
Mathematics Area - PhD course in

Geometry and Mathematical Physics

Variation of gluing in homological
mirror symmetry

Candidate:
Hayato Morimura

Advisor:
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ABSTRACT

This thesis is a collection of seven papers concerned with the relationship between variation
of gluing spaces and categories in homological mirror symmetry(HMS). We divide it into three
parts according to how we vary gluing what. The first part consists of three papers on algebraic
deformations of Calabi–Yau 3-folds(CY3s), where we vary complex structures to glue locally
trivial deformations. The second part consists of two papers on cut-and-reglue procedure for
relative Jacobians of generic elliptic 3-folds, where we vary Brauer classes to glue smooth
elliptic 3-folds with sections. The third part consists of two papers on local-to-global principle
for wrapped Fukaya categories of very affine hypersurfaces(VAHs), where we vary Liouville
structures to glue pairs of pants. Our main goal of the first two parts is to construct new Fourier–
Mukai partners(FMPs), nonbirational derived-equivalent CY3s. While birational CY3s are
derived-equivalent, FMPs give highly nontrivial multiple mirrors to the dual manifolds. Our
main goal of the third part is to establish HMS for complete intersections of VAHs. Recently,
Gammage–Shende established HMS for VAHs under some assumption essential to construct a
global skeleton, which allows them to reduce gluing wrapped Fukaya categories to gluing local
skeleta. For several reasons we need a different approach to remove their assumption.

In the first paper, we prove that the derived equivalence of CY3s extends to their versal de-
formations over an affine complex variety. This is fundamental for our deformation methods to
construct new examples of FMPs. Due to the main theorem of the second paper, the derived
category of the generic fiber of a flat proper family can be described as a certain Verdier quo-
tient. As a consequence, the derived equivalence of the above versal deformations is inherited
to their generic fibers. We analyze some good cases where also nonbirationality is inherited,
establishing a deformation method to construct new FMPs from known examples. Conversely,
the description enables us to prove specialization, i.e., the derived equivalence of the generic
fibers extends to general fibers, completing all the relevant inductions of the derived equiva-
lence of CY3s through deformations. The main theorem of the third paper gives a rigorous
explanation of these phenomena. Namely, deformations of a CY3 are equivalent to Morita
deformations of its dg category of perfect complexes. We also prove that, analogous to isomor-
phisms of schemes, the derived equivalence is inherited from effectivizations to their enough
close approximations. This is an improvement of the main theorem of the first paper, expected
from the equivalence of the two deformation theories.

In the fourth paper, we prove that any flat projective family must be what we call an almost
coprime twisted power, whenever it is linear derived-equivalent over the base to a generic el-
liptic CY3. This should be the best possible reconstruction result for generic elliptic CY3s.
Combining with the main theorem of the first paper, we obtain a family of pairs of coprime
twisted powers whose closed fibers are nonbirational whenever they are nonisomorphic. Un-
winding our arguments, one sees that generic elliptic CY3s are linear derived-equivalent over
the base if and only if their generic fibers are derived-equivalent. This is the key observation
for the fifth paper where we give affirmative answers to two of the four conjectures raised by
Knapp–Scheidegger–Schimannek. Namely, we prove that each of 12 pairs of elliptic CY3s
constructed by them share the relative Jacobian and linear derived-equivalent over the base.
Except one self-dual pair, the closed fibers of the family obtained by the above combination
are nonisomorphic. Hence we obtain families of new FMPs, establishing another deformation
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method to construct FMPs. As far as we know, this is the first systematic construction of (fami-
lies of) FMPs. Moreover, it works for elliptic CY3s with higher multisections, whose examples
some string theorists have been looking for.

In the sixth paper, we establish HMS for complete intersections of VAHs. The main chal-
lenge is computing wrapped Fukaya categories of complete intersections. With the aid of
equivariantization/de-equivariantization, we reduce it to unimodular case. Proving that locally
complete intersections are products of lower dimensional pairs of pants, we reduce it further
to hypersurface case without the assumption imposed on the previous result by Gammage–
Shende. We extend it by inductive argument following Pascaleff–Sibilla which does not re-
quire any global skeleton. Besides the invariance of wrapped Fukaya categories under simple
Liouville homotopies, one key is to find Weinstein structures on the initial exact symplectic
manifold and the additional pair of pants which glue to yield that on the gluing, everytime we
proceed the inductive argument. Another is to show that also their wrapped Fukaya categories
glue to yield that of the gluing. Our method should work to compute wrapped Fukaya cat-
egories in other relevant settings. Finally, we glue HMS for pairs of pants along the global
combinatorial duality over the tropical hypersurface. The geometry of VAHs is further studied
in the seventh paper, where we complete the missing A-side of the SYZ picture over fanifolds.
This can be regarded as a generalization of that over tropical hypersurfaces.
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ALGEBRAIC DEFORMATIONS AND FOURIER–MUKAI TRANSFORMS FOR
CALABI–YAU MANIFOLDS

HAYATO MORIMURA

Abstract. Given a pair of derived-equivalent Calabi–Yau manifolds of dimension more than
two, we prove that the derived equivalence can be extended to general fibers of versal deforma-
tions. As an application, we give a new proof of the Pfaffian–Grassmannian derived equivalence.

1. Introduction

Let X0 be a Calabi–Yau manifold of dimension more than two in the strict sense, i.e., a
smooth projective variety over a field k with trivial canonical bundle and Hi(X0,OX0) = 0 for
0 < i < dim X0. Then the deformation functor

FX0 = DefX0 : Artk → Set
of X0 has a universal formal family (R, ξ), which is effective by [GD61, Theorem III 5.4.5] and
there exists an effectivization XR flat and projective over R, whose formal completion along
the closed fiber X0 is isomorphic to ξ. Since deformations of Calabi–Yau manifolds are unob-
structed, the complete local noetherian ring R is regular and we have

R � k~t1, . . . , td�,

where d = dimk H1(X0,TX0). By [Art69b, Theorem 1.6] there exists a versal deformation XS

flat and of finite type over S , where S is an algebraic k-scheme with a distinguished closed
point s such that the formal completion along the closed fiber X0 over s is isomorphic to ξ. It is
known that the triple (S , s, XS ) is unique only locally around s in the étale topology. Unwinding
the construction, one finds a nonsingular affine variety S over which the versal deformation XS

is smooth projective. Our main result is the following:

Theorem 1.1 ( Theorem 4.1 ). Let X0 and X′0 be derived-equivalent Calabi–Yau manifolds
of dimension more than two. Then there exists a nonsingular affine variety S over k such
that general fibers of smooth projective versal deformations XS and X′S over S are derived-
equivalent. In particular, after possible shrinking of the base scheme S , the schemes XS and
X′S are derived-equivalent.

The relationship between deformations and Fourier–Mukai transforms has been addressed
in [Tod09] for first order deformations of smooth projective varieties, in [BBP07] for formal
deformations of complex tori, and in [HMS09] for formal deformations of K3 surfaces by
deforming Fourier–Mukai kernels. In the above cases, a relative Fourier–Mukai transform of
n-th order deformations induces an isomorphism which associates to the direction of a (n + 1)-
th order deformation of one side that of the other side. So the fiber product deforms along the
pair of the directions to yield the fiber product of the (n + 1)-th order deformations. Then it is
natural to ask whether one can deform the Fourier–Mukai kernel to a perfect complex on the
fiber product of the (n + 1)-th order deformations, and the relative integral functor defined by
the deformed perfect complex is an equivalence.

SISSA, via Bonomea 265, 34136 Trieste, Italy
E-mail address: hmorimur@sissa.it.
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For Calabi–Yau manifolds of dimension more than two, the isomorphism induced by a rel-
ative Fourier–Mukai transform connects a pair of (n + 1)-th order deformations of complex
structures. Moreover, since the effectivizations XR and X′R are smooth over R, the obstruction
class to deforming a perfect complex [Low05, Lie06] is given by the product of the relative
Atiyah class and the relative Kodaira–Spencer class [HT10, Corollary 3.4]. In this paper, based
on the argument in [HMS09, Section 3], we deform a Fourier–Mukai kernel defining the de-
rived equivalence of X0 and X′0 along the sequence of the natural quotient maps

· · · → R/mn+2
R → R/mn+1

R → R/mn
R → · · · .

From the compatible system of deformed Fourier–Mukai kernels, we obtain an effectivization
as a perfect complex by [Lie06, Proposition 3.6.1]. Passing through a filtered inductive system
of finitely generated subalgebras of R whose colimit is R, we obtain a perfect complex on
XS ×S X′S which restricts to the Fourier–Mukai kernel on X0 × X′0 by [Lie06, Proposition 2.2.1]
and the construction of the versal deformations. Then the standard argument shows that the
relative integral functor defined by the perfect complex is an equivalence. One can also show
the derived equivalence of effectivizations of universal formal families, in particular, that of
formal deformations of X0 and X′0.

As an application, we give a new (but slightly weaker) proof of the Pfaffian–Grassmannian
equivalence, which is conjectured in [Rød00], explained in [HT07] from a physical perspective,
and proved in [BC09, Kuz, ADS15]. Via Theorem 1.1, the derived equivalence is induced by
that of the complete intersections of G2-Grassmannians [Kuz18, Ued19]. Similarly, due to
[IIM19, Proposition 4.7] the derived equivalence of the intersections of two Grassmannians in
P9 [BCP20] is induced by that of the complete intersections in G(2, 5) [KR19, Mor21]. We
expect to find a new example of Fourier–Mukai partners through deformation methods using
Theorem 1.1.

Notations and conventions. We work over an algebraically closed field k of characteristic 0
throughout the paper. For an augmented k-algebra A, by mA we denote its augmentation ideal.
For a noetherian formal scheme X , by Db(X ) we denote the bounded derived category of the
abelian category Coh(X ) of coherent sheaves on X .

Acknowledgements. The author would like to express his gratitude to Kazushi Ueda for sug-
gesting the problem. The author would like to thank Paolo Stellari for inviting him to the
university of Milan, his hospitality, and helpful discussions. The author also would like to
thank Andrea Tobia Ricolfi for offering many corrections to earlier versions of this paper. The
author thanks Yukinobu Toda for informing the author on the paper [HMS09], Atsushi Ito and
Makoto Miura on the paper [Küc96].

2. Smooth projective versal deformations

When it comes to deformations, Calabi–Yau manifolds are equipped with nice geometric
features. In this section, after reviewing some basics on deformation theory of schemes, we
explain how to construct smooth projective versal deformations of Calabi–Yau manifolds of
dimension more than two.

2.1. Infinitesimal deformations of schemes. Let X be a k-scheme. A deformation of X over
a local artinian k-algebra A with residue field k is a pair (XA, iA), where XA is a scheme flat
over A and iA : X ↪→ XA is a closed immersion such that the induced map X → XA ×A k
is an isomorphism. Two deformations (XA, iA) and (YA, jA) are said to be equivalent if there
is an A-isomorphism XA → YA compatible with iA and jA. The deformation functor FX =

DefX : Artk → Set sends each A ∈ Artk to the set of equivalence classes of deformations of X
over A.
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Assume that X is projective over k. Then FX satisfies Schlessinger’s criterion [Sch68] and
there exists a miniversal formal family (R, ξ) for FX [Har10, Theorem 18.1], where R is a
complete local noetherian k-algebra with residue field k, and ξ belongs to the limit

F̂X(R) = lim
←−

FX(R/mn
R)

of the inverse system

· · · → FX(R/mn+2
R )→ FX(R/mn+1

R )→ FX(R/mn
R)→ · · ·

induced by the natural quotient maps R/mn+1
R → R/mn

R. The formal family ξ corresponds to a
natural transformation

hR = Homk-alg(R,−)→ FX,(2.1)

which sends each homomorphism f ∈ hR(A) factorizing through R→ R/mn+1
R

g−→ A to FX(g)(ξn)
[Har10, Proposition 15.1]. The functor (2.1) is strongly surjective by versality of ξ. So for every
surjection B→ A in Artk the map

hR(B)→ hR(A) ×FX(A) FX(B)

is surjective. In particular, the map hR(A)→ FX(A) is surjective for each A ∈ Artk.
Let Xn be the schemes which define ξn. Then by [Har10, Proposition 21.1] there is a noether-

ian formal scheme X over R such that Xn � X ×R R/mn+1
R for each n. By abuse of notation,

we use the same symbol ξ to denote the formal scheme X . Thus any scheme which defines
an equivalence class [XA, iA] can be obtained as the pullback of ξ along some morphism of
noetherian formal schemes Spec A → Spf R. If X is regular, then the Zariski tangent space of
Spec R at the closed point is H1(X,TX). Assume further that H0(X,TX) = 0, i.e., the scheme X
has no infinitesimal automorphisms which restrict to the identity of X. Then every equivalence
class [XA, iA] is just a deformation (XA, iA) and we have hR ' FX [Har10, Corollary 18.3]. In
this case, the functor FX is said to be pro-representable and (R, ξ) a universal formal family for
FX.

2.2. Algebraization. Towards an algebraic family of deformations of X, the first step is to find
a scheme XR flat and of finite type over R whose formal completion along the closed fiber X
is isomorphic to ξ. If X is projective and H2(X,OX) = 0, i.e., deformations of any invertible
sheaf on X are unobstructed, then by [GD61, Theorem III5.4.5] there exists such a scheme
XR. In this case, the formal family (R, ξ) is said to be effective. One sees that the scheme XR

appeared in the proof of [GD61, Theorem III5.4.5] is projective over R. We will call such XR

an effectivization of ξ.
The next step is to find an algebraic k-scheme S with a distinguished closed point s ∈ S , and

a scheme XS flat and of finite type over S whose formal completion along the closed fiber X
over s is isomorphic to ξ. The deformation functor FX can naturally be extended to a functor
defined on the category k-algaug of augmented noetherian k-algebras. By abuse of notation, we
use the same symbol FX to denote the extended functor, which sends each (B,mB) ∈ k-algaug to
the set of equivalence classes of deformations over (B,mB). The following is the well-known
fact necessary to prove the existence of such a triple (S , s, XS ). We provide a proof as we could
not find any reference in the literature.

Lemma 2.1. Let X be an algebraic k-scheme. Then the functor FX is locally of finite presenta-
tion, i.e., for every filtered inductive system of augmented noetherian k-algebras

{(
Bi,mBi

)}
i∈I

whose colimit is B, the canonical map

lim
−→

FX
((

Bi,mBi

))→ FX ((B,mB))

is bijective.
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Proof. To show the surjectivity, let [XB, iB] be an element in FX ((B,mB)). By [GD66, Corollary
IV11.2.7] for some index λ ∈ I there exists a scheme XBλ flat and of finite type over Bλ with a
B-isomorphism XB → XBλ ×Bλ B. Then an element

{
[XBk , iBk]

}
k≥λ ∈ lim

−→
FX

((
Bi,mBi

))
is sent to

[XB, iB] by the canonical map.
To show the injectivity, let

{
[XBk , iBk]

}
k≥ j and

{
[YBk , jBk]

}
k≥ j be two elements sent to the same

equivalence class [XB, iB] = [YB, jB]. By [GD66, Theorem IV8.8.2, Corollary IV8.8.2.4] for
some index l ≥ j there is a Bl-isomorphism XBl → YBl sent to the B-isomorphism XB →
YB. Since we have [XB, iB] = [YB, jB], the isomorphism is compatible with iBl and jBl . Thus{
[XBk , iBk]

}
k≥l and

{
[YBk , jBk]

}
k≥l define the same element in lim

−→
FX

((
Bi,mBi

))
. �

By Lemma 2.1 one can apply [Art69b, Theorem 1.6] to obtain such a triple (S , s, XS ). The
scheme XS is said to be a versal deformation over S and the miniversal formal family (R, ξ) is
said to be algebraizable. Since some details are necessary in the sequel, we show the existence
of a versal deformation when X is a higher dimensional Calabi–Yau manifold.

Theorem 2.2. Let X0 be a Calabi–Yau manifold of dimension more than two. Then every
effective universal formal family (R, ξ) for FX0 is algebraizable.

Proof. Let T = Spec k[t1, . . . , td] and t ∈ T be the closed point corresponding to a maximal
ideal (t1, . . . , td). Since the formal completion of OT (T ) along (t1, . . . , td) is isomorphic to R,
there is a filtered inductive system {Ri}i∈I of finitely generated OT (T )-subalgebras of R whose
colimit is R. Choose a finite type presentation

Ri = OT (T )[Y]/ ( f (Y)) ,

where Y = (Y1, . . . ,YN) and f = ( f1, . . . , fm). Then we have the solution ŷ = (ŷ1, . . . , ŷN)
of f (Y) = 0 in R corresponding to the canonical homomorphism Ri → R [Art69a, Corollary
1.6]. Since FX0 is locally of finite presentation, [XR, iR] is the image of some element ζi ∈
FX0

((
Ri,mRi

))
by the canonical map FX0

((
Ri,mRi

))→ FX0(R). By [Art69a, Corollary 2.1] there
exist an étale neighborhood S of t in T , and a solution y = (y1, . . . , yN) in OS (S ) with

yi ≡ ŷi (mod m2
R),(2.2)

i.e., y and ŷ induce the same element in FX0(R/m
2
R). Let ϕ : Ri → OS (S ) be the homomorphism

corresponding to the solution y, and let [XS , iS ] be the image of ζi by the map FX0(ϕ) and {ηn}n∈N
the formal family induced by [XS , iS ]. From (2.2) it follows

FX0(ψ1)([XR, iR]) = ξ1 = η1,

where ψ1 : R → R/m2
R is the natural surjection. By versality of (R, ξ) there is a compatible

sequence of homomorphisms ψn : R→ R/mn+1
R lifting ψn−1 and such that FX0(ψn)([XR, iR]) = ηn

for every positive integer n. The sequence {ψn}n∈N induces a homomorphism ψ : R → R such
that

FX0(ψ)([XR, iR]) ≡ ηn (mod mn+1
R ).

Since ψ is the identity modulo m2
R, it is an automorphism. Thus the formal completion of XS

along the closed fiber X0 is isomorphic to ξ. �

2.3. Smoothness and projectivity. If S ′ is an étale neighborhood of s in S , then the scheme
XS ′ obtained in the same way gives another versal deformation. The following lemma is crucial
for the rest of the paper.

Lemma 2.3. Let X0 be a Calabi–Yau manifold of dimension more than two. Then there exists
a nonsingular affine variety S over k with a versal deformation XS which is projective and
smooth of relative dimension dim X0 over S .
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Proof. An étale neighborhood of t in T is smooth over k. Since an open immersion is étale,
we may assume that S is connected. Then S must be irreducible, otherwise the local ring
OS ,s has more than one minimal prime ideal for every point s in the intersection of irreducible
components. We already know that XS is flat over S . Since XR is projective over R, by [GD66,
Theorem IV8.10.5] there exists an index j such that for all k ≥ j the schemes XRk are projective
over Rk. A base change of projective morphism is projective [SP, Tag 02V6].

Since S is irreducible and πS : XS → S is flat and proper, the restriction of πS to each
irreducible component of XS is surjective. In particular, each irreducible component contains
the closed fiber X0 and we have

rel. dim(πS) = dim X0.

Note that the function

nXS /S : S → Z≥0 ∪ {∞},
which sends every point s ∈ S to the dimension of the fiber over s is locally constant, since πS

is flat and proper [SP, Tag 0D4J]. Again, we have used the irreducibility of S .
Due to Lemma 2.4 below, the morphism πR : XR → Spec R is smooth. We claim that there is

an index l such that for all k ≥ l the morphisms XRk → Spec Rk are smooth. To show this, we
may assume that XRi are affine. Let R → B be the ring homomorphism corresponding to πR.
Then there exists a finitely generated Z-subalgebra R0 of R and a smooth ring homomorphism
R0 → B0 such that B � B0 ⊗R0 R [SP, Tag 00TP]. By [SP, Tag 07C3] the inclusion R0 → R
factors through Rl for some index l. Since smoothness is stable under base change, the claim
follows. �

Lemma 2.4. The scheme XR is regular and the morphism πR : XR → Spec R is smooth of
relative dimension dim X0.

Proof. We adapt the proof of [Har77, Proposition III10.4]. Since the base scheme Spec R has
the only one closed point, every closed point x ∈ XR belongs to the closed fiber X0. By [SP,
Tag 031E] the local ring OXR,x is regular, so XR is regular. Note that XR is irreducible. From the
proof of [SP, Tag 031E] one sees that πR induces the injection mR/m

2
R → mOXR ,x

/m2
OXR ,x

, which
is dual to the surjection

TπR : TxXR → TπR(x)R

of Zariski tangent spaces. It follows that

dimk(x)
(
ΩXR/R ⊗ k(x)

)
= dim X0

for every closed point x ∈ XR. Since πR is flat and of finite type, we also have

dimk(ζ)
(
ΩXR/R ⊗ k(ζ)

)
= dim X0

for the generic point ζ of XR [Har77, Theorem I4.8A, Theorem II8.6A]. Then by [Har77,
Lemma II8.9] the coherent sheaf ΩXR/R is locally free of rank dim X0. �

Remark 2.1. From the proof of Lemma 2.3, one sees that the scheme XS must be irreducible,
otherwise X0 becomes disconnected.

3. Deformations of Fourier–Mukai kernels

In order to define a relative integral functor from Db(XS ) to Db(X′S ), we deform the Fourier–
Mukai kernel P0 to a perfect complex PS on the fiber product XS ×S X′S of smooth projective
versal deformations. Although applying the main theorem in [Lie06] might suffice, we adopt
a more concrete approach based on [HMS09, HT10], still using some results from [Lie06].
Here, for a deformation XB of a k-scheme X over an augmented noetherian k-algebra (B,mB),
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by a deformation of a perfect complex E on X over (B,mB) we mean a pair (EB, uB), where
EB ∈ Db(XB) and uB : EB ⊗L

B k→ E is an isomorphism.

3.1. Derived equivalence and relative Hochschild cohomology. Let Xn and X′n be derived-
equivalent schemes smooth and projective over Rn. The schemes Xn, X′n, and their fiber product
Xn ×Rn X′n over Rn form the following diagram

Xn ×Rn X′n
qn

zz

pn

$$
XRn X′Rn

with the natural projections qn and pn. For any perfect complex Pn on Xn ×Rn X′n, the relative
integral functor

ΦPn (−) = Rpn∗
(
Pn ⊗L q∗n (−)

)

sends each object in Db(Xn) to Db(X′n). Due to the Grothendieck–Verdier duality the functor
ΦPn has the right adjoint, which we denote by Φ(Pn)R .

Assume that ΦPn is an equivalence. Then two functors

Ψ1 : Db(Xn ×Rn Xn)→ Db(Xn ×Rn X′n)
G 7→ Pn ∗ G,

Ψ2 : Db(Xn ×Rn X′n)→ Db(X′n ×Rn X′n)
G′ 7→ G′ ∗ (Pn)R

respectively induce isomorphisms

ψ1 : ExtXn×Rn Xn(−,−)→ ExtXn×Rn X′n (Ψ1 (−) ,Ψ1 (−)) ,

ψ2 : ExtXn×Rn X′n (−,−)→ ExtX′n×Rn X′n (Ψ2 (−) ,Ψ2 (−)) .

The composition defines the isomorphism

ΦHH∗
Pn

= ψ2 ◦ ψ1 : HH∗(Xn/Rn)→ HH∗(X′n/Rn)

of the relative Hochschild cohomology complex [Căl10], which gives rise to the isomorphism

ΦHT∗
Pn

= (IHKR
X′n )−1 ◦ ΦHH∗

Pn
◦ IHKR

Xn
: HT∗(Xn/Rn)→ HT∗(X′n/Rn),

where

IHKR
Xn

: HT∗(Xn/Rn)→ HH∗(Xn/Rn),

IHKR
X′n : HT∗(X′n/Rn)→ HH∗(X′n/Rn)

are the relative Hochschild–Kostant–Rosenberg isomorphisms. Namely, we have the following
commutative diagram

HT∗(Xn/Rn)
IHKR
Xn //

ΦHT∗
Pn
��

Ext∗Xn×Rn Xn
(O∆n ,O∆n)

ΦHH∗
Pn

=ψ2◦ψ1

��
HT∗(X′n/Rn) Ext∗X′n×Rn X′n(O∆′n ,O∆′n).

(
IHKR
X′n

)−1

oo

(3.1)
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3.2. Relative Atiyah class and HKR isomorphism. For a perfect complex En on Xn the rel-
ative Atiyah class is the element

A(En) ∈ Ext1
Xn

(En, En ⊗Ωπn)

induced by the boundary morphism of the short exact sequence

0→ In/I2
n → OXn×Rn Xn/In → O∆n → 0,

where In is the defining ideal sheaf of the relative diagonal. Composition in Db(Xn) and exterior
product Ω⊗i

πn
→ Ωi

πn
yield the exponential

exp (A(En)) ∈
⊕

Exti
Xn

(En, En ⊗Ωi
πn

).

Consider the automorphism τ : Xn ×Rn Xn → Xn ×Rn Xn interchanging the two factors. Since
the conormal bundle In/I2

n consists of elements of the form x ⊗Rn 1 − 1 ⊗Rn x, the pullback τ∗

acts on Hp(Xn,∧qTπn) by (−1)q. Then as a straightforward generalization of [Tod09, Lemma
5.8], one obtains two commutative diagrams

HT∗(Xn/Rn)
τ∗◦IHKR

Xn //

q∗n
��

Ext∗Xn×Rn Xn
(O∆n ,O∆n)

ψ1

��
HT∗(Xn ×Rn X′n/Rn)

exp(A(Pn))·// Ext∗Xn×Rn X′n(Pn,Pn),

(3.2)

HT∗(X′n/Rn)
I′HKR
X′n //

p∗n
��

Ext∗X′n×Rn X′n(O∆′n ,O∆′n)

ψ−1
2
��

HT∗(Xn ×Rn X′n/Rn)
exp(A(Pn))·// Ext∗Xn×Rn X′n(Pn,Pn).

(3.3)

3.3. Obstruction class. There exists an obstruction for a perfect complex En on Xn to deform
to some perfect complex on Xn+1 [Low05, Lie06]. By [HT10, Corollary 3.4] it has the explicit
expression as the product of the truncated Atiyah class of En and the truncated Kodaira–Spencer
class of the thickenings Xn ↪→ Xn+1 defined by a square zero ideal. In our setting, the deforma-
tion Xn+1 is smooth over Rn+1. So the truncated Atiyah and Kodaira–Spencer classes coincide
with the relative Atiyah and Kodaira–Spencer classes respectively. Then the obstruction class
is given by

$(En) = (idEn ⊗ κn) ◦ A(En) ∈ Ext2
Xn

(En, E⊕ln
n ),

where κn ∈ Ext1
Xn

(Ωπn ,O⊕ln
Xn

) denotes the relative Kodaira–Spencer class, which is the extension
class of the short exact sequence

0→ O⊕ln
Xn

·t(ds1···dsln )−−−−−−−−→ ΩXn+1 |Xn → Ωπn → 0.

Here ln = dimkm
n+1
R /mn+2

R and {s1, . . . , sln} is a fixed basis of the k-vector space mn+1
R /mn+2

R .
Suppose that there exists a thickening X′n ↪→ X′n+1 whose relative Kodaira–Spencer class is

κ′n =
(
ΦHT2

Pn

)⊕ln
(κn) ∈ H1(Tπ′n)⊕ln . Let κn � κ′n = q∗nκn + p∗nκ

′
n ∈ H1(Tπn×π′n)

⊕ln . Adapting [HMS09,
Lemma 3.7] to our setting in a straightforward way, we obtain the following:

Lemma 3.1. Under the above assumption there exists a perfect complex Pn+1 on Xn+1×Rn+1 X′n+1
with an isomorphism Pn+1 ⊗L

Rn+1
Rn � Pn such that the integral functor ΦPn+1 : Db(Xn+1) →

Db(X′n+1) is an equivalence.
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Proof. We show the vanishing of the obstruction class

A(Pn) · (κn � κ′n) ∈ Ext2
Xn×Rn X′n(Pn,Pn)⊕ln .

We write κn, κ
′
n as κn = (κ1

n, . . . , κ
ln
n ), κ′n = (κ′1n , . . . , κ

′ln
n ) with respect to the fixed basis. By

commutativity of the diagrams (3.1), (3.2), and (3.3), we have

A(Pn) = A(Pn) · (κi
n � κ

′i
n )

= ψ1

(
τ∗

(
IHKR

Xn

(
κi

n

)))
+ ψ−1

2

(
I′HKR

X′n

(
κ′in

))

= ψ−1
2 I′HKR

X′n

(
−

(
I′HKR

X′n

)−1 (
ψ2

(
ψ1

(
IHKR

Xn

(
κi

n

))))
+ κ′in

)

= ψ−1
2 I′HKR

X′n

(
−ΦHT2

Pn

(
κi

n

)
+ κ′in

)
= 0

for each i. Note that, as mentioned above, the pullback τ∗ acts on H1(Xn ×Rn X′n,Tπn×π′n) by −1.
So there exists a deformation Pn+1 of Pn. Then by [LST13, Proposition 1.3] the functor ΦPn+1

is an equivalence, since P0 defines an equivalence and πn, π
′
n are smooth projective. �

Combining Lemma 3.1 and Lemma 3.2 below, one sees that if the closed fibers X0 and X′0
are higher dimensional Calabi–Yau manifolds, then one can always deform a Fourier–Mukai
kernel on X0 × X′0 to some Fourier–Mukai kernel on Xn ×Rn X′n for arbitrary order n.

Lemma 3.2. If the closed fiber of X′0 is a Calabi–Yau manifold of dimension more than two,
then there exists a thickening X′n ↪→ X′n+1 whose relative Kodaira–Spencer class is κ′n =(
ΦHT2

Pn

)⊕ln
(κn).

Proof. First, we show the vanishing of cohomology H0(∧2Tπ′n) and H2(OX′n). Since π′n is a
projective morphism of noetherian schemes and the sheaves ∧2Tπ′n , OX′n are flat over Rn, by
[Har77, Theorem III12.8] there is a Zariski open neighborhood U ⊂ Spec Rn of the closed
point such that dimk(y) H0(∧2Tπ′n,y) = 0 and dimk(y) H0(OX′n,y) = 0 for all y ∈ U. Then we have
U = Spec Rn, as the complement does not contain the only closed point of Spec Rn.

Next, we construct the thickening X′n ↪→ X′n+1. Fix an affine open covering {Ui} of X′n. The
element κ′n ∈ H1(Tπ′n)⊕ln is represented by 2-cocycles {θi j} with respect to {Ui}. By [Har10,
Propsotion 3.6, Exercise 5.2] these cocycles define automorphisms of the trivial deformations
Ui j ×Rn Spec Rn+1 that can be glued to make a global deformation X′n+1 of X′n. By definition, the
relative Kodaira–Spencer class of this thickening is κ′n. �

3.4. Algebraization. Now, we have a system of deformations Pn ∈ perf(XRn ×Rn X′Rn
) of P0

with compatible isomorphisms Pn+1 ⊗L
Rn+1

Rn → Pn. By [Lie06, Proposition 3.6.1] there exists
an effectivization, i.e., a perfect complex PR on XR ×R X′R with compatible isomorphisms PR ⊗L

R
Rn → Pn. Recall that in Section 2 to algebrize XR we have used a filtered inductive system
{Ri}i∈I of finitely generated OT (T )-subalgebras of R whose colimit is R. For a sufficiently large
index i, there are deformations XRi , X

′
Ri

of X0, X′0 over Ri whose pullback along the canonical
homomorphism Ri → R are XR, X′R. So we have

XR ×R X′R �
(
XRi ×Ri X′Ri

)
×Ri R.

By [Lie06, Proposition 2.2.1] there exists a perfect complex PRi on XRi ×Ri X′Ri
with an isomor-

phism PRi ⊗L
Ri

R→ PR. Then the derived pullback PS ∈ perf(XS ×S X′S ) along Ri → OS (S ) is a
deformation of P0. Finally, we obtain the following:

Proposition 3.3. LetP0 be a Fourier–Mukai kernel defining the derived equivalence of Calabi–
Yau manifolds X0 and X′0 of dimension more than two. Then there exists a perfect complex PS
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on the fiber product XS ×S X′S of smooth projective versal deformations with an isomorphism
PS ⊗L

OS (S ) k→ P0.

Remark 3.1. For fixed universal formal families (R, ξ) and (R, ξ′) of X0 and X′0, the deformations

X′n associated with the images κ′n =
(
ΦHT2

Pn

)⊕ln
(κn) determine another universal formal family

(R, ξ̃′) of X′0. Since two universal formal families (R, ξ′) and (R, ξ̃′) are isomorphic up to unique
isomorphism, by the construction of our versal deformations we may algebrize XR and X′R
simultaneously.

4. Proof of the main theorem

The smooth projective versal deformations XS , X′S , and their fiber product XS ×S X′S over S
form the following diagram

XS ×S X′S
q

zz

p

$$
XS X′S

with the natural projections q and p. The relative integral functor

ΦPS (−) = Rp∗
(
PS ⊗L q∗ (−)

)

sends each object in Db(XS ) to Db(X′S ), where PS ∈ perf(XS ×S X′S ) is a deformation of P0 over(OS (S ),mOS (S )
)
. In this section, after possible shrinking of the base scheme S , we show that

the functor ΦPS is an equivalence. One can also show similar results for formal deformations
and their effectivizations.

Theorem 4.1. Let X0 and X′0 be derived-equivalent Calabi–Yau manifolds of dimension more
than two. Then there exists a nonsingular affine variety S over k such that general fibers of
smooth projective versal deformations XS and X′S over S are derived-equivalent. In particular,
after possible shrinking of the base scheme S , the schemes XS and X′S are derived-equivalent.

Proof. Due to the Grothendieck–Verdier duality the functor ΦPS has the left adjoint, which we
denote by Φ(PS )L . For every object E ∈ Db(XS ) the counit morphism η : Φ(PS )L ◦ΦPS → idDb(XS )
gives a distinguished triangle

Φ(PS )L ◦ ΦPS (E)→ E → F B Cone (η (E)) .(4.1)

We may assume that E and F are perfect complexes on XS . Let is : Xs ↪→ XS , i′s : X′s ↪→ X′S ,
and js = is × i′s : Xs × X′s ↪→ XS ×S X′S be the closed immersions for every closed point s ∈ S .
By the derived flat base change we have

Li′s
∗
ΦPS (E) � Φs (Es) ,

where Es = Li∗s(E) and Φs = Φ j∗sPS . We also denote by (Φs)L the left adjoint of Φs with kernel(
j∗sPS

)
L. Then (4.1) restricts to a distinguished triangle

(Φs)L ◦ Φs(Es)→ Es → Fs.

Note that the restriction of the counit morphism is the counit morphism. Since ΦP0 is an
equivalence, the restriction of F to X0 is quasi-isomorphic to 0. So the support supp(F) =⋃

suppH l(F) of the perfect complex F is a proper Zariski closed subset of XS . Let U ⊂
S be the complement of the image πS

(
supp(F)

)
. Since U contains the image of the closed

fiber X0, it is a nonempty open subset of S and π−1
S (U) does not intersect with supp(F). In

particular, we have Fs � 0 for every closed point s ∈ U. If E is a strong generator of Db(XS ),
this implies that ΦPU is fully faithful. Here PU denotes the restriction of PS to q−1π−1

S (U).
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Recall that a triangulated category is strongly finitely generated if there exist an object E and
nonnegative integer k such that every object can be obtained from E by taking isomorphisms,
direct summands, shifts, and not more than k times cones. Since XS is noetherian, separated,
and regular, Db(XS ) is strongly finitely generated by [BB03, Theorem 3.1.4]. Since ΦPS and
Φ(PS )L commute with direct sums on Db(XS ) by [BB03, Corollary 3.3.4], we may assume that
E has no nontrivial direct summands. Using the cohomology long exact sequence induced by
a distinguished triangle, one inductively sees that on π−1

S (U) the cone of the counit morphism
for any object is quasi-isomorphic to 0. Similarly, one finds a Zariski open subset V ⊂ S such
that

(
ΦPV

)
L is fully faithful. Finally, we obtain an equivalence Φs : Db(Xs) → Db(X′s) for every

closed point s ∈ U ∩ V , ∅, as a fully faithful functor which admits either fully faithful left or
right adjoint is an equivalence. In particular, ΦPS is an equivalence after possible shrinking of
the base scheme S . �

Corollary 4.2. Let X0 and X′0 be derived-equivalent Calabi–Yau manifolds of dimension more
than two. Then all effectivizations XR and X′R of universal formal families ξ and ξ′ projective
over R are derived-equivalent.

Proof. Replace XS , X′S , and S by XR, X′R, and R in the above proof. Then πR(supp F) is a Zariski
closed subset of Spec R which does not contain the only one closed point. This implies that
supp F is empty. It remains to show that the derived equivalence does not depend on the choice
of XR and X′R. Given an effectivization πR : XR → Spec R of ξ, we have the following pullback
diagram

ξ � X̂R
� � //

π̂

��

XR

πR

��
Spf R �

� // Spec R

of noetherian formal schemes, where XR is considered as the formal completion along itself.
Since πR is projective and R is a complete local noetherian ring, by [GD61, Corollary III5.1.6]
the functor

coh(XR)→ Coh(X̂R),

which sends each coherent sheaf F on XR to its formal completion F̂ along the closed fiber is
an equivalence of abelian categories. So we have

Db(XR) ' Db(X̂R).

In particular, all effectivizations of ξ are derived-equivalent. �

Corollary 4.3. Let X0 and X′0 be derived-equivalent Calabi–Yau manifolds of dimension more
than two. Then for any formal deformation X = X̂k~t� of X0 there exists a formal deformation
X′ = X̂′k~t� of X′0 which is derived-equivalent to X.

Proof. From the argument in Section 3 and the above proof, it follows immediately. �

5. Pfaffian–Grassmannian equivalence

By Theorem 4.1 the derived equivalence of central fibers of versal deformations can be ex-
tended to that of general fibers. After studying deformations of the relevant Calabi–Yau 3-folds,
we show that the Pfaffian–Grassmannian derived equivalence is induced by the derived equiv-
alence of IMOU varieties.
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5.1. Grassmannian side. Let E be a locally free sheaf on a smooth projective variety Z over C
and let Y0 be the zero scheme of a section s ∈ H0(Z,E) with codim Y0 = rankE and the defining
ideal sheaf IY0 ⊂ OZ. By [Weh84] a sufficient condition for every algebraic deformation of Y0

to be obtained by varying the section in H0(Z,E) is the vanishing of cohomology

H1(Z,E ⊗ IY0), H1(Y0,TZ |Y0).

Now, we will consider the case

Y0 = Gr(2,V7)17 B Gr(2,V7) ∩ P(W),

where V7 is a 7-dimensional complex vector space and W is a 14-dimensional general quotient
vector space of ∧2V7 � W.

Lemma 5.1. Every deformation of Y0 = Gr(2,V7)17 can be obtained by varying the section s.

Proof. It suffices to show the vanishing of cohomology

H1(Gr(2,V7),OGr(2,V7)(1)⊕7 ⊗ IY0), H1(Y0,TGr(2,V7)|Y0).

By [Küc96, (1.4)] we have two spectral sequences

Hp(Gr(2,V7),F ⊗ ∧q+1O(−1)Gr(2,V7)) ⇒ Hp−q (
Gr(2,V7),F ⊗ IY0

)
, q ≥ 0,

Hp (
Gr(2,V7),F ⊗ ∧qO(−1)Gr(2,V7)

) ⇒ Hp−q (
Gr(2,V7),F |Y0

)

for any locally free sheaf F on Gr(2,V7). Then Borel–Bott–Weil theorem gives the desired
result. �

5.2. Pfaffian side. Let HY′0 : Artk → Set be the functor of embedded deformations of a pro-
jective scheme Y ′0 ⊂ P6 over C. Then we have the forgetful functor HY′0 → FY′0 . Let tHY′0

→ tFY′0
be the induced map of tangent spaces, which is given by

HY′0(C[t]/t2)→ FY′0(C[t]/t2).

Now, we will consider the case

Y ′0 = Pf(4,V7) ∩ P(W⊥) � Pf(4,V7) ∩ P6,

where W⊥ = Coker(W∨ ↪→ ∧2V∨7 ).

Lemma 5.2. The induced map of tangent spaces

tHY′0
→ tFY′0

is surjective.

Proof. We have an exact sequence

0→ OP6(−7)→ 7OP6(−4)→ 7OP6(−3)→ OP6 → OY′0 → 0.(5.1)

From the cohomology of (5.1) and the restriction of Euler sequence we obtain H1(TP6 |Y′0) � 0.
Since Y ′0 is nonsingular, the short exact sequence

0→ TY′0 → TP6 |Y′0 → NY′0/P
6 → 0

gives rise to a long exact sequence of cohomology

0→ H0(TY′0)→ H0(TP6 |Y′0)→ H0(NY′0/P
6)

δ0

−→ H1(TY′0)→ H1(TP6 |Y′0)→ H1(NY′0/P
6)→ · · · ,

where the boundary map δ0 coincides with tHY′0
→ tFY′0

by [Har10, Proposition 20.2]. �

Lemma 5.3. Every deformation of Y ′0 = Pf(4,V7) ∩ P6 lifts to an embedded deformation in P6.
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Proof. It is well-known that HY′0 is pro-representable and unobstructed. We also know that
FY′0 is pro-representable. Then Lemma 5.2 allows us to apply [Har10, Exercise 15.8] and the
forgetful functor HY′0 → FY′0 is strongly surjective. In particular, it is surjective. �

5.3. Induced derived equivalence. Let X0 be the complete intersection in G2-Grassmannian
G = G2/P associated with the crossed Dynkin diagram defined by an equivariant vector
bundle E(1,1) � G2 ×P VP

(1,1), which is a flat degeneration of Y0 [IIM19, Proposition 5.1]. Let
X′0 be the complete intersection in G2-Grassmannian Q = G2/Q associated with the crossed
Dynkin diagram defined by an equivariant vector bundle F(1,1) � G2 ×Q VQ

(1,1), which is a
flat degeneration of Y ′0 [KK16, Theorem 7.1]. It is known that the Calabi–Yau 3-folds X0 and
X′0 are derived-equivalent [Kuz18, Ued19].

Corollary 5.4. The Calabi–Yau 3-folds Y0 = Gr(2,V7)17 and Y ′0 = Pf(4,V7) ∩ P6 are derived-
equivalent.

Proof. By definition of Y0 and Lemma 5.1 general fibers of a versal deformation of X0 are
isomorphic to Gr(2,V7)17 . By [KK16, Corollary 6.3] and Lemma 5.3 general fibers of a versal
deformation of X′0 are isomorphic to Pf(4,V7) ∩ P6. Then Gr(2,V7)17 and Pf(4,V7) ∩ P6 are
derived-equivalent by Theorem 4.1. �

Remark 5.1. The derived-equivalent pair obtained here does not carry any information about
W and W⊥, while the original Pfaffian–Grassmannian equivalence connects Gr(2,V7) ∩ P(W)
with Pf(4,V7) ∩ P(W⊥) for every W. We have proved that for a generic choice of W the Y0 is
derived-equivalent to the Y ′0 associated with some other W.
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CATEGORICAL GENERIC FIBER

HAYATO MORIMURA

Abstract. For flat proper families of algebraic varieties, we describe the abelian category of
coherent sheaves on the generic fiber as a Serre quotient. As an application, we provide new
examples of Fourier–Mukai partners via deformations. As another application, we prove that
the derived equivalence of the generic fibers extends to that of general fibers.

1. Introduction

1.1. The main result. The categorical general fiber was introduced in [HMS11] to study the
generic categorical behavior of formal deformations of K3 surfaces. When a formal defor-
mation is effective, one can consult the generic fiber of an effectivization. In analytic set-
ting, Raynaud constructed the generic fiber of formal deformations [Ray74]. Based on his
idea, Huybrechts–Macrı̀–Stellari developed the categorical general fiber, providing a categor-
ical analogue of the generic fiber for noneffective formal deformations of K3 surfaces. As
shown in [HMS09], it captures the generic categorical behavior of formal deformations. Below
we briefly review their work.

Let X → Spf k~t� be a formal deformation of a smooth projective k-variety X0. Recall that
the abelian category of coherent sheaves on the general fiber is the Serre quotient

Coh(Xk((t))) B Coh(X)/Coh(X)0,

where Coh(X)0 ⊂ Coh(X) is the full abelian subcategory spanned by coherent k~t�-torsion OX-
modules. By [Miy91, Theorem 3.2] the derived category Db (

Coh
(Xk((t))

))
of the Serre quotient

is equivalent to the Verdier quotient

Db(X)/Db
0(X),

where Db
0(X) is the full triangulated subcategory spanned by complexes with coherent k~t�-

torsion cohomology. Huybrechts–Macrı̀–Stellari showed the k((t))-linear exact equivalence

Db (
Coh

(Xk((t))
)) ' Db

c (Mod (OX)) /Db
c0

(Mod (OX))

when X0 is a K3 surface [HMS11, Theorem 1.1]. Here Db
c (Mod (OX)) is the bounded derived

category of OX-modules with coherent cohomology and Db
c0

(Mod (OX)) is its full triangulated
subcategory spanned by complexes with coherent k~t�-torsion cohomology. The latter Verdier
quotient is called the derived category of the general fiber.

If X is effective with a proper effectivization X, i.e., isomorphic to the formal completion of
a proper k~t�-scheme X, then by [GD61, Corollorary III5.1.6] we have

Db(X) ' Db(X)

and Db (
Coh

(Xk((t))
))

is equivalent to the Verdier quotient

Db(X)/Db
0(X),

SISSA, via Bonomea 265, 34136 Trieste, Italy
E-mail address: hmorimur@sissa.it.
Key words and phrases. Derived category, Generic fiber, Verdier–quotient, Fourier–Mukai transform.
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which is k((t))-linear. This can be regarded as an effectivization of Db (
Coh

(Xk((t))
))

. On the
other hand, the derived category of the generic fiber Xk((t)) of the effectivization X gives another
k((t))-linear category. By [BFN10, Theorem 1.2] also Db(Xk((t))) is obtained from the k~t�-
linear category Db(X). As both Db(X)/Db

0(X) and Db(Xk((t))) carry sufficient information on
the generic categorical behavior of formal deformations, it is natural to ask whether they are
equivalent as a k((t))-linear triangulated category. Motivated by this question, we prove the
following.

Theorem 1.1 (Theorem 2.5). Let XR be a smooth separated family over a noetherian con-
nected regular affine k-scheme Spec R whose closed points are k-rational. Let K be the field of
fractions of R and XK the generic fiber. Then there exists a K-linear equivalence

coh(XK) ' coh(XR)/ coh(XR)0

of abelian categories, where coh(XR)0 is the Serre subcategory spanned by R-torsion sheaves.

Corollary 1.2 (Corollary 2.6). Under the same assumption as above, there exists an exact
K-linear equivalence

Db(XK) ' Db(XR)/Db
0(XR),

where Db
0(XR) is the full triangulated subcategory spanned by complexes with R-torsion coho-

mology.

We impose the technical condition on Spec R to include smooth proper effectivizations of
formal families over formal power series rings, besides smooth proper families over nonsingu-
lar affine k-varieties.

1.2. The first application. One advantage to describe the derived category of the generic fiber
as a Verdier quotient is that Fourier–Mukai machinery carries over easily. Suppose that

ΦE : Db(XR)→ Db(X′R)

is a relative Fourier–Mukai transform of smooth proper families over R with kernel E ∈ Db(XR×R

X′R). Then ΦE induces a Fourier–Mukai transform

ΦEK : Db(XK)→ Db(X′K)

of the generic fibers, where the kernel EK is the pullback along the canonical inclusion R ↪→
K. By the standard argument the further base change to the closure defines a Fourier–Mukai
transform

ΦEK̄
: Db(XK̄)→ Db(X′K̄)

of the geometric generic fibers.
Typical examples for our results are given by deformations of higher dimensional Calabi–

Yau manifolds. Recently, the author proved the following.

Theorem 1.3 ([Mor23, Theorem 1.1]). Let X0, X′0 be derived-equivalent Calabi–Yau manifolds
of dimension more than two. Then there exists a nonsingular affine k-variety Spec S such that
smooth projective versal deformations XS , X′S over S are derived-equivalent.

Here, the derived equivalence is given by the relative Fourier–Mukai transform with kernel
obtained by deformation of the original kernel for central fibers. Similarly, the Fourier–Mukai
transform of central fibers extends to proper effectivizations of universal formal families. Com-
bining with our current results, we obtain derived-equivalent geometric generic fibers of the
versal deformations and the effectivizations respectively. One can check that they are Calabi–
Yau manifolds of dimension dim X0. When the central fibers are nonbirational, in some special
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cases one can deduce the nonbirationality of the geometric generic fibers. See, also specializa-
tion of birational types over a smooth connected curve [KT19, Theorem 1.1]. To summarize,
we obtain

Theorem 1.4 (Theorem 5.7). Let X0, X′0 be derived-equivalent Calabi–Yau manifolds of dimen-
sion more than two. Then the geometric generic fibers XK̄ , X′K̄ of proper effectivizations and that
XQ̄, X′Q̄ of smooth projective versal deformations are respectively derived-equivalent Calabi–
Yau manifolds. If, in addition, we have either NStor X0 , NStor X′0, or ρ(X0) = ρ(X′0) = 1 and
deg(X0) , deg(X′0), then they are respectively nonbirational.

Recall that Fourier–Mukai partners are pairs of nonbirational Calabi–Yau threefolds that
are derived-equivalent. They are of considerable interest from the viewpoint of string theory
and mirror symmetry. For instance, the Gross–Popescu pair [GP01a, Sch] and the Pfaffian–
Grassmannian pair [BC09, Kuz] satisfy the first and the second conditions in Theorem 1.4
respectively. Thus we obtain new examples of Fourier–Mukai partners over the closure K̄, Q̄
of function fields. Note that if k is a universal domain, i.e., an algebraically closed field of
infinite transcendence degree of the prime field, then there exists an isomorphism k � Q̄ [Via13,
Lemma 2.1]. In particular, if k = C then the new examples over Q̄ can be regarded as complex
manifolds.

When X0, X′0 are the Pfaffian–Grassmannian pair, we demonstrate the subtle difference be-
tween XQ̄, X′Q̄ and known examples. The geometric generic fibers XQ̄, X′Q̄ are respectively iso-
morphic to X0, X′0 as a scheme, but not as a variety. We will explain why any other known
pair Y0,Y ′0 over k cannot be isomorphic to XQ̄, X′Q̄ even as a scheme. However, we empha-
size that one can obtain XQ̄, X′Q̄ starting from IMOU varieties [IMOU, Kuz18] which are flat
degenerations of X0, X′0.

1.3. The second application. Another, and probably the most important advantage to describe
the derived category of the generic fiber as a Verdier quotient is that any object of Db(XK) lifts to
that of Db(XR). The quotient description extends to nonaffine base case for flat proper families
of k-varieties.

Theorem 1.5 (Theorem 6.1). Let π : X → S be a flat proper morphism of k-varieties. Then
there exists a K-linear exact equivalence

Db(X)/Ker(ῑ∗K) ' Db(XK),

where K = k(S ) is the function field and ῑK : XK → X is the canonical morphism.

In particular, there always exists a lift E ∈ Db(X ×S X′) of a Fourier–Mukai kernel EK ∈
Db(XK × X′K) whenever XK , X′K are derived-equivalent. It allows us to extend the derived equiv-
alence of the generic fibers to that of general fibers.

Theorem 1.6 (Corollary 6.9). Let π : X → S , π′ : X′ → S be flat proper morphisms of k-
varieties. Assume that their generic fibers XK , X′K are derived-equivalent. Then there exists
an open subset U ⊂ S over which the restrictions XU , X′U become derived-equivalent. In
particular, over U any pair of closed fibers are derived-equivalent.

This can be regarded as a categorical analogue of the fact that isomorphic generic fibers
imply birational families in our setting. In classical algebraic geometry, the generic fiber often
controls behaviors of general fibers. For instance, if the generic fiber satisfies a certain property
which is constructible, then general fibers also satisfy the same property. Such characteristics
of the generic fiber must be translated via Gabriel’s theorem [Gab62] into the abelian category
of coherent sheaves. Nevertheless, as there exist pairs of nonisomorphic derived-equivalent
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K-varieties, it makes sense to wonder how the derived category of the generic fiber affects that
of general fibers.

When k is a universal domain, very general fibers are obtained as base changes of the geo-
metric generic fiber along isomorphisms k � K̄ from [Via13, Lemma 2.1]. Hence in this case
the derived equivalence of the generic fibers induces that of very general fibers. The proof of
[Mor23, Theorem 1.1] shows that Theorem 1.6 follows as soon as a lift of the Fourier–Mukai
kernel induces the derived equivalence of a single pair of closed fibers. However, since the
composition of the canonical morphisms R → K → K̄ with a fixed K̄ � k does not coincide
with the surjection R → k, the induced Fourier Mukai kernel on very general fibers should be
different from the restriction of the lift.

Consider another description

Db
dg(Xξ) ' Perfdg(Xξ) ' Perfdg(X) ⊗Perfdg(S ) Perfdg(K)

of a dg enhancement Db
dg(Xξ) of Db(Xξ) obtained from [BFN10, Theorem 1.2] and [Coh]. By

[CP21] and [Miy91] the category Perfdg(K) is a dg enhancement of the Verdier quotient

Db(S )/Db
≤dim S−1(S ),

where Db
≤dim S−1(S ) is the full triangulated subcategory spanned by objects with cohomology

supported on dimension at most dim S − 1. Thus removing the torsion support from Db(X) is
equivalent to removing all closed fibers from the supports of objects of Db(X). In particular,
from a collection of a finite number of objects and Hom-sets between them in Db(X), one can
remove its torsion support by shrinking the base.

In order to show that the restriction of the lift to general fibers define equivalences, we apply
the argument in the proof of [Mor23, Theorem 1.1] to a fixed strong generator EU of Db(XU),
which always exists over sufficiently small open subset U ⊂ S . By shrinking U further if
necessary, one can remove the torsion parts with respect to the base from EU and its relevant
Hom-sets. Then we invoke some basic categorical results to show that the value of the counit
morphism on the trimmed strong generator is an isomorphism, which implies that the restriction
of the counit morphism is a natural isomorphism.

Theorem 1.6 tells us that the derived category of the generic fiber determines an U-linear
triangulated category Db(XU) ' Db(X)/Db

Z(X) for some open subset U ⊂ S and its comple-
ment Z, where Db

Z(X) ⊂ Db(X) is the full S -linear triangulated subcategory with cohomology
supported on XZ. In general, the derived category of the generic fiber cannot recover that of
the initial fiber as we have Db(XK) ' Db(XR)/Db(X0) for R = k~t�. Rather, [HMS09] and our
results suggest that it carries information on derived categories of general fibers. We expect
that Theorem 1.6 provides a way to seek categorical constructible properties and their derived
invariance.

Notations and conventions. We work over an algebraically closed field k of characteristic 0
throughout the paper. Every time we apply [Via13, Lemma 2.1] we always assume k to be a
universal domain with comments. A k-variety is an integral separated k-scheme of finite type.
A Calabi–Yau manifold X0 is a smooth projective k-variety with trivial canonical bundle and
Hi(X0,OX0) = 0 for 0 < i < dim X0. For a noetherian formal scheme X by Db(X) we denote the
bounded derived category of the abelian category Coh(X) of coherent sheaves on X.

Acknowledgements. The author would like to express his gratitude to Kazushi Ueda for sug-
gesting the problem studied in [Mor23]. The author would like to thank Paolo Stellari for
answering some questions. The author also would like to thank Evgeny Shinder and Nicolò
Sibilla for informing him on the paper [CP21]. Finally, the author is deeply thankful to anony-
mous referees who carefully read the earlier version of this paper, pointed out some mistakes,
and suggested many useful ideas.
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2. The derived category of the generic fiber

For a scheme XR over an integral domain R, we have the following pullback diagram

XK
i //

πK

��

XR

πR

��
Spec K

j
// Spec R,

where K is the field of fractions of R and XK is the generic fiber, i.e., the fiber over the generic
point ξ ∈ Spec R. In the sequel, we assume the following conditions:

(i) XR is connected and smooth separated over R.
(ii) Spec R is a noetherian connected regular affine k-scheme whose closed points are k-

rational.

The assumption guarantees that XR and XK are noetherian separated regular. Indeed, OXR,x is
regular for every closed point x ∈ XR by [SP, Tag 031E]. Under the assumption also XK is
connected. An example of XR we have in mind is proper effectivizations of miniversal formal
families of a smooth projective k-variety whose deformations are unobstructed. Note that in
this case Spec R is not of finite type over k. We impose (ii) to include such examples, besides
smooth proper families over nonsingular affine k-varieties.

We denote by coh(XR)0 ⊂ coh(XR) the Serre subcategory spanned by R-torsion sheaves,
i.e., for each F ∈ coh(XR)0 there is an element r ∈ R such that rF = 0. We write C =

coh(XR)/ coh(XR)0 for the Serre quotient. The natural projection p : coh(XR)→ C which sends
F to FK is known to be exact. By universality of Serre quotient, the exact functor

(−) ⊗R K : coh(XR)→ coh(XK)

induces a unique exact functor

Φ : C → coh(XK)

such that (−) ⊗R K = Φ ◦ p. Then Φ defines the derived functor

Db(C)→ Db(XK),

which induces a functor

Ψ : Db(XR)/Db
0(XR)→ Db(XK)

via [Miy91, Theorem 3.2]. We show that Φ and Ψ are equivalences. In particular,

Db(C) ' Db(XR)/Db
0(XR)(2.1)

gives an alternative description of Db(XK).

2.1. K-linear categorical quotients. As expected from their constructions, both the Serre
quotient C = coh(XR)/ coh(XR)0 and the Verdier quotient Db(XR)/Db

0(XR) carry natural K-linear
structures. To see this, one can adapt [HMS11, Proposition 2.3, 2.9] to our setting in a straight-
forward way. We include the proofs for reader’s convenience.

Lemma 2.1 ([HMS11, Proposition 2.3]). The abelian category C is K-linear and for all E ,F ∈
coh(XR) the natural projection p : coh(XR)→ C induces a K-linear isomorphism

HomXR(E ,F ) ⊗R K � HomC(EK ,FK).(2.2)
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Proof. As a quotient of the R-linear category coh(XR), the category C is also R-linear. The
multiplication with r−1 for r ∈ R is defined as follows. Let f ∈ HomC(EK ,FK) be a morphism
represented by f : (E

s0←− E0
g−→ F ) with Ker(s0),Coker(s0) ∈ coh(XR)0. Then set r−1 f : (E

rs0←−−
E0

g−→ F ), which is well-defined in C, since Ker(rs0),Coker(rs0) are in coh(XR)0. Moreover,
we have r(r−1 f ) = f due to the commutative diagram

E0rs0

uu
rg

))
r·id
��

E F

E0
s0

ii

g

55

and the K-linearity of the composition is obvious. Recall that a morphism in the Serre quo-
tient is an equivalence class of diagrams. In C, two morphisms f : (E

s0←− E0
g−→ F ) and

f ′ : (E
s′0←− E ′0

g′−→ F ) are equivalent if there is a third diagram f ′′ : (E
s′′0←− E ′′0

g′′−−→ F ) with
Ker(s′′0 ),Coker(s′′0 ) ∈ coh(XR)0 and morphisms u : E ′′0 → E0, v : E ′′0 → E ′0 in coh(XR) which
makes the diagram

E0
s0

~~

g

!!
E E ′′

s′′0
oo

g′′0
//

u

OO

v
��

F

E ′0

s′0

``

g′

>>

commute.
Consider the induced K-linear map

ηK : HomXR(E ,F ) ⊗R K → HomC(EK ,FK).

To prove the injectivity of ηK , let f ∈ HomXR(E ,F ) be a morphism with ηK( f ) = 0. There
exists a commutative diagram

E ′
s
yy

0
&&

E
f

// F ,

with Ker(s),Coker(s) ∈ coh(XR)0 and hence f factorizes through

f : E
q−→ Coker(s)

f ′−→ F .

If r Coker(s) = 0, then this yields r f = f ′ ◦ (rq) = 0. In particular, f ⊗ 1 ∈ HomXR(E ,F ) ⊗R K
is trivial.

To prove the surjectivity of ηK , we have to show that for any f ∈ HomC(EK ,FK) there
exists an element r ∈ R such that r f is induced by a morphism E → F in coh(XR). Write
f : (E

s0←− E0
g−→ F ) with r1 Ker(s0) = r2 Coker(s0) = 0 for some r1, r2 ∈ R. Consider the exact

sequence

0→ HomXR(E ′,F )
◦ p̃−→ HomXR(E0,F )

◦ĩ−→ HomXR (Ker(s0),F )

induced by the natural projection p̃ : E0 � E ′ B Im(s0) and its kernel ĩ : Ker(s0) ↪→ E0. Since
(r1g)◦ ĩ = g◦(r1ĩ) = 0, there exists a unique homomorphism g′ : E ′ → F such that g′◦ p̃ = r1g.
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This yields the commutative diagram

E0s0

uu
r1g

))
p̃

��
E F ,

E ′6
V

ii

g′

55

which allows us to represent r1 f by E ←↩ E ′
g′−→ F .

As E /E ′ � Coker(s0) is annihilated by r2, the homomorphism r2g′ : E ′ → F lifts to a
homomorphism g′′ : E → F , i.e., g′′|E ′ = r2g′. This yields the commutative diagram

E ′G g

tt
r2g′

**
� _

��
E F .

Eid

jj

g′′
44

Hence r1r2 f is represented by
(
E

id←− E
g′′−−→ F

)
, i.e., r1r2 f = ηK(g′′). �

Lemma 2.2 ([HMS11, Proposition 2.9]). The triangulated category Db(C) is K-linear and for
all E, F ∈ Db(XR) the natural projection Q : Db(XR)→ Db(C) induces a K-linear isomorphism

HomDb(XR) (E, F) ⊗R K � HomDb(C) (EK , FK) .

Proof. Any morphism in Db(C) can be represented by a morphism of bounded complexes of
objects in C, which is a collection of morphisms in C compatible with the differentials. Since
by Lemma 2.1 both the morphisms and the differentials are K-linear, the representative is also
K-linear. The K-linear isomorphism is a direct consequence of Corollary 2.6, whose proof does
not rely on it. �

Remark 2.1. In [HMS11] only the case where R = k~t� was treated. This is because some
results require R to be a DVR. Throughout the paper, we are free from the requirement and
results which rely on it.

2.2. Canonical functor from the Serre quotient. Due to the natural K-linear structure, the
Serre quotient C can be embedded in coh(XK) via the exact functor Φ, which is induced by that
(−) ⊗R K : coh(XR)→ coh(XK).

Proposition 2.3. The functor Φ : C → coh(XK) is fully faithful.

Proof. The images of EK ,FK ∈ C by Φ are respectively isomorphic to the pullbacks i∗E , i∗F
of some coherent sheaves E ,F on XR. We have

HomXK (Φ(EK),Φ(FK) = HomXK (i∗E , i∗F )
� Γ ◦ i∗HomXR

(E ,F )

� j∗ ◦ (πR)∗HomXR
(E ,F )

� HomXR (E ,F ) ⊗R K
� HomC (EK ,FK) ,

where the second, the third, and the fourth isomorphisms follow from flat base change, Lemma
2.4 below, and Lemma 2.1 respectively. �

Lemma 2.4. For all E ,F ∈ coh(XR) we have an isomorphism

(πR)∗HomXR
(E ,F ) ⊗R K � HomXR (E ,F ) ⊗R K.
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Proof. We may consider (πR)∗HomXR
(E ,F ) ⊗R K as the stalk of the sheaf (πR)∗HomXR

(E ,F )
at the generic point ξ of Spec R. For an affine open cover Spec R = {D( f )}, 0 , f ∈ R, take any
germ 〈D( f ), s〉 of (πR)∗HomXR

(E ,F )ξ. Since (πR)∗HomXR
(E ,F ) is a quasi-coherent sheaf on

an affine scheme as XR is noetherian, by [Har77, Lemma II5.3] there exists an integer n ≥ 0
such that f ns becomes a global section. Let

φ : (πR)∗HomXR
(E ,F )ξ → HomXR (E ,F ) ⊗R K

be the homomorphism of R-algebras which sends 〈D( f ), s〉 to f ms ⊗ (1/ f m), where m is the
minimum integer such that f ms becomes a global section. One can check that this is well-
defined. The inverse φ−1 is given by the map which sends v ⊗ (g/ f ) to 〈D( f ), (gv/ f )〉 for
v ∈ HomXR (E ,F ) and g ∈ R. �

Theorem 2.5. The functor Φ : C → coh(XK) is a K-linear equivalence of abelian categories.

Proof. It suffices to show that Φ is essentially surjective. By assumption XK is connected. Let
Fξ be an object of coh(XK). Since XK is noetherian integral separated regular, by [Har77,
Exercise III6.8] any coherent sheaf on XK can be obtained as the cokernel of a morphism of
locally free sheaves of finite rank. The essential image of Φ is a full abelian subcategory of
coh(XK). In particular, it is closed under taking cokernels. Hence we may assume Fξ to be a
locally free sheaf of finite rank.

Take an affine open cover {Ui}mi=1,Ui = Spec Ai of XR such that the restriction of Fξ to each
affine open subset Vi = Ui ×R K of XK is isomorphic to a finite rank free B̃i = Ãi ⊗R K-module

Fi = B̃⊕N
i .

Let φi j = φi ◦ φ−1
j : F j|Vi j → Fi|Vi j be isomorphisms on Vi j = Vi ∩ V j where φi : Fξ |Vi → Fi are

trivializations with their inverses φ−1
i : Fi → Fξ |Vi . In other words, we have the commutative

diagrams

Fξ |Vi j Fξ |Vi j

φi

��
F j|Vi j φi j

//

φ−1
j

OO

Fi|Vi j .

From Fi we obtain a rank N free Ãi-module

Ei = Ã⊕N
i

with the same generators. By construction tensoring K with Ei recovers Fi. Now, up to shrink-
ing the base Spec R, we glue Ei to construct a coherent sheaf E on XR such that E ⊗R K � Fξ.
By Lemma 2.1 there are lifts φ̄i j : E j|Ui j → Ei|Ui j on Ui j = Ui ∩ U j of φi j along (2.2). Namely,
we have

φ̄i j ⊗R 1/ri j = φi j

for some ri j ∈ R.
Consider the affine open subset

Spec T ⊂ Spec R

defined by ri j , 0, 1 ≤ i, j ≤ m. On the base changes Ui j,T = Ui j ×R T all ri j become invertible.
Hence φi j canonically lift to isomorphisms

r−1
i j φ̄i j : E j|Ui j,T → Ei|Ui j,T
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which injectively map to r−1
i j φ̄i j ⊗T 1 = φi j under

HomUi j,T (E j|Ui j,T , Ei|Ui j,T )
−⊗T K−−−−→ HomUi j,T (E j|Ui j,T , Ei|Ui j,T ) ⊗T K � HomC((E j)K , (E j)K).

Clearly, the lifts satisfy cocycle condition. Thus Ei|Ui,T glue to yield a locally free sheaf Ẽ on
XT = XR ×R T such that Ẽ ⊗T K � Fξ.

By [Har77, Exercise II5.15] the lift Ẽ extends to a coherent sheaf E on XR. Since the exact
functor (−) ⊗R K factorizes through

coh(XR)→ coh(XT )→ coh(XK)

and it sends E to Fξ, there is an object EK ∈ C which maps to Fξ under Φ. �

2.3. Canonical functor from the Verdier quotient. As the functor Φ : C → coh(XK) is exact,
termwise application of Φ defines the derived functor Db(C) → Db(XK). By universality of
Verdier quotient, the induced functor

Ψ : Db(XR)/Db
0(XR)→ Db(XK)

by (2.1) coincides with Db(C)→ Db(XK). From Theorem 2.5 we obtain

Corollary 2.6. The functor Ψ : Db(XR)/Db
0(XR)→ Db(XK) is a K-linear exact equivalence.

In Section 6 we will extend Theorem 2.5 and Corollary 2.6 to nonaffine base case for flat
proper families of k-varieties.

3. Comparison with the categorical general fiber

3.1. The abelian category of coherent sheaves on the general fiber. Recall that in [HMS11]
for a formal deformation X of a smooth projective k-variety over a formal power series ring
k~t� the abelian category of coherent sheaves on the general fiber is defined as the Serre quo-
tient

Coh(Xk((t))) B Coh(X)/Coh(X)0,

where Coh(X) is the abelian category of coherent OX-modules and Coh(X)0 is the full abelian
subcategory spanned by coherent k~t�-torsion OX-modules. In the case where X is effective
with a proper effectivization, one can obtain Coh(Xk((t))) via formal completion along the closed
fiber in the following sense.

Corollary 3.1. Let X = X̂R → Spf R be an effective formal deformation of a smooth projective
variety with a proper effectivization XR. Then abelian category of coherent sheaves on the
general fiber of X is equivalent to that on the generic fiber XK of its effectivization, i.e., there
exists a K-linear equivalence

coh(XK) ' Coh(XK)

of abelian categories.

Proof. We have the pullback diagram

X = X̂R
ι //

π̂

��

XR

πR

��
Spf R // Spec R
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of noetherian formal schemes. Since R is a complete local noetherian ring, one can apply
[GD61, Corollorary III5.1.6] to see that the functor

coh(XR)→ Coh(X),(3.1)

which sends each coherent sheaf F on XR to its formal completion F̂ along the closed fiber, is
an R-linear equivalence of abelian categories. By universality of Serre quotient, we obtain the
induced K-linear equivalence

coh(XR)/ coh(XR)0 → Coh(X)/Coh(X)0.

�

3.2. Serre functor. In the case where X is effective with a proper effectivization, the Serre
functor from [HMS11, Theorem 1.1] constructed when X is a formal deformation of a K3
surface, extends to smooth projective varieties and formal power series rings of any finite di-
mension in a straightforward way.

Proposition 3.2. Let X = X̂R → Spf R be an effective formal deformation of a d-dimensional
smooth projective variety with a proper effectivization XR. Then a Serre functor on Db(XK) is
given by

S (ÊK) = ( ̂E ⊗ ωπR)K[d],

where ωπR is the dualizing sheaf for πR.

Proof. We have

HomDb(Coh(XK ))

(
ÊK , F̂K

)
� HomDb(X)

(
Ê, F̂

)
⊗R K

� HomDb(XR) (E, F) ⊗R K

� HomDb(XR)
(
F, E ⊗ ωπR[d]

)∨ ⊗R K

� HomDb(X)

(
F̂, ̂E ⊗ ωπR[d]

)∨ ⊗R K

� HomDb(Coh(XK ))

(
F̂K , ( ̂E ⊗ ωπR)K[d]

)∨
,

where the first and the fifth, the second and the fourth, and the third isomorphisms follow from
Lemma 2.2, the equivalence (3.1), and Serre duality for the smooth morphism πR of relative
dimension d respectively. �

3.3. The derived category of the general fiber. Recall that the derived category of the gen-
eral fiber is defined as the Verdier quotient

Db
c (Mod (OX)) /Db

c0
(Mod (OX)) ,

where Db
c (Mod (OX)) is the bounded derived category of OX-modules with coherent coho-

mology and Db
c0

(Mod (OX)) is the full triangulated subcategory spanned by complexes with
coherent k~t�-torsion cohomology. By [HMS11, Theorem 1.1] we have

Db
c (Mod (OX)) /Db

c0
(Mod (OX)) ' Db (

Coh
(Xk((t))

))

when X is a formal deformation of a K3 surface. This is deduced from the intermediate k((t))-
linear exact equivalence

Db
c (Mod (OX)) /Db

c0
(Mod (OX)) ' Db(X)/Db

0(X)(3.2)

established in the proof of [HMS11, Proposition 3.10].
While we have

Db
c0

(Mod (OX)) ' Db
0(X)
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by [HMS11, Proposition 2.5], in general the natural inclusion

Db(X) ↪→ Db
c (Mod (OX))

is not an equivalence. Hence one cannot expect (3.2) to hold for more general X. However, in
the case where X is effective with a proper effectivization, we have

Db
c
(
Mod

(
OXR

))
/Db

c0

(
Mod

(
OXR

)) ' Db(XR)/Db
0(XR) ' Db(XK)

by Corollary 2.6. Note that the first equivalence follows from

Db
c
(
Mod

(
OXR

)) ' Db(XR),

which holds for noetherian schemes. Unless the closed fiber of XR is a K3 surface, in general
one can only recover the part

Db(X)/Db
0(X) ' Db(XK)

via [Miy91, Theorem 3.2] and formal completion along the closed fiber in the sense of Corol-
lary 3.1.

4. Induced Fourier–Mukai transforms

As mentioned in [HMS11], one advantage to describe the derived category of the generic
fiber as a Verdier quotient is that the Fourier–Mukai machinery carries over easily. Given a rel-
ative integral functor ΦE : Db(XR) → Db(X′R) on smooth proper families πR : XR → Spec R and
π′R : X′R → Spec R, we study the induced derived equivalence on thier generic fibers, geometric
generic fibers, and formal completions. One will see that ΦE being equivalences when restricted
to general fibers implies the derived equivalence of their generic and geometric generic fibers.
We will discuss the opposite direction in Section 6 below.

4.1. Induced Functor from smooth proper families to generic fibers.

Proposition 4.1. Let XR, X′R be smooth proper families over R. If ΦE : Db(XR) → Db(X′R) is
a relative Fourier–Mukai functor, then the induced integral functor ΦEK : Db(XK) → Db(X′K)
is an equivalence. Here, EK ∈ Db(XR ×R X′R)/Db

0(XR ×R X′R) is the image of E by the natural
projection.

Proof. Since objects of Db(XR ×R X′R)/Db
0(XR ×R X′R) are the same as those of Db(XR ×R X′R)

[HMS11, Appendix], the R-linear functor ΦE induces an integral functor

ΦEK : Db(XR)/Db
0(XR)→ Db(X′R)/Db

0(X′R).

By Corollary 2.6 we have the commutative diagram

Db(XR)
ΦE //

Q
��

Db(X′R)

Q
��

Db(XK)
ΦEK // Db(X′K).

The inverse functor Φ−1
E is a left adjoint to ΦE as ΦE is an equivalence. On the other hand,

due to the Grothendieck–Verdier duality ΦE has a left adjoint ΦEL with EL a perfect complex
on XR ×R X′R. By uniqueness of left adjoint up to isomorphism, it follows Φ−1

E � ΦEL . Then
Φ−1
E induces an integral functor Φ(EL)K and we obtain natural isomorphisms Φ(EL)K ◦ ΦEK �

IdDb(XK), ΦEK ◦ Φ(EL)K � IdDb(X′K). Thus the functor ΦEK is an equivalence. �

Remark 4.1. By universality of Verdier quotient, Corollary 2.6 induces a mere K-linear equiv-
alence Db(XK) ' Db(X′K), while Proposition 4.1 preserves Fourier–Mukai kernels.
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Corollary 4.2. Let XR, X′R be smooth proper families over R. If ΦE : Db(XR) → Db(X′R) is a
relative integral functor whose restrictions to general fibers are equivalences, then the induced
integral functor ΦEK : Db(XK)→ Db(X′K) is an equivalence. Here, EK ∈ Db(XR×R X′R)/Db

0(XR×R

X′R) is the image of E by the natural projection.

Proof. We are given a Zariski open subset U ⊂ Spec R such that any pair of closed fibers of
XR and X′R over U are derived-equivalent. By [HLS09, Proposition 2.15] the relative integral
functor ΦEU is an equivalence, where EU denotes the restriction of E to pr−1

1 ◦π−1
R (U). Note that

we do not need the assumption on XU = XR ×R U to be locally projective in the statement of
[HLS09, Proposition 2.15], which guarantees the existence of a right adjoint to ΦEU , as πR, π

′
R

are smooth proper. Now, the claim follows immediately from Proposition 4.1. �

Remark 4.2. The previous corollary provides from general to generic induction of Fourier–
Mukai transforms. Conversely, by Corollary 2.6 any integral functor ΦEK : Db(Xξ) → Db(X′ξ)
lifts to a relative integral functor ΦE : Db(XR) → Db(X′R). In Section 6 we will prove that the
induced functor is an equivalence when restricted to general fibers.

4.2. Induced Functor from generic to geometric generic fibers. Due to [Ola], one can
slightly improve [Huy06, Exercise 5.18] and a well-known fact about the relation between
field extensions and Fourier–Mukai transforms.

Lemma 4.3. Let XK , X′K be smooth proper K-varieties and ΦEK : Db(XK)→ Db(X′K) an integral
functor. Then ΦEK is an equivalence if and only if there are isomorphisms

EK ∗ (EK)L � O∆, (EK)L ∗ EK � O∆′ ,(4.1)

where ∆ : XK ↪→ XK × XK ,∆
′ : X′K ↪→ X′K × X′K are the diagonal embeddings.

Proof. Assume that we are given the isomorphisms (4.1). Regarding the isomorphic objects as
kernels, we obtain natural isomorphisms

Φ(EK )L ◦ ΦEK � IdDb(XK), ΦEK ◦ Φ(EK)L � IdDb(X′K).(4.2)

Thus the functor ΦEK is an equivalence.
Conversely, assume that ΦEK is an equivalence. Let (ΦEK )−1 be its inverse. Then we have

natural isomorphisms

(ΦEK )−1 ◦ ΦEK � IdDb(XK), ΦEK ◦ (ΦEK)−1 � IdDb(X′K).

In particular, it follows that (ΦEK )−1 is a left adjoint of ΦEK . By uniqueness of left adjoint up to
isomorphism, we obtain (ΦEK )−1 � Φ(EK )L and (4.2). Thus two pairs of the kernel EK ∗(EK)L,O∆

and (EK)L∗EK ,O∆′ respectively define the same derived autoequivalence of Db(XK) and Db(X′K).
Since any derived equivalence of smooth proper varieties is defined by a unique Fourier–Mukai
kernel up to isomorphism [Ola], we obtain (4.1). �

Lemma 4.4. Let XK , X′K be smooth proper K-varieties. If XK , X′K are derived-equivalent, then
for any filed extension L0/K the base changes XL0 , X

′
L0

are derived-equivalent.

Proof. Let EK ∈ Db(XK × X′K) be a Fourier–Mukai kernel, which is unique up to isomorphism.
By Lemma 4.3 we have isomorphisms

EK ∗ (EK)L � O∆, (EK)L ∗ EK � O∆′ .

As L0 is a flat K-module, the pullback by ī′′ : XL0 × XL0 → XK × XK yields

EL0 ∗ (EL0)L � ī′′∗ (EK ∗ (EK)L) � ī′′∗O∆ � O∆̄,
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where EL0 = ī′′∗EK and ∆̄ : XL0 ↪→ XL0 × XL0 is the diagonal embedding. Here, we have used
ΩXL0/L0 � ΩXK/K ⊗K L0 [Har77, Proposition II8.10]. Similarly, we have (EL0)L ∗ EL0 � O∆̄′ .
Again, by Lemma 4.3 we conclude that ΦEL0

is an equivalence. �

Remark 4.3. When Spec R is an affine k-variety and k is a universal domain, very general fibers
of XR, X′R are dereived-equivalent if and only if so are their geometric generic fibers. Indeed,
by [Via13, Lemma 2.1] there is an isomorphism k → K̄ along which the pullback of Xk × X′k
is isomorphic to XK̄ × X′K̄ . Here, Xk, X′k are very general fibers of XR, X′R. One can apply the
same argument as in the proof of Lemma 4.4. Note that we assume k to be a universal domain
to apply [Via13, Lemma 2.1].

4.3. Induced Functors to effective formal families and their categorical general fibers.
Assume that the families πR : XR → Spec R, π′R : X′R → Spec R are effectivizations of formal
deformations X, X′ over R of smooth projective varieties X0, X′0 respectively. Assume further
that πR, π

′
R are proper. Here, we will show that the induced Fourier–Mukai functor from smooth

proper families to their generic fibers is compatible with formal completion along the closed
fibers.

The schemes XR, X′R, their restrictions to the n-th order thickenings, and their formal com-
pletions along the closed fibers form the commutative diagram

Xn ×Rn X′n
qn

zz

� _

τ′′n
��

pn

$$
Xn� _

τn

��

X ×R X′
q̂

zz

� _

ι′′
��

p̂

$$

X′n� _
τ′n
��

X� _
ι

��

XR ×R X′R
q

zz

p

$$

X′� _
ι′
��

XR X′R

of noetherian formal schemes. Here, q̂, p̂ are canonically determined as the limit by the com-
patible collections of morphisms qn, pn of schemes, and compositions of two sequential vertical
arrows give the canonical factorizations of the closed embeddings

κn = ι ◦ τn, κ
′′
n = ι′′ ◦ τ′′n , κ′n = ι′ ◦ τ′n.

Proposition 4.5. Given E ∈ Db(XR ×R X′R), the formal completion Ê along the closed fiber
X0 × X′0 defines a relative integral functor

ΦÊ = Rp̂∗(Ê ⊗L q̂∗(−)) : Db(X)→ Db(X′),
which makes the diagram

Db(XR)
ΦE //

G
��

Db(X′R)

G
��

Db(X)
ΦÊ // Db(X′)

2-commutative.

Proof. Since objects of Db(X′),Db(X ×R X′) are quasi-isomorphic to perfect complexes, the
functors q̂∗ : Db(X)→ Db(X×RX′) and Ê⊗L (−) : Db(X×RX′)→ Db(X×RX′) can be computed
by termwise application after replacing objects with perfect complexes. It is known that Rp̂∗ is
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well-defined and sends bounded complexes to bounded complexes by the comparison theorem
[GD61, Corollary 4.1.7] and Leray spectral sequence. Since by the equivalence (3.1) any object
of Db(X) can be written as Ê = G(E) � Lι∗E for some object E ∈ Db(XR), we have

ΦÊ(Ê) ⊗L
R Rn = Lτ′∗n Rp̂∗(Ê ⊗L

R Lq̂∗Ê)

� Rpn∗Lτ′′∗n (Ê ⊗L
R Lq̂∗Ê)

� Rpn∗(En ⊗Rn q∗nEn)
� ΦEn(En),

where Rn = R/mn+1
R , En = τ∗nÊ, and the first isomorphism follows from the comparison theorem.

We also have

ΦE(E) ⊗L
R Rn = Lκ′∗n Rp∗(E ⊗L

R Lq∗E)

� Rpn∗Lκ′′∗n (E ⊗L
R Lq∗E)

� Rpn∗(En ⊗Rn q∗nEn)
� ΦEn(En).

Thus we obtain isomorphisms

fn : ΦÊ(Ê) ⊗R Rn → ΦE(E) ⊗R Rn

for any positive integer n satisfying fn+1 ⊗L
Rn+1

idRn = fn. Note that ΦÊ(Ê) is the formal comple-
tion of some perfect complex on X′R, as it belongs to Db(X′) ' Db(X′R). Then, by the argument
in the proof of [HMS11, Lemma 3.4], taking the limit yields an isomorphism

f : ΦÊ(Ê)→ G (ΦE(E))

which completes the proof. �

Corollary 4.6. Given a Fourier–Mukai kernel E ∈ Db(XR ×R X′R), the functors ΦÊ : Db(X) →
Db(X′) and ΦÊK

: Db(Coh(XK)) → Db(Coh(X′K)) are equivalences, where ÊK ∈ Db(X ×R

X′)/Db
0(X ×R X′) is the image of Ê by the natural projection.

5. Fourier–Mukai partners over the closure of function fields

In this section, passing through the deformation theory, we provide new examples of Fourier–
Mukai partners, pairs of nonbirational Calabi–Yau threefolds that are derived-equivalent. Our
results play a role in deducing the derived equivalences. Let X0, X′0 be derived-equivalent
Calabi–Yau manifolds of dimension more than two. There exists a nonsingular affine k-variety
Spec S such that smooth projective versal deformations XS , X′S over S are derived-equivalent
[Mor23, Theorem 1.1]. Also effectivizations XR, X′R are shown to be derived-equivalent. These
equivalences are given by deformed Fourier–Mukai kernels. From our results in Section 4 it
immediately follows that the geometric generic fibers of XS , X′S and XR, X′R are respectively
derived-equivalent. One can check that the geometric generic fibers are Calabi–Yau manifolds.
If X0, X′0 satisfy either NStor X0 , NStor X′0, or ρ(X0) = ρ(X′0) = 1 and deg(X0) , deg(X′0),
then the geometric generic fibers are nonbirational as well as X0, X′0. Several pairs are known
to satisfy one of the two conditions. Thus we obtain new examples of Fourier–Mukai part-
ners over the closure K̄, Q̄ of the function fields. One may also pass to base changes over a
smooth connected k-curve containing X0, X′0 to apply [KT19, Theorem 1.1]. If k is a universal
domain, then Q̄ is isomorphic to k but the Fourier–Mukai partner XQ̄, X′Q̄ are different as a va-
riety from known examples. We demonstrate this subtle difference when X0, X′0 are the famous
Pfaffian–Grassmannian pair.
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5.1. Deformations of Calabi–Yau manifolds. Let X0 be a Calabi–Yau manifold with dimen-
sion more than two. The deformation functor

DefX0 : Artk → Set

of X0 has a universal formal family (R, ξ), where R is a formal power series ring with dimk H1(X0,TX0)
valuables, and ξ belongs to the limit

D̂efX0(R) = lim
←−

DefX0(R/m
n
R)

of the inverse system

· · · → DefX0(R/m
n+2
R )→ DefX0(R/m

n+1
R )→ DefX0(R/m

n
R)→ · · ·

induced by the natural quotient maps R/mn+1
R → R/mn

R. Here, mR ⊂ R is the maximal ideal.
The formal family ξ corresponds to a natural transformation

hR = Homk-alg(R,−)→ DefX0 ,

which sends each homomorphism f ∈ hR(A) factorizing through

R→ R/mn+1
R

g−→ A

to DefX0(g)(ξn). Let Xn be the schemes defining ξn. There is a noetherian formal scheme X
over R such that Xn � X ×R R/mn+1

R for each n. Thus for a deformation (XA, iA) the scheme
XA can be obtained as the pullback of X along some morphism of noetherian formal schemes
Spec A→ Spf R.

Now, we briefly recall how to algebrize X. By [GD61, Theorem III5.4.5] there exists a
scheme XR flat projective over R whose formal completion along the closed fiber X0 is isomor-
phic to X. Moreover, XR is smooth over R of relative dimension dim X0 [Mor23, Lemma 2.4].
We call XR an effectivization of X. Consider the extended functor

DefX0 : k-algaug → Set

from the category of augmented noetherian k-algebras. Let T = k[t1, . . . , td] and t ∈ Spec T
be the closed point corresponding to maximal ideal (t1, . . . , td). There is a filtered inductive
system {Ri}i∈I of finitely generated T -subalgebras of R whose colimit is R. Since DefX0 is
locally of finite presentation, [XR, iR] is the image of some element ζi ∈ DefX0

((
Ri,mRi

))
by the

canonical map DefX0

((
Ri,mRi

)) → DefX0(R). By [Art69, Corollary 2.1] there exists an étale
neighborhood Spec S of t in Spec T with first order approximation ϕ : Ri → S of Ri ↪→ R. Let
[XS , iS ] be the image of ζi by the map DefX0(ϕ). The formal completion of XS along the closed
fiber X0 is isomorphic to X.

The triple (Spec S , s0, XS ), or sometimes XS , is called a versal deformation of X0. By con-
struction, Spec S is an algebraic k-variety with a distinguished closed point s0 mapping to t,
and XS is flat of finite type over S whose closed fiber over s0 is X0. In our setting, one can find
a versal deformation XS smooth projective over a nonsingular affine k-variety Spec S of rel-
ative dimension dim X0 [Mor23, Lemma 2.3]. Moreover, given another Calabi–Yau manifold
X′0 derived-equivalent to X0, one can find a smooth projective versal deformation X′S over the
same base. The construction passes through effectivizations. Namely, there are effectivizations
XR, X′R of X0, X′0 over the same regular affine k-scheme Spec R.
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5.2. Calabi–Yau geometric generic fibers. First, we consider the effectivization XR of X and
its geometric generic fiber. We have the pullback diagram

XK̄
ī //

πK̄
��

XK
i //

πK

��

XR

πR

��
Spec K̄

j̄
// Spec K

j
// Spec R,

where K is the field of fractions of R and K̄ is the closure of K.

Lemma 5.1. The geometric generic fiber XK̄ is a Calabi–Yau manifold over K̄.

Proof. Smoothness and projectivity follow from their being stable under base change. One can
apply [GD66, Proposition IV15.5.7] to see that XK̄ is connected. Then XK̄ must be irreducible,
as it is regular. By [Har77, Theorem III12.8] the function h0 : Spec R→ Z defined as

h0(r) = dimk H0(Xr,∧dim X0−1TπR ⊗R k(r))

for r ∈ Spec R is upper semicontinuous, where TπR is the relative tangent sheaf. It follows that
there is an open neighborhood U of the closed point to which the restriction vanishes. Since R
is a domain, U contains the generic point. By flat base change we obtain

H0(XK̄ ,∧dim X0−1TXK̄
) � H0(XK ,∧dim X0−1TXK ) ⊗K K̄ = 0.

Similarly, one can show the vanishing of all the other relevant cohomology.
It remains to show the triviality of the canonical bundle. Consider the formal completion

ω̂XR/R of the relative canonical sheaf on XR along the closed fiber X0. It is given by the limit of
inverse system {ωXRn/Rn}n∈N with Rn = R/mn+1

R . Here, the inverse system consists of the sequence
of deformations of ωX0 along order by order square zero extensions. Since we have ωX0 � OX0 ,
the inverse system {OXRn

}n∈N also consists of the sequence of deformations of ωX0 . On the other
hand, by [Lie06, Theorem 3.1.1] freedom of deformations of ωX0 as a perfect complex to X1 is
given by Ext1

X0
(ωX0 , ωX0)

⊕l1 , where l1 is the dimension of k-vector space mR/m
2
R. This is trivial

by the assumption on X0 and there is an isomorphism ωX1/R1 � OXR1
respecting ωX1/R1 ⊗R1 k �

ωX0 and OXR1
⊗R1 k � OX0 � ωX0 . Inductively, one finds isomorphisms ωXn/Rn � OXRn

respecting
ωXn/Rn ⊗Rn Rn−1 � ωXn−1 and OXRn

⊗Rn Rn−1 � OXn−1 � ωXn−1 . By universality of limit, we obtain
ω̂XR/R � ÔXR , which in turn induces ωXR/R � OXR via the equivalence (3.1). �

Next, we consider the versal deformation XS of X0 and its geometric generic fiber. We have
the pullback diagram

XQ̄
ū //

πQ̄

��

XQ̄
u //

πQ

��

XS

πS

��
Spec Q̄

v̄
// Spec Q v

// Spec S ,

where Q is the field of fractions of S and Q̄ is the closure of Q.

Lemma 5.2. The geometric generic fiber XQ̄ is a Calabi–Yau manifold over Q̄.

Proof. Nontrivial part is the triviality of the canonical bundle. Consider the collection {ωXRi/Ri}i∈I

of relative canonical sheaves on XRi . It consists of the sequence of deformations of ωX0 . Since
we haveωX0 � OX0 , the collection {OXRn

}n∈N of structure sheaves also consists of the sequence of
deformations of ωX0 . We have ωXR/R � ωXRi/Ri ⊗Ri R by [Har77, Proposition II8.10] and the con-
struction of XS . One can apply [Lie06, Proposition 2.2.1] to find an isomorphism ωXRi/Ri � OXRi
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for sufficiently large i with respect to the partial order of I. We obtain ωXS /S � OXS , again by
[Har77, Proposition II8.10] and the construction of XS . �

Remark 5.1. Assuming k = C, one can show the previous lemma without using the deformation
theory of perfect complexes as follows. The fact that deformations of Calabi–Yau manifolds
are Calabi–Yau is well-known. Let Xk be a very general fiber of XS . Choose a subfield L ⊂ k
over which Xk is defined, i.e., we are given a L-variety XL such that the base change XL ×L k is
isomorphic to Xk. From the proof of [Via13, Lemma 2.1] there exists an isomorphism k → Q̄
fixing L such that the base change Xk ×k Q̄ is isomorphic to XQ̄. Note that Xk and XQ̄ are
isomorphic as a scheme but not as a variety, since the induced isomorphism of the schemes
does not lie over a fixed base.

5.3. The derived equivalence. Suppose that X0 is derived-equivalent to another Calabi–Yau
manifold X′0. Recall that there are effectivizations XR, X′R over the same regular affine k-scheme
Spec R. We have the pullback diagram

XK̄ × X′K̄
ī′′ //

πK̄×π′K̄
��

XK × X′K
i′′ //

πK×π′K
��

XR ×R X′R
πR×Rπ

′
R

��
Spec K̄ // Spec K // Spec R.

Let E0 be a Fourier–Mukai kernel. By [Mor23, Proposition 3.3, Corollary 4.2] one can deform
E0 to a Fourier–Mukai kernel E on XR ×R X′R. Applying Proposition 4.1 and Lemma 4.4, we
obtain the derived equivalence of the geometric generic fibers

Φ(i′′◦ī′′)∗E : Db(XK̄)→ Db(X′K̄).

Recall that there are smooth projective versal deformations XS , X′S of X0, X′0 over the same
nonsingular affine k-variety Spec S . We have the following pullback diagram

XQ̄ × X′Q̄
j̄′′ //

πQ̄×π′Q̄
��

XQ × X′Q
j′′ //

πQ×π′Q
��

XS ×S X′S
πS×S π

′
S

��
Spec Q̄ // Spec Q // Spec S .

By [Mor23, Proposition 3.3] one can deform E0 to a perfect complex ES on XS ×S X′S . After
possible shrinking of Spec S , the relative integral functor ΦES is an equivalence [Mor23, Theo-
rem 1.1]. Applying Proposition 4.1 and Lemma 4.4, we obtain the derived equivalence of the
geometric generic fibers

Φ( j′′◦ j̄′′)∗E : Db(XQ̄)→ Db(X′Q̄).

5.4. Nonbirationality. Let X be a smooth proper variety over an algebraically closed field.
Recall that the Néron–Severi group NS X is the quotient of the Picard group Pic X by the sub-
group Pic0 X of isomorphism classes of line bundles which are algebraically equivalent to 0.
The group NS X is a finitely generated with rank ρ(X) called the Picard number. We denote by
NStor X the subgroup of torsion elements, which is known to be a birational invariant.

Lemma 5.3. If NStor X0,NStor X′0 are nonisomorphic, then XK̄ , X′K̄ are nonbirational.

Proof. By [MP12, Proposition 3.6] there is an injection

spK̄,k : NS XK̄ → NS X0

whose cokernel is torsion free. In particular, spK̄,k is bijective on torsion subgroups. Then
NStor XK̄ ,NStor X′K̄ cannot be isomorphic. �
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The same argument yields

Lemma 5.4. If NStor X0,NStor X′0 are nonisomorphic, then XQ̄, X′Q̄ are nonbirational.

If ρ(X0) = ρ(X′0) = 1, then X0, X′0 are birational if and only if they are isomorphic [BC09,
Section 0.5]. Indeed, birational Calabi–Yau manifolds are connected by a sequence of flops
[Kaw08]. However, no such flops are possible on neither X0 nor X′0, since by ρ(X0) = ρ(X′0) = 1
all their nonzero nef divisors are ample.

Lemma 5.5. Assume that ρ(X0) = ρ(X′0) = 1 and deg(X0) , deg(X′0). Then XK̄ , X′K̄ are nonbi-
rational. Here, the degree is defined with respect to the unique ample generator of the Picard
group.

Proof. By [MP12, Proposition 3.6] we have ρ(XK̄) ≤ ρ(X′0) = 1. There is an ample divisor H
on XK̄ , as it is a projective variety of positive dimension. It follows that H is neither torsion
nor algebraically equivalent to 0. Indeed, torsion divisors are numerically trivial and one of
the two numerically effective divisors is ample if and only if so is the other. Two algebraically
equivalent divisors share the degree. Hence we obtain ρ(XK̄) = 1.

Recall that deg(X0) is the highest order coefficient of the Hibert polynomial of X0 multiplied
with (dim X0)!. Since πR is flat projective, we have deg(X0) = deg(XK). Let S (XK) be the
homogeneous coordinate ring of XK and PXK the Hilbert polynomial of XK . By definition
PXK (l) are given by dimK S (XK)l for sufficiently large integers l ∈ Z. Since XK̄ is irreducible,
dimK S (XK)l is stable under the base change XK̄ → XK along algebraic extension K ⊂ K̄. Thus
we obtain deg(XK) = deg(XK̄) and deg(XK̄) , deg(X′K̄). �

Lemma 5.6. Assume that ρ(X0) = ρ(X′0) = 1 and deg(X0) , deg(X′0). Then XQ̄, X′Q̄ are nonbi-
rational. Here, the degree is defined with respect to the unique ample generator of the Picard
group.

Proof. The same argument as above works also here. Assuming that k = C, we show ρ(XQ̄) = 1
in another way. By [Ser56] the morphism πS : XS → Spec S corresponds to a proper submer-
sion of complex manifolds (πS )h : (XS )h → (Spec S )h. Ehresmann lemma tells us that (πS )h

gives a locally trivial fibration of real manifolds [Ehr52]. In particular, all the fibers of (πS )h

share the differential type and H2((Xs)h,Z) is independent from closed points s ∈ Spec S . On
the other hand, we have NS Xs � Pic Xs � H2((Xs)h,Z), as Xs are Calabi–Yau threefolds. By
[MP12, Theorem 1.1], we obtain ρ(XQ̄) = ρ(X0) = 1. �

In summary, we obtain

Theorem 5.7. Let X0, X′0 be derived-equivalent Calabi–Yau manifolds of dimension more than
two. Then the geometric generic fibers XK̄ , X′K̄ of proper effectivizations and that XQ̄, X′Q̄ of
smooth projective versal deformations are respectively derived-equivalent Calabi–Yau man-
ifolds. If, in addition, we have either NStor X0 , NStor X′0, or ρ(X0) = ρ(X′0) = 1 and
deg(X0) , deg(X′0), then they are respectively nonbirational.

Remark 5.2. Consider base changes πB : XB → B, π′B : X′B → B of πS , π
′
S to a smooth connected

k-curve B containing the point s0. The derived equivalence of XS , X′S induces that of XB, X′B.
If X0, X′0 are nonbirational, then by [KT19, Theorem 1.1] the generic fibers of πB, π

′
B must be

nonbirational. Hence the function fields of XB, X′B are nonisomorphic. Since any field extension
gives a faithfully flat module over the original field, also the geometric generic fibers must be
nonbirational.
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5.5. Geometric generic Gross–Popescu pair. In this subsection, we temporarily assume that
k = C. Now, we will consider the case of the Gross–Popescu pair

X0 = V1
8,y, X′0 = V1

8,y/G

where V1
8,y is one of the two small resolutions of V8,y and G = Z8 × Z8 freely acts on V1

8,y. Here,
V8,y is a 3-dimensional complete intersection in P8 of four hypersurfaces parametrized by a gen-
eral point y ∈ P2. They are derived-equivalent Calabi–Yau threefolds with h1,1(X0) = h1,2(X0) =

2 [GP01a]. Since X0 is simply-connected [GP01b, Theorem 1.4], we have Hi(X0,OX0) = 0, i =

1, 2. Although the fundamental group of X′0 is given by G , 0, we also have Hi(X′0,OX′0) =

0, i = 1, 2 by [PS97, Corollary B]. Then NStor X0 , NStor X′0, or in this case equivalently
Pictor X0 , Pictor X′0. Indeed, from the exponential sequence it follows Pic X0 = H2((X0)h,Z).
The torsion part of H2((X0)h,Z) is Tor1(H1((X0)h,Z),C) = 0 by the universal coefficient the-
orem and Van Kampen’s theorem. On the other hand, the torsion part of H2((X′0)h,Z) is
Tor1(H1((X′0)h,Z),C) = G. Thus one can apply Theorem 5.7 to see that XK̄ , X′K̄ and XQ̄, X′Q̄
are respectively nonbirational derived-equivalent Calabi–Yau threefolds.

5.6. Geometric generic Pfaffian–Grassmannian pair. Next, we will consider the case of the
Pfaffian-Grassmannian pair

X0 = Gr(2,V7) ∩ P(W), X′0 = Pf(4,V7) ∩ P(W⊥)

where V7 is a 7-dimensional k-vector space, W is a 14-dimensional general quotient vector
space of ∧2V7 � W, and W⊥ = Coker(W∨ ↪→ ∧2V∨7 ). They are derived-equivalent Calabi–
Yau threefolds with ρ(X0) = ρ(X′0) = 1 and deg(X0) , deg(X′0) [BC09, Kuz]. One can apply
Theorem 5.7 to see that XK̄ , X′K̄ and XQ̄, X′Q̄ are respectively nonbirational derived-equivalent
Calabi–Yau threefolds. Similarly, one obtains another example from Reye congruence and
double quintic symmetroid Calabi–Yau threefolds [HT16].

We will study XQ̄, X′Q̄ slightly further. Assume that k is a universal domain. Let L ⊂ k
be a subfield over which X0, X′0 are defined, i.e., we are given L-varieties XL, X′L such that
XL×L k � X0, X′L×L k � X′0. From the proof of [Via13, Lemma 2.1] there exists an isomorphism
k→ Q̄ fixing L such that the base change of very general fibers Xs, X′s of XS , X′S are respectively
isomorphic to XQ̄, X′Q̄. Note that by [Mor23, Lemma 5.1] and [KK16, Corollary 6.3], general
fibers of their smooth projective versal deformations XS , X′S are isomorphic to X0, X′0. The
isomorphisms Xs � X0, X′s � X′0 of k-varieties induces that

X0 � XQ̄, X′0 � X′Q̄

of schemes.
There is another Fourier–Mukai partner called IMOU varieties [IMOU, Kuz18], consisting

of derived-equivalent Calabi–Yau threefolds Y0,Y ′0 which are deformation equivalent to X0, X′0
respectively [KK16, IIM19]. Extending L if necessary, we may assume that also Y0,Y ′0 are
defined over L. Then either of them fails to be isomorphic to XQ̄, X′Q̄ as a scheme, otherwise
we would have XL � YL and X′L � Y ′L. Hence Y0,Y ′0 cannot be isomorphic XQ̄, X′Q̄ at the same
time even as a scheme. Thus XQ̄, X′Q̄ provide a new example of Fourier–Mukai partners. They
are isomorphic to X0, X′0 as a scheme, but have different structures from both the Pfaffian–
Grassmannian pair and IMOU varieties as a variety.

Remark 5.3. General fibers of smooth projective versal deformations of Y0,Y ′0 are isomorphic
to X0, X′0 as a k-varieties. This implies that one can obtain XQ̄, X′Q̄ starting from IMOU varieties.
Moreover, one sees that XQ̄, X′Q̄ are nonbirational, otherwise X0, X′0 must be birational.
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As in this case, when deformations of Fourier–Mukai partners are well-understood, one can
deduce nonbirationality of the geometric generic fibers immediately. For instance, GPK3 three-
folds [BCP20] are isomorphic to general fibers of smooth projective versal deformations of
Kapustka–Rampazzo varieties [KR19] as a k-varieties [IIM19, Proposition 4.7]. Then by the
same argument the geometric generic fibers are nonbirational and one obtains another Fourier–
Mukai partner. Note that for Pfaffian-Grassmannian pair and GPK3 threefolds, the derived
equivalences of the geometric generic fibers stems from birationality of noncompact Calabi–
Yau manifolds connected by simple K-flops [Ued19, Mor21].

Remark 5.4. In this case XQ̄, X′Q̄ are also L-equivalent. Indeed, the isomorphism k→ Q̄ induces
that K0(Vark)→ K0(VarQ̄) of Grothendieck rings mapping the relation in [Mar16, Theorem 1.1]
to

([XQ̄] − [X′Q̄]) · L6
Q̄ = 0.

6. Specialization of derived equivalence

As advertised, for flat proper families of k-varieties over a common base we study the in-
duced derived equivalence from their generic to general fibers. The key is the ability of Corol-
lary 2.6 to lift Fourier–Mukai kernels along the projection. First, although it is not strictly
necessary for our purpose, we extend Corollary 2.6 to nonaffine base case for flat proper fami-
lies of k-varieties. It suffices to show that, when restricted to general fibers, the relative integral
functor defined by the lift admits fully faithful left adjoints. As in the proof of [Mor23, The-
orem 1.1], we show that the associated counit morphism is a natural isomorphism. However,
since in general the generic finer is not a subscheme of a family, we have to adapt the proof
as follows. Shrinking the base, we remove torsion parts with respect to the base from a fixed
strong generator and its relevant Hom-sets. Then we invoke some basic categorical results to
show that the value of the counit morphism on the trimmed strong generator is an isomorphism,
which implies that the restriction of the counit morphism is a natural isomorphism.

6.1. Lifts of Fourier–Mukai kernels. Let π : X → S be a flat proper morphism of k-varieties.
Since S is integral, the function field K = k(S ) is given by local ring OX,ξ and it coincides with
the field of fractions Q(R) for any affine open k-subvariety U = Spec R [Har77, Exercise II3.6].
Hence we have the following pullback diagram

Xξ

ῑξ //

πξ

��

X

π

��
Spec K

ιξ
// S

where ιξ is the canonical morphism.

Definition 6.1. The categorical generic fiber of π : X → S is the Verdier quotient

Db(X)/Ker(ῑ∗ξ),

where Ker(ῑ∗ξ) is the kernel [SP, Tag 05RF] of the exact functor ῑ∗ξ : Db(X)→ Db(Xξ).

Recall that for a smooth separated family πR : XR → Spec R over a nonsingular affine k-
variety, by Corollary 2.6 there exists a Q(R)-linear exact equivalence

Db(XR)/Db
0(XR) ' Db(Xξ),

where Db
0(XR) is the full triangulated subcategory spanned by complexes with R-torsion coho-

mology. The above definition is an extension of this local description in the following sense.
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Theorem 6.1. Let π : X → S be a flat proper morphism of k-varieties. Then there exists a
K-linear exact equivalence

Db(X)/Ker(ῑ∗ξ) ' Db(Xξ).

Proof. Let [ῑ∗ξ] : Db(X)/Ker(ῑ∗ξ)→ Db(Xξ) be the unique functor which makes the diagram

Db(X)
ῑ∗ξ //

Q &&

Db(Xξ)

Db(X)/Ker(ῑ∗ξ)

[ῑ∗ξ]

OO
(6.1)

commute, where Q : Db(X) → Db(X)/Ker(ῑ∗ξ) is the quotient functor. Take any affine open
subset U = Spec R ⊂ S . Let πU : XU → U and πZ : XZ → Z be the base changes to U and its
complement Z = S \ U respectively. We have

coh(XU) ' coh(X)/ cohZ(X)

where the right hand side is the Serre quotient by the Serre subcategory cohZ(X) ⊂ coh(X) of
sheaves supported on XZ. Passing to the derived category, via [Miy91, Theorem 3.2] we obtain
U-linear exact equivalence

Db(XU) ' Db(X)/Db
Z(X)

where Db
Z(X) ⊂ Db(X) is the full S -linear triangulated subcategory with cohomology supported

on XZ. Since Db
Z(X) is contained in Ker(ῑ∗ξ), the commutative diagram (6.1) extends to

Db(X)

ῑ∗U
��

ῑ∗ξ //

Q ''

Db(Xξ)

Db(XU)
[Q]
// Db(X)/Ker(ῑ∗ξ).

[ῑ∗ξ]

OO

On the other hand, the inclusion Db
Z(X) ⊂ Ker(ῑ∗ξ) induces a commutative diagram

Db(X)

ῑ∗U
��

ῑ∗ξ // Db(Xξ)

Db(XU)
QR

::
(6.2)

where QR : Db(XU) = Db(XR) → Db(Xξ) ' Db(XR)/Db
0(XR) is the quotient functor. Note that

shrinking U if necessary, we may assume that πR is smooth in order to apply Corollary 2.6.
Indeed, by [Har77, Theorem I5.3] the singular locus of XR is a proper closed subset, whose
image under the flat proper morphism πR is proper closed subset of Spec R. Changing the
base to its complement, we may assume that XR is nonsingular. Then one can apply [Har77,
Corollary III10.7] to find an open subset of Spec R over which the restriction of π becomes
smooth. Since Db

0(XR) is contained in Ker([Q]), the commutative diagram (6.2) extends to

Db(X)

ῑ∗U
��

ῑ∗ξ // Db(Xξ)

[[Q]]
��

Db(XU)
QR

88

[Q]
// Db(X)/Ker(ῑ∗ξ)
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with unique [[Q]]. Thus we obtain a commutative diagram

Db(X)
Q //

Q &&

Db(X)/Ker(ῑ∗ξ)

Db(X)/Ker(ῑ∗ξ).

[[Q]]◦[ῑ∗ξ]
OO

By universality of Verdier quotient, the composition [[Q]] ◦ [ῑ∗ξ] is natural isomorphic to the
identity functor. Hence [ῑ∗ξ] is an equivalence. �

Remark 6.1. The above theorem is a direct consequence of [Miy91, Theorem 3.2] and the
K-linear equivalence

coh(X)/Ker(ῑ∗ξ) ' coh(Xξ),

which can be deduced by the similar argument. Here, we use the same symbol Ker(ῑ∗ξ) to denote
the kernel [SP, Tag 02MR] of the exact functor ῑ∗ξ of abelian categories. In particular, Theorem
2.5 also extends to nonaffine base case for flat proper families of k-varieties.

Corollary 6.2. Let π : X → S be a flat proper morphism of k-varieties. Then any object of
Db(Xξ) can be lifted to that of Db(X) along the projection Q.

6.2. Basic categorical results.

Lemma 6.3. Let C ,D be small categories and F : C → D ,G : D → C functors with F a G.
Assume that there exists an object D ∈ D such that the canonical maps

Hom(D,D)→ Hom(G(D),G(D)), Hom(D, FG(D)→ Hom(G(D),GFG(D))

are bijective. Then the counit morphism ε : FG ⇒ 1D induces an isomorphism εD : FG(D) →
D.

Proof. Let αD, αFG(D) be the compositions

Hom(D,D)→ Hom(G(D),G(D))→ Hom(FG(D),D),
Hom(D, FG(D)→ Hom(G(D),GFG(D))→ Hom(FG(D), FG(D))

of the canonical maps. By assumption and definition of adjoint functors αD, αFG(D) are bijective.
We denote εD = αD(1D) by f and α−1

FG(D)(1FG(D)) by g. Consider the diagrams

Hom(D,D)
αD //

g◦
��

Hom(FG(D),D)

g◦
��

Hom(D, FG(D))
αFG(D) //

f◦
��

Hom(FG(D), FGD)

f◦
��

Hom(D, FG(D))
αFG(D)

// Hom(FG(D), FGD), Hom(D,D)
αD

// Hom(FG(D),D),

which are commutative by definition of functors and naturality of adjoints. As expressions of
the images of 1D, g we respectively obtain

1FG(D) = αFG(D)(α−1
FG(D)(1FG(D))) = αFG(D)(g) = g(αD(1D)) = g f ,

αD( f g) = f (αFG(D)(g)) = f (αFG(D)(α−1
FG(D)(1FG(D)))) = f .

From the second line it follows f g = α−1
D ( f ) = 1D. Hence f is an isomorphism. �

Remark 6.2. The above proof is just an adaptation of the proof of the fact that G is fully faithful
if and only if ε is a natural isomorphism.

Similarly, one can prove the dual statement.
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Lemma 6.4. Let C ,D be small categories and F : C → D ,G : D → C functors with F a G.
Assume that there exists an object C ∈ C such that the canonical maps

Hom(C,C)→ Hom(F(D), F(D)), Hom(GF(C),C)→ Hom(FGF(C), F(C))

are bijective. Then the unit morphism η : 1C ⇒ GF induces an isomorphism ηC : C → GF(C).

Remark 6.3. Again, the proof is just an adaptation of the proof of the fact that F is fully faithful
if and only if η is a natural isomorphism.

6.3. Removal of torsion supports.

Lemma 6.5. Let πR : X → Spec R, π′R : X′ → Spec R be a smooth proper morphisms to a
nonsingular affine k-variety. Assume that their generic fibers XK , X′K are derived-equivalent.
Let ΦEK : Db(XK) → Db(X′K) be a Fourier–Mukai functor giving the equivalence with kernel
EK ∈ Db(XK × X′K). Fix a lift E ∈ Db(X ×R X′) of EK along the projection

Db(X ×R X′)→ Db(X ×R X′)/Db
0(X ×R X′) ' Db(XK × X′K)

and a strong generator E of Db(X). Then there exists an affine open subset U ⊂ Spec R over
which the restriction

ΦU = ΦEU : Db(XU)→ Db(X′U)

induces bijections
Hom(EU , EU)→ Hom(ΦU(EU),ΦU(EU)),

Hom(EU ,Φ
L
UΦU(EU))→ Hom(ΦU(EU),ΦUΦL

UΦU(EU)),
(6.3)

where ΦL
U : Db(X′U)→ Db(XU) is the left adjoint to ΦU .

Proof. By [BV03, Theorem 2.1.2, Lemma 3.4.1] the base change EK of E along the canonical
inclusion R ↪→ K is a strong generator of Db(XK), which can not be trivial. Consider the
support of the R-torsion part of E, i.e., the union

⋃
i suppH i(E)tors of the supports of the R-

torsion parts H i(E)tors of H i(E). Each H i(E)tors is a coherent sheaf on X, as every submodule
of a finitely presented module over a noetherian ring is finitely presented. Since the union
is finite,

⋃
i suppH i(E)tors is a closed subset of X. Its complement must contain the generic

point of X, otherwise EK is trivial. Let U ⊂ Spec R be the image of the complement under
πR, which is a nonempty open subset. By construction over U the restriction EU = E|π−1

U (U)

is OU(U)-torsion free. Since Hom(EU , EU) is coherent as an OU(U)-module by Lemma 6.6
below, shrinking U if necessary, we may assume that it is OU(U)-torsion free. The tensor
product ΦU(EU) ⊗OU (U) K can not be trivial, otherwise it does not map to an object quasi-
isomorphic to EK under Φ−1

K . Hence by the same argument one finds an affine open subset
V ⊂ Spec R over which the restriction ΦV(EV) � ΦE(E)|π′−1

V (V) and Hom(ΦV(EV),ΦV(EV)) are
OV(V)-torsion free. The intersection U ∩ V ⊂ Spec R is a nonempty open subset, as Spec R is
integral. Now, we replace U ∩ V with U.

Consider a map

Hom(EU , EU)
ΦU−−→ Hom(ΦU(U),ΦU(EU))(6.4)

of OU(U)-modules. By assumption and Lemma 2.2 tensoring K yields an exact sequence

0→ Hom(EU , EU) ⊗OU (U) K
ΦU⊗OU (U)K−−−−−−−−→ Hom(ΦU(U),ΦU(EU)) ⊗OU (U) K → 0.(6.5)

Hence the map ΦU in (6.4) is injective, as Hom(EU , EU) is OU(U)-torsion free. The associated
sheaf with the cokernel

Hom(ΦU(EU),ΦU(EU))/Hom(EU , EU)
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might have nontrivial OU(U)-torsion part. However, since by Lemma 6.6 below it is coherent,
one finds an affine open subset W ⊂ U to which the restriction of the associated sheaf is
OW(W)-torsion free. Now, we replace W with U. Then the exactness of (6.5) implies that of
(6.4). Hence the map ΦU in (6.4) is bijective. Shrinking U if necessary, by the same argument
we conclude that

Hom(EU ,Φ
L
UΦU(EU))

ΦU−−→ Hom(ΦU(EU),ΦUΦL
UΦU(EU))

is also bijective. �

Remark 6.4. For our purpose, we do not need the generator E to be strong. Nevertheless, we put
the adjective “strong” as there always exists a strong generator of Db(X) under the assumption.

Remark 6.5. Note that the base change

(Hom(ΦU(EU),ΦU(EU))/Hom(EU , EU)) ⊗OU (U) OW(W)(6.6)

is isomorphic to the cokernel of the sequence

0→ Hom(EW , EW)
ΦW−−→ Hom(ΦW(W),ΦW(EW))→ 0.

Indeed, (6.6) is isomorphic to

Hom(ΦU(EU),ΦU(EU)) ⊗OU (U) OW(W)/Hom(EU , EU) ⊗OU (U) OW(W)

as the pullback by an open immersion is exact. Consider the pullback diagrams

XW
� � ῑ //

πW

��

XU

πU

��

X′W
� � ῑ′ //

π′W
��

X′U
π′U
��

W �
�

ι
// U, W �

�

ι
// U.

By the derived flat base change we have
ι∗R Hom•(EU , EU) � ι∗RπU∗RHom•(EU , EU) � R Hom•(EW , EW),

ι′∗R Hom•(ΦU(EU),ΦU(EU)) � ι′∗Rπ′U∗RHom•(ΦU(EU),ΦU(EU)) � R Hom•(ΦW(EW),ΦW(EW)).

Passing to the 0-th cohomology of complexes, we obtain
Hom(EU , EU) ⊗OU (U) OW(W) � Hom(EW , EW),

Hom(ΦU(EU),ΦU(EU)) ⊗OU (U) OW(W) � Hom(ΦW(EW),ΦW(EW))

as ι∗, ι′∗ are exact.

Lemma 6.6. Let πR : X → Spec R be a smooth proper morphism to a nonsingular affine k-
variety. Then for any object E, F ∈ Db(X) the R-module Hom(E, F) = Ext0

X(E, F) is coherent.

Proof. Consider the spectral sequences

Ep,q
2 = Extp

X(E,Hq(F))⇒ Extp+q
X (E, F),

Ep,q
2 = Extp

X(H−q(E), F)⇒ Extp+q
X (E, F),

Ep,q
2 = Hp(X,Extq

X(E, F))⇒ Extp+q
X (E, F),

from [Huy06, Example 2.70, Compatibilities(v)]. Applying the first two, we may assume that
E, F are coherent sheaves on X. Then Extq

X(E, F) is coherent. Since πR is proper, RpπR∗Extq
X(E, F)

is also coherent, which is isomorphic to the associated sheaf on Spec R with Hp(X,Extq
X(E, F))

[Har77, Proposition III8.5]. In the decreasing filtration of Ext0
X(E, F), the smallest nontrivial

submodule is isomorphic to El,−l
∞ for some l ∈ Z, which is a coherent R-module. Ascending the

filtration, one sees that Ext0
X(E, F) is coherent by two out of three principle. �
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Similarly, one can prove the dual statement.

Lemma 6.7. Let πR : X → Spec R, π′R : X′ → Spec R be a smooth proper morphisms to a
nonsingular affine k-variety. Assume that their generic fibers XK , X′K are derived-equivalent.
Let ΦEK : Db(XK) → Db(X′K) be a Fourier–Mukai functor giving the equivalence with kernel
EK ∈ Db(XK × X′K). Fix a lift E ∈ Db(X ×R X′) of EK along the projection

Db(X ×R X′)→ Db(X ×R X′)/Db
0(X ×R X′) ' Db(XK × X′K)

and a strong generator E′ of Db(X′). Then there exists an affine open subset U ⊂ Spec R over
which the restriction

ΦL
U = ΦL

EU
: Db(X′U)→ Db(XU)

induces bijections

Hom(E′U , E
′
U)→ Hom(ΦL

U(E′U),ΦL
U(E′U)),

Hom(ΦUΦL
U(E′U), E′U)→ Hom(ΦL

UΦUΦL
U(E′U),ΦL

U(E′U)),
(6.7)

where ΦU : Db(XU)→ Db(X′U) is the right adjoint to ΦL
U .

6.4. Specialization.

Theorem 6.8. Let πR : X → Spec R, π′R : X′ → Spec R be smooth proper morphisms to a
nonsingular affine k-variety. Assume that their generic fibers XK , X′K are derived-equivalent.
Let ΦEK : Db(XK) → Db(X′K) be a Fourier–Mukai functor giving the equivalence with kernel
EK ∈ Db(XK × X′K). Fix a lift E ∈ Db(X ×R X′) of EK along the projection

Db(X ×R X′)→ Db(X ×R X′)/Db
0(X ×R X′) ' Db(XK × X′K).

Then there exists an affine open subset U ⊂ Spec R over which the restriction

ΦU = ΦE|pr−1
1 ◦π−1

U (U) : Db(XU)→ Db(X′U)

become an OU(U)-linear exact equivalence. In particular, over U any pair of closed fibers are
derived-equivalent.

Proof. The proof is an adaptation of the argument in the proof of [Mor23, Theorem 1.1]. Fix a
strong generator E of Db(X). The counit morphism ε : ΦL

E ◦ΦE → idDb(X) gives a distinguished
triangle

ΦL
E ◦ ΦE(E)

εE−→ E → F B Cone (ε (E)) .(6.8)

Over any open subset U ⊂ Spec R, (6.8) restricts to a distinguished triangle

ΦL
U ◦ ΦU(EU)

εEU−−→ EU → FU .

Note that the restriction of the counit morphism is the counit morphism. Choose U so that
we have the bijections (6.3) from Lemma 6.5. Then by Lemma 6.3 the counit morphism εEU

on EU is an isomorphism. Since EU is a strong generator of Db(XU) by [BV03, Theorem
2.1.2, Lemma 3.4.1], this implies that ΦU is fully faithful. Recall that a triangulated category is
strongly finitely generated if there exist an object EU and a nonnegative integer k such that every
object can be obtained from EU by taking isomorphisms, finite direct sums, direct summands,
shifts, and not more than k times cones. Now, we may assume that EU has no nontrivial direct
summands, as ΦU and ΦL

U commute with direct sums on Db(XU) by [BV03, Corollary 3.3.4].
Since εEU is an isomorphism, one inductively sees that over U the counit morphism on any
object is an isomorphism.
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Fix a strong generator E′ of Db(X′). The unit morphism η : idDb(X′) → ΦE ◦ ΦL
E gives a

distinguished triangle

E′
ηE′−−→ ΦE ◦ ΦL

E(E
′)→ F′ B Cone(ηE′).(6.9)

Over any open subset U ⊂ Spec R, (6.9) restricts to a distinguished triangle

E′U
ηE′U−−−→ ΦU ◦ ΦU(E′U)→ F′U .

Note that the restriction of the unit morphism is the unit morphism. Choose U so that we have
the bijections (6.7) from Lemma 6.7. Then by Lemma 6.4 the unit morphism ηE′U on E′U is
an isomorphism. Since E′U is a strong generator of Db(X′) by [BV03, Theorem 2.1.2, Lemma
3.4.1], this implies that ΦL

U is fully faithful. Shrinking U if necessary, we may assume that over
U both ΦU and ΦL

U are fully faithful. Then ΦU is an equivalence, as a fully faithful functor
which admits a fully faithful left adjoint is an equivalence. �

Remark 6.6. If ΦE induces the derived equivalence of a single pair of closed fibers, then there
exists a Zariski open subset U ⊂ Spec R such that the base changes XU , X′U are derived-
equivalent. This follows from the proof of [Mor23, Theorem 1.1], which exploits the fact
that the restriction of the counit morphism εE : ΦL

E ◦ ΦE(E) → E to any closed fiber is the
counit morphism for each object E ∈ Db(X). However, it does not work for the generic fiber.
In general, the generic fiber is not a subscheme of XR, while any closed fiber can naturally be
regarded as a subscheme of XR via the reduced induced structure on the image of the closed
immersion.

Corollary 6.9. Let π : X → S , π′ : X′ → S be flat proper morphisms of k-varieties. Assume
that their generic fibers XK , X′K are derived-equivalent. Then there exists an open subset U ⊂ S
to which base changes XU , X′U become derived-equivalent. In particular, over U any pair of
closed fibers are derived-equivalent.

Proof. By [Har77, Theorem I5.3] the singular locus of X, X′ are proper closed subsets, whose
images under flat proper morphisms π, π′ are proper closed subsets of S . Changing the base
to the complement of their union, we may assume that X, X′ are nonsingular. Then one can
apply [Har77, Corollary III10.7] to find an open subset of S over which the restrictions of π, π′

become smooth. Hence we may assume further that π, π′ are smooth.
Let ΦEK : Db(XK) → Db(X′K) be a Fourier–Mukai functor giving the equivalence with kernel

EK ∈ Db(XK × X′K). Fix a lift E ∈ Db(X ×S X′) of EK along the projection

Db(X ×S X′)→ Db(X ×S X′)/Db
0(X ×S X′) ' Db(XK × X′K).

Take an affine open cover
⋃N

i=1 Spec Ri of S . One can apply Theorem 6.8 to find open subsets
Ui ⊂ Spec Ri over which the restrictions

ΦUi = ΦEUi
: Db(XUi)→ Db(X′Ui

)

become OUi(Ui)-linear exact equivalences. Let V =
⋃N

i=1 Ui be their union, which is an open
k-subvariety of S . Consider the restriction

ΦV = ΦEV : Db(XV)→ Db(X′V)

over V . Since its restriction to any pair of closed fibers over V defines an equivalence, ΦV is an
equivalence by [HLS09, Proposition 2.15]. �
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VERSAL DG DEFORMATION OF CALABI–YAU MANIFOLDS

HAYATO MORIMURA

Abstract. We prove the equivalence of the deformation theory for a higher dimensional Calabi–
Yau manifold and that for its dg category of perfect complexes by giving a natural isomorphism
of the deformation functors. As a consequence, the dg category of perfect complexes on a versal
deformation of the original manifold provides a versal Morita deformation of its dg category
of perfect complexes. Besides the classical uniqueness up to étale neiborhood of the base, we
prove another sort of uniqueness of versal Morita deformations.

1. Introduction

The derived category of coherent sheaves on an algebraic variety is an intensively studied
invariant which carries rich information about geometric properties of the variety. For instance,
given a smooth projective variety either of whose canonical or anticanonical bundle is ample,
one can reconstruct the variety from its derived category [BO01]. The condition guarantees the
absence of nontrivial autoequivalences of the derived category. Such autoequivalences often
stem from the derived equivalence of nonisomorphic, sometimes even nonbirational Calabi–
Yau manifolds. According to the homological mirror symmetry conjecture by Kontsevich,
derived-equivalent Calabi–Yau manifolds should share their mirror partner. Usually, the homo-
logical mirror symmetry is considered for families of Kähler manifolds.

A goal of this paper is to study the relationship between deformations and the derived cate-
gory of a higher dimensional Calabi–Yau manifold. There seems to be a consensus among some
experts that deforming an algebraic variety and its derived category are essentially the same.
Philosophically, it is reasonable since their Hochschild cohomology, which in general is known
to control deformations of a mathematical object, are isomorphic. However, before [LV06b]
we were not given the correct framework to study deformations of even linear nor abelian cate-
gories. To every second Hochschild cocycle on a smooth projective variety, Toda associated the
category of twisted coherent sheaves on the corresponding noncommutative scheme over the
ring of dual numbers [Tod09]. In [DLL17] Dinh–Liu–Lowen showed that Toda’s construction
indeed yields flat abelian first order deformations of the category of coherent sheaves on the
variety in the sense of [LV06b]. We fill the gap between this point and the conclusion stated
below more precisely.

Let X0 be a Calabi–Yau manifold of dimension more than two in the strict sense, i.e., a
smooth projective k-variety with ωX0 � OX0 and Hi(OX0) = 0 for 0 < i < dim X0. We denote by
Perfdg(X0) the dg category of perfect complexes on X0. The deformation functor

DefX0 : Artk → Set

sends each local artinian k-algebra A ∈ Artk with residue field k to the set of equivalence classes
of A-deformations of X0 and each morphism B → A in Artk to the map DefX0(B) → DefX0(A)
induced by the base change. Consider another deformation functor

Defmo
Perfdg(X0) : Artk → Set

which sends each A ∈ Artk to the set of isomorphism classes of Morita A-deformations of
Perfdg(X0) and each morphism B → A in Artk to the map Defmo

Perfdg(X0)(B) → Defmo
Perfdg(X0)(A)
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induced by the derived dg functor − ⊗L
B A. Our first main result claims that the deformation

theory for X0 is equivalent to that for Perfdg(X0) in the following sense.

Theorem 1.1. (Theorem 7.1) There is a natural isomorphism

ζ : DefX0 → Defmo
Perfdg(X0)

of deformation functors.

In particular, Morita deformations of Perfdg(X0) is controlled by the Kodaira–Spencer dif-
ferential graded Lie algebra. To obtain ζ we need to consider certain maximal partial curved
dg deformations of Perfdg(X0). Curved dg deformations of a dg category is a special case of
curved A∞-deformations of an A∞-category. Let (a, µ) be a dg category over R ∈ Artk with a
square zero extension

0→ I→ S→ R→ 0.

Choose generators ε = (ε1, . . . , εl) of I regarded as a free R-module of rank l. By [Low08,
Theorem 4.11] there is a bijection

H2C(a)⊕l → Defcdg
a (S), φ 7→ aφ = (a[ε], µ + φε)(1.1)

where φ is a Hochschild cocycle. In other words, curved dg S-deformations of a are classified
by the direct sum of the second Hochschild cohomology.

Assume that a is an R-linear category. We denote by Com+(a) the dg category of bounded
below complexes of a-objects. Then by [Low08, Theorem 4.8] the characteristic morphism

χ⊕l
a : H•C(a)⊕l → Z•K+(a)⊕l

maps φ ∈ Z2C(a)⊕l to the obstructions against lifting objects of K+(a) to K+(aφ) along the
functor HomS(R,−). In particular, for each C ∈ K+(a) there exists a lift to K+(aφ) if and only if
χ⊕l
a (φ)C = 0. The characteristic morphism χ⊕l

a is induced by a B∞-section

embrδ : C(a)⊕l → C(Com+(a))⊕l

of the canonical projection, which is a quasi-isomorphism of B∞-algebras [Low08, Theorem
3.22]. Hence (1.1) induces another bijection

H2C(a)⊕l → Defcdg
Com+(a)(S),

φ 7→ Com+(a)embrδ(φ) = (Com+(a)[ε], embrδ(µ) + embrδ(φ)ε).
(1.2)

From the proof of [Low08, Theorem 4.8] it follows that χ⊕l
a (φ)C = 0 if and only if the curvature

element (embrδ(µ + φε))0,C vanishes for each C ∈ Com+(a). Hence any full dg subcategory of
Com+(a) spanned by object C with χ⊕l

a (φ)C = 0 dg deforms along the restriction of embrδ(φ).
Note that the restrictions of embrδ(µ)+embrδ(φ)ε and embrδ(µ+φε) to such a full dg subcategory
coincide up to coboundary.

Let X be an R-deformation of X0 and Xφ its deformation along a cocycle φ ∈ HH2(X)⊕l =

H1(TX/R)⊕l. The above argument can be adapted to our setting so that for each E ∈ Perfdg(X)
the curvature element vanishes if and only if there exists a lift of E ∈ Perf(X) to Perf(Xφ). With
a little more effort one can apply [KL09, Proposition 3.12] to obtain

Theorem 1.2. (Theorem 6.11) There is a bijection

Defmo
Perfdg(X)(S)→ Defcdg

Perfdg(X)(S)

between the set of isomorphism classes of Morita S-deformations and that of curved dg S-
deformations of Perfdg(X).
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In particular, giving curved dg S-deformations of Perfdg(X) is equivalent to giving its Morita
S-deformations. Consider the dg category Perfdg(Xφ) of perfect complexes on Xφ. It defines a
Morita S-deformation of Perfdg(X). Let

m(φ) = Perfdg(Xφ) ⊗L
S R

be the image of the derived base change. Then any h-flat resolution Perfdg(Xφ) defines a dg
deformation of m(φ). There is an isomorphism

HH2(X)⊕l � H2C(Perfdg(X))⊕l

induced by the B∞-section

embrδ : C(Inj(Qch(X)))⊕l → C(Com+(Inj(Qch(X))))⊕l,

where Inj(Qch(X)) ⊂ Qch(X) is the full R-linear subcategory of injective objects. We denote
by embrδ(φ) the image of φ under the isomorphism, which defines another dg S-deformation
m(φ)embrδ(φ) of m(φ) along embrδ(φ). Deformations and taking the dg category of perfect com-
plexes intertwine in the following sense.

Theorem 1.3. (Theorem 6.12) There is an isomorphism

Perfdg(Xφ) ' m(φ)embrδ(φ)

of dg S-deformations of m(φ). In particular, the Morita S-deformation Perfdg(Xφ) defines a
maximal partial dg S-deformaiton of Perfdg(X) along embrδ(φ).

This is the key to prove Theorem 1.1. Unwinding Toda’s construction, from [DLL17, The-
orem 5.12] we obtain an equivalence Qch(X)φ ' Qch(Xφ) of Grothendieck abelian categories,
where Qch(X)φ is the flat abelian S-deformation of Qch(X) along φ ∈ Z2Cab(Qch(X))⊕l. Here,
we use the same symbol φ to denote the image under the isomorphism

HH2(X)⊕l � H2Cab(Qch(X))⊕l.

Via the induced equivalence

Ddg(Qch(Xφ)) ' Ddg(Qch(X)φ)

we regard Perfdg(Xφ) as the full dg subcategory of compact objects of Ddg(Qch(X)φ). Based
on the idea in the proof of [Low08, Theorem 4.15], we compare the dg structure on Perfdg(Xφ)
with that on m(φ)embrδ(φ).

Working with Morita deformations of Perfdg(X0), by [Coh, Corollary 5.7] we may apply
[BFN10, Theorem 1.2] to obtain reductions. In particular, given a deformation (XB, iB) ∈
DefX0(B) and a morphism B→ A in Artk, there is a Morita equivalence

Perfdg(XB) ⊗L
B A 'mo Perfdg(XB) ⊗L

B Perfdg(A) 'mo Perfdg(XA)

of A-linear dg categories, where − ⊗L
B − is the derived pointwise tensor product of dg cate-

gories. Further application of [BFN10, Theorem 1.2] shows that any universal formal family
for Defmo

Perfdg(X0) is effective. If we ignore the set theoretical issues, the deformation functor
Defmo

Perfdg(X0) can naturally be extended to a functor defined on the category Algaug(k) of aug-
mented noetherian k-algebras. Although we do not know whether it would be locally of finite
presentation (colimit preserving), one can always construct a versal Morita deformation via
geometric realization in the following sense.

Corollary 1.4. (Corollary 7.4) Any effective universal formal family for Defmo
Perfdg(X0) is alge-

braizable. In particular, an algebraization is given by Perfdg(XS ) where (Spec S , s, XS ) is a
versal deformation of X0.
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The versal Morita deformation Perfdg(XS ) may be regarded as a family of Morita deforma-
tions of Perfdg(X0). More generally, for such a family determined by an enough nice S -scheme
XS we introduce its generic fiber as follows.

Definition 1.5. Let XS be a smooth separated scheme over a noetherian connected regular
affine k-scheme Spec S whose closed points are k-rational. Then the dg categorical generic
fiber of Perfdg(XS ) is the Drinfeld quotient

Perfdg(XS )/Perfdg(XS )0,

where Perfdg(XS )0 ⊂ Perfdg(XS ) is the full dg subcategory of perfect complexes with S -torsion
cohomology.

We impose a technical assumption on S to include also the case where S is a formal power
series ring. The Drinfeld quotient is a natural dg enhancement of the categorical generic fiber
introduced in [Morb], which is in turn based on the categorical general fiber by Huybrechts–
Macrı̀–Stellari [HMS11]. Taking the generic fiber and the dg category of perfect complexes
intertwine in the following sense.

Proposition 1.6. (Proposition 7.5) Let XS be a smooth separated scheme over a noetherian
connected regular affine k-scheme Spec S whose closed points are k-rational. Then there is a
quasi-equivalence

Perfdg(XS )/Perfdg(XS )0 'qeq Perfdg(XQ(S ))

where Q(S ) is the quotient field of S and XQ(S ) is the generic fiber of XS .

Another goal of this paper is to show the uniqueness of versal Morita deformations with
respect to geometric realizations. Recall that up to étale neighborhood of the base versal defor-
mations of X0 are unique. Namely, if (Spec S , s, XS ) (Spec S ′, s′, XS ′) are two versal deforma-
tions of X0, then there is another versal deformation (Spec S ′′, s′′, XS ′′) such that (Spec S ′′, s′′)
is an étale neighborhood of s, s′ in Spec S ,Spec S ′ respectively and XS ′′ is the pullback along
the corresponding étale morphisms. The deformation functor DefX0 has an effective univer-
sal formal family (R, ξ), where R is a regular complete local noetherian k-algebra. Choose an
isomorphism R � k~t1, . . . , td� and let T = k[t1, . . . , td] with d = dimk H1(TX0). There is a
filtered inductive system {Ri}i∈I of finitely generated T -subalgebras of R whose colimit is R.
Then (Spec S , s) is an étale neighborhood of t in Spec T with t corresponding to the maximal
ideal (t1, . . . , td) ⊂ T , and XS is the pullback of a deformation XR j of X0 along a first order
approximation R j → S of R j ↪→ R for sufficiently large j ∈ I. Hence the ambiguity of XS

stems from the choice of j ∈ I, besides the choice of étale neighborhoods.
In [Mora] the author constructed smooth projective versal deformations XS , X′S of X0, X′0

over a common nonsingular affine variety Spec S , while deforming simultaneously the Fourier–
Mukai kernel connecting deformations of X0, X′0. By Corollary 1.4 we have two versal Morita
deformations Perfdg(XS ),Perfdg(X′S ) of Perfdg(X0). Theorem 1.1 together with the construction
of versal deformations suggests that Perfdg(XS ),Perfdg(X′S ) should be determined only by quasi-
equivalent universal formal families and the same sufficiently large index j ∈ I. From this
observation we arrive at our second main result.

Theorem 1.7. (Theorem 8.3) Let X0, X′0 be derived-equivalent Calabi–Yau manifolds of dimen-
sion more than two and P0 ∈ Db(X0 ×k X′0) the Fourier–Mukai kernels. Then there exists an
index j ∈ I such that for all k ≥ j the integral functors

ΦPk : Perf(XRk)→ Perf(X′Rk
)
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defined by deformations Pk of P0 are equivalences of triangulated categories of perfect com-
plexes. In particular, the dg categories Perfdg(XRk),Perfdg(X′Rk

) of perfect complexes are quasi-
equivalent.

Theorem 1.7 tells us that, given two algebraic Morita deformations Perfdg(XRk),Perfdg(X′Rk
)

geometrically realized by algebraic deformations XRk , X
′
Rk

of two derived-equivalent higher di-
mensional Calabi–Yau manifolds X0, X′0, if XRk , X

′
Rk

are enough close to effectivizations XR, X′R
then Perfdg(XRk),Perfdg(X′Rk

) are Morita equivalent. The base change along the homomorphism
Rk → S yields Morita equivalent versal Morita deformations Perfdg(XS ),Perfdg(X′S ). In other
words, up to Morita equivalence the versal Morita deformation Perfdg(XS ) does not depend on
the choice of geometric realizations in the following sense.

Corollary 1.8. (Corollary 8.4) Let X0, X′0 be derived-equivalent Calabi–Yau manifolds of di-
mension more than two and XS , X′S their smooth projective versal deformations over a common
nonsingular affine k-variety Spec S . Let {Ri}i∈I be a filtered inductive system of finitely gener-
ated T-subalgebras Ri ⊂ R whose colimit is R with

T = k[t1, . . . , td], R � k~t1, . . . , td�, d = dimk H1(TX0).

Assume that XS , X′S correspond to a first order approximation R j → S of R j ↪→ R for suf-
ficiently large j ∈ I. Then XS , X′S are derived-equivalent. In particular, the dg categories
Perfdg(XS ),Perfdg(X′S ) of perfect complexes are quasi-equivalent.

The uniqueness result also holds for the dg categorical generic fiber. Corollary 1.8 slightly
improves [Mora, Theorem 1.1], which extends the derived equivalence from special to general
fibers. Here, the advantage is that we do not have to shrink the base Spec S as long as the
construction passes enough close to effectivizations. In particular, beginning with a pair of
general fibers, one obtains the derived equivalence of special fibers contained in the versal
deformations. Hence the above corollary partially provides a method for the opposite direction,
i.e., how to extend the derived equivalence from general to special fibers.

Notations and conventions. We work over an algebraically closed field k of characteristic 0
throughout this paper. For an augmented k-algebra A by mA we denote its augmentation ideal.
All higher dimensional Calabi–Yau manifolds we treat are smooth projective k-varieties X0 of
dimension more than two with ωX0 � OX0 and Hi(OX0) = 0 for 0 < i < dim X0.

Acknowledgements. The author would like to thank Yukinobu Toda for pointing out mistakes
in earlier version. The author also would like to thank Wendy Lowen for answering questions
about [KL09, Proposition 3.12] and explaining to the author the dual statement of [Low08,
Theorem 4.8] and [Low08, Corollary 4.9].

2. Hochschild cohomology of relatively smooth proper schemes

In this section, we review various kinds of complexes whose cohomology controls defor-
mations of associated mathematical objects, mainly following the exposition from [DLL17,
Section 2, 3]. We always assume that all algebras have units, morphism of algebras preserve
units, and modules are unital. In the sequel, we fix a local artinian k-algebra R with residue
field k and its square zero extension

0→ I→ S→ R→ 0,

and choose generators ε = (ε1, . . . , εl) of I regarded as a free R-module of rank l. For smooth
proper R-schemes, we explain the correspondence between its relative Hochschild cohomology
and cohomology of the Gerstenharber–Shack complex associated with its restricted structure
sheaf.
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2.1. Relative Hochschild cohomology of schemes. Let X be a smooth proper R-scheme. We
denote by ∆R : XR ↪→ X ×R X the relative diagonal embedding. The relative Hochschild coho-
mology is defined as the graded R-algebra

HH•(X/R) = Ext•X×RX(O∆R ,O∆R) � Ext•X(∆∗RO∆R ,OX).

Here, the multiplication in HH•(X/R) is given by the composition in Db(X ×R X). Then the
natural map R→ EndX×RX(O∆R) induces the R-algebra structure. There is a quasi-isomorphism

∆∗RO∆R �
⊕

i

Ωi
X/R[i]

called the relative Hochschild–Kostant–Rosenberg isomorphism, which induces an isomor-
phism

Ext•X(∆∗RO∆R ,OX)→ Ext•X(
⊕

i

Ωi
X/R[i],OX)→

⊕

i

H•−i(X,∧iTX/R)

where TX/R is the relative tangent sheaf and ΩX/R is its dual. We also call the compositions

IHKR
X/R : Extn

X×RX(O∆R ,O∆R) = HHn(X/R)→ HT n(X/R) =
⊕

p+q=n

Hp(X,∧qTX/R)

the relative Hochschild–Kostant–Rosenberg isomorphisms.

2.2. Hochschild cohomology of algebras. Let A = (A,m) be an R-algebra and M an A-
bimodule. The Hochschild complex C(A,M) has Cn(A,M) = HomR(A⊗n,M) as its n-th term
and dn

Hoch : Cn(A,M)→ Cn+1(A,M), called the Hochschild differential, as its differential which
is given by

dn
Hoch(φ)(an, an−1, . . . , a0) = anφ(an−1, . . . , a0)

+

n−1∑

i=0

(−1)i+1φ(an, . . . , an−ian−i−1, . . . , a0)

+ (−1)n+1φ(an, . . . , a1)a0.

A cochain φ ∈ Cn(A,M) is normalized if φ(an−1, . . . , a0) = 0 whenever ai = 1 for some
0 ≤ i ≤ n − 1. The normalized cochains form a subcomplex C̄(A,M) quasi-isomorphic to
C(A,M) via the inclusion. When M = A, we call C(A) = C(A, A) the Hochschild complex and
HnC(A) the n-th Hochschild cohomology of A. Note that the multiplication m on A belongs to
C2(A).

The direct sum of the second normalized Hochschild cohomology of A classifies S-deformations
of A up to equivalence. Recall that an S-deformation of A is an S-algebra (Ā, m̄) = (A[ε] =

A ⊗R S,m + mε) with m ∈ C2(A)⊕l such that the unit of Ā is the same as that of A. Two defor-
mations (Ā, m̄), (Ā′, m̄′) are equivalent if there is an isomorphism of the form 1 + gε : Ā → Ā′

with g ∈ C1(A)⊕l. We denote by Defalg
A (S) the set of equivalence classes of S-deformations of

A. It is known that there is a bijection

H2C̄(A)⊕l → Defalg
A (S), m 7→ (A[ε],m + mε), m ∈ Z2C̄(A)⊕l.

2.3. Simplicial cohomology of presheaves. Let U be a small category andN(U) its simplicial
nerve. We write

σ = (dσ = U0
u1−→ U1

u2−→ · · · up−→ Up
up+1−−−→ Up+1 = cσ)
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for a (p + 1)-simplex σ ∈ Np+1(U). Let (F , f ), (G , g) be presheaves of R-modules with restric-
tion maps f u : F (U) → F (V), gu : G (U) → G (V) for u : V → U in U. We write f σ for the
map f up+1...u2u1 : F (Up+1)→ F (U0). Consider a complex whose p-th term is

Cp
simp(G ,F ) =

∏

τ∈Np(U)

HomR (G (cτ),F (dτ)) .

and whose differential dp
simp is defined as follows. Recall that we have the maps

∂i : Np+1(U)→ Np(U), σ 7→ ∂iσ,

for i = 0, 1, . . . , p + 1 given by

∂iσ = (U0
u1−→ · · ·Ui−1

ui+1ui−−−−→ Ui+1
ui+1−−→ · · · up−→ Up

up+1−−−→ Up+1), i , 0, p + 1,

∂0σ = (U1
u2−→ U2

u3−→ · · · up−→ Up
up+1−−−→ Up+1),

∂p+1σ = (U0
u1−→ U1

u2−→ · · · up−→ Up).

Each ∂i induces a map

di : Cp
simp(G ,F )→ Cp+1

simp(G ,F ), φ = (φτ)τ 7→ diφ = ((diφ)σ)σ

given by

(diφ)σ = φ∂iσ, i , 0, p + 1,

(d0φ)σ = f u1 ◦ φ∂0σ,

(dp+1φ)σ = φ∂p+1σ ◦ gup+1 .

Then one defines

dsimp =

p+1∑

i=0

(−1)idi : Cp
simp(G ,F )→ Cp+1

simp(G ,F ).

When G is the constant presheaf R, we call Hp(U,F ) = HpCsimp(F ) = HpCsimp(R,F ) the
simplicial presheaf cohomology of F . A (p + 1)-simplex σ ∈ Np+1(U) is degenerate if ui = 1Ui

for some 1 ≤ i ≤ p + 1. A p-cochain φ = (φτ)τ ∈ Cp(G ,F ) is reduced if φτ = 0 whenever τ
is degenerate. All 0-cochains are reduced by convention. The reduced cohains are preserved
by dsimp and form a subcomplex C′simp(G ,F ), which is quasi-isomorphic to Csimp(G ,F ) by
[DLL17, Proposition 2.9].

The direct sum of the first reduced simplicial presheaf cohomology of F classifies S-deformations
of F up to equivalence. Recall that an S-deformation of F is a presheaf of S-modules
(F̄ , f̄ ) = (F [ε], f + fε) with f ∈ C1

simp(F ,F )⊕l. Two deformations (F̄ , f̄ ), (F̄ ′, f̄ ′) are equiv-
alent if there is an isomorphism of the form 1 + gε with g ∈ C0

simp(F ,F )⊕l. We denote by
Def psh

F (S) the set of equivalence classes of S-deformations of F .

Lemma 2.1. ([DLL17, Proposition 2.11]) Let (F , f ) be a presheaf of R-modules. Then there
is a bijection

H1C′simp(F ,F )⊕l → Def psh
F (S), φ 7→ (F [ε], f + fε), f ∈ Z1C′simp(F ,F )⊕l.

Another cocycle f′ ∈ Z1C′simp(F ,F )⊕l maps to an equivalent deformation if and only if there
is an element g ∈ C′0simp(F ,F ) satisfying f′ − f = dsimp(g).
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2.4. Gerstenharber–Schack complexes. Let U be a small category and (A ,m, f ) a presheaf
of R-algebras on U. The Gerstenharber–Schack complex CGS (A ) introduced in [GS88] is the
total complex of the double complex whose (p, q)-term for p, q ≥ 0 is

Cp,q
GS (A ) =

∏

τ∈Np(U)

HomR(A (cτ)⊗q,A (dτ)),

where we regard A (dτ) as an A (cτ)-bimodule via f τ : A (cτ) → A (dτ). When q is fixed, we
have

C•,qGS (A ) = Csimp(A ⊗q,A )

endowed with the simplicial differential dsimp horizontally. When p is fixed, we have

Cp,•
GS =

∏

τ∈Np(U)

C (A (cτ),A (dτ))

endowed with the product Hochschild differential dHoch vertically. The differential

dn
GS (A ) : Cn

GS (A )→ Cn+1
GS (A )

is defined as dn
GS = (−1)n+1dsimp + dHoch.

A cochain φ = (φτ)τ ∈ Cp,q
GS (A ) is normalized if φτ is normalized for each p-simplex τ, and

it is reduced if φτ = 0 whenever τ is degenerate. The normalized cochains form a subcom-
plex C̄GS (A ) of CGS (A ) called the normalized Hochschild complex of A , and the normal-
ized reduced cochains form a subcomplex C̄′GS (A ) of C̄GS (A ) called the normalized reduced
Hochschild complex of A . These three complexes are quasi-isomorphic via the inclusions.
Eliminating the bottom row from CGS (A ), one obtains a subcomplex CtGS (A ) called the trun-
cated Hochschild complex. There is a short exact sequence

0→ CtGS (A )→ CGS (A )→ Csimp(A )→ 0.

Since R is commutative, one can apply [DLL17, Proposition 2.14] to see that the sequence
splits and we have

CGS (A ) = CtGS (A ) ⊕ Csimp(A ).

Similarly, we have

C̄′GS (A ) = C̄′tGS (A ) ⊕ C′simp(A ).

The direct sum of the second normalized reduced Gerstenharber–Schack cohomology of
A classifies twisted S-deformations of A up to equivalence. Recall that a twisted presheaf
A = (A ,m, f , c, z) of R-algebras on U consists of the following data:

• for each U ∈ U an R-algebra (A (U),mU),
• for each u : V → U in U a homomorphism of R-algebras f u : A (U)→ A (V),
• for each pair u : V → U, v : W → V in U an invertible element cu,v ∈ A (W) satisfying

for any a ∈ A (U)

cu,v f v( f u(a)) = f uv(a)cu,v.

• for each U ∈ U an invertible element zU ∈ A (U) satisfying for any a ∈ A (U)

zUa = f 1U (a)zU .

Moreover, these data must satisfy

cu,vwcv,w = cuv,w f w(cu,v),

cu,1V zV = 1, c1U ,u f u(zU) = 1
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for each triple u : V → U, v : W → V, w : T → W in U. When cu,v, zU are central for all u, v
and U, we call A a twisted presheaf with central twists and denote by |A | = (A ,m, f ) the
underlying ordinary presheaf.

For twisted sheaves A = (A ,m, f , c, z),A ′ = (A ′,m′, f ′, c′, z′) of R-algebras on U, a mor-
phism (g, h) : A → A ′ consists of the following data:

• for each U ∈ U a homomorphism of R-algebras gU : A (U)→ A ′(U),
• for each u : V → U in U an invertible element hu ∈ A ′(V).

Moreover, these data must satisfy

m′V(gV f u(a), hu) = m′V(hu, f ′u(gU(a))),

m′W(huv, c′u,v) = m′W(gW(cu,v), hv, f ′v(hu)),

m′U(h1U , z′U) = gU(zU)

for all u, v and a ∈ A (U). Morphisms can be composed and the identity 1A is given by
gU = 1A (U) and hu = 1 ∈ A (V). When gU are isomorphisms of R-algebras for all U, we call
(g, h) an isomorphism. Any twisted presheaf (A ,m, f , c, z) is isomorphic to the one of the form
(A ′,m′, f ′, c′, 1).

Let A = (A ,m, f , c) be a twisted presheaf of R-algebras on U. A twisted S-deformation of
A is a twisted presheaf

A = (A ,m, f , c) = (A [ε],m + mε, f + fε, c + cε)

of S-algebras such that (A (U),mU) is an S-deformation of (A (U),mU) for each U ∈ U with

(m, f, c) ∈ C2
GS (A )⊕l = C0,2

GS (A )⊕l ⊕ C1,1
GS (A )⊕l ⊕ C2,0

GS (A )⊕l.

Two twisted deformations (A ,m, f , c), (A ′,m′, f ′, c′) are equivalent if there is an isomorphism
of the form (1 + gε, 1 + hε) with

(g,h) ∈ C1
GS (A )⊕l = C0,1

GS (A )⊕l ⊕ C1,0
GS (A )⊕l.

We denote by Deftw
A (S) the set of equivalence classes of twisted S-deformations of A .

When c = 1, A presheaf S-deformation of A is a twisted S-deformation with c = 0. Two
presheaf deformations (A ,m, f ), (A ′,m′, f ′) are equivalent if there is an isomorphism of the
form 1 + gε with g ∈ C0,1

GS (A )⊕l. We denote by Def psh
A (S) the set of equivalence classes of

presheaf S-deformations of A .

Lemma 2.2. ([DLL17, Theorem 2.21]) Let (A ,m, f ) be a presheaf of R-algebras on U. Then
there is a bijection

H2C̄′GS (A )⊕l → Deftw
A (S), (m, f, c) 7→ (A [ε],m + mε, f + fε, c + cε), (m, f, c) ∈ Z2C̄′GS (A )⊕l.

Another cocycle (m′, f′, c′) ∈ Z2C̄′GS (A )⊕l maps to an equivalent deformation if and only if
there is an element (g,h) ∈ C̄′1GS (A )⊕l satisfying (m′, f′, c′)−(m, f, c) = dGS (g,h). In particular,
there is a bijection

H2C̄′tGS (A )⊕l → Def psh
A (S), (m, f) 7→ (A [ε],m + mε, f + fε).

2.5. Hodge decomposition. In the group algebra QS n of the n-th symmetric group S n, there
is a collection of pairwise orthogonal idempotents en(r) for 1 ≤ r ≤ n such that

∑n
r=1 en(r) = 1

[GS87, Theorem 1.2]. Put en(0) = 0, e0(0) = 1 ∈ Q, and en(r) = 0 for r > n. Let A be a
commutative R-algebra and M a symmetric A-bimodule. The subcomplex C(A,M)r ⊂ C(A,M)
whose n-th term is C(A,M)en(r) gives rise to a Hodge decomposition

C(A,M) =
⊕

r∈N
C(A,M)r.
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Assume that A is a presheaf of commutative R-algebras. Then the Hodge decomposition

Hom(A (cτ)⊗q,A (dτ)) =

q⊕

r=0

Hom(A (cτ)⊗q,A (dτ))r

induces a decomposition of the double complex Cn−q,q
GS (A ) preserved by dHoch and dsimp. Hence

one obtains a Hodge decomposition

CGS (A ) =
⊕

r∈N
CGS (A )r.

Taking cohomology yields a decomposition for H•CGS (A ).
Assume further the following.
• The restriction map f u : A (U)→ A (V) is a flat epimorphism of rings for each u : V →

U.
• The algebra A (U) is essentially of finite type and smooth R-algebra for each U.

Recall that a homomorphism of rings is called an epimorphism if it is an epimorphism in the cat-
egory of noncommutative rings. For instance, every surjective homomorphism of commutative
rings is an epimorphism. Then one obtains the presheaf of differential ΩA : Uop → Mod(A )
with ΩA (U) = ΩA (U)/R. Since we have a canonical isomorphism A (V) ⊗A (U) ΩA (U) � ΩA (V)

by the first additional assumption, the induced restriction maps TA (U)/R → TA (V)/R yield the
tangent presheaf TA : Uop → Mod(A ) with TA (U) = TA (U)/R. From the second additional
assumption it follows that antisymmetrizations ∧nTA (U) → HnC(A (U)) are isomorphisms.

Lemma 2.3. ([DLL17, Theorem 3.3]) Let U be a small category and A : Uop → CAlg(R) a
presheaf of commutative algebras. Assume that the algebra A (U) is essentially of finite type
and smooth R-algebra for each U. Assume further that the restriction map f u : A (U)→ A (V)
is a flat epimorphism of rings for each u : V → U. Then there is a canonical bijection

HnCGS (A ) =

n⊕

r=0

HnCGS (A )r �
⊕

p+q=n

Hp(U,∧qTA ).(2.1)

From the proof, one sees that any Gerstenharber–Shack cohomology class cGS is represented
by a normalized reduced decomposable cocycle θ0,n, θ1,n−1, . . . , θn,0 in the sense that θn−r,r are
reduced and belong to C̄n−r,r(A )r. Each θn−r,r = (θτn−r,r)τ∈Nn−r(U) lifts to a unique simplicial
cocycle Θn−r,r = (Θτ

n−r,r)τ∈Nn−r(U) ∈ C′n−r
simp(∧rTA ). The image of cGS under the bijection is the

cohomology class csimp represented by Θ0,n,Θ1,n−1, . . . ,Θn,0.

2.6. Comparison with relative Hochschild cohomology. We describe the relationship be-
tween simplicial cohomology and C̆ech cohomology for a presheaf F : Uop → Mod(R) in the
case where U is a poset with binary meets. We use the symbol ∩ to denote meets in U. For a
p-sequence τ = (Uτ

0,U
τ
1, . . . ,U

τ
p) ∈ Up+1 we denote by ∩τ the meet of all coordinates of τ. The

C̆ech complex C̆(F ) of F has

C̆p(F ) =
∏

τ∈Up+1

F (∩τ)

as the p-th term with the usual differentials. A C̆ech cochain ψ = (ψτ)τ is alternating if ψτ = 0
whenever two coordinates of τ are equal, and ψτs = (−1)sign(s)ψτ for any permutation s of the set
{0, 1, . . . , p}. Here, we regard τ as a set theoretic map {0, 1, . . . , p} → U. The alternating C̆ech
cochains form a subcomplex C̆′(F ) which is quasi-isomorphic to C̆(F ) via the inclusion.

To a p-sequence τ, one associates a p-simplex

τ̄ = (dτ̄ = ∩p
j=0Uτ

j → ∩p
j=1Uτ

j → · · · → ∩p
j=p−1Uτ

j → Uτ
p = cτ̄).

60



Conversely, any p-simplex µ can be regarded as a p-sequence µ̃ by forgetting the inclusions.
Define a map δi : Up+1 → Up for i = 1, . . . , p as

δiτ = (Uτ
0, . . . ,U

τ
i−2,U

τ
i−1 ∩ Uτ

i ,U
τ
i+1, . . . ,U

τ
p).

There are morphisms ι : C′simp → C̆′(F ), π : C̆′(F )→ C′simp of complexes defined as

ι(φ)τ =
∑

s∈Sp+1

(−1)sign(s)φτs, φ ∈ C′simp(F ), τ ∈ Up+1,

π(ψ)µ = ψµ̃, ψ ∈ C̆′(F ), µ ∈ Np(U),

which induce mutually inverse isomorphisms between H•(U,F ) and H̆•(U,F ) [DLL17, Lemma
3.9].

Now, for a smooth proper R-scheme X we give an alternative description of the relative
Hochschild cohomology. As explained above, we have HH•(X/R) � HT •(X/R). Choose a
finite affine open cover U closed under intersections. By definition U is semi-separating, i.e.,
U is closed under finite intersections. For every quasi-coherent sheaf F on X, one can apply
[DLL17, Lemma 3.9] and Leray’s theorem [Har77, Theorem 4.5] to obtain

H•(U,F |U) � H̆•(U,F |U) � H̆•(U,F ) � H•(X,F )(2.2)

with F |U regarded as a presheaf on U. Since X is smooth over R and open immersions V ↪→ U
in U define flat epimorphisms OX(U)→ OX(V), combining (2.1) with (2.2), we obtain

Lemma 2.4. ([DLL17, Corollary 3.4]) Let X be a smooth proper R-scheme with a finite affine
open cover U closed under intersections. Let OX |U,TX/R|U be the restrictions of OX,TX/R to U
respectively. Then there are canonical isomorphisms

HnCGS (OX |U) =

n⊕

r=0

HnCGS (OX |U)r �
⊕

p+q=n

Hp(U,∧qTX/R|U) � HHn(X/R),(2.3)

where the first isomorphism respects the Hodge decomposition.

3. Deformations of relatively smooth proper schemes

In this section, we review the classical deformation theory of schemes. The main reference
is [Har10]. We explain how deformations of smooth proper k-varieties extend to Toda’s con-
struction [Tod09], which can be adapted to deformations of relatively smooth proper schemes
along square zero extensions in a straightforward way. When the original scheme is a defor-
mation of a higher dimensional Calabi–Yau manifold, Toda’s construction gives the category
of quasi-coherent sheaves on deformations of the Calabi–Yau manifold.

3.1. Deformations of schemes. Let X be a k-scheme and A a local artinian k-algebra with
residue field k. An A-deformation of X is a pair (XA, iA), where XA is a scheme flat over
A and iA : X ↪→ XA is a closed immersion such that the induced map X → XA ×A k is an
isomorphism. Two deformations (XA, iA), (X′A, i

′
A) are equivalent if there is an A-isomorphism

XA → X′A compatible with iA, i′A. The deformation functor

DefX : Artk → Set

sends each A ∈ Artk to the set of equivalence classes of A-deformations of X.
Assume that X is projective over k. Then DefX satisfies Schlessinger’s criterion and there

exists a miniversal formal family (R, ξ) for DefX, where R is a complete local noetherian k-
algebra with residue field k, and ξ = {ξn}n belongs to the limit

D̂efX(R) = lim
←−

DefX(R/mn
R)
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of the inverse system

· · · → DefX(R/mn+2
R )→ DefX(R/mn+1

R )→ DefX(R/mn
R)→ · · ·

induced by the natural quotient maps R/mn+1
R → R/mn

R. The formal family ξ corresponds to a
natural transformation

hR = Homk-alg(R,−)→ DefX,

which sends each g ∈ hR(A) factorizing through R→ R/mn+1
R

gn−→ A to DefX(gn)(ξn).
Let Xn be the schemes which define ξn. There is a noetherian formal scheme X over R

such that Xn � X ×R R/mn+1
R for each n. By abuse of notation, we use the same symbol ξ to

denote X . Thus any scheme which defines an equivalence class [XA, iA] can be obtained as the
pullback of ξ along some morphism of noetherian formal schemes Spec A → Spf R. If X has
no infinitesimal automorphisms which restrict to the identity of X, then every equivalence class
[XA, iA] becomes just a deformation (XA, iA) and we have a natural isomorphism hR � DefX. In
this case, we call DefX prorepresentable and (R, ξ) a universal formal family for DefX.

3.2. Algebraization. Let X be a projective k-variety. We call a miniversal formal family (R, ξ)
for DefX effective when there exists a scheme XR flat and of finite type over R whose formal
completion along the closed fiber X is isomorphic to ξ. By [GD61, Theorem III5.4.5] the family
(R, ξ) is effective if deformations of any invertible sheaf on X are unobstructed. Note that this
is the case, for instance, if we have H2(OX) = 0. From the proof, one sees that XR is projective
over R. We will call such XR an effectivization of ξ.

The deformation functor DefX can naturally be extended to a functor defined on the cate-
gory Algaug(k) of augmented noetherian k-algebras. By abuse of notation, we use the same
symbol DefX to denote the extended functor, which sends each (P,mP) ∈ Algaug(k) to the set
of equivalence classes of deformations over (P,mP). Since the functor DefX is locally of fi-
nite presentation, by [Art69b, Theorem 1.6] the miniversal formal family is algebraizable, i.e.,
there exists a triple (S , s, XS ) where S is an algebraic k-scheme with a distinguished closed
point s ∈ S , and XS is a flat and of finite type S -scheme whose formal completion along the
closed fiber X over s is isomorphic to ξ. We call the scheme XS a versal deformation over
S . When there exists a versal deformation, we say that the miniversal formal family (R, ξ) is
algebraizable.

3.3. Deformations of higher dimensional Calabi–Yau manifolds. Here, we focus on a spe-
cial case where several interesting results hold. Let X0 be a Calabi–Yau manifold of dimension
more than two. Then the deformation functor DefX0 has an effective universal formal fam-
ily (R, ξ). Since deformations of Calabi–Yau manifolds are unobstructed, the complete local
noetherian ring R is regular and we have

R � k~t1, . . . , td�

with d = dimk H1(TX0). Every A-deformation of X0 is smooth projective over A, as we have

Lemma 3.1. ([Mora, Lemma 2.4]) The effectivization XR for (R, ξ) is regular and the morphism
πR : XR → Spec R is smooth of relative dimension dim X0.

Now, we briefly recall the construction of XS . Consider the extended functor

DefX0 : Algaug(k)→ Set .

Fix an isomorphism R � k~t1, . . . , td�. Let T = k[t1, . . . , td] and t ∈ Spec T be the closed
point corresponding to maximal ideal (t1, . . . , td). There is a filtered inductive system {Ri}i∈I

of finitely generated T -subalgebras of R whose colimit is R. Since DefX0 is locally of finite
presentation, [XR, iR] is the image of some element ζi ∈ DefX0

((
Ri,mRi

))
by the canonical map
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DefX0

((
Ri,mRi

)) → DefX0(R). By [Art69a, Corollary 2.1] there exists an étale neighborhood
Spec S of t in Spec T with first order approximation ϕ : Ri → S of Ri ↪→ R. Let [XS , iS ] be
the image of ζi by the map DefX0(ϕ). From miniversality of (R, ξ), it follows that the formal
completion of XS along the closed fiber X0 over s ∈ Spec S is isomorphic to ξ, where s is
the distinguished closed point mapping to t. By construction, Spec S is a nonsingular affine
k-variety and XS is flat of finite type over S . Exploiting inherited smoothness and projectivity
of XR by terms in the projective system {XRi}i∈I for sufficiently large indices, one can show

Lemma 3.2. ([Mora, Lemma 2.3]) Let X0 be a Calabi–Yau manifold of dimension more than
two. Then there exists a nonsingular affine k-variety Spec S with a versal deformation XS

which is smooth projective of relative dimension dim X0 over S .

3.4. T i functors. Let A → B be a ring homomorphism and M a B-module. Define the groups
T i(B/A,M) for i = 0, 1, 2 as the i-th cohomology of the complex HomB(L•,M), where

L• = L2
d2−→ L1

d1−→ L0

is the cotangent complex. When the ring homomorphism A → B is a surjection with kernel J,
L• is given as follows. Choose a free A-module P and a surjection j : P→ J with kernel Q. We
have two short exaxt sequences

0→ J → A→ B→ 0, 0→ Q→ P
j−→ J → 0.

Let P0 be the submodule of P generated by all relations of the form j(a)b − j(b)a for a, b ∈ P.
From j(P0) = 0 it follows P0 ⊂ Q. Take L2 = Q/P0, L1 = P ⊗A B, and L0 = 0. Note that L2

is a B-module. Indeed, for a ∈ J there is an element a′ ∈ P such that a = j(a′). Then we have
ax ≡ j(x)a′ ≡ 0 modulo P0 for x ∈ Q. The differential d2 : L2 → L1 is the map induced by
the inclusion Q → P and d1 = 0. By [Har10, Lemma 3.2] the B-modules T i(B/A,M) do not
depend on the choice of P up to isomorphism.

Lemma 3.3. ([Har10, Theorem 3.4]) Let A→ B be a homomorphism of rings. Then

T i(B/A,−) : Mod(B)→ Mod(B), i = 0, 1, 2

define covariant additive functor.

The construction of T i functors is compatible with localization and one obtains sheaves
T i(X/Y,F ), i = 0, 1, 2 for any morphism of k-schemes f : X → Y and any quasi-coherent
OX-module F [Har10, Exercise 3.5]. The sections of T i(X/Y,F ) over U = Spec B ⊂ f −1(V)
give T i(B/A,M), where V = Spec A ⊂ Y and F |U = M̃ for some B-module M.

3.5. Infinitesimal extension of schemes. Let X be a scheme of finite type over R and F a
coherent sheaf on X. An infinitesimal extension of X by F is a pair (Y,I), where Y is a scheme
of finite type over S and I ⊂ OY is an ideal sheaf such that I2 = 0, (Y,OY/I) � (X,OX), and
I � F as an OX-module. Two infinitesimal extensions (Y,I), (Y ′,I′) are equivalent if there is
an isomorphism OY → OY′ which makes the diagram

0 // F //

id
��

OY
//

��

OX
//

id
��

0

0 // F // OY′ // OX
// 0

commute. The trivial extension is a sheaf OX ⊕ F of abelian group endowed with the ring
structure by

(a, f ) · (a′, f ′) = (aa′, a f ′ + a′ f ).
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Assume that X is smooth proper over R. Recall that for the square zero extension

0→ I→ S→ R→ 0(3.1)

we have I � R⊕l as an R-module. Note that given an infinitesimal extension (Y,I) of X by
O⊕l

X , Y is flat over S since OX is flat over R and O⊕l
X → OY is injective [Har10, Proposition

2.2]. Below, we collect fundamental results necessary to describe the relationship between
deformations and extensions of schemes.

Lemma 3.4. ([Har10, Exercise 4.7]) Let X be a smooth R-scheme and g : Y → X a morphism
from an affine R-scheme Y to X, and iS : Y ↪→ Y ′ an S-deformation of Y. Then g lifts to a
morphism h : Y ′ → X such that h ◦ iS = g.

Lemma 3.5. ([Har10, Proposition 3.6, Exercise 5.2]) Let A→ B be a homomorphism of rings,
M a B-module, and B′ an extension of B by M. Then the automorphism group of B′ is given by

T 0(B/A,M) = HomB(ΩB/A,M) = DerA(B,M).

Lemma 3.6. ([Har10, Theorem 5.1]) Let A → B be a homomorphism of rings and M a B-
module. Then there is a bijection between the set of equivalence classes of B by M and the
group T 1(B/A,M). The trivial extension corresponds to the zero element.

Lemma 3.7. ([Har10, Theorem 4.11]) Let f : X → Y be an of finite type morphism of noether-
ian k-schemes. Then f is smooth if and only if it is flat and T 1(X/Y,F ) = 0 for every coherent
OX-module F .

Now, we are ready to show relevant results to our setting.

Lemma 3.8. Let X be a smooth separated R-scheme. Then every S-deformation (Y, j) of X is
locally trivial.

Proof. Since Y is flat over S, (3.1) induces a short exact sequence

0→ O⊕l
X → OY → OX → 0,

which defines equivalence classes of infinitesimal extensions of coordinate rings on affine open
subschemes of X. Let iS : Spec B ↪→ Spec A be the induced deformation of any affine open
subscheme. Since Spec B is smooth over R, by Lemma 3.4 the identity Spec B → Spec B lifts
to a morphism h : Spec A → Spec B such that h ◦ iS = id. The lift h induces a morphism
Spec A → Spec B ×R S of schemes flat of finite type over S. Now, one can apply [Har10,
Exercise 4.2] to see that the induced morphism is an isomorphism. �

Proposition 3.9. Let X be a smooth separated R-scheme. Then there is a bijection

DefX(S) � H1(X,TX/R)⊕l,

where TX/R is the relative tangent sheaf on X.

Proof. Let (Y, j) be an S-deformation of X. Take an affine open cover U = {Ui}i∈I of X. By
Lemma 3.8 we may assume that the induced deformations Ui ↪→ Vi ⊂ Y are trivial. Choose
isomorphisms ϕi : Ui ×R S → Vi and write ϕi j for the composition ϕ−1

j ◦ ϕi on Ui j ×R S, where
the intersections Ui j = Ui ∩ U j are again affine as X is separated over R. Let Spec B = Ui j

and Spec A = Ui j ×R S. According to Lemma 3.5, the set of automorphisms of extensions Ã
of B̃ by B̃⊕l bijectively corresponds to T 0(B/R, B⊕l) � Hom(ΩB/R, B)⊕l. Then {ϕi j}i, j∈I define a
collection {θi j}i, j∈I of sections θi j ∈ H0(Ui j,TX/R)⊕l on Ui j. One checks θi j + θ jk + θki = 0 and
{θi j}i, j∈I is a C̆ech 1-cocycle with respect to U. Another choice of isomorphisms ϕ′i : Ui ×R S→
Vi yields a collection {ϕ′i j}i, j∈I of automorphisms such that ϕ′i j = (ϕ−1

j ◦ ϕ′j)−1 ◦ ϕi j ◦ (ϕ−1
i ◦ ϕ′i). It
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follows θ′i j = θi j +αi −α j for some sections αi ∈ H0(Ui,TX/R)⊕l. Thus we obtain a well defined
assignment

DefX(S)→ H1(X,TX/R)⊕l, [Y, j] 7→ {θi j}i, j∈I ,

as {θi j}i, j∈I does not depends on U.
Conversely, an element of H1(X,TX/R)⊕l can be represented by C̆ech 2-cocycle {θi j}i, j∈I with

respect to U. As explained above, the cocycle define automorphisms of the trivial deformations
Ui j ×R S, which glue to yield a global deformation (Y ′, j′) of X. Clearly, this construction gives
the inverse assignment. �

Corollary 3.10. There is a canonical bijection between DefX(S) and the set of equivalence
classes of infinitesimal extensions of X by O⊕l

X .

Proof. By Lemma 3.6 and Lemma 3.7 any extension of X by O⊕l
X is locally trivial. Then due to

Lemma 3.5 the claim follows from the same argument as in the proof of Proposition 3.9. �

3.6. Toda’s construction. Let X0 be a smooth projective k-variety. In [Tod09] Toda con-
structed the category of α̃-twisted sheaves on the noncommutative scheme (X0,O

(β,γ)
X0

) over the
ring of dual numbers for each [φ0] ∈ HT 2(X0) represented by a cocycle

(α0, β0, γ0) ∈ H2(OX0) ⊕ H1(TX0) ⊕ H0(∧2TX0).

Here, we apply his idea to a smooth proper R-scheme X and [φ] ∈ HT 2(X/R)⊕l represented by

(α, β, γ) =
(
(α1, . . . , αl), (β1, . . . , βl), (γ1, . . . , γl)

)
∈ H2(OX)⊕l ⊕ H1(TX/R)⊕l ⊕ H0(∧2TX/R)⊕l.

Take a finite affine open cover U = {Ui}Ni=1 of X and let U ×R S = {Ui ×R S}Ni=1. Consider the
extension of X by O⊕l

X whose equivalence class corresponds to β, giving rise to an classical
S-deformation Xβ of X by Corollary 3.10. We modify the multiplication on OX ⊕ C(U,O⊕l

X ) as

(a, {b1
i }, . . . , {bl

i}) ∗γ (c, {d1
i }, . . . , {dl

i})
=(ac, {ad1

i + b1
i c + γ1

i (a, c)}, . . . , {adl
i + bl

ic + γl
i(a, c)}),

where γ j : OX × OX → OX are regarded as bidifferential operators. We denote by X(β,γ) =

(Xβ,O
γ
Xβ

) the resulting noncommutative S-scheme. By the standard argument, one sees that up
to isomorphism the scheme does not depend on the choice of U and C̆ech representative of γ.
From α one obtains an element

α̃ = {1 − α1
i0i1i2ε1 − · · · − αl

i0i1i2εl}i0i1i2 ∈ C2(Xβ,Z(Oγ
Xβ

)∗),

which is a cocycle. Then α̃-twisted sheaves on X(β,γ) form a category Mod(X(β,γ), α̃). By the
similar argument to [Căl00, Lemma 1.2.3, 1.2.8], one sees that up to equivalence the category
does not depend on the choice of U and C̆ech representative of α. We denote by Qch(X, φ) the
full abelian subcategory spanned by α̃-twisted quasi-coherent sheaves.

Assume that X is an R-deformation of a higher dimensional Calabi–Yau manifold. Then we
have

HT 2(X/R) = H1(TX/R).

In this case, Toda’s construction yields nothing but the category of quasi-coherent sheaves on
the S-deformation of X along φ.

Proposition 3.11. Let X0 be a Calabi–Yau manifold with dim X0 > 2 and X an R-deformation
of X0. Then for every cocycle φ ∈ HT 2(X/R)⊕l = H1(TX/R)⊕l we have

Qch(X, φ) = Qch(Xφ),

where Xφ is the S-deformation of X along φ.
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4. Deformations of linear and abelian categories

In this section, we review the deformation theory of linear and abelian categories developed
by Lowen and van den Bergh in [LV06b], introducing the fundamental notion of flatness. As
explained there, when considering only flat nilpotent deformations over a certain class of rings,
one avoids any set theoretic issue by choosing sufficiently large universe. Moreover, both linear
and abelian deformations reduce to strict linear deformations without affecting the deformation
theory up to equivalence. Along square zero extensions, flat deformations of linear and abelian
categories are controlled by the second Hochschild cohomology of the corresponding linear
categories.

4.1. Universes. First, we need to extend the Zermelo–Fraenkel axioms of the set theory to
avoid foundational issues in the deformation theory of categories. One solution is the theory
of universes introduced by Grothendieck with the axiom of choice and the universe axiom. A
universe is a setU with the following properties:

• if x ∈ U and y ∈ x then y ∈ U,
• if x, y ∈ U then {x, y} ∈ U,
• if x ∈ U then the powerset P(x) of x is inU,
• if (xi)i∈I is a family of objects ofU indexed by an element ofU then

⋃
i∈I xi ∈ U,

• if U ∈ U and f : U →U is a function then { f (x) | x ∈ U} ∈ U.

A universeU containing N is a model for the Zermelo–Fraenkel axioms of the set theory with
the axiom of choice. Since the known nonempty universe only contains finite sets, the universe
axiom is added, which imposes every set to be an element of a universe.

Consider the category U − Set whose objects are elements of U and whose morphisms are
ordinary maps between sets in U. The category U − Cat consists of categories whose objects
and morphisms respectively form sets being an element of U. Similarly, by requiring the
underlying sets to belong to U, we obtain categories with a structure such as abelian groups
and rings. We call a category U-small when its objects and morphisms respectively form sets
with the same cardinality as an element ofU, and essentiallyU-small when it is equivalent to a
U-small category. AU-category is a category whose Hom-sets have the the same cardinality as
an element ofU. The axiom of choice allows us to replace aU−category C by an equivalent
category C ′ with Ob(C ) = Ob(C ′) and C ′(C,D) ∈ U for all C,D ∈ Ob(C ′). When C
is abelian with a generator, we call C U-Grothendieck. Every U-Grothendieck category C
admitsU-small colimits andU-small filtered colimits are exact in C .

Throughout the paper, we work with a fixed universe U containing N. All the notion based
on universes will be with respect to U and all the related symbols will be tacitly prefixed by
U. By takingU sufficiently large, we may assume all categories to be small. Unless otherwise
specified, we will be free from any issue caused by the choice of universes.

4.2. Flatness. The notion of flatness for abelian categories was introduced in [LV06b]. For a
while, we temporarily drop the assumption on R and S imposed at the beginning of Section 2.
Let R be a commutative ring. An R-linear category is a category a enriched over the abelian
category Mod(R) of R-modules. Namely, a is a pre-additive category together with a ring map
ρ : R→ Nat(1a, 1a) inducing a ring map ρA : R→ a(A, A) for each A ∈ a and an action of R on
each Hom-set.

Assume that R is coherent, i.e., any finitely generated ideal is finitely presented as an R-
module. Typical examples are given by noetherian rings. We denote by mod(R) the full abelian
subcategory of finitely presented R-modules. Let C be an R-linear abelian category. We call
an object C ∈ C flat if the natural finite colimit preserving functor (−) ⊗R C : mod(R) → C
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is exact, and coflat if the natural finite limit preserving functor HomR(−,C) : mod(R) → C is
exact.

An R-linear category a is flat if its Hom-sets are flat R-modules. Namely, the functors
− ⊗R a(A, A′) : mod(R) → Mod(R) are exact for all A, A′ ∈ a. An R-linear abelian category
C is flat if for each Y ∈ mod(R) the functor TorR

1 (Y,−) : C → C is co-effaceble, i.e., for each
C ∈ C there is an epimorphism f : C′ → C with TorR

1 (Y, f ) = 0 [LV06b, Proposition 3.1]. Here,
TorR

i (Y,−) is the left derived functor of the finite colimit preserving functor Y ⊗R (−) : C → C .
The flatness has the following characterizations [LV06b, Proposition 3.3, 3.4, 3.6, 3.7].

• C is flat if and only if C op is flat.
• C is flat if and only if all injectives in C are coflat.
• C is flat if and only if Ind(C ) is flat.
• a is flat if and only if the abelian category Mod(a) is flat.

Here, Ind(C ) is the Ind-completion of C , i.e., the full subcategory of Mod(C ) consisting of
left exact functors, where Mod(C ) is the category of covariant additive functors from C to the
category Ab of abelian groups. Note that we are assuming all categories to be small in our fixed
universeU.

4.3. Base change. We fix a homomorphism θ : S → R of commutative rings. For an R-
module M, by M we denote M regarded as an S-module via θ. Let a be an R-linear category.
We have the category a with Ob(a) = Ob(a) and a(A, A′) = a(A, A′). For an S-linear category
b, we denote by b ⊗S R the R-linear category with Ob(b ⊗S R) = Ob(b) and (b ⊗S R)(B, B′) =

b(B, B′) ⊗S R. The functor (−) ⊗S R is left adjoint to (−) in the sense that there is a natural
isomorphism

Add(R)(b ⊗S R, a) ' Add(S)(b, a)

of S-linear categories, where Add(S) is the category of S-linear functors.
Let (b, ρ) be an S-linear category. We have the category bR of R-linear objects whose objects

are pairs (B, ϕ) where B ∈ b and ϕ : R → b(B, B) is a ring map with ϕ ◦ θ = ρB, and whose
morphisms are those of b compatible with the ring maps. An object B ∈ b belongs to bR
if and only if 1B is annihilated by the kernel of θ. Taking R-linear objects defines a functor
(−)R : b→ bR, which is right adjoint to (−) in the sense that there is a natural isomorphism

Add(R)(a, bR) ' Add(S)(a, b)

of S-linear categories. If D is an S-linear abelian category, then DR is also abelian and by
[LV06b, Proposition 4.2] the forgetful functor DR → D is exact. From (Mod(S))R ' Mod(R),
it follows

Add(R)(a,Mod(R)) ' Mod(a)

for any R-linear category a.

Lemma 4.1. ([LV06b, Proposition 4.4(1)]) Let b be an S-linear category. Then there is an
equivalence Mod(b ⊗S R)→ Mod(b)R of R-linear categories which makes the diagram

Mod(b ⊗S R) ' //

��

Mod(b)R

��
Mod(b) id // Mod(b)

commutes, where the left vertical arrow is the dual to b → b ⊗S R and the right vertical arrow
is the forgetful functor.
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4.4. Deformations of linear categories. Let a be an R-linear category. A linear S-deformation
of a is an S-linear category b together with an S-linear functor b → a inducing an equivalence
b ⊗S R → a. Two deformations f : b → a, f ′ : b′ → a are equivalent if there is an equivalence
Φ : b → b′ of S-linear categories such that f ′ ◦ Φ is natural isomorphic to f . When b is flat
over R, we call the deformation b flat. We denote by Deflin

a (S) the set of equivalence classes of
flat linear S-deformations of a. The notation will be justified below with respect to the choice
of universe. When b ⊗S R → a is an isomorphism, we call the deformation b strict. Two strict
linear deformations f : b→ a, f ′ : b′ → a are equivalent if there is an isomorphism Φ : b→ b′
of S-linear categories such that f ′ ◦ Φ = f . We denote by Def s−lin

a (S) the set of equivalence
classes of strict flat linear S-deformations of a. Also this notation will be justified below.

4.5. Deformations of abelian categories. Let C be an R-linear abelian category. An abelian
S-deformation of C is an S-linear abelian category D together with an S-linear functor C → D
inducing an equivalence C → DR. When D is flat over R, we call the deformation D flat. Two
deformations g : C → D , g′ : C → D ′ are equivalent if there is an equivalence Ψ : D → D ′ of
S-linear abelian categories such that Ψ ◦ g′ is natural isomorphic to g. We denote by Defab

C (S)
the set of equivalence classes of flat abelian S-deformations of C . The notation will be justified
below with respect to the choice of universe. When C → DR is an isomorphism, we call the
deformation D strict. Two strict abelian deformations g : C → D , g′ : C → D ′ are equivalent
if there is an isomorphism Ψ : D → D ′ of S-linear abelian categories such that Ψ ◦ g′ = g. We
denote by Def s−ab

C (S) the set of equivalence classes of strict flat abelian S-deformations of C .
Also this notation will be justified below.

Assume that θ : S → R is a homomorphism of coherent commutative rings with R being
finitely presented as an S-module. Then the bifunctors

(−) ⊗S (−) : D ×mod(S)→ D , HomS(−,−) : mod(S) ×D → D

yield respectively left and right adjoint

(−) ⊗S R : D → DR ' C , HomS(R,−) : D → DR ' C

to the natural inclusion functor C ' DR ↪→ D [LV06b, Proposition 4.3]. They agree with the
adjoints in the Section 4.3.

4.6. Flat nilpotent deformations of categories. Assume further that θ is surjective. Then for
an S-linear abelian category D the forgetful functor DR → D is fully faithful. When the kernel
I = ker θ is nilpotent, we call both linear and abelian S-deformations nilpotent. From now
on, we restrict our attention to flat nilpotent deformations. The following properties of R-linear
category a and R-linear abelian category C are respectively preserved under flat nilpotent linear
and abelian deformations [LV06b, Proposition 6.7, 6.9, Theorem 6.16, 6.29, 6.36].

• a,C are essentially small.
• C has enough injectives.
• C is a Grothendieck category.
• C is a locally coherent Grothendieck category.

Here, we call C locally coherent Grothendieck when it is Grothendieck and generated by a
small abelian subcategory of finitely presented objects.

4.7. Deformation pseudofunctors. In order to be careful about our choices of universes, we
temporarily make them explicit in the notation. LetU be a universe containing the field k. We
denote byU −Rng0 the category whose objects are coherent commutativeU-rings and whose
morphisms are surjective ring maps with finitely generated nilpotent kernels. We are interested
in the category U − Rng0 /k. Fix some other universe W. A deformation pseudofunctor
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is a pseudofunctor D : U − Rng0 /k → W − Gd. Two deformation pseudofunctors D,D′

are equivalent if there is a pseudonatural transformation µ : D → D′ such that for each R ∈
U −Rng0 /k we have an equivalence D(R)→ D′(R) of categories. For any enlargementU′ of
U, the canonical functor

U − Rng0 /k→U′ − Rng0 /k
is an equivalence of categories [LV06b, Proposition 8.1]. Thus the deformation pseudofunctor
is independent of the choice ofU up to equivalence.

Let a be a flat k-linearU-category and C a flat k-linear abelianU-category. Fix a universe
V such that a,C are essentially V-small and U ∈ V. For R ∈ U − Rng0 /k we consider
the groupoid V − deflin

a (R) whose objects are flat linear R-deformations of a belonging to V,
and whose morphisms are equivalences of deformations up to natural isomorphism of functors.
Also we consider the groupoid V − defab

C (R) whose objects are flat abelian R-deformations
of C belonging to V, and whose morphisms are equivalences of deformations up to natural
isomorphism of functors. Enlarging the universeW if necessary, we may assume thatV ∈W
and we obtain deformation pseudofunctors

V − deflin
a ,V − defab

C : U − Rng0 /k→W− Gd .

The universeW is a purely technical device which guaranteesV−deflin
a ,V−defab

C taking values
in categories. Moreover, whether two deformation pseudofunctors are equivalent is preserved
under enlargement ofW. On the other hand, by [LV06b, Proposition 8.3] for any enlargement
V′ ∈ W ofV, the canonical pseudonatural transformations

V − deflin
a →V′ − deflin

a , V − defab
C →V′ − defab

C

define equivalences of deformation pseudofunctors.
In summary, as long as we consider flat nilpotent deformations, the choice of universe does

not affect deformation pseudofunctors up to equivalence. Thus we simply write deflin
a , defab

C for
deformation pseudofunctors. Since they have small skeletons [LV06b, Theorem 8.4, 8.5], we
also write Deflin

a ,Defab
C for deformation functors

V − Deflin
a ,V − Defab

C : U − Rng0 /k→W− Set

which take values in sets.
Finally, we collect relevant results on deformations of linear and abelian categories.

Lemma 4.2. ([LV06b, Theorem 8.16]) Let S → R be a morphism in U − Rng0 /k and a an
essentially small flat R-linear category. Then there is a bijection

Deflin
a (S)→ Defab

Mod(a)(S), b 7→ Mod(b).

In particular, deformations of a module category are module categories.

Lemma 4.3. ([LV06b, Theorem 8.17]) Let S → R be a morphism in U − Rng0 /k and C an
essentially small flat R-linear abelian category with enough injectives. Then there is a bijection

Deflin
Inj(C )(S)→ Defab

C (S), j 7→ (mod(j))op.

Lemma 4.4. ([LV06b, Proposition B.3]) Let S → R be a morphism in U − Rng0 /k and a an
essentially small flat R-linear category. Then the map

Def s−lin
a (S)→ Deflin

a (S)

induced by the canonical pseudofunctor

def s−lin
a → deflin

a

is bijective.
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Now, let again R be the fixed local artinian k-algebra with residue field k, the square zero
extension

0→ I→ S→ R→ 0,

and the chosen generators ε = (ε1, . . . , εl) of I regarded as a free R-module of rank l.

Lemma 4.5. ([Low08, Proposition 4.2]) Let (a,m) be a flat R-linear category with composi-
tions m. Then there is a bijection

H2C(a)⊕l → Deflin
a (S), φ 7→ (a[ε],m + φε), φ ∈ Z2C(a)⊕l.(4.1)

Another cocycle φ′ ∈ Z2C(a)⊕l maps to an isomorphic linear deformation if and only if there is
an element h ∈ C1(a) satisfying φ′ − φ = dm(h).

Lemma 4.6. ([LV06a, Theorem 3.1]) Let C be a flat R-linear abelian category. Then there is
a bijection

H2Cab(C )⊕l → Defab
C (S).(4.2)

Here, C(a) is the Hochschild object associated with a. The compositions m is an element of∏

A0,A1,A2∈a
[a(A1, A2) ⊗R a(A0, A1), a(A0, A2)]0

rather than the ring map ρ defining the R-linear structure. For an R-linear abelian cate-
gory C , the associated Hochschild object is defined as Cab(C ) = Csh(Ind(Inj(C ))), where
Csh(Ind(Inj(C ))) is the Shukla complex associated with Ind(Inj(C )). Note that we have H∗Csh(a) =

H∗C(a). We will review the definitions in Section 6.

4.8. Examples. Let X be a smooth proper R-scheme. Since it is noetherian, the category
Qch(X) of quasi-coherent sheaves on X has enough injectives. We denote by i = Inj(Qch(X))
the full R-linear subcategory of injective objects. Since X is flat separated, by [DLL17, Propo-
sition 4.28, 4.30(2)] the R-linear abelian category Qch(X) is flat. From [LV06b, Proposition
2.9(6)] it follows that the R-linear category i is flat. Then by Lemma 4.5 and Lemma 4.6 or
Lemma 4.3 both flat linear S-deformations of i and flat abelian S-deformations of Qch(X) are
classified by H2C(i)⊕l.

5. The category of quasi-coherent sheaves

In this section, we review an alternative description of Toda’s construction in terms of the
descent category of the category of twisted quasi-coherent presheaves over the restricted struc-
ture sheaf, following the exposition from [DLL17, Section 4,5]. It follows that, for square zero
extension of relatively smooth R-schemes, Toda’s construction coincides with the deformation
of the category of quasi-coherent sheaves along the corresponding Hochschild cocycle. As a
consequence, deforming the category of the quasi-coherent sheaves is equivalent to deforming
the complex structure for higher dimensional Calabi–Yau manifolds. In particular, deforma-
tions of the category of quasi-coherent sheaves are given by the category of quasi-coherent
sheaves on deformations.

5.1. Descent categories. Let U be a small category and Cat(R) the category of small R-linear
categories and R-linear functors. A prestack A is a pseudofunctor Uop → Cat(R) consists of
the following data:

• for each U ∈ U an R-linear category A (U),
• for each u : V → U in U an R-linear functor f u : A (U)→ A (V),
• for each pair u : V → U, v : W → V in U a natural isomorphism cu,v : f v f u → f uv,
• for each U ∈ U a natural isomorphism zU : 1A (U) → f 1U .
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Moreover, these data must satisfy
cu,vw(cv,w ◦ f u) = cuv,w( f w ◦ cu,v),

cu,1V (zV ◦ f u) = 1, c1U ,u( f u ◦ zU) = 1

for each triple u : V → U, v : W → V, w : T → W in U. With A (U) regarded as one-objected
categories, a twisted presheaf A of R-algebras provides an example of a prestack of R-linear
category.

For prestacks A = (A ,m, f , c, z),A ′ = (A ′,m′, f ′, c′, z′) of R-linear category on U, a
morphism (g, h) : A → A ′ is a pseudonatural transformation which consists of the following
data:

• for each U ∈ U an R-linear functor gU : A (U)→ A ′(U),
• for each u : V → U in U a natural isomorphism hu : f ′ugU → gV f u.

Moreover, these data must satisfy

huv(c′u,v ◦ gU) = (gW ◦ cu,v)(hv ◦ f u)( f ′v ◦ hu),

h1U (z′U ◦ gU) = gU ◦ zU .

for each pair u : V → U, v : W → V in U. When A is a twisted presheaf of R-algebras,
morphisms of twisted presheaves of R-algebras coincide with morphisms of prestacks.

A pre-descent datum in a prestack A is a collection (AU)U of objects AU ∈ A (U) with a
morphism ϕu : f uAU → AV in A (V) for each u : V → U in U, which satisfies

ϕv f vϕu = ϕuvcu,v,AU

given an additional v : W → V in U. A morphism of pre-descent data g : (AU)U → (A′U)U

is a collection (gU)U of compatible morphisms gU : AU → A′U . Pre-descent data and their
morphisms form a category PDes(A ) equipped with a canonical functor

πV : PDes(A )→ A (V), (AU)U 7→ AV .

When all ϕu are isomorphisms, (AU)U is called a descent datum and we denote by Des(A )
the full subcategory of descent data. Given limits and colimits in each A (U) preserved by
all f u : A (U) → A (V), there exist ones in Des(A ) preserved by all πV : Des(A ) → A (V)
[DLL17, Proposition 4.5(3)]. In particular, if each category A (U) is abelian and all f u are
exact, then Des(A ) is abelian and πV are exact.

5.2. The category of quasi-coherent modules over a prestack. The category of right quasi-
coherent modules over a prestack A is defined as

Qch(A ) = Qchr(A ) = Des(ModA ),

where ModA is the associated prestack with a prestack A given by

ModA = Modr
A : Uop → Cat(R), U 7→ ModA (U) = Mod(A (U)),

whose restriction functor

− ⊗u A (V) : Mod(A (U))→ Mod(A (V))

is the unique colimit preserving functor extending f u : A (U)→ A (V). The functor sends each
F ∈ Mod(A (U)) to an R-linear functor F ⊗u A (V) : A (V)op → Mod(R) such that

F ⊗u A (V)(B) =
⊕

A∈A (U)

F(A) ⊗R A (V)(B, f uA)/ ∼

for each B ∈ A (V). Here, ∼ denotes the equivalence relation defined as

F(a)(x) ⊗ y ∼ x ⊗ f u(a)y
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for x ∈ F(A′), y ∈ A (V)(B, f uA), and a : A→ A′ in A (U).
In the case where F = A (U)(−, A′) for some A′ ∈ A (U), f u induces an isomorphism

θu
A′ : A (U)(−, A′) ⊗u A (V)→ A (V)(−, f uA′).

If u = 1U , then zU : 1A (U) → f 1U induces an isomorphism

Mod(z)U : 1ModA (U) → − ⊗1U A (U).

Since we have

F ⊗u A (V) ⊗v A (W)(C) =
⊕

A∈A (U),B∈A (V)

F(A) ⊗R A (V)(B, f uA) ⊗R A (W)(C, f vB)/ ∼,

θv
f uA and cu,v induce another isomorphism

Mod(cu,v) : − ⊗uA (V) ⊗v A (W)→ − ⊗uv A (W).

When A is a twisted presheaf of R-algebras, Mod(A (U)) coincides with the category of right
A (U)-modules whose restriction functor is the ordinary tensor product and Mod(c)u,v,Mod(z)U

are respectively given by
Mod(c)u,v

M : M ⊗u A (V) ⊗v A (W)→ M ⊗uv A (W), m ⊗ a ⊗ b 7→ m ⊗ cu,v f v(a)b,

Mod(z)U
M : M → M ⊗1U A (U), m 7→ m ⊗ zU

for any right A (U)-module M.

5.3. The category of twisted quasi-coherent presheaves over a twisted presheaf. Let A be
a presheaf of R-algebras on U. We denote by Pr(A |U) the category of presheaves of right A |U-
modules on U/U, where A |U is the induced presheaf on U/U with A |U(V → U) = A (V) for
U ∈ U and u : V → U in U. Each u : V → U in U induces a functor u∗Pr : Pr(A |U) → Pr(A |V).
Since we have v∗Pru

∗
Pr = (uv)∗Pr and (1U)∗Pr = 1Pr(A |U ) given an additional v : W → V in U, the

assignments U 7→ Pr(A |U) and u 7→ u∗Pr define a functor

Pr(A ) : Uop → Cat(R).

Let M be a right A (U)-module. Then M̃(u) B M⊗uA (V) = M⊗A (U)A (V) is a right A (V)-
module with A (V) regarded as a left A (U)-module via f u. Suppose that u′ : V ′ → U satisfies
uv′ = u′ for v′ : V ′ → V . We have the right A (U)-module homomorphism 1M ⊗ f v′ : M̃(u) →
M̃(u′). The assignments u 7→ M̃(u) and f v′ 7→ 1M ⊗ f v′ define a presheaf M̃ of right A (U)-
modules on U/U. Any A (U)-module homomorphism g : M → N induces a natural transform
g̃ = {g̃u B g ⊗ 1A (V)}u. Thus the assignments M 7→ M̃ and g 7→ g̃ define a functor

QU : Mod(A (U))→ Pr(A |U).(5.1)

We have the canonical isomorphism

canu,v
M : M ⊗u A (V) ⊗v A (W))→ M ⊗uv A (W), m ⊗ a ⊗ b 7→ m ⊗ f v(a)b.

By [DLL17, Lemma 4.10] the functor QU is fully faithful and there is a natural isomorphism

τu : u∗PrQ
U → QV(− ⊗u A (V))(5.2)

induced by (canu,v
M )−1. A quasi-coherent presheaf over AU is defined as the essential image

of some A (U)-module M by QU . We denote by QPr(A |U) the category of quasi-coherent
presheaves over A |U .

When A is a twisted presheaf with central twists c, one can adapt Mod(c)u,v to Pr(c)u,v as
follows. For F ∈ Pr(|A ||U) and w : T → W in U/W the central invertible element f w(cu,v) in
A (T ) gives an automorphism

f w(cu,v)r : F (uvw)→ F (uvw), m 7→ m f w(cu,v)
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inducing an isomorphism

Pr(c)u,v
F : v∗Pru

∗
Pr(F )→ (uv)∗Pr(F )

in Pr(|A ||U). Since we have

Pr(c)u,vw Pr(c)v,w = Pr(c)uv,ww∗Pr(Pr(c)u,v),

the assignments U 7→ Pr(|A ||U) and u 7→ u∗Pr define a prestack

PrA : Uop → Cat(R)

whose twist functor is given by Pr(c) and z is given by the identity. Restricting to the essential
images QPr(|A ||U), we obtain another prestack QPrA . The category of right twisted quasi-
coherent presheaves over a twisted presheaf A : Uop → Alg(R) with central twists is defined
as

QPr(A ) = Des(QPrA ).

Lemma 5.1. ([DLL17, Theorem 4.12]) Let A : Uop → Alg(R) be a twisted presheaf with
central twists. Then Q = (QU , τu)U,u defines an equivalence

Qch(A ) ' QPr(A )

of R-linear categories, where QU , τu are given by (5.1), (5.2) respectively.

5.4. Deformations of the restricted structure sheaves. Let A : Uop → Cat(R) be a flat
prestack. Recall that A is flat if R-modules A (U)(A, A′) are flat for all U ∈ U and A, A′ ∈
A (U). An S-deformation of A is a flat prestack B : Uop → Cat(S) together with an equiva-
lence of prestacks B ⊗S R → A , i.e., for each U there is a morphism of prestacks inducing
an equivalence B(U) ⊗S R → A (U) of R-linear categories [DLL17, Proposition 4.7]. Two
deformations B,B′ are equivalent if there is an equivalence B → B′ of prestacks compatible
with equivalences B⊗S R→ A , B′⊗S R→ A . We denote by Deftw

A (S) the set of equivalence
classes of S-deformations of A . When B ⊗S R → A is an isomorphism of prestacks, i.e.,
for each U there is a morphism of prestacks inducing an isomorphism B(U) ⊗S R → A (U)
of R-linear categories, we call the deformation B strict. Two strict deformations B,B′ are
equivalent if there is an isomorphism B → B′ of prestacks inducing the identity on A . We
denote by Def s−tw

A (S) the set of equivalence classes of strict S-deformations of A . Recall that
twised presheaves of R-algebras can be regarded as a prestack. Due to the lemma below, as
long as we consider equivalence classes of twisted deformations of flat presheaves, we may
restrict our attention to strict twisted deformations.

Lemma 5.2. ([DLL17, Proposition 5.9]) Let (A ,m, f , c, z) be a flat prestack of R-linear cate-
gories on U. Then the canonical map

Def s−tw
A (S)→ Deftw

A (S)

is bijective.

Let U be a finite poset with binary meets. Then any prestack on U is quasi-compact since
U is finite. A prestack A : Uop → Cat(R) is right semi-separated if the associated prestack
ModA is of affine localizations. Namely, for all U,V,W ∈ U with v : V → U,w : W → U in U
and the pullback diagram

V ∩W w̄ //

v̄
��

V

v
��

W w // U
the following conditions are satisfied.
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• The category ModA (U) is Grothendieck abelian.
• The functor v∗ : ModA (U)→ ModA (V) is exact.
• The functor v∗ admits a fully faithful exact right adjoint v∗ : ModA (V)→ ModA (U).
• There are natural isomorphisms

(v∗v∗)(w∗w∗) � (vw̄)∗(vw̄)∗ � (w∗w∗)(v∗v∗).

A presheaf A : Uop → Alg(R) is right semi-separated if so is A with A (U) regarded as
one-objected categories. Every right semi-separated prestack is geometric, i.e., the restriction
functor

− ⊗u A (V) : Mod(A (U))→ Mod(A (V))

is exact. Note that for any geometric prestack A : Uop → Cat(R) on a small category Qch(A )
is a Grothendieck abelian category [DLL17, Theorem 4.14].

Let X be a smooth proper R-scheme. Choose a finite affine open cover U closed under
intersections. We denote by OX |U the restricted structure sheaf to U. Since U ∩ V is affine as X
is separated, we have isomorphisms of OX(U)-modules

OX(V) ⊗OX(U) OX(W) � OX(U ∩ V) � OX(W) ⊗OX(U) OX(V)

for all U,V,W ∈ U with V,W ⊂ U. Since pushforwards along open immersions V ↪→ U of
affine schemes are fully faithful, by [DLL17, Lemma 3.1] the restriction maps OX(U)→ OX(V)
are flat epimorphism of rings. Then one can apply [DLL17, Proposition 4.28] to see that the
presheaf OX |U : Uop → Alg(R) is right semi-separated. Since OX(U) are flat R-modules, the
category

Qch(OX |U) ' QPr(OX |U) ' Qch(X)

is flat over R and Grothendieck abelian [DLL17, Proposition 4.30].

Lemma 5.3. ([DLL17, Theorem 5.10]) Let X be a smooth proper R-scheme with a finite affine
open cover U closed under intersections. Then every twisted S-deformations of the restricted
structure sheaf OX |U is a quasi-compact semi-separated presheaf on U and there is a bijection

Deftw
OX |U(S)→ Defab

Qch(X)(S), (OX |U)φ 7→ Qch((OX |U)φ),

where φ ∈ H2CGS (OX |U)⊕l is a cocycle and (OX |U)φ is the twisted S-deformation of OX |U along
φ. In particular, the category of right quasi-coherent modules over a twisted deformation of
OX |U is given by an abelian deformation of the category Qch(X) of quasi-coherent sheaves.

5.5. Toda’s construction revisited. Let U be a small category and (A ,m, f ) a presheaf of
R-algebras on U. The simplicial complex of presheaves associated with A is the complex
(A •, ϕ•) defined as follows. Consider the presheaf of algebras A n = (A n,mn, f n) for n ≥ 0
given by

A n(U) =
∏

τ∈Nn(U/U)

A |U(τ)

endowed with the product algebra structure mn,U . Here, τ ∈ Nn(U/U) is identified with the
object dτ→ U ∈ U/U by composing all morphisms of τ, and the restriction map

f n,U : A n(U)→ A n(V), (aτ)τ 7→ (auσ)σ
is induced by the natural mapNn(U/V)→ Nn(U/U), σ→ uσ. Define morphisms of presheaves
ϕn : A n → A n+1 as

ϕn,U :
∏

τ∈Nn(U/U)

A |U(τ)→
∏

σ∈Nn+1(U/U)

A |U(σ), (aτ)τ 7→
 f uσ1 (a∂0σ) +

n+1∑

i=1

(−1)ia∂iσ


σ
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which specialize to

ϕ0,U :
∏

u : V→U

A (V)→
∏

u : V→U,v : W→V

A (W), (au)u 7→ f v(au) − auv.

Then one obtains the complex (A •, ϕ•) with ker(ϕ0) � A [DLL17, Lemma 2.12].
Using a part of the simplicial complex of presheaves, one can give an alternative description

of Toda’s construction. Since R is commutative, by [DLL17, Proposition 2.14] every normal-
ized reduced cocycle

φ = (m, f, c) = (m1, . . . ,ml, f1, . . . , fl, c1, . . . , cl) ∈ C̄′0,2GS (A )⊕l ⊕ C̄′1,1GS (A )⊕l ⊕ C̄′2,0GS (A )⊕l.

admits a weak decomposition

(m, f, c) = (m, f, 0) + (0, 0, c) ∈ C̄′2tGS (A )⊕l ⊕ C̄′2simp(A )⊕l.

From [DLL17, Proposition 2.24] it follows that the twisted S-deformation Aφ of A along φ
has central twists and the underlying presheaf |Aφ| is the presheaf S-deformation of A along
|φ| = (m, f, 0). Consider the morphism F : A ⊕ (A 0)⊕l → (A 1)⊕l of presheaves defined as

FU : A (U) ⊕
∏

u : V→U

A 0(V)⊕l →
∏

u : V→U,v : W→V

A 1(W)⊕l,

(a, (bu
1, . . . , b

u
l )u) 7→ ( f v

1 u∗(a) + v∗(bu
1) − buv

1 , . . . , f v
l u∗(a) + v∗(bu

l ) − buv
l )u,v,

where we denote f u by u∗ for clarity. Define the multiplication on A ⊕ (A 0)⊕l as

(a, (bu
1, . . . , b

u
l )u) · (a′, (b′u1 , . . . , b′ul )u)

=(aa′, (u∗(a)b′u1 + bu
1u∗(a′) + m1(u∗(a), u∗(a′)), . . . , u∗(a)b′ul + bu

l u∗(a′) + ml(u∗(a), u∗(a′)))u).

With the scalar given by

(λ + κ1ε1 + . . . + κlεl)(a, (bu
1, . . . , b

u
l )u) = (λa, (κ1u∗(a) + λbu

1, . . . , κlu∗(a) + λbu
l )u),

A ⊕ (A 0)⊕l becomes an S-algebra. Then the morphism G : |Aφ| → A ⊕ (A 0)⊕l of presheaves
of S-algebras defined as

GU : |Aφ|(U)→ A (U) ⊕A 0(U)⊕l,

a + bu
1ε1 + · · · + bu

l εl 7→ (a, ( f u
1 (a) + u∗(b1), . . . , f u

l (a) + u∗(bl))u)

yields an exact sequence

0→ |Aφ| G−→ A ⊕ (A 0)⊕l F−→ (A 1)⊕l.

Consider the case where A is the restricted structure sheaf OX |U of a smooth proper R-
scheme X. Fix a finite affine open cover U of X closed under intersections. As explained
above, OX |U gives a quasi-compact right semi-separated presheaf of R-algebras. Since OX(U)
is smooth R-algebra for each U ∈ U, we may assume further that φ = (m, f, c) is decomposable.
We use the same symbol φ to denote the cocycle

(α, β, γ) ∈ H2(OX) ⊕ H1(TX/R) ⊕ H0(∧2TX/R)

which is the image of (m, f, c) under the bijection (2.3). Then φ defines the S-linear abelian
category Qch(X, φ) obtained by Toda’s construction.

Lemma 5.4. ([DLL17, Theorem 5.12]) For a smooth proper R-scheme X with a finite affine
open cover U closed under intersections, let (OX |U)φ be the twisted S-deformation of the re-
stricted structure sheaf OX |U along a normalized reduced decomposable cocycle

φ = (m, f, c) ∈ C̄′0,2GS (OX |U)⊕l ⊕ C̄′1,1GS (OX |U)⊕l ⊕ C̄′2,0GS (OX |U)⊕l,
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which maps to a cocycle

(α, β, γ) ∈ H2(OX) ⊕ H1(TX/R) ⊕ H0(∧2TX/R)

under the bijection (2.3). Then there is an equivalence

Qch((OX |U)φ) ' Qch(X, φ)

of S-linear Grothendieck abelian categories, where Qch(X, φ) is the abelian category obtained
by Toda’s construction from Qch(X) along (α, β, γ).

By (2.3), Lemma 2.2, and Lemma 5.3 we obtain a bijection

HT 2(X/R)⊕l � HH2(X/R)⊕l � HH2
ab(Qch(X))⊕l.(5.3)

Let Qch(X)φ the flat abelian S-deformation of Qch(X) along the image of (α, β, γ) under (5.3).
Combining Lemma 5.3 and Lemma 5.4, we obtain

Proposition 5.5. For a smooth proper R-scheme X, let Qch(X)φ be the flat abelian S-deformation
of Qch(X) and Qch(X, φ) the abelian category obtained by Toda’s construction from Qch(X)
corresponding to [φ] ∈ HH2(X/R)⊕l via the isomorphism (5.3). Then there is an equivalence

Qch(X)φ ' Qch(X, φ)

of S-linear Grothendieck abelian categories.

Now, we return to our setting. Let X0 be a Calabi–Yau manifold with dim X0 > 2 and (X, iR)
an R-deformation of X0. Since we have

HT 2(X/R) = H2(OX/R) ⊕ H1(TX/R) ⊕ H0(∧2TX/R) � H1(TX/R),

every cocycle φ ∈ HH2(X/R)⊕l defines an S-deformation (Xφ, iS) of (X, iR). By Proposition
3.11 we have Qch(X, φ) ' Qch(Xφ). Along square zero extensions, deforming Calabi–Yau
manifolds and taking the category of quasi-coherent sheaves are compatible in the following
sense.

Corollary 5.6. Let X0 be a Calabi–Yau manifold with dim X0 > 2, (X, iR) an R-deformation of
X0, and (Xφ, iS) the S-deformation of (X, iR) corresponding to [φ] ∈ HH2(X/R)⊕l. Then there is
an equivalence

Qch(X)φ ' Qch(Xφ)

of S-linear Grothendieck abelian categories, where Qch(X)φ is the flat abelian S-deformation
of Qch(X) corresponding to [φ] via the isomorphism (5.3).

Remark 5.1. Since we have HT 2(Xφ/S) � H1(TXφ/S) by Calabi–Yau condition and the finite
affine open cover U = {Ui}Ni=1 of X closed under intersections canonically lifts to the locally
trivial deformation U×RS = {Ui×RS}Ni=1, one may iteratively use Corollary 5.6 along a sequence
of square zero extensions.

6. Deformations of the dg category of perfect complexes

In this section, we review the deformation theory of dg category following the exposition
from [Low08] and [KL09]. Based on the ideas thereof, for a higher dimensional Calabi–Yau
manifold we prove the compatibility of deformations with taking the dg category of perfect
complexes. Namely, the dg category of perfect complexes on a deformation is Morita equiva-
lent to the corresponding dg deformation of a certain full dg category determined by the direc-
tion of the deformation.
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6.1. Curved A∞-categories. In the sequel, by a quiver we will mean a Z-graded quiver. We
choose shift functors Σk on the category G(R) of Z-graded R-modules. Let a be an R-linear
quiver. Namely, a consists of a set Ob(a) of objects and a Z-graded R-module a(A, A′) for each
pair A, A′ ∈ Ob(a). The category of quivers with a fixed set of objects admits a tensor product

a ⊗ b(A, A′) =
⊕

A′′
a(A′′, A′) ⊗R b(A, A′′)

and an internal hom

[a, b](A, A′) = [a(A, A′), b(A, A′)].

Morphisms of degree k are elements of [a, b]k =
∏

A,A′[a, b](A, A′)k.
The tensor cocategory T (a) of a is the quiver

T (a) =
⊕

n≥0

a⊗n

equipped with the comultiplication which separates tensors. There is a natural brace algebra
structure on [T (a), a] =

∏
n≥0[T (a), a]n, where

[T (a), a]n = [a⊗n, a] =
∏

A0,...,An∈a
[a(An−1, An) ⊗R · · · ⊗R a(A0, A1), a(A0, An)].

It is given by the operations

[T (a), a]n ⊗R [T (a), a]n1 ⊗R · · · ⊗R [T (a), a]ni → [T (a), a]n−i+n1+···+ni ,

(φ, φ1, . . . , φi) 7→ φ{φ1, . . . , φi}
with

φ{φ1, . . . , φi} =
∑

φ(1 ⊗ · · · ⊗ φ1 ⊗ 1 ⊗ · · · ⊗ φi ⊗ 1 ⊗ · · · ⊗ 1)

satisfying

φ{φ1, . . . , φi}{ψ1, . . . , ψ j} =
∑

(−1)αφ{ψ1, . . . , φ1{ψm1 , . . .}, ψn1 , . . . , φi{ψmi . . .}, ψni , . . . , ψ j},
where α =

∑i
k=1 |φk|∑mk−1

l=1 |ψl|. We denote by Ba the Bar cocategory T (Σa) and by Cbr(a) the
brace algebra [Ba,Σa]. The associated Hochschild object is defined as C(a) = Σ−1Cbr(a). By
[Low08, Proposition 2.2] the tensor coalgebra T (Cbr(a)) = BC(a) becomes a graded bialgebra
with the associative multiplication defined by the composition.

A curved A∞-structure on a is an element b ∈ C1
br(a) satisfying b{b} = 0. The pair (a, b) is

called a curved A∞-category. When the defining morphisms bn : Σa⊗n → Σa vanish for n ≥ 3,
we call (a, b) a cdg category. The curvature elements of (a, b) is the morphism b0. When it
vanishes, we drop “curved” and “c” from the notation.

Definition 6.1. ([Low08, Definition 2.5]) For curved A∞-categories (a, b), (a′, b′) with Ob(a) =

Ob(a′) a morphism is a fixed object morphism of quivers f : Ba→ Ba′, which is determined by
morphisms fn : (Σa)⊗n → Σa′ and respects the comultiplications and the curved A∞-structures.

6.2. Hochschild complexes of curved A∞-categories. The associated Lie bracket with the
brace algebra Cbr(a) is defined as

〈φ, ψ〉 = φ{ψ} − (−1)|φ||ψ|ψ{φ}.
Via an isomorphism

Cbr(a) � Coder(Ba, Ba)
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of Z-graded R-modules to coderivations between cocategories, it corresponds to the commuta-
tor of coderivations. For a curved A∞-structure b on a the Hochschild differential on Cbr(a) is
defined as

db = 〈b,−〉 ∈ [Cbr(a),Cbr(a)]1, φ 7→ 〈b, φ〉.
In particular, Cbr(a) can be regarded as a dg Lie algebra. Then C(a) is known to be isomor-
phic to the classical Hochschild complex of a, whose definition we will review later. Since b
naturally belongs to BC(a)1, it induces a differential

Db = [b,−] ∈ [BC(a), BC(a)]1, φ 7→ [b, φ],

where [−,−] is the commutator of the multiplication given by [Low08, Proposition 2.2]. As Db

belongs to Coder(BC(a), BC(a)), it defines a curved A∞- structure on C(a). The differential Db

gives a dg bialgebra structure on BC(a) and C(a),Cbr(a) become B∞-algebras [GJ, Definition
5.2].

We will use the same symbol C(a) to denote the bigraded object with

Cp,q(a) =
∏

A0,...,Aq∈a
[a(Aq−1, Aq) ⊗R · · · ⊗R a(A0, A1), a(A0, Aq)]p.

An element φ ∈ Cp,q(a) is said to have the degree |φ| = p, the arity ar(φ) = q, and the Hochschild
degree deg(φ) = n = p + q. The total complex of Hochschild degree n is defined as Cn(a) =∏

p+q=n Cp,q(a). Via the canonical isomorphisms

Σ1−q[a(Aq−1, Aq) ⊗R · · · ⊗R a(A0, A1), a(A0, Aq)]
→ [Σa(Aq−1, Aq) ⊗R · · · ⊗R Σa(A0, A1),Σa(A0, Aq)],

the B∞-structure on Cbr(a) is translated in terms of a. For instance, the operation

dot : Cbr(a)q ⊗ Cbr(a)s → Cbr(a)q+s−1, (φ, ψ) 7→ φ{ψ}
induces the classical “dot product”

• : Cp,q(a) ⊗ Cr,s(a)→ Cp+r,q+s−1(a)

on C(a) given by

φ • ψ =

q−1∑

k=0

(−1)βφ(1⊗q−k−1 ⊗ ψ ⊗ 1⊗k),

where β = (deg(φ) + k + 1)(ar(ψ) + 1). We also call the bigraded object C(a) the Hochschild
complex of a and its elements Hochschild cochains. In the sequel, curved A∞-structure on a
will often be translated into an element of C2(a) without further comments.

6.3. Curved dg category of precomplexes. Let a be an R-linear category. Consider the cate-
gory PCom(a) of precomplexes of a-objects. A precomplex of a-objects is a Z-graded a-objects
C with Ci ∈ a together with a predifferential, a Z-graded a-morphism δC : C → C of degree 1.
For any C,C′ ∈ PCom(a) the Hom-set PCom(a)(C,C′) is a Z-graded R-module with

PCom(a)(C,C′)k =
∏

i∈Z
a(Ci,C′i+k).
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The cdg structure µ ∈ C(a)2 on PCom(a) consists of the compositions m, differentials d, and
curvature elements c, where

m = µ2 ∈
∏

C0,C1,C2∈PCom(a)

[PCom(a)(C1,C2) ⊗R PCom(a)(C0,C1),PCom(a)(C0,C2)]0,

d = µ1 ∈
∏

C0,C1∈PCom(a)

[PCom(a)(C0,C1),PCom(a)(C0,C1)]1,

c = µ0 ∈
∏

C∈PCom(a)

PCom(a)(C,C)2

are given by

m(g, f )i = (g f )i = gi+| f | fi : Ci
0 → Ci+| f |+|g|

2 ,

d( f ) = δC1 f − (−1)| f | f δC0 ,

cC = −δ2
C

for morphisms f : C0 → C1, g : C1 → C2 in PCom(a). One can check that m, d, and c satisfy
d(c) = 0,

d2 = −m(c ⊗ 1 − 1 ⊗ c),
dm = m(d ⊗ 1 + 1 ⊗ d),
m(m ⊗ 1) = m(1 ⊗ m).

We denote by Com(a) the full dg subcategoy of complexes of a-objects, where δC become
differentials.

Here, we demonstrate how the cdg structure is translated. The differential

db = 〈b,−〉 = 〈Σc + d + Σ−1m,−〉 ∈ [Cbr(PCom(a)),Cbr(PCom(a))]1

on Cbr(PCom(a)) sends Σ1−qφ ∈ Cbr(PCom(a)) with φ ∈ Cp,q(PCom(a)) to

dot(Σc + d + σ−1m,Σ1−qφ) − (−1)1−q+p dot(Σ1−qφ,Σc + d + Σ−1m).

In terms of C(a) the image corresponds to [c + d + m, φ], where

[c, φ] =

q−1∑

k=0

(−1)k+1φ(1⊗q−k−1 ⊗ c ⊗ 1⊗k),

[d, φ] = (−1)ar(φ)+1d(φ) +

q−1∑

k=0

(−1)deg(φ)φ(1⊗q−k−1 ⊗ c ⊗ 1⊗k),

[m, φ] = m(φ ⊗ 1) + (−1)ar(φ)+1m(1 ⊗ φ) +

q−1∑

k=0

(−1)k+1φ(1⊗q−k−1 ⊗ c ⊗ 1⊗k).

6.4. Curved dg deformations of dg categories. Assume that a is an R-linear cdg category.
A cdg S-deformation of a is an S-linear cdg structure on an S-linear quiver b together with an
isomorphism b → a[ε] = a ⊗R S of S-linear quivers whose reduction b ⊗S R → a induces
an isomorphism of cdg categories. Two cdg deformations b, b′ are isomorphic if there is an
isomorphism b → b′ of cdg categories inducing the identity on a. We denote by Defcdg

a (S) the
set of isomorphism classes of cdg S-deformations of a.

Theorem 6.2. ([Low08, Theorem 4.11]) Let (a, µ) be an R-linear cdg category. Then there is
a bijection

H2C(a)⊕l → Defcdg
a (S), φ 7→ (a[ε], µ + φε), φ ∈ Z2C(a)⊕l.(6.1)
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Another cocycle φ′ ∈ Z2C(a)⊕l maps to an isomorphic cdg deformation if and only if there is
an element h ∈ C1(a) satisfying φ′ − φ = dµ(h).

A partial cdg S-deformation of a is a cdg S-deformation of some full cdg subcategory a′.
Two partial cdg deformations b, b′ are isomorphic if there is an isomorphism b → b′ of cdg
categories inducing the identity on a′. A morphism of partial cdg deformations b, b′ is an
isomorphism of cdg deformations between b and a full cdg subcategory of b′. When every
morphism of b → b′ of partial cdg deformations is an isomorphism, we call b maximal. We
denote by Defp−cdg

a (S) the set of morphism classes of partial cdg S-deformations of a and by
Defmp−cdg

a (S) the set of isomorphism classes of maximal partial cdg S-deformations of a.
Assume further that a is a dg category. For φ ∈ Z2C(a) the [φ] − ∞ part of a is the full dg

subcategory a[φ]−∞ spanned by objects A ∈ a satisfying

H2(π0)([φ])A = 0 ∈ H2(a(A, A)),

where π0 : C(a)→ C(a)0 is the projection onto the zero part

C(a)0 = Σ−1[T (Σa),Σa]0 =
∏

A∈a
a(A, A).

For a cdg S-deformation b = (a[ε], µ + φε) of a, the ∞-part b∞ is the full cdg subcategory
spanned by objects B ∈ b satisfying

(µ + φε)0,B = 0 ∈ b(B, B)2.

It is a partial dg deformation of a and a dg deformation of a[φ]−∞. More explicitly, if we restrict
φ to a[φ]−∞, then φ0 becomes a coboundary and there is an element

h ∈
∏

A∈a[φ]−∞

a(A, A)1 ⊂ C1(a)

with dµ(h) = (φ|a[φ]−∞)0. Thus the cocycle φ|a[φ]−∞ − dµ(h) has trivial curvature elements.

Proposition 6.3. ([Low08, Proposition 4.14]) Let (a, µ) be an R-linear dg category. Then there
is a map

H2C(a)⊕l → Defp−dg
a (S), φ 7→ (a[φ]−∞[ε], µ + (φ|a[φ]−∞ − dµ(h))ε), φ ∈ Z2C(a)⊕l.(6.2)

6.5. The characteristic morphism for dg categories. Let (a, µ = d + m) be an R-linear dg
category. Consider the ∞-part Tw(a) = Twilnil(a)∞ of the cdg category of locally nilpotent
twisted objects over a from [Low08, Proposition 3.6]. It is known to be a dg enhancement
of the derived category D(a) of right dg modules over a. Each object of Tw(a) is given by a
pair (M, δM) of M ∈ Free(a) and δM ∈ Free(a)(M,M)1. The collection {δM}M∈Tw(a) canonically
determines an element δ ∈ C1(Tw(a)). Here, Free(a) is a quiver whose objects are formal
expressions M = ⊕i∈IΣ

ni Ai with Ai ∈ a, ni ∈ Z, and I an arbitrary index set. For any M,M′ ∈
Free(a) the Hom-set is

Free(a)(M,M′) =
∏

i∈I

⊕i′∈I′Σ
ni′−nia(Ai, A′i′).

Theorem 6.4. ([Low08, Theorem 3.19]) Let a be a dg category and Tw(a) the∞-part of the cdg
category of locally nilpotent twisted objects from [Low08, Proposition 3.6] with its canonical
Hochschild cochain δ ∈ C1(Tw(a)). Then the canonical projection π : C(Tw(a)) → C(a) has a
B∞-section

embrδ : C(a)→ C(Tw(a)), φ 7→
∞∑

i=0

φ{ δ⊗i},(6.3)
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which is an inverse in Ho(B∞) of B∞-algebras. In particular, both π and embrδ are quasi-
isomorphisms.

Consider the projection onto the zero part

π0 : C(Tw(a))→ C(Tw(a))0 =
∏

(M,δM)∈Tw(a)

Tw(a)((M, δM), (M, δM)).(6.4)

Since Tw(a) is uncurved, π0 induces a morphism of dg algebras [Low08, Proposition 2.7].
Composing (6.3) and (6.4), one obtains the characteristic dg morphism

C(a)→
∏

(M,δM)∈Tw(a)

Tw(a)((M, δM), (M, δM)).(6.5)

The full dg subcategory tw(a) = twilnil(a)∞ ⊂ Tw(a) spanned by objects (M, δM) with

d{δM} + m{δM, δM} = 0

is equivalent to the classical dg category of twisted complexes over a [Low08, Example 3.16].
It is known to be a dg enhancement of the smallest triangulated subcategory of D(a). We denote
by Tw(a)c the full dg subcategory of Tw(a) spanned by compact objects. It is known to be a dg
enhancement of the idempotent completion of the homotopy category of tw(a).

Assume that a is triangulated, i.e., pretriangulated and closed under homotopy direct sum-
mands. Then the homotopy category of Tw(a)c get identified with that of tw(a) by assumption
and that of a via the Yoneda embedding. When restricted to Tw(a)c, on cohomology (6.5)
induces the characteristic morphism

χa,A : H•C(a)→ Z•(Tw(a)c) =
∏

A∈a
H•(a(A, A)),

where we identify each object A ∈ a with its image under the Yoneda embedding. Here,

Z(Tw(a)c) = Hom(1Tw(a)c , 1Tw(a)c)

is the center of the graded category Tw(a)c, where Hom denotes the graded R-module of graded
natural transformations [Low08, Remark 4.6].

6.6. The characteristic morphism for linear categories. In this subsection, although it is
not strictly necessary to deduce our main results, for completeness we review the relationship
between the characteristic morphism and the obstruction against lifting objects of derived cat-
egories. Besides [Low08, Theorem 4.8] and [Low08, Corollary 4.9], we include their dual
statements due to Lowen.

Let i be an R-linear category. The canonical projection

π : C(PCom(i))→ C(i)

has a B∞-section

embrδ : C(i)→ C(PCom(i)),(6.6)

whose restriction to the full dg subcategory Com+(i) of bounded below complexes of i-objects is
an inverse in the homotopy category Ho(B∞) of B∞-algebras [Low08, Theorem 3.21]. Consider
the projection onto the zero part

π0 : C(Com(i))→ C(Com(i))0 =
∏

C∈Com(i)

Com(i)(C,C).(6.7)
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Since Com(i) is uncurved, π0 induces a morphism of dg algebras [Low08, Proposition 2.7].
Composing (6.6) and (6.7), one obtains the characteristic dg morphism

C(i)→
∏

C∈Com(i)

Com(i)(C,C).

Note that Tw(i) is precisely Com(i) [Low08, Section 3.5]. On cohomology it induces the char-
acteristic morphism

χi : H•C(i)→ Z•(K(i))

for a linear category i. Here, Z(K(i)) is the graded center of K(i), i.e., the center

Z(Com(i)) = Hom(1Com(i), 1Com(i))

of the graded category Com(i). The characteristic morphism can be interpreted in terms of
deformations of categories.

Theorem 6.5. ([Low08, Theorem 4.8]) Let i be an R-linear category and iφ its S-deformation
along φ ∈ Z2C(i)⊕l. Then for each C ∈ K(i) the element χ⊕l

i
(φ)C ∈ K(i)(C,C)[2]⊕l is the

obstruction against lifting C to an object of K(iφ) along HomS(R,−) : K(iφ)→ K(i).

Remark 6.1. The notation in [Low08, Section 4.4] is quite confusing. It was confirmed by
Wendy Lowen that φ-deforming C in the statement of [Low08, Theorem 4.8] means precisely
lifting C along HomS(R,−).

Let C be an R-linear abelian category with enough injectives. Assume that i is the full linear
subcategory Inj(C ) of injective objects. Taking cohomology of (6.7) restricted to Com+(i) and
composing with the isomorphism HH•ab(C ) � HC•(Com+(i)) induced by (6.6), one obtains the
characteristic morphism

χC : HH•ab(C )→ Z•(D+(C ))(6.8)

for an abelian category C . Here, we use the isomorphism HH•ab(C ) � HC•(i) obtained from
[LV06b, Theorem 6.6]. Note that the graded center Z(D+(C )) of D+(C ) ' K+(i) is given by
the center Z(Com+(i)).

Corollary 6.6. ([Low08, Corollary 4.9]) Let C be an R-linear abelian category with enough
injectives and Cφ its abelian S-deformation along a cocycle φ ∈ HH2

ab(C )⊕l. Then for each
C ∈ D+(C ) the element χ⊕l

C (φ)C ∈ Ext2
C (C,C)⊕l is the obstruction against lifting C to an object

of D+(Cφ) along R HomS(R,−) : D+(Cφ)→ D+(C ).

Remark 6.2. Similarly to the previous remark, deforming C in the statement of [Low08, Corol-
lary 4.9] means precisely lifting C along R HomS(R,−).

As mentioned in [Low05, Introduction], dualizing the relevant arguments, one obtains sim-
ilar results for lifting objects along the functors − ⊗S R and − ⊗L

S R. We thank Wendy Lowen
for explaining the next two results below to the author.

Theorem 6.7. Let p be an R-linear category and pφ its S-deformation along φ ∈ Z2C(p)⊕l.
Then for each C ∈ K(p) the element χ⊕l

p (φ)C ∈ K(p)(C,C)[2]⊕l is the obstruction against lifting
C to an object of K(pφ) along − ⊗S R : K(pφ)→ K(p).

Let C be an R-linear abelian category with enough projectives. Assume that p is the full
linear subcategory Proj(C ) of projective objects. Taking cohomology of (6.7) restricted to
Com−(p) and composing with the isomorphism HH•ab(C ) � HC•(Com−(p)) induced by (6.6),
one obtains the characteristic morphism

χC : HH•ab(C )→ Z•(D−(C ))
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dual to (6.8). Here, we use the isomorphism HH•ab(C ) � HC•(p) obtained from the dual
statement of [LV06b, Theorem 6.6]. Note that the graded center Z(D−(C )) of D−(C ) ' K−(p)
is given by the center Z(Com−(p)).

Corollary 6.8. Let C be an R-linear abelian category with enough projectives and Cφ its
abelian S-deformation along a cocycle φ ∈ HH2

ab(C )⊕l. Then for each C ∈ D−(C ) the element
χ⊕l

C (φ)C ∈ Ext2
C (C,C)⊕l is the obstruction against lifting C to an object of D−(Cφ) along − ⊗L

S
R : D−(Cφ)→ D−(C ).

6.7. Maximal partial dg deformations of the dg category of bounded below complexes.
In this subsection, for a linear category we explain that the maximal partial deformation of the
dg category of bounded below complexes along a given Hochschild cocycle is precisely the
dg deformation of the full dg subcategory spanned by all objects whose lifts become curvature
free with respect to the Hochschild cocycle. Similar observation for the dg category of perfect
complexes will be crucial later.

Consider the map

ρ′ : H2C(i)⊕l → Defp−dg
Com+(i)(S), φ 7→ (Com+(i)embrδ(φ))∞(6.9)

obtained from (6.2) and (6.6). The partial dg deformation (Com+(i)embrδ(φ))∞ of Com+(a) co-
incides with a dg deformation (Com+(i)[embrδ(φ)]−∞)embrδ(φ) of Com+(i)[embrδ(φ)]−∞, where the cdg
structure embrδ(φ) restricted to the [embrδ(φ)] −∞ part.

Theorem 6.9. ([Low08, Theorem 4.15(iii)]) Let i be an R-linear category and iφ its S-deformation
along φ ∈ Z2C(i)⊕l. Then, for every collection of complexes Γ = {C̄}C∈Com+(i)[embrδ(φ)]−∞ with
HomS(R, C̄) = C, the full dg subcategory Com+

Γ(iφ) ⊂ Com+(iφ) spanned by Γ is a maximal
partial dg S-deformation of Com+(i) representing ρ′(φ).

From the proof, one sees that Com+
Γ(iφ) is a dg deformation of Com+(i)[embr(φ)]−∞. According

to [Low08, Example 4.13], an object C ∈ Com+(i) belongs to Com+(i)[embr(φ)]−∞ if and only if

χ⊕l
i (φ)C = 0 ∈ K(i)(C,C[2])⊕l.

Since χ⊕l
i

(φ)C is the obstruction against lifting C to an object of Com+(iφ) along HomS(R,−),
we may take a collection of lifts of unobstructed complexes in Com+(i) as Γ. Clearly, any dg
subcategory of Com+(i)[embr(φ)]−∞ dg deforms along the restriction of embrδ(φ).

6.8. Hochschild cohomology of the dg category of perfect complexes. We review the defini-
tion of the classical Hochschild complex of dg categories. Assume that a is a small R-cofibrant
dg category, i.e., all Hom-sets are cofibrant in the dg category Moddg(R) = Com(Mod(R)) of
complexes of R-modules. Recall that N ∈ Moddg(R) is cofibrant if its terms are projective. For
an a-bimodule M : aop ⊗ a→ Moddg(R), the Hochschild complex C(a,M) of a with coefficients
in M is the total complex of the double complex whose q-th columns are given by

∏

A0,...,Aq∈a
Hom(a(Aq−1, Aq) ⊗R · · · ⊗R a(A1, A0),M(A0, Aq))

with horizontal differentials dq
Hoch. When M = a we call C(a) = C(a, a) the Hochschild complex

of a. The Hochschild complex satisfies a “limited functoriality” property. Namely, if j : a ↪→ b
is a fully faithful dg functor to a small R-cofibrant dg category b, then there is an associated
map between Hochschild complexes

j∗ : C(b)→ C(a)

83



given by restriction. As mentioned above, the Hochschild complex is isomorphic to the asso-
ciated Hochschild object C(a) = Σ−1Cbr(a). In particular, the Hochschild complex C(a) has a
B∞-algebra structure compatible with the map j∗.

The definition of the Hochschild complex was modified by Shukla and Quillen [Shu61,
Qui70] to general dg categories. Now, we drop the assumption on a to be R-cofibrant and fix a
good R-cofibrant resolution ā → a, which is a quasi-equivalence with an R-cofibrant dg cate-
gory ā inducing surjection of Hom-sets in the graded category [LV06a, Proposition-Definition
2.3.2]. The Shukla complex of a with coefficient M is defined as

Csh(a,M) = C(ā,M).

According to [LV06a, Section 4.2], which in turn is attributed to [Kel], the assignment

Csh : a 7→ Csh(a)

defines up to canonical natural isomorphism a contravariant functor on a suitable category of
small dg categories with values in Ho(B∞). In particular, Csh(a) does not depend on the choice
of good R-cofibrant resolutions of a up to canonical isomorphism. The functor Csh satisfies
some extended “limited functoriality”. Let j : a ↪→ b be a fully faithful dg functor to a small
dg category b with a good R-cofibrant resolution b̄ → b. One may restrict the resolution to a
good R-cofibrant resolution ā → a of a. Then the restriction along the extended fully faithful
dg functor ā ↪→ b̄ defines a morphism of Shukla complexes

Csh(b)→ Csh(a)

still denoted by j∗. In the sequel, we write C(a) for Csh(a).
Now, we return to our setting. Let X0 be a Calabi–Yau manifold with dim X0 > 2. We

denote by Ddg(Qch(X0)) the dg category of unbounded complexes of quasi-coherent sheaves
on X0. In our setting, the full dg subcategory Perfdg(X0) of compact objects consists of perfect
complexes on X0. The canonical embedding Perfdg(X0) ↪→ Ddg(Qch(X0)) factorizes through
the dg category D+

dg(Qch(X0)) of bounded below complexes of quasi-coherent sheaves on X0.
Let (X, iR) be an R-deformation of X0 and i = Inj(Qch(X)). As explained above, X is smooth
projective over R. The Hochschild cohomology of Perfdg(X) can be expressed in terms of i.

Lemma 6.10. There is an isomorphism

HC•(Com+(i))→ HC•(Perfdg(X)).(6.10)

Proof. Consider the quasi-fully faithful functor

Perfdg(X) ↪→ D+
dg(Qch(X))→ Com+(i),(6.11)

where the first functor is the canonical embedding and the second functor is a quasi-equivalence
induced by the canonical equivalence

D+(Qch(X))→ K+(i)

of their homotopy categories [CNS, Theorem A]. The functor (6.11) induces a morphism

C(Com+(i))→ C(D+
dg(Qch(X)))→ C(Perfdg(X))(6.12)

of B∞-algebra, which in turn induces a morphism

H•C(Com+(i))→ H•C(D+
dg(Qch(X)))→ H•C(Perfdg(X))(6.13)

of Hochschild cohomology. Since quasi-equivalences preserve Hochschld cohomology, the
first arrow in (6.13) is an isomorphism.
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It remains to show that the second arrow in (6.13) is an isomorphism. We claim that the
restriction

C(Ddg(Qch(X)))→ C(Perfdg(X))

is an isomorphism in Ho(B∞). Fix a good R-cofibrant resolution

Ddg(Qch(X))→ Ddg(Qch(X)).

Via the canonical embedding Perfdg(X) ↪→ Ddg(Qch(X)) it induces a good R-cofibrant resolu-
tion Perfdg(X)→ Perfdg(X) and the fully faithful embedding

j̄ : Perfdg(X) ↪→ Ddg(Qch(X)).

We denote by j the induced fully faithful functor on the homotopy categories. One can apply
[Por10, Theorem 1.2] to see that the functor

D(Qch(X))→ Mod(Perf(X)), F 7→ HomD(Qch(X))( j(−), F)

lifts to a localization D(Qch(X)) → D(Moddg(Perfdg(X)), where D(Moddg(Perfdg(X)) is the
derived category of right dg modules over the dg category Moddg(Perfdg(X)) of right dg modules
over Perfdg(X). In particular, the lift is fully faithful. Then the claim follows from [DL13,
Proposition 5.1]. Similarly, one can show that the restriction

C(Ddg(Qch(X)))→ C(D+
dg(Qch(X)))

is an isomorphism in Ho(B∞). Hence the restriction

C(D+
dg(Qch(X)))→ C(Perfdg(X))

is an isomorphism in Ho(B∞), which induces the desired isomorphism on Hochschild coho-
mology. �

6.9. Morita deformations of the dg category of perfect complexes. Let dgCatR be the cate-
gory of small R-linear dg categories and dg functors. The category dgCatR has two model struc-
tures, so called the Dwyer–Kan model structure and the Morita model structure, constructed by
Tabuada respectively in [Tab05a] and [Tab05b]. On the Dwyer–Kan model structure, weak
equivalences are given by quasi-equivalences of dg categories. On the Morita model struc-
ture, weak equivalences are given by Morita morphisms. Recall that a dg functor in dgCatR
is a Morita morphism if it induces an derived equivalence. Also recall that for each object
a ∈ dgCatR the derived category D(a) of right dg modules over a is defined as the Verdier
quotient

[Moddg(a)]/[Acycl(a)]

of the homotopy category of the dg category Moddg(a) of right dg modules over a by the ho-
motopy category of the full dg subcategory Acycl(a) of acyclic right dg modules.

We denote by HoR the localization of dgCatR by weak equivalences in the Dwyer–Kan model
structure and by HmoR the localization of dgCatR by weak equivalences in the Morita model
structure. Passing to HoR, two quasi-equivalent R-linear dg categories a, b get identified. Pass-
ing to HmoR, two Morita equivalent R-linear dg categories a, b get identified. Recall that two
R-linear dg categories a, b are said to be Morita equivalent if they are connected by a Morita
morphism. By [Töe, Proposition 7] or [Töe, Exercise 28] for R-linear triangulated dg cat-
egories Morita equivalences coincide with quasi-equivalences. The dg category Perfdg(X) is
triangulated. Namely, it is pretriangulated and closed under homotopy direct summands.

Let a be a small R-linear dg category. A Morita S-deformation of a is an S-linear dg category
b together with a Morita equivalence b⊗L

S R→ a, where −⊗L
S R : HmoS → HmoR is the derived

functor of the base change − ⊗S R : dgCatS → dgCatR. Two Morita deformations b, b′ are
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isomorphic if there is a Morita equivalence b → b′ inducing the identity on a. We denote by
Defmo

a (S) the set of isomorphism classes of Morita S-deformations of a. By [KL09, Proposition
3.3] there is a canonical map

Defmo
a (S)→ H2C(a)⊕l(6.14)

defined as follows. Any Morita S-deformation b of a small R-linear dg category a can be
represented by a h-flat resolution b → b, which defines a dg S-deformation of b̄ ⊗S R. Let
φb ∈ Z2C(b̄ ⊗S R)⊕l be a Hochschild cocycle representing b via the bijection (6.1). The map
(6.14) sends b to the image φb of φb under the isomorphism H2C(b̄⊗S R)⊕l → H2C(a)⊕l induced
by the Morita equivalence b̄ ⊗S R→ a.
Theorem 6.11. The composition

Defmo
Perfdg(X)(S)→ Defcdg

Perfdg(X)(S)(6.15)

of (6.14) with the inverse of (6.1) is bijective.

Proof. To show the injectivity, by [KL09, Proposition 3.7] it suffices to check that Perfdg(X)
has bounded above cohomology, i.e., the dg module Perfdg(X)(E, F) has bounded above coho-
mology for all E, F ∈ Perfdg(X). Consider the spectral sequence

Ep,q
2 = Hp(X,Extq

X(E, F))⇒ Extp+q
X (E, F).

Since we have Extq
X(E, F) � Hq(E∨ ⊗OX F), the cohomology

H p+q(Perfdg(X)(E, F)) � Extp+q
X (E, F)

vanishes whenever p, q are sufficiently large.
To show the surjectivity, consider the characteristic dg morphism

C(Perfdg(X))→
∏

(M,δM)∈Tw(Perfdg(X))

Tw(Perfdg(X))((M, δM), (M, δM))(6.16)

for the dg category Perfdg(X). Here, Tw(Perfdg(X)) = Twilnil(Perfdg(X))∞ is the ∞-part of the
cdg category of locally nilpotent twisted object over Perfdg(X). It is a dg enhancement of the de-
rived category D(Perfdg(X)) of right dg modules over Perfdg(X). We denote by Tw(Perfdg(X))c

the full dg subcategory of Tw(Perfdg(X)) spanned by compact objects. Its homotopy category
D(Perfdg(X))c, the full triangulated subcategory of D(Perfdg(X)) spanned by compact objects,
get identified with Perf(X) via the Yoneda embedding as Perfdg(X) is triangulated. When re-
stricted to Tw(Perfdg(X))c, on cohomology (6.16) induces the characteristic morphism

χPerfdg(X),E : H•C(Perfdg(X))→ Ext•X(E, E),

where we identify each object E ∈ Perfdg(X) with its image under the Yoneda embedding.
By Lemma 6.10 any element of H2C(Perfdg(X))⊕l can be represented by the image embrδ(φ)

of φ ∈ Z2C(i)⊕l under the B∞-section (6.6). We use the same symbol to denote the image
under the direct sum of (6.10). Since Perfdg(X) has bounded above cohomology, by [KL09,
Proposition 3.12] the map (6.15) is surjective if there exists a full dg subcategory m(φ) ⊂
Perfdg(X) which is Morita equivalent to Perfdg(X) such that χ⊕l

Perfdg(X),E(embrδ(φ))E = 0 for any
E ∈ m(φ) and cocycle embrδ(φ) ∈ Z2C(Perfdg(X))⊕l. If the possibly curved dg S-deformation
m(φ)embrδ(φ) along embrδ(φ) is uncurved, then by definition χ⊕l

Perfdg(X),E(embrδ(φ))E must vanish
for any E ∈ m(φ). Thus it suffices to construct a Morita S-deformation of Perfdg(X) along each
embrδ(φ).

For a cocycle φ ∈ HH2
ab(Qch(X))⊕l we denote by (Xφ, iS) the S-deformation of (X, iR) along

φ via the bijection (5.3). Let Perfdg(Xφ) be the h-flat resolution of Perfdg(Xφ) from [CNS,
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Proposition 3.10]. Then the dg category m(φ) = Perfdg(Xφ) ⊗S R is a full dg subcategory of
Perfdg(X) with a Morita equivalence

m(φ) 'mo Perfdg(Xφ) ⊗L
S R 'mo Perfdg(X)

from [BFN10, Theorem 1.2]. Hence Perfdg(Xφ) defines a Morita S-deformation of Perfdg(X).
As explained in the proof of Theorem 6.12 below, the direction of the deformation coincides
with embrδ(φ) up to coboundary. �

Remark 6.3. The canonical equivalence

Perf∞(Xφ) ⊗Perf∞(S) Perf∞(R) '∞ Perf∞(X)

of corresponding∞-categories from [BFN10, Theorem 1.2] translates via [Coh, Corollary 5.7]
into a Morita equivalence

Perfdg(Xφ) ⊗L
Perfdg(S) Perfdg(R) 'mo Perfdg(X)(6.17)

of dg categories, where −⊗L− : HmoS ×HmoS → HmoS is the derived pointwise tensor product
of dg categories. The left hand side of (6.17) is a triangulated dg category split-generated by
objects of the form Eφ�M for Eφ ∈ Perfdg(Xφ) and M ∈ Perfdg(R), which maps to E⊗OX π

∗
RM ∈

Perfdg(X) via the Morita equivalence. Here, E = Eφ ⊗S R and πR : X → Spec R is the structure
morphism. Hence we obtain a Morita equivalence

Perfdg(Xφ) ⊗L
S R 'mo Perfdg(Xφ) ⊗L

Perfdg(S) Perfdg(R) 'mo Perfdg(X)

used in the above proof.

Remark 6.4. Alternatively, the surjectivity of the map (6.15) can be shown in terms of obstruc-
tion theory as follows. Let p = Proj(Pro(Qch(X))) be the full linear subcategory of projective
objects of the Pro-completion Pro(Qch(X)) of Qch(X). Consider the quasi-fully faithful functor

Perfdg(X) ↪→ D−dg(Pro(Qch(X)))→ Com−(p),(6.18)

where the first functor is the canonical embedding and the second functor is a quasi-equivalence
induced by the canonical equivalence

D−(Pro(Qch(X)))→ K−(p)

of their homotopy categories. The functor (6.18) induces a morphism

C(Com−(p))→ C(D−dg(Pro(Qch(X))))→ C(Perfdg(X))(6.19)

of B∞-algebra, which in turn induces a morphism

H•C(Com−(p))→ H•C(D−dg(Pro(Qch(X))))→ H•C(Perfdg(X))(6.20)

of Hochschild cohomology. Since quasi-equivalences preserve Hochschld cohomology, the
first arrow in (6.20) is an isomorphism. From the proof of Lemma 6.10 it follows that the
second arrow is also an isomorphism.

One can apply [KL09, Proposition 2.3] to obtain a commutative diagram

H•C(Com−(p))
χCom−(p),E //

��

Ext•X(E, E)

��
H•C(D−dg(Pro(Qch(X))))

χD−dg(Pro(Qch(X))),E
//

��

Ext•X(E, E)

��
H•C(Perfdg(X))

χPerfdg(X),E
// Ext•X(E, E)

(6.21)
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for each object E ∈ Perfdg(X), whose horizontal arrows are the characteristic morphisms and
whose left vertical arrows are (6.20). Applying [KL09, Proposition 2.3] to the quasi-fully
faithful functor,

p→ Com−(p)(6.22)

we obtain another commutative diagram

H•C(Com−(p))
χCom−(p),E //

��

Ext•X(E, E)

��
H•C(p)

χp,E // Ext•X(E, E)

(6.23)

whose horizontal arrows are the characteristic morphisms and whose vertical arrows are the
canonical isomorphisms, as the morphism C(Com−(p)) → C(p) induced by the quasi-fully
faithful functor (6.22) coincides with the canonical projection and its inverse in Ho(B∞) is the
B∞-section embrδ : C(p)→ C(Com−(p)), which induces an isomorphism on cohomology. Note
that Tw(p) is precisely Com(p).

The composition of the opposite vertical arrow in (6.23) and the vertical arrows in (6.21)
coincides with the induced map by embrδ : C(p) → C(Com−(p)) up to coboundary. By Corol-
lary 6.8 the image of φ ∈ H2C(p) � H2Cab(Pro(Qch(X))) � H2Cab(Qch(X)) under χ⊕l

p,E is the
obstruction against deforming E to an object of D−(Qch(Xφ)). As each object E ∈ m(φ) lifts
to an object of Perf(Xφ), we obtain χ⊕l

p (φ)E = 0. Chasing the diagrams (6.21) and (6.23), we
obtain χ⊕l

Perfdg(X)(embrδ(φ))E = 0, where embrδ(φ) denotes the image of φ under the bijection
H•C(p) → H•C(Perfdg(X)) induced by the embrδ : C(p) → C(Com−(p)). Thus the surjectivity
of (6.15) follows from [KL09, Proposition 3.12].

6.10. Maximal partial dg deformations of the dg category of perfect complexes. As ex-
plained above, the category Perfdg(Xφ) defines a Morita S-deformation of Perfdg(X). The h-flat
resolution Perfdg(Xφ) of Perfdg(Xφ) from [CNS, Proposition 3.10] defines a dg S-deformation
of m(φ) = Perfdg(Xφ) ⊗S R. On the other hand, m(φ) admits a dg deformation

m(φ)embrδ(φ) = (m(φ)[ε] = m(φ) ⊗R S, embrδ(m) + embrδ(φ)ε) ,

where embrδ(m) ∈ Z2C(m(φ)) and embrδ(φ) ∈ Z2C(m(φ))⊕l are respectively the images under
the B∞-section (6.6) and its direct sum of the compositions m in i and the cocycle φ ∈ ZC2(i)⊕l

corresponding to φ ∈ HH2
ab(Qch(X))⊕l via the isomorphism obtained from [LV06b, Theorem

6.6]. Here, as above we use the same symbol to denote the images under the compositions of the
bijections induced by the quasi-equivalences with (6.10) and its direct sum respectively. Also,
we use the same symbol to denote the images under the morphism C(Perfdg(X))→ C(m(φ)) of
B∞-algebras induced by the Morita equivalence m(φ)→ Perfdg(X).

Theorem 6.12. There is an isomorphism

Perfdg(Xφ) ' m(φ)embrδ(φ)

of dg S-deformations of m(φ). In particular, the Morita S-deformation Perfdg(Xφ) defines a
maximal partial dg S-deformaiton of Perfdg(X) along embrδ(φ).

Proof. Since both dg deformations share their underlying quiver m(φ)[ε], it suffices to show
the coincidence of their dg structures up to coboundary. The dg structure on m(φ)embrδ(φ) is
embrδ(m) + embrδ(φ)ε. Let D+

dg(Qch(Xφ)) be the h-flat resolution of D+
dg(Qch(Xφ)) from [CNS,

Proposition 3.10]. There is a canonical dg functor

Perfdg(Xφ) ↪→ D+
dg(Qch(Xφ))
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extending the canonical embedding Perfdg(Xφ) ↪→ D+
dg(Qch(Xφ)). By [Low08, Proposition 2.6]

the dg structure on Perfdg(Xφ) is the restriction of that on D+
dg(Qch(Xφ)).

We compute the dg structure on Perfdg(Xφ). Consider the quasi-fully faithful functor

Perfdg(Xφ) ↪→ D+
dg(Qch(Xφ))→ Com+(iφ)(6.24)

where the first functor is the canonical embedding and the second functor is a quasi-equivalence
induced by the canonical equivalence

D+(Qch(Xφ))→ K+(iφ)(6.25)

by [CNS, Theorem A]. The functor (6.24) canonically extends to that

Perfdg(Xφ) ↪→ D+
dg(Qch(Xφ))→ Com+(iφ)(6.26)

of the h-flat resolutions from [CNS, Proposition 3.10]. It induces a morphism

C(Com+(iφ))→ C(D+
dg(Qch(Xφ)))→ C(Perfdg(Xφ))(6.27)

of B∞-algebras, which in turn induces an isomorphism

H•C(Com+(iφ))→ H•C(D+
dg(Qch(Xφ)))→ H•C(Perfdg(Xφ))(6.28)

of Hochschild cohomology by Lemma 6.10.
Recall that δ ∈ C1(Com+(i)) is the differentials of objects in Com+(i). Let δ + δ′ε ∈

C1(Com+(iφ)) be the differentials of objects in Com+(iφ) with δ′ = (δ′1, . . . , δ
′
l) ∈ C1(Com(i))⊕l.

Then the dg structure on Com+(iφ) is

embrδ+δ′ε(m + φε) = (m + φε){δ + δ′ε, δ + δ′ε} + (m + φε){δ + δ′ε} + (m + φε).

We use the same symbol to denote the images under the composition of (6.27) with the mor-
phism C(Com+(iφ))→ C(Com+(iφ)) induced by the h-flat resolution. Note that δ ∈ C1(Perfdg(X))
is the differentials of objects in Perfdg(X) and δ + δ′ε ∈ C1(Perfdg(Xφ)) is the differentials of
objects in Perfdg(Xφ) with δ′ = (δ′1, . . . , δ

′
l) ∈ C1(Perfdg(X))⊕l, as (6.27) is a morphism of B∞-

algebras induced by the canonical equivalence (6.25). One can apply the same argument as in
the proof of [Low08, Theorem 4.15] to obtain

embrδ+δ′ε(m + φε) = embrδ(m) + embrδ(φ)ε + dembrδ(m)(δ′1)ε1 + · · · + dembrδ(m)(δ′l)εl

on Perfdg(Xφ). Note that up to coboundary the image of

dembrδ(m)(δ′1)ε1 + · · · + dembrδ(m)(δ′l)εl ∈ C(Com+(iφ))⊕l

under (6.27) coincide with the image of

δ′1ε1 + · · · + δ′lεl ∈ C(Perfdg(Xφ))⊕l

under Hochschild differential dembrδ(m) on C(Perfdg(X)). Hence we obtain an isomorphism

Perfdg(Xφ) = (m(φ)[ε], embrδ+δ′ε(m + φε))
' (m(φ)[ε], embrδ(m) + embrδ(φ)ε)
= m(φ)embrδ(φ).

of dg deformaitons of m(φ) from (6.1). �

Remark 6.5. From the above theorem it follows that the image of Perfdg(Xφ) under the map
(6.14) is represented by embrδ(φ).
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Remark 6.6. In general, m(φ) is strictly smaller than Perfdg(X). For instance, let X0 be a quintic
3-fold of Fermat type. By [AK91, Proposition 2.1] for any general first order deformation X1

of X0, there is no line in X0 which lifts to a closed subvariety of X1. Hence deformations of any
perfect complex quasi-isomorphic to the pushforward of the structure sheaf of a line in X0 is
obstructed. This example was informed to the author by Yukinobu Toda.

7. Deformations of higher dimensional Calabi–Yau manifolds revisited

Now, we are ready to prove our first main result. Consider the functor

Defmo
Perfdg(X0) : Artk → Set

which sends each A ∈ Artk to the set of isomorphism classes of Morita A-deformations of
Perfdg(X0) and each morphism B → A in Artk to the map Defmo

Perfdg(X0)(B) → Defmo
Perfdg(X0)(A)

induced by − ⊗L
S R. The deformation theory for X0 is equivalent to that for Perfdg(X0) in the

following sense.

Theorem 7.1. There is a natural isomorphism

ζ : DefX0 → Defmo
Perfdg(X0)(7.1)

of deformation functors.

Proof. We show that the assignment

(XA, iA) 7→ (Perfdg(XA), i∗A)

for each A ∈ Artk defines a natural transformation. Here, we use the same symbol i∗A to denote
both the derived pullback functor

i∗A : Perfdg(XA)→ Perfdg(X0)

and the induced Morita equivalence

Perfdg(XA) ⊗L
A k 'mo Perfdg(X0).

The surjection A→ k factorizes through a sequence

A = Am → Am−1 → · · · → A1 → k

of small extensions. Pullback of XA yields a sequence

(XAm , iAm) 7→ (XAm−1 , iAm−1) 7→ · · · 7→ (XA1 , iA1) 7→ X0

of deformations of X0. Let φA1 ∈ HH2(X0) = H1(TX0) be the cocycle representing (XA1 , iA1).
By Theorem 6.12 the Morita deformation Perfdg(XA1) of Perfdg(X) corresponds to embrδ0(φA1)

via the bijection (6.15). Here, embrδ0(φA1) denotes the image under the composition of

H2C(Com+(Inj(Qch(X0)))) � H2C(Perfdg(X0))

with the induced isomorphism

HH2(X0) � H2C(Inj(Qch(X0))) � H2C(Com+(Inj(Qch(X0))))

by the B∞-section of the canonical projection C(Inj(Qch(X0))) → C(Com+(Inj(Qch(X0)))).
Induction yields a sequence

[Perfdg(XAm), i∗Am
] 7→ [Perfdg(XAm−1), i

∗
Am−1

] 7→ · · · 7→ [Perfdg(XA1), i
∗
A1

] 7→ Perfdg(X0)

of Morita deformations of Perfdg(X0). In particular, (Perfdg(XAm), i∗Am
) is a Morita deformation of

Perfdg(X0) corresponding to the collection {embrδn−1(φAn)}mn=1. Here, each embrδn−1(φAn) denotes
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the image of φAn ∈ H1(TXAn−1
/An−1)⊕ln−1 , where ln−1 is the rank of the kernel of square zero

extension An → An−1 as a free An−1-module, under the composition of

H2C(Com+(Inj(Qch(XAn−1))))
⊕ln−1 � H2C(Perfdg(XAn−1))

⊕ln−1

with the induced isomorphism

HH2(XAn−1/An−1)⊕ln−1 � H2C(Inj(Qch(XAn−1)))
⊕ln−1 � H2C(Com+(Inj(Qch(XAn−1))))

⊕ln−1

by the B∞-section of the canonical projection C(Inj(Qch(XAn−1)))→ C(Com+(Inj(Qch(XAn−1)))).
It follows that the assignment defines a map

ζA : DefX0(A)→ Defmo
Perfdg(X0)(A), (XA, iA) 7→ [Perfdg(XA), i∗A].

For each morphism f : B→ A in Artk the diagram

DefX0(B) //

DefX0 ( f )

��

Defmo
Perfdg(X0)(B)

Defmo
Perfdg(X0)( f )

��
DefX0(A) // Defmo

Perfdg(X0)(A)

(7.2)

commutes. To see this, we may assume that f is a square zero extension B = S of A = R.
Then for any (XS, iS) ∈ DefX0(S) with XS ×S R � XR we have XS � (XR)φ for some cocycle φ ∈
H1(TXR/R)⊕l. We already know that (Perfdg(XS), i∗S) is the Morita deformation of Perfdg(XR).
Since (XS, iS) maps to (XR, iR), the derived pullback functor i∗S factorizes through i∗R. Thus the
assignments {ζA}A∈Artk defines a natural transformation ζ : DefX0 → Defmo

Perfdg(X0).
It remains to show that ζA is bijective for each A ∈ Artk. We will proceed by induction.

Now, assume that ζAi are bijective for all 1 ≤ i ≤ n. In order to show the surjectivity of
ζAn+1 , take any element [aAn+1 , u

∗
An+1

] ∈ Defmo
Perfdg(X0)(An+1). By the assumption of induction,

the reduction [aAn , u
∗
An

] ∈ Defmo
Perfdg(X0)(An) is equal to [Perfdg(YAn), j∗An

] for some (YAn , jAn) ∈
DefX0(An). Combining Theorem 6.11 with Theorem 6.12, one sees that the Morita An+1-
deformation (aAn+1 , u

∗
An+1

) of Perfdg(YAn) is represented by embrδn(φAn+1) for some cocycle φAn+1 ∈
H1(TYAn/An)

⊕ln . Then we have

[aAn+1 , u
∗
An+1

] = [Perfdg(YAn,φAn+1
), j∗An+1

].

In order to show the injectivity, suppose that we have

[Perfdg(XAn+1), i
∗
An+1

] = [Perfdg(YAn+1), j∗An+1
],(7.3)

i.e., there is a Morita equivalence Perfdg(XAn+1) 'mo Perfdg(YAn+1) reducing to the identity on
Perfdg(X0). Combining the above argument with the commutative diagram (7.2), we have

[Perfdg(XAn+1), i
∗
An+1

] = [Perfdg(XAn,φAn
), i∗An+1

], [Perfdg(YAn+1), j∗An+1
] = [Perfdg(YAn,ψAn

), j∗An+1
]

for some elements

(XAn , iAn), (YAn , jAn) ∈ DefX0(An)

and cocycles

φAn ∈ H1(TXAn/An)
⊕ln , ψAn ∈ H1(TYAn/An)

⊕ln .

Applying − ⊗L
An+1

An, we obtain a Morita equivalence Perfdg(XAn) 'mo Perfdg(YAn) reducing to
the identity on Perfdg(X0). By the assumption of induction there is an isomorphim XAn � YAn

reducing to the identity on X0. Then (7.3) implies [embrδn−1(φAn)] = [embrδn−1(ψAn)], which
in turn implies [φAn] = [ψAn]. Thus we obtain an isomorphism XAn+1 � YAn+1 reducing to the
identity on X0. �
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Remark 7.1. Consider the functor

D̃ef
mo
Perfdg(X0) : Artk → Set

which sends each A ∈ Artk to the set of isomorphism classes of Morita A-deformations of
Perfdg(X0) and each morphism B → A in Artk to the map Defmo

Perfdg(X0)(B) → Defmo
Perfdg(X0)(A)

induced by the derived pointwise tensor product with Perfdg(A) over Perfdg(B). Based on Re-
mark 6.3, one can rewrite the proof of Theorem 7.1 in terms of D̃ef

mo
Perfdg(X0) to obtain a natural

isomorphism

ζ̃ : DefX0 → D̃ef
mo
Perfdg(X0)

of deformation functors. In the sequel, we will identify the deformation functors

Defmo
Perfdg(X0), D̃ef

mo
Perfdg(X0) : Artk → Set

without further comments.

Remark 7.2. Theorem 7.1 tells us that infinitesimal deformations of Perfdg(X0) is controlled
by the Kodaira–Spencer differential graded Lie algebra KSX0 of X0. Consider the functor
DefKSX0

: Artk → Set defined as

DefKSX0
(A) =

MCKSX0
(A)

gauge equivalence
(7.4)

for each A ∈ Artk, where

MCKSX0
(A) =

{
x ∈ KS1

X0
⊗kmA | dx +

1
2

[x, x] = 0
}
.(7.5)

Recall that given a differential graded Lie algebra L and a commutative k-algebram there exists
a natural structure of differential graded Lie algebra on the tensor product L ⊗k m given by

d(x ⊗k r) = dx ⊗k r, [x ⊗k r, y ⊗k s] = [x, y] ⊗k rs, x, y ∈ L, r, s ∈ m.
For every surjection A → k[t]/t2 in Artk the set DefKSX0

(A) consists of solutions of the ex-
tended Maurer–Cartan equation to mA. Giving higher order deformations of X0 is equivalent to
giving solutions of the extended Maurer–Cartan equation. Indeed, we have DefKSX0

' DefX0 by
[Man09, Example 2.3].

Corollary 7.2. The functor Defmo
Perfdg(X0) is prorepresented by R.

Proof. This follows immediately as DefX0 is prorepresented by R. �

Corollary 7.3. The functor Defmo
Perfdg(X0) has an effective universal formal family.

Proof. Let (R, ξ̃) be a universal formal family for Defmo
Perfdg(X0), where ξ̃ = {ξ̃n}n belongs to the

limit

D̂ef
mo
Perfdg(X0)(R) = lim

←−
Defmo

Perfdg(X0)(R/m
n
R)

of the inverse system

· · · → Defmo
Perfdg(X0)(R/m

n+2
R )→ Defmo

Perfdg(X0)(R/m
n+1
R )→ Defmo

Perfdg(X0)(R/m
n
R)→ · · ·

induced by the natural quotient maps R/mn+1
R → R/mn

R. Recall that for the universal formal
family (R, ξ) there is a noetherian formal scheme X over R such that Xn � X ×R R/mn+1

R for
each n, where (Xn, in) are Rn-deformations of X0 defining ξn. By [GD61, Theorem III5.4.5]
there exists a scheme XR flat projective over R whose formal completion along the closed fiber
X0 is isomorphic to X . From the proof of Theorem 7.1 it follows that (Perfdg(Xn), i∗n) defines
ξ̃n. Then by [BFN10, Theorem 1.2] the R-linear dg category Perfdg(XR) yields the compatible
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system {ξ̃n}n via reduction along the natural quotient maps R/mn+1
R → R/mn

R, which means ξ̃ is
effective. �

Remark 7.3. Recall that the Dwyer–Kan model structure on dgCatk has a natural simplicial
enrichment [Töe, Section 5]. We denote by dgCat∞k the underlying ∞-category. There is a
notion of limits in ∞-categories that behaves similarly to the classical one [Lur09, Chapter 4].
As dgCat∞k is the underlying∞-category of a simplicial model category, it admits limits [Lur09,
Corollary 4.2.4.8]. Hence we obtain a limit

P̂erfdg(XR) = lim
←−

Perfdg(Xn)

of the inverse system

· · · → Perfdg(Xn+2)→ Perfdg(Xn+1)→ Perfdg(Xn)→ · · ·
of small k-linear dg categories induced by the natural quotient maps R/mn+1

R → R/mn
R.

We claim that the limit is quasi-equivalent to Perfdg(X ). By [GD61, Corollary 5.1.3] the
canonical map

HomXR(E ,F )→ HomX (Ê , F̂ )

defined by taking the formal completion of each morphism along the closed fiber is an isomor-
phism for all coherent sheaves E ,F on XR. In particular, we may write

̂HomXR(E ,F ) = HomX (Ê , F̂ ).

Since XR is projective over a complete local noetherian ring R, by [GD61, Corollary III5.1.6]
the functor

coh(XR)→ coh(X ),

which sends each coherent sheaf F on XR to its formal completion F̂ along the closed fiber is
an equivalence of abelian categories. We obtain the induced derived equivalence

Perf(XR) ' Db(XR) ' Db(X ) ' Perf(X ).

Hence for E, F ∈ Perfdg(XR) with formal completions Ê, F̂ ∈ Perfdg(X ) we may write

̂Exti
XR

(E, F) = Exti
X (Ê, F̂).

Now, one sees that the objects and morphisms in Perf(X ) satisfy universality with respect to
the induced inverse system on homotopy categories. Thus the dg functor

Perfdg(X )→ P̂erfdg(XR)

uniquely determined by universality of the limit is a quasi-equivalence. Namely, the formal
completion of Perfdg(XR) is quasi-equivalent to Perfdg(X ).

Corollary 7.4. Any effective universal formal family for Defmo
Perfdg(X0) is algebraizable. In par-

ticular, an algebraization is given by Perfdg(XS ) where XS is a versal deformation of X0.

Proof. Consider the triple (Spec S , s,Perfdg(XS )). Since the reduction of XS along the natural
quotient maps S/mn+1

S → S/mn
S yields a compatible system isomorphic to ξ, the reduction of

Perfdg(XS ) yields a compatible system isomorphic to ξ̃. Thus (Spec S , s,Perfdg(XS )) gives a
versal Morita deformation of Perfdg(X0). �

Proposition 7.5. There is a quasi-equivalence

Perfdg(XS )/Perfdg(XS )0 'qeq Perfdg(XQ(S ))

where Q(S ) is the quotient field of S and XQ(S ) is the generic fiber of XS .

93



Proof. By [Dri04, Theorem 3.4] and [Morb, Theorem 1.1] we have an equivalence

[Perfdg(XS )/Perfdg(XS )0] ' Perf(XS )/Perf(XS )0 ' Perf(XQ(S ))

of idempotent complete triangulated categories, where the middle category is the Verdier quo-
tient by the full triangulated subcategory Perf(XS )0 ⊂ Perf(XS ) of perfect complexes with S -
torsion cohomology. Then the claim follows from [CNS, Theorem B]. �

Remark 7.4. From the proof one sees that the dg categorical generic fiber is a natural dg en-
hancement of the categorical generic fiber introduced in [Morb], which is in turn based on the
categorical general fiber by Huybrechts–Macrı̀–Stellari [HMS11].

8. Independence from geometric realizations

Due to Corollary 7.4, a versal Morita deformation of Perfdg(X0) is given by Perfdg(XS ) where
XS is a versal deformatiion of X0. Suppose that there is another Calabi–Yau manifold X′0
derived-equivalent to X0. Since by [CNS, Theorem B] dg enhancements of

Perf(X0) ' Db(X0) ' Db(X′0) ' Perf(X′0)

are unique, we obtain a quasi-equivalence

Perfdg(X0)→ Perfdg(X′0).

Hence Perfdg(XS ) gives also a versal Morita deformation of Perfdg(X′0).
By Lemma 3.2 we may assume XS to be smooth projective over S . Then one finds a smooth

projective versal deformation X′S over the same base. The construction requires the deformation
theory of Fourier–Mukai kernels, which we briefly review below. It passes through effectiviza-
tions, i.e., there are effectivizations XR, X′R of X0, X′0 over the same regular affine scheme Spec R.
Applying [Mora, Corollary 4.2] and [CNS, Theorem B], we obtain a quasi-equivalence

Perfdg(XR) 'qeq Perfdg(X′R).(8.1)

Unwinding the construction of versal deformations recalled in Section 3.3, one sees that, up
to equivalence of deformations, the ambiguity of XS essentially stems from the choice of indices
i ∈ I of the filtered inductive system {Ri}i∈I , where Ri are finitely generated T -subalgebras of
R whose colimit is R. The versal deformations XS , X′S over the same base are obtained by
choosing the same sufficiently large index. From this observation combined with Theorem
7.1 and the quasi-equivalence (8.1), it is natural to expect that the versal Morita deformations
Perfdg(XS ),Perfdg(X′S ) become quasi-equivalent close to effectivizations. In this section, we
prove our second main result which yields the quasi-equivalence as a corollary.

8.1. Deformations of Fourier–Mukai kernels. Suppose that the derived equivalence of X0, X′0
is given by a Fourier–Mukai kernel P0 ∈ Db(X0×X′0). In order to define a relative integral func-
tor from Db(XS ) to Db(X′S ), we deform P0 to a perfect complex PS on XS ×S X′S . Here, for a
deformation [XP, iP] ∈ DefX((P,mP)) of a k-scheme X, by a deformation of E ∈ Perf(X) over
(P,mP) we mean a pair (EP, uP), where EP ∈ Perf(XP) and uP : EP⊗L

P k→ E is an isomorphism.
Two deformations (EP, uP) and (FP, vP) are equivalent if there is an isomorphism EP → FP re-
ducing to an isomorphism of E.

The Rn-deformations Xn, X′n of X0, X′0 and their fiber product Xn ×Rn X′n form the diagram

Xn ×Rn X′n
qn

zz

pn

$$
Xn X′n
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with the natural projections qn and pn. For any perfect complex Pn on Xn ×Rn X′n, the relative
integral functor

ΦPn (−) = Rpn∗
(
Pn ⊗L q∗n (−)

)

sends each object of Db(Xn) to Db(X′n). Due to the Grothendieck–Verdier duality the functor
ΦPn admits the right adjoint ΦR

Pn
= Φ(Pn)R with kernel (Pn)R = P∨n ⊗ p∗nωπ′n[dim X0], where

ωπ′n is the determinant of the relative cotangent sheaf associated with the natural projection
π′n : X′n → Spec Rn.

Lemma 8.1. ([Mora, Lemma 3.1, 3.2]) Assume that ΦPn is an equivalence. Then for any thick-
ening Xn ↪→ Xn+1 there exist a thickening X′n ↪→ X′n+1 and a perfect complex Pn+1 on Xn+1 ×Rn+1

X′n+1 with an isomorphism Pn+1 ⊗L
Rn+1

Rn � Pn such that the integral functor ΦPn+1 : Db(Xn+1)→
Db(X′n+1) is an equivalence.

Iterative application of Lemma 8.1 allows us to deform the Fourier–Mukai kernel P0 ∈
Db(X0 × X′0) to some Fourier–Mukai kernel Pn ∈ Perf(Xn ×Rn X′n) for arbitrary order n. We
obtain a system of deformations Pn ∈ Perf(Xn ×Rn X′n) of P0 with compatible isomorphisms
Pn+1⊗L

Rn+1
Rn → Pn. According to [Lie06, Proposition 3.6.1] there exists an effectivization, i.e.,

a perfect complex PR on XR ×R X′R with compatible isomorphisms PR ⊗L
R Rn → Pn. Recall that

to algebrize X we used a filtered inductive system {Ri}i∈I of finitely generated T -subalgebras
of R whose colimit is R. Taking an index i sufficiently large, one finds smooth projective Ri-
deformations XRi , X

′
Ri

of X0, X′0 whose pullback along the canonical homomorphism Ri ↪→ R
are XR, X′R. Since we have XR ×R X′R �

(
XRi ×Ri X′Ri

)
×Ri R, by [Lie06, Proposition 2.2.1] there

exists a perfect complex PRi on XRi ×Ri X′Ri
with an isomorphism PRi ⊗L

Ri
R → PR. Finally, the

derived pullback PS ∈ Perf(XS ×S X′S ) along Ri → S yields a deformation of P0.

Lemma 8.2. ([Mora, Proposition 3.3]) Let P0 be a Fourier–Mukai kernel defining the derived
equivalence of Calabi–Yau manifolds X0, X′0 of dimension more than two. Then there exists a
perfect complex PS on the fiber product XS ×S X′S of smooth projective versal deformations
with an isomorphism PS ⊗L

S k→ P0.

8.2. Inherited equivalences. The schemes XRi , X
′
Ri

, and their fiber product XRi ×Ri X′Ri
together

with the pullbacks along T -algebra homomorphisms Ri → R j → R for i ≤ j form the commu-
tative diagram

XR ×R X′R
q

zz

f ′′j
��

p

%%
XR

f j

��

XR j ×R j X′R j
q j

zz

f ′′i j

��

p j

$$

X′R
f ′j
��

XR j

fi j

��

XRi ×Ri X′Ri

qi

zz

pi

$$

X′R j

f ′i j

��
XRi X′Ri

,

where qi, pi are smooth projective of relative dimension dim X0. Given a collection {Pi}i∈I with
Pi ∈ Perf(XRi ×Ri X′Ri

) satisfying P j � PRi ⊗L
Ri

R j and PR � PR j ⊗L
R j

R for all i ≤ j, consider the
relative integral functors

ΦPi = Rpi∗
(
Pi ⊗L q∗i (−)

)
: Db(XRi)→ Db(X′Ri

).
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Since pi is projective and Pi is of finite homological dimension, i.e., Pi ⊗L q∗i FRi are bounded
for each object FRi ∈ Db(XRi), one can apply [LST13, Lemma 1.8] to see that ΦPi send perfect
complexes to perfect complexes. We use the same symbol to denote the restricted functor.

Theorem 8.3. There exists an index j ∈ I such that for all k ≥ j the functors

ΦPk : Perf(XRk)→ Perf(X′Rk
)

are equivalences of triangulated categories of perfect complexes. In particular, the dg cate-
gories Perfdg(XRk),Perfdg(X′Rk

) of perfect complexes are quasi-equivalent.

Proof. Under the assumption one always finds deformations [XR j , iR j], [X
′
R j
, i′R j

] smooth projec-
tive over (R j,mR j) for sufficiently large index j ∈ I. Moreover, the pullbacks along R j → R
and R j → S yield respectively effectivizations XR, X′R of universal formal families ξ, ξ′ and
versal deformations (Spec S , s, XS ), (Spec S , s, X′S ) of X0, X′0. Recall that (Spec S , s) is an étale
neighborhood of t in Spec T with t corresponding to the maximal ideal (t1, . . . , td) ⊂ T , and
the formal completions of XS , X′S along the closed fibers over s are isomorphic to X̂R, X̂′R. In
summary, we have the pullback diagrams

X0
� � //

π

��

XS
f jS //

πS

��

XR j

πR j

��

XR
f joo

πR

��
Spec k �

� // Spec S // Spec R j Spec Roo

X′0
� � //

π′
OO

X′S
f ′jS //

π′S

OO

X′R j

π′R j

OO

X′R.
f ′joo

π′R

OO

Let P0 ∈ Db(X0 ×k X′0) be a Fourier–Mukai kernel defining the derived equivalence. As
explained above, one can deform P0 to a perfect complex P j ∈ Db(XR j ×R j X′R j

). Due to the
Grothendieck–Verdier duality the functor ΦP j admits a left adjoint ΦL

P j
= Φ(Pi)L with kernel

(P j)L = P∨R j
⊗ p∗jωπ′R j

[dim X0]. By [BV03, Corollary 3.1.2] the category Perf(XR j) is generated
by some single object ER j . Namely, each object FR j ∈ Perf(XR j) can be obtained from ER j

by taking isomorphisms, finite direct sums, direct summands, shifts, and bounded number of
cones. The counit morphism η j : ΦL

P j
◦ ΦP j → idPerf(XR j ) gives the distinguished triangle

ΦL
P j
◦ ΦP j(ER j)

η j(ER j )−−−−−→ ER j → C(ER j) B Cone(η j(ER j)).

For sufficiently large k ≥ j we will show that ηk(ERk) is an isomorphism and then ΦPk is fully
faithful. Similarly, one can show that ΦL

Pk
is also fully faithful. Thus ΦPk is an equivalence, as

it is a fully faithful functor admitting a fully faithful left adjoint.
Pullback along R j ⊂ Rk yields

ΦL
Pk
◦ ΦPk(ERk)

f ∗jkη j(ER j )−−−−−−−→ ERk → f ∗jkC(ER j)(8.2)

with Ek = f ∗jkE j and Pk = ( f jk × f ′jk)
∗P j. Further pullback along Rk ⊂ R yields

ΦL
PR
◦ ΦPR(ER)

f ∗j η j(ER j )−−−−−−→ ER → f ∗j C(ER j),

where f j : XR → XR j satisfies f jk ◦ fk = f j. Restriction to the closed fiber X0 yields

ΦL
P0
◦ ΦP0(ER|X0)

η j(ER j |X0 )
−−−−−−−→ ER|X0 → ( f ∗j C(ER j))|X0 .
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Note that since f −1
j (X0) = X0 and the restriction of the counit morphism is the counit morphism,

we have ( f ∗j η(ER j))|X0 = η(ER j |X0). Each term in the above distinguished triangle is perfect so
that we may consider the restriction to the closed fiber. Since ΦP0 is an equivalence, η j(ER j |X0)
is an isomorphism and we obtain a quasi-isomorphism f ∗j C(ER j)|X0 � 0. Then the support
of f ∗j C(ER j) is a proper closed subscheme of XR which does not contain any closed point of
XR. Thus the quasi-isomorphism extends to f ∗j C(ER j) � 0. From [Lie06, Proposition 2.2.1] it
follows f ∗jkC(ER j) � 0 when k ∈ I is sufficiently large.

Take any closed point u ∈ Spec R j whose inverse image by g jk : Spec Rk → Spec R j is not
empty. We have the pullback diagrams

XR j

πR j

��

Xu
? _oo

��

f −1
jk (Xu)

fu, jkoo � � //

��

XRk

πRk

��
Spec R j Spec k? _oo g−1

jk (u)
gu, jkoo � � // Spec Rk.

Note that fu, jk is surjective by construction and flat as gu, jk is flat. The restriction of (8.2) to
f −1

jk (Xu) yields

ΦL
Pu, jk
◦ ΦPu, jk(ERk | f −1

jk (Xu))
f ∗u, jkη j(ER j |Xu )
−−−−−−−−−→ ERk | f −1

jk (Xu) → f ∗u, jkC(ER j |Xu) � 0,

where Pu, jk = Pk| f −1
jk (Xu)×g−1

jk (u) f −1
jk (X′u). It follows C(ER j |Xu) � 0 and η j(ER j |Xu) is an isomorphism.

By [BV03, Lemma 3.4.1] the restriction ER j |Xu is a generator of Perf(Xu). Then each object
Fu ∈ Perf(Xu) can be obtained from ER j |Xu by taking isomorphisms, finite direct sums, direct
summands, shifts, and bounded number of cones. We may assume that ER j |Xu has no nontrivial
direct summands, as ΦL

Pu, j
and ΦPu, j commute with direct sums on Perf(X′u) and Perf(Xu) re-

spectively with Pu, j = P j|Xu×X′u [BV03, Corollary 3.3.4]. One inductively sees that the counit
morphism ΦL

Pu, j
◦ΦPu, j(Fu)→ Fu is an isomorphism. In other words, the restriction ΦPu, j of ΦP j

to Xu is fully faithful. Similarly, the restriction ΦL
Pu, j

of ΦL
P j

to X′u is also fully faithful. Thus
ΦPu, j is an equivalence.

Since Xu is a smooth projective k-variety,

ΦL
Pu, j
◦ ΦPu, j � idPerf(Xu), ΦPu, j ◦ ΦL

Pu, j
� idPerf(X′u)

imply

Pu, j ∗ (Pu, j)L � O∆u, j , (Pu, j)L ∗ Pu, j � O∆′u, j

where

∆u, j : Xu ↪→ Xu × Xu, ∆′u, j : X′u ↪→ X′u × X′u
are the diagonal embeddings. Pullback by fu, jk yields

Pu, jk ∗ (Pu, jk)L � O∆u, jk , (Pu, jk)L ∗ Pu, jk � O∆′u, jk

where

∆u, jk : f −1
jk (Xu) ↪→ f −1

jk (Xu) ×g−1
jk (u) f −1

jk (Xu), ∆′u, jk : ( f ′jk)
−1(X′u) ↪→ ( f ′jk)

−1(X′u) ×g−1
jk (u) ( f ′jk)

−1(X′u)

are the relative diagonal embeddings. Thus ΦPu, jk is an equivalence. Since XRk is covered by
the collection { f −1

jk (Xu)}u with u running through all the closed points of Spec R j, from [LST13,
Proposition 1.3] it follows that ΦPk is an equivalence. By the same argument, we conclude that
ΦPl are equivalences for all l ≥ k. Applying [CNS, Theorem B], we obtain a quasi-equivalence
Perfdg(XRl) 'qeq Perfdg(X′Rl

) for all l ≥ k. �
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Corollary 8.4. Let X0, X′0 be derived-equivalent Calabi–Yau manifolds of dimension more than
two and XS , X′S their smooth projective versal deformations over a common nonsingular affine
k-variety Spec S . Assume that XS , X′S correspond to a first order approximation R j → S of
R j ↪→ R for sufficiently large j ∈ I. Then XS , X′S are derived-equivalent. In particular, the dg
categories Perfdg(XS ),Perfdg(X′S ) of perfect complexes are quasi-equivalent.

Proof. By assumption one can apply Theorem 8.3 to find an index j ∈ I such that XS , X′S are the
pullbacks of smooth projective families XR j , X

′
R j

over R j satisfying Perfdg(XR j) 'qeq Perfdg(X′R j
).

Consider the distinguished triangle

ΦL
P j
◦ ΦP j(ER j)

η j(ER j )−−−−−→ ER j → C(η j(ER j)) � 0.

Applying the same argument in the above proof to XS → XR j instead of XRk → XR j , one sees
that ΦPS : Db(XS )→ Db(X′S ) is an equivalence with PS = ( f jS × f ′jS )∗P j. �

Proposition 8.5. Let X0, X′0 be derived-equivalent Calabi–Yau manifolds of dimension more
than two and XS , X′S smooth projective versal deformations over a common nonsingular affine
variety Spec S . Then the dg categorical generic fibers are quasi-equivalent.

Proof. We have

Perfdg(XS )/Perfdg(XS )0 'qeq Perfdg(XQ(S )) 'qeq Perfdg(X′Q(S )) 'qeq Perfdg(XS )/Perfdg(XS )0,

where the first and the tirhd quasi-equivalences follow from Proposition 7.5. The second quasi-
equivalence follows from the above corollary, [Mora, Theorem 1.1], [Morb, Corollary 4.2], and
[CNS, Theorem B]. �

References

[AK91] A. Albano and S. Katz, Lines on the Fermat quintic threefold and the infinitesimal generalized Hodge
conjecture, Trans. Amer. Math. Soc. 324(1), 353-368 (1991).

[Art69a] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math-Paris. 36, 23-58
(1969).

[Art69b] M. Artin, Algebraization of formal moduli: I, Global Analysis (Papers in Honor of K. Kodaira), Uni-
versity of Tokyo Press, 21-71 1969, ISBN:978-1-4008-7123-0.

[BO01] A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and groups of autoe-
quivalences, Compos. Math. J. 125, 327-344 (2001).

[BV03] A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative and
noncommutative geometry, Mosc. Math. J. 3(1), 1-36 (2003).

[BFN10] D. Ben-zvi, J. Francis, and D. Nadler, Integral transforms and Drinfeld centers in derived algebraic
geometry, J. Am. Math. Soc. 23(4), 909-966 (2010).

[Coh] L. Cohn, Differential graded categories are k-linear stable infinity categories, arXiv:1308.2587
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REDUCED TATE–SHAFAREVICH GROUP

HAYATO MORIMURA

Abstract. We prove a sort of reconstruction theorem for generic elliptic Calabi–Yau 3-folds. As
an application, we give a method to construct a family of pairs of derived-equivalent Calabi–Yau
3-folds whose general fibers are nobirational if they are nonisomorphic.

1. Introduction

For a normal integral excellent scheme S and an abelian variety E over the function filed
k(S ), the Tate–Shafarevich group XS (E) was introduced by Dolgachev and Gross in [DG94]
as a subset of the Weil–Châtelet group. When S is a complex surface, they gave its geometric
interpretation. Namely, any element of XS (E) can be obtained as the generic fiber of an elliptic
fibration f : X → S with possible isolated multiple fibers.

Given a smooth elliptic fibration π : J → S with section, we have XS (Jη) � Br′(J)/Br′(S )
and XS (Jη) bijectively corresponds to the set of smooth elliptic fibrations f with relative Jaco-
bian π. In fact, f can be obtained from π and a representative α ∈ Br′(J). Via the description of
Brauer classes as gerbes, α gives the gluing data for enough refined étale cover {Ji = J ×S Ui}
to yield X [Căl00, Section 4.4].

Categorically, this amounts to an S -linear exact equivalence

Db(X) ' Db(J, α)

established by Căldăraru in [Căl02] for generic elliptic 3-folds [Căl00, Definition 6.1.6]. On
the other hand, Antieau–Krashen–Ward showed that if there is an S -linear exact equivalence

Db(J, α) ' Db(J, β),

then we have β = αd for some d ∈ Z coprime to ord([α]) in XS (Jη) [AKW17, Theorem 1.5].
Define an equivalence relation ∼ in Br′(J) as

α ∼ β⇔ β = αd for some d coprime to ord([α]),

descending to that in XS (Jη). The following lemma, which is a straightforward consequence
of the arguments in [Căl00, Chapter 4, 6], shows that XS (Jη)/ ∼ classifies up to S -linear exact
equivalence derived categories of smooth elliptic 3-folds with relative Jacobian π.

Lemma 1.1 (Lemma 4.3). Let f : X → S , g : Y → S be smooth elliptic 3-folds with relative
Jacobian π : J → S . Assume that there exists an S -linear exact equivalence Φ : Db(X) →
Db(Y). Then g is a coprime twisted power of f in the sense of Definition 2.14.

Recall that the morphism g in the above statement is isomorphic to the relative moduli space
of stable sheaves of rank 1, degree d on the fibers Xs, s ∈ S of f with respect to a fixed relative
ample line bundle OX/S (1). The moduli problem is fine if and only if d is coprime to ord([α]). It
is natural to seek a similar reconstruction result for more general elliptic fibrations. Unwinding
the arguments in [Căl00, Chapter 4, 6], one can easily extend Lemma 1.1 to

SISSA, via Bonomea 265, 34136 Trieste, Italy
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Proposition 1.2 (Proposition 4.5). Let f : X → S , g : Y → S be generic elliptic 3-folds
with relative Jacobian π : J → S . Assume that there exists an S -linear exact equivalence
Φ : Db(X)→ Db(Y). Then g is an almost coprime twisted power of f in the sense of Definition
2.14.

Presumably, this is the best possible reconstruction result for generic elliptic 3-folds. Indeed,
if the smooth parts f ◦ : X◦ → S ◦, g◦ : Y◦ → S ◦ are represented by α◦, β◦ ∈ Br′(J◦), for any
analytic small resolution ρ : J̄ → J we have the S -linear exact equivalences

Db(X) ' Db(J̄, ᾱ), Db(Y) ' Db(J̄, β̄)

where ᾱ, β̄ ∈ Bran(J̄) denote the Brauer classes canonically determined by α◦, β◦. Moreover,
each ρi : J̄i → Ji over Ui with only one node can be either of the two possible resolutions,
which is the source of the differences between X,Y and J̄. Hence the right hand sides should
not recover X \ X◦,Y \ Y◦.

Our proof of Proposition 1.2 works without assuming dim X = 3, the condition responsible in
[Căl02, Theorem 5.1] for construction of the pseudo-universal sheaf giving rise to the Fourier–
Mukai kernel. Hence, unless dim X = 3 one might not have any S -linear exact equivalence

Db(J̄, ᾱ) ' Db(J̄, β̄),

which would be input for [AKW17, Theorem 1.5] to obtain β̄ = ᾱd for some d ∈ Z coprime to
ord(ᾱ) in Br(J̄).

The reconstruction problem will be more interesting when X is Calabi–Yau, as the derived
category of a Calabi–Yau manifold might have nontrivial autoequivalences. Moreover, most
of Calabi–Yau 3-folds admit elliptic fibrations. Some of them are connected with their mirrors
admitting dual fibrations via relative Fourier–Mukai transforms [HLS09, HM02], which can be
seen as S -duality in string theory [Don98, DP08, DP12]. In this case, we strengthen Proposition
1.2 as follows.

Theorem 1.3 (Theorem 5.2, Corollary 5.3). Let f : X → S be a generic elliptic Calabi–Yau
3-fold. Then any flat projective family g : Y → S with an S -linear exact equivalence Db(X) '
Db(Y) is an almost coprime twisted power of f .

Here, we could remove the assumption from Proposition 1.2 on f , g to share the relative
Jacobian. First, we reconstruct closed fibers based on [LT17]. The key is [AKW17, Lemma
2.4], which tells us that the generic fibers Xη,Yη share the Jacobian. We use the triviality of
ωX, ωY to guarantee that the base changes of the relative Jacobians πX, πY along enough refined
étale morphisms coincide.

Due to [Wil94, Wil98] and [Mor23, Theorem 1.1], the morphisms f , g in the above statement
deform to families of elliptic Calabi–Yau 3-folds f : X → S, g : Y → S over a smooth affine
C-variety Spec B. Their general fibers fb, gb are smooth elliptic fibrations. Recently, in [Morb]
the author used the following application of Theorem 1.3 to construct families of nonbirational
derived-equivalent Calabi–Yau 3-folds.

Theorem 1.4 (Theorem 6.5, Corollary 6.6). Any general fiber gb is a coprime twisted power of
fb. In particular, Xb,Yb are Sb-linear derived-equivalent. Moreover, if Xb,Yb are nonisomor-
phic, then they are nonbirational.

Note that we call g a coprime twisted power of f if it is isomorphic to the relative mod-
uli space of stable sheaves of rank 1 with a suitable degree. It would be interesting to find
such a moduli structure via our result in, for instance, the third pair of Fourier–Mukai partners
constructed by Inoue [Ino22] and their deformations, whose derived equivalence follows from
homological projective duality for categorical joins developed by Kuznetsov and Perry [KP21].
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Notations and conventions. Throughout the paper, allC-varieties are integral separated scheme
of finite type over C. Via Serre’s GAGA theorem we sometimes go from algebraic to analytic
categories for proper C-varieties. For any morphism f : X → S of smooth C-varieties, we
consider the canonical S -linear structure on Db(X) ' perf(X) given by the action

perf(X) × perf(S )→ perf(X), (F,G) 7→ F ⊗OX f ∗G.

Then for morphisms f : X → S , g : Y → S of smooth C-varieties, an exact functor Φ : Db(X)→
Db(Y) is S -linear if Φ respects the S -linear structure, i.e., we have functorial isomorphisms

Φ(F ⊗OX f ∗G) � Φ(F) ⊗OY g∗G, F ∈ perf(X),G ∈ perf(S ).

Acknowledgements. The author is supported by SISSA PhD scholarships in Mathematics. He
would like to thank Antnella Grassi for informing him on [Gra91, Proposition 2.2].

2. Review on generic elliptic 3-folds

Definition 2.1 ([DG94, Definition 2.1]). An elliptic fibration f : X → S is a projective mor-
phism of C-schemes whose generic fiber Xη is a genus one regular k(S )-curve and all fibers are
geometrically connected. The discriminant locus ∆ f of f is the closed subset of points s ∈ S
over which the fiber Xs is not regular. We denote by f ◦ : X◦ → S ◦ the smooth part, i.e., the
restriction fU : XU → S U of f over U = S \ ∆ f . A fiber Xs over a point s ∈ S is multiple if f is
not smooth at any x ∈ Xs. A section of f is a morphism σX : S → X satisfying f ◦ σX = id. A
multisection of f is a closed subscheme to which the restriction of f becomes a finite morphism.

Definition 2.2 ([Căl00, Definition 6.1.6]). A generic elliptic 3-fold f : X → S is an elliptic
fibration from a smooth 3-fold X to a smooth surface S over C satisfying:

(1) f is flat.
(2) f does not have multiple fibers.
(3) f admits a multisection.
(4) The discriminant locus ∆ f ⊂ S is an integral curve in S with only nodes and cusps as

singularities.
(5) The fiber over a general point of ∆ f is a rational curve with one node.

We call f a generic elliptic Calabi–Yau 3-fold if in addition X is a Calabi–Yau in the strict
sence, i.e., we have ωX � OX and H1(X,OX) = 0.

Remark 2.3. The conditions (4), (5) are null for smooth elliptic 3-folds. We will regard them
as a special case of generic elliptic 3-folds.

Lemma 2.4 ([Căl00, Theorem 6.1.9]). Let f : X → S be a generic elliptic 3-fold. Then over
any closed point s ∈ S the fiber Xs is one of the following:

• a smooth elliptic curve when s ∈ S \ ∆ f ;
• a rational curve with one node when s ∈ ∆ f is a smooth point;
• two copies of P1 intersecting transversely at two points when s ∈ ∆ f is a node;
• a rational curve with one cusp when s ∈ ∆ f is a cusp.

Definition 2.5 ([Căl00, Definition 6.4.1]). Let f : X → S be a flat elliptic fibration of C-
varieties. Fix a relatively ample line bundle OX/S (1) of f and a closed point s ∈ S . Let P
be the Hilbert polynomial of OXs on Xs with respect to the polarization given by OX/S (1)|Xs .
Consider the relative moduli space MX/S (P) → S of semistable sheaves of Hilbert polynomial
P on the fibers of f . By the universal property of MX/S (P) → S there exists a natural section
S → MX/S (P) which sends s to the point [OXs] representing OXs . Let J be the unique component
of M which contains the image of this section. The relative Jacobian of f is the restriction
π : J → S of the morphism MX/S (P)→ S to J.
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Definition 2.6 ([Căl00, Notation 6.6.3]). Let f : X → S be a generic elliptic 3-fold. Fix a rela-
tively ample line bundle OX/S (1). Let Md

X/S (P)→ S be the relative moduli space of semistable
sheaves of rank 1, degree d on the fibers of f . Let Xd be the union of the components of
Md

X/S (P) which contains a point corresponding to a stable line bundle on a fiber of f . The d-th
twisted power of f is the restriction f d : Xd → S of the morphism Md

X/S (P)→ S to Xd.

Remark 2.7. The relative Jacobian π : J → S is a flat elliptic fibration with section. It has
the same discriminant locus ∆ f as f . The restriction J ×S S ◦ → S ◦ coincides with the relative
Jacobian π◦ for the smooth part f ◦. Similarly, the restriction Xd ×S S ◦ → S ◦ coincides with the
d-th twisted power f ◦d of f ◦.

Definition 2.8 ([Sil08, Section X.3]). A torsor or principal homogeneous space for Jη/k(S )
is a smooth curve C/k(S ) together with a simply transitive algebraic group action of Jη on C
defined over k(S ). It is trivial if C(K) , ∅. Two torsors C/k(S ),C′/k(S ) are equivalent if there
is a k(S )-isomorphism θ : C → C′ compatible with the Jη-action. The Weil–Châtelet group
WC(Jη/k(S )) is the set of equivalence classes of principal homogeneous spaces for Jη/k(S ).

Definition 2.9 ([DG94, Section 1]). The Tate–Shafarevich group XS (Jη) is defined as the
subset

⋂
s∈S Ker(locs̄) ⊂WC(Jη/k(S )) for natural specialization maps

locs̄ : WC(Jη/k(S ))→WC(Jη(s̄)/k(s̄)), C 7→ C(s̄) = C ×k(s) k(s̄).

Remark 2.10. There is a standard cohomological interpretation of XS (Jη). Consider the exact
sequence

0→ H1
ét(S , ι∗Jη)→ H1

ét(η, Jη)→ H0
ét(S ,R

1ι∗Jη)→ H2
ét(S , ι∗Jη)→ H2

ét(η, Jη)

where ι : Spec k(S ) → S denotes the canonical morphism. For any s ∈ S we have (R1ι∗Jη)s̄ �
H1

ét(ηs̄, Jη(s̄)) and the natural homomorphism

H0
ét(S ,R

1ι∗Jη)→
∏

s∈S
(R1ι∗Jη)s̄

is injective. Since the composition H1
ét(η, Jη)→ H0

ét(S ,R
1ι∗Jη)→ (R1ι∗Jη)s̄ coincides with locs̄,

one obtains an exact sequence

0→ H1
ét(S , ι∗Jη)→WC(Jη/k(S ))→

∏

s∈S
WC(Jη(s̄)/k(s̄))

and XS (Jη) = H1
ét(S , ι∗Jη).

Remark 2.11. An element C/k(S ) ∈ WC(Jη/k(S )) maps to 0 in WC(Jη(s̄)/k(s̄)) if and only if
there exists an irreducible étale neighborhood U → S of s such that Jη ×k(S ) k(U) has a rational
point over k(U). Indeed, if the image of C/k(S ) in (R1ι∗Jη)s̄ is 0, then there exists an irreducible
étale neighborhood U → S of s such that the image of C/k(S ) in H1

ét(k(U), Jη ×k(S ) k(U)) is
0. Hence XS (Jη) consists of equivalence classes of étale locally trivial principal homogeneous
spaces. In fact, there is a bijective correspondence between smooth elliptic fibrations f : X → S
with relative Jacobian π : J → S and elements in XS (Jη) [Căl00, Section 4.4].

Definition 2.12 ([Căl00, Definition 1.1.3, 1.1.7]). For a C-scheme X the cohomological Brauer
group Br′(X) is defined as H2

ét(X,O
∗
X). For a complex analytic space X the cohomological

Brauer group Br′an(X) is defined as H2
an(X,O∗X).

Theorem 2.13 ([DG94, Corollary 1.17]). Let π : J → S be a smooth elliptic fibration of smooth
C-varieties with section. Then we have

XS (Jη) � Coker(Br′(S )→ Br′(J))

where the map Br′(S )→ Br′(J) is given by the pullback.
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Definition 2.14. Let f : X → S be a generic elliptic fibration with relative Jacobian π : J →
S and α◦ ∈ Br′(J◦) a representative of XS ◦(Jη) for f ◦. We call a generic elliptic fibration
g : Y → S a coprime twisted power of f if g is isomorphic to f d for some d ∈ Z coprime to the
order ord([α◦]) in XS ◦(Jη). We call g : Y → S an almost coprime twisted power of f if g◦ is
isomorphic to f ◦d for some d ∈ Z coprime to ord([α◦]) and there exists an analytic open cover
{Ui} of S such that Y ×S Ui, Xk ×S Ui are isomorphic as an analytic space over Ui.

3. Reconstruction of fibers

Lemma 3.1. Let f : X → S , g : Y → S be flat morphisms of C-varieties with Y, S smooth over
C and fZ : XZ → Z, gZ : YZ → Z their base changes to Z = S \ U for any open subset U ⊂ S .
Then every S -linear exact functor Φ : Db(X)→ Db(Y) restricts to

ΦZ : Db
cohXZ (X)(X)→ Db

cohYZ (Y)(Y),

where Db
cohXZ (X)(X) ⊂ Db(X),Db

cohYZ (Y)(Y) ⊂ Db(Y) denote the full S -linear triangulated subcat-
egories with cohomology supported on XZ,YZ respectively.

Proof. For each F ∈ Db(X) we have

Φ(
⊕

i

H i(F)[−i]) �
⊕

i

Φ(H i(F))[−i]

as Φ is exact. Consider the pullback diagrams

XZ
� � ῑX //

fZ
��

X

f
��

YZ
� � ῑY //

gZ

��

Y

g
��

Z �
�

ι
// S , Z �

�

ι
// S .

If F is supported on XZ then we have

Φ(H i(F)) � Φ(H i(F) ⊗OX ῑX∗OXZ )

� Φ(H i(F) ⊗OX f ∗ι∗OZ)

� Φ(H i(F)) ⊗OY g∗ι∗OZ

� Φ(H i(F)) ⊗OY ῑY∗OYZ ,

where the first, the second, the third, and the forth isomorphisms respectively follow from F
being supported on XZ, the isomorphism ῑX∗ f ∗Z OZ � f ∗ι∗OZ, S -linearity of Φ, and the iso-
morphism ῑY∗g∗ZOZ � g∗ι∗OZ. Since Y is smooth over C, replacing it with a quasi-isomorphic
object if necessary, we may assume that Φ(H i(F)) are perfect. Then the last term becomes
ῑY∗(Φ(H i(F))|YZ ) by the projection formula. Note that the functor ῑY∗ : coh(YZ) → coh(Y) of
abelian categories is exact as ῑY is affine. Hence Φ(H i(F)) is supported on YZ, which completes
the proof. �

Lemma 3.2. Let f : X → S , g : Y → S be flat morphisms of smooth C-varieties. Assume that
there exists an S -linear exact equivalence Φ : Db(X) → Db(Y). Then over any closed point
s ∈ S the fibers Xs,Ys are derived-equivalent.

Proof. Take an affine open subset U = Spec R ⊂ S . First, we show that Φ induces an R-linear
exact equivalence

ΦU : Db(XU)→ Db(YU),

104



where fU : XU → U, gU : YU → U denote the base changes to U. For their complements
XZ = X \ XU ,YZ = Y \ YU we have

coh(XU) ' coh(X)/ cohXZ (X), coh(YU) ' coh(Y)/ cohYZ (Y),

where the right hand sides denote the quotients by the Serre subcategories

cohXZ (X) ⊂ coh(X), cohYZ (X) ⊂ coh(Y)

of coherent sheaves supported on XZ,YZ respectively. Passing to their derived categories, via
[Miy91, Theorem 3.2] we obtain

Db(XU) ' Db(X)/Db
cohXZ (X)(X), Db(YU) ' Db(Y)/Db

cohYZ (Y)(Y).

Since Y, S are smooth over C, one can apply Lemma 3.1 to obtain the induced equivalence

ΦU : Db(XU) ' Db(X)/Db
cohXZ (X)(X)→ Db(YU) ' Db(Y)/Db

cohYZ (Y)(Y)

by universality of Verdier quotients.
Next, we show that ΦU induces an equivalence Φs : perf(Xs) → perf(Ys) of categories of

perfect complexes on the closed fibers Xs,Ys. Consider dg enhancements Perf(X),Perf(Y) of
perf(X) ' Db(X), perf(Y) ' Db(Y), which are unique up to quasi-equivalence [CS18, Proposi-
tion 6.10]. Here, we use the assumption on X to be smooth over C. Since f , g are flat, one can
apply [BFN10, Theorem 1.2] and [Töe, Exercise 32] to the pullback diagrams

Xs
//

��

XU

��

Ys
//

��

YU

��
Spec k(s) // Spec R, Spec k(s) // Spec R

to obtain a quasi-equivalence Perf(Xs) → Perf(Ys). Passing to their homotopy categories, we
obtain the induced equivalence

Φs : perf(Xs)→ perf(Ys).

Now, the claim follows from [CS18, Proposition 7.4]. �

Proposition 3.3. Let f : X → S , g : Y → S be generic elliptic 3-folds. Assume that there exists
an S -linear exact equivalence Φ : Db(X)→ Db(Y). Then over any closed point s ∈ S the fibers
Xs,Ys are isomorphic.

Proof. By Lemma 3.2 the closed fibers Xs,Ys are derived-equivalent. Then the claim follows
from Lemma 2.4 and [LT17, Theorem 7.4(2)]. �

Remark 3.4. The above proposition holds for flat morphisms of smooth C-varieties whose
fibers are reduced Kodaira curves. Under the assumption in the statement, one could obtain the
first line of the proof by [Orl97, Section 2], S -linearity and [HLS09, Proposition 2.15].

4. Reconstruction of fibrations

Lemma 4.1. Let f : X → S , g : Y → S be flat separated morphisms of smooth C-varieties.
Then every S -linear exact equivalence Φ : Db(X) → Db(Y) induces a k(S )-linear exact equiv-
alence Φk(S ) : Db(Xη)→ Db(Yη) on the generic fibers Xη,Yη.

Proof. By the same argument as Lemma 3.2 and [Har77, Cororallry III10.7], we may assume
that f , g are smooth over S = Spec R. One can apply [Mora, Theorem 1.1] to obtain k(S )-linear
exact equivalences

Db(Xη)→ Db(X)/Db
0(X), Db(Yη)→ Db(Y)/Db

0(Y).
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to the Verdier quotients by the full S -linear triangulated subcategories spanned by complexes
with coherent R-torsion cohomology. Since Φ is S -linear, universality of Verdier quotients
induces the desired equivalence. �

Corollary 4.2. Let f : X → S , g : Y → S be generic elliptic 3-folds. Assume that there exists
an S -linear exact equivalence Φ : Db(X) → Db(Y). Then their generic fibers Xη,Yη share the
Jacobian Jη/k(S ).

Proof. The generic fibers Xη,Yη are derived-equivalent by Lemma 4.1. Now, the claim follows
from [AKW17, Lemma 2.4]. �

Lemma 4.3. Let f : X → S , g : Y → S be smooth elliptic 3-folds with relative Jacobian π : J →
S . Assume that there exists an S -linear exact equivalence Φ : Db(X) → Db(Y). Then g is a
coprime twisted power of f .

Proof. Let α, β ∈ Br′(J) be representatives of XS (Jη) � Br′(J)/Br′(S ) for f , g. There is an
étale cover {Ui} of S such that to each Ui the base changes fi, gi admit sections

σX,i : Ui → Xi = X ×S Ui, σY,i : Ui → Yi = Y ×S Ui

and α, β give the gluing data for {Ji} to yield X,Y respectively [Căl00, Chapter 4.2, 4.4]. The
injection Br′(J) → Br′(Jη) defined by the base change Jη → J to k(S ) sends α, β to αη, βη ∈
Br′(Jη). Then the induced étale cover {Ui ×S k(S )} of Spec k(S ) represents both αη and βη.

Since by assumption and Lemma 4.1 the generic fibers Xη,Yη are derived-equivalent, one
can apply [AKW17, Lemma 2.4, Theorem 2.5] to see that Yη is isomorphic to the moduli space
of degree d line bundles on Xη for some d ∈ Z coprime to the order ord([α]). Hence both αd

η

and βη yield gη via gluing the étale cover {Ji ×Ui k(Ui)} of Jη. Since the map Br′(J) → Br′(Jη)
is injective, both αd and β yield g via gluing the étale cover {Ji} of J. As explained in [Căl00,
Section 4.5], the Brauer class αd represents f d. Thus g is isomorphic to f d. �

Remark 4.4. One could have used [AKW17, Theorem 1.5] to obtain β = αd, provided the
inherited Fourier–Mukai transform Db(Jη, αη) ' Db(Jη, βη) from Db(J, α) ' Db(J, β) for derived
categories of twisted coherent sheaves.

Proposition 4.5. Let f : X → S , g : Y → S be generic elliptic 3-folds with relative Jacobian
π : J → S . Assume that there exists an S -linear exact equivalence Φ : Db(X)→ Db(Y). Then g
is an almost coprime twisted power of f .

Proof. Let α◦, β◦ ∈ Br′(J◦) be representatives of XS ◦(Jη) � Br′(J◦)/Br′(S ◦) for the smooth
parts f ◦, g◦. By [Căl00, Theorem 6.5.1] there exist unique extensions α, β ∈ Br′an(J) of α◦, β◦.
Let ᾱ, β̄ ∈ Br′an(J̄) be their images under the map Br′an(J) → Br′an(J̄) induced by the pullback
along any analytic small resolution ρ : J̄ → J of singularities. Take an analytic open cover
{Ui} of S representing both ᾱ and β̄ such that each Ui contains at most one node of ∆ f = ∆g.
Then Xi,Yi are isomorphic as an analytic space over Ui [Căl00, Theorem 6.4.6]. By the same
argument as Lemma 3.2, there is an S ◦-linear exact equivalence Db(X◦) → Db(Y◦). One can
apply Lemma 4.3 to find some d ∈ Z coprime to ord([α◦]) such that g◦ is isomorphic to f ◦d. As
explained in [Căl00, Section 6.6], the base changes Xd

i is Ui-isomorphic to Xi. �

Remark 4.6. In the above proof, we have not used the assumption on X to be 3-dimensional.
However, this is crucial for Lemma 2.4 on the classification of the fibers, which in turn is
responsible for the construction of local universal sheaves Ui on Vi = Xi×Ui J̄i [Căl00, Theorem
6.4.2]. The collection defines the pr∗2 ᾱ

−1-twisted pseudo-universal sheaf Uᾱ = ({Ui}, {ϕi j}) on
X×S J̄, where ϕi j : U j|Vi j → Ui|Vi j denotes an isomorphism on each Vi j = Vi∩V j. Hence without
the assumption one might not have the equivalence

ΦιS ∗Uᾱ
: Db(X)→ Db(J̄, ᾱ)(4.1)
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from [Căl00, Theorem 5.1], where ιS : X ×S J̄ ↪→ X × J̄ denotes the closed immersion.

Remark 4.7. For the convenience of readers we add an explanation to the above remark. The
Brauer class ᾱ appeared in (4.1) gives the obstruction against the collection {Uᾱ} to glue to
yield a universal sheaf. The discrepancy between the composition ϕi j ◦ϕ jk ◦ϕki and the identity
on each Vi jk = Vi ∩ V j ∩ Vk defines precisely the pr∗2 ᾱ

−1-twisting of Uᾱ. By [Căl00, Theorem
4.4.1] the image [α◦] of α◦ under the projection Br′(J◦) → Br′(J◦)/Br′(S ◦) corresponds to f ◦

via Ogg–Shafarevich theory. Namely, [α◦] gives the gluing data for {J◦i } to yield X◦ via the
description of Brauer classes as gerbes. Hence up to elements of Br′(S ◦) the obstruction ᾱ can
be interpreted geometrically, which was tacitly used to obtain the equivalence (4.1).

5. Calabi–Yau case

Lemma 5.1. Let f : X → S be a projective morphism of smooth C-varieties with ωX � OX

such that over any closed point s ∈ S the fiber Xs is connected. Then the relative canonical
sheaf ωX/S is invertible and isomorphic to f ∗ω−1

S . In particular, we have f∗ωX/S � ω−1
S .

Proof. Consider the first fundamental exact sequence

f ∗ΩS
u−→ ΩX → ΩX/S → 0.(5.1)

If u is injective, then we obtain ωX/S � f ∗ω−1
S , which is invertible. Since X, S are smooth over

C, for any x ∈ X there is an open neighborhood V ⊂ X on which u can be expressed as a
homomorphism O⊕ dim S

V → O⊕ dim X
V of free OV-modules. As X is integral, it suffices to check

the injectivity on the generic point. However, (5.1) restricts to yield the short exact sequence

0→ f ∗UΩU
u|XU−−−→ ΩXU → ΩXU/U → 0.

on the smooth part fU : XU → U of f for some open subset U ⊂ S [Har77, Corollary III10.7].
The second claim follows from the projection formula. Indeed, since any closed fiber Xs is
connected, by [Har77, Corollary III 12.9] the coherent sheaf f∗OX is invertible and isomorphic
to OS . �

Theorem 5.2. Let f : X → S , g : Y → S be generic elliptic Calabi–Yau 3-folds. Assume that
there exists an S -linear exact equivalence Φ : Db(X) → Db(Y). Then f , g share the relative
Jacobian π : J → S .

Proof. Since by Proposition 3.3 any closed fibers Xs,Ys over s ∈ S are isomorphic, we have
∆ f = ∆g. Let πX : JX → S , πY : JY → S be the relative Jacobians of f , g. For any analytic small
resolutions ρX : J̄X → JX, ρY : J̄Y → JY of singularities, we denote by π̄X, π̄Y the compositions
πX ◦ ρX, πY ◦ ρY respectively. Take an analytic open cover {Ui} of S such that each Ui contains
at most one node of ∆ f = ∆g and to each Ui the base changes fi, gi, π̄X,i, π̄Y,i admit sections

σX,i : Ui → Xi, σY,i : Ui → Yi, σ̄X,i : Ui → J̄X,i = J̄X ×S Ui, σ̄Y,i : Ui → J̄Y,i = J̄Y ×S Ui.

Applying [Nak87, Theorem 2.1] or [DG94, Theorem 2.3], we obtain birational morphisms

$X,i : J̄X,i → W(Li, ai, bi), $Y,i : J̄Y,i → W(Mi, ci, di),

where W(Li, ai, bi),W(Mi, ci, di) denote the Weierstrass fibrations associated with line bun-
dles Li,Mi on Ui, global sections ai, ci of L ⊗4

i ,M ⊗4
i and bi, di of L ⊗6

i ,M ⊗6
i such that 4a3

i +

27b2
i , 4c3

i +27d2
i are nonzero global sections of L ⊗12

i ,M ⊗12
i . Since $X,i, $Y,i are the morphisms

which contract all components of fibers not intersecting σ̄X,i(Ui), σ̄Y,i(Ui) respectively, the fi-
brations W(Li, ai, bi) → S ,W(Mi, ci, di) → S coincide with the base changes πX,i, πY,i of the
relative Jacobians to Ui. See also [Căl02, Theorem 6.4.3].
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From Lemma 5.1 it follows

Li � π̄X,i∗ωJ̄X,i/Ui � ω
−1
Ui
� π̄Y,i∗ωJ̄Y,i/Ui � Mi,

as Xi, J̄X,i and Yi, J̄Y,i are isomorphic as an analytic space over Ui. Since by Corollary 4.2 the
generic fibers JX,η, JY,η are isomorphic, we obtain Ui-isomorphisms

W(Li, ai, bi) � W(Mi, ci, di),(5.2)

as two Weierstrass fibrations W(Li, ai, bi),W(Li, ci, di) must coincide whenever they share the
generic fiber. The construction of a Weierstrass fibration is functorial. Hence for each Ui j =

Ui ×S U j we have the Ui j-isomorphism

W(Li|Ui j , ai|Ui j , bi|Ui j) � W(Li, ai, bi)|Ui j .

Thus (5.2) canonically glue to yield an S -isomorphism JX → JY . �

Corollary 5.3. Let f : X → S , g : Y → S be generic elliptic Calabi–Yau 3-folds. Assume that
there exists an S -linear exact equivalence Φ : Db(X) → Db(Y). Then g is an almost coprime
twisted power of f .

Proof. The claim follows immediately from Proposition 4.5 and Theorem 5.2. �

Remark 5.4. It sufficed to assume either X or Y is Calabi–Yau. Without loss of generality
we may assume that X is Calabi–Yau. The triviality of the canonical bundle of Y follows
from the uniqueness of Serre functors. The vanishing of H1(Y,OY) follows from H2(X,OX) =

H2(Y,OY) and Serre duality. Note that the S -linear exact equivalence is in particular C-linear
exact equivalence and hence naturally isomorphic to the Fourier–Mukai transform ΦP with
P ∈ Db(X×Y) unique up to isomorphism [Orl97, Section 2]. One obtains the induced isometry

H2(X,OX) ⊕ H4(X,OX) � H2(Y,OY) ⊕ H4(Y,OY)

from [Căl00, Corollary 3.1.13, 3.1.14].

Remark 5.5. If X is Calabi–Yau, then J̄ is also Calabi–Yau. Again, the triviality of the canoni-
cal bundle of J̄ follows from the uniqueness of Serre functors. By [CR11, Corollary 3.2.10] the
higher direct image R jρ∗OJ̄ vanishes for each j > 0. Hence we obtain Rπ̄∗OJ̄ = OS and Leray
spectral sequence implies H1(J̄,OJ̄) = H1(S ,OS ). Since X is Calabi–Yau the base S must
be either a rational or Enriques surface by [Gro94, Proposition 2.3]. In both cases H1(S ,OS )
vanishes. See also [Gra91, Proposition 2.2] for a more general result.

6. Deformations of almost coprime twisted powers

Let f : X → S , g : Y → S be generic elliptic Calabi–Yau 3-folds. Assume that there exists
an S -linear exact equivalence Φ : Db(X) → Db(Y). Then by [Orl97, Section 2] and S -linearity
Φ is naturally isomorphic to a relative Fourier–Mukai transform

Φ̄P̄/S = RpS ∗(P̄ ⊗ q∗S (−)) : Db(X)→ Db(Y)

with kernel P̄ ∈ perf(X ×S Y) where qS : X ×S Y → X, pS : X ×S Y → Y denote the projections.
Note that we have ΦP = Φ̄P̄/S for the pushforward P = τS ∗P̄ along the closed immersion
τS : X ×S Y ↪→ X × Y . By [Mor23, Theorem 1.1] there exists a smooth affine C-variety Spec B
over which we have smooth projective versal deformations X,Y of X,Y and a deformation
P ∈ perf(X ×B Y) of P defining a relative Fourier–Mukai transform

Φ̄P/B = RpB∗(P ⊗ q∗B(−)) : Db(X)→ Db(Y),

where qB : X ×S Y → X, pB : X ×S Y → Y denote the projections.
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Lemma 6.1. Up to taking étale neighborhood of Spec B, also the base S and morphisms f , g
deform to give families of elliptic fibrations f : X→ S, g : Y→ S over Spec B.

Proof. The claim immediately follows from [Wil94, Wil98]. �

Lemma 6.2. Up to shrinking Spec B, over any closed point b ∈ Spec B the fibers fb : Xb →
Sb, gb : Yb → Sb are smooth elliptic Calabi–Yau 3-folds. In particular, they are generic smooth
elliptic Calabi–Yau 3-folds.

Proof. By construction fb, gb are elliptic Calabi–Yau 3-folds. We check that general fibers of
f, g satisfy the conditions (1), . . . , (5) in Definition 2.2. By [Har77, Corollary III10.7], after
shrinking S, the morphisms f, g become smooth. Under the structure morphism, which is flat,
the open subset of S maps to a nonempty open subset of Spec B. Hence general fibers fb, gb

are smooth elliptic fibrations and satisfy all the conditions but (3), which follows from the well
known fact that any elliptic Calabi–Yau manifold admits a multisection. �

Remark 6.3. Presumably, if the initial fibers fb0 , gb0 are nonsmooth, then over a sufficiently
small open neighborhood of b0 ∈ Spec B the fibers fb, gb are also nonsmooth. Here, we do not
pursue this as anyway we need smooth ellitpic fibrations to construct the desired family.

Lemma 6.4. The kernel P ∈ perf(X ×B Y) is supported on X ×S Y.

Proof. Let R � C~t1, . . . , tdimC H1(X,TX)� be the formal power series ring which prorepresents
the deformation functors DefX,DefY . By [GD61, Theorem III5.4.5] there exist effectivizations
X,Y of universal formal families. Let {Rλ}λ∈Λ be the filtered inductive system used to algebrize
X,Y. It is a compatible system of finitely generated C[t1, . . . , tdimC H1(X,TX)]-subalgebras of R
whose colimit is R. Let XRλ ,YRλ be the Rλ-deformations of X,Y used to algebrize X,Y. Their
pullbacks along the canonical homomorphism Rλ → R are isomorphic to X,Y. Then X,Y
are the pullbacks of XRλ ,YRλ along some homomorphism Rλ → B. In summary, we have the
commutative diagram

X ×S Y �
� //

��

X ×S Y //

��

XRλ ×SRλ
YRλ

��

X ×S Yoo

��
SpecC �

� // Spec R // Spec Rλ Spec Boo

X × Y �
� //

OO

X ×R Y //

OO

XRλ ×Rλ YRλ

OO

X ×B Y.oo

OO

Note that the upper vertical arrows are flat projective, while the lower vertical arrows are smooth
projective for sufficiently large λ ∈ Λ.

By [Lie06, Proposition 3.6.1] there exists an effectivization P ∈ perf(X ×R Y) of a formal
R-deformation of P. Let PRλ ∈ perf(XRλ ×Rλ YRλ) be the perfect complex used to algebrize P
[Lie06, Proposition 2.2.1]. Its derived pullback PRλ ⊗L

Rλ R is isomorphic to P. Then P is the
derived pullback of PRλ along the homomorphism Rλ → B used to algebrize X,Y. Regarding
X × Y as a closed subscheme of X ×R Y, by [Huy06, Lemma 3.29] we have

supp(P) ∩ (X × Y) = supp(P|X×Y) = supp(P) = X ×S Y(6.1)

and supp(P) ⊂ X×RY is a proper closed subset. Since the structure morphismX×RY → Spec R
is flat proper, it sends supp(P) to the closed point which implies supp(P) ⊂ X × Y . From (6.1)
it follows supp(P) ⊂ X ×S Y . In particular, the restriction P|U to U = X ×R Y \ X ×S Y is
acyclic. Consider the collection {Uλ}λ∈Λ of complements Uλ = XRλ ×Rλ YRλ \ XRλ ×SRλ

YRλ ,
which are flat separated Rλ-schemes of finite presentation. For λ′ ∈ Λ with λ′ > λ we have
Uλ � Uλ′ ×Rλ′ Rλ by construction. Now, one can apply [Lie06, Proposition 2.2.1] to see that
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Pλ|Uλ
is acyclic for sufficiently large λ. Thus the restriction P|U to U = X×B Y\X×S Y becomes

acyclic after replacing λ if necessary, which completes the proof. �

Remark 6.5. While the natural projection supp(P)→ X is surjective [Huy06, Lemma 6.4], by
supp(P) ⊂ X × Y ( X ×R Y the natural projection supp(P) → X cannot be surjective. This
is not a contradiction, as [Huy06, Lemma 6.4] is a statement for C-varieties. Indeed, the proof
does not work in our setting as there is no closed point in the complement of X in X.

Theorem 6.6. Up to taking étale neighborhood of Spec B, there exists d(b) ∈ Z for each closed
point b ∈ Spec B such that gb is a coprime d(b)-th twisted power of fb.

Proof. The claim immediately follows from Corollary 5.3, Lemma 6.2 and Lemma 6.4. �

Corollary 6.7. If general fibers Xb,Yb are nonisomorphic, then they are nonbirational.

Proof. By Theorem 6.6 general fibers fb, gb are smooth and gb is isomorphic to fd(b)
b for some

d(b) ∈ Z. Suppose that the generic fibers fb,η, fd(b)
b,η are isomorphic. Then fb, fd(b)

b must be isomor-
phic. It follows that Xb,Yb is isomorphic, which contradicts the assumption. Hence Xb,η,Yb,η

are nonisomorphic. By [Sil08, Corollary 2.4.1] they are nonbirational and their function fields
k(Xb,η), k(Yb,η) are nonisomorphic. Then the function fields k(Xb), k(Yb) of Xb,Yb must be
nonisomorphic, as they are respectively isomorphic to k(Xb,η), k(Yb,η). �

References

[AKW17] B. Antieau, D. Krashen, and M. Ward, Derived categories of torsors for abelian schemes, Adv. Math.
306(10), 1-23 (2017).

[BFN10] D. Ben-zvi, J. Francis, and D. Nadler, Integral transforms and Drinfeld centers in derived algebraic
geometry, J. Amer. Math. Soc. 23(4), 909-966 (2010).
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TOTARO–VIAL LEMMA IN F-THEORY

HAYATO MORIMURA

Abstract. For each pair of elliptic Calabi–Yau 3-folds in [KSS, Table 19], we prove that they
are P2-linear derived-equivalent. Except one self-dual pair, each yields two families of smooth
elliptic fibrations over a common base whose general fibers are nonbirational derived-equivalent.

1. Introduction

Among Calabi–Yau manifolds, there are two classes of considerable interest for both alge-
braic geometers and string theorists. One consists of Fourier–Mukai partners, pairs of non-
birational derived-equivalent Calabi–Yau 3-folds. The other consists of elliptic Calabi–Yau
manifolds, those which admit elliptic fibrations.

Recently, Knapp–Scheidegger–Schimannek constructed 12 pairs of Calabi–Yau 3-folds ad-
mitting elliptic fibrations over P2 with 5-section. Although not smooth, they are flat and have
no multiple fibers. Moreover, all reducible fibers are isolated and of type I2. The idea was
to consider fiberwise homological projective duality [Kuz06] for Grassmannian Gr(2,V5) of
2-planes in V5 � C5 and its dual Gr(2,V∨5 ) with respective Plücker embeddings into P(∧2V5)
and P(∧2V∨5 ).

Definition 1.1. Let Ai, Bi, i = 1, . . . , 12 be one of the 12 pairs of elliptic Calabi–Yau 3-folds
over P2 labeled as ia, ib in [KSS, Table 19]. We call Ai, Bi type i KSS varieties. We denote by
fi, gi the elliptic fibrations Ai → P2, Bi → P2 induced by the canonical projections.

Based on F-theoretical observations, Knapp–Scheidegger–Schimannek raised

Conjecture 1.2 ([KSS]). The elliptic fibrations fi, gi share the relative Jacobian πi : Ji → P2.

By construction it is natural to ask

Conjecture 1.3 ([KSS]). Type i KSS varieties Ai, Bi are derived-equivalent.

For i = 11 the statement is trivial, as A11, B11 are isomorphic. For i = 1, 2 the statement
follows from [KSS, Remarks 2.3.3, 2.4.3] and [Ino22, Proposition 3.5]. Explicitly, Y2,Y1 and
X2, X1 in [Ino22] which admit elliptic fibrations over P2 are respectively isomorphic to A1, A2

and B1, B2.
In this paper, we give affirmative answers to these conjectures by proving

Theorem 1.4. The elliptic fibrations fi, gi are mutually an almost coprime twisted power of the
other in the sense of [Mor, Definition 2.14].

In particular, the smooth parts f ◦i , g
◦
i of fi, gi are respectively isomorphic to the relative mod-

uli spaces of stable sheaves of rank 1 and degree k, l on the fibers of g◦i , f ◦i . Here, k, l ∈ Z are
respectively coprime to the fiber degree of g◦i , f ◦i . Then one can apply [Căl02, Theorem 5.1,
6.1] to obtain a P2-linear Fourier–Mukai transform.

Realizing KSS varieties as two different geometric phases of non-abelian gauged linear
sigma models, they also raised

SISSA, via Bonomea 265, 34136 Trieste, Italy
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Conjecture 1.5 ([KSS]). For i , 11 type i KSS varieties Ai, Bi are nonbirational.

For i = 1, 2 the statement follows from [Ino22, Theorem 3.6]. If fi, gi were smooth, by Theo-
rem 1.4 and [KSS, Table 19] the morphism gi would be a nonisomorphic coprime twisted power
of fi in the sense of [Mor, Definition 2.14], Then the argument in the proof of [Căl07, Proposi-
tion 2.2] implies their generic fibers being nonisomorphic. Here, we obtain nonbirational pairs
through deformation method based on [Mor23, Theorem 1.1].

Corollary 1.6. Let fi : Ai → S, gi : Bi → S be the deformations of fi, gi over a smooth affine
C-variety Spec T from [Mor, Theorem 6.5]. Their general fibers Ai,t,Bi,t are nonbirational.

By [Mor, Lemma 4.3] general fibers fi,t, gi,t are mutually a coprime twisted power of the
other. As far as we know, combined with [KSS], this provides the first systematic construction
of multiple pairs of (familes of) Fourier–Mukai partners. Our arguments should work also for
elliptic fibrations with higher multisections.

Some computations in [KSS] were carried out assuming

Conjecture 1.7 ([KSS]). The Tate–Shafarevich group XP2(Ji,η) is isomorphic to Z5.

If fi, gi were smooth, one could adapt the argument as in [DG94, Example 1.18] to prove the
conjecture, after checking either Br′(Ai) or Br′(Bi) vanishes. Here, we could only identify the
Tate–Shafarevich group associated with the above deformations.

Proposition 1.8. Let πi(b) : Ji(b) → Sb be the relative Jacobian of general fibers fi,t, gi,t. Then
we have XSb(J(b)i,η) � Zδ′(b)i,η , where δ′(b)i,η is the minimal positive degree of an element
of Pic((Ai,t)η̄)Gk(S )/k(S ) dividing the positive generator δ(b)i,η of the image of the degree map
Pic((Ai,t)η)→ Z from [DG94, Definition 1.6].

Toward Theorem 1.4 one needs to prove that the generic fibers Ai,η, Bi,η of fi, gi share the
Jacobian Ji,η/k(P2). In our setting, this follows from [AKW17, Lemma 2.4], as the fiberwise
homological projective duality induces the derived equivalence

Db(Ai,η) ' Db(Bi,η).

Similarly, one obtains derived equivalences of general fibers of fi, gi, which implies their being
isomorphic [LT17, Theorem 7.4]. Then one might seek to invoke instead [DG94, Lemma 5.5].
Alternatively, one would try to apply [Căl00, Proposition 4.2.2], since Ai, Bi are Calabi–Yau.

However, their proofs seem incomplete. The former proof ended showing Ai,η, Bi,η to be
twists of the geometric generic fiber JAi,η̄ � Ai,η̄ � Bi,η̄ � JBi,η̄. In general, not all twists come
from a torsors [Sil08, Proposition 5.3]. Namely, the K̄-isomorphism JAi,η → JBi,η might be any
isomorphism fixing the origin. The latter proof ended showing the relative Jacobians to be iso-
morphic to minimal Weierstrass models W(L , a, b),W(L , a′, b′), which become isomorphic
over the base if and only if their generic fibers are isomorphic. See also Remark 4.2.

Originally, we also aimed to improve the above situation, which might be useful for study-
ing broader classes of elliptic fibrations, exploiting the following lemma found by Totaro and
proved by Vial.

Lemma 1.9 ([Via13, Lemma 2.1]). Let Ω be a universal domain and f : X → S a morphism of
Ω-varieties. Then there exists an intersection U ⊂ S of countably many nonempty Zariski open
subsets, for each closed point s of which one finds an isomorphism ϕs : k(S ) → Ω satisfying
Xs � Xη̄×k(S ) ϕs(k(S )). In particular, any very general fiber Xs is isomorphic to Xη̄ as a scheme.

Although rather surprising, this lemma seems not to be known so widely. Despite our failure
to achieve the additional goal in earlier version of this paper, we believe that it is worthwhile to
share the following question.
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Question 1.10. Let f : X → S , g : Y → S be elliptic fibrations without section between C-
varieties. Assume that their very general fibers are isomorphic. Then under which additional
conditions the generic fibers Xη,Yη of f , g share the Jacobian Jη/k(S )?

Theorem 1.4 holds also for type 1, 2 Inoue varieties X1,Y1 and X2,Y2, the Fourier–Mukai
partners admitting elliptic fibrations with 5-section constructed by Inoue [Ino22]. In particular,
we give a partial affirmative answer to the question raised in [Ino22, Remark 2.12]. This will
be completed if the remaining type 3 Inoue varieties X3,Y3 have only irreducible fibers except
isolated of type I2, which presumably can be checked by the same method as in [KSS, Section
5, 6]. Note that Y3 is isomorphic to the first in [KSS, Miscellaneous examples] and admits only
one elliptic fibration over P1 × P1 [Ino22, Remark 3.13].

By construction the derived equivalence

ΦP j : Db(X j)
∼−→ Db(Y j), P j ∈ Db(X j × Y j), j = 1, 2, 3

of X j,Y j follows from homological projective duality for categorical joins developed in [KP21].
If ΦP j are S j-linear, then by [Mor, Corollary 4.3] we would obtain an alternative proof of
Theorem 1.4 for Inoue varieties. Hence it is interesting to see whether the Fourier–Mukai
kernels P j are supported on the fiber products X j ×S j Y j so that ΦP j become S j-linear.

Acknowledgements. The author is supported by SISSA PhD scholarship in Mathematics. He
would like to thank Burt Totaro for suggesting to change the title and pointing out mistakes in
earlier version. He thanks a referee for informing him on the example in Remark 4.2.

2. Review on Ogg–Shafarevich theory over the complex number field

2.1. The Weil–Châtelet group.

Definition 2.1 ([Sil08, Section X.2]). Let E be an elliptic curve over a filed K of characteristic
0. The isomorphism group Isom(E) of E is the group of K̄-isomorphism from E to E. The
automorphism group Aut(E) of E is the GK̄/K-invariant subgroup of Isom(E) whose elements
preserve the origin of E. We use the same symbol E to denote the elliptic curve and its trans-
lation group, the GK̄/K-invariant subgroup of Isom(E) of translations. For a point p ∈ E we
denote by τp the corresponding translation.

Lemma 2.2 ([Sil08, Proposition X5.1]). There is a bijection of pointed sets

E × Aut(E)→ Isom(E), (p, α) 7→ τp ◦ α,
identifying Isom(E) with the product E × Aut(E) twisted by the natural action of Aut(E) on E.

Definition 2.3 ([Sil08, Section X.2]). A twist of E/K is a smooth curve C/K which is isomor-
phic to E/K over K̄. Two twists C/K,C′/K are equivalent if they are K-isomorphic. We denote
by Twist(E/K) the set of equivalence classes of twists of E/K.

Lemma 2.4 ([Sil08, Theorem X2.2]). There is a canonical bijection of pointed sets

H1
ét(GK̄/K , Isom(E))→ Twist(E/K).

Definition 2.5 ([Sil08, Section X.3]). A torsor or principal homogeneous space for E/K is a
smooth curve C/K together with a simply transitive algebraic group action of E on C defined
over K. It is trivial if C(K) , ∅. Two torsors C/K,C′/K are equivalent if there is a K-
isomorphism θ : C → C′ compatible with the E-action. The Weil–Châtelet group WC(E/K) is
the set of equivalence classes of principal homogeneous spaces for E/K.
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Theorem 2.6 ([Sil08, Theorem X3.6]). There is a canonical bijection of pointed sets

WC(E/K)→ H1
ét(GK̄/K , E).

In particular, the image of H1
ét(GK̄/K , E) under the inclusion induced by E ⊂ Isom(E) gives a

natural group structure to WC(E/K) ⊂ Twist(E/K).

Theorem 2.7 ([Sil08, Proposition X5.3]). The inclusion Aut(E) ⊂ Isom(E) induces

H1
ét(GK̄/K ,Aut(E)) ⊂ H1

ét(GK̄/K , Isom(E)).

Let Twist((E,O)/K) be the image of H1
ét(GK̄/K ,Aut(E)) regarded as a subset of Twist(E/K). If

C/K ∈ Twist((E,O)/K) then C(K) , ∅. Conversely, if E′/K is an elliptic curve isomorphic to
E/K over K̄, then E′/K represents an element of Twist((E,O)/K).

Remark 2.8. In general, C/K ∈ Twist((E,O)/K) is not K-isomorphic to E/K. By [Sil08,
Proposition 5.4] the group Twist((E,O)/K) is canonically isomorphic to K∗/(K∗)n where n be-
comes equal to 2, 4 or 6 depending on the j-invariant of E/K. Hence the elements of K∗/(K∗)n

correspond to the twists of E/K which do not come from principal homogeneous spaces.

2.2. The Tate–Shafarevich group.

Definition 2.9 ([DG94, Section 1]). Let S be a normal integral excellent scheme. We denote
by η = Spec k(S ) its generic point. Let E be an elliptic curve over k(S ). The Tate–Shafarevich
group XS (E) is the subset of WC(E/k(S )) of equivalence classes of étale locally trivial prin-
cipal homogeneous spaces for E/k(S ).

Definition 2.10 ([Căl00, Definition 1.1.3, 1.1.7]). Let X be a scheme. The cohomological
Brauer group Br′(X) of X is defined as H2

ét(X,O
∗
X). The Brauer group Br(X) of X is the group

of isomorphism classes of Azumaya algebras on X modulo equivalence relation. Here, the
group structure is given by tensor products. Two Azumaya algebras A ,A ′ on X are equivalent
if there exists a locally free sheaf E satisfying

A ⊗ End(E ) � A ′ ⊗ End(E ).

Theorem 2.11 ([Căl00, Theorem 1.1.4]). For a smooth C-scheme X the cohomological Brauer
group Br′(X) is torsion. Let Xh be the associated analytic space. Then we have

Br′(X) = Br′an(Xh) = H2
an(Xh,O∗X) = H2

an(Xh,O∗X)tors.

Theorem 2.12 ([SP, Tag 0A2J], [Jon]). If X is quasicompact or connected, then Br(X) is torsion
and there is a canonical injection Br(X) → Br′(X). If X is quasiprojective over C, then Br(X)
surjects onto Br′(X)tors. In particular, if X is smooth quasiprojective over C, then we have

Br(X) = Br′(X) = H2(X,O∗X)tors.

Theorem 2.13 ([DG94, Corollary 1.17]). Let f : X → S be a flat elliptic fibration of smooth
C-varieties with section whose generic fiber is isomorphic to E. Let S (1) be the set of points in
S with dim OS ,s = 1. If the fiber Xs is geometrically integral over each s ∈ S (1), then we have

XS (E) � Coker(Br′(S )→ Br′(X))

where the map Br′(S )→ Br′(X) is given by the pullback.
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2.3. Minimal Weierstrass fibrations.
Definition 2.14 ([DG94, Definition 2.1], [Căl00, Definition 6.1.5]). An elliptic fibration f : X →
S is a projective morphism of C-schemes whose generic fiber Xη is a genus one regular k(S )-
curve and all fibers are geometrically connected. The discriminant locus ∆ f of f is the closed
subset of points s ∈ S over which the fiber Xs is not regular. A fiber Xs over a point s ∈ S is
multiple if f is not smooth at any x ∈ Xs. A section of f is a morphism σX : S → X satisfying
f ◦ σX = id. An n-section of f is a closed subscheme to which the restriction of f becomes a
finite morphism of degree n.

Remark 2.15. Each component of a multiple fiber must be either of dimension more than one
or of dimension one and nonreduced at all points. If an elliptic fibration f : X → S has no
multiple fibers, then étale locally it admits a section.

Example 2.16. Let L be a line bundle on S . Take global sections a of L ⊗4 and b of L ⊗6

such that 4a3 + 27b2 is a nonzero global section of L ⊗12. Consider the projective bundle
PL = PS (OS ⊕ L ⊗−2 ⊕ L ⊗−3). We denote by OPL /S (1) the line bundle corresponding to
the relative hyperplane class. Let W(L , a, b) ⊂ PL be the closed subscheme defined by the
equation Y2Z = X3 +aXZ2 +bZ3, where X,Y and Z are respectively given by the global sections
of OPL /S (1)⊗L ⊗2, OPL /S (1)⊗L ⊗3 and OPL /S (1) which corresponds to the natural injections
of L ⊗−2, L ⊗−3 and OS into OS ⊕L ⊗−2⊕L ⊗−3. The canonical projection induces a flat elliptic
fibration πL : W(L , a, b) → S admitting a section σL : S → W(L , a, b), called a Weierstrass
fibration.

Remark 2.17. All fibers of πL are irreducible plane cubic curves. The discriminant locus of
πL is the support of the Cartier divisor defined by 4a3 +27b2. The construction of a Weierstrass
fibrations is functorial. Namely, we have

W(h∗L , h∗(a), h∗(b)) � W(L , a, b) ×S S ′

for any morphism h : S ′ → S of C-schemes. If S is smooth, then σL (S ) lies in the smooth
locus of W(L , a, b).

Lemma 2.18 ([Nak87, Theorem 2.1], [DG94, Theorem 2.3]). Let f : X → S be an elliptic
fibration of smooth C-varieties admitting a section σX : S → X. Then there exists a birational
S -morphism from X to W(L , a, b) contracting all components of fibers which do not intersect
σX(S ). Moreover, L is isomorphic to all of σ∗X(ΩX/S ), f∗ωX/S , (R1 f∗OX)−1 and OσX(S )(−σX(S ))
when they are invertible.

Lemma 2.19 ([DG94, Proposition 2.4]). Let E be an elliptic curve over K with a rational
point ξ ∈ E(K). For any smooth C-scheme S with k(S ) � K there exists a Weierstrass fibration
πL : W(L , a, b)→ S whose generic fiber is isomorphic to E. The closure of ξ is σL (S ).

Definition 2.20 ([DG94, Definition 2.6]). A Weierstrass fibration W(L , a, b) is minimal if there
is no effective divisor D such that div(a) ≥ 4D, div(b) ≥ 6D.

Remark 2.21. Every Weierstrass fibration is birational to a minimal Weierstrass fibration
[DG94, Proposition 2.5]. Its discriminant locus is not smaller than that of the minimal Weier-
strass fibration.

Definition 2.22 ([DG94, Definition 2.11]). A projective morphism f : X → S is relatively
minimal if X is Q-factorial and has only terminal singularities, and if C ⊂ X is any irreducible
curve mapping to a point in S, then KX.C ≥ 0 for the canonical divisor KX of X.

Lemma 2.23 ([DG94, Proposition 2.16]). Let f : X → S be a relatively minimal elliptic fibra-
tion admitting a section. Assume that f∗ωX/S is invertible. Then W( f∗ωX/S , a, b) from Lemma
2.18 gives a minimal Weierstrass fibration.

116



Lemma 2.24 ([DG94, Proposition 2.17]). Let f : X → S be a relatively minimal elliptic fibra-
tion and πL : W(L , a, b) → S a minimal Weierstrass fibration whose generic fiber is isomor-
phic to E. If the Jacobian of Xη is E, then the discriminant loci ∆ f ,∆πL

coincide.

2.4. The relative Jacobian.

Definition 2.25 ([Căl00, Definition 4.1.1, 4.2.1, 4.5.1]). A smooth elliptic fibration f : X → S
is a smooth projective morphism of smooth C-schemes whose fiber Xs over any point s ∈ S is
a genus one regular k(s)-curve. Fix a relatively ample line bundle OX/S (1) for a smooth elliptic
fibration f : X → S . The relative Jacobian π : J → S is the relative moduli space of stable
sheaves of rank 1, degree 0 on the fibers of f . The k-th twisted power f k : Xk → S of f is the
relative moduli space of stable sheaves of rank 1, degree k ∈ Z on the fibers of f .

Theorem 2.26 ([Căl00, Theorem 4.5.2]). Fix a relatively ample line bundle OX/S (1) for a
smooth elliptic fibration f : X → S . Any k-th twisted power f k : Xk → S of f is a smooth
elliptic fibration which has the same relative Jacobian π : J → S as f . If α ∈ XS (Jη) is the
element representing f , then f k is represented by αk.

Definition 2.27 ([Căl00, Definition 6.4.1]). Let f : X → S be a flat elliptic fibration of C-
varieties. Fix a relatively ample line bundle OX/S (1) of f and a closed point s ∈ S . Let P
be the Hilbert polynomial of OXs on Xs with respect to the polarization given by OX/S (1)|Xs .
Consider the relative moduli space MX/S (P) → S of semistable sheaves of Hilbert polynomial
P on the fibers of f . By the universal property of MX/S (P) → S there exists a natural section
S → MX/S (P) which sends s to the point [OXs] representing OXs . Let J be the unique component
of M which contains the image of this section. The relative Jacobian of f is the restriction
π : J → S of the morphism MX/S (P)→ S to J.

Remark 2.28. The relative Jacobian π : J → S is a flat elliptic fibration with section whose
discriminant locus ∆π equals ∆ f . The restriction over the complement S \ ∆ f coincides with
the relative Jacobian for a smooth elliptic fibration. Similarly, the restriction over S \ ∆ f of f d

coincides with the d-th twisted power of the smooth part of f .

Definition 2.29 ([Căl00, Notation 6.6.3]). Let f : X → S be a flat elliptic fibration with n-
section without multiple fibers. Assume that all reducible fibers of f are isolated and of type I2.
Fix a relatively ample line bundle OX/S (1). Let Mk

X/S (P) → S be the relative moduli space of
semistable sheaves of rank 1, degree k on the fibers of f . Let Xk be the union of the components
of Mk

X/S (P) which contains a point corresponding to a stable line bundle on a fiber of f . The
k-th twisted power of f is the restriction f k : Xk → S of the morphism Mk

X/S (P)→ S to Xk.

3. Review on KSS varieties

3.1. Grassmannian side. Let F ∨ be a globally generated vector bundle of rank 5 on P2 and
G = GrP2(2,F ) the Grassmannian bundle whose fiber over any point x ∈ P2 is the Grassman-
nian Gr(2, tot(F )x) of 2-planes in the k(x)-vector space tot(F )x. We denote by OG/P2(1) the
line bundle corresponding to the relative hyperplane class and by πG the canonical projection.
Let E ∨ be a globally generated homogeneous vector bundle of rank 5 on G and s ∈ H0(G,E ∨)
a general section. By the generalized Bertini theorem, the zero locus A = Z(s) is a smooth
projective 3-fold. If in addition ωG � det−1 E ∨ then ωA becomes trivial. Setting F ∨ = F and
E ∨ = OG/P2(1) ⊗ π∗GE′ for F, E′ in [KSS, Table 2], one obtains Calabi–Yau 3-folds A. We will
put subscript i on F ∨,E ∨, F, E′,G and A to specify which row we are dealing with.

Lemma 3.1. The 3-fold Ai is Calabi–Yau in the strict sense, i.e., we have H1(Ai,OAi) = 0 in
addition to ωAi � OAi .
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Proof. Concatenating Koszul resolution of the ideal sheaf IAi of Ai and the short exact sequence
0→ IAi → OGi → OAi → 0, we obtain an exact sequence

0→ ∧5Ei → ∧4Ei → · · · → Ei → OGi → OAi → 0.

Due to the spectral sequences

Hq(Gi,∧pEi)⇒ Hq−p(Ai,OAi),

it suffices to show the vanishing of Hp+1(Gi,∧pEi) for 0 ≤ p ≤ 5, which follows from Leray
spectral sequence

H s(P2,∧pE′∨i ⊗ RrπGi∗OGi/P2(−p))⇒ Hr+s(Gi,∧pEi).

�

3.2. Pfaffian side. Let E ∨ be a globally generated vector bundle of rank 5 on P2 and P =

PP2(E ) the projective bundle. We denote by OP/P2(1) the line bundle corresponding to the rela-
tive hyperplane class and by πP the canonical projection. Let F ∨ be a globally generated vector
bundle of rank 5 on P and φ : F → F ∨⊗OP/P2(1) a skew-symmetric morphism corresponding
to sφ ∈ H0(P,∧2F ∨ ⊗ OP/P2(1)). We denote by B the first nontrivial degeneracy locus

D3(φ) = {x ∈ P| rank φ(x) ≤ 3} = {x ∈ P| rank φ(x) ≤ 2} = D2(φ)

of φ. Since Pic(P) has no torsion, one can apply the first lemma in [Oko94, Section 3] to obtain
an exact sequence

0→ det F ∨ ⊗ OP/P2(−2)
( 1

2∧2φ)T

−−−−−→ F
φ−→ F ∨ ⊗ OP/P2(1)

1
2∧2φ−−−→ IB ⊗ det F ∨ ⊗ OP/P2(3)→ 0,

where IB denotes the ideal sheaf of B. From the first proposition in [Oko94, Section 3], it
follows that B is a smooth projective 3-fold, as ∧2F ∨ ⊗ OP/P2(1) is globally generated. If
in addition (det F )⊗2 � (det E )(3) then ωB becomes trivial by the second lemma in [Oko94,
Section 3]. Setting E ∨ = E′ and F ∨ = π∗PF for E′, F in [KSS, Table 2], one obtains Calabi–
Yau 3-folds B. We will put subscript i on E ∨,F ∨, E′, F,P and B to specify which row we are
dealing with.

Lemma 3.2. The 3-fold Bi is Calabi–Yau in the strict sense, i.e., we have H1(Bi,OBi) = 0 in
addition to ωBi � OBi .

Proof. Concatenating the locally free resolution of IBi from the second lemma in [Oko94,
Section 3] and the short exact sequence 0→ IBi → OPi → OBi → 0, we obtain

0→ L0,i → F0,i → F ∨
0,i ⊗L0,i → OPi → OBi → 0

where L0,i = (det Fi)⊗2 ⊗OPi/P2(−5) and F0,i = Fi ⊗ det Fi ⊗OPi/P2(−3). The vanishing of the
first and the second cohomology of L0,i,F0,i,F ∨

0,i ⊗L0,i and OPi follows from Leray spectral
sequence. �

3.3. Elliptic fibrations over P2. According to [KSS, Section 2.3, 2.4], one can apply the
main theorem in [Ogu93] to see that πGi , πPi respectively restrict to elliptic fibrations fi : Ai →
P2, gi : Bi → P2 with 5-sections. They are flat and have no multiple fibers. Moreover, all
reducible fibers of fi, gi are isolated and of type I2 [KSS, Section 5, 6].

Remark 3.3. The existence of type I2 fibers [KSS, Section 5, 6] implies that the morphisms
fi, gi are not smooth. In [KSS] the authors called fi, gi smooth genus one fibrations, apparently
because Ai, Bi are smooth. If this is the case, then smoothness follows automatically from the
above constructions, despite the comment on usage of Higgs transitions in [KSS, Introduction].
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Lemma 3.4. The generic fibers of fi, gi are derived-equivalent. In particular, they share the
Jacobian Ji/k(P2).

Proof. The fiber of fi over a point x ∈ P2 is given by

Gr(2,V5) ×P(∧2V5) P(tot(E′∨i )⊥x )

with identifications

tot(F∨i )x � V5, tot(OGi/P2(1))x ⊗ π∗Gi
tot(E′∨i )⊥x � tot(E′∨i )⊥x ,

where tot(E′∨i )⊥x ⊂ ∧2 tot(F∨i )x denotes the orthogonal subspace to a fixed inclusion tot(E′∨i )x ⊂
∧2 tot(Fi)x. Observe from the explicit description of s ∈ H0(Gi, Ei) as in [KSS, Section 2.3]
that s defines a 5-dimensional quotient k(x)-vector space of ∧2 tot(F∨i )x whose complement is
tot(E′∨i )⊥x . Then the fiber of gi over general x ∈ P2 is given by

Gr(2,V∨5 ) ×P(∧2V∨5 ) P(tot(E′∨i )x).

Note that the subvariety of P(∧2V∨5 ) defined by the 4 × 4 Pfaffians of a general 5 × 5 skew-
symmetric matrix is isomorphic to Gr(2,V∨5 ). One can apply [Kuz07, Theorem 1.1] to obtain
a derived equivalence of the generic fibers. See [KP21, Theorem 2.24] for the same statement
over more general base. Now, the claim follows from [AKW17, Lemma 2.4]. �

Remark 3.5. In [KSS, Section 2.5] the authors claimed that the above fiberwise orthogonal
description globalizes to that of Ai and Bi. For their global description, one needs E′∨i to be
a subbundle of ∧2Fi up to twisting by line bundles. However, each Fi is a direct sum of line
bundles on P2 and a subbundle of any line bundle is either 0 or itself. Then most of E′∨i in
[KSS, Table 2] cannot be a subbundle of ∧2Fi no matter how twisted.

Corollary 3.6. Over any closed point x ∈ P2 the fibers of fi, gi are isomorphic.

Proof. Using Lemma 3.4, we will obtain P2-linear Fourier–Mukai transforms Db(Ai)→ Db(Bi)
in Section 5. Then the claim follows from [Mor, Proposition 3.3]. �

4. Common relative Jacobian

4.1. A sufficient condition.

Proposition 4.1. Let f : X → S , g : Y → S be flat elliptic fibrations between smoothC-varieties
without multiple fibers. Assume that the following conditions hold:

(1) The generic fibers of f , g share the Jacobian Jη/k(S ).
(2) There exist resolutions of singularities

ρX : J̄X → JX, ρY : J̄Y → JY

such that π̄X = πX ◦ ρX, π̄Y = πY ◦ ρY give relatively minimal elliptic fibrations and
π̄X∗ωJ̄X/S , π̄Y∗ωJ̄Y/S are isomorphic invertible sheaves.

Then f , g share the relative Jacobian π : J → S .

Proof. The condition (2) tells us that π̄X gives a relatively minimal elliptic fibration admit-
ting a section. Since in addition π̄X∗ωJ̄X/S is invertible, one can apply Lemma 2.23 to see
that the Weierstrass fibration W(π̄X∗ωJ̄X/S , a, b) → S from Lemma 2.18 is minimal. Similarly,
one obtains another minimal Weierstrass fibration W(π̄Y∗ωJ̄Y/S , a

′, b′) → S associated with πY .
Moreover, there is an S -isomorphism

W(π̄Y∗ωJ̄Y/S , a
′, b′) � W(π̄X∗ωJ̄X/S , a

′, b′).

It is well known that two Weierstrass fibrations W(π̄X∗ωJ̄X/S , a, b),W(π̄X∗ωJ̄X/S , a
′, b′) with iso-

morphic generic fibers must coincide. Now, the claim follows from the condition (1). �
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Remark 4.2. In earlier version of this paper, the condition (1) required only very general fibers
to be isomorphic. However, the following example informed by an anonymous referee implies
that our original proof was wrong. This example also implies that [DG94, Lemma 5.5] cannot
be true. Consider any elliptic fibration f : X → S . Suppose that S has a nontrivial double
covering T → S . Let Y be the quotient of XT = X ×S T by Z2, where the action is given by
involution on T and negation on the fibers. The generic fiber of g : Y → S , so called quadratic
twist, is not isomorphic to that of f . On the other hand, over any closed point s ∈ S the fibers
of f , g are isomorphic.

4.2. Answer to Conjecture 1.2.

Corollary 4.3. Type i KSS varieties Ai, Bi share the relative Jacobian πi : Ji → P2.

Proof. We check that fi, gi satisfy the conditions in Proposition 4.1. The condition (1) follows
from Lemma 3.4. As for the condition (2), take any analytic small resolutions of singularities
ρAi , ρBi . One can show that J̄Ai , J̄Bi are analytic Calabi–Yau 3-folds in the strict sense and we
have π̄Ai∗ωJ̄Ai/P

2 � π̄Bi∗ωJ̄Bi/P
2 � ω−1

P2 . This follows for instance from the same argument as in
[Mor, Section 4] based on [Căl00, Section 6], which we will briefly review in Section 5. �

5. Derived equivalence

Remark 5.1. In this section, we invoke some results from [Căl00]. As mentioned above, the
proof of [Căl00, Proposition 4.2.2] seems incomplete. However, it is used only once in the proof
of [Căl00, Theorem 4.5.2] to show that the k-th twisted power f k of a smooth elliptic fibration
f : X → S has the same relative Jacobian as f . There the usage of [Căl00, Proposition 4.2.2]
is not crucial, as the claim immediately follows from [Căl00, Proposition 4.2.3]. Moreover,
the author explicitly constructed this S -isomorphism JX → JXk in terms of the cut-and-reglue
procedure in [Căl00, Section 4.5].

5.1. The proof of Theorem 1.4.

Lemma 5.2. For any analytic small resolution of singularities

ρAi : J̄Ai → JAi , ρBi : J̄Bi → JBi

of the relative Jacobians of type i KSS varieties Ai, Bi, there exists an analytic open cover {U j}
of P2 such that Ai,U j = Ai ×P2 U j, Bi,U j = Bi ×P2 U j are respectively isomorphic to J̄Ai,U j =

J̄Ai ×P2 U j, J̄Bi,U j = J̄Bi ×P2 U j as an analytic space over U j.

Proof. This is a straightforward adaptation of [Căl00, Theorem 6.4.6]. Since fi, gi have no
multiple fibers, analytic locally they admit sections [Căl00, Theorem 6.1.8]. Moreover, as all
their reducible fibers are isolated and of type I2, over sufficiently small analytic open subset
U j there is at most one type I2 fiber of fi, gi. For each component C � P1 of type I2 fiber, the
normal bundles NC/Ai ,NC/Bi are isomorphic to OC(−1) ⊕OC(−1) [Căl00, Theorem 6.1.9]. It is
well known that contraction of such a curve as C in a 3-fold yields an ordinary double point.
Hence ρAi , ρBi resolve the ordinary double points.

By [Căl00, Proposition 6.4.2, Theorem 6.4.3] there exist sheaves UAi,U j ,UBi,U j on Ai,U j ×U j

Ai,U j , Bi,U j ×U j Bi,U j flat over the second factors, which by universality of JAi,U j/U j, JBi,U j/U j

induce surjective morphisms Ai,U j → JAi,U j , Bi,U j → JBi,U j . These are at most contraction of one
of the two components of type I2 fiber which does not intersect the local section. Note that such
morphisms coincide with the morphisms from Lemma 2.18. Hence Ai,U j → Ji,U j , Bi,U j → Ji,U j

might differ respectively from ρAi,U j : J̄Ai,U j → JAi,U j , ρBi,U j : J̄Bi,U j → JBi,U j up to whether the
contracted component intersect the local sections. Switching components amounts to perform-
ing flops to Ai,U j → Ji,U j , Bi,U j → Ji,U j . �
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Remark 5.3. As we use some results in this section to prove Corollary 4.3, here we do not
assume that fi, gi share the relative Jacobian πi : Ji → P2.

Remark 5.4. The minimal Weierstrass fibrations for fi, gi coincide with their relative Jacobians.

Lemma 5.5 ([Căl00, Theorem 3.3.2]). Let f : X → S be a flat projective morphism. Fix
a relatively ample line bundle OX/S (1). Let MX/S (P) → S be the relative moduli space of
semistable sheaves with a fixed Hilbert polynomial P on the fibers of f . Then there exists a
local universal sheaf U j on each X×S U j for some open cover {U j} of MX/S (P). Moreover, there
exist an element α ∈ Br′(MX/S (P)) and isomorphisms ϕ jk : Uk|U j×S Uk → U j|U j×S Uk which make
({U j}, {ϕ jk}) into a pr∗2 α-twisted sheaf. The element α, called the obstruction to the existence of
a universal sheaf on X ×S MX/S (P), depends only on f ,OX/S (1) and P.

Lemma 5.6 ([Căl00, Theorem 3.3.4]). Let X → S ,M → S be morphisms between proper
C-schemes. Assume that X → S is projective and M is integral. Assume further that for
α ∈ Br′(M) there exists a coherent pr∗2 α-twisted sheaf U on X×S M which is flat over M. Then
α belongs to Br(M).

Let Vi = P2 \ ∆ fi ,Wi = P2 \ ∆gi be the complements of the discriminant loci of fi, gi. By
Theorem 2.13 and Br′(P2) = 0 the smooth elliptic fibrations fi,Vi , gi,Wi represent some elements
αi ∈ Br′(JAi,Vi), βi ∈ Br′(JBi,Wi). Moreover, αi, βi respectively coincide with the obstructions to
the existence of a universal sheaf on Ai,Vi ×Vi JAi,Vi , Bi,Wi ×Vi JBi,Wi .

Lemma 5.7. There exist unique extensions

α′i ∈ H2
an(JAi ,O

∗
JAi

), β′i ∈ H2
an(JBi ,O

∗
JBi

)

of αi, βi. For any analytic small resolutions of singularities ρAi , ρBi , let ᾱi = ρ∗Ai
α′i , β̄i = ρ∗Bi

β′i .
Then ᾱi, β̄i respectively belong to Br(J̄Ai),Br(J̄Bi) and there exist pr∗2 ᾱi, pr∗2 β̄i-twisted sheaves
ŪAi , ŪBi on Ai×P2 J̄Ai , Bi×P2 J̄Bi whose restrictions over Vi,Wi are isomorphic to the pr∗2 αi, pr∗2 βi-
twisted sheaves from Lemma 5.5.

Proof. This is a straightforward adaptation of [Căl00, Theorem 6.5.1]. Let

ϕ j : Ai,U j → J̄Ai,U j , ψ j : Bi,U j → J̄Bi,U j

be isomorphisms of analytic spaces from Lemma 5.2. As explained above, there exist sheaves
UAi,U j ,UBi,U j on Ai,U j×U j Ai,U j , Bi,U j×U j Bi,U j flat over the second factors. We write ŪAi,U j , ŪBi,U j

for their pullbacks by id×U jϕ
−1
j , id×U jψ

−1
j . Restricted over the intersection with Vi,Wi, the pull-

backs ŪAi,U j , ŪBi,U j become local universal sheaves. The collections {ŪAi,U j}, {ŪBi,U j} together
with isomorphisms on double intersections form pr∗2 αi, pr∗2 βi-twisted sheaves. Since by con-
struction any double intersections

J̄Ai,U j ∩ J̄Ai,Uk = JAi,U j ∩ JAi,Uk , J̄Bi,U j ∩ J̄Bi,Uk = JBi,U j ∩ JBi,Uk

for j , k do not contain type I2 fibers, all the claim but ᾱi ∈ Br(J̄Ai), β̄i ∈ Br(J̄Bi), which follows
from Lemma 5.6, are obvious. �

Proposition 5.8 ([Căl02, Theorem 5.1]). The relative integral transforms

Φ̄ŪAi
: Db(Ai)→ Db(J̄Ai , ᾱi), Φ̄ŪBi

: Db(Bi)→ Db(J̄Bi , β̄i)

with kernel ŪAi , ŪBi are equivalences.

Remark 5.9. By Proposition 5.8 and uniqueness of Serre functors, the canonical bundle of
J̄Ai , J̄Bi are trivial. Moreover, J̄Ai , J̄Bi are analytic Calabi–Yau 3-folds in the strict sense [Mor,
Remark 4.5]. From Lemma 5.2 and the same argument as in [Mor, Theorem 4.2] it follows
π̄Ai∗ωJ̄Ai/P

2 � π̄Bi∗ωJ̄Bi/P
2 � ω−1

P2 . Since our argument in this section is independent of that in
Section 4, so is the proof of Corollary 4.3 and we conclude that πAi , πBi coincide.
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Now, one can prove Theorem 1.4 as follows. By Corollary 4.3 the restrictions of fi, gi over
Vi = P2\∆πi represents some elements αi, βi ∈ Br(Ji,Vi). We use the same symbol to denote their
images under the injection Br′(Ji,Vi) → Br′(Ji,η) induced by the pullback along the canonical
morphism Ji,η → Ji,Vi . Since by Lemma 3.4 the generic fibers of fi, gi are derived-equivalent,
one can apply [AKW17, Lemma 2.4, Theorem 2.5] to obtain βi = αk

i for some k ∈ Z coprime to
the order ord([αi]) in XVi(Ji,η) � Br′(Ji,Vi)/Br′(Vi) = Br′(Ji,Vi). Then gi,Vi is isomorphic to f k

i,Vi

by [Mor, Lemma 4.3] and Bi,U j become isomorphic to Ak
i,U j

as an analytic space after refining
the cover {U j} by [Căl00, Theorem 6.4.6].

5.2. Answer to Conjecture 1.3.

Corollary 5.10. There exists a P2-linear Fourier–Mukai transform Φi : Db(Ai)
∼−→ Db(Bi).

Proof. By Theorem 1.4 we may assume that gi,Vi is isomorphic to f k
i,Vi

. Then gi,Vi represents
αk

i ∈ Br′(Ji,Vi). Applying Proposition 5.8, we obtain P2-linear equivalences

Db(Ai)→ Db(J̄i, ᾱi), Db(Bi)→ Db(J̄i, ᾱ
k
i ).

Then the claim follows from the P2-linear equivalence [Căl02, Theorem 6.1]

Db(J̄i, ᾱi)→ Db(J̄i, ᾱ
k
i ).

�

6. Nonbirationality of deformations

6.1. The proof of Corollary 1.6. Recall that the deformations fi : Ai → S, gi : Bi → S over
Spec T are obtained from Theorem 1.4 and [Mor, Theorem 6.5]. General fibers fi,t, gi,t are
smooth elliptic fibrations and mutually a coprime twisted power of the other in the sense of
[Mor, Definition 2.14]. For i , 11 general fibers Ai,t,Bi,t are nonisomorphic, as they have
distinct Betti numbers b1 [KSS, Table 19], which depend only on diffeomorphism type. Since
by [Har77, Corollary III10.7] the restriction of the flat projective morphisms fi, gi over some
open subset of Spec T become smooth, one can apply Ehresmann fibration theorem to see that
pairs of these distinct Betti numbers b1 does not depend on general t ∈ Spec T . Now, the claim
follows from [Mor, Corollary 6.6].

7. Toward identification of the Tate–Shafarevich group

7.1. Vanishing of the Brauer group.

Lemma 7.1. The cohomological Brauer group Br′(Ai) of Ai vanishes.

Proof. Since by Lemma 3.1 the 3-fold Ai is Calabi–Yau in the strict sense, we have Br′(Ai) �
H3(Ai,Z)tors. Each generator of the general section si ∈ H0(Gi,E ∨i ) defines an ample divisor
by construction and [Har77, Exercise II7.5(a)]. Applying [Fuj80, Theorem C] iteratively to the
divisors, one sees that H2(Ai,Z) is torsion free. Then the first term in the short exact sequence

0→ Ext1
Z(H2(Ai,Z),Z)→ H3(Ai,Z)→ HomZ(H3(Ai,Z),Z)→ 0

from the universal coefficient theorem vanishes. Since HomZ(H3(Ai,Z),Z) is always torsion
free, we obtain H3(Ai,Z)tors = 0. �
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7.2. Computation of the Tate–Shafarevich group.

Proposition 7.2. Let f : X → S be a smooth elliptic fibration between smooth C-varieties
without sections. Assume that the following conditions hold:

(1) H3
ét(S , µl,S ) = 0 for some l ∈ N.

(2) The number δη from [DG94, Definition 1.6] is prime.
(3) Br′(X) = 0.

Then the Tate–Shafarevich group XS (JX,η) is isomorphic to Zδη .

Proof. This is an adaptation of the arguments in [DG94, Example 1.18]. Since f is flat with
X, S smooth over C, from [DG94, Proposition 1.16] we obtain exact sequences

0→ Zδ′η →XS (JX,η)→ H1
ét(S , ι∗ι

∗R1 f∗O∗X)→ 0,

H1
ét(S ,R

1 f∗O∗X)→ H1
ét(S , ι∗ι

∗R1 f∗O∗X)→ H2
ét(S ,E ).

(7.1)

Here, δ′η is a certain positive integer with δ′η|δη from [DG94, Definition 1.6], ι : Spec k(S )→ S
denotes the canonical morphism and E is a certain sheaf on S from [DG94, Definition 1.8]. If
we have H1

ét(S , ι∗ι
∗R1 f∗O∗X) = 0, then from the condition (2) it follows XS (JX,η) = Zδη .

Consider the exact sequence

Br′(X)→ H1
ét(S ,R

1 f∗O∗X)→ H3
ét(S ,O

∗
S )

from [DG94, Corollary 1.5], where the first term vanishes by the condition (3). The Kummer
sequence 0→ µl,S → O∗S → O∗S → 0 induces an exact sequence

H3
ét(S , µl,S )→ H3

ét(S ,O
∗
S )→ H3

ét(S ,O
∗
S ).

The term H3
ét(S ,O

∗
S ) is torsion by [DG94, Proposition 1.2]. From the condition (1) it follows

H1
ét(S ,R

1 f∗O∗X) = H3
ét(S ,O

∗
S ) = 0. Since f is smooth, one can apply [DG94, Proposition 1.12,

1.13] to obtain H2
ét(S ,E ) = 0, which implies H1

ét(S , ι∗ι
∗R1 f∗O∗X) = 0 due to the second exact

sequence in (7.1). �

7.3. The proof of Proposition 1.8. We check that fi,t satisfies the conditions (1), (3) in Propo-
sition 7.2. Due to [AGV73, Theorem 4.4], when coefficients are finite, étale cohomology of a
smooth C-scheme coincides with singular cohomology of its analytification. In particular, we
have H3

ét(P
2, µl,P2) � H3(P2,Z/lZ) = 0 for any l ∈ N by the universal coefficient theorem. Since

the family S→ Spec B is smooth proper, one can apply Ehresmann fibration theorem to obtain
H3

ét(Sb, µl,Sb) = H3(Sb,Z/lZ) = H3(P2,Z/lZ) = 0 for any l ∈ N. From the same argument and
Lemma 7.1 it follows Br′(Ai,t) = 0, as we have Br′(Ai,t) � H3(Ai,t,Z)tors.

8. Inoue varieties as almost coprime twisted powers

8.1. Review on Inoue varieties. Let M1 = Gr(2,V5) be a Grassmannian of 2-planes in V5 �
C5 and M2 = PS i(Ei) a rank ri projective bundle over a del Pezzo surface S i satisfying the
following conditions:

(i) E ∨i is globally generated.
(ii) dimC ϕL2(PS i(Ei)) ≥ r where ϕL2 denotes the morphism defined by the line bundle

OM2/S i(L2) corresponding to the relative hyperplane class L2 of πEi,S i : M2 → S i.
(iii) det Ei � ωS i .

We denote by Σ1 and Σ2 the image of M1 and M2 under the Plücker embedding and the mor-
phism defined by the relative hyperplane class respectively.
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Lemma 8.1 ([Ino22, Proposition 3.1]). Let PM1,M2 = PM1×M2(O(−L1)⊕O(−L2)) be the resolved
join of M1 and M2, where L1 denotes the Schubert divisor class of M1 and L2 is the relative
hyperplane class of M2. Then a general complete intersection X of ri + 5 relative hyperplanes
in PM1,M2 is a Calabi–Yau 3-fold in the strict sense.

Remark 8.2. The image of PM1,M2 under the morphism ϕH coincides with the projective join
Join(Σ1,Σ2) of Σ1 and Σ2, where H denotes the relative hyperplane class of πM1,M2 : PM1,M2 →
M1 × M2. In general, Join(Σ1,Σ2) is singular along the disjoint union Σ1 t Σ2. The morphism
ϕH gives a resolution of Join(Σ1,Σ2). In particular, the restriction of ϕH to any enough general
complete intersection X becomes an isomorphism.

Let E ⊥i be the orthogonal locally free sheaf of Ei. Namely, we have a short exact sequence

0→ E ⊥i → H0(S i,E
∨

i ) ⊗ OS i → E ∨i → 0.

We denote by r′i and L′2 the rank of E ⊥i and the relative hyperplane class of πE ⊥i ,S i : PS i(E
⊥

i )→ S i

respectively. Assume the following additional conditions:
(iv) dimϕL′2

(PS i(E
⊥

i )) ≥ r′.
(v) H1(S i,Ei) = 0.

Then (E ⊥i )∨ is globally generated and det E ⊥i � ωS i .

Corollary 8.3. Let PM′1,M
′
2

= PM′1×M′2(O(−L′1) ⊕O(−L′2)) be the resolved join of M′
1 = Gr(2,V∨5 )

and M′
2 = PS (E ⊥i ), where L′1 denotes the Schubert divisor class of M′

1 and L′2 is the relative
hyperplane class of M′

2. Then a general complete intersection Y of r′i + 5 relative hyperplanes
in PM′1,M

′
2

is a Calabi–Yau 3-fold in the strict sense.

Consider the cases where M2 = Ni = PS i(Ei),M′
2 = N′i = PS i(E

⊥
i ) are one of the following:

(1) N1 = PP2(OP2(−1)⊕
3
) = P2 × P2, N′1 = PP2(K ⊕3

1 ),
(2) N2 = PP2(OP2(−2) ⊕ OP2(−1)) = Blpt P

3, N′2 = PP2(K2 ⊕K1),
(3) N3 = PP1×P1(OP1×P1(−1,−1)⊕

2
) = P1 × P1 × P1, N′3 = PP1×P1(K ⊕2

1,1 ).
Here, K1,1,K j for j = 1, 2 denote respectively the kernel of the surjections

H0(P1 × P1,OP1×P1(1, 1)) ⊗ OP1×P1 → OP1×P1(1, 1), H0(P2,OP2( j)) ⊗ OP2 → OP2( j).

We write VNi for H0(Ni,O(L2))∨. Let Wi ⊂ ∧2V5 ⊕ VNi be general codimension ri + 5 linear
subspaces and W⊥

i ⊂ ∧2V∨5 ⊕ V∨Ni
their orthogonal subspaces. By Lemma 8.1 and Corollary 8.3

the complete intersections

Xi = PM1,Ni ×P(∧2V5⊕VNi )
P(Wi), Yi = PM′1,N

′
i
×P(∧2V∨5 ⊕V∨Ni

) P(W⊥
i )

of ri + 5, r′i + 5 relative hyperplanes in PM1,Ni ,PM′1,N
′
i

are Calabi–Yau 3-folds in the strict sense.
For i = 1, 2, 3 we call Xi,Yi type i Inoue varieties.

Theorem 8.4 ([Ino22, Proposition 3.5, Theorem 3.6]). Type i Inoue varieties Xi,Yi are nonbi-
rational derived-equivalent.

8.2. Elliptic fibrations of Inoue varieties. For the rest of the paper, we discuss an alternative
proof of the derived equivalence of Xi,Yi via Theorem 1.4. Consider the compositions

$X1 : X1 ↪→ PM1,N1 → M1 × N1 → N1 = P2 × P2 pr1−−→ P2,

$X2 : X2 ↪→ PM2,N2 → M2 × N2 → N2 = PP2(E2)
πE2 ,P

2

−−−−→ P2,

$X3 : X3 ↪→ PM3,N3 → M3 × N3 → N3 = P1 × P1 × P1
pr1,2−−−→ P1 × P1

which are shown to be elliptic fibrations [Ino22, Lemma 3.7]. Similarly, Yi admit elliptic fibra-
tions $Yi over P2 for i = 1, 2 and P1 × P1 for i = 3 [Ino22, Lemma 3.11, Remark 3.13].
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Lemma 8.5. The generic fibers of $Xi , $Yi for i = 1, 2, 3 are derived-equivalent. In particular,
they share the Jacobian J′i /k(P2).

Proof. The fibers of $X1 , $Y1 over a point x ∈ P2 are given by

Join(Gr(2,V5), {x} × P2) ∩ P(W), Join(Gr(2,V∨5 ), {x} × P2) ∩ P(W⊥).

Hence general fibers are linear sections of Gr(2,V5),Gr(2,V∨5 ) of codimension 5. By definition
of W,W⊥, they respectively coincide with

Gr(2,V5) ×P(∧2V5) P(Wx), Gr(2,V∨5 ) ×P(∧2V∨5 ) P(W⊥
x )

for some 5-dimensional subspace Wx ∈ ∧2V5 and its orthogonal subspace W⊥
x ∈ ∧2V5. We have

similar dual descriptions of the fibers also for i = 2, 3. Now, the claim follows from the same
argument as in Lemma 3.4. �

Corollary 8.6. Over any closed point x ∈ P2 the fibers of $Xi , $Yi for i = 1, 2 are isomorphic.

Proof. The proof of Corollary 3.6 carries over. According to [KSS, Remarks 2.3.3, 2.4.3]
the Calabi–Yau 3-folds Y1,Y2 and X1, X2 are respectively isomorphic to A2, A1 and B2, B1. By
[Ino22, Lemma 3.11, Remark 3.13] the Calabi–Yau 3-folds X1, X2 admit only one elliptic fibra-
tion. Recall that all reducible fibers of g2, g1 are of type I2. �

8.3. The proof of Theorem 1.4 for Inoue varieties.

Lemma 8.7. Type i Inoue varieties Xi,Yi, i = 1, 2 share the relative Jacobian $i : J′i → P2.

Proof. The proof of Corollary 4.3 carries over, since the generic fibers of $Xi , $Yi share the
Jacobian and all reducible fibers of $Xi , $Yi are isolated and of type I2. �

Remark 8.8. According to [KSS, Remark 2.3.3] the Calabi–Yau 3-fold Y3 is isomorphic to the
first in [KSS, Miscellaneous examples]. The elliptic fibration from it must be isomorphic to
$Y3 , as Y3 admit only one elliptic fibration [Ino22, Remark 3.13]. By Lemma 8.5 the generic
fibers of $X3 , $Y3 share the Jacobian. If all reducible fibers of $X3 , $Y3 are isolated and of type
I2, then from Proposition 4.1 it follows that $X3 , $Y3 share the relative Jacobian $3 : J′3 → P2.

Theorem 8.9. The elliptic fibrations $Xi , $Yi for i = 1, 2 are mutually an almost coprime
twisted power of the other in the sense of [Mor, Definition 2.14].

Proof. Provided Lemma 8.7, the proof of Theorem 1.4 carries over. �

Remark 8.10. Suppose that all reducible fibers of $X3 , $Y3 are isolated and of type I2. Then
one similarly shows Theorem 8.9, since we have Br′(P1×P1) = 0 by the standard purity theorem
for the cohomological Brauer group, as P1 × P1 is rational.

Now, from the same arguments as in Corollary 5.10 we obtain

Corollary 8.11. For i = 1, 2 type i Inoue varieties Xi,Yi are P2-linear derived-equivalent.
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HOMOLOGICAL MIRROR SYMMETRY FOR COMPLETE INTERSECTIONS IN
ALGEBRAIC TORI

HAYATO MORIMURA, NICOLÒ SIBILLA, AND PENG ZHOU

Abstract. We prove one direction of homological mirror symmetry for complete intersections
in algebraic tori, in all dimensions. The mirror geometry is not a space but a LG model, i.e. a
pair given by a space and a regular function. We show that the Fukaya category of the complete
intersection is equivalent to the category of matrix factorizations of the LG pair. Our approach
yields new results also in the hypersurface setting, which was treated earlier by Gammage and
Shende. Our argument depends on breaking down the complete intersection into smaller more
manageable pieces, i.e. finite covers of products of higher dimensional pairs-of-pants, thus
implementing a program first suggested by Seidel.

1. Introduction

Mirror symmetry is a mysterious duality discovered by string theorists in the ’80-s. It as-
serts that string theory backgrounds should come in pairs (called mirror partners) that, despite
having different geometric properties, give rise to the same physics. To the untrained eye mir-
ror partners might look nothing alike, but string theory predicts the existence of an intricate
dictionary allowing to transfer geometric information across between them. Roughly, complex
geometric information on a space is encoded as symplectic data on its mirror partner, and vice
versa. Since the early ’90-s, mathematicians have made various attempts to distill the geomet-
ric meaning of mirror symmetry. Homological Mirror Symmetry (HMS) is one of the most
influential mathematical formulations of mirror symmetry. It posits that mirror symmetry is, at
bottom, an equivalence of categories. HMS was first proposed by Kontsevich in 1994 and it
is still, thirty years on, the focus on intense research. It is fundamental, in the sense that it is
expected to encompass most other mathematical formulations of mirror symmetry.

According to HMS if X and X′ are mirror partners the derived category of coherent sheaves
of X should be equivalent to the Fukaya category of X′, and vice versa. The derived category is
a repository of algebraic information. The objects living inside it include, for instance, vector
bundles and the structure sheaves of subvarieties of X. The Fukaya category is a highly so-
phisticated symplectic invariant, which captures the quantum intersection theory of Lagrangian
submanifolds of X′. The original formulation of HMS requires the mirror partners X and X′

to be compact Calabi–Yau (CY) varieties, and under these assumptions it has been established
in many important cases, starting with [PZ98] [Sei03] [She15]. However HMS has also been
generalized to wider non-proper and non-CY settings. This requires readjusting the nature of
the objects involved in the equivalence. In this article we contribute to this line of research by
studying HMS for a particularly interesting class of non-compact symplectic manifolds.

We prove one direction of HMS for complete intersections in algebraic tori, in all dimen-
sions. We adopt the formulation of HMS for complete intersections proposed in [AAK16],
see also [GKR17]. We remark that the other direction of HMS for complete intersections was
proved in [AA]. The mirror geometry is not a space but a LG model, i.e. a pair given by a
space and a regular function. Our proof follows by implementing an algorithm that allows us to
break down the complexity of complicated symplectic manifolds into small computable pieces,
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and that ultimately goes back to ideas of Seidel [Sei10]. The key input is given by recent ad-
vances in the study of the Fukaya category, which reveal its hidden local nature, at least for
non-compact symplectic manifolds. We will briefly review this story in the next section.

1.1. Fukaya categories and locality. The Fukaya category of a symplectic manifold M was
introduced by Fukaya [Fuk93]. It is a highly non-trivial symplectic invariant. Providing ad-
equate foundations for the theory in the general setting is delicate, and this has been accom-
plished only relatively recently by Fukaya and his collaborators [FOOO1, FOOO2]. In fact, the
Fukaya category is not quite a category: it is an A∞-category. In an A∞-category the composi-
tion of morphisms is associative only up to homotopy, and homotopies are themselves just the
first layer in an infinite tower of higher composition laws. Roughly, the objects of the Fukaya
category of M are Lagrangian submanifolds, while the Hom space between two Lagrangians is
the linear span of their intersection points. The actual picture is much more complicated: for in-
stance, as Lagrangians intersect in finitely many points only under transversality assumptions,
all these data are well defined only up to appropriate choices of perturbations.

The higher A∞-operations in the Fukaya category are controlled by counts of pseudoholo-
morphic disks with Lagrangian boundary conditions. This is the source of some of the biggest
challenges in the theory. In particular, pseudo-holomorphic disks are non-local in nature, so
higher operations in the Fukaya category depend on the global geometry of the manifold. This
is in sharp contrast with the derived category of coherent sheaves, that satisfies descent with
respect to the analytic topology and most other Grothendieck topologies commonly used in
algebraic geometry. Around 2010 however, two new paradigms emerged suggesting that under
favourable assumptions the Fukaya category should also exhibit a good local-to-global be-
haviour. The computational payoffs would be tremendous, as complicated global computations
would be reduced to more manageable local ones. The first of these approaches breaks down a
Liouville manifold into pieces called Liouville sectors; while the second, which originated with
Seidel [Sei10], relies on the availability of higher dimensional pants decompositions. These
two point of views are subtly different, and rely on somewhat distinct sets of assumptions. As
we will show, in the setting of symplectic submanifolds of (C∗)N they turn out to give com-
patible pictures of the locality of the Fukaya category. In fact, this is one of the key inputs in
our argument. Before explaining our results in greater detail, let us briefly explain these two
stories.

The Fukaya category was long expected to be a kind of quantization of the symplectic mani-
fold. A precise proposal was made in the influential paper of Kapustin–Witten [KW07], where
the authors model the Fukaya category of a holomorphic cotangent bundle in terms of D-
modules over the base. Motivated by this and by earlier work of Fukaya, Nadler–Zaslow show
that the (infinitesimally wrapped) Fukaya category of a cotangent bundle T ∗X is equivalent
to the category of contructible sheaves over X (which is assumed to be an analytic manifold)
[NZ09]. Via microlocalization, the category of constructible sheaves sheafifies over T ∗X. This
implies, in particular, that the Fukaya category of cotangent bundles displays suprisingly good
local-to-global properties. An extension of this picture to Weinstein manifolds was later pro-
posed by Kontsevich [Kon09]. Cotangent bundles are exact: the standard symplectic form
admits a primitive, called a Liouville 1-form. Weinstein manifolds are a class of exact symplec-
tic manifolds satisfying some extra regularity assumptions on the Liouville1-form. Weinstein
manifolds retract to an exact Lagrangian core, called the skeleton which is a kind of general-
ized zero section with singularities. Kontsevich conjectured that the wrapped Fukaya category
localizes on the skeleton. That is, it defines a (co)sheaf of categories whose global sections
recover the wrapped Fukaya category, and whose local sections are in many cases easily com-
putable. This line of research has been intensely pursued in the last ten years, and we now have
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a robust theory of the local behaviour of the Fukaya category in this setting. The state-of-the-
art is provided by a series of works by Ganatra–Pardon–Shende [GPS1, GPS2, GPS3], one of
whose main results is a complete descent package for the Fukaya category relative to a class of
covers of Weinstein manifolds called Weinstein sectors.

This point of view has had numerous applications to HMS, starting from [Kon09] [STZ14]
[DK18]. In [GS1], Gammage–Shende use this framework to prove HMS for hypersurfaces in
(C∗)N . In this paper we study HMS for all complete intersections in (C∗)N , but our approach
differs from Gammage–Shende already in the hypersurface case, and yields more general re-
sults. Our methods combine sectorial descent and a different locality with respect to pants
decompositions, that was first suggested by Seidel, and that we explain next.

Pants decompositions have long played a central role in understanding the topology of com-
plex curves. Higher dimensional pants decompositions were studied by Mikhalkin in [Mik04].
A higher dimensional pair-of-pants is the complement of N + 2 generic hyperplanes in PN .
Mikhalkin proves that hypersurfaces in (C∗)N admit a higher dimensional pants decomposi-
tion. Mikhalkin’s result is formulated in purely topological terms but, as he points out, it can
be upgraded so as to be compatible with the natural symplectic structures. Mikhalkin’s work
has had many applications in HMS, and it plays for instance an important role in [She15].
Higher dimensional pants decompositions exist in more general settings, and sometimes also
for compact varieties: for instance, hypersurfaces in abelian varieties admit pants decomposi-
tions. Seidel suggested that when such a decomposition exists, pairs-of-pants should provide
the building blocks of the global Floer theory of the manifold. In particular, the Fukaya cate-
gory should be expressible as a limit of the Fukaya category of the pairs-of-pants making up
the decomposition. It is important to stress that this provides a very different kind of local-to-
global principle for the Fukaya category. Pants are very different from the Liouville/Weinstein
sectors underpinning the locality on the skeleton which we have described above.

Remarkably the locality of the Fukaya category with respect to pants decomposition is ex-
pected to match neatly, under mirror symmetry, Zariski descent on the mirror category. This
opens the way to implement divide-and-conquer algorithms in HMS, reducing a difficult global
mirror symmetry statement to a much more computable local one. Up to now, there have been
only a few attempts to implement rigorously Seidel’s proposal. One instance was the beautiful
paper of Lee [Lee16] that proves Hori-Vafa HMS for curves in (C∗)2. The same result was
proved independently, and with very different methods by Pascaleff and the second author in
[PS1], with follow-ups in the compact setting in [PS2] [PS3].

Since [PS1] serves as the blueprint for some of the key arguments in this paper, it is worth-
while to review its main ideas here. The critical point is exactly the interplay between the two
regimes of locality. In [PS1] the authors work within the framework of microlocal sheaves
on skeleta. Thus, sectorial descent is built in their underlying theory. They show that secto-
rial descent, supplemented with a local calculation, implies the seemingly very different Seidel
type localization on pants. Proving this involves setting up a recursion which builds up the
Riemann surface in a step-by-step fashion, by gluing together the pants making up the pants
decomposition. Crucially, at each step the Weinstein structure of the surface is modified so as
to be adapted to the gluing. Geometrically, this means deforming the skeleton in such a way
that some of its components are pushed towards the portions on the boundary along which the
gluing is taking place.

The vertices of the diagram implementing Seidel’s locality are the Fukaya categories of the
pairs-of-pants and of their intersections. The latter, in the surface case, are isomorphic to sym-
plectic annuli. The arrows are Viterbo restrictions. The claim is that the limit of this diagram
of categories is equivalent to the wrapped Fukaya category. Geometrically, the Seidel type lo-
calization is a mechanism that allows to glue skeleta along a common closed subskeleton, on
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the condition that the latter lies in a separating contact hypersurface. So it can be rephrased as
a kind of descent for the wrapped Fukaya category with respect to closed covers of the skele-
ton, subject to appropriate assumptions. Sectorial descent, on the other hand, captures a more
straightforward descent of the wrapped Fukaya category with respect to open covers of the
skeleton.

In this paper, we adapt this strategy to the higher dimensional case. We recover Gammage–
Shende’s result on HMS for hypersurfaces in (C∗)N in a more general form, as we remove
all assumptions on the triangulation of the associated Newton polytope. Our methods extend
to give a proof of HMS for complete intersections in (C∗)N . We remark that extending the
approach of Gammage–Shende to complete intersections is unfeasible with current technology.
Their argument requires controlling the global skeleton of the Weinstein manifolds, which is
not known with current methods in the case of complete intersections. Our approach bypasses
this delicate issue, as it depends on constructing only smaller local pieces of the skeleton near
the place where the gluing is taking place. As such it provides an algorithm for proving HMS
that has potential to be applicable in more general settings beyond the one we consider in this
article.

We explain our main results and the structure of the paper next.

1.2. Main results. Hypersurfaces. Let T = M∨
R/Z = M∨

R/M
∨ be a real (d + 1)-dimensional

torus with cocharacter lattice M∨. Let M be the character lattice of T . We denote by TC the
associated complex torus. Let H ⊂ T∨C be a hypersurface cut out by the Laurent polynomial

W : T∨C → C, x 7→
∑

α∈A

cαxα

where A ⊂ M∨ is a finite set of monomials. The hypersurface H is a closed subvariety of T∨C and
is thereofore naturally Weinstein. An adapted triangulation T of the convex hull Conv(A) of A
is, by definition, a triangulation arising as the corner locus of a convex piecewise linear function.
These data determine a tropical hypersurface Π in MR, the tropicalization of H, and equip H
with a higher-dimensional pair-of-pants decomposition. As an abstract topological space, Π is
a homeomorphic to the dual intersection complex of the pair-of-pants decomposition of H.

The mirror of H is a (d + 2)-dimensional toric LG model. Let Y be the noncompact toric
variety associated with the fan

ΣY = Cone(−T × {1}) ⊂ M∨
R × R

Via the usual toric dictionary, the map of fans induced by the projection M∨
R×R→ R determines

a regular funtion WY : Y → C. On this side of the mirror correspondence, the tropicalization
Π of H is naturally identified with the image of the singular locus of W−1

Y (0) under the moment
map.

Theorem A. There is an equivalence of categories

Fuk(H) ' MF(Y,WY)

Let us outline the argument. Both side of the equivalence are local in nature. The key is
that, as we explained, the manifold H carries a pants decomposition, and therefore its wrapped
Fukaya category can be built out of the local Fukaya categories of the individual pants P.
Although our proof of this fact is remarkably simple, it relies in a crucial way on the machinery
developed by Ganatra–Pardon–Shende. The locality of MF(Y,WY) is straightforward. Indeed,
the category of matrix factorizations satisfies Zariski descent. As Y is smooth, it has a canonical
toric open cover by affine spaces. Further the restriction of WY on each patch coincides, up to
coordinates change, with the standard superpotential

y1 · · · yd+2 : Ad+2 → A1
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Our argument involves two steps. The first consists in establishing the local equivalence

(1.1) Fuk(P) ' MF(Ad+2, y1 · · · yd+2)

This was proved by Nadler in [Nad] using an alternative model for the B-side category. Recall
that, by a theorem of Orlov, there is an equivalence

MF(Ad+2, y1 . . . yd+2) ' Coh({y1 · · · yd+1 = 0})Z2

where the latter is the Z2-folding of the ordinary category of coherent sheaves. Nadler describes
a family of Weinstein structures on P depending on the choice of a leg of P. The corresponding
skeleton has non-trivial intersections with all the legs of P, except with the chosen one. Nadler
computes the Fukaya category in terms of microlocal sheaves on the skeleton, and proves in
this way that Fuk(P) is equivalent to Coh({y1 · · · yd+1 = 0})Z2 . The choice of skeleton collapses
the natural Sd+2-symmetry of the pair-of-pants to the smaller Sd+1-symmetry of the skeleton.
This matches the Sd+1-action on Coh({y1 · · · yd+1 = 0})Z2 by permutation of coordinates, which
is also the residue of the richer Sd+2-symmetry of

MF(Ad+2, y1 · · · yd+2)

For our purposes, we need to restore the complete Sd+2-symmetry of the problem which re-
mains hidden in Nadler’s formulation. The locality of the two mirror categories is neatly en-
coded in the combinatorics of the tropicalization Π. Both Fuk(H) and MF(Y,WY) define in
a natural way two constructible sheaves of categories over Π, where Π is equipped with its
natural stratification. The final globalization step consists in noticing that as the local sections
and local restrictions of these two sheaves match, their global sections must also be equivalent.
This is the content of Theorem A.

1.3. Main results. Complete intersections. Let us describe next the complete intersection
setting. The underlying toric geometry is a simple extension of the ideas entering in the hy-
persurface setting, so we will give a somewhat abbreviated treatment of this story and refer the
reader to the main text for full details. We keep the notations from the previous section.

Consider hypersurfaces H1, . . . ,Hr ⊂ TC in general position, cut out by Laurent polynomials

W1, . . . ,Wr : T∨C → C, x 7→
∑

α∈Ai

cαxα

By the genericity assumption, they meet transversely in a subvariety of dimension n − r

H = H1 ∩ · · · ∩ Hr ⊂ T∨C
The subvariety H carries a natural Weinstein structure. We form a total superpotential WH by
adding an extra factor Cr with coordinates u1, . . . , ur

WH = u1W1 + · · · + urWr : T∨C × Cr → C
Note that H can be recovered as the critical locus of WH.

The Newton polytope of WH is the convex hull of

A =
⋃

i

−Ai × {ei} ⊂ M∨
R × Rr

where e1, . . . , er is the standard basis of Rr. A choice of adapted triangulations of the convex
polytopes Conv(Ai) ⊂ M∨

R determines a triangulation T of Conv(A). Following [AAK16], the
mirror of H is the higher dimensional LG model determined by T. More precisely, let

ΣY ⊂ M∨
R × Rr
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be the fan corresponding to T, and let Y be the noncompact (d +r+1)-dimensional toric variety
associated with ΣY. The fan ΣY admits r projections to R, and the sum of the corresponding
monomials induces a regular function WY on Y. The mirror of H is the LG model (Y,WY).

Theorem B. There is an equivalence of categories

Fuk(H) ' MF(Y,WY)

The proof strategy follows the pattern of the hypersurface case, but there are some features
which are specific to the complete intersection setting which are worth highlighting. Strictly
speaking, complete intersections do not admit a higher dimensional pair-of-pants decomposi-
tion. Rather, generic intersections of pants are locally isomorphic to (finite covers of) products
of lower dimensional pairs-of-pants. The appearance of finite covers cannot be avoided, how-
ever it is easily controlled. For clarity, in this introduction, we shall ignore this issue. Via the
Künneth formula for the wrapped Fukaya category, the Fukaya category of H is thus locally
equivalent to the tensor product of the Fukaya categories of the factors, i.e. lower dimensional
pairs-of-pants. This is matched, on the B-side, by the Zariski local behaviour of MF(Y,WY).

On each affine toric open subset of Y, the superpotential WY can be written as a sum of
monomials. Preygel’s Thom-Sebastiani theorem implies that, locally, the category of matrix
factorizations factors as a tensor product of matrix factorizations of lower dimensional super-
potentials. Thus, in the complete intersection case, the local HMS equivalence is just a tensor
product of the fundamental local equivalences

Fuk(P) ' MF(Ad+2, y1 · · · yd+2)

underpinning the hypersurface case. The globalization step follows along exactly parallel lines
as in the hypersurface case.

As we have already remarked, our methods allow us to give a description of the Fukaya cat-
egory of H bypassing the difficult task of describing a global skeleton. The explicit calculation
of the skeleton is, in contrast, a key input in the approach of Gammage–Shende in the hypersur-
face case. We obviate the absence of a computable model of the global skeleton by setting up
a recursion that builds the complicated global symplectic geometry of H out of simple pieces
amenable to computation: products of lower dimensional pants, and their finite covers. This
is a mild generalization of the set-up originally envisioned by Seidel in terms of pants decom-
positions. This allows us to get away with building skeleta, or rather Weinstein structures, for
these local pieces only. This extra flexibility crucially relies on the invariance of the wrapped
Fukaya category under Liouville homotopy, which allows us to engineer Weinstein structures
with good properties near a boundary where local pieces are glued together.

Our methods and results open the way to several potential directions for future investiga-
tions. We limit ourselves to mention one, which we intend to pursue in future work. In this
paper we espouse the viewpoint on HMS for complete intersections proposed in [AAK16].
There is however another important model for mirror symmetry for complete intersections in
toric ambient varieties, which was developed by Batyrev–Borisov in [BB96]. That framework
encompasses both the non-compact regime where the ambient manifold is a torus (which is the
setting we work in this article), and its toric compactifications. In future work we will explore
in which ways our methods can be used to obtain Batyrev–Borisov type HMS for complete
intersections.

Acknowledgements: Some of the key inputs in this article are generalizations of ideas that
were developed in joint work by the second author with James Pascaleff. Over the years,
the second author has benefited from countless discussions with James that have shaped his
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understanding of the Fukaya category and mirror symmetry. We want thank James for his
generosity in sharing his ideas, and for his encouragement and interest in this project.

2. Review on HMS for pairs of pants

In this section, we review HMS for pairs of pants established by Nadler in [Nad]. This gives
local equivalences which we glue to yiled HMS for hypersurfaces in an algebraic torus. Also,
thorough understanding of such local equivalences plays an important role when working in
the complete intersection setting.

2.1. Tailored pants. Let T d+1 = (R/2πZ)d+1 be the real torus with coordinates θ = (θ1, . . . , θd+1).
Fix the usual identification T ∗T d+1 � T d+1 × Rd+1 with canonical coordinates (θ, ξ) for ξ =

(ξ1, . . . , ξd+1). The symplectic manifold T ∗T d+1 carries the standard Liouville structure

αd+1 =

d+1∑

i=1

ξidθi, ωd+1 =

d+1∑

i=1

dξi ∧ dθi

whose skeleton is the zero section T d+1 ⊂ T ∗T d+1. The self-action of T d+1 lifts to a Hamiltonian
action on T ∗T d+1 with the moment map

µd+1 : T ∗T d+1 → Lie(T d+1)∨ � Rd+1, (θ, ξ) 7→ ξ.

Taking its squared length, one obtains a Weinstein manifold (T ∗T d+1, αd+1, |µd+1|2). Note that
the function |µd+1|2 is Morse–Bott.

Fix the identification T ∗T d+1 � T d+1
C = (C∗)d+1 with coordinates x = (x1, . . . , xd+1) via

xi = eξi+
√−1θi . Then µd+1 transports to the log projection

Logd+1 : T d+1
C → Rd+1, x 7→ (log |x1|, . . . , log |xd+1|).

Definition 2.1. The d-dimensional standard pair of pants is a complex hypersurface

Pd = {1 + x1 + · · · + xd+1 = 0} ⊂ T d+1
C .

We regard Pd as an exact symplectic manifold equipped with the restricted standard Liouville
structure. Via the open embedding T d+1

C ↪→ Pd+1
C = ProjC[x0, x1, . . . , xd+1] the pants Pd maps

to the complement of
d+1⋃

i=0

({x0 + x1 + · · · + xd+1 = 0} ∩ {xi = 0})

in the hyperplane {x0 + x1 + · · · + xd+1 = 0} ⊂ Pd+1
C . Hence the symmetric group Sd+2 naturally

acts on Pd by permutation of the homogeneous coordinates.

Lemma 2.2 ([Mik04, Proposition 4.6]). There is a Sd+2-equivariant isotopy of Liouville sub-
manifolds of T d+1

C from Pd to (P̃d, αP̃d
= αd+1|P̃d

) with the following properties:

• The isotopy is constant inside Log−1
d+1(∆d(R)) for some constant 0 � R with

∆d(R) = {ξ ∈ Rd+1 | − R ≤ ξ1, . . . ,−R ≤ ξd+1,

d+1∑

i=1

ξi ≤ R}.

• We have the inductive compatibility

Ld,d+1(K) = P̃d ∩ T d+1
C,d+1(K) � P̃d−1 × C∗d+1(K)

for some constant 0 � K, where

C∗d+1(K) = {xd+1 ∈ C∗ | log |xd+1| < −K}, T d+1
C,d+1(K) = {x ∈ T d+1

C | log |xd+1| < −K}.
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Note that P̃d coincides with Pd inside Log−1
d+1(∆d(R)). The Sd+2-action implies similar com-

patibilities in other directions. Namely, we have the inductive compatibility

Ld,i(K) = P̃d ∩ T d+1
C,i (K) � P̃d−1 × C∗i (K),

for some constant 0 � K and fixed i = 1, . . . , d, where

C∗i (K) = {xi ∈ C∗ | log |xi| < −K}, T d+1
C,i (K) = {x ∈ T d+1

C | log |xi| < −K}.
Definition 2.3. We call the Liouville manifold (P̃d, αP̃d

) the d-dimensional tailored pants. We
call the open Liouville submanifold Ld,i(K) the i-th leg of (P̃d, αP̃d

). The (d + 2)-th leg of
(P̃d, αP̃d

) is the remaining open Liouville submanifold with respect to the Sd+2-action, which
corresponds to the positive diagonal direction in Rd+1.

In order to provide P̃d with particularly simple skeleton, Nadler broke symmetry and applied
a natural isotopy to its Liouville structure. Consider the translated Liouville structure

αl
d+1 =

d+1∑

i=1

(ξi + l)dθi, ω
l
d+1 =

d+1∑

i=1

d(ξi + l) ∧ dθi = ωd+1(2.1)

on T d+1
C for some constant 0 � l.

Definition 2.4. We call the Weinstein structure given by a triple

(P̃d, βP̃d
= αl

d+1|P̃d
,Σd+1

i=1 (log |xi| + l)2)

Nadler’s Weinstein structure. We write Core(P̃d) for its skeleton. We call the (d + 2)-th leg of
P̃d equipped with Nadler’s Weinstein structure the final leg.

Remark 2.5. All the legs but the final remain symmetric under the Sd+2-action.

For a proper subset I ( {1, . . . , d + 1} let

∆I(l) = {x ∈ P̃d ∩ T d+1
R<0 | log |xi| = −l for i ∈ I, log |x j| > −l for j ∈ Ic}

be the relatively open subsimplex of the closed simplex

∆d(l) = {x ∈ P̃d ∩ T d+1
R<0 | log |xi| ≥ −l}.

We denote by δI(l) the barycenter

{x ∈ P̃d ∩ T d+1
R<0 | log |xi| = −l for i ∈ I, log |x j| = log |x j′ | > −l for j, j′ ∈ Ic}

of the subsimplex ∆I(l).

Lemma 2.6 ([Nad, Theorem 5.13]). For a subset I ⊂ {1, . . . , d+1} let T I ⊂ T d+1 be the subtorus
defined by θi = 0, i ∈ Ic. Then we have

Core(P̃d) =
⋃

I({1,...,d+1}
T I · ∆I(l).

Proof. The original proof uses induction on d. The case d = 0 is obvious. When d = 1, a
nonempty proper subset I ( {1, . . . , d+1} is either {1} or {2}. On δi(l) = ∆i(l) the Liouville form
βP̃1

vanishes and their stable manifolds are isomorphic to T i · δ{i}(l) = T i ·∆{i}(l). From [Mik04,
Corollary 4.4, 4.5, Proposition 4.6] it follows that the critical locus Crit(Σd+1

i=1 (log |xi| + l)2)
coincides with P̃d ∩ T d+1

R<0
. In particular, since P̃d is Weinstein, P̃d ∩ T d+1

R<0
contains the zero

locus Z(βP̃d
). The negative real points P̃d ∩ T d+1

R<0
is a Lagrangian as dθi vanishes there and the

Liouville flow on P̃d ∩ T d+1
R<0

attracts the points to a point δ∅(l). Hence, aside T i ·∆{i}(l), only the
stable manifold T ∅ ·∆∅(l) of T ∅ · δ∅(l) contributes to Core(P̃1). For general d, combine the same
argument and the inductive compatibility from Lemma 2.2. �
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2.2. Microlocal interpretation. Next, we review the geometry of Core(P̃d). The action of the
diagonal circle T 1

∆
⊂ T d+1 by translation lifts to a Hamiltonian action with the moment map

µ∆ : T ∗T d+1 → R, (θ, ξ) 7→
d+1∑

i=1

ξi.

Distinguishing the final coordinate θd+1 on T d+1, we identify the quotient Td = T d+1/T 1
∆

with T d

via [θ] 7→ (θ1−θd+1, . . . , θd−θd+1). Denoting by t∗d the dual of Lie(Td) = {ξ ∈ Rd+1|∑d+1
i=1 ξi = 0},

we identify T ∗Td with Td × t∗d. The product conic Lagrangian

Λd+1 = (Λ1)d+1 ⊂ µ−1
∆ (R≥0) ⊂ T ∗T d+1

is transverse to µ−1
∆

(χ) for χ > 0, where

Λ1 = {(θ, 0) | θ ∈ T 1} ∪ {(0, ξ)| ξ ∈ R≥0} ⊂ T 1 × R � T ∗T 1.

Consider the twisted Hamiltonian reduction correspondence

T ∗T d+1 qχ←↩ µ−1
∆ (χ) = {(θ, ξ) ∈ T ∗T d+1|

d+1∑

i=1

ξi = χ} pχ
� T ∗Td

where qχ is the canonical inclusion and pχ is the translated projection

pχ((θ, ξ)) = ([θ], ξ1 − χ̂, . . . , ξd+1 − χ̂), χ̂ = χ/(d + 1).

For a proper subset I ( {1, . . . , d + 1} let

Ξ̃d(χ) = {ξ ∈ Rd+1
≥0 | ξ1, . . . , ξd+1 ≥ 0,

d+1∑

i=1

ξi = χ}

be the closed subsimplex. The map pχ restricts to an isomorphism

µ−1
∆ (χ) ∩ Λd+1 = µ−1

d+1(Ξ̃d(χ))→ Ld B pχ(q−1
χ (Λd+1)).

Let Ξ̃I(χ) = Ξ̃d(χ) ∩ σI be the relatively open subsimplex with

σI = {ξ ∈ Rd+1
≥0 | ξi = 0 for i ∈ I, ξ j > 0 for j ∈ Ic}.

From µd+1(Λd+1) = (R≥0)d+1 it follows µ−1
d+1(ξ) ∩ Λd+1 � T I for ξ ∈ σI and pχ restricts to an

isomorphism
⋃

I({1,...,d+1} T I × Ξ̃I(χ)→ Ld. Hence we obtain an identification of subspaces

Ld �
⋃

I({1,...,d+1}
TI × ΞI(χ) ⊂ Td × t∗d � T ∗Td,

where TI ⊂ Td are isomorphic images of T I under the quotient and

ΞI(χ) = {ξ ∈ Rd+1
≥0 | ξi = −χ̂ for i ∈ I, ξ j > −χ̂ for j ∈ Ic,

d+1∑

i=1

ξi = 0}

are isomorphic images of Ξ̃I(χ) under translation by χ̂.
The symplectic geometry of a certain open neighborhood of Core(P̃d) in P̃d is equivalent to

that of the associated open neighborhood of Ld in T ∗Td.

Lemma 2.7 ([Nad, Theorem 5.13]). There is an open neighborhood Ud ⊂ P̃d of Core(P̃d) with
an open symplectic embedding j : Ud ↪→ T ∗Td which makes the diagram

Ud
∼ // Ud B j(Ud)

Core(P̃d)
� ?

OO

∼ // Ld

� ?

OO
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commute, where the vertical arrows are the canonical inclusions.

Proof. Let U◦d be a sufficiently small open neighborhood of ∆d(l) in P̃d. By the inductive
compatibility from Lemma 2.2, near ∆I(l) for ∅ , I ( {1, . . . , d + 1} the functions log |xi|, i ∈ I
define a local coisotropic foliation of U◦d . If I′ ( {1, . . . , d + 1} contains I, then the foliation
defined by log |xi|, i ∈ I′ refines that defined by log |xi|, i ∈ I. Let U◦d be a sufficiently small open
neighborhood of Ξd(χ) in TTd. Near ΞI(χ) for ∅ , I ( {1, . . . , d + 1} the functions ξi, i ∈ I
define a local coisotropic foliation of U◦d. If I′ ( {1, . . . , d + 1} contains I, then the foliation
defined by ξi, i ∈ I′ refines that defined by ξi, i ∈ I.

The neighborhoods U◦d and U◦d are symplectomorphic to the cotangent bundles of their La-
grangians U◦d∩T d+1

R<0 and U◦d∩t∗d. Hence one finds a symplectomorphism j◦ : U◦d → U◦d restricting
to a diffeomorphism U◦d∩T d+1

R<0 → U◦d∩ t∗d and an isomorphism ∆d(l)→ Ξd(χ), which is compat-
ible with the above local coisotropic foliations. Choose a sufficiently small open neighborhood
U◦I of ∆I(l) in U◦d for each I ( {1, . . . , d + 1}. We denote by U◦I the open neighborhood j◦(U◦I )
of ΞI(χ). Then

Ud =
⋃

I({1,...,d+1}
T I · U◦I , Ud =

⋃

I({1,...,d+1}
TI · U◦I

are respectively open neighborhoods of Core(P̃d),Ld. Since the matched local coisotropic fo-
liations correspond to the moment maps for the Hamiltonian actions of T I ,TI , the symplecto-
morphism j◦ canonically extends to j : Ud → Ud. �

On Ud there are two Liouville forms αT ∗Td |Ud and βd+1 = (j−1)∗βP̃d
. When χ̂ = χ/(d + 1) ∈ Z

the function

µ−1
∆ (χ) ∩ Λd+1 → T 1, (θ, ξ) 7→

d+1∑

i=1

(ξi + χ̂)θi

is invariant under the T 1
∆
-action and descends to an integral structure f : Ld → T 1 [Nad, Defi-

nition 5.17(1)]. By [Nad, Remark 5.18(1)] the graph ΓLd ,− f of − f gives a Legendrian lift of Ld

to the circular contactification

(Nd, λd) = (Ud × T 1, αT ∗Td |Ud + dt).

Since we have βd+1|Ld = 0, the Lagrangian Ld is exact [Nad, Definition 5.17(2)]. By [Nad,
Definition 5.18(2)] the zero section Ld × {0} gives a Legendrian lift of Ld to the circular contac-
tification

(N′d, λ
′
d) = (Ud × T 1, βd+1 + dt).

The contact geometry of (Nd, λd) near ΓLd ,− f is equivalent to that of (N′d, λ
′
d) near Ld × {0}.

Lemma 2.8 ([Nad, Section 5.3]). There is a contactomorphism

G : (Nd, λd)→ (N′d, λ
′
d), (([θ], ξ), t) 7→ (([θ], ξ), t + g([θ], ξ))

which makes the diagram

Nd
∼ // N′d

ΓLd ,− f

� ?

OO

∼ // Ld × {0}
� ?

OO

commute, where the vertical arrows are the canonical inclusions.
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Proof. The difference αT ∗Td |Ud − βd+1 is closed and integral, as we have βd+1|Ld = 0. Since the
inclusion Ld ⊂ Ud is a homotopy equivalence, there is a unique function g : Ud → T 1 such that
dg = αT ∗Td |Ud − βd+1 with normalization g|Ld = f . Then one obtains the desired map from [Nad,
Remark 5.16]. �

We denote by Ω∞d+1 ⊂ S ∗T d+1 = (T ∗T d+1 \T d+1)/R>0 and Λ∞d+1 the spherical projectivizations
of the open conic subset Ωd+1 = µ−1

∆
(R>0) ⊂ T ∗T d+1 and the Lagrangian Λd+1. The projection

Ωd+1 → Ω∞d+1 = Ωd+1/R>0 induces a contactomorphism from µ−1
∆

(χ) to Ω∞d+1. Let δ : T d+1 → T 1

be the diagonal character. By [Nad, Lemma 5.19] the map

(pχ, δ) : Ω∞d+1 � µ
−1
∆ (χ)→ T ∗Td × T 1, (θ, ξ) 7→ (([θ], ξ1 − χ̂, . . . , ξd+1 − χ̂),

d+1∑

i=1

θi)

defines a finite contact cover for χ = d + 1. The cover is trivializable over (Nd, λd) with a
canonical section s : Nd → Ω∞d+1 satisfying s(ΓLd ,− f ) = Λ∞d+1.

The contact geometry of (Nd, λd) near ΓLd ,− f is equivalent to that of Ω∞d+1 near Λ∞d+1.

Lemma 2.9 ([Nad, Lemma 5.19]). There is an open contactomorphism s : (Nd, λd) → Ω∞d+1
which makes the diagram

Nd
∼ // s(Nd)

ΓLd ,− f

� ?

OO

∼ // Λ∞d+1

� ?

OO

commute, where the vertical arrows are the canonical inclusions.

Consider the symplectization P̃d × T 1 × R of the circular contactification (P̃d × T 1, βd+1 +

dt) whose Liouville form is given by et(βd+1 + dt). The skeleton Core(P̃d) ⊂ P̃d lifts to the
Legendrian submanifold Core(P̃d) × {0} ⊂ P̃d × T 1, which in turn lifts to a conic Lagrangian
Core(P̃d) × {0} × R ⊂ P̃d × T 1 × R along the canonical projections. Note that the contact
geometry of a cooriented contact manifold is equivalent to the conic symplectic geometry of its
symplectization. In particular, taking the inverse image under the canonical projection induces
a bijection from subspaces of the contact manifold to conic subspaces of its symplectization.

The symplectic geometry of the open neighborhood Ud × T 1 × R of Core(P̃d) × {0} × R in
P̃d × T 1 × R is equivalent to that of the open neighborhood s(Nd) × R of Λd+1 ∩Ωd+1 in Ωd+1.

Theorem 2.10 ([Nad, Theorem 5.23]). There is an open symplectomorphism Ud × T 1 × R ↪→
Ωd+1 which makes the diagram

Ud × T 1 × R � � // Ωd+1

Core(P̃d) × {0} × R
� ?

OO

∼ // Λd+1 ∩Ωd+1

� ?

OO

commute, where the vertical arrows are the canonical inclusions.

Proof. The restriction of j from Lemma 2.7 induces a symplectomorphism

Ud × T 1 × R→ Ud × T 1 × R
which sends Core(P̃d) × {0} × R to Ld × {0} × R. The inverse of the contactomorphism G from
Lemma 2.8 induces a symplectomorphism

(N′d, λ
′
d) × R = Ud × T 1 × R→ Ud × T 1 × R = (Nd, λd) × R
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which sends Ld × {0} × R to ΓLd ,− f × R. The contactomorphism s from Lemma 2.9 induces a
symplectomorphism

(Nd, λd) × R = Ud × T 1 × R→ s(Ud × T 1) × R = s(Nd) × R
which sends ΓLd ,− f × R to Λd+1 ∩ Ωd+1. Note that the symplectization of Ω∞d+1 is isomorphic to
Ωd+1, as Ωd+1 does not intersect the zero section T d+1. �

2.3. A-side category. Let Z be a real analytic manifold over C. We denote by Sh♦(Z) the
cocomplete dg category of large constructible sheaves on Z. Recall that a large constructible
sheaf F on Z is a complex ofC-vector space on Z for which there exists a Whitney stratification
S = {Zα} of Z such thatH i(F |Zα) are locally constant for all i. We denote by Sh♦S(Z) ⊂ Sh♦(Z)
the full dg subcategory of such sheaves, called large S-constructible sheaves.

Fix a point (z, ξ) ∈ T ∗Z. Let B ⊂ Z be a sufficiently small open ball around z ∈ Z and
f : B → R a compatible test function, i.e., a smooth function with f (z) = 0 and d f |z = ξ.
Consider the vanishing cycle functor

φ f : Sh♦(Z)→ Mod(C), F 7→ Γ f≥0(B,F |B).

Definition 2.11. The microsupport ss(F ) ⊂ T ∗Z of F ∈ Sh♦(Z) is the largest closed subset
with φ f (F ) � 0 for any (z, ξ) ∈ T ∗Z \ ss(F ) and its compatible test function f .

Definition 2.12. For a conic Lagrangian Λ ⊂ T ∗Z, we denote by Sh♦Λ(Z) ⊂ Sh♦(Z) the full dg
subcategory of large constructible sheaves with microsupport in Λ.

Given a closed embedding Λ ⊂ Λ′ of conic Lagrangians, there is a full embedding Sh♦Λ(Z) ↪→
Sh♦Λ′(Z). Note that the microsupport is a closed conic Lagrangian.

Remark 2.13. Let −Λ ⊂ T ∗Z be the antipodal conic Lagrangian and ωZ the Verdier dualizing
complex. There is an involutive equivalence

DZ : Sh♦Λ(Z)op → Sh♦−Λ(Z), F 7→ Hom(F , ωZ)

defined by Verdier duality.

Definition 2.14. For a closed conic Lagrangian Λ ⊂ T ∗Z and an open conic subspace Ω ⊂ T ∗Z,
we define the dg category µSh♦Λ(Ω) of large microlocal sheaves on Ω supported along Λ as the
Verdier localization

µSh♦Λ(Ω) = Sh♦Λ∪(T ∗Z\Ω)(Z)/Sh♦T ∗Z\Ω(Z).

Given an inclusion Ω ⊂ Ω′ of open conic subspaces of T ∗Z, there is a restriction functor

ρΩ⊂Ω′ : µSh♦Λ(Ω′)→ µSh♦Λ(Ω).

Lemma 2.15. The assignments Ω 7→ µSh♦Λ(Ω) and (Ω ⊂ Ω′) 7→ ρΩ⊂Ω′ assemble into a sheaf
of dg categories supported along Λ. Moreover, there exists a Whitney stratification of Λ the
restriction of µSh�Λ to whose strata are locally constant.

Remark 2.16. One can check that µSh♦Λ is conic, i.e., invariant under the cotangent scaling of
T ∗Z. Since the intersection of the microsupport and Z coincides with the support, µSh�Λ is the
pushforward of a sheaf supported on Λ, which we also denote by µSh�Λ.

Given a closed embedding Λ ⊂ Λ′ of conic Lagrangians, there is a full embedding

iΛ⊂Λ′ : µSh♦Λ ↪→ µSh♦Λ′ .
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Remark 2.17. For the antipodal conic Lagrangian −Λ ⊂ T ∗Z and the antipodal open conic
subspace −Ω ⊂ T ∗Z, there is an involutive equivalence

DZ : µSh♦Λ(Ω)op → µSh♦−Λ(−Ω)

induced by Verdier duality.

Definition 2.18. For a closed conic Lagrangian Λ ⊂ T ∗Z and an open conic subspace Ω ⊂ T ∗Z,
the category of wrapped microlocal sheaves on Ω supported along Λ is the full dg category
µShΛ(Z) ⊂ µSh♦Λ(Z) of compact objects.

The restriction functor ρΩ⊂Ω′ preserves products. Hence it admits a left adjoint which pre-
serves coproducts. Thus the restriction to compact objects yields a corestriction functor

ρl
Ω⊂Ω′ : µShΛ(Ω)→ µShΛ(Ω′).

Lemma 2.19 ([Nad, Proposition 3.16]). The assignments Ω 7→ µShΛ(Ω) and (Ω ⊂ Ω′) 7→ ρl
Ω⊂Ω′

assemble into a cosheaf of dg categories supported along Λ. Moreover, there exists a Whitney
stratification of Λ the restriction of µShΛ to whose strata are locally constant.

The full embedding iΛ⊂Λ′ preserves products. Hence it admits a left adjoint which preserves
coproducts. The restriction to compact objects yields a Verdier localization

il
Λ⊂Λ′ : µShΛ′ → µShΛ .

Definition 2.20. For a Liouville manifold H, we denote by Fuk(H) the ind-completion of the
wrapped Fukaya category of H.

Lemma 2.21 ([GPS3, Theorem 1.4]). Let H be a real analytic Weinstein manifold. For any
stable polarization of H, there is an equivalence

Fuk(H)op ' µSh♦Core(H)(Core(H)).

Remark 2.22 ([GPS3, Remark 1.2]). Due to the involutive equivalence from Remark 2.17, one
could equivalently negate Core(H) rather than passing to the opposite category of Fuk(H).

2.4. B-side category. For any stable dg category C we denote by CZ2 its folding, i.e., CZ2 is
the stable envelope of the Z2-dg category with the same objects as C whose morphism complex
for c1, c2 ∈ CZ2 is given by

Hom0
CZ2

(c1, c2) =
⊕

n∈Z
Hom2n

C (c1, c2), Hom1
CZ2

(c1, c2) =
⊕

n∈Z
Hom2n+1

C (c1, c2).

For any stable Z2-dg category C we denote by C2Z its unfurling, i.e., C2Z is the 2-periodic dg
category with the same objects as C whose morphism complex for c1, c2 ∈ C2Z is given by

Homn
C2Z

(c1, c2) = Homn̄
C (c1, c2), n ∈ Z 7→ n̄ ∈ Z2.

The folding and unfurling define equivalences between stable Z2-dg categories and 2-periodic
dg categories.

Let Ad+2 = Spec Rd+2 for Rd+2 = C[y1, . . . , yd+2] and Wd+2 = y1 · · · yd+2 ∈ Rd+2.

Definition 2.23. A matrix factorization for the pair (Ad+2,Wd+2) is given by the diagram

V0 d0−→ V1 d1−→ V0

where V0 ⊕ V1 is a Z2-graded free Rd+2-modules of finite rank and d0 ∈ Hom(V0,V1), d1 ∈
Hom(V1,V0) satisfy d1d0 = Wd+2 · idV0 , d0d1 = Wd+2 · idV1 . We denote by MF(Ad+2,Wd+2) the
Z2-dg category of the matrix factorizations for (Ad+2,Wd+2) with obvious morphisms.
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Let O i
d+1 be the matrix factrization

Rd+2
W i

d+2−−−→ Rd+2
yi−→ Rd+2

with W i
d+2 = Wd+2/yi for i = 1, . . . , d + 2.

Lemma 2.24 ([Nad, Proposition 2.1]). The Z2-dg category MF(Ad+2,Wd+2) is split-generated
by {O i

d+1}d+1
i=1 . There are isomorphisms of Z2-graded C-modules

H∗(Hom(O i
d+1,O

i
d+1)) � Rd+2/(yi,W i

d+2), 1 ≤ i ≤ d + 2,

H∗(Hom(O i
d+1,O

j
d+1)) � Rd+2/(yi, y j)[−1], 1 ≤ i , j ≤ d + 2.

Remark 2.25. The matrix factorization Od+2
d+1 belongs to the stable envelope of {O i

d+1}d+1
i=1

Let Yd = Spec Rd+1/(Wd+1) be the union of the coordinate hyperplanes Y i
d = Spec Rd+1/(yi), 1 ≤

i ≤ d + 1. We denote by O i
d the structure sheaf of Y i

d.

Lemma 2.26 ([Nad, Proposition 2.2]). The dg category Coh(Yd) is generated by {O i
d}d+1

i=1 . There
are isomorphisms of Z-graded C-modules

H∗(Hom(O i
d,O

i
d)) � Rd+1[u]/(yi, uW i

d+1), 1 ≤ i ≤ d + 1,

H∗(Hom(O i
d,O

j
d)) � Rd+1/(yi, y j)[−1], 1 ≤ i , j ≤ d + 1,

where u is a variable of cohomological degree 2

Lemma 2.27 ([Orl04, Theorem 3.7]). Let Dsing(Yd) = Coh(Yd)/Perf(Yd) be the 2-periodic dg
quotient category of singularities. Then there is an equivalence

MF(Ad+2, y1 · · · yd+2)→ Dsing(Yd),

(V0 d0−→ V1 d1−→ V0) 7→ Coker(d1).

Lemma 2.28 ([Nad, Proposition 2.3]). Let πd+1,d : Yd+1 → Yd be the natural projection. Then
the pullback functor π∗d+1,d : Coh(Yd)→ Coh(Yd+1) induces an equivalence

Coh(Yd)Z2 ' MF(Ad+2, y1 · · · yd+2)

which sends O i
d to O i

d+1 for 1 ≤ i ≤ d + 1 and u to yd+2.

2.5. Homological mirror symmetry. Let Id+1 be the category whose objects are subsets
I ⊂ {1, . . . , d + 1} and whose morphisms are given by inclusions. We denote by I◦d+1 the
full subcategory of proper subsets. For I ∈ I◦d+1 we define ΛI as the product conic Lagrangian
(Λ1)I ⊂ (T ∗T 1)I . Consider the hyperbolic restriction

ηI⊂I′ = (pI⊂I′)∗(qI⊂I′)! : Sh♦ΛI′ (T
I′)→ Sh♦ΛI

(T I)

where pI⊂I′ : T I×[0, 1
2 )I′\I → T I is the projection and qI⊂I′ : T I×[0, 1

2 )I′\I → T I′ is the canonical
inclusion. Note that ηI⊂I′ is the product of hyperbolic restrictions in the coordinate directions
indexed by I′ \ I and the identity in the coordinate directions indexed by I. We denote by ηI the
hyperbolic restriction with I′ = {1, . . . , d + 1}.
Lemma 2.29 ([Nad, Lemma 5.25, 5.26]). There is an equivalence

Sh♦Λd+1
(T d+1) ' IndCoh(Ad+1)
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which makes the diagram

Sh♦Λd+1
(T d+1) ∼ //

ηI

��

IndCoh(Ad+1)

ι∗I
��

Sh♦ΛI
(T I) ∼ // IndCoh(AI)

commute, where

ιI : AI = SpecC[yi | i ∈ I] ↪→ Ad+1 = SpecC[y1, . . . , yd+1]

is the canonical inclusion of the subvariety defined by y j = 0 for j ∈ Ic.

For I ∈ I◦d+1 we define ΩI as the open conic subset

ΩI = {(θ, ξ) ∈ T ∗T d+1|Σd+1
i=1 ξi > 0, ξ j , 0 for j ∈ Ic} ⊂ Ωd+1.

The collection {ΩI}I∈I◦d+1
forms an open conic cover of Ωd+1 satisfying ΩI∩I′ = ΩI ∩ ΩI′ . Note

that we have ΩI ⊂ ΩI′ whenever I ⊂ I′. Let ∗∗DG be the category of cocomplete dg categories
and functors which preserve colimits and compact objects. Consider a functor

µSh♦ : (I◦d+1)op →∗∗ DG, I 7→ µSh♦ΛI
(ΩI) = µSh♦Λd+1

(ΩI)

which sends inclusions I ⊂ I′ to the restriction functors ρI⊂I′ along the inclusions ΩI ⊂ ΩI′ .
We denote by ρI the restriction functor with I′ = {1, . . . , d + 1}. As µSh♦Λd+1

forms a sheaf, the
canonical functor

µSh♦Λd+1
(Ωd+1)→ lim

I∈(I◦d+1)op
µSh♦ΛI

(ΩI)

is an equivalence.

Theorem 2.30 ([Nad, Theorem 5.27]). There is an equivalence

µSh♦Λd+1
(Ωd+1) ' IndCoh(Yd) = lim

I∈(I◦d+1)op
IndCoh(AI)

which makes the diagram

µSh♦Λd+1
(Ωd+1) ∼ //

ρI

��

IndCoh(Yd)

τI

��
µSh♦ΛI

(ΩI)
∼ // IndCoh(AI)

commute, where τI is the canonical functor.

Proof. There is a natural isomorphism µSh♦Λd+1
→ Sh♦Λd+1

induced by ηI . Indeed, ηI factors
through the microlocalization

Sh♦Λd+1
(T d+1)→ µSh♦ΛI

(ΩI)
η̃I−→ Sh♦ΛI

(T I)

and for inclusions I ⊂ I′ the diagrams

µSh♦ΛI′ (ΩI′)
η̃I′ //

ρI⊂I′
��

Sh♦ΛI′ (T
I′)

ηI⊂I′
��

µSh♦ΛI
(ΩI)

η̃I // Sh♦ΛI
(T I)

commute. Note that the hyperbolic restriction in the coordinate direction indexed by j ∈ Ic

vanishes on sheaves whose microsupport does not intersect the locus {ξ j > 0} ⊂ T ∗T d+1. For
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each I ∈ (I◦d+1)op the functor η̃I is an equivalence, since it admits an inverse induced by the
pushforward

Sh♦ΛI
(T I)→ Sh♦Λd+1

(T d+1)

along the inclusion T I ↪→ T d+1. �

Corollary 2.31 ([Nad, Corollary 5.28]). There is an equivalence

Fuk(P̃d)Z2 ' µSh♦Λd+1
(Ωd+1)Z2 ' MF∞(Ad+2, y1 · · · yd+2)

where MF∞(Ad+2, y1 · · · yd+2) is the ind-completion of MF(Ad+2, y1 · · · yd+2).

Proof. The first equivalence follows from Lemma 2.21. Taking compact objects of the equiva-
lence from Theorem 2.30 and passing to Z2-folding, one obtains the second equivalence from
Lemma 2.28. �

3. Critical loci of Landau–Ginzburg models for very affine hypersufaces

In this section, following [AAK16, Section 3], we realize the mirror pair for very affine
hypersuface as critical loci of associated Landau–Ginzburg models. They give rise to fibrations
over the tropical hypersurface equipped with the canonical stratification.

3.1. Very affine hypersurfaces. Let T = M∨
R/Z = M∨

R/M
∨ be a real (d + 1)-dimensional torus

with cocharacter lattice M∨. We denote by TC = M∨
C∗ the associated complex torus. Taking

its dual, one obtains the complex torus T∨C = MC∗ associated with T∨ = MR/Z = MR/M whose
cocharacter lattice is M. We choose an inner product to identify TT∨ with T ∗T∨ and regard
T∨C � TT∨ � T ∗T∨ as an exact symplectic manifold equipped with the standard Liouville
structure.

Definition 3.1. Let T be a triangulation of a lattice polytope ∆∨ ⊂ M∨
R. We call T adapted

if there is a convex piecewise function ρ : ∆∨ → R whose corner locus is T . We call T
unimodular if each cell is congruent to the standard (d+1)-simplex ∆d+1 under the GL(d+1,Z)-
action.

For a latiice polytope ∆∨ ⊂ M∨
R, choose an adapted unimodular triangulation T . We denote

by A the set of vertices of T . In other words, T is the convex hull Conv(A) of A. The convex
piecewise function ρ : ∆∨ → R defines a Laurent polynomial

Wt : T∨C → C, x 7→
∑

α∈A

cαt−ρ(α)xα(3.1)

in coordinates x = (x1, . . . , xd+1) on T∨C, where cα ∈ C∗ are arbitrary constants and t � 0 is a
tropicalization parameter.

Definition 3.2. For sufficiently general t � 0 we call the hypersurface Ht = W−1
t (0) very affine.

Since t is sufficiently general, a very affine hypersurface Ht is smooth. Due to the above
choice of inner product, we may regard Ht as a Liouville submanifold of T∨C.

Definition 3.3. The amoeba Πt of Ht is its image under Logd+1 : T∨C → Rd+1.

Definition 3.4. The tropical hypersurface ΠΣ associated with Ht is the hypersurface defined by
the tropical polynomial

ϕ : MR → R, ϕ(m) = max{〈m, n〉 − ρ(n) | n ∈ ∆∨}.
Namely, ΠΣ is the set of points where the maximum is achieved more than once.
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According to [Mik04, Corollary 6.4], when t → ∞ the rescaled amoeba Πt/ log t converges
to ΠΣ. It is known that ΠΣ is a deformation retract of Πt for t � 0. Combinatorially, ΠΣ

is the dual cell complex of T . In particular, the set of connected components of Rd+1 \ ΠΣ

bijectively corresponds to A according to which α ∈ A achieves the maximum of 〈m, α〉 − ρ(α)
for m ∈ Rd+1 \ ΠΣ. Note that Rd+1 \ Πt for t � 0 has the same combinatrics as Rd+1 \ ΠΣ.

Remark 3.5. Each connected component ofRd+1\ΠΣ is the locus where the monomial cαt−ρ(α)xα

becomes dominant.

In the sequel, we will fix a general t � 0 and drop t from the notation.

3.2. Landau–Ginzburg A-models for very affine hypersurfaces. For X = T∨C × C with co-
ordinates (x, u) = (x1, . . . , xd+1, u), consider a Laurent polynomial

WX : X → C, (x, u) 7→ uW(x)

where W is the Laurent polynomial (3.1).

Definition 3.6. Let H ⊂ T∨C be a very affine hypersurface defined by the Laurent polynomial
W from (3.1). We call the pair (X,WX) the Landau–Ginzburg A-model for H.

Definition 3.7. The Newton polytope ∆∨X of WX is the convex hull

Conv(0,−∆∨ × {1}) ⊂ M∨
R × R.

Remark 3.8. The polytope ∆∨X admits an adapted unimodular star-shaped triangulation T̃
canonically induced by T . Recall that a triangulation of ∆∨X is star-shaped if all of its sim-
plices not contained in the boundary ∂∆∨X share a common vertex 0 [GS1, Definition 3.3.1].

Lemma 3.9. The critical locus Crit(WX) is given by {u = 0} ∩ {W = 0} ⊂ X.

Proof. Express the tangent map dWX of WX as a vector (udW,W). Since H ⊂ T∨C is smooth,
dW nowhere vanishes. Hence rank(dWX) = 0 if and only if u = 0 and W = 0. �

Remark 3.10. By Lemma 3.9 the projection pr1 : X = T∨C × C → T∨C preserves Crit(WX). Let
ret : Π→ ΠΣ be the continuous map induced by the retraction. Then the composition

f : H � Crit(WX) ↪→ X
pr1−−→ T∨C

Logd+1−−−−→ Π
ret−→ ΠΣ(3.2)

gives the fibration from [Mik04, Theorem 1’]. Recall that k-th intersections of legs of a pair
of pants has torus factor of dimension k. Away from lower dimensional strata, the fiber over a
point in a k-stratum contains a real k-torus in the torus factor.

3.3. Landau–Ginzburg B-models for very affine hypersurfaces. Let Y be the noncompact
(d + 2)-dimensional toric variety associated with the fan

ΣY = Cone(−T × {1}) ⊂ M∨
R × R.

The primitive ray generators of ΣY are the vectors of the form (−α, 1) with α ∈ A. Such vectors
span a smooth cone of ΣY if and only if α span a cell of T .

Dually, Y is associated with the noncompact moment polytope

∆Y = {(m, u) ∈ MR × R | u ≥ ϕ(m)}.
The facets of ∆Y correspond to the maximal domains of linearity of ϕ. Hence the irreducible
toric divisors of Y bijectively correspond to the connected components of Rd+1 \ ΠΣ. In partic-
ular, the combinatrics of toric strata of Y can be read off ΠΣ.
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Remark 3.11. The noncompact polytope ∆Y is homeomorphic to the image of Y under the
composition

Y → (Y)≥0 → MR × R(3.3)

of the map induced by retraction to the nonnegative real points with the restriction of negated
algebraic moment map.

Lemma 3.12. Let q : MR × R → MR be the natural projection. Then under q the union of
facets of ∆Y homeomorphically maps to MR. Moreover, the union of codimension 2 faces of ∆Y

homeomorphically maps to ΠΣ.

Proof. By construction of ΣY under q each facet of ∆Y homeomorphically maps to the maximal
domain of linearity of ϕ corresponding to the same α ∈ A. Any codimension 2 face of ∆Y

can be obtained as the intersection of two distinct facets. Hence q restricted to the union
of codimension 2 faces of ∆Y gives an injection to ΠΣ. This is also surjective, as each full
dimensional face of ΠΣ is adjacent to exactly two maximal domains of linearity. �

For each α = (α1, . . . , αd+1) ∈ A let Yα = (C∗)d+1×Cwith coordinates yα = (yα,1, . . . , yα,d+1, vα),
where yα,1, . . . , yα,d+1, vα are the monomials with weights

η1 = (−1, 0, . . . , 0,−α1), . . . , ηd+1 = (0, . . . , 0,−1,−αd+1), ηd+2 = (0, . . . , 0, 1) ∈ M × Z.
Their pairing with the monomial with weight (−α, 1) ∈ M∨ × Z yields 0, . . . , 0, 1 respectively.

Lemma 3.13. The complex algebraic variety Yα is the affine open subset of Y associated with
the ray spanned by (−α, 1) ∈ M∨ × Z.

Proof. Suppose that σ ∈ ΣY(1) is the cone associated with the affine open subset Yα ⊂ Y . We
have

div(y±1
α,i) =

∑

ξ∈σ(1)

〈±ηi, uξ〉Dξ, div(vα) =
∑

ξ∈σ(1)

〈ηd+2, uξ〉Dξ,

where uξ are primitive ray generators of ξ and Dξ = O(ξ) are the closures of the orbits cor-
responding to ξ. Since y±1

α,1, . . . , y
±1
α,d+1 never vanish on Yα, pairing of ηi with the primitive ray

generators in σ must yield 0 for 1 ≤ i ≤ d + 1. On the other hand, pairing of ηd+2 with the
primitive ray generators of σ must yield 1. �

Due to the above lemma, Yα covers the open stratum of Y and the open stratum of the irre-
ducible toric divisor corresponding to α. If α, β ∈ A are connected by an edge in T , then we
glue Yα to Yβ with the coordinate transformations

yα,i = vβi−αi
β yβ,i, vα = vβ, 1 ≤ i ≤ d + 1.

Thus the coordinate charts {Yα}α∈A cover the complement in Y of the codimension more than 1
strata.

We may write v for vα as it does not depend on the choice of α ∈ A. Since the weight
(0, . . . , 0, 1) pairs nonnegatively with the primitive ray generators of ΣY , the monomial v defines
a regular function on Y , which we denote by WY .

Definition 3.14. Let H ⊂ T∨C be a very affine hypersurface defined by the Laurent polynomial
W from (3.1). We call the pair (Y,WY) the Landau–Ginzburg B-model for H.

Remark 3.15. The pair (Y,WY) is a conjectural SYZ mirror to H [AAK16, Theorem 1.6].

The critical locus Crit(WY) is the preimage of the codimension 2 strata of ∆Y under (3.3).
One can check this locally in each affine chart, which is isomorphic to Cd+2 as T is unimodular.
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Lemma 3.16. The critical locus Crit(WY) is given by
⋃

α∈A Yα \ Yα ⊂ Y.

Proof. For each α ∈ A the intersection Crit(WY) ∩ Yα is empty. Indeed, when restricted to Yα,
the tangent map dWY of WY is expressed as a vector whose last factor is 1. Hence dWY |Yα is
surjective and we obtain

Crit(WY) ⊂ Y \
⋃

α∈A

Yα =
⋃

α∈A

Yα \ Yα.

Take any point y ∈ Yα \ Yα. Suppose that there is a vertex α′ ∈ A connected with α by
an edge in T such that y ∈ Yα′ \ Yα′ . Let σ ∈ ΣY be the cone generated by two rays ξα =

Cone(−α, 1), ξα′ = Cone(−α′, 1). Then we have

div(v) = 〈ηd+2, uξα〉Dξα + 〈ηd+2, uξα′ 〉Dξα′

on the associated affine open subset SpecC[σ∨ ∩ (M × Z)] � (C∗)d × C2 of Y . Hence the
restriction of dWY vanishes on Dξα ∩ Dξ′

α′
, which is

((Yα \ Yα) ∩ (Yα′ \ Yα′))|SpecC[σ∨∩(M×Z)].

The union of such intersections for all α′ ∈ A is Yα \ Yα. Applying the same argument to the
other cases, we obtain

⋃

α∈A

Yα \ Yα ⊂ Crit(WY).

�

Remark 3.17. Since the map (3.3) sends each k-th intersection of Dξα , α ∈ A to a codimension
k face of ∆Y , by Lemma 3.16 it sends Crit(WY) to the union of codimension 2 faces. On the
other hand, by Lemma 3.12 the map q : MR × R → MR homeomorphically sends the union of
codimension 2 faces of ∆Y to ΠΣ. Hence the composition

g : Crit(WY) ↪→ Y
(3.3)−−−→ ∆Y

q−→ ΠΣ(3.4)

gives a fibration. The fiber over a point in a k-stratum is a real k-torus [CLS11, Prop 12.2.3(b)].

4. Constructible sheaves of categories

In this section, we define two constructible sheaves of categories over the tropical hyper-
surface ΠΣ ⊂ Rd+1 with the canonical stratification and a certain topology generated by the
vertices. In the sequel, by a Liouville manifold we mean a Liouville manifold of finite type,
i.e., the completion of some Liouville domain. By a Weinstein manifold we mean a Liouville
manifold together with a Morse–Bott function constant on the cylindrical ends for which the
Liouville vector field is gradient-like.

Definition 4.1. We introduce into ΠΣ with the canonical stratification a topology defined as
follows. To a vertex v ∈ ΠΣ we define the associated open subset Uv as the union of all
strata adjacent to v, which is homeomorphic to a d-dimensional tropical pants. To an edge
e ⊂ ΠΣ connecting two vertices v1, v2 we define the associated open subset Ue as the intersection
Uv1 ∩ Uv2 . Similarly, to each k-stratum S (k) ⊂ ΠΣ adjacent to l vertices v1, . . . , vl we define the
associated open subset US (k) as the intersection Uv1 ∩ · · · ∩ Uvl . A general open subset U is of
the form US (k1) ∪ · · · ∪ US (km) for some strata S (k1), . . . , S (km) ⊂ ΠΣ.
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4.1. A-side partially presheaves of categories for very affine hypersurfaces. Fix a pants
decomposition of H ⊂ T∨C � T ∗T d+1 [Mik04, Theorem 1’].

Definition 4.2. The A-side partially presheaf F pre
A of categories for H is a collection

{F pre
A (US (k)),RA

S (k),S (l)}
of sections and restriction functors defined on connected open subsets of ΠΣ as follows:

• The section over US (k) is given by Z2-folding of the ind-completion of the wrapped
Fukaya category

F pre
A (US (k)) = Fuk(HS (k))Z2

where HS (k) is the inverse image of suitably shrunk US (k) under (3.2). In other words,
HS (k) is symplectomorphic to the intersection of k legs of P̃d.
• Along an inclusion US (l) ↪→ US (k) the restriction functor is given by Z2-folding of the

ind-completion of the Viterbo restriction [GPS2, Section 11.1]

RA
S (k),S (l) = (VA

S (k),S (l))Z2 : Fuk(HS (k))Z2 → Fuk(HS (l))Z2 .

We will show that F pre
A is well defined. First, since our Liouville manifolds are of finite type,

the section is unique up to canonical equivalence. In particular, the sections are well defined.
The following is a special case of [GPS2, Lemma 3.4].

Lemma 4.3. Let λS (k) , λ′S (k) be the completions of two Liouville forms on a Liouville domain
[HS (k)] completing to HS (k) . Then there is a canonical equivalence

Fuk(HS (k) , λU(k)
S

) = Fuk(HS (k) , λ′
U(k)

S
).

Proof. Our argument is essentially the same as [Jef22, Lemma 2]. Since the space of Liouville
forms for a compact symplectic manifold-with-boundary is convex, any two Liouville forms on
[HS (k)] are canonically homotopic and the homotopy completes to that for λS (k) , λ′S (k) . Then one
can apply [CE12, Proposition 11.8] to obtain a strictly exact symplectomorphism ψ : HS (k) →
HS (k) . By definition it satisfies ψ∗λ′−λ = d f for some compactly supported function f : HS (k) →
R. In particular, ψ defines a trivial inclusion of open Liouville sectors in the sense of [GPS2,
Definition 3.3]. Then one can apply [GPS2, Lemma 3.4] to see that the pushforward functor
from [GPS1, Section 3.6] gives the canonical equivalence. �

In the sequel, we drop Liouville structures from the notation. Since by [Mik04, Remark 5.2]
each piece of the pants decomposition can be made symplectomorphic to P̃d, we obtain

Corollary 4.4. For each vertex v ∈ ΠΣ the section F pre
A (Uv) is given by Fuk(P̃d)Z2 .

Let P̃S (k) be the intersection of k-legs of P̃d mapping onto US (k) under Logd+1.

Corollary 4.5. For each US (k) = ∩l
i=1Uvi the section F pre

A (US (k)) is given by Fuk(P̃S (k))Z2 .

Next, along an inclusion US (l) ↪→ US (k) the restriction functor comes from a certain quotient
functor. In particular, the restriction functors are well defined.

Lemma 4.6. Along an inclusion US (l) ↪→ US (k) the Viterbo restriction functor is given by the
quotient by the cocores of P̃S (k) not in P̃S (l) . Here, we regagrd [P̃S (l)] as a Weinstein subdomain
of P̃S (k) with respect to Nadler’s Weinstein structure.

Proof. As the other cases can be proved similarly, we restrict ourselves to the case where S (k) =

Uv and S (l) = Ue for some edge e connecting v with v′. By Corollary 4.5 the section F pre
A (Ue)

is given by Fuk(P̃e)Z2 . Permuting legs by Sd+2-action if necessary, we may assume that P̃e

does not correspond to the final leg of P̃v. Since both [P̃e] and the cobordism [P̃v] \ [P̃e]◦ are
Weinstein, one can apply [GPS2, Proposition 11.2] to see that the Viterbo restriction coincides
with the quotient by the cocores of P̃v not in P̃e. �
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4.2. A-side constructible sheaves of categories for very affine hypersurfaces. Since Uv for
all v ∈ Vert(ΠΣ) form a subbase of the topology of ΠΣ, we may pass to its sheafification.

Definition 4.7. The A-side constructible sheaf of categories for H is the sheafification

FA : Open(ΠΣ)op →∗∗ DG,

where Open(ΠΣ) is the category of open subsets of ΠΣ with respect to the topology defined in
Definition 4.1.

Remark 4.8. In general, the existence of sheafification might be delicate because of size issues.
However, this is not the case in our setting as ∗∗DG has small limits and colimits, and the
topology on ΠΣ has finite cardinality.

We will show that the global section is given by the wrapped Fukaya category of H. In our
proof, the following two lemmas play key roles.

Lemma 4.9. Let C be a stable presentable dg category and A ,B its full presentable dg sub-
categories such that

HomC (A, B) = HomC (B, A) = 0

for any A ∈ A , B ∈ B. Then there is a fiber product

C

��

// C /B

��
C /A // C /〈A ,B〉.

Proof. Since we have the pushouts

A

��

// C

��

B

��

// C

��
0 // C /A , 0 // C /B,

the Verdier localizations C → C /A ,C → C /B admit right adjoints as well as the inclusions
A ↪→ C ,B ↪→ C . Hence we obtain two semiorthogonal decompositions of C by A ,A ⊥ and
by B,B⊥, which respectively yield cofiber sequences

CA → C → CA ⊥ , CB → C → CB⊥ , CA ⊕B → C → C(A ⊕B)⊥

for any object C ∈ C . Note that the full dg subcategory 〈A ,B〉 ⊂ C is equivalent to A ⊕B, as
A ,B are mutually orthogonal. Here, the morphism CA ⊕B → C in the last cofiber sequence is
the direct sum of that CA → C,CB → C in the first two. Since A ,B are mutually orthogonal,
its cone can be computed by taking the cone of CB → C followed by taking the cone of
CA → CB⊥ . Hence we obtain a cofiber sequence

CA → CB⊥ → C(A ⊕B)⊥ .

The conclusion is equivalent to there being a fiber product

HomC (C1,C2)

��

// HomC /B(C1,C2)

��
HomC /A (C1,C2) // HomC /〈A ,B〉(C1,C2)

(4.1)
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of morphism complexes for any C1,C2 ∈ C . Note that it suffices to check the latter when
C = C1 = C2. Since CA ⊥ ,CB⊥ ,C(A ⊕B)⊥ are the images of C under the right adjoints of the
Verdier localizations C → C /A ,C → C /B,C → C /〈A ,B〉, one can rewrite (4.1) as

HomC (C,C)

��

// HomC (C,CB⊥)

��
HomC (C,CA ⊥) // HomC (C,C(A ⊕B)⊥).

Now, as the functor HomC (C,−) preserves fiber products, it suffices to show that

C

��

// CB⊥

��
CA ⊥ // C(A ⊕B)⊥

(4.2)

is a fiber product in C . Consider the diagram

CA

��

// C

��

// CB⊥

��
0 // CA ⊥ // C(A ⊕B)⊥ .

(4.3)

Since both the left and the outer squares are pushouts, the right square is also a pushout. It
follows that (4.2) is a fiber product, as for stable dg categories any fiber product is a bicartesian.

�

Lemma 4.10. Let W be a d-dimensional Weinstein manifold with a fixed pants decomposition.
Consider the gluing W ∪ P̃d of Weinstein manifolds W with P̃d along a union of l legs of P̃d for
1 ≤ l < d + 2 with restricted Nadler’s Weinstein structures. Then we have

HomFuk(W∪P̃d)(L1, L2) = HomFuk(W∪P̃d)(L2, L1) = 0

for cocores L1, L2 of W ∪ P̃d respectively not in P̃d,W.

Proof. As the other cases can be proved similarly, we restrict ourselves to the simplest case.
Consider the gluing P̃1

d ∪Core(C) P̃2
d of two d-dimensional pairs of pants along a leg C, where

P̃1
d, P̃

2
d are equipped with Nadler’s Weinstein structures. Here, we choose their final legs differ-

ent from C. Then [P̃1
d], [P̃2

d] are Weinstein subdomains of [P̃1
d∪Core(C) P̃2

d]. Since the cobordisms
[P̃1

d ∪Core(C) P̃2
d] \ [P̃1

d]◦, [P̃1
d ∪Core(C) P̃2

d] \ [P̃2
d]◦ are also Weinstein, by [GPS2, Proposition 11.2]

the Viterbo restriction functors

Fukω(P̃1
d ∪Core(C) P̃2

d)→ Fukω(P̃1
d), Fukω(P̃1

d ∪Core(C) P̃2
d)→ Fukω(P̃2

d)

are the quotients by the cocores respectively not in P̃1
d, P̃

2
d. Here, (−)ω denotes taking compact

objects.
Let L1, L2 be cocores of P̃1

d∪Core(C) P̃2
d respectively not in P̃2

d, P̃
1
d. We claim that the generating

set of Floer complex CF•(L1, L2) is empty. Suppose that the time 1 trajectory φ1
Ham(L1) of L1

under the Hamiltonian flow φHam intersects L2. Then one finds a point p ∈ L1 which needs to
be pushed from the initial position through C to reach L2. Let 0 < t < 1 be the minimum time
such that φt

Ham(p) ∈ ∂C̄ and φt+ε
Ham(p) ∈ C \ ∂C̄ for 0 < ε � 1. By construction the Hamiltonian

flow on the gluing region is orthogonal to the Liouville flow on C. Recall that on cylindrical
ends the wrapping is defined by the Hamiltonian flow which is orthogonal to the Liouville flow
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and we glue P̃1
d, P̃

2
d along their skeleta inside C. Consider its restriction to the first factors in

the product decompositions

C � C∗z × P̃d−1, C � C∗z̄ × P̃d−1

of C respectively as a leg of P̃1
d, P̃

2
d. The restricted Liouville flow to C∗z ,C

∗
z̄ is parallel to their

radial coordinate directions. Hence φt+ε
Ham(p) would never exit C to reach L2, leading to contra-

diction. �

Theorem 4.11. The canonical functor

Fuk(H)Z2 → FA(ΠΣ) = lim


∏

v∈Vert(ΠΣ)

FA(Uv)→
∏

e∈Edge(ΠΣ)

FA(Ue)→ · · ·


is an equivalence.

Proof. We begin with a vertex v0
1 ∈ ΠΣ to which some free edge is adjacent. Here, by a free

edge we mean an edge not connecting two vertices. There are in total l1 < d + 2 vertices
v1

1, . . . , v
1
l1
∈ ΠΣ connected with v0

1 by single edges e1
11, . . . , e

1
1l1

. Let vk
1, . . . , v

k
lk

be the vertices of
ΠΣ connected with v0

1 by at least k edges. Each vk
i is connected with at least one vertex vk−1

j by
a single edge ek

ji for some 1 ≤ j ≤ lk−1. We will compute the section of FA over the union

Uv0
1
∪

l1⋃

i1=1

Uv1
i1
∪ · · · ∪

lk⋃

ik=1

Uvk
ik
.

Consider Nadler’s Weinstein structures transported to Hv0
1
,Hv1

1
whose final legs correspond

to different edges from e1
11. Then Hv0

1
,Hv1

1
glue along their Weinstein submanifold He1

11
to yield

a Weinstein manifold Hv0
1
∪ Hv1

1
. Note that the pants decomposition from [Mik04, Theorem 1’]

is nothing but the gluing of the closures of tailored pants along their boundaries. By [Mik04,
Remark 5.2] this gluing is compatible with the natural symplectic structures. To the product of
their boundaries with a sufficiently small open interval, one can transport Nadler’s Weinstein
structure restricted to He1

11
via radial deformation. By Lemma 4.9 and Lemma 4.10 we obtain a

canonical equivalence

Fuk(Hv0
1
∪ Hv1

1
)Z2 = FA(Uv0

1
∪ Uv1

1
).

Consider Nadler’s Weinstein structures transported to Hv0
1
,Hv1

1
,Hv1

2
whose final legs corre-

spond to different edges from e1
11, e

1
12 and possibly existing edge e11

12 connecting v1
1 with v1

2.
Note that each of Hv0

1
,Hv1

1
,Hv1

2
has at least one free leg which is not involved in this gluing.

Then Hv0
1
,Hv1

1
,Hv1

2
glue along their Weinstein submanifolds He1

11
,He1

12
,He11

12
to yield a Weinstein

manifold Hv0
1
∪ Hv1

1
∪ Hv1

2
. By Lemma 4.9 and Lemma 4.10 we obtain a canonical equivalence

Fuk(Hv0
1
∪ Hv1

1
∪ Hv1

2
)Z2 = FA(Uv0

1
∪ Uv1

1
∪ Uv1

2
).

Iteratively, we obtain a canonical equivalence

Fuk(Hv0
1
∪

l1⋃

i=1

Hv1
i
)Z2 = FA(Uv0

1
∪

l1⋃

i=1

Uv1
i
).

Suppose that the canonical functor

Fuk(Hv0
1
∪

l1⋃

i1=1

Hv1
i1
∪ · · · ∪

lk−1⋃

ik−1=1

Hvk−1
ik−1

)Z2 → FA(Uv0
1
∪

l1⋃

i1=1

Uv1
i1
∪ · · · ∪

lk−1⋃

ik−1=1

Uvk−1
ik−1

)
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is an equivalence. When vk
i is connected with only one vertex vk−1

j , consider Nadler’s Weinstein
structures transported to Hvk−1

j
,Hvk

i
whose final legs correspond to different edges from ek

ji. The

former extends to give another Weinstein structure on Hv0
1
∪⋃l1

i1=1 Hv1
i1
∪· · ·∪⋃lk−1

ik−1=1 Hvk−1
ik−1

as fol-

lows. First, recall the translated Liouville structure α−l
d+1 on T d+1

C from (2.1). Note that we negate
l here. Restrict it to P̃d and then transport to all the other legs but the final compatibly with the
outward Liouville vector field from Hvk−1

j
. To the final leg, transport its slight modification.

Namely, push the zero locus of the Liouville vector field associated with α−l
d+1 far away along

the positive diagonal direction. Then the closure of P̃d becomes a Weinstein cobordisim. We
extend this along the direction towards cylindrical ends of Hv0

1
∪⋃l1

i1=1 Hv1
i1
∪ · · · ∪⋃lk−1

ik−1=1 Hvk−1
ik−1

.
Note that the extension might not be canonical.

In any case, the result is a Liouville manifold of finite type and Liouville homotopic to the
standard Liouville structure, which can be canonically upgraded to Weinstein. Then Hv0

1
∪

⋃l1
i1=1 Hv1

i1
∪ · · · ∪⋃lk−1

ik−1=1 Hvk−1
ik−1
,Hvk

i
glue along their Weinstein submanifold Hek

ji
to yield a We-

instein manifold Hv0
1
∪⋃l1

i1=1 Hv1
i1
∪ · · · ∪⋃lk−1

ik−1=1 Hvk−1
ik−1
∪ Hvk

i
. Here, we use the same symbol to

denote the exact symplectic manifolds with modified Weinstein structure. By Lemma 4.9 and
Lemma 4.10 we obtain a canonical equivalence

Fuk(Hv0
1
∪

l1⋃

i1=1

Hv1
i1
∪ · · · ∪

lk−1⋃

ik−1=1

Hvk−1
ik−1
∪ Hvk

i
)Z2 = FA(Uv0

1
∪

l1⋃

i1=1

Uv1
i1
∪ · · · ∪

lk−1⋃

ik−1=1

Uvk−1
ik−1
∪ Uvk

i
).

When vk
i is connected with more than one vertices vk−1

j1
, . . . , vk−1

jl
by single edges, consider

Nadler’s Weinstein structures transported to Hvk−1
j1
, . . . ,Hvk−1

jl
,Hvk

i
whose final legs correspond to

different edges from the ones connecting any two of vk−1
j1
, . . . , vk−1

jl
, vk

i . The Weinstein structure
on Hvk−1

j1
∪ · · · ∪ Hvk−1

jl
extends to give another Weinstein structure on Hv0

1
∪ ⋃l1

i1=1 Hv1
i1
∪ · · · ∪

⋃lk−1
ik−1=1 Hvk−1

ik−1
in a similar way as above. Iteratively, we obtain a canonical equivalence

Fuk(Hv0
1
∪

l1⋃

i1=1

Hv1
i1
∪ · · · ∪

lk⋃

ik=1

Hvk
ik
)Z2 = FA(Uv0

1
∪

l1⋃

i1=1

Uv1
i1
∪ · · · ∪

lk⋃

ik=1

Uvk
ik
).

�

4.3. B-side constructible sheaves of categories for very affine hypersurfaces. Recall that
ΠΣ is the dual cell complex of T , which we assume to be an adapted unimodular triangu-
lation of the convex lattice polytope ∆∨ ⊂ M∨

R. In particular, each vertex v ∈ ΠΣ bijec-
tively corresponds to a cell congruent to a standard simplex under the GL(d + 1,Z)-action.
The cell in turn bijectively corresponds to a cone σv ∈ ΣY , which defines an affine open
subvariety Yv = SpecC[σ∨v ∩ (M × Z)] ⊂ Y isomorphic to Ad+2. Introduce coordinates
(yev

1
, . . . , yev

d+2
) on Yv, where ev

i stand for edges adjacent to v and dual to facets σev
i

of σv so
that Yev

i
= SpecC[σ∨ev

i
∩ (M × Z)] ⊂ Yv are the open subvarieties defined by yev

i
, 0.

Definition 4.12. The B-side constructible sheaf FB of categories for H is a collection

{FB(US (k)),RB
S (k),S (l)}

of sections and restriction functors defined on connected open subsets of ΠΣ as follows:
• The section over US (k) is given by the ind-completion of the category of matrix factor-

izations

FB(US (k)) = MF∞(Yv|⋂k
m=1{yev

im
,0}, yev

1
· · · yev

d+2
),
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where ev
i1
, . . . , ev

ik
are the edges adjacent to v determining the k-stratum S (k).

• Along an inclusion US (l) ↪→ US (k) the restriction functor is given by the canonical re-
striction functor

RB
S (k),S (l) : MF∞(Yv|⋂k

m=1{yev
im
,0}, yev

1
· · · yev

d+2
)→ MF∞(Yv|⋂l

n=1{yev
jn
,0}, yev

1
· · · yev

d+2
),

where ev
i1
, . . . , ev

ik
and ev

j1
, . . . , ev

jl
are edges adjacent to v respectively determining S (k)

and S (l).

Note that FB defines a sheaf on ΠΣ without passing to sheafification, since Uv for all v ∈
Vert(ΠΣ) form a subbase of the topology of ΠΣ and MF∞ is a sheaf on Y [Pre, Proposition
A.3.1].

Lemma 4.13. There is a canonical equivalence

FB(ΠΣ) = MF∞(Y,WY)

compatible with restrictions. In particular, for every open subset U ⊂ ΠΣ it makes the diagram

FB(ΠΣ) //

'
��

FB(U)

'
��

MF∞(Y,WY) // MF∞(YU ,WY)

commute where horizontal arrows are the restrictions. Here, YU ⊂ Y is the open subset map-
ping to U under the composition of (3.3) with q : MR × R→ MR.

Proof. Take an affine open cover
⋃

v∈Vert(ΠΣ) Yv of Y . By definition of FB we have

FB(ΠΣ) = lim


∏

v∈Vert(ΠΣ)

FB(Uv)→
∏

e∈Edge(ΠΣ)

FB(Ue)→ · · ·
 .

If e is an edge connecting two vertices v, v′, then the associated restriction functors are

RB
v,e : MF∞(Yv, yev

1
· · · yev

d+2
)→ MF∞(Yv|{yev

i
,0}, yev

1
· · · yev

d+2
),

RB
v′,e : MF∞(Yv′ , yev′

1
· · · yev′

d+2
)→ MF∞(Yv′ |{y

ev′
j
,0}, yev′

1
· · · yev′

d+2
).

Recall that ΠΣ encodes all the combinatorial information to recover both H and Y from pieces.
In particular, it gives a coordinate transformation

(yev′
1
, · · · , yev′

d+2
)→ (yev

1
, · · · , yev

d+2
)

on Ye which defines a gluing datum

MF∞(Yv|{yev
i
,0}, yev

1
· · · yev

d+2
) ' MF∞(Yv′ |{y

ev′
j
,0}, yev′

1
· · · yev′

d+2
).

As Yv form an open cover of Y , such a gluing datum is compatible with further restrictions.
Hence FB(ΠΣ) is also the limit of the diagram

∏

v∈Vert(ΠΣ)

MF∞(Yv, yev
1
· · · yev

d+2
)→

∏

e∈Edge(ΠΣ)

MF∞(Yv|{ye,0}, yev
1
· · · yev

d+2
)→ · · · .

Since the sheaf MF∞ on Y satisfies Zariski descent [Pre, Proposition A.3.1], it coincides with
MF∞(Y,WY) and the compatible equivalences on pieces glue to yield a canonical equivalence
FB(ΠΣ) = MF∞(Y,WY). By the same argument, we obtain a canonical equivalence FB(U) =

MF∞(YU ,WY) for every open subset U ⊂ ΠΣ. Since Uv for all v ∈ Vert(ΠΣ) form a subbase,
these equivalences respect restrictions. �
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5. Isomorphism of the constructible sheaves

In this section, we give a proof of HMS for very affine hypersurfaces by gluing HMS for
pairs of pants established in [Nad]. When gluing such equivalences, the combinatorial duality
over ΠΣ from Section 3 plays a crucial role.

5.1. Local equivalences. Passing to the category of matrix factorizations might be delicate
because of Knörrer periodicity. First, we show how to lift Nadler’s equivalence, i.e., the equiv-
alence from Corollary 2.31 to the category of matrix factorizations preserving the compatibility
with restrictions.

Lemma 5.1. Let [HU] be a Weinstein subdomain of [H]. Then the skeleton Core(HU) of HU is
a closed subset of the skeleton Core(H) of H.

Proof. Replacing [HU] with its radial deformation if necessary, we may assume that Core(HU)
is disjoint from ∂[HU] = ∂∞HU . Indeed, skeleta of Liouville manifolds of finite type are
maximal compact subsets conic with respect to Liouville vector fields. Since any point in
∂∞HU escapes to infinity along the Liouville vector flow, it never contributes to Core(HU). We
may assume further that Core(H) is contained in [H]. Then Core(H) ∩ ([H] \ [HU]◦) is an
open subset of Core(H). Since, up to deformation, Core(HU) coincides with the complement
of Core(H) ∩ ([H] \ [HU]◦) in Core(H), it is a closed subset of Core(H). �

Lemma 5.2. For each vertex v ∈ ΠΣ there is an equivalence

FA(Uv) ' IndCoh(Yv,d)Z2 , Yv,d = {yev
1
· · · yev

d+1
= 0} ⊂ Ad+1

compatible with restrictions. In particular, for every open subset US (k) ⊂ Uv determined by
edges ev

i1
, . . . , ev

ik
adjacent to v, we have the commutative diagram

FA(Uv)
RA

v,S (k)
//

'
��

FA(US (k))

'
��

IndCoh(Yv,d)Z2
// IndCoh(Yv,d|⋂k

j=1{yev
i j
,0})Z2

where the lower horizontal arrow is the canonical restriction functor.

Proof. From the argument in the proof of Theorem 2.30 we obtain a commutative diagram

Coh(
⋃k

j=1A
{i j}c) //

'
��

Coh(Yv,d) //

'
��

Coh(Yv,d|⋂k
j=1{yev

i j
,0}) //

'
��

0

µSh(
⋃k

j=1 Λ∞{i j}c)
// µSh(Λ∞d+1) // µSh(Λ∞d+1)/ µSh(

⋃k
j=1 Λ∞{i j}c)

// 0

(5.1)

where the horizontal arrows form exact sequences. Here, the upper left horizontal arrows is
the canonical functor to the colimit and the lower left horizontal arrows is left adjoint to the
restriction.

Recall that HS (k) is isomorphic to the intersection of legs Ld,i1(K), . . . , Ld,ik(K) ⊂ P̃d. We
write ΛS (k) for the isomorphic image of Core(HS (k)) × {0} × R under the symplectomorphism
Ud ×T 1×R ↪→ Ωd+1 from Lemma 2.10. Let P̃I ⊂ T ∗T I be the tailored pants for I = {i1, . . . , ik}.
We write LI for the isomorphic image of Core(P̃I) under the symplectomorphism from Lemma
2.10. Unwinding the proof of Lemma 2.7 and Lemma 2.10, one sees that

Core(HS (k)) � T Ic × Core(P̃I) � TIc × LI � T Ic × s(ΓLI ,− f |LI
) � T Ic × Λ∞I ⊂ Λ∞d+1
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and Λ∞S (k) ⊂ Λ∞d+1 is defined as
⋂k

j=1{ξi j = 0}. Hence we obtain

k⋃

j=1

Λ∞{i j}c = Λ∞d+1 \ Λ∞S (k) , µSh(
k⋃

j=1

Λ∞{i j}c) = µSh(Λ∞d+1 \ Λ∞S (k)).

From the argument in the end of [GS1, Section 4] we obtain another commutative diagram

µSh♦(Λ∞d+1 \ Λ∞S (k)) // µSh♦(Λ∞d+1) // µSh♦(Λ∞S (k)) // 0

〈Cocores of [Hv] \ [HS (k)]◦〉 // Fuk(Hv) // Fuk(HS (k)) // 0

(5.2)

where the horizontal arrows form exact sequences and the middle and right vertical arrows are
the equivalences from [GPS3, Theorem 1.4]. Here, the upper left horizontal arrow is left adjoint
to the restriction to Λ∞d+1 \ Λ∞S (k) which is open by Lemma 5.1, and the lower right horizontal
arrow is the ind-completion of the Viterbo restriction functor from [GPS2, Proposition 11.2].
Hence we may concatenate (5.1) and (5.2) to obtain a commutative diagram

IndCoh(
⋃k

j=1A
{i j}c) //

'
��

IndCoh(Yv,d) //

'
��

IndCoh(Yv,d|⋂k
j=1{yev

i j
,0}) //

'
��

0

〈Cocores of [Hv] \ [HS (k)]◦〉 // Fuk(Hv) // Fuk(HS (k)) // 0.

(5.3)

�

Remark 5.3. Recall that Nadler broke the symmetry of P̃d so that the final leg attracts the
Liouville vector flow while remaining the other legs symmetric. In particular, each of the
other legs defines a Weinstein submanifold, which is isomorphic to a product of C∗ and a 1-
dimensional lower tailored pants. Via the combinatorial duality incorporated into the definition
of FB, the Viterbo restriction to such a Weinstein submanifold associated with the j-th leg
corresponds to the restriction to the open subset defined by yev

j
, 0 for j = 1, . . . , d + 1.

Consider the natural projection

Yv,d+1 = {yev
1
· · · yev

d+1
yev

d+2
= 0} ⊂ Yv � Ad+2 → Y i

v,d+1 = {yev
1
· · · ŷev

i
· · · yev

d+2
= 0} ⊂ Ad+1

of the union of the coordinate hyperplanes. By Lemma 2.28 the pullback induces an equiva-
lence

Coh(Y i
v,d+1)Z2 ' MF(Ad+2, yev

1
· · · yev

d+1
yev

d+2
).(5.4)

Theorem 5.4. For each vertex v ∈ ΠΣ there is an equivalence

FA(Uv) ' FB(Uv)

compatible with restrictions. In particular, for every open subset US (k) ⊂ Uv determined by
edges ev

i1
, . . . , ev

ik
adjacent to v, we have the commutative diagram

FA(Uv)
RA

v,S (k)
//

'
��

FA(US (k))

'
��

FB(Uv)
RB

v,S (k)

// FB(US (k)).
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Proof. On each vertex v ∈ ΠΣ we have d + 2 Nadler’s equivalences

ϕv
i : Fuk(Hv)Z2 → IndCoh(Y i

v,d+1)Z2 → MF∞(yev
1
. . . yev

d+2
)

depending on the choice of the final leg. Here, we use the symbol MF∞(yev
1
. . . yev

d+2
) to denote

MF∞(Ad+2, yev
1
· · · yev

d+1
yev

d+2
) for brevity. The equivalence ϕv

d+2 is compatible with restrictions
along edges except ev

d+2. Passing to ϕv
i for i = 1, . . . , d + 1, we obtain restrictions

ψv
i ◦ ϕv

i |ev
d+2

: Fuk(Hev
d+2

)Z2 → IndCoh(Y i
v,d+1|{yev

d+2
,0})Z2 → MF∞(yev

1
· · · yev

d+2
|{yev

d+2
,0})

along ev
d+2, where ψv

i are the autoequivalences MF∞(yev
1
· · · yev

d+2
) → MF∞(yev

1
· · · yev

d+2
) induced

by shuffling the coordinates corresponding to the final legs. By Lemma 4.3 and the argument
in the proof of Theorem 2.30 the additional restrictions ψv

i ◦ ϕv
i |ev

d+2
do not depend on the choice

of i. Namely, we have the commutative diagram

Fuk(Hev
d+2

)Z2

ψv
j◦ϕv

j |ev
d+2// MF∞(yev

1
· · · yev

d+2
|{yev

d+2
,0})

Fuk(Hev
d+2

)Z2

ψv
i ◦ϕv

i |ev
d+2// MF∞(yev

1
· · · yev

d+2
|{yev

d+2
,0}).

By the same argument, one sees that ϕv
d+2 is compatible with further restrictions and defines the

desired equivalence. �

5.2. Gluing equivalences. Finally, we glue the local equivalence from Theorem 5.4 on each
vertex v ∈ ΠΣ to obtain a global equivalence which is compatible with restrictions.

Theorem 5.5. There is an equivalence

FA(ΠΣ) ' FB(ΠΣ)

compatible with restrictions. In particular, for every open subset U ⊂ ΠΣ we have the commu-
tative diagram

FA(ΠΣ) //

'
��

FA(U)

'
��

FB(ΠΣ) // FB(U)

where the horizontal arrows are the restrictions.

Proof. Choose an integer 1 ≤ k(v) ≤ d + 2 for a vertex v ∈ ΠΣ to fix a Nadler’s equivalence

ϕv
k(v) : Fuk(Hv)Z2 → IndCoh(Yk(v)

v,d+1)Z2 → MF∞(yev
1
, . . . , yev

d+2
).

Suppose that v is connected with another vertex v′ by an edge e. Then ΣY gives the correspon-
dences

yev
i
↔ yev′

i′
, i = 1, . . . , d + 2(5.5)
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of the coordinates on the intersection Ye = Yv ∩ Yv′ . Hence there is a unique integer 1 ≤ k(v′) ≤
d + 2 such that ϕv′

k(v′) is compatible with ϕv
k(v). Namely, we have the commutative diagram

ϕv′
k(v′) : Fuk(Hv′)Z2

//

RA
v′ ,ev′

i′
��

IndCoh(Yk(v′)
v′,d+1)Z2

// MF∞(yev′
1
· · · yev′

d+2
)

RB
v′ ,ev′

i′
��

ϕv′
k(v′)|ev′

i′
: Fuk(Hev′

i′
)Z2

// IndCoh(Yk(v′)
v′,d+1|{yev′

i′
,0})Z2

// MF∞(yev′
1
. . . yev′

d+2
|{y

ev′
i′
,0})

φvv′
ii′
��

ϕv
k(v)|ev

i
: Fuk(Hev

i
)Z2

// IndCoh(Yk(v)
v,d+1|{yev

i
,0})Z2

// MF∞(yev
1
. . . yev

d+2
|{yev

i
,0})

ϕv
k(v) : Fuk(HUv)Z2

//

RA
v,ev

i

OO

IndCoh(Yk(v)
v,d+1)Z2

// MF∞(yev
1
· · · yev

d+2
)

RB
v,ev

i

OO

(5.6)

where φvv′
ii′ is the canonical equivalence induced by (5.5). Clearly, it yields the commutative

diagrams for further restrictions.
Suppose further that v′ is connected with another vertex v′′ by an edge e′. Then ΣY gives the

correspondences

yev′
i′
↔ yev′′

i′′
, i′ = 1, . . . , d + 2(5.7)

of the coordinates on the intersection Ye′ = Yv′ ∩ Yv′′ . Hence there is a unique integer 1 ≤
k(v′′) ≤ d + 2 such that ϕv′′

k(v′′) is compatible with ϕv′
k(v′). Namely, we have the same commutative

diagram as (5.6). On the intersection Yv ∩ Yv′ ∩ Yv′′ , the fan ΣY also gives the correspondences

yev
i
↔ yev′′

i′′′
, i = 1, . . . , d + 2(5.8)

of the coordinates. Hence there is a unique integer 1 ≤ k′(v′′) ≤ d + 2 such that ϕv′′
k′(v′′) is

compatible with ϕv
k(v). Since the affine pieces Yv,Yv′ ,Yv′′ glue to yield an open subset of Y , the

correspondences (5.8) are compatible with (5.5) and (5.7). Namely, we have k(v′′) = k′(v′′) and
yev′′

i′′
= yev′′

i′′′
for i = 1, . . . , d + 2. Hence Nadler’s equivalences ϕv

k(v), ϕ
v′
k(v′), ϕ

v′′
k(v′′) glue to yield an

equivalence

ϕv
k(v) ∪ ϕv′

k(v′) ∪ ϕv′′
k(v′′) : Fuk(Hv ∪ Hv′ ∪ Hv′′)→ MF∞(Yv ∪ Yv′ ∪ Yv′′ ,WY).

Iteratively, we obtain a compatible system {ϕv
k(v)}v∈Vert(ΠΣ) of Nadler’s equivalences whose

gluing
⋃

v∈Vert(ΠΣ)

ϕv
k(v) : FA(ΠΣ)→ FB(ΠΣ)

gives the desired equivalence. �

6. Critical loci of Landau–Ginzburg models for complete intersections

In this section, following [AAK16, Section 10], we realize the mirror pair for a complete
intersection of very affine hypersufaces as critical loci of associated Landau–Ginzburg mod-
els. They give rise to fibrations over the complete intersection of the tropical hypersurfaces
equipped with the canonical stratification.
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6.1. Landau–Ginzburg A-model for complete intersections. Let H1, . . . ,Hr ⊂ T∨C be very
affine hypersurfaces in general position defined by Laurent polynomials

Wi : T∨C → C, x 7→
∑

αi∈Ai

cαit−ρi(αi)xα
i
, i = 1, . . . , r.(6.1)

Here,

• cαi ∈ C∗ are arbitrary constants,
• t � 0 is a sufficiently general tropical parameter,
• ρi are convex piecewise linear functions on convex lattice polytopes ∆∨i whose corner

loci give adapted unimodular triangulations Ti of ∆∨i , and
• Ai ⊂ M∨ are the set of vertices of Ti.

We denote by H the complete intersection H1∩· · ·∩Hr ⊂ T∨C. For X = T∨C×Cr with coordinates
(x, u) = (x1, . . . , xd+1, u1, . . . , ur), consider a Laurent polynomial

WX : X→ C, (x, u) 7→
r∑

i=1

uiWi(x).

Definition 6.1. Let H ⊂ T∨C be the complete intersection of the very affine hypersurfaces
H1, . . . ,Hr defined by the Laurent polynomials W1, . . . ,Wr from (6.1). We call the pair (X,WX)
the Landau–Ginzburg A-model for H.

Definition 6.2. The Newton polytope ∆∨X of WX is the convex hull

Conv(0,−∆∨1 × e1, . . . ,−∆∨r × er) ⊂ M∨
R × Rr

where e1, . . . , er ∈ Rr are the standard basis vectors.

Remark 6.3. The polytope ∆∨X admits an adapted star-shaped triangulation T canonically in-
duced by ρ1, . . . , ρr. However, it might not be unimodular.

Lemma 6.4. The critical locus Crit(WX) is given by
⋂r

i=1{ui = 0} ∩⋂r
i=1{Wi = 0} ⊂ X.

Proof. Express the tangent map dWX of WX as a (1, 2r)-matrix

(u1dW1, . . . , urdWr,W1, . . . ,Wr).

Since H1, . . . ,Hr ⊂ T∨C are in general position, we may assume that they intersect transversely.
Then dWi nowhere vanish. Hence rank(dWX) = 0 if and only if u1 = · · · = ur = 0 and
W1 = · · · = Wr = 0. �

Remark 6.5. By Lemma 6.4 the projection pr1 : X = T∨C × Cr → T∨C preserves Crit(WX) and
the inclusions H ⊂ Hi ↪→ Crit(WX). Now, we may assume that the tropical hypersurfaces
ΠΣ1 , . . . ,ΠΣr ⊂ Rd+1 intersect transversely, as H1, . . . ,Hr ⊂ T∨C are in general position. We may
assume further that H1, . . . ,Hr intersect along their legs. Let reti : Πi → ΠΣi be the continuous
maps induced by the retractions. Then the composition

f : H � Crit(WX) ↪→ X
pr1−−→ T∨C

Logd+1−−−−→
r⋂

i=1

Πi
retr ◦···◦ret1−−−−−−−−→

r⋂

i=1

ΠΣi(6.2)

gives a fibration. Away from lower dimensional strata, the fiber over a point in the intersection
of r top dimensional strata one from each ΠΣi is a real (d − r + 1)-torus.
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6.2. Landau–Ginzburg B-model for complete intersections. Recall that Ti are the chosen
adapted unimodular triangulations of ∆∨i ⊂ M∨

R obtained as the corner loci of the convex piece-
wise linear functions ρi : ∆∨i → R. Recall also from Remark 6.3 that T is the adapted star-
shaped triangulation of ∆∨X ⊂ M∨

R × Rr canonically induced by ρ1, . . . , ρr. Let ΣY ⊂ M∨
R × Rr

be the fan corresponding to T and Y the noncompact (d + r + 1)-dimensional toric variety as-
sociated with ΣY. The primitive ray generators of ΣY are the vectors of the form (−αi, j, ei) with
αi, j ∈ Ai. Such vectors span a smooth cone of ΣY if −αi, j span a cell of Ti for fixed i.

Remark 6.6. Unlike the case r = 1, there might be nonsmooth cones in ΣY as T is not necessar-
ily unimodular. Indeed, consider the case where d = 2, r = 2 and the two defining polynomials
are x1 + x2 + x3, x2

1x2 + x3. Then the Newton polytope ∆∨X is a 5-dimensional simplex which has
twice volume of the unit simplex. As x1 + x2 + x3, x2

1x2 + x3 cannot be further divided, there
is no room for subdivision of ∆∨X. Possible nonsmooth cones would contain at least two rays
belonging to distinct subfans of the form

Σi = R≥0 · (−Ti × {ei}) ⊂ ΣY.

Dually, Y is associated with the noncompact moment polytope

∆Y = {(m, u1, . . . , ur) ∈ MR × Rr | ui ≥ ϕi(m), 1 ≤ i ≤ r}.
The facets of ∆Y correspond to the maximal domains of linearity of ϕ1, . . . , ϕr. We denote by
A the set of connected components of Rd+1 \⋃r

i=1 ΠΣi and index each component by the tuple

~α = (α1, j1 , . . . , αr, jr ) ∈ M∨ × · · · × M∨

of vertices.

Remark 6.7. The noncompact polytope ∆Y is homeomorphic to the image of Y under the
composition

Y→ (Y)≥0 → MR × Rr(6.3)

of the map induced by retraction to the nonnegative real points with the restriction of the
negated algebraic moment map.

Lemma 6.8. Let q : MR × Rr → MR be the natural projection. Then under q the union of
intersections of r facets of ∆Y one from each {ui ≥ ϕi(m)} homeomorphically maps to MR.
Moreover, the union of intersections of r codimension 2 faces of ∆Y one from each {ui ≥ ϕi(m)}
homeomorphically maps to

⋂r
i=1 ΠΣi .

Proof. By construction of ΣY under q the intersection of r facets of ∆Y one from each {ui ≥
ϕi(m)} homeomorphically maps to the intersection of r maximal domains of linearity one from
each ϕi corresponding to the same αi, ji ∈ Ai. When ~α = (α1, j1 , . . . , αr, jr ) runs through A, the
closure of the latter covers MR. Then the second statement follows from the same argument as
in the proof of Lemma 3.12. �

For each ~α ∈ A let Y~α = TC × Cr with coordinates y~α = (y~α,1, . . . , y~α,d+1, v~α,1, . . . , v~α,r), where
y~α,1, . . . , y~α,d+1 are the monomials with weights

η1 = (−1, . . . , 0,−α1, j1
1 , . . . ,−αr, jr

1 ), . . . , ηd+1 = (0, . . . ,−1,−α1, j1
d+1, . . . ,−αr, jr

d+1) ∈ M × Zr

and v~α,1, . . . , v~α,r are the monomials with weights

ηd+2 = (0, . . . , 0, 1, . . . , 0), . . . , ηd+r+1 = (0, . . . , 0, 0, . . . , 1) ∈ M × Zr.

Pairing of the former monomials with the monomials with weight

uξ1 = (−α1, j1 , e1), . . . , uξr = (−αr, jr , er) ∈ M∨ × Zr

yield 0 while that of the latter monomials yield 1.
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Lemma 6.9. The complex algebraic variety Y~α is the affine open subset of Y associated with
the cone spanned by uξ1 , . . . , uξr ∈ M∨ × Zr.

Proof. Suppose that σ ∈ ΣY(r) is the cone associated with the affine open subset Y~α ⊂ Y. We
have

div(y±1
~α,i) =

∑

ξ∈σ(1)

〈±ηi, uξ〉Dξ, div(v~α, j) =
∑

ξ∈σ(1)

〈ηd+ j+1, uξ〉Dξ

for 1 ≤ i ≤ d+1 and 1 ≤ j ≤ r, where uξ are the primitive ray generators of ξ and Dξ = O(ξ) are
the closures of the orbits corresponding to ξ. Since y±1

~α,1, . . . , y
±1
~α,d+1 never vanish on Y~α, pairing

of ηi with the the primitive ray generators in σ must yield 0 for 1 ≤ i ≤ d + 1. On the other
hand, pairing of ηd+ j+1 with uξk must yield δ jk for 1 ≤ j, k ≤ d + 1. �

Due to the above lemma, Y~α covers the open stratum of Y and the open strata of the irre-
ducible toric divisors corresponding to α1, j1 , . . . , αr, jr . If αi, ji , βi,ki are connected by an edge in
Ti for some 1 ≤ i ≤ d + 1, then we glue Y~α to Y~β with the coordinate transformations

y~α,l = v
β

i,ki
l −α

i, ji
l

~β,i
y~β,l, v~α,i = v~β,i, 1 ≤ l ≤ d + 1.

Thus the coordinate charts {Y~α}~α∈A cover the complement in Y of the codimension more than 1
strata.

We may write vi for v~α,i as they do not depend on the choice of ~α ∈ A. Since the weights

(0, . . . , 0, 1, . . . , 0), . . . , (0, . . . , 0, 0, . . . , 1) ∈ M × Zr

pair nonnegatively with the primitive ray generators of ΣY, the polynomial v1 + · · · + vr defines
a regular function on Y, which we denote by WY.

Definition 6.10. Let H ⊂ T∨C be the complete intersection of very affine hypersurfaces H1, . . . ,Hr

defined by the Laurent polynomials W1, . . . ,Wr from (6.1). We call the pair (Y,WY) the
Landau–Ginzburg B-model for H.

Remark 6.11. The pair (Y,WY) is a conjectural SYZ mirror to H [AAK16, Theorem 1.6].

Lemma 6.12. The critical locus Crit(WY) is given by
⋂r

i=1 Crit(vi).

Proof. Since we have
⋂r

i=1 Crit(vi) ⊂ Crit(WY), it remains to show the opposite inclusion.
For y ∈ Crit(WY) there are r rays ξi, ji = Cone(−αi, ji × ei) ∈ ΣY one from each Σi such that
y ∈ ⋂r

i=1 Dξi, ji
where Dξi, ji

= O(ξi, ji) are the closures of the orbits corresponding to ξi, ji . Indeed,
we have

Crit(WY) ⊂ Y \ (TC × (C∗)r) =
⋃

ξ∈ΣY(1)

Dξ =

r⋃

i=1

⋃

ξi∈Σi(1)

Dξi .

If y <
⋃

ξ j∈Σ j(1) Dξ j for some 1 ≤ j ≤ r, then there is a neighborhood y ∈ U ⊂ Y such that
U∩⋃

ξ j∈Σ j(1) Dξ j = ∅ and Crit(WY|U) = ∅, as v j never vanishes on U. Hence y belongs to at least
one Dξi, ji

for each i and we obtain

Crit(WY) ⊂
⋃

~α∈A

r⋂

i=1

Dξi, ji
.

From the proof of Lemma 6.8 it follows that under q the intersection of r facets of ∆Y
corresponding to Dξ1, j1

, . . . ,Dξr, jr
maps to the closure C̄~α of the connected component C~α ⊂

MR \ ⋃r
i=1 ΠΣi indexed by ~α = (α1, j1 , . . . , αr, jr ). By Lemma 6.9 under (6.3) Y~α maps to the
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intersection of r facets of ∆Y corresponding to Dξ1, j1
, . . . ,Dξr, jr

. As explained above, on Y~α we
are given the coordinates

(w−1
1 v
−α1, j1

1
1 · · · v−α

r, jr
1

r , . . . ,w−1
r v
−α1, j1

d+1
1 · · · v−α

r, jr
d+1

r , v1, . . . , vr)

which implies Crit(WY)|Y~α
= ∅. Hence we obtain

Crit(WY) ⊂
⋃

~α∈A


r⋂

i=1

Dξi, ji
\ Y~α

 =

r⋂

i=1

Crit(vi)

as we have
⋃

αi, ji∈Ai
(Dξi, ji

\ (Yαi × Cr−1)) = Crit(vi) by Lemma 3.16. �

Remark 6.13. Since the map (6.3) sends each k-th intersection of Dξi, ji
, αi, ji ∈ A to a codimen-

sion k face of ∆Y, by Lemma 6.12 it sends Crit(WY) to the union of codimension 2r faces. On
the other hand, by Lemma 6.8 the map q : MR × Rr → MR homeomorphically sends the union
of intersections of r codimension 2 faces of ∆Y one from each {ui ≥ ϕi(m)} to

⋂r
i=1 ΠΣi . Hence

the composition

g : Crit(WY) ↪→ Y
(6.3)−−−→ ∆Y

q−→
r⋂

i=1

ΠΣi(6.4)

gives a fibration. The fiber over a point in the intersection of r top dimensional strata one from
each ΠΣi is a real (d − r + 1)-torus [CLS11, Prop 12.2.3(b)].

7. Equivariantization and de-equivariantization

In this section, following [She22, Section 4], we review the last piece of our proof, i.e.,
equivariantization and de-equivaiantization of presentable dg categories with certain group ac-
tions. The fact that, they give mutually inverse equivalences of the categories we will consider,
enables us to deduce our main result for nonunimodular case from unimodular case.

7.1. Equivariantization. Let G ⊂ (C∗)N be any subgroup. Assume that G acts on a pre-
sentable dg category C . Namely, there is a monoidal functor G → End(C ). Then C becomes a
module over the monoidal category (Qcoh(G), ?), where ? is the convolution product induced
by the multiplication on G. Let (Qcoh(BG),⊗) be the monoidal category of G-representations.
Taking G-invariants defines a functor

C 7→ C G = HomQcoh(G)(Mod(C),C )

from the category of (Qcoh(G), ?)-modules to the category of (Qcoh(BG),⊗)-modules, called
G-equivariantization. Here, the action on Mod(C) is trivial.

7.2. De-equivariantization. We denote by G∨ the character group Hom(G,C∗) of G. Assume
that G∨ acts on a presentable dg category D . This is the same as an action of the monoidal
category of G∨-graded C-modules, which in turn is equivalent to (Qcoh(BG),⊗). Hence D
becomes a module over (Qcoh(BG),⊗). Taking G-coinvariants defines a functor

D 7→ DBG = Mod(C) ⊗Qcoh(BG) D

from the category of (Qcoh(BG),⊗)-modules to the category of (Qcoh(G), ?)-modules, called
G-de-equivariantization. Also here, the action on Mod(C) is trivial.
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7.3. Mutually inverse equivalences. For a presentable dg category D with a G∨-action, tak-
ing its G∨-invariants is equivalent to taking its G-coinvariants. Since equivariantization and
de-equivariantization give mutually inverse equivalences, one obtains

Lemma 7.1 ([She15, Lemma 8]). Let G ⊂ (C∗)N be any subgroup and G∨ = Hom(G,C∗) . Then
G-equivariantization and G∨-equivariantization give mutually inverse equivalences between
the category of presentable dg categories with a G-action and that with a G∨-action.

7.4. Quotient construction of toric varieties. Let YΣ be the toric variety associated with a fan
Σ ⊂ M∨

R. Assume that YΣ has no torus factors, i.e., M∨
R is spanned by primitive ray generators

uρ for all ρ ∈ Σ(1) [CLS11, Proposition 3.3.9]. Then [CLS11, Theorem 4.1.3] gives the short
exact sequence

0→ M → ZΣ(1) =
⊕

ρ∈Σ(1)

ZDρ → Cl(YΣ)→ 0,

where m ∈ M maps to div(χm) = Σρ∈Σ(1)〈m, uρ〉Dρ and Cl(YΣ) is the divisor class group. Apply-
ing HomZ(−,C∗), one obtains another short exact sequence

1→ G = HomZ(Cl(YΣ),C∗)→ HomZ(ZΣ(1),C∗) � (C∗)Σ(1) → HomZ(M,C∗) � M∨
C → 1.

Lemma 7.2 ([CLS11, Lemma 5.1.1]). The subgroup G ⊂ (C∗)Σ(1) is isomorphic to a product of
an algebraic torus and a finite abelian group. More explicitly, we have

G = {(tρ) ∈ (C∗)Σ(1)|
∏

ρ∈Σ(1)

t〈m,uρ〉ρ = 1 for all m ∈ M}.

Let S = C[yρ | ρ ∈ Σ(1)] be the total coordinate ring of YΣ. Then we have CΣ(1) = Spec S and
the irrelevant ideal is defined as

B(Σ) = 〈yσ̂ | σ ∈ Σ〉 = 〈yσ̂ | σ ∈ Σmax〉 ⊂ S , yσ̂ =
∏

ρ<σ(1)

yρ.

We denote by Z(Σ) the zero locus V(B(Σ)) ⊂ CΣ(1) of B(Σ). Via inclusion G ⊂ (C∗)Σ(1) the
canonical action of (C∗)Σ(1) on CΣ(1) induces a G-action on CΣ(1) \ Z(Σ).

Lemma 7.3 ([CLS11, Proposition 5.1.9, Theorem 5.1.11]). There is a toric morphism

π : CΣ(1) \ Z(Σ)→ YΣ

which is constant on G-orbit and gives an isomorphism

YΣ � (CΣ(1) \ Z(Σ))//G.

Namely, π is an almost geometric quotient for the G-action. It is a geometric quotient if and
only if Σ is simplicial.

Now, we drop the assumption that YΣ has no torus factors. Then the primitive ray generators
uρ, ρ ∈ Σ(1) span a proper subspace (M∨

R)′ ( M∨
R. Pick the complement (M∨)′′ of (M∨)′ =

(M∨
R)′∩M∨ so that M∨ = (M∨)′⊕(M∨)′′. The cones of Σ defines a fan Σ′ ⊂ (M∨

R)′. Note that we
have Σ′(1) = Σ(1) and B(Σ′) = B(Σ) ⊂ S . We denote by G′ the subgroup HomZ(Cl(YΣ′),C∗) ⊂
(C∗)Σ′(1). Since YΣ′ has no torus factors, from the above argument it follows

YΣ � YΣ′ × (M∨
C)′′ � ((CΣ′(1) \ Z(Σ′))//G′) × (C∗)r.
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7.5. Model case. Let YΣ be a simplicial affine toric variety associated with a fan Σ ⊂ M∨
R.

Then YΣ has no torus factors. Since Σ contains only one top dimensional cone, by definition of
B(Σ) and Lemma 7.3 we obtain Z(Σ) = ∅ and

YΣ � Ad+r+1/G, d + r + 1 = #Σ(1).

If also the rank of M is d + r + 1, then the inclusion M → ZΣ(1) induces a finite cover

h∨ : T ∗(Rd+r+1/M)→ T ∗(Rd+r+1/Zd+r+1).

Consider the tailored pants P̃d+r in the target induced by the pants

{1 + Σd+r
i=1 xixd+r+1 = 0} = {x−1

d+r+1 + Σd+r
i=1 xi = 0} ⊂ (C∗)d+r+1.

Let P̃d+r−1 ⊂ P̃d+r be its closed subset induced by setting xd+r+1 = 1. From G∨ � Zd+r+1/M it
follows

P̃d+r−1 � (h∨)−1(P̃d+r−1)/G∨.

Hence we obtain

Fuk(P̃d+r−1) ' Fuk((h∨)−1(P̃d+r−1))G∨ ' Fuk((h∨)−1(P̃d+r−1))BG.

Taking G-invariants, we obtain

Fuk(P̃d+r−1)G ' (Fuk((h∨)−1(P̃d+r−1))BG)G ' Fuk((h∨)−1(P̃d+r−1)).

Via HMS for pairs of pants the left most term is equivalent to

MF(Ad+r+1, y1 · · · yd+r+1)G ' MF(Ad+r+1/G, y1 · · · yd+r+1).

Note that by Lemma 7.2 the product y1 · · · yd+r+1 is invariant under the G-action. Thus we obtain

MF(Ad+r+1/G, y1 · · · yd+r+1) ' Fuk((h∨)−1(P̃d+r−1)).

8. Intersections and categories

As explained in Remark 6.5, 6.13, the critical loci Crit(WX),Crit(WY) dually project onto⋂r
i=1 ΠΣi under f, g. We introduce a topology on

⋂r
i=1 ΠΣi induced from that on ΠΣi defined

as in Definition 4.1. Then
⋂r

i=1 ΠΣi admits an open cover by the intersections
⋂r

i=1 S (ki)
i of ki-

strata S (ki)
i of ΠΣi . In this section, we establish equivalences of corresponding categories over⋂r

i=1 S (ki)
i and glue them to yield HMS for complete intersections of very affine hypersurfaces.

8.1. Covering complete intersections. By Lemma 6.4 we have

Crit(WX) =

r⋂

i=1

{ui = 0} ∩
r⋂

i=1

{Wi = 0} ⊂ (C∗)d+1 × Cr,

where {Wi = 0} are given by the union
⋃

vi∈Vert(ΠΣi )
P̃vi × Cr. We denote by Lvi(S (ki)

i ) the inter-
section of ki legs of P̃vi corresponding to S (ki)

i . Since by assumption H1, . . . ,Hr are in general
position, we may assume that Crit(WX) is the union

⋃

v1,...,vr

⋃

S (k1)
1 ,...,S (kr )

r


r⋂

i=1

{ui = 0} ∩
r⋂

i=1

(
Lvi(S (ki)

i ) × Cr
) .

Under f it projects onto
⋃

S (k1)
1 ,...,S (kr )

r

⋂r
i=1 S (ki)

i .
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We denote by σ(S (ki)
i ) the cones in the subfans Σi ⊂ ΣY ⊂ Rd+r+1 corresponding to S (ki)

i and by
ξ1(S (ki)

i ), . . . , ξd+2−ki(S
(ki)
i ) ∈ Σi(1) the rays spanning σ(S (ki)

i ). Since by assumption ΠΣ1 , . . . ,ΠΣr

intersect transversely, the rays

ξ1(S (k1)
1 ), . . . , ξd+2−k1(S

(k1)
1 ), . . . , ξ1(S (kr)

r ), . . . , ξd+2−kr (S
(kr)
r ) ∈ ΣY(1)(8.1)

span a (Σr
i=1d + 2 − ki)-dimensional cone σ(S (k1)

1 , . . . , S (kr)
r ) ∈ ΣY. Note that we have

r∑

i=1

d + 2 − ki ≤ d + r + 1.

Under g the union of intersections of

U(S (k1)
1 , . . . , S (kr)

r ) = SpecC[σ∨(S (k1)
1 , . . . , S (kr)

r ) ∩ (M × Zr)]

and Crit(WY) projects onto
⋃

S (k1)
1 ,...,S (kr )

r

⋂r
i=1 S (ki)

i .

8.2. Local A-side categories for complete intersections. Let ~β be a Σr
i=1li-tuple of vertices

β1,1, . . . , β1,l1 ∈ A1, . . . , β
r,1, . . . , βr,lr ∈ Ar

which together with the origin define rays

ξd+3−k1(S
(k1)
1 ), . . . , ξd+2−k1+l1(S

(k1)
1 ) ∈ Σ1(1), . . . , ξd+3−kr (S

(kr)
r ), . . . , ξd+2−kr+lr (S

(kr)
r ) ∈ Σr(1)

spanning a top dimensional cone σ(S (k1)
1 , . . . , S (kr)

r , ~β) ∈ ΣY,max together with the rays (8.1). We
denote by ∆∨(S (k1)

1 , . . . , S (kr)
r , ~β) the (d + r + 1)-simplex

Conv(0, (−α1,1, e1), . . . , (−α1,d+2−k1+l1 , e1), . . . , (−αr,1, er), . . . , (−αr,d+2−kr+lr , er))

with ξ j(S
(ki)
i ) = Cone(−αi, j, ei) and αi,d+2−ki+ ji = βi, ji .

Recall that the tailored ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β)-pants P̃(S (k1)
1 , . . . , S (kr)

r , ~β) is the inverse image
of P̃d+r under the map

h∨(S (k1)
1 , . . . , S (kr)

r , ~β) : (C∗)d+r+1 → (C∗)d+r+1,

whose restriction gives a finite cover of P̃d+r. Here, h∨(S (k1)
1 , . . . , S (kr)

r , ~β) is induced by a homo-
morphism

h(S (k1)
1 , . . . , S (kr)

r , ~β) : Zd+r+1 → Zd+r+1

of lattices which sends ∆∨d+r+1 to ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β). Now, assume that ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β)
is unimodular. Then h∨(S (k1)

1 , . . . , S (kr)
r , ~β) becomes an isomorphism and the monomials

x−α
1,1,e1 , . . . , x−α

1,d+2−k1+l1 ,e1 , . . . , x−α
r,1,er , . . . , x−α

r,d+2−kr+lr ,er

give coordinates on the target (C∗)d+r+1.
Consider the product

H̃(S (k1)
1 , ~β) × · · · × H̃(S (kr)

r , ~β) ⊂ (C∗)d+2−k1+l1 × · · · × (C∗)d+2−kr+lr = (C∗)d+r+1

of very affine hypersurfaces

H̃(S (ki)
i , ~β) = {

d+2−ki+li∑

ji=1

x−α
i, ji ,ei = 0} ⊂ (C∗)d+2−ki+li ⊂ (C∗)d+r+1.

We denote by H(S (ki)
i , ~β) the quotients of H̃(S (ki)

i , ~β) by the C∗ui
-action

(ui, x−α
i,1,ei , . . . , x−α

i,d+2−ki+li ,ei) 7→ (uix−α
i,1,ei , . . . , uix−α

i,d+2−ki+li ,ei),
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which are isomorphic to (d − ki + li)-dimensional tailored pants up to deformation. Locally, H
is given by a product of r lower dimensional tailored pants.

Lemma 8.1. Assume that ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β) is unimodular. Then the product

H(S (k1)
1 , ~β) × · · · × H(S (kr)

r , ~β) ⊂ (C∗)d+1−k1+l1 × · · · × (C∗)d+1−kr+lr = (C∗)d+1

is isomorphic to the intersection
r⋂

i=1

{ui = 0} ∩
r⋂

i=1

{
d+2−ki+li∑

ji=1

x−α
i, ji

= 0} ⊂ (C∗)d+1 × Cr.

Proof. The quotient of ×r
i=1H̃(S (ki)

i , ~β) by the (C∗)r
u1,...,ur

-action

(u1, . . . , ur, x−α
1,1,e1 , . . . , x−α

1,d+2−k1+l1 ,e1 , . . . , x−α
r,1,er , . . . , x−α

r,d+2−kr+lr ,er )

7→(u1x−α
1,1,e1 , . . . , u1x−α

1,d+2−k1+l1 ,e1 , . . . , ur x−α
r,1,er , . . . , ur x−α

r,d+2−kr+lr ,er )

is ×r
i=1H(S (ki)

i , ~β). Since we have

×r
i=1H̃(S (ki)

i , ~β) =

r⋂

i=1

{
d+2−ki+li∑

ji=1

x−α
i, ji ,ei = 0} × (C∗)r−1+ki−li

x̂−αi,1 ,ei ,...,x̂−α
i,d+2−ki+li ,ei

 ,

the quotient is isomorphic to
r⋂

i=1

{ui = ε} ∩
r⋂

i=1

{
d+2−ki+li∑

ji=1

x−α
i, ji ,ei = 0} ⊂ (C∗)d+r+1,

which in turn is isomorphic to
r⋂

i=1

{ui = 0} ∩
r⋂

i=1

{
d+2−ki+li∑

ji=1

x−α
i, ji

= 0} ⊂ (C∗)d+1 × Cr.

�

Corollary 8.2. Assume that ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β) is unimodular. Then there is an equivalence

Fuk(
r⋂

i=1

{ui = 0} ∩
r⋂

i=1

{Σd+2−ki+li
ji=1 x−α

i, ji
= 0}) '

r⊗

i=1

Fuk(H(S (ki)
i , ~β)).

Proof. As an open submanifold of a closed submanifold H of (C∗)d+r+1, the intersection
⋂r

i=1{ui =

0}∩⋂r
i=1{Σd+2−ki+li

ji=1 x−α
i, ji

= 0} carries a Stein manfold structure, which in turn defines a Weinstein
structure. Then the claim follows from [GPS2, Theorem 1.5, Corollary 1.18]. �

8.3. Local B-side categories for complete intersections. Also in this subsection, we assume
∆∨(S (k1)

1 , . . . , S (kr)
r , ~β) to be unimodular. Let

y1(S (k1)
1 ), . . . , yd+2−k1+l1(S

(k1)
1 ), . . . , y1(S (kr)

r ), . . . , yd+2−kr+lr (S
(kr)
r )

be local coordinates for

Ad+2−k1+l1 × · · · × Ad+2−kr+lr � U(S (k1)
1 , . . . , S (kr)

r , ~β)

= SpecC[σ∨(S (k1)
1 , . . . , S (kr)

r , ~β) ∩ (M × Zr)] ⊂ Y.

Lemma 8.3. Assume that ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β) is unimodular. Then there is an equivalence

MF∞(U(S (k1)
1 , . . . , S (kr)

r , ~β),WY) '
r⊗

i=1

MF∞(Ad+2−ki+li , y1(S (ki)
i ) · · · yd+2−ki+li(S

(ki)
i )).
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Proof. Since we have

WY|U(S (k1)
1 ,...,S (kr )

r ,~β) = y1(S (k1)
1 ) · · · yd+2−k1+l1(S

(k1)
1 ) + · · · + y1(S (kr)

r ) · · · yd+2−kr+lr (S
(kr)
r ),

the claim follows from Lemma 3.16, Lemma 6.12 and [Pre, Theorem 4.1.3]. �

8.4. Gluing equivalences.

Lemma 8.4. Assume that ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β) is unimodular. Then there is an equivalence

Fuk(
r⋂

i=1

{ui = 0} ∩
r⋂

i=1

{Σd+2−ki+li
ji=1 x−α

i, ji
= 0})Z2 ' MF∞(U(S (k1)

1 , . . . , S (kr)
r , ~β),WY).

Proof. Due to Corollary 8.2 and Lemma 8.3 it suffices to show an equivalence

Fuk(H(S (ki)
i , ~β))Z2 ' MF∞(Ad+2−ki+li , yi

1(S (ki)
i ) · · · yi

d+2−ki+li(S
(ki)
i )).(8.2)

This follows from Theorem 5.4, since by construction H(S (ki)
i , ~β) is isomorphic to (d − ki + li)-

dimensional tailored pants up to deformation. �

Theorem 8.5. Assume that ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β) are unimodular for all S (k1)
1 , . . . , S (kr)

r whose
intersection is nonempty. Then there is an equivalence

Fuk(H)Z2 ' lim
S (k1)

1 ,...,S (kr )
r ,~β

MF∞(U(S (k1)
1 , . . . , S (kr)

r , ~β),WY) = MF∞(Y,WY)

Proof. We glue the local equivalences from Lemma 8.4. Again, due to Corollary 8.2 and
Lemma 8.3 it suffices to show the compatibility of (8.2) with gluing, which follows from the
same argument as the proof of Theorem 5.5. �

8.5. Nonunimodular case. Finally, we drop the assumption on ∆∨(S (k1)
1 , . . . , S (kr)

r , ~β) to be uni-
modular. The simplicial toric variety U(S (k1)

1 , . . . , S (kr)
r , ~β) becomes isomorphic to the geometric

quotient

Ad+r+1/G(S (k1)
1 , . . . , S (kr)

r , ~β).

by the finite abelian subgroup G(S (k1)
1 , . . . , S (kr)

r , ~β) of (C∗)d+r+1 with canonically induced action.
The inclusion extends to a short exact sequence

0→ G(S (k1)
1 , . . . , S (kr)

r , ~β)→ (C∗)d+r+1 → M∨(S (k1)
1 , . . . , S (kr)

r , ~β)C → 0,(8.3)

where M∨(S (k1)
1 , . . . , S (kr)

r , ~β) is the cocharacter lattice associated with U(S (k1)
1 , . . . , S (kr)

r , ~β). Then
we have

MF∞(Ad+r+1/G(S (k1)
1 , . . . , S (kr)

r , ~β),WY) ' MF∞(Ad+r+1,WY)G(S (k1)
1 ,...,S (kr )

r ,~β).

On the A-side, P̃(S (k1)
1 , . . . , S (kr)

r , ~β) becomes a finite cover of P̃d+r. Since U(S (k1)
1 , . . . , S (kr)

r , ~β)
has no torus factors, (8.3) is obtained from the short exact sequence

0→ M(S (k1)
1 , . . . , S (kr)

r , ~β)→ Zd+r+1 → G∨(S (k1)
1 , . . . , S (kr)

r , ~β)→ 0

by taking HomZ(−,C∗). Here, we use the symbol G∨(S (k1)
1 , . . . , S (kr)

r , ~β) to denote the divisor
class group of U(S (k1)

1 , . . . , S (kr)
r , ~β), which acts on

(C∗)d+r+1 � T ∗(Rd+r+1/M(S (k1)
1 , . . . , S (kr)

r , ~β)).

Then the finite cover is given by

P̃(S (k1)
1 , . . . , S (kr)

r , ~β)→ P̃(S (k1)
1 , . . . , S (kr)

r , ~β)/G∨(S (k1)
1 , . . . , S (kr)

r , ~β) = P̃d+r.

164



Similarly replace

×r
i=1H̃(S (ki)

i , ~β) =

r⋂

i=1

{
d+2−ki+li∑

ji=1

x−α
i, ji ,ei = 0} × (C∗)r−1+ki−li

x̂−αi,1 ,ei ,...,x̂−α
i,d+2−ki+li ,ei

 =

r⋂

i=1

{
d+2−ki+li∑

ji=1

x−α
i, ji ,ei = 0}

and ×r
i=1H(S (ki)

i , ~β) with their inverse images. Then we have

Fuk((×r
i=1H(S (ki)

i , ~β))/G∨(S (k1)
1 , . . . , S (kr)

r , ~β)) ' Fuk(×r
i=1H(S (ki)

i , ~β))G∨(S (k1)
1 ,...,S (kr )

r ,~β).(8.4)

As explained above, there is an equivalence to the de-equivariantization

Fuk(×r
i=1H(S (ki)

i , ~β))G∨(S (k1)
1 ,...,S (kr )

r ,~β) ' Fuk(×r
i=1H(S (ki)

i , ~β))BG(S (k1)
1 ,...,S (kr )

r ,~β)(8.5)

with respect to G(S (k1)
1 , . . . , S (kr)

r , ~β). Combining (8.4), (8.5) and the equivalence for unimodular
case, we obtain

MF∞(Ad+r+1,WY) ' (Fuk(×r
i=1H(S (ki)

i , ~β))Z2)BG(S (k1)
1 ,...,S (kr )

r ,~β).

Passing to the equivariantization, we obtain

MF∞(Ad+r+1/G(S (k1)
1 , . . . , S (kr)

r , ~β),WY) ' ((Fuk(×r
i=1H(S (ki)

i , ~β))Z2)BG(S (k1)
1 ,...,S (kr )

r ,~β))
G(S (k1)

1 ,...,S (kr )
r ,~β)

which by Lemma 7.1 implies

MF∞(U(S (k1)
1 , . . . , S (kr)

r , ~β),WY) ' Fuk((×r
i=1H(S (ki)

i , ~β))).(8.6)

We glue the above local equivalences. It suffices to show the compatibility of (8.6) with
gluing, which follows from the same argument as the proof of Theorem 5.5 extended in a
straight forward way. Indeed, the compatibility of the actions of G(S (k1)

1 , . . . , S (kr)
r , ~β) and

G∨(S (k1)
1 , . . . , S (kr)

r , ~β) with gluing follows from Lemma 7.2 and the combinatorial duality.
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LARGE VOLUME LIMIT FIBRATIONS OVER FANIFOLDS

HAYATO MORIMURA

Abstract. We lift the stratified torus fibration over a fanifold constructed by Gamage–Shende to
the associated Weinstein manifold, which is homotopic to a filtered stratified integrable system
with noncompact fibers. When the fanifold admits a dual stratified space in a suitable sense,
we give a stratified fibration over it completing SYZ picture. For the fanifold associated with a
very affine hypersurface, we realize the latter fibration as a restriction of SYZ fibrations over the
tropical hypersurface proposed by Abouzaid–Auroux–Katzarkov.

1. Introduction

Given a Calabi–Yau manifold X, Homological Mirror Symmetry(HMS) conjecture [Kon00]
claims the existence of another Calabi–Yau manifold X̆ called its mirror partner whose Fukaya
category Fuk(X̆) and dg category of coherent sheaves Coh(X̆) are respectively equivalent to
Coh(X) and Fuk(X). The equivalences are believed to connect the symplectic and complex
geometry of the mirror pair (X, X̆). Nowadays, HMS concerns more general spaces but neither
precise definition nor systematic construction of mirror pairs are available.

One way to go is indicated by Strominger–Yau–Zaslow(SYZ) conjecture [SYZ96], which
has been elaborated independently by Kontsevich–Soibelman [KS00, KS06] and Gross–Siebert
[GS11]. Roughly speaking, (X, X̆) should admit so called SYZ fibrations, i.e., dual special
Lagrangian torus fibrations X → B ← X̆ over a common base. Then X̆ should be obtained by
dualizing X → B over the smooth locus and compactifying the result in a suitable way. SYZ
conjecture is hard to correctly formulate and still largely open.

Recently, Gamage–Shende introduced fanifolds [GS1, Definition 2.4] by gluing rational
polyhedral fans of cones, which provide the organizing topological and discrete data for HMS
at large volume [GS1, Theorem 5.4]. To a fanifold Φ they associated an algebraic space T(Φ)
[GS1, Proposition 3.10] obtained as the gluing of the toric varieties TΣ associated with the fans
Σ along their toric boundaries. Based on an idea from SYZ fibrations, they constructed its
mirror partner W̃(Φ) by inductive Weinstein handle attachements.

Theorem 1.1 ([GS1, Theorem 4.1]). Let Φ ⊂ M be a fanifold. Then there exists a triple
(W̃(Φ), L̃(Φ), π) of a subanalytic Weinstein manifold W̃(Φ), a conic subanalytic Lagrangian
L̃(Φ) ⊂ W̃(Φ), and a map π : L̃(Φ)→ Φ satisfying the following conditions.

(1) Let S ⊂ Φ be a stratum of codimension d. Then:
• π−1(S ) � T d × S where T d is a real d-dimensional torus.
• π−1(Nbd(S )) � L(ΣS )×S where Nbd(S ) is an appropriate neighborhood and L(ΣS )

is the FLTZ Lagrangian associated with the normal fan ΣS of S .
• In a neighborhood of π−1(S ) � T d × S , there is a symplectomorphism of pairs

(T ∗T d × T ∗S ,L(ΣS ) × S ) ↪→ (W̃(Φ), L̃(Φ)).(1.1)

(2) If Φ is closed, then we have L̃(Φ) = Core(W̃(Φ)) for the skeleton Core(W̃(Φ)) of W̃(Φ).
(3) A subfanifold Φ′ ⊂ Φ determines a Weinstein sector W(Φ′) ⊂ W̃(Φ) with skeleton
L(Φ′) = W(Φ′) ∩ L̃(Φ)

2010 Mathematics Subject Classification. 53D37.
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(4) The Weinstein manifold W̃(Φ) carries a Lagrangian polarization given in the local
charts (1.1) by taking the fiber direction in T ∗T d and the base direction in T ∗S .

The guiding principle behind their construction of W̃(Φ) was that the FLTZ Lagrangians
L(Σ) and the projections L(Σ) → Σ should glue to yield Core(W̃(Φ)) and π. Theorem 1.1(4)
gives rise to canonical grading/orientation data [GPS3, Section 5.3], which one needs to define
the partially wrapped Fukaya category Fuk(W̃(Φ), ∂∞L̃(Φ)). By [GPS3, Theorem 1.4] we have

Fuk(W̃(Φ), ∂∞L̃(Φ)) � Γ(L̃(Φ), µshL̃(Φ))
op � Γ(Φ, π∗ µshL̃(Φ))

op

where µshL̃(Φ) is a certain constructible sheaf of dg categories. Over neighborhoods of strata, lo-
cal sections of π∗ µshL̃(Φ) are computed in [GS2, Section 7.3]. The third bullet in Theorem 1.1(1)
gives rise to gluing data [GS1, Proposition 4.34], which one needs to determine π∗ µshL̃(Φ).

SYZ fibrations often give candidates for mirror pairs and [GS1, Theorem 5.4] is just one
of such examples. Moreover, [GS1, Corollary 5.8] implies that HMS at large volume limit is
obtained by the local-to-global principle. Hence it is natural to expect that the canonical lift of
the projections L(Σ)→ Σ should glue to yield a version of A-side SYZ fibration W̃(Φ)→ Φ, as
predicted by Gamage–Shende [GS1, Remark 4.5]. Indeed, taking wrapped Fukaya categories
and gluing of local pieces of W̃(Φ), which respects the gluing of L(Σ), intertwine in the sense
of [GS1, Corollary 5.9]. In this paper, we prove the following.

Theorem 1.2. There is a filtered stratified fibration π̄ : W̃(Φ) → Φ restricting to π, which
is homotopic to a filtered stratified integrable system with noncompact fibers. If the fan ΣS

associated to any stratum S ⊂ Φ is proper, then the homotopy becomes trivial.

Note that by construction of W̃(Φ) one can expect isotrivial fibers only on each stratum
of the induced stratification by Φ. Moreover, Φ admits a filtration [GS1, Remark 2.12] and
fibers would vary when passing through the induced filters. Since in general the canonical
lift of π does not land in Φ, we must compose the map induced by a retraction, which might
not be smooth, even C1. After that, as suggested in [GS1, Remark 4.5], it remains to show
compatibility with the handle attachment process. Then we need to fully understand the proofs
of Theorem 1.1, especially (4) and the third bullet in (1). As their details are skipped in [GS1],
we include them for completeness.

If Φ admits a well defined dual stratified space Ψ, then one expects the gluing T(Φ) → Ψ

of algebraic moment maps to be the B-side SYZ fibration as mentioned in [GS1, Remark 4.5].
We obtain a stratified fibration which should be its SYZ dual, modifying the canonical lift of π.

Theorem 1.3. Assume that Φ has the dual stratified space Ψ in the sense of Definition 6.1.
Then there is a stratified fibration π : W̃(Φ) → Ψ. Let S ⊂ Φ be a stratum of codimension d.
Over a point of its dual stratum S ⊥ ⊂ Ψ, the fiber of π is isomorphic to T d × T ∗S .

Finally, we provide an evidence to convince the readers that π should be the A-side SYZ
fibration for (W̃(Φ),T(Φ)). Consider the fanifold Φ = Σ ∩ S n+1 from [GS1, Example 4.22]
generalized as in [GS1, Section 6]. It is associated with the mirror pair (H, ∂TΣ) [GS2, Theorem
1.0.1] in the sense that Core(W̃(Φ)) = Core(W(Φ)) � Core(H) and T(Φ) = ∂TΣ for a very
affine hypersuface H ⊂ (C∗)n+1 and the toric boundary divisor ∂TΣ of the toric stack TΣ. The
fanifold Φ has the dual stratified space Ψ. We show that the SYZ dual fibrations for (H, ∂TΣ)
over the tropical hypersurface ΠΣ of H [AAK16, Section 3] restricts to that for (W(Φ),T(Φ))
over Ψ in the following sense.

Theorem 1.4. Let Φ be the fanifold from [GS1, Example 4.22] generalized as in [GS1, Sec-
tion 6]. Then there are a stratified homeomorphism Ψ ↪→ ΠΣ, a symplectomorphism of pairs
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(W(Φ),L(Φ)) ↪→ (H,Core(H)) and a map T(Φ)→ Ψ which makes the diagram

L(Φ) �
� // W(Φ)

π
//

� _

��

Ψ� _

��

T(Φ)oo
� _

��
Core(H) �

� // H // ΠΣ −KTΣ
oo

commute, where H → ΠΣ ← −KTΣ
are canonical extensions to toric stacks of SYZ fibrations

from [AAK16, Section 3].

Acknowledgements. The author is supported by SISSA PhD scholarships in Mathematics.

2. Review on fanifolds

Fanifolds are introduced by Gamage–Shende in [GS1, Section 2] as a formulation of strati-
fied manifolds for which the geometry normal to each stratum is equipped with the structure of
a fan. Let Φ be a stratified space. As in [GS1], throughout the paper, we assume Φ to satisfy
the following conditions.

(i) Φ has finitely many strata.
(ii) Φ is conical in the complement of a compact subset.

(iii) Φ is given as a germ of a closed subset in an ambient manifoldM.
(iv) The strata of Φ are smooth submanifolds ofM.
(v) The strata of Φ are contractible.

We will express properties of Φ in terms of the chosen ambient manifoldM as long as they
only depend on the germ of Φ. Taking the normal cone CS Φ ⊂ TSM for each stratum S ⊂ Φ,
one obtains a stratification on CS Φ induced by that of a sufficiently small tubular neighborhood
TSM→M.

Definition 2.1. The stratified space Φ is smoothly normally conical if for each stratum S ⊂ Φ

some choice of tubular neighborhood TSM→M induces locally near S a stratified diffeomor-
phism CS Φ→ Φ, which in turn induces the identity CS Φ→ CS Φ.

Example 2.2. Associating to each cone its interior as a stratum, one may regard a fan Σ of
cones as a stratified space satisfying the conditions (i), ... , (v). Clearly, Σ is smoothly normally
conical. By abuse of notation, we use the same symbol σ ∈ Σ to denote a stratum of Σ corre-
sponding to σ. We introduce a partial order in Σ canonically descending to the stratified space.
Namely, for two strata σ, τ ∈ Σ we define σ < τ if and only if σ ⊂ τ̄ for the closure τ̄ of τ in Σ.

Definition 2.3. We write Exit(Φ) for the exit path category. For each stratum S ⊂ Φ we write
ExitS (Φ) for the full subcategory of exit paths starting at S contained inside a sufficiently small
neighborhood of S .

Definition 2.4. We write Fan� for the category whose objects are pairs (M,Σ) of a laticce M
and a stratified space Σ by finitely many rational polyhedral cones in MR = M ⊗Z R. For any
(M,Σ), (M′,Σ′) ∈ Fan� a morphism (M,Σ) → (M′,Σ′) is given by the data of a cone σ ∈ Σ

and an isomorphism M/〈σ〉 � M′ such that Σ′ = Σ/σ = {τ/〈σ〉 ⊂ MR/〈σ〉 | τ ∈ Σ, σ ⊂ τ̄}.
We denote by Fan�Σ/ for an object (M,Σ) ∈ Fan� the full subcategory of objects (M′,Σ′) with
Σ′ = Σ/σ for some cone σ ∈ Σ.

We have a natural identification
Exit(Σ) � Fan�Σ/, σ 7→ [Σ 7→ Σ/σ]

of posets. In addition, the normal geometry to σ is the geometry of Σ/σ. This is the local
model of fanifolds introduced by Gamege–Shende.
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Definition 2.5 ([GS1, Definition 2.4]). A fanifold is a smoothly normally conical stratified
space Φ ⊂ M satisfying the conditions (i), ..., (v) and equipped with the following data:

• A functor Exit(Φ)→ Fan� whose value on each stratum S is a pair (MS ,ΣS ) of a lattice
MS and a rational polyhedral fan ΣS ⊂ MS ,R called the associated normal fan.
• For each stratum S ⊂ Φ a trivialization φS : TSM � MS ,R of the normal bundle carrying

the induced stratification on CS Φ to the standard stratification induced by ΣS .
These data must make the diagram

TSM φS //

��

MS ,R

��
TS ′M|S φS ′

// MS ′,R,

commute for any stratum S ′ of the induced stratification on Nbd(S ), where the left vertical
arrow is the quotient by the span of S ′. The right vertical arrow corresponds to the map MS →
MS ′ on lattices.

Remark 2.6. In the original definition, the conditions (i), ..., (iv) were assumed in advance and
the condition (v) was added later [GS1, Assumption 2.5]. Due to (v), ExitS (Φ) is equivalent to
the poset Exit(ΣS ). Although we have already assumed Φ to satisfy (i), ..., (v) above, here we
mention it again to emphasize the difference from the original form.

Example 2.7. A manifold M regarded as a trivially stratified space is obviously a smoothly
normally conical satisfying (i), ..., (v). Associating to the unique stratum M a pair (MM =

{0},ΣM = {0}) defines a trivial fanifold structure onM. It follows that the product of a manifold
and a fanifold is canonically a fanifold.

Example 2.8 ([GS1, Example 2.7]). As explained in Example 2.2, a fan Σ ⊂ Rn of cones
regarded as a stratified space is a smoothly normally conical satisfying (i), ..., (v). Associating
to each stratum σ ∈ Σ a pair (M/〈σ〉,Σ/σ) of the quotient lattice M/〈σ〉 and the normal fan
Σ/σ defines a fanifold structure on Σ.

Example 2.9 ([GS1, Example 2.10]). Given a fanifold Φ ⊂ M, if a submanifold M′ ⊂ M
intersects transversely all strata of Φ, then Φ ∩ M′ ⊂ M′ canonically inherits the fanifold
structure. In particular, the ideal boundary ∂∞Φ of the fanifold carries a canonical fanifold
structure.

Lemma 2.10 ([GS1, Remark 2.12]). Let Φ be a fanifold of dimension n. Then it admits a
filtration

Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φn = Φ(2.1)

where Φk are subfanifolds defined as sufficiently small neiborhoods of k-skeleta Skk(Φ), the
closure of the subset of k-strata.

Proof. The normal geometry to a 0-stratum P ⊂ Φ is the geometry of the normal fan ΣP ⊂ MP,R

by definition. Let

Φ0 =
⊔

P

ΣP

be the disjoint union of ΣP equipped with the canonically induced fanifold structure, where P
runs through all 0-strata of Φ. Then Φ0 ⊂ Φ is clearly a subfanifold containing Sk0(Φ).

Suppose that Φk−1 has the desired filtration Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φk−1. The normal geometry to a
k-stratum S ⊂ Φ is the geometry of the normal fan ΣS ⊂ MS ,R by definition. The ideal boundary
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∂∞S might have some subset ∂inS which is in the direction to the interior of Φ. Perform the
gluing Φk−1#(ΣS×∂inS )(ΣS × S ) which is equal to ΣS × S when Φk−1 is empty and equal to Φk−1

unless S is an interior k-stratum, i.e., ∂inS = ∂S ◦ where S ◦ = S \ Φk−1 is a manifold-with-
boundary. Note that by Example 2.9 the induced fanifold structure on ∂inS is compatible with
that of Φk−1. Let

Φk = Φk−1#⊔
S (ΣS×∂inS )

⊔

S

(ΣS × S )

be the result of such gluings for all k-strata S in Φ. Then Φk ⊂ Φ is a subfanifold containing
Skk(Φ) since the products ΣS × S are canonically fanifolds by Example 2.7, 2.8. �

Definition 2.11. A fanifold Φ ⊂ M is closed if its all strata are interior. Namely, any k-stratum
S of Φ satisfies ∂inS = ∂S ◦ where S ◦ = S \ Φk−1.

Example 2.12 ([GS1, Example 4.21]). Consider a 2-dimensional fanifold Φ = [0, 1] × [0, 1]
stratified by vertices P1 = (0, 1), P2 = (0, 0), P3 = (1, 0), P4 = (1, 1), edges I12 = {0} ×
[0, 1], I23 = [0, 1] × {0}, I34 = {1} × [0, 1], I23 = [0, 1] × {1} and a face F = (0, 1) × (0, 1).
As all strata are interior, Φ is closed. The filtration from Lemma 2.10 is given by

Φ0 =

4⊔

i=1

ΣPi , Φ1 = Φ0#⊔
1≤i< j≤4 ΣIi j×∂inIi j

⊔

1≤i< j≤4

(ΣIi j × Ii j), Φ2 = Φ1#∂inF F(2.2)

where ΣPi ,ΣIi j are the fans ΣA2 ⊂ R2,ΣA1 ⊂ R. We place the origins of ΣPi at Pi and that of ΣIi j

along Ii j so that ΣPi ∩ F , ∅ and ΣIi j ∩ F , ∅.
As explained in [GS1, Section 6], one can generalize fanifolds in terms of stacky fans. First,

we recall the definition of stacky fans.

Definition 2.13 ([GS15, Definition 2.4]). A stacky fan is the data of a map of lattices β : M̃ →
M with finite cokernel, together with fans Σ̃ ⊂ M̃R and Σ ⊂ MR such that β induces a combina-
torial equivalence on the fans.

Stacky fans form a category stFan�. Morphisms

(M, M̃,Σ, Σ̃).→ (M′, M̃′,Σ′, Σ̃′)

are given by the choices of cones σ̃ with β(σ̃) = σ and compatible isomorphisms

(M/〈σ〉, M̃/〈σ̃〉,Σ/σ, Σ̃/σ̃) � (M′, M̃′,Σ′, Σ̃′).

Now, replace the functor Exit(Φ) → Fan� in Definition 2.5 with Exit(Φ) → stFan�. Defining
the associated normal fan as ΣS for each value (MS , M̃S ,ΣS , Σ̃S ), one obtains the generalization.

3. Review onWeinstein handle attachments

The Weinstein manifold W̃(Φ) is obtained by inductively attaching products of cotangent
bundles of real tori and strata of Φ. Each step requires us to modify Weinstein structures near
gluing regions. In order to show the compatibility of such modifications with candidate maps,
we need to fully understand the attachment process.

3.1. Weinstein manifolds.
Definition 3.1 ([CE12, Section 11.1], [Eli, Section 1]). A Liouville domain (W, λ) is a com-
pact symplectic manifold (W, ω = dλ) with smooth boundary ∂W whose Liouville vector field
Z = ω#λ points outwardly along ∂W. We call the positive half (∂W × R≥0, et(λ|∂W)) of the
symplectization of ∂W with Liouville form et(λ|∂W) the cylindrical end. Any Liouville domain
(W, λ) can be completed to a Liouville manifold (Ŵ, λ̂) by attaching the cylindrical end, i.e.,
Ŵ = W ∪ (∂W × R≥0), λ̂|W = λ and λ̂|∂W×R≥0 = et(λ|∂W).
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Remark 3.2. Strictly speaking, the completion (Ŵ, λ̂) is a Liouville manifold of finite type. Ev-
ery Liouville manifold of finite type is the completion of some Liouville domain. Throughout
the paper, following [GS1, Section 4], by a Liouville manifold we will mean the completion
of some Liouville domain. Note that the skeleton, which will be defined below, of a Liouville
manifold of finite type is compact.

Definition 3.3 ([CE12, Section 11.1], [GS1, Definition 4.8]). Let (W, λ) be a Liouville mani-
fold. Its skeleton is the attractor

Core(W) =
⋂

t>0

Z−t(W)

of the negative Liouville flow Z−t. Equivalently, Core(W) is the union of all stable manifolds,
i.e., the maximal compact subset invariant under the Liouville flow. We denote by ([W], [λ]) a
Liouville domain which completes to (W, λ) and contains Core(W). The ideal boundary ∂∞W
of W is the intersection W ∩ ∂[W]. For a subset L of ∂∞W the relative skeleton Core(W,L) of
(W, λ) associated with L is the disjoint union

Core(W) t RL ⊂ W

of Core(W) and the saturation of L by the Liouville flow.

Definition 3.4 ([CE12, Definition 11.10], [Eli, Section 1]). A Weinsten domain (W, λ, φ) is a
Liouville domain (W, λ) whose Liouville vector field is gradient-like for a Morse–Bott function
φ : W → R which is constant on ∂W. We call the positive half (∂W × R≥0, et(λ|∂W), φ) of the
symplectization of ∂W with Liouville form et(λ|∂W) and canonically extended φ the cylindrical
end. Any Weinstein domain (W, λ, φ) can be completed to a Weinstein manifold (Ŵ, λ̂, φ̂) by
attaching the cylindrical end.

Remark 3.5. The completion (Ŵ, λ̂, φ̂) is a Weinstein manifold of finite type, i.e., φ has only
finitely many critical points. Every Weinstein manifold of finite type is the completion of
some Weinstein domain. Throughout the paper, following [Nad, Definition 5.5], by a Weinstein
manifold we will mean the completion of some Weinstein domain. Note that in view of [GS1,
Example 4.23] one may regard mirror symmetry established in [GS1] as a generalization of
that in [GS2], which relies on [Nad, Theorem 5.13].

Remark 3.6. For a Weinstein manifold (W, λ, φ) the skeleton Core(W) is isotropic by [CE12,
Lemma 11.13(a)]. Moreover, the stable manifold of the critical locus of φ contains the zero
locus of Z.

Example 3.7 ([CE12, Definition 11.12(2)(3)]). Consider the cotangent bundle T ∗Y of a closed
manifold Y with the standard symplectic form ωst = dλst where λst = pdq is the standard
Liouville form. The associated Liouville vector field Zst = p∂p is gradient-like for a Morse–
Bott function φst(q, p) = 1

2 |p|2. The product T ∗Y × T ∗Y ′ of two such Weinstein manifolds
with symplectic form ωst ⊕ ω′st, Liouvlle form λst ⊕ λ′st and Morse–Bott function φst ⊕ φ′st is a
Weinstein manifold.

3.2. Weinstein pairs.

Definition 3.8 ([Eli, Section 2]). Let (Y, ξ) be a contact manifold. We call a codimension 1
submanifold H ⊂ Y with smooth boundary a Weinstein hypersurface if there exists a contact
form λ for ξ such that (H, λ|H) is compatible with a Weinstein structure on H, i.e., ωH = dλ|H
is a symplectic form, ZH = ω#

Hλ|H points outwardly along ∂H and is gradient-like for some
Morse–Bott function φH : H → R. Its contact surrounding Uε(H) is the neighborhood of
H in Y defined as follows. Let H̃ be a slightly extended Weinstein hypersurface satisfying
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λ|H̃\H = tλ|∂H for t ∈ [1, 1+ε]. There is a neighborhood Ũ of H̃ diffeomorphic to H̃×(−ε, ε) with
λ|Ũ = pr∗1(λ|H̃) + du where u is the coordinate of the second factor. For a nonnegative function
h : H̃ → R which is equal to 0 on H and to t − 1 near ∂H̃, set Uε(H) = {h2 + u2 ≤ ε2} ⊂ Ũ.

Remark 3.9. Although the induced Weinstein structure on H depends on the choice of λ, the
skeleton Core(H) is independent of the choice [CE12, Lemma 12.1].

Example 3.10 ([Eli, Example 2.1(i)]). Let L be a Legendrian submanifold of a contact mani-
fold (Y, ξ). It admits a neighborhood U(L) isomorphic to

(J1(L), du − pdq), q ∈ L, ‖p‖2 + u2 ≤ ε.
Then H(L) = U(L) ∩ {u = 0} is a Weinstein hypersuface called a Weinstein thickening of L.
It is symplectomorphic to the cotangent ball bundle of L. Up to Weinstein isotopy, H(L) is
independent of all the choices.

Definition 3.11 ([Eli, Section 2]). A Weinstein pair (W,H) consists of a Weinstein domain
(W, λ, φ) together with a Weinstein hypersurface (H, λ|H) in ∂W. The skeleton Core(W,H) of
(W,H) is the relative skeleton of the Liouville manifold (W, λ) associated with H.

Definition 3.12 ([Eli, Section 2]). Let (W,H) be a Weinstein pair, φH : H → R a Morse–Bott
function for which ZH = (ω|H)#λ|H is gradient-like and Uε(H) ⊂ ∂W the contact surrounding
of H. We call a pair (λ0, φ0) of a Liouville form λ0 for ω and a smooth function φ0 : W → R
adjusted to (W,H) if

• Z0 = ω#λ0 is tangent to ∂W on Uε(H) and transverse to ∂W elsewhere;
• Z0|Uε (H) = ZH + u∂u;
• the attractor

⋂
t>0 Z−t

0 (W) coincides with Core(W,H);
• the function φ0 is Morse–Bott for which Z0 = (ω)#λ0 is gradient-like satisfying φ0|Uε (H) =

φH + 1
2u2 and whose critical values are not more than φ0|∂Uε (H).

Given a Weinstein pair (W,H), one can always modify the Liouville form λ for ω and the
Morse–Bott function φH to be adjusted.

Lemma 3.13 ([Eli, Proposition 2.9]). Let (W,H) be a Weinstein pair. Then there exist a Liou-
ville form λ0 for ω and a smooth function φ0 : W → R such that (λ0, φ0) are adjusted to (W,H)
and λ0|W\Uε (H) = λ|W\Uε (H).

3.3. Gluing of Weinstein pairs.

Definition 3.14 ([Eli, Section 3.1]). Let (W, λ, φ) be a Weinstein domain. A splitting for
(W, λ, φ) is a hypersurface (P, ∂P) ⊂ (W, ∂W) satisfying the following conditions.

• ∂P and P respectively split ∂W and W into two parts ∂W = Y− ∪ Y+ with ∂Y− = ∂Y+ =

Y− ∩ Y+ = ∂P and W = W− ∪W+ with ∂W− = P ∪ Y−, ∂W+ = P ∪ Y+,W− ∩W+ = P.
• The Liouville vector field Z = ω#λ is tangent to P.
• There exists a hypersurface (H, ∂H) ⊂ (P, ∂P) which is Weinstein for λ|H, tangent to Z

and intersects transversely all leaves of the characteristic foliation of P.

The above hypersurface (H, ∂H) is called the Weinstein soul for the splitting hypersurface
P. Due to Lemma 3.16 below, P is contactomorphic to the contact surrounding Uε(H) of its
Weinstein soul.

Definition 3.15 ([Eli, Section 2]). Let H be a closed hypersurface in a (2n − 1)-dimensional
manifold and ξ a germ of a contact structure along H which admits a transverse contact vector
field Z. The invariant extension of the germ ξ is the canonical extension ξ̂ on H × R, which is
invariant with respect to translations along the second factor and whose germ along any slice
H × {t}, t ∈ R is isomorphic to ξ.
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Lemma 3.16 ([Eli, Lemma 2.6]). Let H be a closed (2n − 2)-dimensional manifold and ξ a
contact structure on P = H × [0,∞) which admits a contact vector field Z inward transverse to
H × {0} such that its trajectories intersecting H × {0} fill the whole manifold P. Then (P, ξ) is
contactomorphic to (H×[0,∞), ξ̂), where ξ̂ is the invariant extension of the germ of ξ along H×
{0}. Moreover, for any compact set C ⊂ P with H×{0} ⊂ Int C there exists a contactomorphism
(Y, ξ) → (H × [0,∞), ξ̂), which is equal to the identity on H × {0} and sends Z|C to the vector
field ∂t.

Definition 3.17 ([Eli, Section 3.1]). Let (W,H), (W ′,H′) be Weinstein pairs with adjusted Li-
ouville forms and Morse–Bott functions (λ, φ), (λ′, φ′). Suppose that there is an isomorphism
(H, λ|H, φ|H) � (H′, λ′|H, φ′|H) of Weinstein manifolds. Extend it to their contact surroundings
morphism Uε(H) � Uε(H′). Then the gluing of (W,H), (W ′,H′) is given by W#H�H′W ′ =

W ∪Uε (H)�Uε (H′) W ′ with glued Liouville form and Morse–Bott function.

By definition we have

Core(W#H�H′W ′) = Core(W,H) ∪Core(H)�Core(H′) Core(W ′,H′).

3.4. Weinstein handle attachments. Let W be a Weinstein domain with a smooth Legendrian
L ⊂ ∂∞W. Fix a standard neighborhood of L in ∂∞W

η : Nbd∂∞W(L) ↪→ J1L = T ∗L × R
which extends to a neighborhood in the Weinstein domain W

ξ : NbdW(L) ↪→ J1L × R≤0 � T ∗(L × R≤0),

where the Liouville flow on W gets identified with the translation action on R≤0. Note that
η−1(T ∗L × {0}) gives a Weinstein thichkening of L.

Due to Lemma 3.13, one can modify the Weinstein structure near L so that the Liouville
flow gets identified with the cotangent scaling on T ∗(L × R≤0). In other words, the Liouville
form and the Morse–Bott function become adjusted to the Weinstein pair (W, η−1(T ∗L × {0})).
We denote by W̃ its conic completion. Then η yields a neiborhood of L in ∂W̃

η̃ : Nbd∂W̃(L) ↪→ J1L
which extends to a neighborhood in W̃

ξ̃ : NbdW̃(L) ↪→ J1L × R≤0 � T ∗(L × R≤0).

Remark 3.18. As a Liouville domain, the modification is canonical up to contractible choice,
since any two Liouville structures on a compact symplectic manifold are canonically homotopic
[Eli, page 2].

Remark 3.19. The result W̃ is a Liouville sector in the sense of [GPS1, Definition 2.4]. In-
deed, W̃ is a Liouville manifold-with-boundary, whose boundary consists of Nbd∂W̃(L) and the
conic completion of ∂Nbd∂∞W(L). The characteristic foliations of the former and the latter are
respectively given by the Reeb vector field on ∂W and the restricted Liouville vector field on
W̃. Now, it is clear that ∂∂∞W̃ is convex and there is a diffeomorphism ∂W̃ � R × F sending
the characteristic foliation of ∂W̃ to the foliation of R × F by leaves R × {p}.

Given Weinstein domains W,W ′ with smooth Legendrian embeddings ∂∞W ←↩ L ↪→ ∂∞W ′,
we write W#LW ′ for the gluing

W#η−1(T ∗L×{0})�η′−1(T ∗L×{0})W ′ = W̃ ∪J1L W̃ ′

which yields another Weinstein domain with skeleton

Core(W#LW ′) = Core(W,L) ∪L Core(W ′,L).
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Definition 3.20 ([GS1, Definition 4.9]). Let W be a Weinstein domain with a smooth Legen-
drian L ⊂ ∂∞W. A conic subset L ⊂ W is biconic along L if the image of L ∩ NbdW(L) under
some ξ : NbdW(L) ↪→ T ∗(L × R≤0), where the Liouville flow on W gets identified with the
translation action on R≤0, is invariant also under the cotangent scaling of T ∗(L × R≤0).

By construction any biconic subset L ⊂ W remains conic in W̃. We write L̃ ⊂ W̃ for its
saturation under the Liouville flow.

Lemma 3.21 ([GS1, Lemma 4.10]). Let W be a Weinstein domain with a smooth Legendrian
L ⊂ ∂∞W. Then a Lagrangian L ⊂ W is biconic along L if and only if it is conic and

ξ(L ∩ NbdW(L)) ⊂ T ∗L × {0} × R≤0 ⊂ J1L × R≤0 � T ∗(L × R≤0)

for some ξ : NbdW(L) ↪→ T ∗(L × R≤0), where the Liouville flow on W gets identified with the
translation action on R≤0.

Proof. The second factor R in the product T ∗L × R = J1L is responsible for the additional
cotangent scaling of T ∗(L × R≤0) with respect to T ∗L. �

Given biconic Lagrangians L ⊂ W,L′ ⊂ W ′ with matching ends in the sense that

η̃(L ∩ Nbd∂∞W(L)) = η̃′(L′ ∩ Nbd∂∞W′(L))

in W#LW ′, we write L#LL′ for the gluing L̃ ∪η̃(L∩Nbd∂∞W (L)) L̃′ in W#LW ′. Since any biconic
subsets in W,W ′ remain conic in W#LW ′, the gluing L#LL′ is a conic Lagrangian.

For a closed manifold M̂ and a manifold-with-boundary S , consider the Weinstein domain
W ′ = [T ∗M̂ × T ∗S ] with a smooth Legendrian L = M̂ × ∂S taken to be a subset of the
zero section. The Liouville flow on W ′ near L is the cotangent scaling. We write W̃ ′ for the
completion T ∗M̂ × T ∗S , which is an exact symplectic manifold without boundary. One can
check that the above gluing procedure carries over, although L does not belong to ∂∞W ′.

Definition 3.22 ([GS1, Definition 4.11]). Let W be a Weinstein domain with a smooth Legen-
drian embedding M̂ × ∂S ↪→ ∂∞W.

(1) A handle attachement is the gluing

W#M̂×∂S [T ∗M̂ × T ∗S ]

respecting the product structure.
(2) Let further L ⊂ W be a biconic subset along M̂ × ∂S which locally factors as

η(L ∩ Nbd∂∞W(M̂ × ∂S )) = LS × ∂S ⊂ T ∗M̂ × T ∗∂S

for some fixed conic Lagrangian LS . The extension of L through the handle is the gluing

L#M̂×∂S (LS × S )

respecting the product structure.
(3) Let further Λ ⊂ ∂∞W be a subset satisfying

η(Λ ∩ Nbd∂∞W(M̂ × ∂S )) � LS × ∂S ⊂ T ∗M̂ × T ∗∂S × {0} ⊂ J1(M̂ × ∂S )

for LS . The extension of Λ through the handle is the ideal boundary

∂∞(Core(W,Λ)#M̂×S (LS × S ))

of the extension of the biconic Lagrangian Core(W,Λ) thorough the handle.

Lemma 3.23 ([GS1, Lemma 4.12]). Let E → Y be a vector bundle. Then near the Legendrian
L = ∂∞T ∗Y E ⊂ T ∗E there are local coordinates such that if Λ ⊂ ⋃

α T ∗S α
E for any collection

{S α}α of conic subsets S α ⊂ E with respect to the scaling of E, then Λ is biconic along L.
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Proof. As a bundle over Y , we have T ∗E = E⊕E∨⊕T ∗Y . Let P ⊂ T ∗E be the polar hypersurface
defined as the kernel of the pairing between E and E∨. Then P contains T ∗S α

E for any conic
subset S α ⊂ E. Indeed, a point (y, u, v,w) ∈ T ∗y E belongs to the fiber (T ∗S α

E)y ⊂ (T ∗E|S α
)y only if

(y, u) ∈ S α and v(u) = 0. Locally, the ideal boundary ∂∞P ⊂ ∂∞T ∗E can be identified with T ∗L
compatibly with their standard Liouville structures. Indeed, any point of (∂∞P)y is expressed
as (y, u, [v],w) with (y, u, v,w) ∈ Py, while any point of T ∗yL is expressed as (y, [v],w, u) with
(y, [v]) ∈ (∂∞T ∗Y E)y, w ∈ T ∗Y , and u ∈ Ey. Here, we identify Ey with the hyperplane orthogonal to
v passing through the origin. Hence locally ∂∞P is a Weinstein thickening of L from Example
3.10 Transporting to NbdP(L) the Reeb vector flow which intersects T ∗L transversely, we
obtain local coordinates η : NbdP(L) ↪→ J1L whose biconicity follows from Lemma 3.21. �

Corollary 3.24 ([GS1, Corollary 4.13]). Let Y ⊂ Y ′ be a submanifold. Then near the Legen-
drian ∂∞T ∗YY ′ there are local coordinates such that if Λ ⊂ ⋃

α T ∗S α
Y ′ for any collection {S α}α of

subsets S α ⊂ Y, then Λ is biconic.

Proof. Locally identify a tubular neighborhood NYY ′ of Y in Y ′ with Y ′. Since any subset
S α ⊂ Y trivially becomes conic with respect to the scaling of NYY ′, one can apply Lemma 3.23
for E = NYY ′ and L = ∂∞T ∗Y NYY ′ to obtain the desired local coordinates. �

Definition 3.25 ([FLTZ12, Section 3.1]). Let Σ ⊂ MR be a rational polyhedral fan and M̂ the
real n-torus Hom(M,R/Z) = M∨

R/M
∨. The FLTZ Lagrangian is the union

L(Σ) =
⋃

σ∈Σ
Lσ =

⋃

σ∈Σ
σ⊥ × σ

of conic Lagrangians σ⊥ × σ ⊂ M̂ × MR � T ∗M̂, where σ⊥ is the real (n − dimσ)-subtorus

{x ∈ M̂ | 〈x, v〉 = 0 for all v ∈ σ}.
Remark 3.26 ([FLTZ14, Definition 6.3]). When Σ is a stacky fan, the FLTZ Lagrangian L(Σ)
becomes the union

⋃
σ∈Σ Gσ × σ, where Gσ = Hom(Mσ,R/Z) are possibly disconnected sub-

group of M̂. Here, we denote by Mσ the quotients of the lattice M by the stacky primitives for
σ.

Lemma 3.27 ([GS1, Lemma 4.16]). Let Σ ⊂ MR be a rational polyhedral fan. Then for each
cone σ ∈ Σ near the Legendrian ∂∞Lσ ⊂ ∂∞T ∗M̂ there are local coordinates

ησ : Nbd(∂∞Lσ) ↪→ J1∂∞Lσ = T ∗∂∞Lσ × R
with the following properties.

(1) The Lagranzian Lσ is biconic along ∂∞Lσ.
(2) For any nonzero cones σ, τ ∈ Σ with σ ⊂ τ̄, we have

ησ(∂∞Lτ ∩ Nbd(∂∞Lσ)) = Lτ/σ × ∂∞σ × {0} ⊂ T ∗σ⊥ × T ∗∂∞σ × {0} = T ∗∂∞Lσ × {0}.(3.1)

(3) The FLTZ Lagranzian L(Σ) is biconic along each ∂∞Lσ.
(4) For each σ ∈ Σ the local coordinates ησ define a Weinstein hypersuface

Rσ = η−1
σ (T ∗∂∞Lσ × {0}) ⊂ ∂∞T ∗M̂

containing ∂∞Lσ as its skeleton and we have Rτ ∩ Nbd(∂∞Lσ) ⊂ Rσ for any τ ∈ Σ with
σ ⊂ τ̄.

Proof. Applying Corollary 3.24 to each submanifold σ⊥ ⊂ M̂, we obtain local coordinates
ησ : Nbd(∂∞Lσ) ↪→ J1∂∞Lσ near ∂∞Lσ such that Lσ is biconic along ∂∞Lσ. Provided (1), the
property (3) follows from (2), which is a consequence of the identification

∂∞Lτ � τ⊥ × ∂∞(τ/〈σ〉 × σ) � (τ/〈σ〉)⊥ × τ/〈σ〉 × ∂∞σ ⊂ L(Σ/σ) × ∂∞σ
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near σ of subsets of the stratified spaces Σ and Σ/σ for any τ ∈ Σ with {0} , σ ⊂ τ̄. Note that
subtori (τ/〈σ〉)⊥, τ⊥ of respective tori M̂/〈σ〉 ⊂ M̂ are the same. When σ = {0} and taking the
ideal boundary ∂∞σ makes no sense, we have instead

ησ(∂∞Lτ ∩ Nbd(∂∞Lσ)) = ∂∞Lτ/σ × {0} ⊂ T ∗σ⊥ × {0}.
It remains to show (4). Let Pσ be the polar hypersurface defined as the kernel of the pairing

fσ : T ∗Uσ � T ∗Nσ⊥ M̂ = Nσ⊥ M̂ ⊕ (Nσ⊥ M̂)∨ ⊕ T ∗σ⊥ → R,
which gives rise to the above local coordinates NbdPσ(∂∞T ∗

σ⊥ M̂) ↪→ J1∂∞T ∗
σ⊥ M̂ as in the proof

of Lemma 3.23. However, there is no inclusion between ∂∞Pσ, ∂∞Pτ for σ ⊂ τ̄. To remedy this
issue, one needs to modify the above local coordinates as follows. For a 1-dimensional cone
σ, replace fσ with gσ = fσ|Vσ where Vσ � NLσT ∗M̂ is a conic tubular neighborhood projecting
to Uσ and Wσ � NσMR via the identification T ∗M̂ � M̂ × MR, chosen so that Vσ ∩ Vσ′ when
σ̄ ∩ σ̄′ = {0}. Locally, we have

Rσ = g−1
σ (0) ∩ T ∗∂∞T ∗σ⊥ M̂ × {0} � T ∗∂∞T ∗σ⊥ M̂

and the modified local coordinates

Nbdg−1
σ (0)(∂∞T ∗σ⊥ M̂) ↪→ J1∂∞T ∗σ⊥ M̂

satisfies the properties (1), (2), (3).
For a higher dimensional cone τ, one extends gσ as follows. When dim τ = 2 and τ is

spanned by σ1, σ2, replace fτ with

gτ = a1 fσ1 |Vτ + a2 fσ2 |Vτ : Vτ → R
where (a1, a2) : Vτ → τ = 〈σ1, σ2〉 is the canonical projection. The functions ai take values
in R≥0 and satisfy a1|Vσ2∩Vτ = a2|Vσ1∩Vτ = 0. Since we have (Nτ⊥ M̂)∨ ⊃ NτMR ⊂ Nσi MR ⊂
(Nσ⊥i M̂)∨ as a bundle over τ⊥, the restrictions ( fσi |Vτ)|Vσi∩Vτ coincide with (gσi)|Vσi∩Vτ . Hence gτ
is an extension of (gσ1 , gσ2) : Vσ1 t Vσ2 → R. Locally, we have

Rτ = g−1
τ (0) ∩ T ∗∂∞T ∗τ⊥ M̂ × {0} � T ∗∂∞T ∗τ⊥ M̂

and the modified local coordinates

Nbdg−1
τ (0)(∂∞T ∗τ⊥ M̂) ↪→ J1∂∞T ∗τ⊥ M̂

satisfies the properties (1), (2), (3) and

Rτ ∩ Nbdg−1
σi (0)(∂∞T ∗σ⊥i M̂) ⊂ Rσi .

Inductively, one obtains the desired extensions for the other cases. �

Remark 3.28. Some readers of [GS1] might wonder why the authors stated Lemma 3.27(4).
As explained in Section 3.3, we glue two Weinstein domains along their isomorphic Weinstein
hypersurfaces. Here, each Weinstein hypersurface Rσ is defined in the modified Polar hyper-
surface g−1

σ (0) and coincides with a Weinstein thickening of ∂∞Lσ. Lemma 3.27(4) guarantees
compatibility of such local Weinstein pair structures with the union L(Σ) =

⋃
σ∈Σ Lσ.

4. The proof of Theorem 1.1 explained

In this section, we review the proof of Theorem 1.1, filling in the details. By Lemma 2.10
the fanifold Φ of dimension n admits a filtration (2.1) We proceed by induction on k.
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4.1. Base case. When k = 0, let

W̃(Φ0) = W(Φ0) =
⊔

P

T ∗M̂P, L̃(Φ0) = L(Φ0) =
⊔

P

L(ΣP)

where each T ∗M̂P is equipped with the canonical Liouville structure. We fix an identification
T ∗M̂P � M̂P × MP,R to regard each L(ΣP) as a conic Lagrangian submanifold of T ∗M̂P.

Lemma 4.1. The manifold W̃(Φ0) is subanalytic Weinstein.

Proof. Equipped with the canonical Liouville structure, T ∗M̂P become Weinstein as explained
in Example 3.7. In general, real analytic subsets of real analytic manifolds are subanalytic and
the product of subanalytic subsets of real analytic manifolds is subanalytic. �

Lemma 4.2. The subset L̃(Φ0) ⊂ W̃(Φ0) is a subanalytic conic Lagrangian and contains the
skeleton Core(W̃(Φ0)) of the Weinstein manifold W̃(Φ0).

Proof. The skeleton Core(W̃(Φ0)) is the disjoint union
⊔

P M̂P of the zero sections M̂P ⊂ T ∗M̂P

for all 0-strata P of Φ, each of which is contained in the conic Lagrangian L(ΣP) via the fixed
identification T ∗M̂P � M̂P × MP,R. In general, the collection of subanalytic subsets of a real
analytic manifold forms a Boolean algebra. Hence L(ΣP) is subanalytic, as it is the union of the
products of a real torus and the union of an Euclidean space and its algebraic subsets, which
are subanalytic subsets of M̂P × MP,R. �

Let π0 : L̃(Φ0)→ Φ0 be the map induced by the projection to cotangent fibers.

Lemma 4.3. The triple (W̃(Φ0), L̃(Φ0), π0) satisfies the conditions (1), . . . , (4).

Proof. (1) It suffices to show the claim for a neighborhood Nbd(P) of a single 0-stratum P ⊂ Φ.
Let S P ⊂ Φ0 be the stratum of codimension d corresponding to a cone σP ∈ ΣP via φP. Then
by definition of π0 we have

π−1
0 (S P) = LσP = σ⊥P × σP � T d × S P.

From the isomorphism

LτP = τ⊥P × τP � (τP/〈σP〉)⊥ × τP/〈σP〉 × σP = LτP/σP × σP(4.1)

for any stratum τP ∈ ΣP with σP ⊂ τ̄P it follows

π−1
0 (Nbd(S P)) =

⋃

τP∈ΣP, σP⊂τ̄P

LτP � L(ΣP/σP) × S P.

Consider the cotangent bundle T ∗T d × T ∗S P with the canonical symplectic form. Since we
have T ∗S P � S P × Rdim M̂P−d � S P × S P, there is a symplectomorphism

T ∗T d × T ∗S P � T ∗T d × T ∗S P, ((θ, η), (x, y)) 7→ ((θ, η), (−y, x)).(4.2)

Then an open embedding

T d × T ∗xS P ↪→ T d × T dim M̂P−d, (θ, y) 7→ (θ,−y)

canonically extends to a symplectomorphism

T ∗T d × T ∗S P ↪→ T ∗M̂P, ((θ, η), (x, y)) 7→ (θ,−y, η, x).(4.3)

Since it restricts to isomorphisms

(τP/〈σP〉)⊥ × τP/〈σP〉 × σP � τ⊥P × τP, ((θ, η), (x, 0)) 7→ (θ, 0, η, x),(4.4)

the symplectomorphism (4.3) embeds L(ΣS P) × S P into L(ΣP).
(2) The fanifold Φ0 is closed only if dim MP,R = 0 for all 0-strata P. Then the claim is trivial.
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(3) Since any subfanifold Φ′0 ⊂ Φ0 is the disjoint union of fans ΣP for some 0-strata of Φ, by
definition we have W̃(Φ′0) = W(Φ′0) ⊂ W̃(Φ0) and L̃(Φ′0) = L(Φ′0) = W̃(Φ′0) ∩ L̃(Φ0).

(4) Recall that a Lagrangian polarization of a symplectic manifold W is a global section of the
Lagrangian Grassmannian bundle LGr(W) over W. Up to homotopy, a Lagrangian polarization
of W is equivalent to a real vector bundle B over W with an isomorphim B ⊗R C. When W is
a cotangent bundle T ∗M̂, the tautological foliation by cotangent fibers yields an isomorphism
TT ∗M̂ = T ∗M̂ ⊗R C. Consider the Lagrangian foliation of T ∗T d × T ∗S P with leaves

(T ∗θT d × {y}) × ({θ} × S P), θ ∈ T d, y ∈ Rdim M̂P−d � S P.

Via the symplectomorphism (4.2) the leaf space get identified with the zero section, which
in turn is isomorphic to π−1

0 (S P). Along the base direction in T ∗S P, it is compatible with
the inclusion S P ↪→ S ′P to any stratum S ′P of codimension d′ of the induced stratification on
Nbd(S P). Along the fiber direction in T ∗T d, it is compatible with the inclusions T ∗θT d′ ↪→
T ∗θT d induced by the quotient map TS P MP,R → TS ′P MP,R|S P from the definition of fanifolds for
θ ∈ T d′ ∩ T d ⊂ M̂P. Hence one obtains the desired polarization. �

4.2. Special case. Before moving to general cases, we explicitly write down the relevant re-
sults and their proofs for Example 2.12, where the filtration of Φ from Lemma 2.10 is given by
(2.2). Let L1 be the disjoint union of

LIi j = π−1
0 (Ii j) ∩ ∂∞L(Φ0), 1 ≤ i < j ≤ 4.

for all interior 1-strata.

Lemma 4.4. There are smooth Legendrian embeddings

∂∞W(Φ0)←↩ L1 ↪→ ∂
⊔

1≤i< j≤4

(T ∗M̂Ii j × T ∗Ii j,◦).

Proof. It suffices to show the claim for LI12 . Since ∂inI12 consists of two 0-strata P1, P2 of Φ,
there is a smooth Legendrian embedding

LI12 � ∂∞LσP1
I12

t ∂∞LσP2
I12

↪→ ∂∞W(Φ0)(4.5)

for the cones σPi
I12
∈ ΣPi corresponding to I12. The quotient maps MPi,R → MPi,R/〈σPi

I12
〉 = MI12,R

from the definition of fanifolds identify the images of σPi
I12

with the origin of ΣI12 . Hence ∂∞LσPi
I12

are isomorphic to M̂I12 . Regarding M̂I12 × ∂I12,◦ as a subset of T ∗M̂I12 × ∂T ∗I12,◦, one obtains
another smooth Legendrian embedding

LI12 � M̂I12 × ∂I12,◦ ↪→ ∂(T ∗M̂I12 × T ∗I12,◦).

�

We define W̃(Φ1) as the handle attachment

W(Φ0)#L1

⊔

1≤i< j≤4

[T ∗M̂Ii j × T ∗Ii j,◦].

Lemma 4.5. The manifold W̃(Φ1) is subanalytic Weinstein.

Proof. As it is the result of handle attachments, W̃(Φ1) is Weinstein. Each handle T ∗M̂Ii j×T ∗Ii j,◦
is subanalytic. Since the union of subanalytic subsets is subanalytic, W̃(Φ1) is subanalytic by
Lemma 4.1. �
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Lemma 4.6. There is a standard neighborhood

η1 : Nbd∂∞W(Φ0)(L1) ↪→ J1L1(4.6)

near L1 for which L(Φ0) is biconic along L1 and ∂∞L(Φ0) locally factors as

η1(L(Φ0) ∩ Nbd∂∞W(Φ0)(L1)) =
⊔

1≤i< j≤4

(L(ΣIi j) × ∂Ii j,◦).

Proof. It suffices to show the claim for LI12 . Since we have (4.5), the disjoint union L(ΣP1) t
L(ΣP2) is biconic along LI12 for the standard coordinates

η
σ

P1
I12

t η
σ

P2
I12

: Nbd∂∞T ∗M̂P1t∂∞T ∗M̂P2
(LI12) ↪→ J1LI12

from Lemma 3.27. Then the local factorization of ∂∞L(ΣP1)t∂∞L(ΣP2) follows from (3.1). �

We define L̃(Φ1) as the extension through the disjoint union of the handles T ∗M̂Ii j × T ∗Ii j,◦

L(Φ0)#L1

⊔

1≤i< j≤4

[L(ΣIi j) × Ii j,◦].

Lemma 4.7. The subset L̃(Φ1) ⊂ W̃(Φ1) is a subanalytic conic Lagrangian and contains the
skeleton Core(W̃(Φ1)) of the Weinstein manifold W̃(Φ1).

Proof. Since by Lemma 4.6 and Lemma 3.23 the Lagrangians

L(Φ0) ⊂W(Φ0),
⊔

1≤i< j≤4

[L(ΣIi j) × Ii j,◦] ⊂
⊔

1≤i< j≤4

[T ∗M̂Ii j × T ∗Ii j,◦]

are biconic along L1, the gluing L̃(Φ1) remains conic. The part of Core(W̃(Φ1)) newly formed
by the handle attachment is the cone R(L(Φ0)∩Nbd∂∞W(Φ0)(L1)). It is the saturation of the zero
set of the Liouville vector field on the gluing

η1(Nbd∂∞W(Φ0)(L1))#L1

⊔

1≤i< j≤4

Nbd∂∞[T ∗M̂Ii j×T ∗Ii j,◦](LIi j) ⊂W(Φ0)#L1

⊔

1≤i< j≤4

[T ∗M̂Ii j × T ∗Ii j,◦],

which implies Cone(W̃(Φ1)) ⊂ L̃(Φ1). The extension L̃(Φ1) is subanalytiic, as it is the union of
the products of a real torus and the union of an Euclidean space and its algebraic subsets. �

Let π1 : L̃(Φ1) → Φ1 be the map induced by π0 and the projections from T ∗M̂Ii j × T ∗Ii j,◦ to
the cotangent fiber direction in T ∗M̂Ii j and the base direction in T ∗Ii j,◦.

Lemma 4.8. The triple (W̃(Φ1), L̃(Φ1), π1) satisfies the conditions (1), . . . , (4).

Proof. (1) It suffices to show the claim when attaching the handle T ∗M̂I12 × T ∗I12,◦ to W̃(Φ0).
Then we may assume that

Φ0 = ΣP1 t ΣP2 , Φ1 = Φ0#ΣI12×∂inI12(ΣI12 × I12).(4.7)

Let S ⊂ Φ1 be the stratum

(S P1 t S P2)#σP1/〈σ
P1
I12
〉×∂I12,◦

(σP1/〈σP1
I12
〉 × I12,◦)

where S Pi are the strata of codimension d corresponding to cones σPi ∈ ΣPi via φPi . Then by
definition of π1 and Lemma 4.6 the inverse image π−1

1 (S ) is equal to


2⊔

i=1

[LσPi
]

 #L
σP1

/σ
P1
I12

×∂I12,◦[LσP1/σ
P1
I12

× I12,◦] � T d ×



2⊔

i=1

S Pi

 #
σP1/〈σ

P1
I12
〉×∂I12,◦

(σP1/〈σP1
I12
〉 × I12,◦)

 .
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From the isomorphisms (4.1) and

τ⊥Pi
× τPi � (τPi/〈σPi

I12
〉)⊥ × τPi/〈σPi〉 × σPi/〈σPi

I12
〉 × I12(4.8)

for any stratum τPi ∈ ΣPi with σPi ⊂ τ̄Pi it follows

π−1
1 (Nbd(S )) =

⋃

τP1 ,τP2

(
[LτP1

t LτP2
]#L

τP1
/σ

P1
I12

×∂I12,◦[LτP1/σ
P1
I12

× I12,◦]
)
� L(ΣP1/σP1) × S ,

where τPi run through cones in ΣPi with σPi ⊂ τ̄Pi mapping to the same cone under the quotient
maps MPi,R → MPi,R/〈σPi〉 = MS ,R from the definition of fanifolds.

Consider the symplectomorphism

T ∗T d × T ∗S ↪→ [T ∗M̂P1 t T ∗M̂P2]#LI12
[T ∗M̂I12 × T ∗I12,◦](4.9)

induced by the symplectomorphisms

T ∗T d × T ∗S Pi ↪→ T ∗M̂Pi , T ∗T d × T ∗(σP1/〈σP1
I12
〉) ↪→ T ∗M̂I12(4.10)

defined as (4.3) and the identity on T ∗I12,◦. Since it restricts to isomorphisms

L(ΣS Pi
) × S Pi ↪→ L(ΣPi), L(ΣI12/(σP1/〈σP1

I12
〉)) × σP1/〈σP1

I12
〉 ↪→ L(ΣI12)(4.11)

defined as (4.4), the symplectomorphism (4.9) embeds L(ΣS ) × S into L(Φ1).
(2) By assumption Φ1 is closed. The saturation of the zero set of the Liouville vector field

on the gluing

η1(Nbd∂∞W(Φ0)(LI12))#LI12
Nbd∂∞[T ∗M̂I12×T ∗I12,◦](LI12) ⊂W(Φ0)#LI12

[T ∗M̂I12 × T ∗I12,◦]

gives the newly formed part of Core(W̃(Φ1)) by the handle attachment. Due to the absence of
higher dimensional strata, it projects onto I12 under π1 and connects 1-dimensional components
of W(Φ0). Since I12 is interior, by Lemma 4.3(2) the union of the saturation and L̃(Φ0) coincide
with L̃(Φ1).

(3) It suffices to show the claim for Φ′1 = Φ0. Then by definition and Remark 3.19

W̃(Φ′1) = T ∗M̂P1 t T ∗M̂P2

determines a Weinstein sector W(Φ′1) ⊂ W̃(Φ1) with skeleton L(Φ′1) = W(Φ′1) ∩ L̃(Φ1). Here,
one obtains W(Φ′1) by completing [T ∗M̂P1] t [T ∗M̂P2] along the modified Liouville flow.

(4) Consider the Lagrangian foliation of T ∗T d × T ∗S with leaves

(T ∗θT d × {y}) × ({θ} × T ∗y S ), θ ∈ T d, y ∈ S .

Via the symplectomorphism T ∗T d × T ∗S � T ∗T d × T ∗S induced by (4.9), the leaf space get
identified with the zero section, which in turn is isomorphic to π−1

1 (S ). For the rest, the proof
of Lemma 4.3(4) carries over. �

In our current setting, there is only one 2-dimensional stratum F of Φ, which is interior. Let

L2 = LF = π−1
1 (F) ∩ ∂∞L(Φ1).

Lemma 4.9. There are smooth Legendrian embeddings

∂∞W(Φ1)←↩ L2 ↪→ ∂(T ∗M̂F × T ∗F◦).

Proof. Since π−1
1 (F) is the gluing of

4⊔

i=1

L
σ

Pi
F
,

⊔

1≤i< j≤4

L
σ

Pi
F /σ

Pi
Ii j

× Ii j,◦,
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by the second bullet of Lemma 4.8(1), there is a smooth Legendrian embedding

LF � M̂F × ∂F◦ ↪→ ∂∞W(Φ1).

On the other hand, M̂F × ∂F◦ can be regarded as a smooth Legendrian in

T ∗M̂F × T ∗∂F◦ ⊂ ∂(T ∗M̂F × T ∗F◦).

�

We define W̃(Φ2) as the handle attachment

W(Φ1)#L2[T
∗M̂F × T ∗F◦].

Lemma 4.10. The manifold W̃(Φ2) is subanalytic Weinstein.

Proof. The proof of Lemma 4.5 carries over. �

Lemma 4.11. There is a standard neighborhood

η2 : Nbd∂∞W(Φ1)(L2) ↪→ J1L2(4.12)

near L2 for which L(Φ1) is biconic along L2 and ∂∞L(Φ1) locally factors as

η2(L(Φ1) ∩ Nbd∂∞W(Φ1)(L2)) = L(ΣF) × ∂F◦.

Proof. Along the smooth Legendrian
4⊔

i=1

∂∞LσPi
F
⊂ LF ∩ ∂∞L(Φ0),

the disjoint union
⊔4

i=1 L(ΣPi) is biconic for the standard coordinates
4⊔

i=1

η
σ

Pi
F

: Nbd∂∞W(Φ0)(LF ∩ ∂∞L(Φ0)) ↪→ J1LF

from Lemma 3.27. Along the smooth Legendrian⊔

1≤i< j≤4

(∂∞LσPi
F /σIi j

× Ii j,◦) ⊂
⊔

1≤i< j≤4

∂∞T ∗M̂Ii j × T ∗Ii j,◦ ⊂
⊔

1≤i< j≤4

∂∞(T ∗M̂Ii j × T ∗Ii j,◦),

the Lagrangian
⊔

1≤i< j≤4(L(ΣIi j) × Ii j,◦) is biconic for the disjoint union
⊔

1≤i< j≤4

(η
σ

Pi
F /σIi j

× canIi j) : Nbd∂∞(T ∗M̂Ii j×T ∗Ii j,◦)(LF ∩
⊔

1≤i< j≤4

∂∞(L(ΣIi j) × Ii j,◦)) ↪→ J1LF

of the product of the standard coordinates from Lemma 3.27 and the canonical coordinates
canIi j on

⊔
1≤i< j≤4 T ∗Ii j,◦. By construction of L(Φ1) these coordinates glue to define a standard

neighborhood

ηF : Nbd∂∞W(Φ1)(LF) ↪→ J1LF .

Then the factorization of
(⊔4

i=1 ∂∞L(ΣPi)
)

#
(⊔

1≤i< j≤4 ∂∞(L(ΣIi j) × Ii j,◦)
)

as


4⊔

i=1

(L(ΣPi/σ
Pi
F ) × ∂∞σPi

F )

 #


⊔

1≤i< j≤4

(L(ΣIi j/(σ
Pi
F /〈σPi

Ii j
〉)) × ∂∞σPi

F /〈σPi
Ii j
〉 × Ii j,◦)

 � L(ΣF) × F◦

follows from (3.1) for any strata τPi ∈ ΣPi with σPi
F ⊂ τ̄Pi mapping to the same cone in ΣF under

the quotient maps ΣPi → ΣPi/σ
Pi
F . �

We define L̃(Φ2) as the extension through the handle T ∗M̂F × T ∗F◦
L(Φ1)#L2[LΣF × F◦].
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Lemma 4.12. The subset L̃(Φ2) ⊂ W̃(Φ2) is a subanalytic conic Lagrangian and contains the
skeleton Core(W̃(Φ2)) of the Weinstein manifold W̃(Φ2).

Proof. Since by Lemma 4.11 and Lemma 3.23 the Lagrangians L(Φ1) ⊂ W(Φ1) and [L(ΣF) ×
F◦] ⊂ [T ∗M̂F × T ∗F◦] are biconic along L2, the gluing L̃(Φ2) remains conic. For the rest of the
claim, the proof of Lemma 4.7 carries over. �

Let π2 : L(Φ2)→ Φ2 be the map induced by π1 and the projections from T ∗M̂F × T ∗F◦ to the
cotangent fiber direction in T ∗M̂F and the base direction in T ∗F◦.

Lemma 4.13. The triple (W̃(Φ2), L̃(Φ2), π2) satisfies the conditions (1), . . . , (4).

Proof. (1) Let S ⊂ Φ2 be the stratum



4⊔

i=1

S Pi

 #⊔
1≤i< j≤4(σPi/〈σ

Pi
Ii j
〉×∂Ii j,◦)


⊔

1≤i< j≤4

σPi/〈σPi
Ii j
〉 × Ii j,◦



 #
σP1/〈σ

P1
F 〉×∂F◦

(σP1/〈σP1
F 〉 × F◦)

where S Pi ⊂ Φ0, 1 ≤ i ≤ 4 are the strata of codimension d corresponding to cones σPi ∈ ΣPi via
φPi . Then by definition of π2 and Lemma 4.11 the inverse image π−1

2 (S ) is equal to
[

4⊔

i=1

LσPi
]#⊔

1≤i< j≤4(L
σPi

/σ
Pi
Ii j

×∂Ii j,◦)[
⊔

1≤i< j≤4

L
σPi/σ

Pi
Ii j

× Ii j,◦]

 #L
σP1

/σ
P1
F
×∂F◦[LσP1/σ

P1
F
× F◦]

�T d ×



4⊔

i=1

S Pi

 #⊔
1≤i< j≤4(σPi/〈σ

Pi
Ii j
〉×∂Ii j,◦)


⊔

1≤i< j≤4

(σPi/〈σPi
Ii j
〉 × Ii j,◦)



 #
σP1/〈σ

P1
F 〉×∂F◦

(σP1/〈σP1
F 〉 × F◦)).

From the isomorphisms (4.1), (4.8) and

τ⊥Pi
× τPi � (τPi/〈σPi〉)⊥ × τPi/〈σPi〉 × σPi/〈σPi

F 〉 × F(4.13)

for any stratum τPi ∈ ΣPi with σPi ⊂ τ̄Pi it follows that π−1
2 (Nbd(S )) is equal to

⋃

τP1 ,...,τP4



[
4⊔

i=1

LτPi
]#⊔

1≤i< j≤4 L
τPi

/σ
Pi
Ii j

×∂Ii j,◦[
⊔

1≤i< j≤4

L
τPi/σ

Pi
Ii j

× Ii j,◦]

 #L
τP1

/σ
P1
F
×∂F◦[LτP1/σ

P1
F
× F◦]



�L(ΣP1/σP1) × S ,

where τP1 , . . . , τP4 run through cones in ΣP1 , . . . ,ΣP4 with σPi ⊂ τ̄Pi mapping to the same cone
under the quotient maps MPi,R → MPi,R/〈σPi〉 = MS ,R from the definition of fanifolds.

Consider the symplectomorphism

T ∗T d × T ∗S ↪→
[

4⊔

i=1

T ∗M̂Pi]#⊔
1≤i< j≤4 LIi j

[
⊔

1≤i< j≤4

T ∗M̂Ii j × T ∗Ii j,◦]

 #LF [T ∗M̂F × T ∗F◦](4.14)

induced by the symplectomorphisms (4.10) and

T ∗T d × T ∗(σP1/〈σP1
F 〉) ↪→ T ∗M̂F

defined as (4.3), and the identity on T ∗I◦,T ∗F◦. Since it restricts to such isomorphisms as (4.11)
and an isomorphism

L(ΣF/(σP1/〈σP1
F 〉)) × σP1/〈σP1

F 〉 ↪→ L(ΣF)(4.15)

defined as (4.4), the symplectomorphism (4.14) embeds L(ΣS ) × S into L(Φ2).
(2) By assumption Φ2 is closed. The saturation of the zero set of the Liouville vector field

on the gluing

η2(Nbd∂∞W(Φ1)(L2))#L2 Nbd∂∞[T ∗M̂F×T ∗F◦](LF) ⊂W(Φ1)#L2[T
∗M̂F × T ∗F◦]
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gives the newly formed part of Core(W(Φ2)) by the handle attachment. Due to the absence of
higher dimensional strata, it projects onto F under π2 and connects 2-dimensional components
of W(Φ1). Since F is interior, by Lemma 4.8(2) the union of the saturation and L̃(Φ1) coincide
with L̃(Φ2).

(3) It suffices to show the claim for Φ′2 = Φ1. Then by definition and Remark 3.19

W̃(Φ′2) = [
4⊔

i=1

T ∗M̂Pi]#⊔
1≤i< j≤4 LIi j

[
⊔

1≤i< j≤4

T ∗M̂Ii j × T ∗Ii j,◦]

determines a Weinstein sector W(Φ′2) ⊂ W̃(Φ2) with skeleton L(Φ′2) = W(Φ′2) ∩ L̃(Φ2). Here,
one obtains W(Φ′2) by completing the gluing of [

⊔4
i=1 T ∗M̂Pi] with [

⊔
1≤i< j≤4 T ∗M̂Ii j × T ∗Ii j,◦]

along the modified Liouville flow.
(4) Consider the Lagrangian foliation of T ∗T d × T ∗S with leaves

(T ∗θT d × {y}) × ({θ} × T ∗y S ), θ ∈ T d, y ∈ S .

Via the symplectomorphism T ∗T d × T ∗S � T ∗T d × T ∗S induced by (4.14), the leaf space get
identified with the zero section, which in turn is isomorphic to π−1

2 (S ). For the rest, the proof
of Lemma 4.3(4) carries over. �

4.3. General case. Suppose that Theorem 1.1 and the relevant results hold for the subfanifold
Φk−1. Let Lk be the disjoint union of

LS (k) = π−1
k−1(S (k)) ∩ ∂∞L(Φk−1)

for all interior k-strata S (k) of Φ.

Lemma 4.14. There are smooth Legendrian embeddings

∂∞W(Φk−1)←↩ Lk ↪→ ∂
⊔

S (k)

(T ∗M̂S (k) × T ∗S (k)
◦ ).

Proof. It suffices to show the claim for LS (k) . Since π−1
k−1(S (k)) is the gluing of

LσP
S (k)
, LσP

S (k)/σ
P
I
× I◦, LσP

S (k)/σ
P
F
× F◦, . . .

by the second bullet of Theorem 1.1(1) for n = k − 1, there is a smooth Legendrian embedding

LS (k) � M̂S (k) × ∂S (k)
◦ ↪→ ∂∞W(Φk−1).

Here, P, I, F, . . . run through strata of dimension 0, 1, 2, . . . in ∂S (k)
◦ with P ⊂ ∂inI, P, I ⊂

∂inF, . . .. Note that by definition of fanifolds σP
S (k)/〈σP

I 〉, σP
S (k)/〈σP

F〉, . . . regarded as cones in
ΣI ,ΣF , . . . do not depend on the choice of P and we fix some P when such I, F, . . . run. On the
other hand, M̂S (k) × ∂S (k)

◦ can be regarded as a smooth Legendrian in

T ∗M̂S (k) × T ∗∂S (k)
◦ ⊂ ∂

⊔

S (k)

(T ∗M̂S (k) × T ∗S (k)
◦ ).

�

We define W̃(Φk) as the handle attachment

W(Φk−1)#Lk

⊔

S (k)

[T ∗M̂S (k) × T ∗S (k)
◦ ].

Lemma 4.15. The manifold W̃(Φk) is subanalytic Weinstein.

Proof. The proof of Lemma 4.5 carries over. �
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Lemma 4.16. There is a standard neighborhood

ηk : Nbd∂∞W(Φk−1)(Lk) ↪→ J1Lk(4.16)

near Lk for which L(Φk−1) is biconic along Lk and ∂∞L(Φk−1) locally factors as

ηk(L(Φk−1) ∩ Nbd∂∞W(Φk−1)(Lk)) =
⊔

S (k)

(L(ΣS (k)) × ∂S (k)
◦ ).

Proof. It suffices to show the claim for LS (k) . Along

∂∞LσP
S (k)
, ∂∞LσP

S (k)/σ
P
I
× I◦, ∂∞LσP

S (k)/σ
P
F
× F◦, . . .

where P, I, F, . . . run through strata of dimension 0, 1, 2, . . . in ∂S ◦ with P ⊂ ∂inI, P, I ⊂ ∂inF, . . .
as above,

L(ΣP), L(ΣI) × I◦, L(ΣF) × F◦, . . .(4.17)

are biconic for the products

ησP
S (k)
, ησP

S (k)/σ
P
I
× canI , ησP

S (k)/σ
P
F
× canF , . . .

of the standard coordinates from Lemma 3.27 and the canonical coordinates canI , canF , . . . on
T ∗I◦,T ∗F◦, . . .. By construction of L(Φk−1) these coordinates glue to define a standard neigh-
borhood

ηS (k) : Nbd∂∞W(Φk−1)(LS (k)) ↪→ J1LS (k) .

Then the factorization of the gluing of (4.17) as the gluing of

L(ΣP/σ
P
S (k)), L(ΣI/(σP

S (k)/〈σP
I 〉)) × σP

S (k)/〈σP
I 〉 × I◦, L(ΣF/(σP

S (k)/〈σP
F〉)) × σP

S (k)/〈σP
F〉 × F◦, . . .

follows from (3.1) for any strata τP ∈ ΣP, τP/〈σP
I 〉 ∈ ΣI , τP/〈σP

F〉 ∈ ΣF , . . . with σP
S (k) ⊂ τ̄P

mapping to the same cone in ΣS (k) under the quotient maps

ΣP → ΣP/σ
P
S (k) , ΣI → ΣI/(σP

S (k)/〈σP
I 〉), ΣF → ΣF/(σP

S (k)/〈σP
F〉), . . . .

�

We define L̃(Φk) as the extension through the disjoint union of the handles T ∗M̂S (k) × T ∗S (k)
◦

L(Φk−1)#Lk

⊔

S (k)

[L(ΣS (k)) × S (k)
◦ ].

Lemma 4.17. The subset L̃(Φk) ⊂ W̃(Φk) is a subanalytic conic Lagrangian and contains the
skeleton Core(W̃(Φk)) of the Weinstein manifold W̃(Φk).

Proof. Since by Lemma 4.16 and Lemma 3.23 the Lagrangians L(Φk−1) ⊂W(Φk−1) and
⊔

S (k)[L(ΣS (k))×
S (k)
◦ ] ⊂ ⊔

S (k)[T ∗M̂S (k) × T ∗S (k)
◦ ] are biconic along Lk, the gluing L̃(Φk) remains conic. For the

rest of the claim, the proof of Lemma 4.7 carries over. �

Let πk : L(Φk) → Φk be the map induced by πk−1 and the projections from T ∗M̂S (k) × T ∗S (k)
◦

to the cotangent fiber direction in T ∗M̂S (k) and the base direction in T ∗S (k)
◦ .

Lemma 4.18. The triple (W̃(Φk), L̃(Φk), πk) satisfies the conditions (1), . . . , (4).

Proof. (1) It suffices to show the claim when attaching the handle T ∗M̂S (k) × T ∗S (k)
◦ to W̃(Φk−1)

for a single interior k-stratum S (k) ⊂ Φ with k ≤ dim S . Then by definition of πk and Lemma
4.16 the inverse image π−1

k (S ) is the gluing of

LσP � T d × σP, LσP/σ
P
I
× I◦ � T d × σP/〈σP

I 〉 × I◦, LσP/σ
P
F
× F◦ � T d × σP/〈σP

F〉 × F◦, . . .
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and LσP
S (k)
× S (k)

◦ � T d × σP/〈σP
S (k)〉 × S (k)

◦ where P, I, F, . . . run through strata of dimension

0, 1, 2, . . . in ∂S (k)
◦ with P ⊂ ∂inI, P, I ⊂ ∂inF, . . . as above. Hence by Lemma 2.10 we obtain

π−1
k (S ) � T d × S .
From the isomorphisms (4.1), (4.8), (4.13), . . . and

τ⊥P × τP � (τP/〈σP〉)⊥ × τP/〈σP〉 × σP/〈σP
S (k)〉 × S (k)(4.18)

for any stratum τP ∈ ΣP with σP ⊂ τ̄P, it follows that π−1
k (S ′) for a stratum S ′ of the induced

stratification on Nbd(S ) is the gluing of

LτP � LτP/σP × σP, LτP/σ
P
I
× I◦ � LτP/σP × σP/〈σP

I 〉 × I◦, LτP/σ
P
F
× F◦ � LτP/σP × σP/〈σP

F〉 × F◦, . . .

and LτP/σP × σP/〈σP
S (k)〉 × S (k)

◦ where P, I, F, . . . run through strata of dimension 0, 1, 2, . . . in
∂S (k)
◦ with P ⊂ ∂inI, P, I ⊂ ∂inF, . . . as above and where τP are the cones in ΣP corresponding to

S ′. Since τP map to the same cone under the quotient maps MP,R → MP,R/〈σP〉 = MS ,R from
the definition of fanifolds, by Lemma 2.10 we obtain

π−1
k (S ′) � T d′ × τP/σP × S , π−1

k (Nbd(S )) � L(ΣP/σP) × S .

Consider the symplectomorphism

T ∗T d × T ∗S ↪→W(Φk−1)#LS (k) [T
∗M̂S (k) × T ∗S (k)

◦ ](4.19)

induced by the symplectomorphisms

T ∗T d × T ∗S P ↪→ T ∗M̂P, T ∗T d × T ∗(σP/〈σP
I 〉) ↪→ T ∗M̂I , T ∗T d × T ∗(σP/〈σP

F〉) ↪→ T ∗M̂F , . . .

and the symplectomorphism

T ∗T d × T ∗(σP/〈σP
S (k)〉) ↪→ T ∗M̂(k)

S

defined as (4.3), and the identity on T ∗I◦,T ∗F◦, . . . and T ∗S (k)
◦ . Since it restricts to isomorphisms

L(ΣS ) × S ↪→ L(ΣP), L(ΣS ) × σP/〈σP
I 〉 ↪→ L(ΣI), L(ΣS ) × σP/〈σP

F〉 ↪→ L(ΣF), . . .

and an isomorphism

L(ΣS (k)/(σP1/〈σP1

S (k)〉)) × σP1/〈σP1

S (k)〉 = L(ΣS ) × σP1/〈σP1

S (k)〉 ↪→ L(ΣS (k))(4.20)

defined as (4.4), the symplectomorphism (4.19) embeds L(ΣS ) × S into L(Φk).
(2) The fanifold Φk is closed only if:
• There are no strata of dimension more than k.
• All strata of dimension 1, 2, . . . , k − 1 are interior.

Then the saturation of the zero set of the Liouville vector field on the gluing

ηk(Nbd∂∞W(Φk−1)(Lk))#Lk

⊔

S (k)

Nbd∂∞[T ∗M̂S (k)×T ∗S (k)
◦ ](LS (k)) ⊂W(Φk−1)#LS (k)

⊔

S (k)

[T ∗M̂S (k) × T ∗S (k)
◦ ]

gives the newly formed part of Core(W̃(Φk)) by the handle attachment. Due to the absence of
higher dimensional strata, it projects onto

⊔
S (k) S (k) ⊂ Φk under πk and connects k-dimensional

components of W(Φk−1). Since all k-strata are interior, by Theorem 1.1(2) for n = k − 1 the
union of the saturation and L̃(Φk−1) coincide with L̃(Φk).

(3) It suffices to show the claim for

Φk = Φk−1#ΣS (k)×∂inS (k)(ΣS (k) × S (k)), Φ′k = Φk−1.

Then by definition and Remark 3.19 W̃(Φ′k) determines a Weinstein sector W(Φ′k) ⊂ W̃(Φk)
with skeleton L(Φ′k) = W(Φ′k) ∩ L̃(Φk). Here, one obtains W(Φ′k) by completing the gluing of
the domains along the modified Liouville flow.
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(4) Consider the Lagrangian foliation of T ∗T d × T ∗S with leaves

(T ∗θT d × {y}) × ({θ} × T ∗y S ), θ ∈ T d, y ∈ S .

Via the symplectomorphism T ∗T d × T ∗S � T ∗T d × T ∗S induced by (4.19), the leaf space get
identified with the zero section, which in turn is isomorphic to π−1

k (S ). Along the base direction
in T ∗S , it is compatible with the inclusion S ↪→ S ′ to any stratum S ′ of codimension d′ of the
induced stratification on Nbd(S ). Along the fiber direction in T ∗T d, it is compatible with the
inclusions T ∗θT d′ ↪→ T ∗θT d induced by the quotient maps

TS P MP,R → TS ′P MP,R|S P , TσP/〈σP
I 〉MI,R → Tσ′P/〈σP

I 〉MI,R|σP , TσP/〈σP
F〉MF,R → Tσ′P/〈σP

F〉MF,R|σP , . . .

and TσP/〈σP
S (k) 〉MS (k),R → Tσ′P/〈σP

S (k) 〉MS (k),R|σP from the definition of fanifolds for θ ∈ T d′ ∩ T d ⊂
M̂P. Hence one obtains the desired polarization. �

Remark 4.19. The symplectomorphism (4.19) sends the cotangent fibers of

T ∗S P, T ∗(σP/〈σP
I 〉), T ∗(σP/〈σP

F〉), . . .
and T ∗(σP/〈σP

S (k)〉) to the bases of T ∗M̂P, T ∗M̂I , T ∗M̂F , . . . and T ∗M̂S (k) with negation.

Remark 4.20. If ΣP,ΣI ,ΣF , . . . and ΣS (k) are stacky fans, then we consider stacky FLTZ skeleta
L(ΣPi),L(ΣIi j),L(ΣF), . . . and L(ΣS (k)). According to how many of copies of tori there, duplicate
the corresponding handles T ∗M̂I × T ∗I◦, T ∗M̂F × T ∗F◦, . . . and T ∗M̂S (k) × T ∗S (k)

◦ . Then our
proof generalizes in a straightforward way.

5. The proof of Theorem 1.2

Recall that a fibration is a map which satisfies the homotopy lifting property for all topo-
logical spaces. Any fiber bundle over a paracompact Hausdorff base gives an example. In this
section, we first construct an intermediate filtered stratified fibration π̃ from W̃(Φ) restricting
to π, which defines a filtered stratified integrable system with noncompact fibers. The compo-
sition with a certain map induced by retractions yields π̄. When ΣS is proper for any S ⊂ Φ,
the map is trivial and π̄ defines the integrable system. As in the previous section, we proceed
by induction on k.

5.1. Base case.

Lemma 5.1. There is a stratified fibration π̄0 : W̃(Φ0)→ Φ0 restricting to π0.

Proof. Define π̃0 as the disjoint union of the projections to the cotangent fibers T ∗M̂P → MP,R.
Clearly, its restriction to L̃(Φ0) coincides with π0. Let ret0 :

⊔
P MP,R → ⊔

P ΣP be the disjoint
union of maps induced by retractions which are the canonical extensions of piecewise projec-
tions onto facets in ∂Φ from outwards along their normal directions. Then the composition
π̄0 = ret0 ◦π̃0 gives the desired fibration. �

5.2. Special case. Again, before moving to general cases, we explicitly write down the proof
for Example 2.12.

Lemma 5.2. There is a filtered stratified fibration π̄1 : W̃(Φ1)→ Φ1 restricting to π1.

Proof. It suffices to show the claim when attaching the handle T ∗M̂I12 ×T ∗I12,◦ to W̃(Φ0). Then
we may assume (4.7). Define π̃1 as the map canonically induced by π̃0, π̃0,I12 and the projection
T ∗I12,◦ → I12,◦ to the base, where π̃0,I12 : T ∗M̂I12 → MI12,R is the projection to the cotangent
fibers. Here, we precompose the contraction

cont1 : W̃(Φ1)→ W̃(Φ1)
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of the cylindrical ends along the negative Liouville flow to the union of ∂∞W(Φ0) and ∂T ∗I12,◦.
Let ret1 : MI12,R → ΣI12 be the map induced by a retraction which is the canonical extension of
piecewise projections onto facets in ∂Φ from outwards along their normal directions. Define
π̄1 as the map canonically induced by π̄0, π̄0,I12 = ret1 ◦π̃0,I12 and the projection T ∗I12,◦ → I12,◦ to
the base.

Recall that the symplectomorphism (4.9) sends the bases of T ∗S Pi and T ∗(σP1/〈σP1
I12
〉) to the

cotangent fibers of T ∗M̂Pi and T ∗M̂I12 preserving T ∗I12,◦. In the gluing

W̃(Φ1) = [T ∗M̂P1 t T ∗M̂P2]#LI12
[T ∗M̂I12 × T ∗I12,◦](5.1)

the cotangent fibers of the images of T ∗S P1 ,T
∗S P2 get connected through J1LI12 with the prod-

uct of the cotangent fibers of the image of T ∗(σP1/〈σP1
I12
〉) and the base of T ∗I12,◦. In other words,

(4.9) respects the gluing (5.1) and

T ∗T d × ((T ∗S P1 t T ∗S P2)#(T ∗(σP1/〈σP1
I12
〉) × T ∗I12,◦))

induced by the gluing of the zero sections.
By definition π̄1 projects the former and the latter parts of (5.1) respectively onto

S P1 t S P2 , σP1/〈σP1
I12
〉 × I12,◦

in the gluing

S = (S P1 t S P2)#σP1/〈σ
P1
I12
〉×∂I12,◦

(σP1/〈σP1
I12
〉 × I12,◦).

Hence π̄1 is compatible with the relevant gluing procedure. As explained in the proof of Lemma
4.8(4), the source T ∗T d × T ∗S contains π−1

1 (S ) as the zero section. Then by Lemma 4.8(1) the
restriction of π̄1 to L̃(Φ1) coincides with π1. �

Lemma 5.3. There is a filtered stratified fibration π̄2 : W̃(Φ2)→ Φ2 restricting to π2.

Proof. Define π̃2 as the map canonically induced by π̃1, π̃0,F and the projection T ∗F◦ → F◦
to the base, where π̃0,F : T ∗M̂F → MF,R is the projection to the cotangent fibers. Here, we
precompose the contraction

cont2 : W̃(Φ2)→ W̃(Φ2)

of the cylindrical ends along the negative Liouville flow to the union of ∂∞W(Φ1) and ∂T ∗F◦.
Let ret2 : MF,R → ΣF be the map induced by a retraction which is the canonical extension of
piecewise projections onto facets in ∂Φ from outwards along their normal directions. Define
π̄2 as the map canonically induced by π̄1, π̄0,F = ret2 ◦π̃0,F and the projection T ∗F◦ → F◦ to the
base.

Recall that the symplectomorphism (4.14) sends the bases of T ∗S Pi ,T
∗(σP1/〈σP1

I12
〉) and T ∗(σP1/〈σP1

F 〉)
to the cotangent fibers of T ∗M̂Pi ,T

∗M̂I12 and T ∗M̂F preserving T ∗I12,◦,T ∗F◦. In the gluing

W̃(Φ2) =
(
[T ∗M̂P1 t T ∗M̂P2]#LI12

[T ∗M̂I12 × T ∗I12,◦]
)

#LF [T ∗M̂F × T ∗F◦](5.2)

the cotangent fibers of the images of T ∗S Pi get connected through J1LI12 with the product of
the cotangent fibers of the image of T ∗(σP1/〈σP1

I12
〉) and the base of T ∗I12,◦. The result gets

connected through J1LF with the product of the cotangent fibers of the image of T ∗(σP1/〈σP1
F 〉)

and the base of T ∗F◦. In other words, (4.14) respects the gluing (5.2) and

T ∗T d ×
(
[T ∗S P1 t T ∗S P2]#[T ∗(σP1/〈σP1

I12
〉) × T ∗I12,◦]

)
#[T ∗(σP1/〈σP1

F 〉) × T ∗F◦]

induced by the gluing of the zero sections.
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By definition π̄2 projects the former and the latter parts of (5.2) respectively onto

(S P1 t S P2)#σP1/〈σ
P1
I12
〉×∂I12,◦

(σP1/〈σP1
I12
〉 × I12,◦), σP1/〈σP1

F 〉 × F◦

in the gluing

S =

(
(S P1 t S P2)#σP1/〈σ

P1
I12
〉×∂I12,◦

(σP1/〈σP1
I12
〉 × I12,◦)

)
#
σP1/〈σ

P1
F 〉×∂F◦

(σP1/〈σP1
F 〉 × F◦).

Hence π̄2 is compatible with the relevant gluing procedure. As explained in the proof of Lemma
4.13(4), the source T ∗T d × T ∗S contains π−1

2 (S ) as the zero section. Then by Lemma 4.13(1)
the restriction of π̄2 to L̃(Φ2) coincides with π2. �

5.3. General case. Suppose that Theorem 1.2 holds for the subfanifold Φk−1.

Lemma 5.4. There is a filtered stratified fibration π̄k : W̃(Φk)→ Φk restricting to πk.

Proof. It suffices to show the claim when attaching the handle T ∗M̂S (k) × T ∗S (k)
◦ to W̃(Φk−1) for

a single interior k-stratum S (k) ⊂ Φ with k ≤ dim S . Define π̃k as the map canonically induced
by π̃k−1, π̃0,S (k) and the projection T ∗S (k)

◦ → S (k)
◦ to the base, where π̃0,S (k) : T ∗M̂S (k) → MS (k),R is

the projection to the cotangent fibers. Here, we precompose the contraction

contk : W̃(Φk)→ W̃(Φk)

of the cylindrical ends along the negative Liouville flow to the union of ∂∞W(Φk−1) and ∂T ∗S (k)
◦ .

Let retk : MS (k),R → ΣS (k) be the map induced by a retraction which is the canonical extension of
piecewise projections onto facets in ∂Φ from outwards along their normal directions. Define π̄k

as the map canonically induced by π̄k−1, π̄0,S (k) = retk ◦π̃0,S (k) and the projection T ∗S (k)
◦ → S (k)

◦ to
the base.

Recall that the symplectomorphism (4.19) sends the bases of

T ∗S P, T ∗(σP/〈σP
I 〉), T ∗(σP/〈σP

F〉), . . .
and T ∗(σP/〈σP

S (k)〉) to the cotangent fibers of

T ∗M̂P, T ∗M̂I , T ∗M̂F , . . .

and T ∗M̂S (k) preserving T ∗I◦,T ∗F◦, . . ., where P, I, F, . . . run through strata of dimension 0, 1, 2, . . .
in ∂S (k)

◦ with P ⊂ ∂inI, P, I ⊂ ∂inF, . . . as above. In the gluing

W̃(Φk) = W(Φk−1)#LS (k) [T
∗M̂S (k) × T ∗S (k)

◦ ](5.3)

the cotangent fibers of the images of T ∗S P get connected through J1LI with the products of the
cotangent fibers of the images of T ∗(σP/〈σP

I 〉) and the bases of T ∗I◦. The results get connected
through J1LF with the product of the cotangent fibers of the images of T ∗(σP/〈σP

F〉) and the
bases of T ∗F◦. Inductively, the results for n = k − 1 get connected through J1LS (k) with the
product of the cotangent fibers of the image of T ∗(σP/〈σP

S (k)〉) and the base of T ∗S (k)
◦ . In other

words, (4.19) respects the gluing (5.3) and the gluing of

T ∗T d × T ∗S P, T ∗T d × T ∗(σP/〈σP
I 〉) × T ∗I◦, T ∗T d × T ∗(σP/〈σP

F〉) × T ∗F◦, . . .

and T ∗T d × T ∗(σP/〈σP
S (k)〉) × T ∗S (k)

◦ induced by the gluing of the zero sections.
By definition π̄k projects the former part of (5.3) onto the gluing of

S P, σP/〈σP
I 〉 × I◦, σP/〈σP

F〉 × F◦, . . .

and the latter part ontoσP/〈σP
S (k)〉×S (k)

◦ in the gluing S . Hence π̄k is compatible with the relevant
gluing procedure. As explained in the proof of Lemma 4.18(4), the source T ∗T d×T ∗S contains
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π−1
k (S ) as the zero section. Then by Lemma 4.18(1) the restriction of π̄k to L̃(Φk) coincides with
πk. �

Remark 5.5. If ΣS is proper for any S ⊂ Φ, then reti, i = 0, 1, . . . , k are trivial and π̄k = π̃k.

Remark 5.6. From the above proof and the definition of fanifolds it follows that π̃k projects
the former part of (5.3) onto the gluing of

MP,R, MI,R × I◦, MF,R × F◦, . . .

and the latter part onto MS (k),R × S (k)
◦ in the gluing

⊔

P

MP,R#
⊔

I

(MI,R × I◦)#
⊔

F

(MF,R × F◦) · · · #(MS (k),R × S (k)
◦ ).

Hence π̃k is also compatible with the relevant gluing procedure.

5.4. The associated integrable system.

Definition 5.7 ([KS06, Section 3.1]). Let (W, ω) be a 2n-dimensional symplectic manifold, B
an n-dimensional manifold and $ : W → B a smooth surjective map. A triple (W, $, B) is an
integrable system if $ satisfies

{$−1( f ), $−1(g)} = 0, f , g ∈ C∞(B)

where {·, ·} is the Poisson bracket on W.

Remark 5.8. Here, we do not require the fibers of $ to be compact.

Example 5.9. A collection (H1, . . . ,Hn) of Hamiltonian functions on W defines a typical ex-
ample of integrable systems. In particular, on local coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn)
the projection to the base (q, p) 7→ q defines an integrable system, as we have

{qi, q j} =

n∑

k=1

dqk ∧ dpk(Zqi ,Zq j) =

n∑

k=1

dqk ∧ dpk(∂pi , ∂p j) = 0

where Zqi are Hamiltonian vector fields for qi. Similarly, the projection to the cotangent fibers
(q, p) 7→ p defines another integrable system.

Consider the map

π̃ = π̃n : W̃(Φ)→
⊔

P

MP,R#
⊔

I

(MI,R × I◦)#
⊔

F

(MF,R × F◦) · · · #
⊔

S (n)

(MS (n),R × S (n)
◦ )

where P, I, F, . . . , S (n) run through strata of dimension 0, 1, 2, . . . , n of Φ. If

P ⊂ ∂inI, P, I ⊂ ∂inF, . . . P, I, F, . . . , S (n−1) ⊂ ∂inS (n),

then by definition of fanifolds

σP
S (n)/〈σP

I 〉, σP
S (n)/〈σP

F〉, . . . σP
S (n)/〈σP

S (n)〉
regarded as cones in ΣI ,ΣF , . . . ,ΣS (n) do not depend on the choice of P and we fix some P when
such I, F, . . . , S (n) run. By construction π̃ respects the gluing.

Lemma 5.10. The map π̃ defines a filtered stratified integrable system with noncompact fibers.

Proof. When restricted to each stratum in the filter over Φ̄k \ Φk−1, clearly W̃(Φ) becomes a
smooth surjective submersion. Moreover, π̃ is the gluing of products of the projection to the
cotangent fibers from T ∗M̂S (k) and the projection to the base from T ∗S (k)

◦ . Hence the restriction
is an integrable system defined by a collection of Hamiltonian functions. �
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Consider the map

π̄ = π̄n : W̃(Φ)→ Φ.

In general, π̄ does not define an integrable system. For instance, on 0-strata P1, . . . , P4 of the
fanifold from Example 2.12 it is not even C1. Nevertheless, from construction and Remark 5.5
for k = n it follows

Lemma 5.11. The map π̄ is homotopic to π̃. If ΣS is proper for any S ⊂ Φ, then the homotopy
becomes trivial and π̄ defines a filtered stratified integrable system with noncompact fibers.

6. SYZ picture

6.1. The associated dual stratified spaces. First, we recall a fundamental piece of B-side
SYZ fibrations over stratified spaces dual in a certin sense to fanifolds. Let XΣ be the n-
dimensional toric variety associated with a fan Σ ⊂ MR for a lattice M � Zn. Consider the
map XΣ → (XΣ)≥0 induced by the retraction to the nonnegative real points. By [CLS11, Propo-
sition 12.2.3] the fiber over a point of O(σ)≥0 for each cone σ ∈ Σ is isomorphic to T n−dimσ.
Here, O(σ) is the orrbit corresponding to σ via [CLS11, Theorem 3.2.6]. Assume that Σ is the
normal fan of a very ample full dimensional lattice polytope Q. Then we have the algebraic
moment map XΣ → M∨

R. By [CLS11, Theorem 12.2.5] the image of its restriction (XΣ)≥0 → M∨
R

is homeomorphic to Q. Hence the composition

momQ : XΣ → (XΣ)≥0 → Q(6.1)

gives a stratified torus fibration. Note that Q gives the dual cell complex to Σ. Since momQ is
compatible with taking subfans, one can also define it when Q is noncompact.

Now, in order to define the associated dual stratified space, we assume Φ to satisfy the
following additional condition.

(vi) There is a collection of full dimensional lattice polytopes QP ⊂ M∨
P,R such that ΣP are

subfans of the normal fans of QP and for some collection {lP}P∈Φ0 of integers lPQP are
very ample and momlPQP(XΣP) glue along the inclusions obtained by the definition of
fanifolds.

Here, we explain more about the condition (vi). Given a fanifold Φ, we have the disjoint union
of toric varieties XΣP associated with the fans ΣP ⊂ MP,R for all 0-strata. Consider an exit path

P→ I → F → · · · → S (k).

By definition of fanifolds, we have the sequence of quotients

TPM � MP,R → TIM|P � MI,R → TFM|P � MF,R → · · · → TS (k)M|P � MS (k),R.

Fixing inner products, we obtain the sequence of inclusions

M∨
S (k),R

↪→ · · · ↪→ M∨
F,R ↪→ M∨

I,R ↪→ M∨
P,R,

which induces a sequence of inclusions of cones

(σP/〈σP
S (k)〉)⊥ ↪→ · · · ↪→ (σP/〈σP

F〉)⊥ ↪→ (σP/〈σP
I 〉)⊥ ↪→ (σP)⊥

for the cone σP ∈ ΣP corresponding to S (k). Note that

(σP)⊥, (σP/〈σP
I 〉)⊥, (σP/〈σP

F〉)⊥, . . . , (σP/〈σP
S (k)〉)⊥

can be regarded as fibers of TPM,TIM, ,TFM, · · · ,TS (k)M.
Another exit path

P′ → I → F → · · · → S (k)
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induces a sequence of inclusions of cones

(σP′/〈σP′
S (k)〉)⊥ ↪→ · · · ↪→ (σP′/〈σP′

F 〉)⊥ ↪→ (σP′/〈σP′
I 〉)⊥ ↪→ (σP′)⊥

for the cone σP′ ∈ ΣP′ corresponding to S (k). Then the identifications

(σP/〈σP
S (k)〉)⊥ = (σP′/〈σP′

S (k)〉)⊥, . . . , (σP/〈σP
F〉)⊥ = (σP′/〈σP′

F 〉)⊥, (σP/〈σP
I 〉)⊥ = (σP′/〈σP′

I 〉)⊥
from the definition of fanifolds give a gluing datum for (σP)⊥ and (σP′)⊥. Identifying (σP)⊥

with momlPQP(σP) for each P ∈ Φ0, the condition (vi) requires such gluing data to be compatible
with all exit paths.

Definition 6.1. Let Φ be a fanifold satisfying the additional condition (vi). We define its asso-
ciated dual stratified space Ψ as the gluing of momlPQP(XΣP) with the canonical stratification in
a sufficiently large ambient space N . For a k-stratum S (k) of Φ, its dual stratum S (k),⊥ of Ψ is
the stratum defined by the cone σP ∈ ΣP corresponding to S (k).

Example 6.2. Let Φ be the fanifold from Example 2.12. Adding rays to P1, P2, P3, P4 parallel
to vectors (−1, 1), (−1,−1), (1,−1), (1, 1), we obtain the normal fans ΣQPi

of full dimensional
lattice polytopes QPi . Since we have dim MPi,R = 2, by [CLS11, Corollary 2.2.19] any full di-
mensional lattice polytope is very ample. Then momQPi

(XΣPi
) glue to yield a stratified space Ψ ⊂

M∨
R. Its 0-stratum F⊥ is a point (1/2, 1/2), 1-strata I⊥12, I

⊥
23, I

⊥
34, I

⊥
14 are defined by rays from F⊥

parallel to vectors (−1, 0), (0,−1), (1, 0), (0, 1), and 2-strata P⊥1 , P
⊥
2 , P

⊥
3 , P

⊥
4 are defined by quad-

rants with the origin placed at F⊥ bounded by the pairs (I⊥12, I
⊥
14), (I⊥12, I

⊥
23), (I⊥23, I

⊥
34), (I⊥14, I

⊥
34).

Lemma 6.3. Let Φ be a fanifold of dimension n satisfying the additional condition (vi). Then
it admits a filtration

Ψ0 ⊂ Ψ1 ⊂ · · · ⊂ Ψn = Ψ(6.2)

where Ψk is a stratified subspace defined as the complement in Ψ of k-skeleta Skn−k−1(Ψ), the
closure of the subset of n − k − 1-strata.

Proof. It follows immediately from the construction of Ψ. �

In [GS1, Section 3], to a fanifold Φ Gamage–Shende associated the colimit

T(Φ) = lim
S

XΣS

along closed embeddings induced by quotient maps between fans, where S runs through all
strata of Φ. By [GS1, Proposition 3.10] the colimit T(Φ) always exists as an algebraic space.
We will recall later that T(Φ) is a mirror partner of W̃(Φ). When Φ has the associated dual
stratified space, B-side SYZ fibration over Ψ for the pair (W̃(Φ),T(Φ)) should be the following.

Definition 6.4. Let Φ be a fanifold satisfying the additional condition (vi). We define

momΦ : T(Φ)→ Ψ

as the gluing of momlPQP where P runs through all 0-strata of Φ.

6.2. The proof of Theorem 1.3. Suppose that Φ satisfies the additional condition (vi). By
Lemma 6.3 the dual space Ψ admits a filtration (6.2). Now, we construct a fibration π : W̃(Φ)→
Ψ as an integrable system with noncompact fibers, which should be SYZ dual to momΦ. We
proceed by induction on k.

Definition 6.5. We define

π0 : W̃(Φ0)→ Ψ0
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as the composition of π̃0 with the disjoint union of diffeomorphisms T ∗θ M̂P � MP,R � P⊥. Here,
the first and the second diffeomorphisms respectively follow from the fixed identifications and
the definition of Ψ.

Remark 6.6. The map π is nothing but the disjoint union of moment maps

LogP : T ∗M̂P � (C∗)n → Rn, (θ, ξ) 7→ ξ

for the lifts to T ∗M̂P of the self M̂P-actions.

Suppose that we construct πk−1 for the subfanifold Φk−1.

Definition 6.7. We define

πk : W̃(Φk)→ Ψk

as follows. First, consider the map canonically induced by πk−1, π0,S (k) and the projections
T ∗S (k)

◦ → S (k)
◦ to the base, where π0,S (k) are the compositions of π̃0,S (k) with the diffeomorphisms

T ∗θ M̂(k)
S � MS (k),R � S (k),⊥. Here, we regard the images S (k)

◦ as a fiber of the normal bundles
TS (k),⊥N . Next, contract the images S (k)

◦ to obtain πk.

Remark 6.8. Since we contract T ∗S (k)
◦ to single points when defining πk, by Remark 5.6 one

can regard πk as the gluing of πk−1 with π0,S (k) . As the contraction of the images S (k)
◦ corresponds

to shrinking the Lagrangians M̂S (k) × S (k)
◦ in the gluing L̃(Φk), the image of πk is homeomorphic

to that of π̃k.

We denote πn by π. From Remark 6.8 for k = n one sees that π is the gluing of the disjoint
unions of the projections to the cotangent fibers from T ∗M̂P along the canonical inclusions
induced by

M̂S (n) ↪→ . . . ↪→ M̂F ↪→ M̂I ↪→ M̂P,

which are obtained by the definition of fanifolds. Here, P, I, F, . . . , S (n) run through strata of
dimension 0, 1, 2, . . . , n of Φ. with P ⊂ ∂inI, P, I ⊂ ∂inF, . . . , P, I, F, . . . , S (n−1) ⊂ ∂inS (n).

Lemma 6.9. The map π defines a stratified fibration, whose fiber over a point of any k-stratum
S (k),⊥ is given by T k × T ∗S (k).

Proof. It immediately follows from definition and Remark 6.8 �

6.3. Review on very affine hypersurfaces. First, we recall HMS for very affine hypersurfaces
established by Gamage–Shende. Let Σ ⊂ MR � Rn+1 be a smooth quasiprojective stacky
fan [GS15, Definition 2.4] whose primitive ray generators span a convex lattice polytope ∆∨

containing the origin. Then Σ defines a smooth Deligne–Mumford stack TΣ [GS15, Definition
2.5] with toric boundary divisor ∂TΣ and an adapted star-shaped triangulation T of ∆∨ [GS2,
Definition 3.3.1]. Recall that a triangulationT is adapted if there is a convex piecewise function
µ : ∆∨ → R whose corner locus is T . We denote by TC the complex torus MR/M ⊗R C acting
on TΣ, where T is a real (n + 1)-dimensional torus with character lattice M∨ and cocharacter
lattice M.

Consider a Laurent polynomial

Wt : T∨C → C, z 7→
∑

α∈Vert(T )

cαt−µ(α)zα

in coordinates z = (z1, . . . , zn+1) on T∨C, where cα ∈ C∗ are arbitrary constants and t � 0 is a
tropicalization parameter. For sufficiently general t, the hypersurface Ht = W−1

t (0) is smooth
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and called very affine. Restricting the canonical Liouville structure on T∨C � TT∨C � T ∗T∨ for a
fixed inner product, we may regard Ht as a Liouville submanifold.

Theorem 6.10 ([GS2, Theorem 1.0.1]). There is an equivalence

Fuk(Ht) ' Coh(∂TΣ)

between the wrapped Fukaya category on Ht and the dg category of coherent sheaves on ∂TΣ.

Next, following [AAK16, Section 3], we explain SYZ fibrations associated with mirror sym-
metry for very affine hypersurfaces. For simplicity, we temporarily assume that Σ is an ordinary
simplicial fan. Consider the moment map

Log: T∨C → Rn+1, z 7→ (log |z1|, . . . , log |zn+1|)
for the lift to T ∗T∨ of the self T∨-action. The image Πt = Log(Ht) is called the amoeba of Ht.

Definition 6.11. The tropical hypersurface ΠΣ associated with Ht is the hypersurface defined
by the tropical polynomial

ϕ : M∨
R → R, ϕ(m) = max{〈m, n〉 − µ(n) | n ∈ ∆∨}.

Namely, ΠΣ is the set of points where the maximum is achieved more than once.

It is known that ΠΣ is a deformation retract of Πt. According to [Mik04, Corollary 6.4],
when t → ∞ the rescaled amoeba Πt/ log t converges to ΠΣ. Combinatorially, ΠΣ is the dual
cell complex of T . In particular, the set of connected components of Rn+1 \ ΠΣ bijectively
corresponds to the set Vert(T ) of vertices of T according to which α ∈ Vert(T ) achieves
the maximum of 〈m, α〉 − µ(α) for m ∈ Rn+1 \ ΠΣ. Note that Rn+1 \ Πt for t � 0 has the
same combinatrics as Rn+1 \ ΠΣ. Since we assume ∆∨ to contain the origin, each connected
component of Rn+1 \ ΠΣ is the locus where the monomial cαt−µ(α)zα becomes dominant. In the
sequel, we will fix a general t � 0 and drop t from the notation.

Let ret : Π→ ΠΣ be the continuous map induced by the retraction. Then the composition

H ↪→ T∨C
Log−−→ Π

ret−→ ΠΣ(6.3)

gives the A-side SYZ fibration. Recall that H admits a pants decomposition [Mik04, Theorem
1’]. By [Mik04, Proposition 4.6] the k-th intersection of i1, · · · , ik-th legs [GS2, Definition
5.2.2] of an n-dimensional tailored pants P̃n is isomorphic to a product

C∗zi1
× · · · × C∗zik

× P̃n−k.

Under (6.3) a k-th intersection of legs maps to a subset of k-stratum away from lower dimen-
sional strata. In particular, the fiber over a general point of a k-stratum contains T k. On the other
hand, the B-side SYZ fibration is induced by the map from the total space of the anticanonical
sheaf on TΣ = XΣ defined as (6.1).

Now, we return to the case where Σ is a smooth quasiprojective stacky fan. Since T is
star-shaped, each (n + 1)-simplex is a polytope

∆∨σ = Conv(0, α1, . . . , αn) ⊂ MR

spanned by the origin and primitive ray generators α1, . . . , αn of some maximal dimensional
cone σ. Consider the map

∆∨n+1 → ∆∨σ, ei 7→ αi

from the standard (n + 1)-simplex with the standard basis e1, . . . , en, whose dual induces a map
f∆∨σ : T∨C → T∨C.
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Definition 6.12 ([GS2, Definition 5.1.4]). The ∆∨σ-pants is the inverse image P̃∆∨σ = f −1
∆∨σ

(P̃n) of
the tailored pants. We write Ã∆∨σ for its amoeba Log(P̃∆∨σ). For b = (b1, . . . , bn+1), bi � 0 we
denote by P̃b

∆∨σ
and Ãb

∆∨σ
respectively the translated tailored ∆∨σ-pants obtained by scaling the

coefficients of the defining polynomial by e−bi and its amoeba obtained by translation to the
first orthant.

Lemma 6.13 ([GS2, Lemma 5.3.6]). Let ∂0Ãb
∆∨σ

be the component of ∂Ãb
∆∨σ

which bounds the
region of Rn+1 containing the inverse image of the all-negative orthant. Restrict the canoni-
cal Liouille structure on T ∗T∨ to P̃b

∆∨σ
. Let Σσ ⊂ Σ be the stacky subfan whose primitive ray

generators are α1, . . . , αn. Then we have

Core(P̃b
∆∨σ

) = Log−1(∂0Ãb
∆∨σ

) ∩ L(−Σσ).

From [GS2, Theorem 6.2.4] it follows that Core(H) is the gluing of Core(P̃b
∆∨σ

) for all σ ∈
Σmax. Hence in this case the fiber of (6.3) over a point of k-stratum away from lower dimen-
sional strata becomes isomorphic to a product

C∗zi1
× · · · × C∗zik

× P̃b
∆∨
σ/〈i1 ,...,ik〉

.

Here, P̃b
∆∨
σ/〈i1 ,...,ik〉

is the k-th intersection of i1, · · · , ik-th legs [GS2, Definition 5.2.5] of P̃b
∆∨σ

with

∆∨σ/〈i1,...,ik〉 = Conv(0, α1, . . . , α̂i1 , . . . , α̂ik , . . . , αn).

On the other hand, the B-side SYZ fibration becomes the composition of the structure morphism
TΣ → XΣ to the coarse moduli space with the map defined as (6.1). The fiber over any point
of a k-stratum is the real part of the corresponding subgroup of the Deligne–Mumford torus
[FMN10, Definition 2.4, Proposition 2.6] acting on TΣ.

6.4. The proof of Theorem 1.4. For a smooth quasiprojective stacky fan Σ ⊂ MR, consider
the fanifold Φ = Σ ∩ S n+1 from [GS1, Example 4.22] generalized as in [GS1, Section 6]. In
particular, to each 0-stratum P we associate the stacky fan ΣP = Σ/ρP where ρP ∈ Σ is the
ray passing through P. Hence T(Φ) coincide with the toric boundary divisor ∂TΣ of TΣ. Fix a
stratified homeomorphism hΦ : ∂∆∨ → Φ. Then strata of ∂∆∨ inherit the labels from Φ which
induces the labels on strata of ΠΣ.

Definition 6.14. Let Π0
Σ

be the connected component of Rn+1 \ ΠΣ corresponding to the origin
of ∆∨. We define Ψ as the image of a fixed stratified homeomorphism hΨ : ∂Π0

Σ
↪→ S n+1 ⊂ M∨

R,
which makes the inherited labels on strata of Ψ compatible with that on strata of Φ transported
to M∨

R via a fixed inner product.

Note that ∂Π0
Σ

is the image of the composition

∂TΣ ↪→ TΣ → XΣ → (XΣ)≥0 → M∨
R.

Hence Φ satisfies (vi) and has the dual stratified space Ψ. In particular, the B-side fibration
T(Φ) → Ψ is the gluing of the compositions TΣP → XΣP → QP and compatible with that
∂TΣ → ∂Π0

Σ
for very affine hypersurface. Namely, we have the commutative diagram

T(Φ)

��

∂TΣ

��
Ψ

h−1
Ψ // ∂Π0

Σ
.

Lemma 6.15. There is a stratified homeomorphism of the image of Core(H) under the compo-
sition ret ◦Log and Φ transported to M∨

R via the fixed inner product.
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Proof. As explained above, Core(H) is the gluing of Core(P̃b
∆∨σ

) for all σ ∈ Σmax. By Lemma
6.13 each piece is the Legendrian boundary ∂∞L(−Σσ) of the FLTZ Lagrangian L(−Σσ) asso-
ciated with the stacky subfan Σσ ⊂ Σ. Unwinding the proof of [Nad, Theorem 5.13], one sees
that ret ◦Log projects each k-dimensional torus in ∂∞L(−Σσ) to a point of the corresponding
cone in Σσ(n + 1 − k) transported to M∨

R. Such k-dimensional tori are connected with lower
dimensional tori by the Liouville flow. Hence the composition

hΨ ◦ ret ◦Log: Core(H)→ Ψ

projects each k-dimensional torus in Core(H) to a point of the corresponding (n−k)-stratum of Φ

transported to M∨
R. Note that tori in different ∂∞L(−Σσ) mapping to the same point get identified

in Core(H). The images of k-dimensional tori are connected with that of lower dimensional
tori by the images of the Liouville flow, which become parallel to the corresponding strata
of Φ. Thus one can find a homeomorphism of the image of each stratum of Core(H) under
hΨ ◦ ret ◦Log to the corresponding stratum of Φ transported to M∨

R. By construction such
homomorphisms glue to yield the desired map. �

Corollary 6.16. There is a diffeomorphism of L(Φ) and Core(H) over Φ transported to M∨
R.

Proof. For any k-stratum S (k)
P of Φ adjacent to a 0-stratum P, its inverse image under the re-

striction hΨ ◦ ret ◦Log |Core(H) is diffeomorphic to the zero section of T ∗M̂S (k)
P
× T ∗S (k)

P . By
construction

(hΨ ◦ ret ◦Log |Core(H))−1(S (k)
P◦ ), M̂S (k)

P
× S (k)

P,◦
respectively glue along the boundaries to yield Core(H),L(Φ). �

Corollary 6.17. There is a symplectomorphism of pairs

(W(Φ),L(Φ)) ↪→ (H,Core(H))(6.4)

over Ψ with respect to π and a certain modification of hΨ ◦ ret ◦Log.

Proof. Contracting cotangent fibers along the negative Liouville flow if necessary, one can
make (T ∗M̂S (k)

P
× T ∗S (k)

P , M̂S (k)
P
× S (k)

P ) symplectomorphic to

(Nbd((hΨ ◦ ret ◦Log |Core(H))−1(S (k)
P )), (hΨ ◦ ret ◦Log |Core(H))−1(S (k)

P ))

for any k-stratum S (k)
P of Φ adjacent to a 0-stratum P. By construction they glue to yield a

symplectomorphism of pairs

(W(Φ),L(Φ)) ↪→ (H,Core(H))

over the pair (π̃(W(Φ)),Φ). Since it is an embedding, the same modification as in the proof of
Theorem 1.3 yields compatible fibrations over Ψ. �
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