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GFN: A GRAPH FEEDFORWARD NETWORK FOR

RESOLUTION-INVARIANT REDUCED OPERATOR LEARNING IN

MULTIFIDELITY APPLICATIONS

OISÍN M. MORRISON1 ID , FEDERICO PICHI1,2 ID , AND JAN S. HESTHAVEN1 ID

Abstract. This work presents a novel resolution-invariant model order reduction strategy for

multifidelity applications. We base our architecture on a novel neural network layer developed
in this work, the graph feedforward network, which extends the concept of feedforward networks

to graph-structured data by creating a direct link between the weights of a neural network and

the nodes of a mesh, enhancing the interpretability of the network. We exploit the method’s
capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy

for parametrised partial differential equations. We show that this extension comes with provable

guarantees on the performance via error bounds. The capabilities of the proposed methodology are
tested on three challenging benchmarks, including advection-dominated phenomena and problems

with a high-dimensional parameter space. The method results in a more lightweight and highly
flexible strategy when compared to state-of-the-art models, while showing excellent generalisation

performance in both single fidelity and multifidelity scenarios.

Keywords: graph neural networks, model order reduction, operator learning, resolution invari-
ance, multifidelity surrogate modelling, parametrised PDEs.

Code availability: https://github.com/Oisin-M/GFN

1. Introduction and Motivation

Traditional numerical solvers for the high-fidelity approximation of partial differential equations
(PDEs) are computationally prohibitive in real-time and many-query contexts, underpinning the
need for quicker evaluations of the numerical solution of PDEs. Reduced order models (ROMs)
have arisen as a means to address this issue for parametrised PDEs, accelerating the process via the
creation of efficient computational models [10], with fewer degrees of freedom.

Model order reduction (MOR) is therefore concerned with the creation of offline-online surrogate
models that are cheaper whilst maintaining high levels of accuracy. One such popular approach is the
reduced basis method, characterised by the creation of a reduced space, typically obtained via proper
orthogonal decomposition (POD) or greedy methods [46, 79]. Such methods are generally linear,
rendering them inefficient for problems exhibiting a slow decay in the Kolmogorov n-width [36, 73].
To combat this, a range of nonlinear ROM techniques have been developed, with a notable subclass
of such methods being machine learning-based approaches. In particular, much promise has been
shown in incorporating autoencoder-based architectures into the ROM context [33, 62, 77, 88] due
to their feasibility as a nonlinear extension of principal component analysis [57], displaying superior
compression capabilities compared to linear methods especially when dealing with problems with
slow Kolmogorov n-width decay [36, 73].

Such autoencoder-based MOR strategies typically benefit from being non-intrusive approaches,
removing the requirement for any knowledge of the generation procedure for the training data,
therefore leading to possible exploitation of experimental data [30, 31, 59]. Moreover, contrarily
to physics-informed neural networks (PINNs) [83] or sparse identification of nonlinear dynamics
(SINDy) [14], these are usually not physics-based methods, and hence render it possible to learn the
solution’s behaviour even without prior knowledge.
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2 GFN FOR REDUCED OPERATOR LEARNING IN MULTIFIDELITY APPLICATIONS

In this direction, some approaches seek to recover the operator mappings, also known as operator
inference, on some fixed discretised domain [56, 75, 78]. Instead of approximating the solution at
some fixed locations, advanced neural operators (NOs) go further by directly approximating the
solution operator itself [13, 55]. As a result, NOs benefit from the desirable property of being
independent from a fixed discretisation, possibly achieving super- and sub-resolution [55, 64, 86, 94].

The development of so-called resolution-invariant methods, i.e. methods without a dependence
on a fixed discretisation, can be of the utmost importance when dealing with experimental data.
This is especially the case in climate modelling, where information depends on both weather stations
and satellites, the number and locations of which can vary greatly [25, 26, 72]. These considerations
have lead to similar and complementary approaches including the aforementioned NOs, graph neural
networks (GNNs) and multifidelity reduction strategies.

Multifidelity ROMs are typically focused on leveraging cheaper computational data, known as
low-fidelity data, in addition to more expensive high-fidelity data, to build an efficient offline MOR
strategy. Low-fidelity may be interpreted as simplification of the governing equations, low-order
approximations, or scarce information, but here we focus on the case of coarser discretisations, aiming
to obtain a ROM capable of learning from data on multiple fidelities. State-of-the-art approaches for
ROM [19, 39, 52, 70], however, are not generally capable of learning from any arbitrary resolution,
but rather from a prespecified fixed set of possible discretisations.

On the other hand, GNNs are capable of leveraging data from graphs of arbitrary cardinality,
while preserving the structure of the problem by enforcing geometric priors into the model. A large
number of such works (reviewed in [66, 101, 102]) have been focused on the generalisation of pooling,
unpooling and convolutional layers to graphs, achieving excellent results across a variety of domains
including drug development [93], traffic prediction [49], finance [97], climate [60] and fluid mechanics
[9, 44]. Moreover, being designed for unstructured data, GNNs have an advantage over many current
state-of-the-art NOs such as Fourier neural operators [64] and convolutional neural operators [86]
which require data on structured grids.

Figure 1. GFN-ROM is a nonlinear non-intrusive multifidelity ROM capable of
dealing with unstructured data, interplaying between MOR and resolution-invariant
techniques.
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Contributions. In this work, we make the following contributions:

(i) We introduce a novel neural network layer called the graph feedforward network (GFN)
which generalises the feedforward layer for data on arbitrary discretisations.

(ii) We introduce GFN-ROM, a new autoencoder-based ROM approach for multifidelity data
using GFNs.

(iii) We provide bounds on the super- and sub-resolution errors using GFNs and GFN-ROM.
(iv) We demonstrate the remarkable generalisation properties of GFN-ROM through a collection

of challenging problems.

To the best of our knowledge, GFN-ROM is the only graph-based resolution-invariant ROM. By
associating weights and biases to nodes in a mesh, GFN-ROM also allows for better interpretability
compared to approaches such as DL-ROM or GCA-ROM. Furthermore, we show that GFN-ROM
is closely related to the standard definitions of NOs and GNNs, by retaining important properties
of both concepts (see Figure 1).

The remainder of the paper is organised as follows. Section 2 presents the standard intrusive
and non-intrusive framework for MOR. Section 3 defines the challenges in multifidelity applications,
while Section 4 introduces resolution invariant methods. The core of the manuscript is presented in
Section 5 where the GFN is introduced to leverage data on any discretisation. Section 6 and Section 7
present the exploitation of GFN in the ROM context, and how to perform adaptive multifidelity
training. Finally, Section 8 shows the performance of the proposed methodology on complex MOR
benchmarks, and Section 9 gives some conclusions and highlights future perspectives.

2. Reduced Order Models

Full order models are designed to solve PDEs via high-fidelity systems of equations. Such systems
involve a large number of degrees of freedom Nh, which makes their numerical solution costly to
compute. In a parametrised PDE context, this is particularly prohibitive since one aims at recovering
solutions in real-time for a number of different physical or geometrical configurations, giving rise to
a parameter-dependent high-fidelity solution uh(µ). ROMs seek to mitigate this issue by building
and subsequently solving a cheaper reduced system with a much lower number of degrees of freedom
N ≪ Nh, giving rise to the reduced order solutions uN (µ). High-fidelity solutions can then be
approximated from the reduced order ones via some transform uh(µ) ≈ ϕ (uN (µ)), where ϕ is a
linear or nonlinear mapping dependent on the choice of ROM employed. Such methods can be
constructed in an intrusive or non-intrusive fashion, depending on whether knowledge of the high-
fidelity system is required for the computation of uN (µ).

2.1. Projection-based intrusive methods. Intrusive methods require knowledge of the high-
fidelity system. For ease of illustration, we consider the case of a linear high-fidelity system:

Ah(µ)uh(µ) = fh(µ),(1)

where µ ∈ RNµ is the parameter, Ah ∈ RNh×Nh is the stiffness matrix, uh ∈ RNh×NVF is the
high-fidelity solution, and fh ∈ RNh×NVF is the forcing term1.

A ROM aims at replacing Equation 1 with a cheaper reduced system. Linear MOR techniques
express an approximation of the high-fidelity solution ũh as a linear expansion over some chosen basis
functions {ψi}Ni=1 with ψi ∈ RNh . Introducing the matrix V = [ψ1| · · · |ψN ] one can concisely write
uh ≈ V uN . POD is a popular choice for constructing a basis, extracting the principal components
from a series of high-fidelity solutions for different parameter realisations, known as snapshots. POD
provides the best rank N subspace for approximating the snapshots in a least-squares sense [69].
Once the set of basis functions has been selected, it remains to calculate the reduced coefficients
uN . Intrusive projection-based MOR approaches exploit the knowledge of the high-fidelity system
by imposing the projected residual of the reduced order solution onto V is zero i.e. one solves for
uN the system

V T (fh −AhV uN ) = 0.(2)

1For ease of notation, in the following we drop the dependence on the parameters µ.
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An efficient application in the many-query context requires Equation 2 to exhibit an affine parametric
dependence in order to circumvent RNh -dependent online operations. This is usually not fulfilled
when dealing with complex and/or nonlinear problems.

2.2. Non-intrusive methods. When the high-fidelity system is not available, e.g. black-box or
commercial solvers, intrusive MOR cannot be pursued and the reduced coefficients have to be recov-
ered in a non-intrusive manner. For example, POD with interpolation (PODI) recovers the reduced
coefficients from the projection of the snapshots onto the POD basis [15, 23]. A similar regression-
based machine learning approach, POD-NN, is also possible by training a network to predict the
reduced coefficients, with the projected coefficients used as the training dataset [7, 47].

Although non-intrusive, PODI, POD-NN and other such methods still represent linear approaches
since they approximate the high-fidelity coefficients via a linear scheme uh ≈ V uN . This can be
problematic, since many important physics phenomena exhibit a slow decay in the Kolmogorov n-
width, making linear methods inefficient for such cases [36, 73]. As a result, nonlinear approaches
have arisen which seek to avoid this limitation by instead prescribing the more general form of
uh(µ) ≈ ψ (uN (µ)), where ψ is a nonlinear mapping. A huge variety of nonlinear compression
schemes have been explored for standard MOR: using local reduced bases to construct a piecewise
linear scheme [3], considering nonlinear compression via kernel POD [24, 54], shifted POD [87] or
registration methods [95].

Machine learning approaches are also possible, with the advantage of typically being cheap at
inference. In this direction, Gaussian process regression (GPR) approaches have been heavily in-
vestigated [37–39, 52, 103]. In contrast to standard MOR, these approaches learn a probability
distribution and are also advantageous in terms of uncertainty quantification [18]. However, GPR
models are expensive with cubic scaling, and direct application of GPR to large datasets is infeasible,
instead requiring techniques such as local approximate GPR [34, 35].

On the other hand, autoencoders have also arisen as a hugely popular means of nonlinear com-
pression and do not suffer from such poor scaling. The method was originally introduced as a
nonlinear generalisation of principal component analysis [57], making the approach a generalisation
of POD-based methods. Recently, it has been used in many MOR applications with great success
[32, 33, 45, 62, 71, 88], which makes it a hugely promising direction that we pursue in this work.

3. Multifidelity Reduced Order Models

By removing any dependence on the generation procedure for the training data, non-intrusive
ROMs can be used as black-box approaches, allowing e.g. to augment a small experimental dataset
with simulated data [30, 31, 59]. In fact, even without embedding any physics into the ROM, it is
still possible to learn the dynamics of the system. Nonetheless, standard approaches typically require
all training data to be generated or measured on the same grid, and with the same accuracy. Whilst
often assumed for algorithmic convenience, these requirements are highly undesirable for two key
reasons: firstly, generating highly-fidelity data for training is expensive and secondly, experimental
data is often multifidelity data.

3.1. Generating high-fidelity data for training is expensive. Several problems require fine
discretisations to obtain accurate results and resolve multiscale systems. However, ROMs need
to sample the parameter space well in order to make reasonable predictions. Thus, for standard
MOR this involves the expensive computation of a large number of high-fidelity solutions. By
allowing a ROM to train on data of different fidelities, one has the potential to greatly reduce the
computational burden by computing only a small number of expensive (high-fidelity) simulations,
and augmenting the data with a number of cheap (low-fidelity) simulations. This reflection has lead
to the development of a large number of multifidelity ROMs [19, 28, 39, 43, 52, 70, 82], aiming to
alleviate the computational burden of generating training data.

Low-fidelity simulated data can be generated in a number of ways, either by reducing the accuracy
of the computational method e.g. using P1 instead of P2 finite elements, considering a coarsened
discretisation, or by simplifying the physics. The central task for multifidelity MOR is to determine
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how to combine data arising from a number of different fidelities. A common assumption is that
all fidelities are prespecified and separate models are built for each of the F different fidelities. A
common approach has been to adopt a multifidelity GPR based approach for MOR [19, 39, 52, 70, 82],
commonly known as cokriging [2, 53], expressing each of the F solution fidelities as a combination of
F independent Gaussian processes. Similarly, multigrid approaches have also been heavily explored
for parametric PDEs [5, 41–43, 68, 96], relying on a hierarchy of models, and iteratively computing
corrections through a sequence of F coarser discretisations.

3.2. Experimental data is often multifidelity data. Other than synthetic data, ROMs are of
utmost importance also when dealing with experimental data, e.g. coming from sensors which may
move or break. This can lead to a high number of resolutions F , particularly for contexts such as
climate modelling where data is dependent on weather stations, the number and locations of which
can vary greatly [25, 26]. As a concrete example, the average number of stations used in the Global
Precipitation Climatology Center [8] full-data product over Africa has varied from under 250 to over
3250 stations between 1901 and 2013 [25]. Even with a coarse yearly temporal resolution, this would
still give a total of F = 112 different resolutions.

This is particularly problematic when one considers multifidelity ROMs train a new model for
each fidelity. Furthermore, in many cases it is not possible to upscale or downscale the model
predictions to unseen fidelities (e.g. finer discretisation), or to leverage training data from other
previously unseen fidelities either.

Thus, in the experimental context, a single model capable of training and being evaluated on
complexity arbitrary discretisations is required as depicted in Figure 2, i.e. there should be no
dependence in the model architecture on the discretisations of the training samples. The ability to
evaluate and train with data on any discretisation is known as resolution invariance [55].

None of the MOR approaches discussed thus far are resolution-invariant, underscoring the need
for the development of a new, resolution-invariant ROM.

Figure 2. GFN-ROM as a resolution-invariant ROM, capable of handling data
from any discretisation, both in training and in testing modes.
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4. Related Resolution-Invariant Methods

There exist a number of resolution-invariant approaches relevant for PDEs problems. Of particular
interest are PINNs, NOs, and GNNs.

4.1. Physics-informed neural networks. Standard ROM approaches usually do not require any
explicit positional information, simply relying on the snapshot matrix, thereby making resolution-
invariant extensions not straightforward. However, already when considering the approximation of
a single snapshot, it is possible to map directly from positional information to a PDE solution i.e.
x 7→ ϕ(x) ≈ u(x), where ϕ is a function to fit.

This is precisely the idea of PINNs [20, 81, 83], whereby a neural network ϕ is trained via a
physics-informed loss i.e. the loss is taken to be the residual of the network approximation for the
governing PDE, and no training data is required. Whilst PINNs can perform well on several problems
[4, 22, 50, 51, 80, 84, 85, 92], they suffer from a number of issues such as “spectral bias”, where they
are incapable of learning functions with high frequencies [100], convergence discrepancies among
their loss components [100] and stiff gradient flow dynamics [99]. Furthermore, their extension
towards parametrised problems is in practice unsuitable due to the complexity of the training phase,
rendering them not useful in the ROM context [65, 89]. For example, the POD-PINN approach
trains a neural network to predict the reduced coefficients from the parameters by minimising the
residual of the reduced problem, making it an intrusive approach requiring an efficient means of
evaluating the residual of the reduced problem [17].

4.2. Neural operators. The inability of PINNs to learn several instances for parametric PDEs
is due to the fact that such methods are not designed to directly model the solution operator.
Unlike PINNs and standard machine learning methods which learn a map between evaluations
of two functions, neural operators learn maps between the function spaces themselves [55]. By
attempting to model explicitly the solution operator itself, neural operators remove the burdensome
dependence of typical machine learning methods on the discretisation of the data, meaning they are
inherently capable of achieving super- or sub-resolution [55, 64, 86, 94] and also typically benefit from
desirable properties such as discretisation invariance [55]. Neural operators have shown impressive
performance [12, 16, 40, 64, 86], even learning different physics at the same time [58, 74]. However,
many state-of-the-art neural operators such as Fourier neural operators [64] and convolutional neural
operators [86] require structured data as input. Additionally, such methods are designed for learning
maps between two spatially dependent functions, and not from a global parameter to a PDE solution,
as in the simplified yet more common MOR setting. With the exception of the general neural
operator transformer [40], existing neural operators therefore do not take global parameters as
input.

4.3. Graph neural networks. PDEs are often posed on complex domains, giving rise to unstruc-
tured meshes when computing numerical solutions. Similarly, experimental data is also rarely present
on structured grids. As a result, training data for MOR is best considered as graph-based data, ne-
cessitating methods that can handle such unstructured meshes. GNNs have arisen in recent years
as powerful tools to learn on graphs, and have already celebrated remarkable successes in modelling
complex physics problems [9, 44, 60]. These methods aim to enforce some geometric structure to a
problem by embedding geometric priors into the model. Much work (reviewed in [66, 101, 102]) has
been dedicated to the the generalisation of pooling, unpooling and convolutional layers for graph-
based data. GNNs are also not without limitations, with known issues for many graph convolutions
such as reduced expressive power [21] and oversmoothing [48, 63, 91]. In the MOR context, one
seeks a map from a global parameter to a PDE solution, which can be represented as a graph. In
GNN parlance, this represents a graph unpooling operation. However, currently there exist very few
unpooling methods. In the major GNN libraries in Python, namely TF-GNN [27], PyG [29] and
DGL [98], there currently exists only one single graph unpooling layer, the k-nn interpolation layer,
which is non-trainable and therefore clearly unsuitable for MOR.
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5. Graph Feedforward Network (GFN)

As we discussed before, machine learning approaches for MOR usually exploit neural network
layers which are not suitable for dealing with multifidelity data. Specifically, in the GNN context
there is a lack of suitable unpooling layers for mapping from an input vector to an output graph,
allowing for multi-resolution approaches. Given that feedforward networks have been heavily used
in MOR, regardless of their potential inconsistencies, in this work we present GFNs, a generalisation
of feedforward networks capable of leveraging data on any discretisation.

Prior to presenting the method, we fix some notation and conventions for ease of reading, also
providing their graphical illustrations in Figure 3.

• A mesh M is an ordered collection of nodes (co-ordinates), without any duplicates2.
• iM denotes an index associated to a node in M, defined by the ordering of the mesh M.

Thus, the position of a node of index iM is given as M [iM ].
• iMo

← jMn
means that the node of index iMo

in the mesh Mo is the nearest neighbour of
the node of index jMn

in the mesh Mn, i.e., iMo
= argminkMo

|Mn [jMn
]−Mo [kMo

]|.
• iMo

→ jMn
means that the node of index jMn

in the mesh Mn is the nearest neighbour3 of
the node of index iMo

in the mesh Mo, i.e., jMn
= argminkMn

|Mn [kMn
]−Mo [iMo

]|.
• iMo

←/→jMn
means that either iMo

← jMn
or iMo

→ jMn
.

• iMo
←→ jMn

means that both iMo
← jMn

and iMo
→ jMn

.

Figure 3. Illustration of the arrow notations used in this work.

5.1. Feedforward networks for multifidelity data. Numerous state-of-the-art ROMs such as
GCA-ROM [77] and DL-ROM [33] employ autoencoder-based approaches for MOR. In its simplest
possible form, a standard feedforward network for an autoencoder task on an unstructured mesh
Mo with |Mo| = No nodes consists of a single-layer encoder and single-layer decoder defined as

enc(uMo
)i = σ

 No∑
jMo=1

W e
ijMo

ujMo
+ bei

 , ∀i = 1, · · · , L,(3)

dec(z)iMo
=

L∑
j=1

W d
iMoj

zj + bdiMo
, ∀iMo

= 1, · · · , No,(4)

where uMo
∈ RNo is an input sample on the mesh Mo, z ∈ RL is a latent vector, σ is an activation

function, W e ∈ RL×No and be ∈ RL are the encoder weights and biases, respectively, and W d ∈
RNo×L and bd ∈ RNo are the decoder weights and biases, respectively. The reconstruction loss to
optimise is simply given as ||dec (enc(uMo

))− uMo
||22, thus defining the machine learning task. We

note that the encoder and decoder weights W e
jiMo

, W d
iMoj

and the decoder bias bdiMo
are all associated

to a node iMo
. Consequently, we can regard these weights and biases as belonging to a node in the

2We representM as a set, whose ordering is arbitrary and not important here, provided it is fixed for a given set.
3Note that we could write iMo

→ jMn
as jMn

← iMo
and likewise iMo

← jMn
as jMn

→ iMo
. However, for

readability we adopt the convention that nodes pertaining toMo are given on the left side of the expression.
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mesh Mo, meaning that each has a spatial location given by the node’s position. An illustration of
this is shown for an autoencoder in Figure 4.

Figure 4. Single-layer graph feedforward autoencoder architecture. As shown via
shading, the columns of the encoder weight matrix and the rows of the decoder
weight matrix are associated to the individual nodes in the mesh Mo.

Now, we suppose that we have a trained autoencoder defined above performing well on the
unstructured mesh Mo, and we wish to use this autoencoder on a new similar mesh Mn with
|Mn| = Nn nodes. This is not possible for standard feedforward network, even if it is intuitively
clear that one should be able to leverage the information from the previous model. As a result,
we introduce the notion of a GFN and use the nearest neighbour information between the meshes
Mo and Mn to generalise the autoencoder, with provable guarantees and desirable properties.
Specifically, GFNs create a means of transforming weights and biases of the encoder and decoder

(W e, be, W d and W d) for the training meshMo to new weights and biases (W̃
e
, b̃

e
, W̃

d
and W̃

d
)

for the new meshMn, allowing for the evaluation of a feedforward network on multifidelity data. To
achieve this transform fromMo toMn, which we denote coherently asMo →Mn, while retaining
good performance, one can leverage the similarity of proximate nodes as illustrated in Figure 5.

Mathematically, the GFN transforms for Mo →Mn are defined as

(5)

W̃ e
ijMn

=
∑

∀kMo s.t kMo←/→jMn

W e
ikMo

|{hMn
s.t. kMo

←/→ hMn
}|
,

b̃ei = bei ,

W̃ d
iMnj

= mean
∀kMo s.t kMo←/→iMn

W d
kMoj

,

b̃diMn
= mean
∀kMo s.t kMo←/→iMn

bdkMo
.

Note that trivially b̃ei = bei since the encoder bias is not associated with the graph, but rather with
the latent vector. These transforms require nearest neighbour computations for all nodes in Mo

andMn, leading to algorithm with time complexity of O(No logNn +Nn logNo), using the k-d tree
method for nearest neighbour computations [11]. The predictions on the new mesh Mn then read
analogously to before as

enc(uMn
)i = σ

 Nn∑
jMn=1

W̃ e
ijMn

ujMn
+ bei

 , ∀i = 1, · · · , L,(6)

dec(z)iMn
=

L∑
j=1

W̃ d
iMnj

zj + b̃diMn
, ∀iMn

= 1, · · · , Nn,(7)

where uMn
∈ RNn is now a new input sample on the mesh Mn and the new weights and biases

W̃
e ∈ RL×Nn , b̃

e
∈ RL, W̃

d ∈ RNn×L and b̃
d
∈ RNn are given in Equation 5. Note that the

transformed weights are now associated to each of the nodes on the new mesh Mn.
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Figure 5. GFN approach to transform weights between meshes. Light blue shades
denote the original mesh with its associated W e and W d. The arrows depict how

the new weight matrices (in darker blue shades) W̃
e

and W̃
d

can be created from
the original weights and used for prediction on the new mesh.

To keep track of meshes and transforms, we denote the presented GFN approach of transforming
weights from a mesh Mo to a new mesh Mn as

W̃
e
, W̃

d
, b̃

d
= GFNMo→Mn(W e,W d, bd).(8)

Similarly, we also write encMo→Mn and decMo→Mn to track the applied transforms.
For autoencoders with multiple hidden layers, the GFN approach trivially generalises and only

needs to be applied to the first encoder layer and the last decoder layer, since these are the only
layers directly interacting with the changing meshes (for further details see Appendix A.1).

This approach of transforming via GFN thus defines a means of allowing an autoencoder, which
has been trained on single fidelity data using standard feedforward networks only, to be evaluated
on multifidelity data.

5.2. Algorithmic details. In this section, we highlight two notable instances of the possible trans-
forms Mo →Mn which lead to computational savings: the expansive and the agglomerative cases.
Demonstrative examples of agglomerative, expansive, neither agglomerative nor expansive and both
agglomerative and expansive cases are shown in Figure 6.

Figure 6. Examples of the different types of possible transforms.
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5.2.1. Expansive case. The nearest neighbour of each node iMo
inMn has iMo

as its nearest neigh-
bour inMo, i.e., the nearest neighbour of the nearest neighbour of each node iMo

is itself, following
our notation:

∀iMo
, iMo

→ jMn
=⇒ iMo

← jMn
.(9)

In such case, the transform can be simplified (see the proof in Appendix A.2) as:

(10)

W̃ e
ijMn

=
1

|{hMn
s.t. kMo

← hMn
}|
W e

ikMo
, where kMo

← jMn
,

W̃ d
iMnj

= W d
kMoj

, where kMo
← iMn

,

b̃diMn
= bdkMo

, where kMo
← iMn

.

We note that the absence of rightward arrows means we are only required to find nearest neigh-
bours of nodes in the mesh Mn and not those in Mo, reducing the algorithmic time complexity to
O(Nn logNo). The implementation of the expansive transformation with this complexity is shown
in Algorithm 1.

Algorithm 1 Simplified GFN transform in the expansive case, as given in Equation 10.

function Expand(W e ∈ RL×No ,W d ∈ RNo×L, bd ∈ RNo ,Mo,Mn)

Initialise W̃
e ∈ RL×Nn , W̃

d ∈ RNn×L, b̃
d
∈ RNn

counts← 0 ∈ RNo

for iMn
= 1 to Nn do

jMo
← nearest-neighbourMo(Mn [iMn

])
counts[jMo

]← counts[jMo
] + 1

end for
for iMn

= 1 to Nn do

jMo
← nearest-neighbourMo(Mn [iMn

])

W̃
e

[:, iMn
]←W e [:, jMo

] / counts[jMo
]

W̃
d

[iMn
, :]←W d [jMo

, :]

b̃
d

[iMn
]← bd [jMo

]
end for

return W̃
e
, W̃

d
, b̃

d

end function

5.2.2. Agglomerative case. The nearest neighbour of each node jMn
in Mo has jMn

as its nearest
neighbour in Mn, i.e., the nearest neighbour of the nearest neighbour of each node jMn

is itself,
following our notation:

∀jMn
, iMo

← jMn
=⇒ iMo

→ jMn
.(11)

In such case, the transform can be simplified (see the proof in Appendix A.3) as:

(12)

W̃ e
ijMn

=
∑

∀kMo s.t. kMo→jMn

W e
ikMo

,

W̃ d
iMnj

= mean
∀kMo s.t. kMo→iMn

W d
kMoj

,

b̃diMn
= mean

∀kMo s.t. kMo→iMn

bdkMo
.

We note that the absence of leftward arrows means we are only required to find nearest neigh-
bours of nodes in the mesh Mo and not those in Mn, reducing the algorithmic time complexity to
O(No logNn). The implementation of the expansive transformation with this complexity is shown
in Algorithm 2.
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Algorithm 2 Simplified GFN transform in the agglomerative case, as given in Equation 12.

function Agglomerate(W e ∈ RL×No ,W d ∈ RNo×L, bd ∈ RNo ,Mo,Mn)

Initialise W̃
e ∈ RL×Nn , W̃

d ∈ RNn×L, b̃
d
∈ RNn

counts← 0 ∈ RNn

for iMo
= 1 to No do

jMn
← nearest-neighbourMn(Mo [iMo

])
counts[jMn

]← counts[jMn
] + 1

W̃
e

[:, jMn
]←W e [:, iMo

]

W̃
d

[jMn
, :]←

(
(counts[jMn

]− 1) W̃ d [jMn
, :] +W d [iMo

, :]
)
/ counts[jMn

]

b̃
d

[jMn
]←

(
(counts[jMn

]− 1) b̃d [jMn
] + bd [iMo

]
)
/ counts[jMn

]

end for

return W̃
e
, W̃

d
, b̃

d

end function

5.2.3. Computational advantages. For hierarchical meshes, it follows that if Mo ⊆ Mn then the
transform Mo → Mn is expansive, whereas if Mn ⊆ Mo then the transform Mo → Mn is
agglomerative. Moreover, if the transform is both expansive and agglomerative then it must hold
that ∀iMo

, iMo
←→ jMn

and ∀jMn
, iMo

←→ jMn
, i.e. there is a one-to-one correspondence between

nodes in the original meshMo and in the new meshMn, and the GFN transforms reduce to nearest
neighbour interpolation of the weights.

However, for general meshes a transform can be both, neither or one of expansive and agglom-
erative. Despite this, notably any general GFN transform can be expressed as a succession of an
expansive update and an agglomerative update, (proof in Appendix A.5) i.e. Equation 5 is equivalent
to defining the new mesh

M =Mo ∪ {Mn [iMn
] s.t. jMo

← iMn
but not jMo

→ iMn
},(13)

and computing the transform in two steps, as

(14)

Ŵ e
ijM

= 1
|{hM s.t. kMo←hM}|W

e
ikMo

, where kMo
← jM ,

Ŵ d
iMj = W d

kMoj
, where kMo

← iM ,

b̂diM = bdkMo
, where kMo

← iM ,

 Expansion step

followed by

(15)

W̃ e
ijMn

=
∑
∀kM s.t. kM→jMn

Ŵ e
ikM

,

W̃ d
iMnj

= mean
∀kM s.t. kM→iMn

Ŵ d
kMj ,

b̃diMn
= mean
∀kM s.t. kM→iMn

b̂dkM
.

 Agglomerative step

The general GFN algorithm can thus be easily expressed as in Algorithm 3, with a demonstrative
illustration of this interpretation in Figure 7.

6. Graph Feedforward Network Reduced Order Model (GFN-ROM)

Having defined GFNs as a means of evaluating trained autoencoders on multifidelity data, we
leverage them to propose a reduced order model capable of being evaluated on arbitrary meshes.
As depicted in Figure 8, the proposed GFN-ROM architecture consists of two components: an
autoencoder and a mapper. The autoencoder is based on GFNs, while the mapper can be any
neural network model which maps the fixed-size vector parameters directly to the fixed-size latent
representation. Notice that, within this parametric context, the mapper does not need to be defined
using GFNs since it does not deal with graph-structured data.
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Algorithm 3 General GFN transform leveraging an expansion step followed by an agglomerative
update, as given in Equation 5.

function GFN(W e ∈ RL×No ,W d ∈ RNn×L, bd ∈ RNo ,Mo,Mn)
M =Mo ∪ {Mn [iMn

] s.t. jMo
← iMn

but not jMo
→ iMn

}
Ŵ

e
, Ŵ

d
, b̂

d
← Expand(W e,W d, bd,Mo,M)

W̃
e
, W̃

d
, b̃

d
← Agglomerate(Ŵ

e
, Ŵ

d
, b̂

d
,M,Mn)

return W̃
e
, W̃

d
, b̃

d

end function

Figure 7. The GFN transform can be thought about as applying an expansive
update followed by an agglomerative update.

GFN-ROM is inspired by recent state-of-the-art autoencoder-based models such as DL-ROM
[33], which uses standard convolutions, and GCA-ROM [77], which uses graph convolutions. In
fact, GFN-ROM can be regarded as an extension of such methods. Like both models, we train the
GFN-ROM model based on a weighted sum of two losses: the reconstruction loss and the mapper
loss. Given a GFN-ROM model with weights defined on a meshMo, the per-example loss functions
are defined for the tth training sample

(
µt, uMt

n
(µt)

)
, defined on the t-th mesh Mt

n and for the
t-th parameter value µt, as

Lrecon[µt,uMt
n
(µt)] =

1

|Mt
n|
||decMo→Mt

n

(
encMo→Mt

n(uMt
n
(µt))

)
− uMt

n
(µt)||22,(16)

Lmap[µt,uMt
n
(µt)] =

1

L
|| encMo→Mt

n(uMt
n
(µt))−map(µt)||22.(17)

The overall loss is given as a weighted mean of these losses over a set {
(
µt, uMt

n
(µt)

)
}Tt=1 of T

training examples

L =
1

T

T∑
t=1

|Mt
n|∑T

s=1 |Ms
n|
(
Lrecon[µt,uMt

n
(µt)] + ωLmap[µt,uMt

n
(µt)]

)
,(18)
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Figure 8. GFN-ROM architecture, consisting of an autoencoder and a mapper.
During inference, predictions can be computed by decoding the mapper output.

where we have introduced the mapper weight hyperparameter ω. We note that at inference, the
encoder is no longer required and, for a parameter µt and mesh Mt

n, a GFN-ROM model with

weights defined on a mesh Mo predicts decMo→Mt
n(map(µt)).

6.1. Main features of the architecture. The proposed GFN-ROM architecture benefits from a
number of desirable properties that we discuss in the following sections, which make it an attractive
tool for applications with multifidelity data.

6.1.1. Self-consistency. The GFN transforms are self-consistent approaches, meaning that a series
of two transforms from Mo to Mn and then back to Mo recovers exactly the original weights
W e,W d, bd provided that the transform Mo to Mn is expansive, i.e.

W e,W d, bd = GFNMn→Mo(GFNMo→Mn(W e,W d, bd)).

The self-consistency, a proof of which is given in Appendix A.4, is a marked advantage in comparison
to any other interpolation methods such as Kriging, linear regression, spline, and kNN (with the
exception of the case k = 1). This means that no information is lost during the expansive transform
and the original weights can be directly recovered, unlike for other interpolation-based approaches.

6.1.2. Bound on super- and sub-resolution error of GFN-ROM. GFN-ROM is a resolution-invariant
architecture, meaning one is often interested in evaluating the model on a finer discretisation (super-
resolution) or coarser discretisation (sub-resolution) compared to a reference resolution. A partic-
ularly attractive feature of the architecture is that one can bound the performance on any testing
fidelity given certain information. Specifically, given a bound δ on the difference between the fea-
tures of nearest neighbours, and a bound τ on the performance of GFN-ROM on the known mesh
Mo, i.e.4

∀iMo
, iMo

←/→jMn
=⇒

∣∣u(xiMo
)− u(xjMn

)
∣∣ ≤ δ,(19)

∀iMo
,
∣∣∣u(xiMo

)− decMo→Mo(map(µ))iMo

∣∣∣ ≤ τ,(20)

one can show that the performance of GFN-ROM on the new mesh Mn can be bounded as:

∀iMn
,
∣∣∣u(xiMn

)− decMo→Mn(map(µ))iMn

∣∣∣ ≤ τ + δ.(21)

A proof is given in Appendix A.6. We note that there is no dependence at all on the weights and
biases, only on the mesh similarities and the GFN-ROM performance on the reference resolution.

4We use the notation u(xiMo
), equivalent to uiMo

, in order to emphasise the dependence of u on spatial position.
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6.1.3. Bound on super- and sub-resolution error of the GFN-ROM mapper. Given the same bound
δ as in Equation 19, and a bound α on the performance of the mapper on the known meshMo, i.e.

∀i,
∣∣map(µ)i − encMo→Mo(uMo

)i
∣∣ ≤ α,(22)

one can show that the performance of the mapper on the new mesh Mn can be bounded as:

∀i,
∣∣map(µ)i − encMo→Mn(uMn

)i
∣∣ ≤ α+ δCP+1||W e||∞.(23)

A proof is given in Appendix A.7.

6.1.4. Bound on super- and sub-resolution error of the GFN-ROM autoencoder. Given the same
bound δ as in Equation 19, and a bound β on the performance of the autoencoder on the known
mesh Mo, i.e.

∀iMo
,
∣∣∣u(xiMo

)− decMo→Mo(encMo→Mo(uMo
))iMo

∣∣∣ ≤ β,(24)

one can show that the performance of the autoencoder on the new mesh Mn can be bounded as:

(25) ∀iMn
,
∣∣∣u(xiMn

)− decMo→Mn(encMo→Mn(uMn
))iMn

∣∣∣ ≤ β + δ + δCQ+1||W d||∞||W e||∞.

A proof is given in Appendix A.8. The dependence on the norm of the weights in the bound suggests
that regularisation is important to allow for good generalisation for the autoencoder.

6.2. Link between GFN-ROM and novel architectures. Following the discussion in Sec-
tion 4.2 and Section 4.3, we discuss here how GFN-ROM is connected with state-of-the-art resolution
invariant approaches.

6.2.1. GNNs and GFN-ROM. Concerning graph neural networks, we can interpret a GFN encoder
layer and a GFN decoder layer as two different types of GNN: namely, a graph pooling layer and a
graph unpooling layer, respectively. We can consider the input to the autoencoder, which is some
PDE solution u(x,µ) evaluated on some discretized domain, as a fully connected graph. The GFN
encoder layer is then tasked with computing a vector representation summarising the input graph,
i.e. a graph pooling task. The GFN decoder layer has precisely the opposite task of reconstructing a
graph given a summarised representation i.e. graph unpooling. At inference, the overall GFN-ROM
architecture can thus be thought of as a graph unpooling model, where the PDE solution is identified
by the parameters µ.

6.2.2. NOs and GFN-ROM. A parameterised PDE with a parameter a ∈ A and solution u ∈ U ,
where A and U are Banach spaces, defines a mapping G† : A → U , i.e. u(x) = G†[a](x). A neural
operator aims to directly approximate this mapping G† by means of an operator Gθ ≈ G† with
trainable parameters θ. A single-layer neural operator can be written as

Gθ = Q ◦ σ(W +K + b) ◦ P,
where P, Q are the local lifting and projection mappings, W is a local linear operator (matrix), K
is an integral kernel operator, b is a bias function and σ is a pointwise activation function. We refer
to Kovachki et al. for further details [55]. Considering a simplified neural operator with W = 0 and
no lifting or projection mappings, we obtain

Gθ[v](y) = σ

(∫
D

κ(x, y)v(x) dx+ b(y)

)
,(26)

where κ is a kernel function and D is the domain of integration. Usually, one does not have complete
access to the function v(x), but only to its evaluations at certain points, meaning this integral has to
be numerically computed. Supposing we are given function evaluations on a meshM, the numerical
approximation of the integral reads as

Gθ[v](y) ≈ σ

∑
iM

hiMκ(xiM , y)v(xiM ) + b(y)

 ,(27)

where hiM is a factor depending on the integration method.
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GFN-ROM is closely related to NOs. In fact, in the expansive case, GFN-ROM can be recast as
a particular instance of NOs, since we can directly obtain both the encoder and decoder. To make
the link with GFN-ROM, we start with the mesh Mo, the associated weights and biases (W e, be,

W d, bd), and choose a particular kernel κ.
Starting from Equation 26, discarding the y-dependence and taking D = Ω, b = bei , and κ(x) =

W e
ikMo

/|BkMo
| where kMo

← x, and BkMo
= {x ∈ Ω | kMo

← x}, one can write5

(28)

Gθ[u] = σ

(∫
D

κ(x)u(x) dx+ b

)
,

= σ

(∫
Ω

W e
ikMo

|BkMo
|
u(x) dx+ bei

)
, kMo

← x,

= σ

 No∑
kMo=1

W e
ikMo

1

|BkMo
|

∫
BkMo

u(x) dx+ bei

 .

Approximating the integral with observations of u(x) on a mesh Mn, with kMo
← jMn

, gives the
formula for the GFN-ROM encoder in the expansive case

(29)

Gθ[u] = σ

 No∑
kMo=1

W e
ikMo

mean
∀jMn s.t kMo←jMn

ujMn
+ bei

 ,

= σ

 Nn∑
jMn=1

W e
ikMo

|{hMn
s.t. kMo

← hMn
}|
ujMn

+ bei

 , where kMo
← jMn

,

= encMo→Mn(uMn
)i.

Similarly, the decoder can be obtained from Equation 26 without any x-dependence. Taking κ̃ =
|D|κ, setting σ to the identity function, κ̃(y) = W d

kMo ,:
where kMo

← y, and b(y) = bdkMo
where

kMo
← y, one obtains

(30)

Gθ[z](y) = σ

(∫
D

κ(y)z dx+ b(y)

)
,

= σ (κ̃(y)z + b(y)) ,

=

L∑
j=1

W d
kMoj

zj + bdkMo
, kMo

← y.

Considering y =Mn[iMn
], we recover the GFN-ROM decoder in the expansive case as

(31)
Gθ[z](y) =

L∑
j=1

W d
kMoj

zj + bdkMo
,

= decMo→Mn(z)iMn
.

Like the decoder, the GFN-ROM model at inference in the expansive case can be thought of as a
neural operator, but with the mapper acting as the lifting function. Thus, in such settings, GFN-
ROM encoder and decoder are very closely linked to resolution-invariant neural operators with a
choice of piecewise constant kernel function.

5We abuse notation to write kMo
← x since x is a position and not an index, but the meaning is analogous to

before, i.e. kMo
= argminhMo

∣∣Mo
[
hMo

]
− x

∣∣.
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6.2.3. ROM-related properties. In addition to the above proofs, the GFN-ROM architecture benefits
from a number of typical properties important for reduced order models. Namely, it is purely data-
driven and non-intrusive, not requiring any knowledge of the generation process for the training
data. It is furthermore a nonlinear method, leveraging an autoencoder for nonlinear compression.
The method is suitable for unstructured meshes, which is vital in order to deal with general PDEs,
where the presence of complex domains typically lead to unstructured meshes. Most importantly,
the method is a completely multifidelity approach and is capable of inference on arbitrary meshes.

7. Adaptive Multifidelity Training

The GFN method proposes a means of transferring weights from one graph Mo to a new graph

Mn as W̃
e
, W̃

d
, b̃

d
= GFNMo→Mn(W e,W d, bd), allowing one to evaluate a feedforward-based

approach on new meshes. Whilst this is already a major advantage, it does not prescribe how to
effectively train in a multifidelity setting.

In this section, we discuss means of training in multifidelity applications. We aim at learning
from a series of T meshes M1

n, · · · ,MT
n by training the GFN-ROM model with weights and biases

corresponding to a fixed or an adaptive mesh Mo. We describe below the two approaches, the
difference between which is illustrated in Figure 9.

7.1. Fixed mesh. The GFN transforms are entirely differentiable, meaning that for weights and
biases W e, W d and bd associated on a fixed mesh Mo, it is possible to compute gradients ∇W eL,
∇W dL and ∇bdL when training on new meshes. As a result, it is in fact possible to use the
standard gradient-based optimisation methods to learn the optimal weights W e, W d and bd, which
are always associated to the mesh Mo. If one considers the mesh Mo as being a suitable sampling
of the domain, this approach therefore suffices as a means of training the model in a multifidelity
setting. However, the choice of mesh Mo is extremely important for the performance of the model.
The fixed nature of Mo is also undesirable since, like interpolation approaches onto fixed grids, it
does not allow the model to adapt the mesh Mo to better match the training data it sees.

7.2. Adaptive mesh. GFN-ROM differs from interpolation onto a fixed grid since it is possible to
transform weights and biases from a coarse mesh into weights and biases for a finer mesh. Thus, one
can always overwrite the old weights and biases corresponding to the old mesh with new weights
and biases of the new mesh, and then optimise the new weights. As a result, the approach leads
to a number of advantages in allowing the architecture to adapt its number of parameters during
training. That is, instead of having a single fixed meshMo associated to the fixed weights and biases
for the model, we replace it by a master mesh Mt which can change during each training sample
t = 1, · · · , T . Importantly, the sequence of master meshes during training must be hierarchically
increasing i.e. M0 ⊆ · · · ⊆ MT , since we do not wish to lose information at any point.

A simple scheme for adaptive training could be settingMt =Mt−1∪Mt
n. However, this approach

is suboptimal since it necessarily adds every node seen during training to the master mesh. This
means that the master mesh can become prohibitively large, and result in a worse time complexity
of O((No +Nn) logNo + (No +Nn) logNn) for the transform Mo →Mn.

Instead, a better approach is possible without incurring the computational issues of the previous
algorithm. As discussed in subsubsection 5.2.3 and summarised in Algorithm 3, the GFN transforms
can be decomposed into an expansive and agglomerative part via the choice of a suitable intermediate
mesh given in Equation 13. This intermediate mesh is already computed during the GFN transforms,
meaning it does not represent an extra operation. Furthermore, the intermediate mesh is larger than
the original mesh. Therefore, it is possible to use such mesh to develop a computationally efficient
adaptive approach i.e., Mt =Mt−1 ∪ {Mt

n

[
iMt

n

]
s.t. jMt−1 ← iMt

n
but not jMt−1 → iMt

n
}.

For a transform Mo →Mn, we retain the time complexity of the non-adaptive algorithm. Fur-
thermore, this approach only adds nodes to the master mesh when the master mesh undersamples6.
We note that because the weights and biases are changing shape along with the master mesh during

6Undersampling here refers purely to nearest-neighbour information i.e., areas where a node in the master mesh

has multiple nearest neighbours are considered undersampled.
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Figure 9. Training with fixed or adaptive mesh methods when given a starting
mesh Mo and new mesh Mn. The fixed mesh approach updates the original mesh
weights, whilst the adaptive mesh approach updates weights on a new mesh M,
created from information from both meshes.

training for adaptive methods, one cannot use Adam, RMSProp or any momentum-based optimisa-
tion methods for updates7.

The training loop for GFN-ROM is given in Algorithm 4, illustrating the difference between the
adaptive and fixed mesh modes.

Algorithm 4 Training algorithm for GFN-ROM, showing both adaptive and fixed mesh approaches.

Require: T training samples of parameter and solution pairs i.e. {
(
µt, uMt

n
(µt)

)
}Tt=1

Initialise a mesh Mo with associated GFN weights W e,W d, bd

Initialise θ: all parameters needed for GFN-ROM excluding W e,W d, bd

for t← 1, . . . , T do
M =Mo ∪ {Mt

n

[
iMt

n

]
s.t. jMo

← iMt
n

but not jMo
→ iMt

n
}

if adaptive then ▷ adaptive mode
W e,W d, bd ← Expand(W e,W d, bd,Mo,M)
Mo ←M
W̃

e
, W̃

d
, b̃

d
← Agglomerate(W e,W d, bd,Mo,Mn)

else ▷ fixed mode

Ŵ
e
, Ŵ

d
, b̂

d
← Expand(W e,W d, bd,Mo,M)

W̃
e
, W̃

d
, b̃

d
← Agglomerate(Ŵ

e
, Ŵ

d
, b̂

d
,M,Mn)

end if

Compute loss L(µt,uMt
n
; W̃

e
, W̃

d
, b̃

d
, θ)

Update parameters W e,W d, bd, θ using gradients ∇W eL, ∇W dL, ∇bdL, ∇θL
end for

7In practice, we often know all of the training fidelities we shall see during training. In such cases, the final mesh

MT can be precomputed and the model trained as for a fixed mesh.
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8. Numerical Simulations

Having introduced the GFN-ROM architecture, providing guarantees on super- and sub-resolution
errors, we examine its performance on three challenging benchmarks for MOR. We compare the
results of the methodology to intrusive and non-intrusive ROMs: namely, POD-Galerkin (POD-
G) and POD with projection (representing the best possible linear method), POD-NN [47, 76]
and GCA-ROM [77]. For fairness, we strive to make the MOR baselines for the different models
as comparable as possible by adopting similar architectural and hyperparameter choices between
methods, as shown in Appendix B.1. Importantly, we do not fine tune the architecture or seek the
best possible initialisation for each specific problem. As such, we stress that these results do not
represent the best possible performance, but illustrate that GFN-ROM is able to directly handle
several challenging benchmarks with no specific fine tuning. As a general rule, we have chosen a
latent/reduced dimension N,L = ⌊1.5 × Nµ⌋, and the small-data regime with a train/test split of
30/70.

Each of the problems examined here are selected to showcase a different physical or computa-
tional complexity. The first two benchmarks have been previously investigated with GCA-ROM [77],
which we use as a baseline for nonlinear reduction – namely the Graetz problem and an advection-
dominated problem. Furthermore, we examine a Stokes flow benchmark with a 7-dimensional pa-
rameter space to illustrate the model’s capability of dealing with high-dimensional physical and
geometric parameter spaces, and the low data regime with sparse samplings of the parameter space.
Training data is generated via finite element methods using the RBniCS package [90], which is built
on top of the FEniCS package [1, 67]. For each problem, we consider four meshes in order to test
the multifidelity performance of our architecture8.

The results for single fidelity experiments across our baselines are shown in Table 1.

POD-G POD-Proj POD-NN GCA-ROM GFN-ROM
Large Large Large Large Large Medium Small Tiny

Graetz 3.44 3.44 3.54 0.74 1.02 0.88 0.98 1.28
Advection 27.09 25.66 30.58 4.73 4.73 4.48 7.22 12.35

Stokes 2.45 2.45 2.94 4.63 4.24 4.12 4.44 5.55

Table 1. Mean relative errors (%) evaluated on large mesh.

Since GFN-ROM is capable of being trained on multifidelity data, we investigate its generalisation
ability across different resolutions. In Table 2, we report the change in performance of GFN-ROM
when one substitutes half of the training data with cheaper, lower-fidelity data.

GFN-ROM
Large & Large & Large & Medium & Medium & Small &
Medium Small Tiny Small Tiny Tiny

Graetz 0.96 (+0.06) 0.98 (+0.04) 1.40 (-0.37) 4.44 (-3.56) 1.03 (-0.15) 1.09 (-0.11)
Advection 5.02 (-0.30) 5.35 (-0.62) 5.63 (-0.91) 5.22 (-0.73) 6.27 (-1.79) 8.77 (-1.55)

Stokes 3.63 (+0.61) 4.94 (-0.70) 4.44 (-0.19) 4.51 (-0.39) 5.56 (-1.45) 5.65 (-1.21)

Table 2. Mean relative errors (%) evaluated on large mesh, and the change when
training only with the finer of the two in Table 1. A positive change indicates
reduced error and thus better performance.

GFN-ROM is a more lightweight and flexible method compared to existing state-of-the-art ROMs.
We show the method’s computational efficiency with respect to GCA-ROM in Table 3. GFN-ROM
offers large savings in terms of training time (up to 63x reduction) and in terms of the number of
trainable parameters (up to 25x reduction). All simulations have been performed on a workstation
equipped with an Nvidia Quadro RTX 4000 GPU.

8The meshes are generated from the largest mesh by using the moving front subsampling algorithm [61].
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GFN-ROM GCA-ROM
Large Medium Small Tiny Large

Training time (s) 119 46 31 26 600
Trainable parameters 2 898 761 911 004 311 910 115 821 2 898 795Graetz

Mesh nodes 7205 2248 (31%) 754 (10%) 265 (4%) 7205
Training time (s) 124 53 34 23 408.9

Trainable parameters 3 538 757 1 110 702 387 298 140 282 3 538 791Advection
Mesh nodes 8801 2746 (31%) 942 (11%) 326 (4%) 8801

Training time (s) 248 90 45 31 1949
Trainable parameters 2 827 589 905 596 316 126 118 032 2 827 623Stokes

Mesh nodes 7019 2226 (32%) 756 (11%) 262 (4%) 7019

Table 3. Computational efficiency of GFN-ROM in comparison to GCA-ROM,
and its scaling w.r.t. the mesh size.

8.1. Graetz problem. The Graetz problem represents a common benchmark in MOR, combining
a forced heat diffusion with horizontal heat advection in a parametrised geometry. Specifically, we
study a steady-state Graetz problem on the parametrised geometry Ω(µ1) = Ω1∪Ω2(µ1) ∈ R2, with
Ω1 = [0, 1]× [0, 1] and Ω2(µ1) = [1, 1 + µ1]× [0, 1] illustrated in Figure 10a, and discretised by four
meshes as summarised in Table 3.
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Figure 10. (A) The parameterised domain for the Graetz problem. (B) Mean
relative errors for GFN-ROM trained on the large mesh for the Graetz problem.
Squares indicate the parameter realisations seen during training.

Homogeneous Dirichlet conditions are imposed on ΓD = Γ1 ∪Γ5 ∪Γ6, whilst a constant Dirichlet
boundary condition is imposed on ΓG = Γ2(µ1) ∪ Γ4(µ1) as u(µ)|ΓG

= 1. The remaining boundary
Γ3(µ1) is given a homogeneous von Neumann boundary condition. The weak formulation of the
Graetz problem reads as follows: given µ ∈ P, find u(µ) ∈ U(µ1) s.t.

µ2

∫
Ω(µ1)

∇u · ∇v dΩ +

∫
Ω(µ1)

y(1− y)
∂u

∂x
v dΩ = 0, ∀v ∈ V,(32)
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where U(µ1) = {v ∈ H1(Ω(µ1)) : v|ΓD
= 0, v|ΓG

= 1} and V(µ1) = {v ∈ H1(Ω(µ1)) : v|ΓD∪ΓG
= 0}.

Note that due to the parametrised domain, these function spaces are dependent on the geometric
parameter. This problem is parametrised by µ = (µ1, µ2), where µ1 is a geometrical parameter
governing the length of Ω2, and µ2 is a physical parameter, namely the diffusivity coefficient. We
consider a dataset with 200 snapshots computed on a uniform grid of P, with 10 and 20 equispaced
values for µ1 ∈ [1, 3] and µ2 ∈ [0.01, 0.1], respectively.

Training and testing the performance on GFN-ROM on the largest mesh, we achieve a mean
relative error of 1.02% over the full dataset. As illustrated in Figure 10b, we can see GFN-ROM
is well able to capture the overall solution. Note that this performance is very good, particularly
considering only 60 parameter realisations are seen for training, and the model learns a latent
representation of size L = 3. Interestingly, for the Graetz problem we see that errors are much higher
for small values of µ2 i.e. in the low diffusivity region, where the advection dominates. Moreover,
few training samples are representing this regime, making it more difficult for GFN-ROM to learn
how to model the region.

Nonetheless, the overall performance on GFN-ROM is extremely good on this benchmark, achiev-
ing over a 3x reduction in mean relative error compared to linear methods (see Table 1), and com-
parable performance to GCA-ROM.
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(d) Training on tiny mesh.

Figure 11. GFN-ROM solution fields for the Graetz problem when trained on
(A) large mesh, (B) medium mesh, (C) small mesh, and (D) tiny mesh. The mesh
points are shown by white pluses.

Moreover, we can further improve the performance of GFN-ROM by leveraging its resolution
invariance. In fact, when training on a coarser representation, e.g. the medium mesh, the mean
relative error is reduced to 0.88%, illustrating the new opportunities arising from GFN-ROM’s
ability to perform super-resolution. Even when training on the coarsest (tiny) discretisation, the
mean relative error increases only slightly by 0.26% to 1.28% despite this representing only 4% of the
training data. In Figure 11, we show the predictions of the four different GFM-ROM models trained
on the four different meshes for a parameter realisation µ = (1.44, 0.06) not seen during training.
The model predictions are qualitatively indistinguishable, showing that GFN-ROM is capable of



GFN FOR REDUCED OPERATOR LEARNING IN MULTIFIDELITY APPLICATIONS 21

extracting enough information even on cheaper computational data without incurring any penalty
on performance. Even further generalisations are possible thanks to the possibility of training on
mixed-fidelity data. GFN-ROM shows excellent generalisation properties and performance is minorly
impacted when substituting high-fidelity data for lower-fidelity data, as seen in Table 2. For example,
the performance even improves from 1.02% when training solely on the large mesh to 0.96% when
substituting half of the large mesh dataset with cheaper data from the medium mesh (representing
a 35% reduction in training data).

8.2. Advection-dominated problem. Advection-dominated problems, due to the slow decay of
the Kolmogorov n-width [36, 73], represent an important benchmarking case in the ROM context to
compare linear and nonlinear reduction strategies. We consider a fixed domain Ω = [0, 1]×[0, 1] ∈ R2,
illustrated in Figure 12a with homogeneous Dirichlet boundary conditions. We generate four meshes
summarised in Table 3.
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Figure 12. (A) The parameterised domain for the advection problem. (B) Mean
relative errors for GFN-ROM trained on the large mesh for the advection problem.
Squares indicate the parameter realisations seen during training.

The weak formulation of the advection problem reads as follows: given µ ∈ P, find u(µ) ∈ V s.t.

D(µ1)

∫
Ω

∇u · ∇v dΩ +

∫
Ω

(β · ∇u)v dΩ =

∫
Ω

v dΩ, ∀v ∈ V = H1
0 (Ω).(33)

A total of 100 snapshots are generated for this problem on a uniform grid of P, with 10 and 10
equispaced values for µ1 ∈ [0, 6] and µ2 ∈ [−1, 1], respectively. The first parameter µ1 determines
the diffusion coefficient via D(µ1) = 10−µ1 and the second parameter µ2 determines the strength
and sign of the transport β(µ2) = (µ2, µ2).

As expected, POD-based techniques perform poorly due to their linear nature on this benchmark,
with POD-G only achieving a mean relative error of 27.09% over the full dataset. GFN-ROM’s
nonlinear nature allows it to achieve a far superior mean relative error of only 4.73% when training
on the large mesh, which matches GCA-ROM’s performance. We show the relative errors over the
parameter space in Figure 12b. We stress that this performance is possible even in the low data
regime with only 30 training examples and a small latent representation of size L = 3. Contrarily
to the Graetz problem, it can be seen that poorer performances occur for lower Péclet numbers
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(Pe ≈ | µ2

10−µ1
|) compared to higher Péclet numbers i.e. the model performs better when transport

dominates. This is likely due to the fact that the model training data is skewed towards examples
where the advection in the opposite direction dominates, making it less adept at predicting solutions
where diffusion has a stronger impact and the µ2 is positive.

On this benchmark, GFN-ROM’s resolution invariant nature allows for training on cheaper
meshes, and outperforming GCA-ROM, achieving a mean relative error of 4.48% when training
on the medium mesh (69% reduction in training data). In Figure 13, we show the predictions of the
GFN-ROM models trained on the four meshes for a parameter µ = (3.33,−0.78) not seen during
training. Qualitatively, we can see that all models but tiny are capable of learning well-enough the
solution dynamics. The tradeoff to consider is of course given by the performance of large models
and the computational efficiency of the smaller ones. Similarly to the Graetz benchmark, we also
observed good generalisation for the multifidelity cases, as shown in Table 2.
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Figure 13. GFN-ROM solution fields for the advection problem when trained on
(A) large mesh, (B) medium mesh, (C) small mesh, and (D) tiny mesh. The mesh
points are shown by white pluses.

8.3. Stokes problem. We now consider a more complex benchmark in computational fluid dy-
namics, modelling a steady-state Stokes flow problem with high-dimensional physical/geometric
parameter space and sparse sampling of it. This setting makes the problem particularly challenging
to learn, and an important test case for the ability of a ROM to deal with the low-data regime. For
simplicity, we consider the case of a viscosity of fixed value 1, but we allow for a variable forcing term
f = (0, µ6), governed by a physical parameter µ6. We also consider a total of 6 geometrical param-
eters µgeo = (µ0, µ1, µ2, µ3, µ4, µ5), to deform the domain depicted in Figure 14. We generate four
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(0, µ0 + µ2 + µ3) (µ1, µ0 + µ2 + µ3)

(µ1 + µ4, µ0 + µ2 + µ4 tan(µ5))

(µ1 + µ4, µ2 + µ4 tan(µ5))

(0, µ0 + µ2)

(0, µ2)

(0, 0) (µ1, 0)

Ω(µgeo)Γw

ΓN

ΓN

Γw

Γw

Γin

Figure 14. The domain for the Stokes problem.

meshes summarised in Table 3. As boundary conditions, the inlet Γin is given a Dirichlet boundary
condition of uin = [4(y − 1)(2 − y), 0], the walls Γw are given zero Dirichlet boundary conditions
and the outlet ΓN is left as a homogeneous Neumann boundary condition. A weak formulation for
this problem reads: for a given parameter µ ∈ P, find u(µ) ∈ U, p ∈M s.t.

{∫
Ω
∇u : ∇v dΩ−

∫
Ω
p∇ · v dΩ =

∫
Ω
f · v dΩ, ∀v ∈ V,∫

Ω
q∇ · u dΩ = 0, ∀q ∈M,

(34)

where the parameter dependent function spaces for the velocity are defined as V(µgeo) = {v ∈
(H1(Ω(µgeo))2 : v|Γw∪Γin

= 0} and U(µgeo) = {v ∈ (H1(Ω(µgeo)))2 : v|Γw
= 0,v|Γin

= uin}, and
the function space for the pressure is defined as M(µgeo) = L2(Ω(µgeo)). The problem uses a mixed
finite element discretisation with the velocity and pressure as solution variables, meaning that the
inf-sup condition is necessary for the well posedness of this problem and as a result the supremiser
operator Tµ : M→ V is used (see [6] for more details).

We consider a sparse sampling with solutions computed only for the following parameter choices:
µ0, µ1, µ2, µ3, µ4 ∈ {0.5, 1.5}, µ5 ∈ {−π

6 ,
π
6 }, µ6 ∈ {−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10}, leading to a

total of 704 high-fidelity solutions, and the field of interest is the magnitude of the the velocity |u|.
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Figure 15. Histogram of the mean relative error for GFN-ROM trained on the
large mesh for the Stokes problem.
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Training on the large mesh, GFN-ROM achieves a mean relative error of 4.24%, outperforming
GCA-ROM. We stress that this performance is possible whilst remaining in the low data regime,
undersampling the parameter space. Despite this, the model is well able to capture the solution.
As shown in Figure 15, model performance is found to be very similar on average for the possible
geometrical parameters, while, as expected, the results are more sensitive to the physical parameter
µ6, with slightly worse approximation for the case µ6 = 0 where the forcing term vanishes.

GFN-ROM shows even further performance improvements by training on cheaper computational
meshes, achieving a mean relative error of 4.12% for the medium mesh (representing a 68% reduction
in the number of nodes). Even when training on the coarsest discretisation with just 4% of the data,
performance only increases to 5.55% and is still able to capture the behaviour with respect to the
physical and geometric parameters not seen during training, respectively in Figure 16 and Figure 17.
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Figure 16. Super-resolution via GFN-ROM when training on the tiny mesh and
evaluating on large mesh for variations in the physical parameter µ6 showcasing
downward, none and upward forcings.
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Figure 17. Super-resolution via GFN-ROM when training on the tiny mesh and
evaluating on large mesh for variations in the geometrical parameters.
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Once again, the complex parametric variability and the scarce amount of information (train-
ing on 211 parameter realisations for the 7-dimensional parameter space) do not compromise the
generalisation capability of the methodology.

We also see excellent results for multifidelity training. In general, performances are only minorly
affected when substituting half of the data for cheaper data, underlining the possibility of training
on cheaper data whilst retaining excellent performance. It is even possible to achieve a better
performance of 3.63% by replacing 50% of data on the large mesh with cheaper data on the medium
mesh (representing a 34% reduction in training data), as detailed in Table 2.

9. Conclusion

In this work, we presented a novel graph-based resolution-invariant ROM, as a powerful tool to
investigate multifidelity applications in the MOR context. We showed that it is possible to apply
feedforward networks for graphical data by means of the graph feedforward network, allowing for the
extension of many single-fidelity architectures to the multifidelity setting. Furthermore, we showed
that this extension comes with provable guarantees on the performance in terms of error bounds.

Beyond such theoretical guarantees, we have also demonstrated that our architecture performs
well in practice on three challenging benchmarks involving parametrised domains, advection-dominated
problems and high-dimensional parameter spaces. Across all benchmarks, GFN-ROM achieved sat-
isfactory performances, especially considering we worked within a low-data regime. Indeed, like
GCA-ROM, our architecture has been trained on only 30% of the dataset, and has been exploited
to learn a small latent representation. GFN-ROM achieved comparable or better performance than
GCA-ROM whilst being more flexible, interpretable and lightweight, and applicable for multifidelity
data.

We showed that GFN-ROM can perform super-resolution, and demonstrated that within the
proposed architecture, it is possible to substitute high-fidelity data for lower-fidelity data without
incurring performance penalties. In practice, we showed that often performance can even be im-
proved when training on cheaper computational data. Our work thus highlighted the importance of
multifidelity ROMs, showing that computational savings can be made by training on smaller meshes
without deterioration in performance.

Future work will investigate further possibilities with graph feedforward networks, including
tackling time-dependent problems, problems with spatially dependent parameters, enforcing more
smoothness in GFN-ROM predictions, forcing greater dependence on local connections and automat-
ing finding the best training mesh (adapting the number of model parameters during training). We
also plan to investigate multimodal modelling by using information from the Fourier domain, and
the generalisation of convolutional neural operators to unstructured grids.
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Appendix A. Proofs

A.1. Extension to multiple layers. For ease of notation we define each of the outputs of the
GFNMo→Mn function as

GFNMo→Mn

W e (W e), GFNMo→Mn

Wd (W d), GFNMo→Mn

bd
(bd) = GFNMo→Mn(W e,W d, bd).

The single-layer GFN autoencoder given in Equation 6 and Equation 7 can then be rewritten as

encMo→Mn(uMn
)i = σ

 Nn∑
jMn=1

GFNMo→Mn

W e (W e)ijMn
ujMn

+ bei

 , ∀i = 1, · · · , L,

decMo→Mn(z)iMn
=

L∑
j=1

GFNMo→Mn

Wd (W d)iMnjzj + bdiMn
, ∀iMn

= 1, · · · , Nn.

This can be extended to Q+ 1 hidden layers as

encMo→Mn
0 (x)i = σ

 Nn∑
jMn=1

GFNMo→Mn

W e (W e)ijMn
xjMn

+ bei

 ,

∀i = 1, · · · , L1,

encP ···1(x)i = σ

(
LP∑

lP=1

W
(P )
i,lP

σ

(
· · ·σ

(
L1∑

l1=1

W
(1)
l2,l1

xl1 + b
(1)
l2

)
+ · · ·

)
+ b

(P )
i

)
,

∀i = 1, · · · , LP+1,

decQ···P+1(x)i = σ

 LQ∑
lQ=1

W
(Q)
i,lQ

σ

· · ·σ
 LP+1∑

lP+1=1

W
(P+1)
lP+2,lP+1

xlP+1
+ b

(P+1)
lP+2

+ · · ·

+ b
(Q)
i

 ,

∀i = 1, · · · , LQ+1,

decMo→Mn

Q+1 (x)iMn
=

LQ+1∑
j=1

GFNMo→Mn

Wd (W d)iMnjxj + GFNMo→Mn

bd
(bd)iMn

,

∀iMn
= 1, · · · , Nn,

where 0 ≤ P ≤ Q, Mn is a new mesh, Li represents the output sizes for the (i + 1)-th network

layer with LP+1 = L and LQ+2 = Nn, encMo→Mn(x)i = encP ···1(encMo→Mn
0 (x))i,∀i = 1, · · · , L

is the encoded latent representation of an input x ∈ RNn on mesh Mn and decMo→Mn(z)iMn
=

decMo→Mn

Q+1 (decQ···P+1(z))iMn
,∀iMn

= 1, · · · , Nn is the reconstructed solution on Mn from a given

latent representation z ∈ RL.

A.2. Simplified expansive equations. We consider the GFN transforms Mo → Mn and show
that they can be simplified under the expansive condition given in Equation 9.

First of all, we show that the condition implies

∀iMn
, {kMo

s.t. kMo
←/→iMn

} = {kMo
s.t. kMo

← iMn
},

which is a set containing a unique element kMo
defined as kMo

← iMn
.

Proof: We have to show that {kMo
s.t. kMo

←/→iMn
} = {kMo

s.t. kMo
← iMn

}∪{kMo
s.t. kMo

→
iMn
} = {kMo

s.t. kMo
← iMn

}. If {kMo
s.t. kMo

→ iMn
} = ∅, this is trivially the case. Therefore,

in the following we consider only the case where it is not.
Trivially, |{kMo

s.t. kMo
← iMn

}| = 1 since a node iMn
can only have one nearest neighbour. In

fact, additionally we can show it is also the case that |{kMo
s.t. kMo

→ iMn
}| = 1, which can be

proven by contradiction. Suppose that |{kMo
s.t. kMo

→ iMn
}| = R ̸= 1. This means that there

exist multiple distinct nodes
{
krMo

}R
r=1

, each satisfying krMo
→ iMn

. Via the expansive condition in
Equation 9, it follows that each of these nodes must also satisfy krMo

← iMn
. This is not possible

since iMn
can only have a single nearest neighbour, meaning therefore |{kMo

s.t. kMo
→ iMn

}| = 1.
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We note that the single node in the set |{kMo
s.t. kMo

→ iMn
}| must also satisfy kMo

← iMn
due

to Equation 9. Therefore, it is in fact the exact same node as the node in the set |{kMo
s.t. kMo

←
iMn
}|, thus concluding the proof.

Secondly, we show that for a given kMo

|{hMn
s.t. kMo

←/→hMn
}| = |{hMn

s.t. kMo
← hMn

}|.

Proof: Due to Equation 9, it is the case that {hMn
s.t. kMo

→ hMn
} ⊆ {hMn

s.t. kMo
← hMn

},
concluding the proof.

The updates can therefore be simplified to

W̃ e
ijMn

=
1

|{hMn
s.t. kMo

← hMn
}|
W e

ikMo
, where kMo

← jMn
,

W̃ d
iMnj

= W d
kMoj

, where kMo
← iMn

,

b̃diMn
= bdkMo

, where kMo
← iMn

,

which therefore concludes the proof.

A.3. Simplified agglomerative equations. We consider the GFN transforms Mo → Mn and
show that they can be simplified under the agglomerative condition given in Equation 11.

First of all, we show that the condition implies

∀jMn
, {kMo

s.t. kMo
←/→jMn

} = {kMo
s.t. kMo

→ jMn
}.

Proof: Due to Equation 11, it is the case that {kMo
s.t. kMo

← jMn
} ⊆ {kMo

s.t. kMo
→ jMn

},
concluding the proof.

Secondly, we show that for a given kMo

|{hMn
s.t. kMo

←/→hMn
}| = 1.

Proof: We want to show that

|{hMn
s.t. kMo

←/→hMn
}| = |{hMn

s.t. kMo
→ hMn

} ∪ {hMn
s.t. kMo

← hMn
}| = 1.

If {hMn
s.t. kMo

← hMn
} = ∅, this is trivially the case since kMo

only has one nearest neighbour i.e.
|{hMn

s.t. kMo
→ hMn

}| = 1. Therefore, in the following we consider only the case where it is not.
With this, we can show it is also the case that |{hMn

s.t. kMo
← hMn

}| = 1, which can be proven
by contradiction. Suppose that |{hMn

s.t. kMo
← hMn

}| = R ̸= 1. This means that there exist

multiple distinct nodes
{
hrMn

}R
r=1

, each satisfying kMo
← hrMn

. Via the agglomerative condition in
Equation 11, it follows that each of these nodes must also satisfy kMo

→ hrMn
. This is not possible

since kMo
can only have a single nearest neighbour, meaning therefore |{hMn

s.t. kMo
→ hMn

}| = 1.
We note that the single node in the set |{hMn

s.t. kMo
← hMn

}| must also satisfy kMo
→ hMn

due
to Equation 11. Therefore, it is in fact the exact same node as the node in the set |{hMn

s.t. kMo
→

hMn
}|, thus concluding the proof.

The updates can therefore be simplified to

W̃ e
ijMn

=
∑

∀kMo s.t. kMo→jMn

W e
ikMo

,

W̃ d
iMnj

= mean
∀kMo s.t. kMo→iMn

W d
kMoj

,

b̃diMn
= mean

∀kMo s.t. kMo→iMn

bdkMo
,

which therefore concludes the proof.
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A.4. Self-consistency. We consider a sequence of two transforms, firstly an expansive transform
Mo →Mn, and then secondly a transform Mn →Mo. Note that if Mo →Mn is expansive, then
it must follow by definition that Mn → Mo is agglomerative. The first transform Mo → Mn is
expansive. Following Equation 9, this gives the first update as

Ŵ e
ijMn

=
1

|{hMn
s.t. kMo

← hMn
}|
W e

ikMo
, where kMo

← jMn
,

Ŵ d
iMnj

= W d
kMoj

, where kMo
← iMn

,

b̂diMn
= bdkMo

, where kMo
← iMn

.

The second transform Mo ← Mn is agglomerative (note that the transform is not Mo → Mn).
Following Equation 11, this gives the second update as

W̃ e
ijMo

=
∑

∀kMn s.t. jMo←kMn

Ŵ e
ikMn

,

W̃ d
iMoj

= mean
∀kMn s.t. iMo←kMn

Ŵ d
kMnj

,

b̃diMo
= mean

∀kMn s.t. iMo←kMn

bdkMn
.

Subbing everything in gives

W̃ e
ijMo

=
∑

∀kMn s.t. jMo←kMn

1

|{hMn
s.t. lMo

← hMn
}|
W e

ilMo
, where lMo

← kMn
,

=
∑

∀kMn s.t. jMo←kMn

1

|{hMn
s.t. jMo

← hMn
}|
W e

ijMo
,

= W e
ijMo

,

W̃ d
iMoj

= mean
∀kMn s.t. iMo←kMn

W d
lMoj

, where lMo
← kMn

,

= mean
∀kMn s.t. iMo←kMn

W d
iMoj

,

= W d
iMoj

,

b̃diMo
= mean

∀kMn s.t. iMo←kMn

bdlMo
, where lMo

← kMn
,

= mean
∀kMn s.t. iMo←kMn

bdiMo
,

= bdiMo
.

This concludes the proof.
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A.5. General GFN transform as a composition of an expansive and agglomerative trans-
form. Splitting up the summations, the general GFN transforms given in Equation 5 can be rewrit-
ten as

W̃ e
ijMn

=

 ∑
∀kMo s.t kMo→jMn

+
∑

∀kMo s.t kMo←jMn

but not kMo→jMn

 W e
ikMo

|{hMn
s.t. kMo

←/→ hMn
}|
,

W̃ d
iMnj

=
1

|{kMo
s.t kMo

←/→iMn
}|

 ∑
∀kMo s.t kMo→iMn

+
∑

∀kMo s.t kMo←iMn

but not kMo→iMn

W d
kMoj

,

b̃diMn
=

1

|{kMo
s.t kMo

←/→iMn
}|

 ∑
∀kMo s.t kMo→iMn

+
∑

∀kMo s.t kMo←iMn

but not kMo→iMn

 bdkMo
.

By defining an auxiliary mesh

M =Mo ∪ {Mn [iMn
] s.t. jMo

← iMn
but not jMo

→ iMn
},

we can convert the summations to∑
∀kMo s.t kMo→iMn

−→
∑

∀lM s.t lM→iMn

and lM∈Mo

, kMo
← lM ,

∑
∀kMo s.t kMo←iMn

but not kMo→iMn

−→
∑

∀lM s.t lM→iMn

and lM∈Mn

, kMo
← lM .

Subbing this in, this gives an updated expression for the general GFN transforms of

W̃ e
ijMn

=

 ∑
∀lM s.t lM→jMn

and lM∈Mo

+
∑

∀lM s.t lM→jMn

and lM∈Mn

 W e
ikMo

|{hMn
s.t. kMo

←/→ hMn
}|
, kMo

← lM ,

W̃ d
iMnj

=
1

|{gMo
s.t gMo

←/→iMn
}|

 ∑
∀lM s.t lM→iMn

and lM∈Mo

+
∑

∀lM s.t lM→iMn

and lM∈Mn

W d
kMoj

, kMo
← lM ,

b̃diMn
=

1

|{gMo
s.t gMo

←/→iMn
}|

 ∑
∀lM s.t lM→iMn

and lM∈Mo

+
∑

∀lMm s.t lM→iMn

and lM∈Mn

 bdiMn
, kMo

← lM .

Since it is the case by construction ofM that |{hMn
s.t. kMo

←/→ hMn
}| = |{hM s.t. kMo

← hM}|
and |{gMo

s.t gMo
←/→iMn

}| = |{lM s.t lM → iMn
}|, we can further rewrite these expressions as

W̃ e
ijMn

=
∑

∀lM s.t lM→jMn

W e
ikMo

|{hM s.t. kMo
← hM}|

, kMo
← lM ,

W̃ d
iMnj

= mean
∀lM s.t lM→iMn

W d
kMoj

, kMo
← lM ,

b̃diMn
= mean
∀lM s.t lM→iMn

bdkMo
, kMo

← lM .
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We can finally compute the transform in two steps, as

Ŵ e
ijM

= 1
|{hM s.t. kMo←hM}|W

e
ikMo

, where kMo
← jM ,

Ŵ d
iMj = W d

kMoj
, where kMo

← iM ,

b̂diM = bdkMo
, where kMo

← iM ,

 Expansion step

followed by

W̃ e
ijMn

=
∑
∀kM s.t. kM→jMn

Ŵ e
ikM

,

W̃ d
iMnj

= mean
∀kM s.t. kM→iMn

Ŵ d
kMj ,

b̃diMn
= mean
∀kM s.t. kM→iMn

b̂dkM
,

 Agglomerative step

which concludes the proof.

A.6. Super- and sub-resolution error bound for GFN-ROM. We seek a bound on the fol-
lowing quantity ∣∣∣u(xiMn

)− decMo→Mn(map(µ))iMn

∣∣∣ ,∀iMn
.

We can rewrite the expression and bound it as∣∣∣u(xiMn
)− decMo→Mn(map(µ))iMn

∣∣∣
=

∣∣∣∣∣∣u(xiMn
)−

L∑
j=1

W̃ d
iMnj

map(µ)j + b̃diMn

∣∣∣∣∣∣ ,
=

∣∣∣∣∣∣u(xiMn
)−

L∑
j=1

mean
∀kMo s.t kMo←/→iMn

W d
kMoj

map(µ)j + mean
∀kMo s.t kMo←/→iMn

bdkMo

∣∣∣∣∣∣ ,
=

∣∣∣∣∣∣u(xiMn
)− mean

∀kMo s.t kMo←/→iMn

 L∑
j=1

W d
kMoj

map(µ)j + bdkMo

∣∣∣∣∣∣
=

∣∣∣∣u(xiMn
)− mean

∀kMo s.t kMo←/→iMn

decMo→Mo(map(µ))kMo

∣∣∣∣ ,
=

∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

(
u(xiMn

)− u(xkMo
) + u(xkMo

)− decMo→Mo(map(µ))kMo

)∣∣∣∣ ,
≤ mean

∀kMo s.t kMo←/→iMn

∣∣∣u(xiMn
)− u(xkMo

) + u(xkMo
)− decMo→Mo(map(µ))kMo

∣∣∣ ,
≤ mean

∀kMo s.t kMo←/→iMn

(∣∣u(xiMn
)− u(xkMo

)
∣∣+
∣∣∣u(xkMo

)− decMo→Mo(map(µ))kMo

∣∣∣) ,
≤ mean

∀kMo s.t kMo←/→iMn

(δ + τ) ,

= δ + τ.

This concludes the proof. For the multiple layer case, the result is also the same.

A.7. Super- and sub-resolution error bound for GFN-ROM mapper. We seek a bound on∣∣map(µ)i − encMo→Mn(uMn
)i
∣∣ ,∀i.(35)
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We can rewrite the expression as∣∣map(µ)i − encMo→Mo(uMo
)i + encMo→Mo(uMo

)i − encMo→Mn(uMn
)i
∣∣

≤
∣∣map(µ)i − encMo→Mo(uMo

)i
∣∣+
∣∣encMo→Mo(uMo

)i − encMo→Mn(uMn
)i
∣∣ ,

≤ α+
∣∣encMo→Mo(uMo

)i − encMo→Mn(uMn
)i
∣∣ ,

= α+

∣∣∣∣∣∣σ
 No∑

jMo=1

W e
ijMo

u(xjMo
) + bei

− σ
 Nn∑

kMn=1

W̃ e
kMn i

u(xkMn
) + b̃ei

∣∣∣∣∣∣ .
We assume a Lipschitz condition with Lipschitz constant C for the activation function σ, which
allows us to continue bounding as

≤ α+ C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
) + bei −

 Nn∑
kMn=1

W̃ e
ikMn

u(xkMn
) + b̃ei

∣∣∣∣∣∣ ,
= α+ C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
)−

Nn∑
kMn=1

W̃ e
ikMn

u(xkMn
)

∣∣∣∣∣∣ ,
= α+ C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
)−

Nn∑
kMn=1

∑
∀mMo s.t mMo←/→kMn

W e
imMo

|{hMn
s.t. mMo

←/→ hMn
}|
u(xkMn

)

∣∣∣∣∣∣ ,
= α+ C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
)−

∑
∀kMn s.t jMo←/→kMn

u(xkMn
)

|{hMn
s.t. jMo

←/→ hMn
}|

∣∣∣∣∣∣ ,
= α+ C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

|{hMn
s.t. jMo

←/→ hMn
}|

∑
∀kMn s.t jMo←/→kMn

(
u(xjMo

)− u(xkMn
)
)∣∣∣∣∣∣ ,

= α+ C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

|{hMn
s.t. jMo

←/→ hMn
}|

∑
∀kMn s.t jMo←/→kMn

δ

∣∣∣∣∣∣ ,
≤ α+ δC

No∑
jMo=1

|W e
ijMo
|.

To obtain a bound independent of i, one can bound as

≤ α+ δC||W e||∞.

This concludes the proof. For the multiple layer case, the result is

≤ α+ δCP+1
LP∑

lP=1

|W (P )
i,lP
|

LP−1∑
lP−1=1

|W (P−1)
lP ,lP−1

| · · ·
L1∑

l1=1

|W (1)
l2,l1
|

No∑
jMo=1

|W e
l1,jMo

|,

≤ α+ δCP+1||W e||∞
P∏

p=1

||W (p)||∞.

A.8. Super- and sub-resolution error bound for GFN-ROM autoencoder. We seek a bound
on ∣∣∣u(xiMn

)− decMo→Mn(encMo→Mn(uMn
))iMn

∣∣∣ ,∀iMn
.
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To begin bounding this, we can rewrite the expression as

=

∣∣∣∣u(xiMn
)− mean

∀kMo s.t kMo←/→iMn

u(xkMo
)

+ mean
∀kMo s.t kMo←/→iMn

u(xkMo
)− mean

∀kMo s.t kMo←/→iMn

decMo→Mo(encMo→Mo(uMo
))kMo

+ mean
∀kMo s.t kMo←/→iMn

decMo→Mo(encMo→Mo(uMo
))kMo

− decMo→Mn(encMo→Mn(uMn
))iMn

∣∣∣∣ ,
≤

∣∣∣∣u(xiMn
)− mean

∀kMo s.t kMo←/→iMn

u(xkMo
)

∣∣∣∣
+

∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

u(xkMo
)− mean

∀kMo s.t kMo←/→iMn

decMo→Mo(encMo→Mo(uMo
))kMo

∣∣∣∣
+

∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

decMo→Mo(encMo→Mo(uMo
))kMo

− decMo→Mn(encMo→Mn(uMn
))iMn

∣∣∣∣ ,
≤ δ + β +

∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

decMo→Mo(encMo→Mo(uMo
))kMo

− decMo→Mn(encMo→Mn(uMn
))iMn

∣∣∣∣ .

We consider the last term in more detail. We have

∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

decMo→Mo(encMo→Mo(uMo
))kMo

− decMo→Mn(encMo→Mn(uMn
))iMn

∣∣∣∣
=

∣∣∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

 L∑
j=1

W d
kMoj

encMo→Mo(uMo
)j + bdkMo


−

L∑
m=1

W̃ d
iMnm

encMo→Mn(uMn
)m − b̃diMn

∣∣∣∣∣ ,
=

∣∣∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

 L∑
j=1

W d
kMoj

encMo→Mo(uMo
)j + bdkMo


−

L∑
m=1

mean
∀kMo s.t kMo←/→iMn

(
W d

kMom

)
encMo→Mn(uMn

)m − mean
∀kMo s.t kMo←/→iMn

(
bdkMo

)∣∣∣∣∣ ,
=

∣∣∣∣∣∣ mean
∀kMo s.t kMo←/→iMn

L∑
j=1

W d
kMoj

(
encMo→Mo(uMo

)j − encMo→Mn(uMn
)j
)∣∣∣∣∣∣ ,

≤ mean
∀kMo s.t kMo←/→iMn

L∑
j=1

∣∣∣W d
kMoj

∣∣∣ ∣∣encMo→Mo(uMo
)j − encMo→Mn(uMn

)j
∣∣ .
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We assume a Lipschitz condition with Lipschitz constant C for the activation function σ, allowing
us to bound∣∣encMo→Mo(uMo

)i − encMo→Mn(uMn
)i
∣∣

=

∣∣∣∣∣∣σ
 No∑

jMo=1

W e
ijMo

u(xjMo
) + bei

− σ
 Nn∑

kMn=1

W̃ e
kMn i

u(xkMn
) + b̃ei

∣∣∣∣∣∣ ,
≤ C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
) + bei −

 Nn∑
kMn=1

W̃ e
ikMn

u(xkMn
) + b̃ei

∣∣∣∣∣∣ ,
= C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
)−

Nn∑
kMn=1

W̃ e
ikMn

u(xkMn
)

∣∣∣∣∣∣ ,
= C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
)−

Nn∑
kMn=1

∑
∀mMo s.t mMo←/→kMn

W e
imMo

|{hMn
s.t. mMo

←/→ hMn
}|
u(xkMn

)

∣∣∣∣∣∣ ,
= C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

u(xjMo
)−

∑
∀kMn s.t jMo←/→kMn

u(xkMn
)

|{hMn
s.t. jMo

←/→ hMn
}|

∣∣∣∣∣∣ ,
= C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

|{hMn
s.t. jMo

←/→ hMn
}|

∑
∀kMn s.t jMo←/→kMn

(
u(xjMo

)− u(xkMn
)
)∣∣∣∣∣∣ ,

= C

∣∣∣∣∣∣
No∑

jMo=1

W e
ijMo

|{hMn
s.t. jMo

←/→ hMn
}|

∑
∀kMn s.t jMo←/→kMn

δ

∣∣∣∣∣∣ ,
≤ δC

No∑
jMo=1

|W e
ijMo
|.

Substituting these expressions into the original bound, we obtain

≤ δ + β + δC mean
∀kMo s.t kMo←/→iMn

L∑
j=1

∣∣∣W d
kMoj

∣∣∣ No∑
mMo=1

∣∣∣W e
jmMo

∣∣∣ .
To obtain a bound independent of i, one can bound as

≤ δ + β + δC||W d||∞||W e||∞.
This concludes the proof. For the multiple layer case, the result is

≤ β + δ + δCQ+1 mean
∀kMo s.t kMo←/→iMn

LQ+1∑
j=1

|W d
kMoj
|

LQ∑
lQ=1

|W (Q)
j,lQ
| · · ·

L1∑
l1=1

|W (1)
l2,l1
|

No∑
jMo=1

|W e
jMo l1

|,

= β + δ + δCQ+1||W d||∞||W e||∞
Q∏

p=1

||W (p)||∞.
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Appendix B. Training Details

B.1. Network architecture and hyperparameter choices.

Table 4. Network architecture and hyperparameter choices for the MOR methods.

POD-NN GCA-ROM GFN-ROM
Bottleneck size (N) ⌊1.5×Nµ⌋ ⌊1.5×Nµ⌋ ⌊1.5×Nµ⌋
Mapper weight (ω) - 10 10

Optimiser Adam Adam Adama

Learning rate 10−3 10−3 10−3

L2 regularisation 10−5 10−5 10−5

Training epochs 5000 5000 5000
Autoencoder sizes - [|M|, 200, N ] [|M|, 200, N ]
Train/test split 30/70 30/70 30/70

Autoencoder activation - ELUb Tanhb

Mapper sizes [Nµ, 50, 50, 50, 50, N ] [Nµ, 50, 50, 50, 50, N ] [Nµ, 50, 50, 50, 50, N ]
Mapper activation Tanh Tanhc Tanh

* POD-G is also undertaken with N = ⌊1.5×Nµ⌋ degrees of freedom and a train/test split of 30/70.
a We employ the precomputed adaptive method so that we can use Adam.
b Activation not applied to the last decoder layer.
c Activation not applied to the last mapper layer.
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