q = RZ: The reference element T̂ is rotated using Q, stretched by Λ, and then
rotated again by RT. The translation t finally gives the correct location of T . The
eigenvalues λ1 and λ2 of Λ thus give the element dimensions in a rotated orthogonal
frame and hence are used to replace h1 and h2 from the previous section as the
characteristic dimensions of the element T .

With this new notation, we get the following scaling rules, which are the coun-
terparts of (3.1) and (3.2):

‖v‖2
0,T = λ1λ2‖v̂‖2

0,T̂
,(4.1)

|v|21,T ≤ λ1

λ2
|v̂|2

1,T̂
.(4.2)

The equality (4.1) is elementary, while (4.2) is proved in [14] as Lemma 2.2.
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To scale back from the reference element we shall use the following identity which
is Lemma 2.2 in [25] (see also the proof of Lemmas 2.1 and 2.2 in [14]):

(4.3) |v̂|2
2,T̂

=
λ3

1

λ2
L11v +

λ3
2

λ1
L22v + 2λ1λ2L12v,

where

(4.4) Lijv :=

∫
T

(
rT
i H(v)rj

)2
dx, with i, j = 1, 2,

and H(v) is the Hessian matrix associated with the function v; that is,

H(v) :=

[
∂2v
∂x2

1

∂2v
∂x1∂x2

∂2v
∂x1∂x2

∂2v
∂x2

2

]
.

Theorem 4.1. Let u ∈ V be the solution of (2.2) and uRFB ∈ VRFB the RFB
solution defined by (2.8). Consider a conforming affine-equivalent partition Th assum-
ing that there exists a constant c ∈ (0, 1] such that, for every T ∈ Th, ε ≤ cλ2, where
λ1 ≥ λ2 are the characteristic dimensions of T defined above.

If u ∈ H1
0(Ω)∩H2(Ω), then there exists a positive constant C, independent of the

mesh dimensions and of ε, such that

(4.5) ε1/2|u− uRFB|1,Ω ≤ C

(∑
T∈Th

(
λ4

1

λ2
L11u + λ3

2L22u + 2λ2
1λ2L12u

))1/2

,

where the terms Lij, i, j = 1, 2, are defined elementwise as in (4.4) in terms of the
Hessian of the function u.

Proof. Let T ∈ Th. As in the previous section, we need to bound the quantity
given by (3.10); that is,

EI
T (v) = ε|v − PT v|21,T + ε−1‖v − PT v‖2

0,T ,

where v ∈ H1(T ). As before, we start by scaling EI
T (v) to the reference element T̂ .

Using (4.1) and (4.2) we get

EI
T (v) ≤ ε

λ1

λ2
|v̂ − PT̂ v̂|

2
1,T̂

+ ε−1λ1λ2‖v̂ − PT̂ v̂‖
2
0,T̂

= λ1

(
ε

λ2
|v̂ − PT̂ v̂|

2
1,T̂

+

(
ε

λ2

)−1

‖v̂ − PT̂ v̂‖
2
0,T̂

)
.(4.6)

We then apply Lemma 3.2, this time with ŵ0 = (v̂− π̂1v̂)|
∂T̂

, where π̂1 is the standard
linear Lagrange interpolant (that is, π̂k, with k = 1) defined on the reference triangle

T̂ , and with t = ε/λ2. In this way we get

EI
T (v) ≤ C

(
ε
λ1

λ2
|v̂ − π̂1v̂|21/2,∂T̂ + λ1‖v̂ − π̂1v̂‖2

0,∂T̂

)
.

Instead of scaling back to the boundary of the element T as was done previously,
we now proceed by applying the trace inequality (3.4) and the standard Lagrange
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interpolation error bounds on T̂ (see Ciarlet [13]). Since λ2 ≤ λ1 and ε ≤ cλ2, with
c ∈ (0, 1], we get

EI
T (v) ≤ C

(
ε
λ1

λ2
+ λ1

)
‖v̂ − π̂1v̂‖2

1,T̂

≤ Cλ1|v̂|22,T̂

≤ C

(
λ4

1

λ2
L11v + λ3

2L22v + 2λ2
1λ2L12v

)
,(4.7)

the last bound being a consequence of (4.3). The desired error bound now follows by
repeating the steps in the proof of Theorem 3.8.

If the partition Th is axiparallel, then λi = hi/ci, with hi and ci, i = 1, 2, being

the dimensions along the coordinate axes of T and T̂ , respectively. In this case
Theorem 4.1 collapses to the a priori error bound (3.14), with r = 1.

5. Numerical examples. As discussed in section 1, a fully discrete RFB method
is obtained after approximating the bubble space. In the following experiment, the
local bubble problem on each element is solved using the standard Galerkin finite
element method (FEM) on an 8 × 8 Shishkin partition. This is a piecewise uniform
mesh with half of the nodes in each coordinate direction lying in the boundary-layer
region of the element; see [24] and references therein. This choice abundantly ensures
that the subgrid discretization error is of higher order than the RFB error controlled
by our error analysis. In fact, in the case of P1 shape-regular finite elements, it has
been proved by Brezzi and Marini [8] that a subgrid consisting of a single internal
node placed inside the boundary layer of the bubble problem is sufficient; see also [4].
This is the fully discrete method that we suggest for practical implementations.

Another possibility, exploited in further experiments presented later on, is to
discretize the convection field with piecewise constants and then approximate the
solution of each local bubble problem by the solution of the corresponding reduced
(hyperbolic) elemental problem [9]. This procedure is computationally inexpensive,
as it amounts to the calculation of the volume of a pyramid on each element. More-
over, when the problem is convection-dominated, such an approximation does not
compromise the accuracy of the method (a choice that is optimal in all regimes is
the link-cutting bubble proposed in [4] for one-dimensional problems). Indeed, the
discretization of the bubble functions need not be particularly accurate as long as the
elemental average ∫

T
bT dx

|T |

of the bubble bT has been sufficiently accurately approximated; the reason, as is
shown later on in this paper (see also [5]), is that only the elemental averages of the
bubbles enter into the fully discrete method. The behavior of the above term on
shape-regular partitions, as a function of the mesh Péclet number PeT = hT |a|/ε, is
analyzed in [5], where it is also shown that the average of the solution of the reduced
bubble problem behaves similarly in the convection-dominated regime to the average
of the exact bubble bT . Lemma 6.1 below extends the analysis from [5] to anisotropic
partitions, thus suggesting that this simple recipe for full discretization is still viable
on anisotropic partitions.
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Fig. 5.1. ε1/2-weighted H1-seminorm error and error bound under (the correct) h2-refinement
(left) and (the incorrect) h1-refinement (right); ε = 10−2. In both cases, we start from the 4 × 4
uniform square mesh.

We consider the following simple boundary-value problem

(5.1)

⎧⎨⎩ −εΔu + ux2 = 0 in Ω = (0, 1)2,
u(x1, 0) = 0; u(x1, 1) = 1, x1 ∈ [0, 1],
ux1 = 0 on ΓN = ({0} × (0, 1)) ∪ ({1} × (0, 1)),

whose solution is given by

u(x1, x2) =
ex2/ε − 1

e1/ε − 1
.

We consider discretizations of this problem with respect to axiparallel uniform rect-
angular grids of dimensions h1 and h2 in the respective coordinate directions. For
this problem the error bound (3.14) reduces to

ε1/2|u− uRFB|1,Ω ≤ C

⎧⎨⎩ h3
2||∂2

x2
u||20,Ω if h2 ≤ h1,

h4
2

h1
||∂2

x2
u||20,Ω if h2 > h1.

We verify the validity of the bound by performing the following tests. Starting from
the uniform 4 × 4 mesh, we either

• fix h1 while halving h2 (correct refinement) or
• fix h2 while halving h1 (incorrect refinement).

The relevant energy norm errors and error bounds are shown in the log-log plot in
Figure 5.1 (left-hand panel) for ε = 10−2.

Performing the correct refinement is, of course, not too different from solving
the related sequence of one-dimensional problems. The similarity of the numerical
solution of the two-dimensional problem to the numerical solution of the related one-
dimensional problem is lost when the incorrect refinement is performed (notice that
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Fig. 5.2. Profile of the solution along x1 = 1/2 under h1-refinement (as in the right-hand panel
in Figure 5.1), while h2 = 1/4. The lowest profile represents the piecewise Q1 standard Galerkin
FEM solution computed on a uniform 4×4 mesh. The exact solution is also plotted for comparison.

this does not happen when applying the standard Galerkin method with linear el-
ements). As predicted by the error bound, the accuracy of the solution actually
deteriorates under the incorrect refinement; see the log-log plot in Figure 5.1 (right-
hand panel). This is due to the peculiar definition of the RFB finite element space.
Mesh refinement corresponds to a relative impoverishment of the bubble subspace and
an enrichment of the piecewise polynomial subspace. If the latter enrichment, as is
the case with our incorrect refinement, is ineffective, then the overall approximation
properties of VRFB will be worse than on a coarser mesh. The detailed error analysis
of the RFB method on shape-regular partitions presented in our recent work [12] aims
to clarify the approximation properties of the method in the preasymptotic regime
when ε ≤ ch. In particular, in [12], we relate the phenomenon just observed to the
inadequacy of V k

h to capture the exponential behavior of the solution along element
edges contained in the boundary layer.

In the limit of h1 → 0, the solution becomes constant along x1. That is, it tends
to the piecewise Q1 standard Galerkin solution, which is unaffected by the reduction
of h1; see Figure 5.2. Asymptotically, in the case of the incorrect refinement (with
h1 → 0), the error is of order O(1) (cf. Figure 5.1 (right)). In other words, since
the bubble part of the solution is forced to tend to zero as h1 → 0, its stabilizing
effect is diminished until, in the limit, it vanishes and the RFB method collapses
to the standard Galerkin FEM. This fact shows that the stabilization properties of
stabilized FEMs are affected by the anisotropy of the partition.

The use of anisotropic partitions for the solution of highly convection-dominated
problems can become mandatory if resolution of thin layers in the solution is para-
mount. Let us consider, for example, the boundary-value problem

(5.2)

⎧⎨⎩ −εΔu + (2, 1)T · ∇u = 0 in Ω = (0, 1)2,
u(x1, 0) = u(1, x2) = 0, x1, x2 ∈ (0, 1),
u(x1, 1) = u(0, x2) = 1, x1, x2 ∈ [0, 1].

The solution of (5.2) exhibits an internal layer emanating from the origin of the coor-
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Fig. 5.3. The solution of (5.2) with ε = 10−4 on ad hoc-refined triangulations. Left: Shape-
regular mesh (23256 elements, 12693 nodes) and the corresponding solution. Right: Anisotropic
mesh (478 elements, 263 nodes) and the corresponding solution.

dinate system and a boundary layer situated along x1 = 1. The RFB approximation
of (5.2) is shown in Figure 5.3. The bubble solution is approximated by the solution
of the related reduced (hyperbolic) elemental problem [9]. We compute the RFB solu-
tion using, respectively, a shape-regular triangulation (left-hand panels in the figure)
and an anisotropic triangulation (right-hand panels in the figure). The anisotropic
triangulation has been generated by Picasso [26], by applying a ZZ-type error indi-
cator for the gradient error to the classical stabilized Galerkin least-squares (GLS)
method, until the stopping criterion ZZ-indicator ≤ 1/4 was satisfied in all elements.
The triangulation was then used to compute the RFB solution shown in the bottom
right-hand panel of Figure 5.3. The computation on the shape-regular triangulation
was performed by applying the residual-based L2-error indicator proposed in [10] for
the RFB method. For the sake of consistency, the adaptation was stopped when
the error indicator fell below 1/4 in all elements. The RFB solution computed on
the anisotropic triangulation is clearly superior, as the triangulation consists of only
263 nodes instead of the 12693 nodes, with comparable accuracy, in the case of the
shape-regular partition.

6. Tuning of the SD parameter. The RFB method is closely related to clas-
sical stabilized finite element methods (streamline upwind Petrov–Galerkin (SUPG),
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GLS, etc.). For instance, in the case of piecewise constant coefficients and linear fi-
nite elements, RFB is equivalent to SUPG and GLS (the latter methods coincide in
this case with what Johnson, Nävert, and Pitkäranta [22] refer to as the streamline-
diffusion finite element method (SDFEM)). Here we exploit this identification to ob-
tain a theoretically justified value of the user-selected stabilization parameter in sta-
bilized finite element methods.

We consider the RFB method (2.8), assuming that Th consists of triangles, and fix
k = 1. In this case, VRFB = V 1

h ⊕Bh, where V 1
h is the space of linear finite elements.

Let us also assume that a and f are constant on every element of Th. Then the
right-hand side of (2.11) is constant, and the bubble part of the RFB solution is given
locally on T by ub|T = (f − Luh)|T bT , where bT ∈ H1

0(T ) satisfies

(6.1) −εΔbT + a · ∇bT = 1.

Substituting ub into (2.9) it follows that uh ∈ V 1
h is the solution of

(6.2) L(uh, vh) +
∑
T∈Th

∫
T
bT dx

|T | (a · ∇uh − f,a · ∇vh)T = (f, vh) ∀vh ∈ V 1
h .

The formulation (6.2) coincides with the SDFEM with the particular choice of the SD
parameter given by

(6.3) τb :=

∫
T
bT dx

|T | .

Thus, as anticipated, the RFB method and the SDFEM are, in this case, equivalent.
This well-known fact was first observed by Brezzi and Russo [9].

A numerical method is obtained from the RFB formulation by considering (6.2)
where the quantity τb has been suitably approximated (examples are given in [9, 15,
6, 8, 4, 30, 11]). As discussed in [5] in the case of shape-regular triangulations, the
crucial property is that the approximated value of τb scales as τb with respect to the
mesh size and the coefficients ε and b.

Specifically, let ha indicate the length of the longest segment parallel to a con-
tained in T . On shape-regular partitions, i.e., assuming that the minimal angle of T
is bounded below by a fixed positive constant, we know from [5] that

(6.4) C
hT

|a|min

{
h|a|
ε

, 1

}
≤ τb ≤

ha

|a| .

In practice, τb ∼ hT

|a|min {h|a|
ε , 1}, which is qualitatively the value of the SD parameter

suggested by the a priori error analysis of the SDFEM (see, e.g., [28]).
The situation is less clear when considering anisotropic elements. Attempts have

been made to derive the optimal behavior of the SD parameter through a priori
analysis; see, e.g., [3, 23, 25]. The outcome of the investigations in these papers
is that the stabilization parameter should depend on the smaller dimension of the
element.

For instance, assume that T is a right-angled triangle of dimensions h1, h2, and
let hmin = min{h1, h2}. Then, according to [25], we should choose the SD parameter
as

(6.5) τsd := C
hmin

2|a| min

{
hmin|a|

6ε
, 1

}
.
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This choice seems less favorable when the mesh is not aligned with the solution (as
in the incorrect refinement in our example above). We notice that in this case the a
priori analysis does not predict convergence anyway.

By appropriately modifying the argument employed in [5] to derive (6.4), we shall
now obtain a new lower bound for τb that takes the two characteristic dimensions of
T into account. This result is then used to provide a new rule for selecting the SD
parameter.

Lemma 6.1. Suppose that T is a right-angled triangle, oriented along the coordi-
nate axes, of dimensions h1, h2; then the quantity τb given by (6.3), where bT solves
(6.1), satisfies

(6.6) C
ha

|a| min {PeT , 1} ≤ τb ≤
ha

|a| ,

with C = 1/45 and with the following definition of the element Péclet number:

(6.7) PeT := h2
min

|a|
8εha

.

Proof. The upper bound is already given in (6.4). Assume that h2 < h1, so that

hmin = h2. To prove the lower bound, we map T into the right-angled triangle T̂
with its two orthogonal edges of length hah1/h

2
2 and ha/h2 aligned with the positive

semiaxes of the coordinate system (x̂1, x̂2). The image b̂ of bT ∈ H1
0(T̂ ) satisfies

−ε
ha

h2
2

Δb̂ + a · ∇b̂ =
h2

2

ha
in T̂ ,

and we have

(6.8) τb =
2h3

2

h1h2
a

∫
T̂

b̂dx̂.

To bound the integral in (6.8) we proceed as in [5]. We let λ̂1, λ̂2, and λ̂3 be the

barycentric coordinates on T̂ , define b̂3 := λ̂1λ̂2λ̂3, and note that

(6.9)

∫
T̂

b̂3 dx̂ =
h2
ah1

120h3
2

.

Since h2 < h1, we have

(6.10) MΔ :=
1

8
max
T̂

|Δb̂3| =
1

4

h5
2

h3
ah1

max
T̂

(
x̂1

h2
+

x̂2

h1

)
=

1

4

h2
2

h2
a

,
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the maximum being attained at the vertex (hah1/h
2
2, 0), and

Mg :=
1

|a| max
T̂

|a · ∇b̂3|

=
h3

2

|a|h2
ah1

max
T̂

∣∣∣∣a1

(
x̂2 − 2

h2
2

hah1
x̂1x̂2 −

h2

ha
x̂2

2

)
+a2

(
x̂1 −

h2
2

hah1
x̂2

1 − 2
h2

ha
x̂1x̂2

)∣∣∣∣
≤ h3

2

|a|h2
ah1

(
|a1|max

T̂

∣∣∣∣x̂2 − 2
h2

2

hah1
x̂1x̂2 −

h2

ha
x̂2

2

∣∣∣∣
+ |a2|max

T̂

∣∣∣∣x̂1 −
h2

2

hah1
x̂2

1 − 2
h2

ha
x̂1x̂2

∣∣∣∣)
=

h3
2

|a|h2
ah

1

(
|a1|

ha

4h2
+ |a2|

hah1

4h2
2

)
=

1

4|a|

(
|a1|

h2
2

hah1
+ |a2|

h2

ha

)
,(6.11)

both maxima being attained at the midpoint of the hypotenuse. We note that if
sign(a1) = sign(a2), the above bound reduces to an equality.

We now define

γ :=
1

MΔ + Mg
min

{
h2

2

8εha
,

1

|a|

}
, ŵ := γb̂3, v̂ :=

ha

h2
2

b̂,

and introduce the differential operator

L̂ϕ := −ε
ha

h2
2

Δϕ + a · ∇ϕ.

By the definition of γ, ŵ, MΔ, and Mg, we have

|L̂ŵ| ≤ γ

(
ε
ha

h2
2

MΔ + |a|Mg

)
≤ 1.

Thus, by the definition of v̂, we have

L̂(v̂ − ŵ) =
ha

h2
2

L̂b̂− L̂ŵ = 1 − L̂ŵ ≥ 0,

and, since both v̂ and ŵ vanish on ∂T̂ , using the maximum principle, we conclude
that v̂ ≥ ŵ in T̂ . We are now ready to bound τb. Recalling (6.8) and (6.9), we have

τb =
2h5

2

h3
ah1

∫
T̂

v̂ dx̂ ≥ 2h5
2

h3
ah1

γ

∫
T̂

b̂3 dx̂ =
h2

2

60ha
γ.

Further, using the definition of γ, and inserting (6.10) and (6.11), we have

τb ≥
1

15
(

|a|
ha

+ |a1|
h1

+ |a2|
h2

) min

{
|a|h2

2

8εha
, 1

}
.

We distinguish between the following two cases.
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• If sign(a1) = sign(a2), then ha is the length of the line segment oriented with
a which joins the hypotenuse of T with the opposite vertex. Thus,

ha =

√√√√ h2
2(

a2

a1
+ h2

h1

)2 (1 +
a2
2

a2
1

)
=

|a|
|a1|
h1

+ |a2|
h2

.

It follows that |a1|/h1 + |a2|/h2 = |a|/ha.
• If sign(a1) �= sign(a2) and |a2|/h2 > |a1|/h1, then ha is the length of the line

segment oriented with a which joins the edge of T parallel to the x1-axis with
the opposite vertex. Thus,

ha =

√
h2

2 +
a2
1

a2
2

h2
2 =

h2|a|
|a2|

,

and so |a2|/h2 = |a|/ha. Similarly, if |a2|/h2 > |a1|/h1, then |a1|/h1 =
|a|/ha.

It follows that

|a|
ha

+
|a1|
h1

+
|a2|
h2

≤ C
|a|
ha

,

with C = 2 or 3, depending on the cases listed above, respectively.
Since the above argument can be repeated in the case h1 ≤ h2 by interchanging

the role of h1 and h2, we conclude that the bound (6.6) holds with C = 1/45.
To verify the bound obtained, we compare the behavior of

τa := C
ha

|a| min {PeT , 1} ,

with that of τb with respect to the dimensions of T . We let h1 = 1 while halving h2

starting from h2 = 1. We do this twice in succession, with a = (1, 0) and then with
a = (0, 1). The results are shown in Figure 6.1 (τb is calculated by solving (6.1) very
accurately). The superimposition of the graphs is obtained by renormalizing τa (the
factor is always around 3) so that its first values coincide with that of τb. As we can
see in Figure 6.1, τa and τb are very close to each other.

Figure 6.1 also reports the results obtained with the choice τsd given by (6.5),
which was proposed as a SD parameter in [3, 23, 25]. We notice that the two choices
τa and τsd have different turning points, particularly when a is aligned with the
longest edge of T . This is due to the fact that our definition of the element Péclet
number depends not only on the magnitude of the convective field, but also on its
direction. We believe that this should indeed be the case when anisotropic partitions
are considered, and hence we propose τa as the appropriate SD parameter. The
definition of τa easily extends to a general element by substituting h1 and h2 by the
characteristic dimensions λ1 and λ2.

We assess experimentally our new choice of the SD parameter τa by comparing its
performance with that of τsd on some model problems. From the discussion above we
know that the two choices τa and τsd differ the most when the stretching of the element
is aligned with the direction of convection. We must also take into account, though,
that the magnitude of the SDFEM stabilization term depends on the alignment of the
convection with the gradient of the solution; cf. (6.2); see also section 3 in [20]. We
therefore consider two test problems: (5.1), whose solution exhibits a boundary layer,
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Fig. 6.1. Comparisons of τb with τa and τsd on a rectangle of dimensions 1 and h2 for ε = 10−4.
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Fig. 6.2. Mesh and SDFEM solution profile along x1 = 1/2 for the model problem (5.1) with
ε = 10−4.

and a modification of (5.2) obtained by imposing a Neumann boundary condition on
the outflow boundary, so that the solution of the problem contains an internal layer.
In all tests we solved the problem on a slightly stretched uniform partition of aspect
ratio 4/10.

We start with (5.1). We compare the two different choices of the SD parameter τa
and τsd by solving the model problem (5.1) with ε = 10−4 by means of the SDFEM. In
both cases, the constant factors C in the definitions of the two parameters are tuned
by solving the problem on a uniform partition. We apply the SDFEM on the partition
depicted in the left-hand panel of Figure 6.2. The solution profile at x1 = 1/2 is shown
in the right-hand panel of Figure 6.2. While the solution obtained using τa correctly
reproduces the exact solution, the one obtained using τsd is corrupted by oscillations,
indicating that the stabilization parameter τsd is too small. The difference is due to the
fact that, while τsd always depends on hmin, the parameter τa is linked to hmax as long
as PeT > 1. Eventually, if the mesh is further stretched in the incorrect direction, the
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Fig. 6.3. SDFEM solution of the model problem (6.12) with ε = 10−4.

use of τa will also lead to maximum-principle-violating oscillations in the numerical
solution, but this happens for partitions with significantly higher aspect ratios than for
τsd; for the present model problem, PeT > 1 for hmin > 25/210−2 ≈ 0.05, correspond-
ing to an aspect ratio of 1/5. In conclusion, our choice will guarantee stability for
any, not too unreasonably designed, partition, such as the one used in the experiment.

We finally consider the following boundary-value problem:

(6.12)

⎧⎪⎨⎪⎩
−εΔu + a · ∇u = 0 in Ω = (0, 1)2,
u(x1, 0) = 0; u(x1, 1) = 1, x1 ∈ (0, 1),

u(0, x2) = χ[1/3,1](x2);
∂u
∂x1

(1, x2) = 0, x2 ∈ [0, 1],

which exhibits an internal layer emanating from the boundary-value discontinuity in
(0, 1/3) in the direction of a. We fix the partition to be a uniform 4 × 10 partition
and test the different choices of the SD parameter as functions of the convection
direction by setting a = (2, 1) as in (5.2) and then a = (2, 0.1), i.e., aligned with the
partition. The SDFEM solutions are shown in Figure 6.3. The solutions obtained
using τa are slightly less oscillatory, particularly in the case a = (2, 1), where we
observe differences in the solutions at the outflow up to a factor of 1.6. This latter
fact may seem counterintuitive, as τa and τsd differ the most in the case a = (2, 0.1)
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when convection is aligned with the stretching of the partition, but the alignment
improves the performance of the method and reduces the need for stabilization.

7. Conclusions. When a convection-diffusion problem is strongly convection-
dominated, the solution is often highly anisotropic, exhibiting large gradients in spe-
cific directions. In this paper we have developed the a priori error analysis of the RFB
method, in the energy norm, on anisotropic partitions. The error is bounded by ap-
propriately weighted norms of directional derivatives of the solution, so as to respect
the anisotropic nature of the solution to the problem. The error bound established is
an extension of that obtained by Sangalli [29] for shape-regular partitions.

Anisotropy also has to be taken into account in the tuning of the parameters
appearing in streamline-diffusion-type methods. We have used the stabilizing term
derived from the RFB method to redefine the mesh Péclet number and proposed a
new choice of the SD parameter which is suitable for use on anisotropic partitions.
Our choice improves the choices of the SD parameter presented in previous works
based on the a priori analysis of the SD method (cf. [3, 23, 25]).

Acknowledgment. We are grateful to Professor Marco Picasso (Ecole Polytech-
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to generate the right-hand panels in Figure 5.3.
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