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Abstract

Whitham and Benjamin predicted in 1967 that small-amplitude periodic travel-
ing Stokes waves of the 2d-gravity water waves equations are linearly unstable with
respect to long-wave perturbations, if the depth h is larger than a critical threshold
hWB ≈ 1.363. In this paper, we completely describe, for any finite value of h > 0,
the four eigenvalues close to zero of the linearized equations at the Stokes wave,
as the Floquet exponent μ is turned on. We prove, in particular, the existence of a
unique depth hWB, which coincides with the one predicted by Whitham and Ben-
jamin, such that, for any 0 < h < hWB, the eigenvalues close to zero are purely
imaginary and, for any h > hWB, a pair of non-purely imaginary eigenvalues de-
picts a closed figure “8”, parameterized by the Floquet exponent. As h→ h+WB the
“8” collapses to the origin of the complex plane. The complete bifurcation diagram
of the spectrum is not deduced as in deep water, since the limits h→ +∞ (deep
water) and μ → 0 (long waves) do not commute. In finite depth, the four eigen-
values have all the same size O(μ), unlike in deep water, and the analysis of their
splitting is much more delicate, requiring, as a new ingredient, a non-perturbative
step of block-diagonalization. Along the whole proof, the explicit dependence of
the matrix entries with respect to the depth h is carefully tracked.
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1. Introduction to Main Results

A classical problem in fluid dynamics, pioneered by the famous work of Stokes
[36] in 1847, concerns the spectral stability/instability of periodic travelingwaves—
called Stokes waves– of the gravity water waves equations in any depth.

Benjamin and Feir [3], Lighthill [30] and Zakharov [40,42] discovered in the
sixties, through experiments and formal arguments, that Stokes waves in deep wa-
ter are unstable, proposing an heuristic mechanism which leads to the disintegra-
tion of wave trains. More precisely, these works predicted unstable eigenvalues
of the linearized equations at the Stokes wave, near the origin of the complex
plane, corresponding to small Floquet exponents μ or, equivalently, to long-wave
perturbations. The same phenomenon was later predicted by Whitham [38] and
Benjamin [2] for Stokes waves of wavelength 2πκ , in finite depth h, provided
that κh > 1.363 approximately. This phenomenon is nowadays called “Benjamin–
Feir"—or modulational– instability, and it is supported by an enormous amount of
physical observations and numerical simulations, see e.g. [16,31]. We refer to [43]
for an historical survey.

A serious difficulty for a rigorous mathematical proof of the Benjamin–Feir
instability is that the perturbed eigenvalues bifurcate from the eigenvalue zero,
which is defective, with multiplicity four. The first rigorous proof of a local branch
of unstable eigenvalues close to zero for κh larger than the Whitham-Benjamin
threshold 1.363 . . . was obtained by Bridges-Mielke [9] in finite depth (see also the
preprint [23]). Their method, based on a spatial dynamics and a center manifold
reduction, breaks down in deep water. For dealing with this case Nguyen-Strauss
[33] have recently developed a new approach, based on a Lyapunov-Schmidt de-
composition. Very recently Berti-Maspero-Ventura [6], in deep water, provided a
detailed account of the splitting of the four eigenvalues close to zero, as the Floquet
exponent is turned on (see also [7] for a review of this result).

The goal of this paper is to completely describe the Benjamin–Feir spectrum
at any finite value of the depth h > 0. This analysis has fundamental physical
importance, since real-life experiments are performed in water tanks (for example
the original Benjamin and Feir experiments, in Feltham’s National Physical Lab-
oratory, had Stokes waves of wavelength 2.2 m and bottom’s depth of 7.62 m, see
[2]). The limitsh→+∞ (infinite depth) andμ→ 0 (longwaves) do not commute
and the emergence of Benjamin–Feir unstable eigenvalues in finite depth is not a
direct followup of the infinite depth case.

Through out this paper, with no loss of generality, we consider 2π -periodic
Stokes waves, i.e. with wave number κ = 1. In Theorems 2.5 and 1.1 we prove
the existence of a unique depth hWB, in perfect agreement with the Benjamin–Feir
critical value 1.363..., such that

• Shallow water case: for any 0 < h < hWB the eigenvalues close to zero are
purely imaginary for Stokes waves of sufficiently small amplitude, see Fig. 2-
left;

• Sufficiently deep water case: for any hWB < h < ∞, there exists a pair of
non-purely imaginary eigenvalues which traces a complete closed figure “8”
(as shown in Fig. 2-right) parameterized by the Floquet exponent μ. By further
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increasing μ, the eigenvalues recollide far from the origin on the imaginary
axis where then they keep moving. As h → h+WB the set of unstable Floquet
exponents shrinks to zero and the Benjamin–Feir unstable eigenvalues collapse
to the origin, see Fig. 3. This figure ‘8" was first numerically discovered by
Deconink-Oliveras in [16].

We remark that the present approach provides a necessary and sufficient condition
for the existence of unstable eigenvalues.

We encounter several differences between the current proof and the one of
the infinite depth case in [6], the major of which we anticipate here. In the deep
water ideal case it turns out that the “reduced” 4 × 4 matrix obtained by the Kato
spectral procedure is a small perturbation of a block-diagonal matrix which shows
up the Benjamin–Feir unstable eigenvalues. In finite depth this is not the case; the
coupling between the 2 × 2 block-diagonal matrices and the out-diagonal ones is
much stronger. The difference arises because, when h = +∞, the 4 × 4 reduced
Kato matrix has two eigenvalues of size O(μ) and the other two have the much
bigger size O(

√
μ), whereas in finite depth all four eigenvalues are O(μ). In turn,

this is due to the different asymptotic expansions of the function

√
μ tanh(μh) =

{√
μ if h = +∞ ,√
hμ+ O(μ3) ∀h > 0 as μ→ 0 ,

appearing in the Floquet operator (see Sect. 2). This significantly increases the com-
plexity of the spectral analysis. In order to rigorously compute the spectrum of the
4 × 4 reduced matrix in finite depth (not only providing a formal expansion) we
introduce a novel non-perturbative step of block diagonalization, which consid-
erably modifies the block-diagonal matrices (see comments below Theorem 2.5).
Such procedure is uniform in h only on compact subsets of (0,+∞) and becomes
singular in the deep water limit.

These differences indicate that the limits h → +∞ (infinite depth) and μ →
0 (long wave) can not be simply interchanged, and the connection between the
Benjamin–Feir instability in these two cases is far more complex: the modulational
instability in infinite depth is not the limit of the finite depth one, nor the latter is a
direct followup of the infinite depth case.

Let us now present, rigorously, our results.

Benjamin–Feir Instability in Finite Depth

We consider the pure gravity water waves equations for a bidimensional fluid
occupying a region with finite depth h. With no loss of generality we set the gravity
g = 1, see Remark 2.4. We consider a 2π -periodic Stokes wave with amplitude
0 < ε � 1 and speed

cε = ch +O(ε2) , ch :=
√
tanh(h) .

The linearizedwaterwaves equations at the Stokeswave are, in the inertial reference
framemovingwith speed cε , a linear time independent systemof the form ht = Lεh
whereLε := Lε(h) is a linear operatorwith 2π -periodic coefficients, see (2.17) (the
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operator Lε in (2.17) is actually obtained conjugating the linearized water waves
equations in the Zakharov formulation at the Stokes wave via the “good unknown of
Alinhac" (2.11) and the Levi-Civita (2.16) invertible transformations). The operator
Lε possesses the eigenvalue 0, which is defective, with multiplicity four, due to
symmetries of the water waves equations. The problem is to prove that the linear
system ht = Lεh has solutions of the form h(t, x) = Re

(
eλt eiμxv(x)

)
where

v(x) is a 2π -periodic function, μ in R is the Floquet exponent and λ has positive
real part, thus h(t, x) grows exponentially in time. By Bloch-Floquet theory, such
λ is an eigenvalue of the operator Lμ,ε := e−iμx Lε eiμx acting on 2π -periodic
functions.

The main result of this paper proves, for any finite value of the depth h, the full
splitting of the four eigenvalues close to zero of the operatorLμ,ε := Lμ,ε(h)when
ε and μ are small enough, see Theorem 2.5. We first present Theorem 1.1 which
focuses on the figure “8" formed by the Benjamin–Feir unstable eigenvalues.

We first need to introduce the “Whitham-Benjamin” function

eWB := eWB(h) := 1

ch

[9c8h − 10c4h + 9

8c6h

− 1

h− 1
4e

2
12

(
1+ 1− c4h

2
+ 3

4

(1− c4h)
2

c2h
h
)]

, (1.1)

where ch = √tanh(h) is the speed of the linear Stokes wave, and

e12 := e12(h) := ch + c−1h (1− c4h)h > 0 , ∀h > 0 . (1.2)

The function eWB(h) is well defined for any h > 0 because the denominator
h − 1

4e
2
12 > 0 in (1.1) is positive for any h > 0, see Lemma 5.7. The function

(1.1) coincides, up to a non zero factor, with the celebrated function obtained
by Whitham [38], Benjamin [2] and Bridges-Mielke [9] which determines the
“shallow/sufficiently deep” threshold regime. In particular the Whitham-Benjamin
function eWB(h) vanishes at hWB = 1.363..., it is negative for 0 < h < hWB,
positive for h > hWB and tends to 1 as h→+∞, see Fig. 1. We also introduce the
positive coefficient

e22 := e22(h) := (1− c4h)(1+ 3c4h)h
2 + 2c2h(c

4
h − 1)h+ c4h

c3h
> 0 , ∀h > 0 .

(1.3)

We remark that the functions e12(h) > ch and e22(h) > 0 are positive for any
h > 0, tend to 0 as h→ 0+ and to 1 as h→+∞, see Lemma 4.8.

Through out the paper we denote by r(εm1μn1 , . . . , εm pμn p ) a real analytic
function fulfilling for some C > 0 and ε, μ sufficiently small, the estimate
|r(εm1μn1 , . . . , εm pμn p )| ≤ C

∑p
j=1 |ε|m j |μ|n j , where the constant C := C(h)

is uniform for h in any compact set of (0,+∞).
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Fig. 1. Plot of the Whitham-Benjamin function eWB(h). The red dot shows its unique root
hWB = 1.363 . . . . which is the celebrated “shallow/sufficiently deep” water threshold pre-
dicted independently byWhitham (cfr. [38] p.49) and Benjamin (cfr. [2] p.68), and recovered
in the rigorous proof of Bridges-Mielke [9, p. 183]

Theorem 1.1. (Benjamin–Feir unstable eigenvalues) For any h > hWB, there exist
ε1, μ0 > 0 and an analytic function μ : [0, ε1)→ [0, μ0), of the form

μ(ε) = ehε(1+ r(ε)) , eh :=
√
8eWB(h)

e22(h)
, (1.4)

such that, for any ε ∈ [0, ε1), the operator Lμ,ε has two eigenvalues λ±1 (μ, ε) of
the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i 12 c̆hμ+ i r2(με2, μ2ε, μ3)

± 1
8μ
√
e22(h)(1+ r(ε, μ))

√
�BF(h;μ, ε), ∀μ ∈ [0, μ(ε))

i 12 c̆hμ(ε)+ i r(ε3), μ = μ(ε)

i 12 c̆hμ+ i r2(με2, μ2ε, μ3)

±i 18μ
√
e22(h)(1+ r(ε, μ))

√|�BF(h;μ, ε)|, ∀μ ∈ (μ(ε), μ0)

(1.5)

where c̆h := 2ch − e12(h) > 0 and �BF(h;μ, ε) is the “Benjamin–Feir discrim-
inant" function

�BF(h;μ, ε) := 8eWB(h)ε2 + r1(ε
3, με2)− e22(h)μ2(1+ r ′′1 (ε, μ)

)
. (1.6)

Note that, for any 0 < ε < ε1 (depending on h) the function �BF(h;μ, ε) > 0 is
positive, respectively < 0, provided 0 < μ < μ(ε), respectively μ > μ(ε).

Let us make some comments.

1. Benjamin--Feir unstable eigenvalues. For h > hWB, according to (1.5), for
values of the Floquet parameter 0 < μ < μ(ε), the eigenvalues λ±1 (μ, ε) have
opposite non-zero real part. As μ tends to μ(ε), the two eigenvalues λ±1 (μ, ε)

collide on the imaginary axis far from 0 (in the upper semiplane Im(λ) > 0), along
which they keep moving for μ > μ(ε), see Figure 2. For μ < 0 the operator Lμ,ε

possesses the symmetric eigenvalues λ±1 (−μ, ε) in the semiplane Im(λ) < 0. For
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Fig. 2. The picture on the left shows, in the “shallow”water regimeh < hWB, the eigenvalues
λ±1 (μ, ε) and λ±0 (μ, ε) which are purely imaginary. The picture on the right shows, in the

“sufficiently deep” water regime h > hWB, the eigenvalues λ±1 (μ, ε) in the complex λ-plane

at fixed |ε| � 1 as μ varies. This figure “8 ” depends on h and shrinks to 0 as h → h+WB,
see Fig. 3. As h→+∞ the spectrum resembles the one in deep water found in [6]

μ ∈ [0, μ(ε)]we obtain the upper part of the figure “8”, which is well approximated
by the curves

μ �→
(
± μ

8

√
e22

√
8eWBε2 − e22μ2, 1

2 c̆hμ
)

, (1.7)

in accordance with the numerical simulations by Deconinck-Oliveras [16], and the
formal expansions in [15]. Note that forμ > 0 the imaginary part in (1.7) is positive
because c̆h = c−1h (tanh(h) − (1 − tanh2(h))h) > 0 for any h > 0. The higher
order “side-band" corrections of the eigenvalues λ±1 (μ, ε) in (1.5), provided by the
analytic functions r, r1, r ′′1 , r2, are explicitly computable. We finally remark that
the eigenvalues (1.5) are not analytic in (μ, ε) close to the value (μ(ε), ε) where
λ±1 (μ, ε) collide at the top of the figure “8" far from 0 (clearly they are continuous).

2. Behaviour near the Whitham-Benjamin depth hWB. As h → h+WB the
constant ε1 := ε1(h) > 0 in Theorem 1.1 tends to zero, the set of unstable Floquet
exponents (0, μ(ε)) with μ(ε) = ehε(1+ r(ε)) given in (1.4) shrinks to zero and
the figure “8” of Benjamin–Feir unstable eigenvalues collapse to zero, see Fig. 3.
In particular

max
μ∈[0,μ(ε)]Re λ+1 (μ, ε) = Re λ+1 (μmax, ε) = 1

2
eWB(h)ε2 + r(ε3) and (1.8)

tends to zero as h→ h+WB, since 0 < ε < ε1(h) and ε1(h)→ 0+.

3.Relationwith Bridges-Mielke [9]. Bridges andMielke describe the unstable
eigenvalues very close to the origin, namely the cross amid the ‘8". In order to make
a precise comparisonwith our result let us spell out the relation of the functionseWB,
e12 and e22 with the coefficients obtained in [9]. The Whitham-Benjamin function
eWB in (4.13) is eWB = (chh)−1ν(F), where ν(F) is defined in [9, formula (6.17)]
and F = chh

− 1
2 is the Froude number, cfr. [9, formula (3.4)]. Moreover the term
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Fig. 3. The Benjamin–Feir eigenvalue λ+1 (μmax, ε) in (1.8) with maximal real part, as well

as the whole figure “8” shrinks to zero as h→ h+WB

e12 in (1.2) is e12 = 2cg , where cg = 1
2ch

(
1+F−2sech2(h)

)
is the group velocity

defined in Bridges-Mielke [9, formula (3.8)]. Finally e22(h) ∝ ċg where ċg is the
derivative of the group velocity defined in [9, formula (6.15)], which for gravity
waves is negative in any depth.

4. Complete spectrum near 0. In Theorem 1.1 we have described just the two
unstable eigenvalues of Lμ,ε close to zero for h > hWB. There are also two larger
purely imaginary eigenvalues of order O(μ), see Theorem 2.5.

5. Shallow water regime. In the shallow water regime 0 < h < hWB, we
prove in Theorem 2.5 that all the four eigenvalues of Lμ,ε close to zero remain
purely imaginary for ε sufficiently small. The eigenvalue expansions of Theorem
2.5 become singular as h→ 0+.

6. Behavior at the Whitham-Benjamin threshold hWB. The analysis of The-
orem 1.1 is not conclusive at the critical depth h = hWB. The reason is that
eWB(hWB) = 0 and the Benjamin–Feir discriminant function (1.6) reduces to

�BF(hWB;μ, ε) = r(ε3)+ r(με2)− e22(hWB)μ
2(1+ r ′′1 (ε, μ)) . (1.9)

Thus its quadratic expansion is not sufficient anymore to determine the sign of
�BF(hWB;μ, ε). Note that (1.9) could be positive due to the term r(ε3) for ε and
μ small enough. Actually the cubic term in r(ε3) = βε4 + . . . vanishes and the
coefficient β could be explicitly computed taking into account the fourth order
expansion of the Stokes waves.

7. Unstable Floquet exponents and amplitudes (μ, ε). In Theorem 2.5 we
actually prove that the expansion (1.5) of the eigenvalues of Lμ,ε holds for any
value of (μ, ε) in a larger rectangle [0, μ0) × [0, ε0), and there exist Benjamin–
Feir unstable eigenvalues if and only if the analytic function �BF(h;μ, ε) in (1.6)
is positive. The zero set of �BF(h;μ, ε) is an analytic variety which, for h > hWB,
is, restricted to the rectangle [0, μ0) × [0, ε1), the graph of the analytic function
μ(ε) = ehε(1 + r(ε)) in (1.4). This function is tangent at ε = 0 to the straight
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Fig. 4. The solid curve portrays the graph of the real analytic function μ(ε) in (1.4) as

h > hWB. For values ofμ below this curve, the two eigenvalues λ±1 (μ, ε) have non zero real

part. For μ above the curve, λ±1 (μ, ε) are purely imaginary. In the region [ε1, ε0)× [0, μ0)
the eigenvalues are real/purely imaginary depending on the higher order corrections given
by Theorem 2.5, which determine the sign of �BF(h;μ, ε)

line μ = ehε, and divides [0, μ0)× [0, ε1) in the region where �BF(h;μ, ε) > 0
–and thus the eigenvalues of Lμ,ε have non-trivial real part–, from the “stable" one
where all the eigenvalues of Lμ,ε are purely imaginary, see Fig. 4. In the region
[0, μ0) × [ε1, ε0) the higher order polynomial approximations of �BF(h;μ, ε)

(which are computable) will determine the sign of �BF(h;μ, ε).

8. Deep water limit. Theorems 1.1 and 2.5 do not pass to the limit as h→ +∞
since the remainders in the expansions of the eigenvalues are uniform only on any
compact set of h ∈ (0,+∞). From a mathematical point of view, the difference is
evident in the asymptotic behavior of tanh(hμ) (and similar quantities) which, if
h = +∞, is identically equal to 1 for any arbitrarily small Floquet exponent μ,
whereas tanh(hμ) = O(μh) for any h finite, as μ → 0. Additional intermediate
scaling regimes hμ ∼ 1, hμ� 1, hμ� 1 are possible. It is well-known (e.g. see
[14]) that intermediate long-wave regimes of the water-waves equations formally
lead to different physically-relevant limit equations as Boussinesq, KdV, NLS,
Benjamin–Ono, etc...

We shall describe in detail the ideas of proof and the differences with the deep
water case below the statement of Theorem 2.5.

Further literature. Modulational instability has been studied also for a variety of
approximate water waves models, such as KdV, gKdV, NLS and the Whitham
equation by, for instance, Whitham [39], Segur, Henderson, Carter and Hammack
[35], Gallay and Haragus [18], Haragus and Kapitula [19], Bronski and Johnson
[11], Johnson [25], Hur and Johnson [21], Bronski, Hur and Johnson [10], Hur
and Pandey [22], Leisman, Bronski, Johnson and Marangell [28]. Also for these
approximate models, numerical simulations predict a figure “8” similar to that in
Fig. 2 for the bifurcation of the unstable eigenvalues close to zero.

Finally, we mention the nonlinear modulational instability result of Jin, Liao,
and Lin [24] for several fluid model equations and the preprint by Chen-Su [12] for
Stokes waves in deep water. Nonlinear transversal instability results of traveling
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solitary water waves in finite depth decaying at infinity on R have been proved in
[34] (in deep water no solitary wave exists [20,27]).

2. The Complete Benjamin–Feir Spectrum in Finite Depth

In this section we present in detail the complete spectral Theorem 2.5. We first
introduce the pure gravity water waves equations and the Stokes waves solutions.
The water waves equations. We consider the Euler equations for a 2-dimensional
incompressible, irrotational fluid under the action of gravity. The fluid fills the
region

Dη := {(x, y) ∈ T× R : −h ≤ y < η(t, x)} , T := R/2πZ,

with finite depth and space periodic boundary conditions. The irrotational velocity
field is the gradient of a harmonic scalar potential 
 = 
(t, x, y) determined by
its trace ψ(t, x) = 
(t, x, η(t, x)) at the free surface y = η(t, x). Actually 
 is
the unique solution of the elliptic equation �
 = 0 in Dη with Dirichlet datum

(t, x, η(t, x)) = ψ(t, x) and 
y(t, x, y) = 0 at y = −h.

The time evolution of the fluid is determined by two boundary conditions at
the free surface. The first is that the fluid particles remain, along the evolution,
on the free surface (kinematic boundary condition), and the second one is that the
pressure of the fluid is equal, at the free surface, to the constant atmospheric pressure
(dynamic boundary condition). Then, as shown by Zakharov [41] and Craig-Sulem
[13], the time evolution of the fluid is determined by the following equations for
the unknowns (η(t, x), ψ(t, x)),

ηt = G(η)ψ , ψt = −gη − ψ2
x

2
+ 1

2(1+ η2x )

(
G(η)ψ + ηxψx

)2
, (2.1)

where g > 0 is the gravity constant and G(η) := G(η,h) denotes the Dirichlet-
Neumann operator [G(η)ψ](x) := 
y(x, η(x))−
x (x, η(x))ηx (x). In the sequel,
with no loss of generality, we set the gravity constant g = 1, see Remark 2.4.

The equations (2.1) are the Hamiltonian system

∂t

[
η

ψ

]
= J

[∇ηH
∇ψH

]
, J :=

[
0 Id
−Id 0

]
, (2.2)

where∇ denote the L2-gradient, and theHamiltonianH(η, ψ) := 1
2

∫
T

(
ψ G(η)ψ+

η2
)
dx is the sum of the kinetic and potential energy of the fluid. In addition of being

Hamiltonian, the water waves system (2.1) possesses other important symmetries.
First of all it is time reversible with respect to the involution

ρ

[
η(x)

ψ(x)

]
:=
[

η(−x)

−ψ(−x)

]
, i.e. H ◦ ρ = H . (2.3)

Moreover, the equation (2.1) is space invariant.
Stokes waves. The Stokes waves are traveling solutions of (2.1) of the form
η(t, x) = η̆(x − ct) and ψ(t, x) = ψ̆(x − ct) for some real c and 2π -periodic



91 Page 10 of 54 Arch. Rational Mech. Anal. (2023) 247:91

functions (η̆(x), ψ̆(x)). In a reference frame in translational motion with constant
speed c, the water waves equations (2.1) become

ηt = cηx + G(η)ψ , ψt = cψx − η − ψ2
x

2
+ 1

2(1+ η2x )

(
G(η)ψ + ηxψx

)2

(2.4)

and the Stokes waves (η̆, ψ̆) are equilibrium steady solutions of (2.4).
The bifurcation result of small amplitude of Stokes waves is due to Struik [37]

in finite depth, and Levi-Civita [29], and Nekrasov [32] in infinite depth.We denote
by B(r) := {x ∈ R : |x | < r} the real ball with center 0 and radius r .

Theorem 2.1. (Stokes waves) For any h > 0 there exist ε∗ := ε∗(h) > 0 and a
unique family of real analytic solutions (ηε(x), ψε(x), cε), parameterized by the
amplitude |ε| ≤ ε∗, of

c ηx + G(η)ψ=0 , c ψx−η−ψ2
x

2
+ 1

2(1+ η2x )

(
G(η)ψ+ηxψx

)2=0, (2.5)

such that ηε(x), ψε(x) are 2π -periodic; ηε(x) is even and ψε(x) is odd, of the
form

ηε(x) = ε cos(x)+ ε2(η
[0]
2 + η

[2]
2 cos(2x))+O(ε3),

ψε(x) = εc−1h sin(x)+ ε2ψ
[2]
2 sin(2x)+O(ε3) ,

cε = ch + ε2c2 +O(ε3) where ch =
√
tanh(h) ,

(2.6)

and

η
[0]
2 := c4h − 1

4c2h
, η

[2]
2 := 3− c4h

4c6h
, ψ

[2]
2 := 3+ c8h

8c7h
, (2.7)

c2 := 9− 10c4h + 9c8h
16c7h

+ (1− c4h)

2ch
η
[0]
2 = −2c

12
h + 13c8h − 12c4h + 9

16c7h
. (2.8)

More precisely for any σ ≥ 0 and s > 5
2 , there exists ε∗ > 0 such that the map

ε �→ (ηε, ψε, cε) is analytic from B(ε∗) → Hσ,s
ev (T) × Hσ,s

odd(T) × R, where
Hσ,s
ev (T), respectively Hσ,s

odd(T), denote the space of even, respectively odd, real
valued 2π -periodic analytic functions u(x) = ∑

k∈Z
ukei kx such that ‖u‖2σ,s :=∑

k∈Z
|uk |2〈k〉2 se2σ |k| < +∞.

The expansions (2.6)-(2.8) are derived in the Appendix B for completeness,
although present in the literature (they coincide with [39, section 13, chapter 13]
and [2, section 2]). Note that in the shallow water regime h→ 0+ the expansions
(2.6)-(2.8) become singular. For the analiticity properties of the maps stated in
Theorem 2.1 we refer to [8].

Wealsomention thatmoregeneral timequasi-periodic travelingStokeswaves—
which are nonlinear superpositions of multiple Stokes waves traveling with ratio-
nally independent speeds—have been recently proved for (2.1) in [5] in finite depth,
in [17] in infinite depth, and in [4] for capillary-gravity water waves in any depth.



Arch. Rational Mech. Anal. (2023) 247:91 Page 11 of 54 91

Linearization at the Stokes waves. In order to determine the stability/instability
of the Stokes waves given by Theorem 2.1, we linearize the water waves equations
(2.4) with c = cε at (ηε(x), ψε(x)). In the sequel we closely follow [6] pointing
out the differences of the finite depth case.

By using the shape derivative formula for the differential dηG(η)[η̂] of the
Dirichlet-Neumann operator one obtains the autonomous real linear system
[
η̂t

ψ̂t

]
=
[ −G(ηε)B − ∂x ◦ (V − cε) G(ηε)

−1+ B(V − cε)∂x − B∂x ◦ (V − cε)− BG(ηε) ◦ B −(V − cε)∂x + BG(ηε)

]

[
η̂

ψ̂

]
, (2.9)

where

V := V (x) := −B(ηε)x + (ψε)x ,

B := B(x) := G(ηε)ψε + (ψε)x (ηε)x

1+ (ηε)2x
= (ψε)x − cε

1+ (ηε)2x
(ηε)x . (2.10)

The functions (V, B) are the horizontal and vertical components of the velocity
field (
x ,
y) at the free surface. Moreover ε �→ (V, B) is analytic as a map
B(ε0) → Hσ,s−1(T) × Hσ,s−1(T). The real system (2.9) is Hamiltonian, i.e. of
the form JA with A = A�, where A� is the transposed operator with respect the
scalar product of L2(T,R) × L2(T,R). Moreover the linear operator in (2.9) is
reversible, i.e. it anti-commutes with the involution ρ in (2.3).

Under the time-independent “good unknown of Alinhac" linear transformation
[

η̂

ψ̂

]
:= Z

[
u
v

]
, Z =

[
1 0
B 1

]
, Z−1 =

[
1 0
−B 1

]
, (2.11)

the system (2.9) assumes the simpler form
[

ut

vt

]
= L̃ε

[
u
v

]
, L̃ε :=

[ −∂x ◦ (V − cε) G(ηε)

−1− (V − cε)Bx −(V − cε)∂x

]
. (2.12)

Next, we perform a conformal change of variables to flatten the water surface. Here
the finite depth case induces a modification with respect to the deep water case.
By [1, Appendix A], there exists a diffeomorphism of T, x �→ x + p(x), with a
small 2π -periodic function p(x), and a small constant fε , such that, by defining the
associated composition operator (Pu)(x) := u(x + p(x)), the Dirichlet-Neumann
operator can be written as [1, Lemma A.5]

G(ηε) = ∂x ◦P−1 ◦H ◦ tanh
(
(h+ fε)|D|

) ◦P , (2.13)

where H is the Hilbert transform, i.e. the Fourier multiplier operator

H(ei j x ) := −i sign( j)ei j x , ∀ j ∈ Z \ {0} , H(1) := 0 .

The function p(x) and the constant fε are determined as a fixed point of (see [1,
formula (A.15)])

p = H
tanh

(
(h+ fε)|D|

) [ηε(x + p(x))] ,
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fε := 1

2π

∫

T

ηε(x + p(x))dx . (2.14)

By the analyticity of the map ε → ηε ∈ Hσ,s , σ > 0, s > 1/2, the analytic implicit
function theorem implies the existence of a solution ε �→ p(x) := pε(x), ε �→ fε ,
analytic as a map B(ε0) → Hs(T) × R. Moreover, since ηε is even, the function
p(x) is odd. In Appendix B we prove the expansion

p(x) = εc−2h sin(x)+ ε2
(1+ c4h)(3+ c4h)

8c8h
sin(2x)+O(ε3) ,

fε = ε2
c4h − 3

4c2h
+O(ε3) . (2.15)

Under the symplectic and reversibility-preserving map

P :=
[
(1+ px )P 0

0 P

]
, (2.16)

the system (2.12) transforms, by (2.13), into the linear system ht = Lεh where Lε

is the Hamiltonian and reversible real operator

Lε := P L̃ε P−1 =
[
∂x ◦ (ch + pε(x)) |D| tanh((h+ fε)|D|)
−(1+ aε(x)) (ch + pε(x))∂x

]

= J
[

1+ aε(x) −(ch + pε(x))∂x

∂x ◦ (ch + pε(x)) |D| tanh((h+ fε)|D|)
]

,

(2.17)

where

ch + pε(x) := cε − V (x + p(x))

1+ px (x)
,

1+ aε(x) := 1+ (V (x + p(x))− cε)Bx (x + p(x))

1+ px (x)
. (2.18)

By the analiticity results of the functions V, B, p(x) given above, the functions pε

and aε are analytic in ε as maps B(ε0)→ Hs(T). In the Appendix B we prove the
following expansions:

Lemma 2.2. The analytic functions pε(x) and aε(x) in (2.18) are even in x, and

pε(x) = εp1(x)+ ε2 p2(x)+O(ε3) , aε(x) = εa1(x)+ ε2a2(x)+O(ε3) ,

(2.19)

where

p1(x) = p[1]1 cos(x) , p[1]1 := −2c−1h , (2.20)

p2(x) = p[0]2 + p[2]2 cos(2x) ,

p[0]2 := 9+ 12c4h + 5c8h − 2c12h
16c7h

, p[2]2 := −3+ c4h
2c7h

, (2.21)



Arch. Rational Mech. Anal. (2023) 247:91 Page 13 of 54 91

and

a1(x) = a[1]1 cos(x) , a[1]1 := −(c2h + c−2h ) , (2.22)

a2(x) = a[0]2 + a[2]2 cos(2x) , a[0]2 := 3

2
+ 1

2c4h
, a[2]2 := −14c

4
h + 9c8h − 3

4c8h
.

(2.23)

Bloch-Floquet expansion. Since the operator Lε in (2.17) has 2π -periodic coeffi-
cients, Bloch-Floquet theory guarantees that

σL2(R)(Lε) =
⋃

μ∈[− 1
2 , 12 )

σL2(T)(Lμ,ε) where Lμ,ε := e−iμx Lε eiμx .

The domain [− 1
2 ,

1
2 ) is called, in solid state physics, the “first zone of Brillouin". In

particular, if λ is an eigenvalue of Lμ,ε on L2(T,C2) with eigenvector v(x), then
h(t, x) = eλt eiμxv(x) solves ht = Lεh. We remark that: (i) if A = Op(a) is a
pseudo-differential operator with symbol a(x, ξ), which is 2π periodic in x , then
Aμ := e−iμx Aeiμx = Op(a(x, ξ+μ)). (i i) If A is a real operator then Aμ = A−μ.
As a consequence the spectrum σ(A−μ) = σ(Aμ) and we can study σ(Aμ) just
for μ > 0. Furthermore σ(Aμ) is a 1-periodic set with respect to μ, so one can
restrict to μ ∈ [0, 1

2 ).
By the previous remarks the Floquet operator associated with the real operator

Lε in (2.17) is the complex Hamiltonian and reversible operator

Lμ,ε : =
[
(∂x + iμ) ◦ (ch + pε(x)) |D + μ| tanh ((h+ fε)|D + μ|)

−(1+ aε(x)) (ch + pε(x))(∂x + iμ)

]

=
[

0 Id
−Id 0

]

︸ ︷︷ ︸
= J

[
1+ aε(x) −(ch + pε(x))(∂x + iμ)

(∂x + iμ) ◦ (ch + pε(x)) |D + μ| tanh ((h+ fε)|D + μ|)
]

︸ ︷︷ ︸
=: Bμ,ε

.

(2.24)

We regard Lμ,ε as an operator with domain H1(T) := H1(T,C2) and range
L2(T) := L2(T,C2), equipped with the complex scalar product

( f, g) := 1

2π

∫ 2π

0
( f1ḡ1 + f2 ḡ2) dx , ∀ f =

[
f1
f2

]
, g =

[
g1
g2

]
∈ L2(T,C2) .

(2.25)

We also denote ‖ f ‖2 = ( f, f ).
The complex operator Lμ,ε in (2.24) is Hamiltonian and Reversible.

Definition 2.3. (Complex Hamiltonian/Reversible operator) A complex operator
L : H1(T,C2)→ L2(T,C2) is Hamiltonian, if L = JB where B is a self-adjoint
operator, namely B = B∗, where B∗ (with domain H1(T)) is the adjoint with
respect to the complex scalar product (2.25) of L2(T); it is reversible if

L ◦ ρ̄ = −ρ̄ ◦ L , (2.26)
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where ρ̄ is the complex involution (cfr. (2.3))

ρ̄

[
η(x)

ψ(x)

]
:=
[

η̄(−x)

−ψ̄(−x)

]
. (2.27)

The property (2.26) for Lμ,ε follows because Lε is a real operator which is
reversible with respect to the involution ρ in (2.3). Equivalently, since J ◦ ρ̄ =
−ρ̄ ◦ J , the self-adjoint operator Bμ,ε is reversibility-preserving, i.e.

Bμ,ε ◦ ρ̄ = ρ̄ ◦ Bμ,ε . (2.28)

In addition (μ, ε) → Lμ,ε ∈ L(H1(T), L2(T)) is analytic, since the functions
ε �→ aε , pε defined in (2.19) are analytic as maps B(ε0) → H1(T) and Lμ,ε is
analytic with respect to μ, since, for any μ ∈ [− 1

2 ,
1
2 ),

|D + μ| tanh ((h+ fε)|D + μ|) = (D + μ) tanh
(
(h+ fε)(D + μ)

)
. (2.29)

We also note that (see [33, Section 5.1])

|D + μ| = |D| + μ(sgn(D)+�0) , ∀μ > 0 , (2.30)

where sgn(D) is the Fourier multiplier operator, acting on 2π -periodic functions,
with symbol

sgn(k) := 1 ∀k > 0 , sgn(0) := 0 , sgn(k) := −1 ∀k < 0 , (2.31)

and �0 is the projector operator on the zero mode, �0 f (x) := 1
2π

∫
T

f (x)dx .

Remark 2.4. If (η(x), ψ(x), c) solve the traveling wave equations (2.5) then the
rescaled functions (̃η(x), ψ̃(x), c̃) := (η(x),

√
gψ(x),

√
gc) solve the same equa-

tions with gravity constant g instead of 1. The eigenvalues of the corresponding
linearized operators (2.9) and (2.24) for a general gravity g are those of the g = 1
case multiplied by

√
g.

Our aim is to prove the existence of eigenvalues ofLμ,ε in (2.24) with non zero
real part.We remark that the Hamiltonian structure ofLμ,ε implies that eigenvalues
with non zero real part may arise only from multiple eigenvalues of Lμ,0 (“Krein
criterion"), because if λ is an eigenvalue of Lμ,ε then also −λ̄ is, and the total
algebraic multiplicity of the eigenvalues is conserved under small perturbation. We
now describe the spectrum of Lμ,0.
The spectrum of Lμ,0. The spectrum of the Fourier multiplier matrix operator

Lμ,0 =
[
ch(∂x + iμ) |D + μ| tanh (h|D + μ|)

−1 ch(∂x + iμ)

]
(2.32)

consists of the purely imaginary eigenvalues {λ±k (μ), k ∈ Z}, where

λ±k (μ) := i
(
ch(±k + μ)∓√|k ± μ| tanh(h|k ± μ|)) . (2.33)
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For μ = 0 the real operator L0,0 possesses the eigenvalue 0 with algebraic multi-
plicity 4,

λ+0 (0) = λ−0 (0) = λ+1 (0) = λ−1 (0) = 0 ,

and geometric multiplicity 3. A real basis of the Kernel of L0,0 is

f +1 :=
[
c1/2h cos(x)

c−1/2h sin(x)

]

, f −1 :=
[
−c1/2h sin(x)

c−1/2h cos(x)

]

, f −0 :=
[
0
1

]
, (2.34)

together with the generalized eigenvector

f +0 :=
[
1
0

]
, L0,0 f +0 = − f −0 . (2.35)

Furthermore 0 is an isolated eigenvalue for L0,0, namely the spectrum σ
(L0,0

)

decomposes in two separated parts,

σ
(L0,0

) = σ ′
(L0,0

) ∪ σ ′′
(L0,0

)
, where σ ′(L0,0) := {0}, (2.36)

and σ ′′(L0,0) :=
{
λσ

k (0), k �= 0, 1 , σ = ±}.
We shall also use that, as proved in Theorem 4.1 in [33], the operator L0,ε

possesses, for any sufficiently small ε �= 0, the eigenvalue 0with a four dimensional
generalized Kernel, spanned by ε-dependent vectors U1, Ũ2, U3, U4 satisfying, for
some real constant αε, βε ,

L0,εU1 = 0 , L0,εŨ2 = 0 , L0,εU3 = αε Ũ2 ,

L0,εU4 = −U1 − βεŨ2 , U1 :=
[
0
1

]
. (2.37)

By Kato’s perturbation theory (see Lemma 3.1 below) for anyμ, ε �= 0 sufficiently
small, the perturbed spectrum σ

(Lμ,ε

)
admits a disjoint decomposition as

σ
(Lμ,ε

) = σ ′
(Lμ,ε

) ∪ σ ′′
(Lμ,ε

)
, (2.38)

where σ ′
(Lμ,ε

)
consists of 4 eigenvalues close to 0.We denote by Vμ,ε the spectral

subspace associated with σ ′
(Lμ,ε

)
, which has dimension 4 and it is invariant by

Lμ,ε . Our goal is to prove that, for ε small, for values of the Floquet exponent μ

in an interval of order ε, the 4 × 4 matrix which represents the operator Lμ,ε :
Vμ,ε → Vμ,ε possesses a pair of eigenvalues close to zero with opposite non zero
real parts.

Before stating our main result, let us introduce a notation we shall use through
all the paper.

• Notation: we denote by O(μm1εn1, . . . , μm pεn p ), m j , n j ∈ N (for us N :=
{1, 2, . . . }), analytic functions of (μ, ε)with values in a Banach space X which
satisfy, for someC > 0 uniform forh in any compact set of (0,+∞), the bound
‖O(μm j εn j )‖X ≤ C

∑p
j=1 |μ|m j |ε|n j for small values of (μ, ε). Similarly

we denote rk(μ
m1εn1, . . . , μm pεn p ) scalar functions O(μm1εn1, . . . , μm pεn p )

which are also real analytic.
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Our complete spectral result is the following:

Theorem 2.5. (Complete Benjamin–Feir spectrum) There exist ε0, μ0 > 0, uni-
formly for the depth h in any compact set of (0,+∞), such that, for any 0 < μ <

μ0 and 0 ≤ ε < ε0, the operator Lμ,ε : Vμ,ε → Vμ,ε can be represented by a
4× 4 matrix of the form

(
U 0
0 S

)
, (2.39)

where U and S are 2× 2 matrices, with identical diagonal entries each, of the form

U =
(

i
(
(ch − 1

2e12)μ+ r2(με2, μ2ε, μ3)
) −e22

μ
8 (1+ r5(ε, μ))

−με2eWB + r ′1(με3, μ2ε2)+ e22
μ3

8 (1+ r ′′1 (ε, μ)) i
(
(ch − 1

2e12)μ+ r2(με2, μ2ε, μ3)
)

)

,

S =
(
ichμ+ i r9(με2, μ2ε) tanh(hμ)+ r10(με)

−μ+ r8(με2, μ3ε) ichμ+ i r9(με2, μ2ε)

)
, (2.40)

where eWB, e12,e22 are defined in (1.1), (1.2), (1.3). The eigenvalues of U have the
form

λ±1 (μ, ε) = i
1

2
c̆hμ+ i r2(με2, μ2ε, μ3)

± 1
8μ
√
e22(h)(1+ r5(ε, μ))

√
�BF(h;μ, ε) ,

(2.41)

where c̆h := 2ch − e12(h) and �BF(h;μ, ε) is the Benjamin–Feir discriminant
function (1.6) (with r1(ε3, με2) := −8r ′1(ε3, με2)). As e22(h) > 0, they have
non-zero real part if and only if �BF(h;μ, ε) > 0.

The eigenvalues of the matrix S are a pair of purely imaginary eigenvalues of
the form

λ±0 (μ, ε) = ichμ
(
1+ r9(ε

2, με)
)∓ i

√
μ tanh(hμ)

(
1+ r(ε)

)
. (2.42)

For ε = 0 the eigenvalues λ±1 (μ, 0), λ±0 (μ, 0) coincide with those in (2.33).

Remark 2.6. At ε = 0, the eigenvalues in (2.41) have the Taylor expansion

λ±1 (μ, 0) = i

(
ch − 1

2
e12(h)

)
μ± i

e22(h)

8
μ2 +O(μ3) ,

which coincides with the one of λ±1 (μ) in (2.33), in view of the coefficients e12(h)

and e22(h) defined in (1.2), (1.3).

We conclude this section by describing our approach in detail.
Ideas and scheme of proof. The first step is to exploit as in [6] Kato’s theory to
prolong the unperturbed symplectic basis { f ±1 , f ±0 } of V0,0 in (2.34)-(2.35) into
a symplectic basis { f σ

k (μ, ε), k = 0, 1, σ = ±} of the spectral subspace Vμ,ε

associated with σ ′
(Lμ,ε

)
in (2.38), depending analytically on μ, ε.

Its expansion inμ, ε is provided inLemma4.2. This procedure reduces our spec-
tral problem to determine the eigenvalues of the 4× 4 Hamiltonian and reversible
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matrix Lμ,ε (Lemma 3.4), representing the action of the operator Lμ,ε − ichμ on
{ f σ

k (μ, ε)}. In Proposition 4.3 we prove that

Lμ,ε = J4

(
E F
F∗ G

)
=
(
J2E J2F
J2F∗ J2G

)
where

J4 =
(
J2 0
0 J2

)
, J2 =

(
0 1−1 0

)
, (2.43)

and the 2 × 2 matrices E, G, F have the expansions (4.10)-(4.12). In finite depth
this computation is much more involved than in deep water, as we need to track the
exact dependence of the matrix entries with respect to h. In particular the matrix
E is

E =
(
e11ε2(1+ r ′1(ε, με))− e22

μ2

8 (1+ r ′′1 (ε, μ)) i
( 1
2e12μ+ r2(με2, μ2ε, μ3)

)

−i ( 12e12μ+ r2(με2, μ2ε, μ3)
) −e22 μ2

8 (1+ r5(ε, μ))

)

(2.44)

where the coefficients e11 and e22, defined in (4.13) and (1.3), are strictly positive
for any value of h > 0. Thus the submatrix J2E has a pair of eigenvalues with
nonzero real part, for any value ofh > 0, provided 0 < μ < μ(ε) ∼ ε. On the other
hand, it has to comeout that the complete 4×4matrixLμ,ε possesses unstable eigen-
values if and only if the depth exceeds the celebratedWhitham-Benjamin threshold
hWB ∼ 1.363 . . .. Indeed the correct eigenvalues of Lμ,ε are not a small pertur-

bation of those of

(
J2E 0
0 J2G

)
and will emerge only after one non-perturbative

step of block diagonalization. This was not the case in the infinitely deep water
case [6], where the corresponding submatrix J2E showed up the Benjamin–Feir
eigenvalues, and we only had to check their stability under perturbation.

Remark 2.7. We underline that (2.44) is not a simple Taylor expansion inμ, ε: note
that the (2, 2)-entry in (2.44) does not have any term O(εm) nor O(μεm) for any
m ∈ N. These terms could change the sign of the entry (2, 2) which instead, in
(2.44), is always negative (recall that e22(h) > 0). We prove the absence of terms
εm exploiting the structural information (2.37) concerning the four dimensional
generalized Kernel of the operator L0,ε for any ε > 0, see Lemma 4.4. We also
note that the 2× 2 matrices J2E and J2G in (2.43) have both eigenvalues of size
O(μ). As already mentioned in the introduction, this is a crucial difference with
the deep water case, where the eigenvalues of J2G are O(

√
μ).

In order to determine the spectrum of the matrix Lμ,ε in (2.43), we perform a
block diagonalization of Lμ,ε to eliminate the coupling term J2F (which has size
ε, see (4.12)). We proceed, in Sect. 5, in three steps.

1. Symplectic rescaling. We first perform a symplectic rescaling which is sin-
gular at μ = 0, see Lemma 5.1, obtaining the matrix L(1)

μ,ε . The effects are twofold:
(i) the diagonal elements of
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E (1) =
(
e11με2(1+ r ′1(ε, με))− e22

μ3

8 (1+ r ′′1 (ε, μ)) i
( 1
2e12μ+ r2(με2, μ2ε, μ3)

)

−i ( 12e12μ+ r2(με2, μ2ε, μ3)
) −e22 μ

8 (1+ r5(ε, μ))

)

(2.45)

have size O(μ), as well as those of G(1), and (ii) the matrix F (1) has the smaller
size O(με).

2. Non-perturbative step of block-diagonalization (Section 5.1). Inspired by
KAM theory, we perform one step of block decoupling to decrease further the size
of the off-diagonal blocks. This step modifies the matrix J2E (1) in a substantial
way, by a term O(με2). Let us explain better this step. In order to reduce the size
of J2F (1), we conjugate L(1)

μ,ε by the symplectic matrix exp(S(1)), where S(1) is
a Hamiltonian matrix with the same form of J2F (1), see (5.9). The transformed
matrix L(2)

μ,ε = exp(S(1))L(1)
μ,ε exp(−S(1)) has the Lie expansion1

L(2)
μ,ε =

(
J2E (1) 0

0 J2G(1)

)

+
(

0 J2F (1)

J2[F (1)]∗ 0

)
+
[

S(1) ,
(
J2E (1) 0

0 J2G(1)

)]

+1

2

[
S(1),

[
S(1),

(
J2E (1) 0

0 J2G(1)

)]]
+
[

S(1),
(

0 J2F (1)

J2[F (1)]∗ 0

)]
+ h.o.t..

(2.46)

The first line in the right hand side of (2.46) is the previous block-diagonal matrix,
the second line of (2.46) is a purely off-diagonal matrix and the third line is the
sum of two block-diagonal matrices and “h.o.t." collects terms of much smaller
size. S(1) is determined in such a way that the second line of (2.46) vanishes, and
therefore the remaining off-diagonal matrices (appearing in the h.o.t. remainder)
are smaller in size. Unlike the infinitely deep water case [6], the block-diagonal
corrections in the third line of (2.46) are not perturbative, modifying substantially
the block-diagonal part. More precisely we obtain that L(2)

μ,ε has the form (5.10)
with

E (2) :=
(

με2eWB + r ′1(με3, μ2ε2)− e22
μ3

8 (1+ r ′′1 (ε, μ)) i
( 1
2e12μ+ r2(με2, μ2ε, μ3)

)

−i ( 12e12μ+ r2(με2, μ2ε, μ3)
) −e22

μ
8 (1+ r5(ε, μ))

)

.

Note the appearance of the Whitham-Benjamin function eWB(h) in the (1,1)-entry
of E (2), which changes sign at the critical depthhWB, see Fig. 1, unlike the coefficient
e11(h) > 0 in (2.45). If eWB(h) > 0 and ε and μ are sufficiently small, the matrix
J2E (2) has eigenvalues with non-zero real part (recall that e22(h) > 0 for any h).
On the contrary, ifeWB(h) < 0, then the eigenvalues of J2E (2) lay on the imaginary
axis.

3. Complete block-diagonalization (Section 5.2). In Lemma 5.9 we completely
block-diagonalize L(2)

μ,ε by means of a standard implicit function theorem, finally
proving that Lμ,ε is conjugated to the matrix (2.39).

1 Recall that exp(S)L exp(−S) = ∑
n≥0 1

n!ad
n
S(L), where ad0S(L) := L , adn

S(L) =
[S, adn−1

S (L)] for n ≥ 1.
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3. Perturbative Approach to the Separated Eigenvalues

We apply Kato’s similarity transformation theory [26, I-§4-6, II-§4] to study the
splitting of the eigenvalues ofLμ,ε close to 0 for small values ofμ and ε, following
[6]. First of all, it is convenient to decompose the operator Lμ,ε in (2.24) as

Lμ,ε = ichμ+Lμ,ε , μ > 0 , (3.1)

where, using also (2.30), Lμ,ε is the Hamiltonian operator

Lμ,ε = J Bμ,ε ,

Bμ,ε :=
[

1+ aε(x) −(ch + pε(x))∂x − iμ pε(x)

∂x ◦ (ch + pε(x))+ iμ pε(x) |D + μ| tanh ((h+ fε)|D + μ|)
]

(3.2)

with Bμ,ε selfadjoint, and it is also reversible, namely it satisfies, by (2.26),

Lμ,ε ◦ ρ̄ = −ρ̄ ◦Lμ,ε , ρ̄ defined in (2.27) , (3.3)

whereasBμ,ε is reversibility-preserving, i.e. fulfills (2.28). Note also thatB0,ε is a
real operator.

The scalar operator ichμ ≡ ichμ Id just translates the spectrum of Lμ,ε

along the imaginary axis of the quantity ichμ, that is, in view of (3.1), σ(Lμ,ε) =
ichμ+ σ(Lμ,ε) . Thus in the sequel we focus on studying the spectrum ofLμ,ε .

Note also thatL0,ε = L0,ε for any ε ≥ 0. In particularL0,0 has zero as isolated
eigenvalue with algebraic multiplicity 4, geometric multiplicity 3 and generalized
kernel spanned by the vectors { f +1 , f −1 , f +0 , f −0 } in (2.34), (2.35); furthermore,
its spectrum is separated as in (2.36). For any ε �= 0 small, L0,ε has zero as
isolated eigenvalue with geometric multiplicity 2, and two generalized eigenvectors
satisfying (2.37).

We remark that, in view of (2.30), the operatorLμ,ε is analytic with respect to
μ. The operator Lμ,ε : Y ⊂ X → X has domain Y := H1(T) := H1(T,C2) and
range X := L2(T) := L2(T,C2).

Lemma 3.1. (Kato theory for separated eigenvalues) Let � be a closed, count-
erclockwise-oriented curve around 0 in the complex plane separating σ ′

(
L0,0

) =
{0} and the other part of the spectrum σ ′′

(
L0,0

)
in (2.36). There exist ε0, μ0 > 0

such that for any (μ, ε) ∈ B(μ0)× B(ε0) the following statements hold:

1. The curve � belongs to the resolvent set of the operator Lμ,ε : Y ⊂ X → X
defined in (3.2).

2. The operators

Pμ,ε := − 1

2π i

∮

�

(Lμ,ε − λ)−1dλ : X → Y (3.4)

are well defined projectors commuting withLμ,ε , i.e. P2
μ,ε = Pμ,ε and Pμ,εLμ,ε =

Lμ,ε Pμ,ε . The map (μ, ε) �→ Pμ,ε is analytic from B(μ0)× B(ε0) to L(X, Y ).
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3. The domain Y of the operator Lμ,ε decomposes as the direct sum

Y = Vμ,ε ⊕ Ker(Pμ,ε) , Vμ,ε := Rg(Pμ,ε) = Ker(Id − Pμ,ε) ,

of closed invariant subspaces, namelyLμ,ε : Vμ,ε → Vμ,ε ,Lμ,ε : Ker(Pμ,ε)→
Ker(Pμ,ε). Moreover

σ(Lμ,ε) ∩ {z ∈ C inside �} = σ(Lμ,ε |Vμ,ε
) = σ ′(Lμ,ε),

σ (Lμ,ε) ∩ {z ∈ C outside �} = σ(Lμ,ε |K er(Pμ,ε)) = σ ′′(Lμ,ε) .

4. The projectors Pμ,ε are similar one to each other; the transformation operators

Uμ,ε :=
(
Id − (Pμ,ε − P0,0)

2)−1/2[Pμ,ε P0,0 + (Id − Pμ,ε)(Id − P0,0)
]

(3.5)

are bounded and invertible in Y and in X, with inverse

U−1
μ,ε =

[
P0,0Pμ,ε + (Id − P0,0)(Id − Pμ,ε)

](
Id − (Pμ,ε − P0,0)

2)−1/2 ,

andUμ,ε P0,0U−1
μ,ε = Pμ,ε as well asU−1

μ,ε Pμ,εUμ,ε = P0,0.2 The map (μ, ε) �→
Uμ,ε is analytic from B(μ0)× B(ε0) to L(Y ).

5. The subspaces Vμ,ε = Rg(Pμ,ε) are isomorphic one to each other: Vμ,ε =
Uμ,εV0,0. In particular dim Vμ,ε = dim V0,0 = 4, for any (μ, ε) ∈ B(μ0) ×
B(ε0).

Proof. For any λ ∈ C we decompose Lμ,ε − λ = L0,0 − λ + Rμ,ε where

L0,0 =
[
ch∂x |D| tanh(h|D|)
−1 ch∂x

]
and

Rμ,ε := Lμ,ε −L0,0 =
[
(∂x + iμ)pε(x) fμ,ε(D)

−aε(x) pε(x)(∂x + iμ)

]
: Y → X ,

having used also (2.30) and setting

fμ,ε(D) := |D + μ| tanh ((h+ fε)|D + μ|)− |D| tanh(h|D|) ∈ L(Y ) ,

‖ fμ,ε(D)‖L(Y ) = O(μ, ε) .

For any λ ∈ �, the operator L0,0 − λ is invertible with inverse

(L0,0 − λ)−1

= Op

(
1

(ichk − λ)2 + |k| tanh(h|k|)
[
ichk − λ −|k| tanh(h|k|)

1 ichk − λ

])
: X → Y .

2 The operator (Id − R)− 1
2 is defined, for any operator R satisfying ‖R‖L(Y ) < 1, by

the power series

(Id − R)− 1
2 :=

∞∑

k=0

(−1/2
k

)
(−R)k = Id + 1

2
R + 3

8
R2 +O(R3) . (3.6)
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Hence, for |ε| < ε0 and |μ| < μ0 small enough, uniformly on the compact set �,
the operator (L0,0− λ)−1Rμ,ε : Y → Y is bounded, with small operatorial norm.
ThenLμ,ε − λ is invertible by Neumann series and � belongs to the resolvent set
of Lμ,ε . The remaining part of the proof follows exactly as in Lemma 3.1 in [6].
#$

The Hamiltonian and reversible nature of the operator Lμ,ε , see (3.2) and
(3.3), imply additional algebraic properties for spectral projectors Pμ,ε and the
transformation operators Uμ,ε . By Lemma 3.2 in [6] we have that:

Lemma 3.2. For any (μ, ε) ∈ B(μ0)× B(ε0), the following holds true:

(i) The projectors Pμ,ε defined in (3.4) are skew-Hamiltonian, namely J Pμ,ε =
P∗μ,εJ , and reversibility preserving, i.e. ρ̄ Pμ,ε = Pμ,ερ̄.

(ii) The transformation operatorsUμ,ε in (3.5)are symplectic, namelyU∗
μ,εJUμ,ε

= J , and reversibility preserving.
(iii) P0,ε and U0,ε are real operators, i.e. ¯P0,ε = P0,ε and ¯U0,ε = U0,ε .

By the previous lemma, the linear involution ρ̄ commutes with the spectral
projectors Pμ,ε and then ρ̄ leaves invariant the subspace Vμ,ε = Rg(Pμ,ε).
Symplectic and reversible basis of Vμ,ε . It is convenient to represent the Hamil-
tonian and reversible operator Lμ,ε : Vμ,ε → Vμ,ε in a basis which is symplectic
and reversible, according to the following definition:

Definition 3.3. (Symplectic and reversible basis) A basis F := {f+1 , f−1 , f+0 , f−0 }
of Vμ,ε is symplectic if, for any k, k′ = 0, 1,

(J f−k , f+k
) = 1 ,

(J fσ
k ,fσ

k

) = 0 , ∀σ = ±;
if k �= k′ then

(J fσ
k ,fσ ′

k′
) = 0 , ∀σ, σ ′ = ± . (3.7)

This is reversible if

ρ̄f+1 = f+1 , ρ̄f−1 = −f−1 , ρ̄f+0 = f+0 , ρ̄f−0 = −f−0 ,

i.e. ρ̄fσ
k = σfσ

k , ∀σ = ±, k = 0, 1 . (3.8)

We use the following notation along the paper: we denote by even(x) a real 2π -
periodic function which is even in x , and by odd(x) a real 2π -periodic function
which is odd in x .

By the definition of the involution ρ̄ in (2.27), the real and imaginary parts of
a reversible basis F = {f±k }, k = 0, 1, enjoy the following parity properties (cfr.
Lemma 3.4 in [6])

f+k (x) =
[

even(x)+ i odd(x)

odd(x)+ i even(x)

]
, f−k (x) =

[
odd(x)+ i even(x)

even(x)+ i odd(x)

]
. (3.9)

By Lemmata 3.5 and 3.6 in [6] we have
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Lemma 3.4. The 4× 4 matrix that represents the Hamiltonian and reversible op-
erator Lμ,ε = JBμ,ε : Vμ,ε → Vμ,ε with respect to a symplectic and reversible
basis F = {f+1 ,f−1 ,f+0 ,f−0 } of Vμ,ε is

J4Bμ,ε , J4 :=
(
J2 0
0 J2

)
, J2 :=

(
0 1
−1 0

)
, where Bμ,ε = B∗μ,ε (3.10)

is the self-adjoint matrix

Bμ,ε =

⎛

⎜⎜
⎝

(
Bμ,ε f

+
1 ,f+1

) (
Bμ,ε f

−
1 ,f+1

) (
Bμ,ε f

+
0 ,f+1

) (
Bμ,ε f

−
0 ,f+1

)
(
Bμ,ε f

+
1 ,f−1

) (
Bμ,ε f

−
1 ,f−1

) (
Bμ,ε f

+
0 ,f−1

) (
Bμ,ε f

−
0 ,f−1

)
(
Bμ,ε f

+
1 ,f+0

) (
Bμ,ε f

−
1 ,f+0

) (
Bμ,ε f

+
0 ,f+0

) (
Bμ,ε f

−
0 ,f+0

)
(
Bμ,ε f

+
1 ,f−0

) (
Bμ,ε f

−
1 ,f−0

) (
Bμ,ε f

+
0 ,f−0

) (
Bμ,ε f

−
0 ,f−0

)

⎞

⎟⎟
⎠ .

(3.11)

The entries of the matrix Bμ,ε are alternatively real or purely imaginary: for any
σ = ±, k = 0, 1,

(
Bμ,ε f

σ
k , fσ

k′
)

is real,
(
Bμ,ε f

σ
k , f−σ

k′
)

is purely imaginary. (3.12)

It is convenient to give a name to the matrices of the form obtained in Lemma
3.4.

Definition 3.5. A2n×2n, n = 1, 2,matrix of the formL = J2nB isHamiltonian if
B is a self-adjoint matrix, i.e. B = B∗. It is reversible if B is reversibility-preserving,
i.e. ρ2n ◦ B = B ◦ ρ2n , where

ρ4 :=
(

ρ2 0
0 ρ2

)
, ρ2 :=

(
c 0
0 −c

)
,

and c : z �→ z̄ is the conjugation of the complex plane. Equivalently, ρ2n ◦ L =
−L ◦ ρ2n .

The transformations preserving theHamiltonian structure are called symplectic,
and satisfy

Y ∗J4Y = J4 . (3.13)

If Y is symplectic then Y ∗ and Y−1 are symplectic as well. A Hamiltonian matrix
L = J4B, with B = B∗, is conjugated through Y in the new Hamiltonian matrix

L1 = Y−1LY = Y−1J4Y−∗Y ∗BY = J4B1 where B1 := Y ∗BY = B∗1 .

(3.14)

A 4 × 4 matrix B = (Bi j )i, j=1,...,4 is reversibility-preserving if and only if its
entries are alternatively real and purely imaginary, namely Bi j is real when i + j
is even and purely imaginary otherwise, as in (3.12). A 4 × 4 complex matrix
L = (Li j )i, j=1,...,4 is reversible if and only if Li j is purely imaginary when i + j is
even and real otherwise.

Finally, we mention that the flow of a Hamiltonian reversibility-preserving
matrix is symplectic and reversibility-preserving (see Lemma 3.8 in [6]).
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4. Matrix Representation of LLL μ,ε on VVVμ,ε

Using the transformation operatorsUμ,ε in (3.5), we construct the basis of Vμ,ε

F := {
f +1 (μ, ε), f −1 (μ, ε), f +0 (μ, ε), f −0 (μ, ε)

}
,

f σ
k (μ, ε) := Uμ,ε f σ

k , σ = ± , k = 0, 1 , (4.1)

where

f +1 =
[
c1/2h cos(x)

c−1/2h sin(x)

]

, f −1 =
[
−c1/2h sin(x)

c−1/2h cos(x)

]

, f +0 =
[
1
0

]
, f −0 =

[
0
1

]
,

(4.2)

form a basis ofV0,0 = Rg(P0,0), cfr. (2.34)-(2.35). Note that the real valued vectors
{ f ±1 , f ±0 } form a symplectic and reversible basis for V0,0, according to Definition
3.3. Then, by Lemma 3.2 and 3.1 we deduce that (cfr. Lemma 4.1 in [6]):

Lemma 4.1. The basis F of Vμ,ε defined in (4.1), is symplectic and reversible,
i.e. satisfies (3.7) and (3.8). Each map (μ, ε) �→ f σ

k (μ, ε) is analytic as a map
B(μ0)× B(ε0)→ H1(T).

In the next lemma we expand the vectors f σ
k (μ, ε) in (μ, ε). We denote by

even0(x) a real, even, 2π -periodic function with zero space average. In the sequel

O(μmεn)

[
even(x)

odd(x)

]
denotes an analytic map in (μ, ε) with values in H1(T,C2),

whose first component is even(x) and the second one odd(x); we have a similar

meaning for O(μmεn)

[
odd(x)

even(x)

]
, etc....

Lemma 4.2. (Expansion of the basis F) For small values of (μ, ε) the basis F in
(4.1) has the expansion

f +1 (μ, ε) =
⎡

⎣ c
1
2
h cos(x)

c
− 1

2
h sin(x)

⎤

⎦+ i
μ

4
γh

⎡

⎣ c
1
2
h sin(x)

c
− 1

2
h cos(x)

⎤

⎦+ ε

[
αh cos(2x)

βh sin(2x)

]

+O(μ2)

[
even0(x)+ i odd(x)

odd(x)+ i even0(x)

]
+O(ε2)

[
even0(x)

odd(x)

]

+ iμε

[
odd(x)

even(x)

]
+O(μ2ε, με2) , (4.3)

f −1 (μ, ε) =
⎡

⎣−c
1
2
h sin(x)

c
− 1

2
h cos(x)

⎤

⎦+ i
μ

4
γh

⎡

⎣ c
1
2
h cos(x)

−c−
1
2

h sin(x)

⎤

⎦+ ε

[−αh sin(2x)

βh cos(2x)

]

+O(μ2)

[
odd(x)+ i even0(x)

even0(x)+ i odd(x)

]
+O(ε2)

[
odd(x)

even(x)

]

+ iμε

[
even(x)

odd(x)

]
+O(μ2ε, με2) , (4.4)
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f +0 (μ, ε) =
[
1
0

]
+ εδh

⎡

⎣ c
1
2
h cos(x)

−c−
1
2

h sin(x)

⎤

⎦+O(ε2)

[
even0(x)

odd(x)

]

+ iμε

[
odd(x)

even0(x)

]
+O(μ2ε, με2) , (4.5)

f −0 (μ, ε) =
[
0
1

]
+ iμε

[
even0(x)

odd(x)

]
+O(μ2ε, με2) , (4.6)

where the remainders O() are vectors in H1(T) and

αh := 1

2
c
− 11

2
h (3+ c4h) , βh := 1

4
c
− 13

2
h (1+ c4h)(3− c4h) ,

γh := 1+ h(1− c4h)

c2h
, δh := 3+ c4h

4c
5
2
h

. (4.7)

For μ = 0 the basis { f ±k (0, ε), k = 0, 1} is real and

f +1 (0, ε) =
[

even0(x)

odd(x)

]
, f −1 (0, ε) =

[
odd(x)

even(x)

]
,

f +0 (0, ε) =
[
1
0

]
+
[

even0(x)

odd(x)

]
, f −0 (0, ε) =

[
0
1

]
. (4.8)

Proof. The long calculations are given in Appendix A. #$
We now state the main result of this section.

Proposition 4.3. The matrix that represents the Hamiltonian and reversible oper-
ator Lμ,ε : Vμ,ε → Vμ,ε in the symplectic and reversible basis F of Vμ,ε defined
in (4.1), is a Hamiltonian matrix Lμ,ε = J4Bμ,ε , where Bμ,ε is a self-adjoint and
reversibility preserving (i.e. satisfying (3.12)) 4× 4 matrix of the form

Bμ,ε =
(

E F
F∗ G

)
, E = E∗ , G = G∗ , (4.9)

where E, F, G are the 2× 2 matrices

E :=
(
e11ε2(1+ r ′1(ε, με))− e22

μ2

8 (1+ r ′′1 (ε, μ)) i
( 1
2e12μ+ r2(με2, μ2ε, μ3)

)

−i ( 12e12μ+ r2(με2, μ2ε, μ3)
) −e22 μ2

8 (1+ r5(ε, μ))

)

(4.10)

G :=
(
1+ r8(ε2, μ2ε) −i r9(με2, μ2ε)

i r9(με2, μ2ε) μ tanh(hμ)+ r10(μ2ε)

)
(4.11)

F :=
(
f11ε + r3(ε3, με2, μ2ε) iμεc

− 1
2

h + i r4(με2, μ2ε)

i r6(με) r7(μ2ε)

)

, (4.12)

with e12 and e22 given in (1.2) and (1.3) respectively, and

e11 := 9c8h − 10c4h + 9

8c7h
= 9(1− c4h)

2 + 8c4h
8c7h

> 0 , f11 := 1
2c
− 3

2
h (1− c4h) .

(4.13)
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The rest of this section is devoted to the proof of Proposition 4.3.
We decompose Bμ,ε in (3.2) as

Bμ,ε = Bε +B� +B� ,

where Bε , B
�, B� are the self-adjoint and reversibility preserving operators

Bε := B0,ε :=
[

1+ aε(x) −(ch + pε(x))∂x

∂x ◦ (ch + pε(x)) |D| tanh((h+ fε)|D|)
]

, (4.14)

B� :=
[
0 0
0 |D + μ| tanh((h+ fε)|D + μ|)− |D| tanh((h+ fε)|D|)

]
, (4.15)

B� := μ

[
0 −i pε

i pε 0

]
. (4.16)

In view of (2.29), the operator B� is analytic in μ.

Lemma 4.4. (Expansion of Bε) The self-adjoint and reversibility preserving ma-
trix Bε := Bε(μ) associated, as in (3.11), with the self-adjoint and reversibility
preserving operator Bε defined in (4.14), with respect to the basis F of Vμ,ε in
(4.1), expands as

Bε =

⎛

⎜⎜
⎝

e11ε2 + ζhμ
2 + r1(ε3, με3) i r2(με2) f11ε + r3(ε3, με2) i r4(με3)

−i r2(με2) ζhμ
2 i r6(με) 0

f11ε + r3(ε3, με2) −i r6(με) 1+ r8(ε2, με2) i r9(με2)

−i r4(με3) 0 −i r9(με2) 0

⎞

⎟⎟
⎠

+O(μ2ε, μ3) , (4.17)

where e11, f11 are defined respectively in (4.13), and

ζh := 1
8chγ

2
h . (4.18)

Proof. We expand the matrix Bε(μ) as

Bε(μ) = Bε(0)+ μ(∂μBε)(0)+ μ2

2
(∂2μB0)(0)+O(μ2ε, μ3) . (4.19)

The matrix Bε(0). The main result of this long paragraph is to prove that the matrix
Bε(0) has the expansion (4.23). The matrix Bε(0) is real, because the operator Bε

is real and the basis { f ±k (0, ε)}k=0,1 is real. Consequently, by (3.12), its matrix
elements (Bε(0))i, j are real whenever i + j is even and vanish for i + j odd. In

addition f −0 (0, ε) =
[
0
1

]
by (4.8), and, by (4.14), we get Bε f −0 (0, ε) = 0, for any

ε. We deduce that the self-adjoint matrix Bε(0) has the form

Bε(0) =
(
Bε f σ

k (0, ε), f σ ′
k′ (0, ε)

)

k,k′=0,1,σ,σ ′=±
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=

⎛

⎜⎜
⎝

E11(0, ε) 0 F11(0, ε) 0
0 E22(0, ε) 0 0

F11(0, ε) 0 G11(0, ε) 0
0 0 0 0

⎞

⎟⎟
⎠ , (4.20)

where E11(0, ε), E22(0, ε),G11(0, ε), F11(0, ε) are real.We claim that E22(0, ε) =
0 for any ε. As a first step, following [6], we prove that

either E22(0, ε) ≡ 0 , or E11(0, ε) ≡ 0 ≡ F11(0, ε) . (4.21)

Indeed, by (2.37), the operator L0,ε ≡ L0,ε possesses, for any sufficiently small
ε �= 0, the eigenvalue 0 with a four dimensional generalized Kernel Wε :=
span{U1, Ũ2, U3, U4}, spanned by ε-dependent vectorsU1, Ũ2, U3, U4. By Lemma
3.1 it results thatWε = V0,ε = Rg(P0,ε) and by (2.37) we haveL 2

0,ε = 0 on V0,ε .
Thus the matrix

Lε(0) := J4Bε(0) =

⎛

⎜⎜
⎝

0 E22(0, ε) 0 0
−E11(0, ε) 0 −F11(0, ε) 0

0 0 0 0
−F11(0, ε) 0 −G11(0, ε) 0

⎞

⎟⎟
⎠ , (4.22)

which represents L0,ε : V0,ε → V0,ε , satisfies L2ε(0) = 0, namely

L2ε(0) = −

⎛

⎜⎜
⎝

(E11E22)(0, ε) 0 (F11E22)(0, ε) 0
0 (E11E22)(0, ε) 0 0
0 0 0 0
0 (F11E22)(0, ε) 0 0

⎞

⎟⎟
⎠ = 0,

which implies (4.21).We now prove that the matrix Bε(0) defined in (4.20) expands
as

Bε(0) =

⎛

⎜⎜
⎝

e11ε2 + r(ε3) 0 f11ε + r(ε3) 0
0 0 0 0

f11ε + r(ε3) 0 1+ r(ε2) 0
0 0 0 0

⎞

⎟⎟
⎠ (4.23)

where e11 and f11 are in (4.29) and (4.32). We expand the operatorBε in (4.14) as

Bε = B0 + εB1 + ε2B2 +O(ε3), B0 :=
[

1 −ch∂x

ch∂x |D| tanh(h|D|)
]

,

B1 :=
[

a1(x) −p1(x)∂x

∂x ◦ p1(x) 0

]
, B2 :=

[
a2(x) −p2(x)∂x

∂x ◦ p2(x) −f2∂2x
(
1− tanh2(h|D|))

]
,

(4.24)

where the remainder termO(ε3) ∈ L(Y, X), the functions a1, p1, a2, p2 are given
in (2.20)-(2.23) and, in view of (2.15), f2 := 1

4c
−2
h (c4h − 3).

• Expansion of E11(0, ε) = e11ε2 + r(ε3). By (4.3) we split the real function
f +1 (0, ε) as

f +1 (0, ε) = f +1 + ε f +11 + ε2 f +12 +O(ε3) ,

f +1 =
⎡

⎣ c
1
2
h cos(x)

c
− 1

2
h sin(x)

⎤

⎦ , f +11 :=
[
αh cos(2x)

βh sin(2x)

]
, f +12 :=

[
even0(x)

odd(x)

]
,
(4.25)
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where both f +12 andO(ε3) are vectors in H1(T). SinceB0 f +1 = J −1L0,0 f +1 = 0,
and both B0, B1 are self-adjoint real operators, it results

E11(0, ε) =
(
Bε f +1 (0, ε) , f +1 (0, ε)

)

= ε
(
B1 f +1 , f +1

)+ ε2
[(
B2 f +1 , f +1

)+ 2
(
B1 f +1 , f +11

)
+
(
B0 f +11 , f +11

)]

+O(ε3) . (4.26)

By (4.24) one has

B1 f +1 =
[

A1(1+ cos(2x))

B1 sin(2x)

]
, B2 f +1 =

[
A2 cos(x)+ A3 cos(3x)

B2 sin(x)+ B3 sin(3x)

]
,

B0 f +11 =
[

A4 cos(2x)

B4 sin(2x)

]
, (4.27)

with

A1 := 1
2 (a[1]1 c

1
2
h − p[1]1 c

− 1
2

h ), B1 := −p[1]1 c
1
2
h ,

A2 := c
1
2
h a[0]2 − c

− 1
2

h p[0]2 + 1
2c

1
2
h a[2]2 − 1

2c
− 1

2
h p[2]2 , A4 := αh − 2βhch ,

B2 := −c
1
2
h p[0]2 − 1

2c
1
2
h p[2]2 + c

− 1
2

h f2(1− c4h) , B4 := −2αhch + 4c2h
1+ c4h

βh .

(4.28)

By (4.27) and (4.25), we deduce

E11(0, ε) = e11ε
2 + r(ε3) ,

e11 := 1

2

(
A2c

1
2
h + B2c

− 1
2

h + 2αhA1 + 2B1βh + αhA4 + βhB4
)
. (4.29)

By (4.29), (4.28), (4.7), (2.20)-(2.23) we obtain (4.13). Since e11 > 0 the second
alternative in (4.21) is ruled out, implying E22(0, ε) ≡ 0.
• Expansion of G11(0, ε) = 1 + r(ε2). By (4.5) we split the real-valued function
f +0 (0, ε) as

f +0 (0, ε) = f +0 + ε f +01 + ε2 f +02 +O(ε3) , f +0 =
[
1
0

]
,

f +01 := δh

⎡

⎣ c
1
2
h cos(x)

−c−
1
2

h sin(x)

⎤

⎦ , f +02 :=
[

even0(x)

odd(x)

]
. (4.30)

Since, by (2.34) and (4.24),B0 f +0 = f +0 , using thatB0,B1 are self-adjoint real op-
erators, and‖ f +0 ‖ = 1, ( f +0 , f +01 ),wehaveG11(0, ε) =

(
Bε f +0 (0, ε) , f +0 (0, ε)

) =
1+ ε

(
B1 f +0 , f +0

)+ r(ε2). By (4.24) and (2.20)-(2.23) one has

B1 f +0 =
[

a[1]1 cos(x)

−p[1]1 sin(x)

]

(4.31)

and, by (4.30), we deduce G11(0, ε) = 1+ r(ε2).
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• Expansion of F11(0, ε) = f11ε + r(ε3). By (4.24), (4.25), (4.30), using that
B0,B1 are self-adjoint and real, and B0 f +1 = 0, B0 f +0 = f +0 , we obtain

F11(0, ε) = ε
[(
B1 f +1 , f +0

)+
(

f +11 , f +0
)]

+ ε2
[ (
B2 f +1 , f +0

)+
(
B1 f +1 , f +01

)
+
(
B1 f +0 , f +11

)

+
(

f +12 , f +0
)
+
(
B0 f +11 , f +01

) ]+ r(ε3) .

By (4.25), (4.27), (4.28), (4.30), (4.31), all these scalar products vanish but the first
one, and then

F11(0, ε) = f11ε + r(ε3) , f11 := A1 = 1
2

(
a[1]1 c

1
2
h − p[1]1 c

− 1
2

h

)
, (4.32)

which, by substituting the expressions of a[1]1 , p[1]1 in Lemma 2.2, gives the expres-
sion in (4.13).

The expansion (4.23) in proved.
Linear terms in μ. We now compute the terms of Bε(μ) that are linear in μ. It
results

∂μBε(0) = X + X∗ where X := (Bε f σ
k (0, ε), (∂μ f σ ′

k′ )(0, ε)
)

k,k′=0,1,σ,σ ′=±.

(4.33)

We now prove that

X =

⎛

⎜⎜
⎝

O(ε3) 0 O(ε2) 0
O(ε2) 0 O(ε) 0
O(ε3) 0 O(ε2) 0
O(ε3) 0 O(ε2) 0

⎞

⎟⎟
⎠ . (4.34)

The matrix Lε(0) in (4.22) where E22(0, ε) = 0, represents the action of the
operator L0,ε : V0,ε → V0,ε in the basis { f σ

k (0, ε)} and then we deduce that
L0,ε f −1 (0, ε) = 0,L0,ε f −0 (0, ε) = 0. Thus also Bε f −1 (0, ε) = 0, Bε f −0 (0, ε) =
0, and the second and the fourth column of the matrix X in (4.34) are zero. To
compute the other two columns we use the expansion of the derivatives. In view of
(4.3)–(4.6) and by denoting with a dot the derivative w.r.t. μ, one has

ḟ +1 (0, ε) = i

4
γh

⎡

⎣ c
1
2
h sin(x)

c
− 1

2
h cos(x)

⎤

⎦+ i ε

[
odd(x)

even(x)

]
+O(ε2) ,

ḟ +0 (0, ε) = i ε

[
odd(x)

even0(x)

]
+O(ε2) ,

ḟ −1 (0, ε) = i

4
γh

⎡

⎣ c
1
2
h cos(x)

−c−
1
2

h sin(x)

⎤

⎦+ i ε

[
even(x)

odd(x)

]
+O(ε2) ,

ḟ −0 (0, ε) = i ε

[
even0(x)

odd(x)

]
+O(ε2) .

(4.35)
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In view of (2.2), (4.3)–(4.6), (4.22), (4.8), (4.29),(4.32), and since Bε f σ
k (0, ε) =

−JLε f σ
k (0, ε), we have

Bε f +1 (0, ε) = E11(0, ε)J f −1 (0, ε)+ F11(0, ε)J f −0

= ε

[
f11
0

]
+ ε2e11

⎡

⎣c
− 1

2
h cos(x)

c
1
2
h sin(x)

⎤

⎦+O(ε3) ,

Bε f +0 (0, ε) = F11(0, ε)J f −1 (0, ε)+ G11(0, ε)J f −0

=
[
1
0

]
+ εf11

⎡

⎣c
− 1

2
h cos(2x)

c
1
2
h sin(2x)

⎤

⎦+O(ε2) .

(4.36)

We deduce (4.34) by (4.35) and (4.36).
Quadratic terms in μ. By denoting with a double dot the double derivative w.r.t.
μ, we have

∂2μB0(0) =
(
B0 f σ

k , f̈ σ ′
k′ (0, 0)

)
+
(

f̈ σ
k (0, 0) , B0 f σ ′

k

)

+2
(
B0 ḟ σ

k (0, 0) , ḟ σ ′
k′ (0, 0)

)
=: Y + Y ∗ + 2Z . (4.37)

We claim that Y = 0. Indeed, its first, second and fourth column are zero, since
B0 f σ

k = 0 for f σ
k ∈ { f +1 , f −1 , f −0 }. The third column is also zero by noting that

B0 f +0 = f +0 and

f̈ +1 (0, 0) =
[

even0(x)+ i odd(x)

odd(x)+ i even0(x)

]
, f̈ −1 (0, 0) =

[
odd(x)+ i even0(x)

even0(x)+ i odd(x)

]
,

f̈ +0 (0, 0) = f̈ −0 (0, 0) = 0 .

We claim that

Z =
(
B0 ḟ σ

k (0, 0) , ḟ σ ′
k′ (0, 0)

)
k,k′=0,1,
σ,σ ′=±

=

⎛

⎜⎜
⎝

ζh 0 0 0
0 ζh 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ , (4.38)

with ζh as in (4.18). Indeed, by (4.35), we have ḟ +0 (0, 0) = ḟ −0 (0, 0) = 0. There-
fore the last two columns of Z , and by self-adjointness the last two rows, are zero.
By (4.24), (4.35) we obtain the matrix (4.38) with

ζh :=
(
B0 ḟ +1 (0, 0) , ḟ +1 (0, 0)

) = (B0 ḟ −1 (0, 0) , ḟ −1 (0, 0)
) = 1

8chγ
2
h .

In conclusion (4.19), (4.33), (4.34), (4.37), the fact that Y = 0 and (4.38) imply
(4.17), using also the selfadjointness of Bε and (3.12). #$

We now consider B�.
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Lemma 4.5. (Expansion ofB�) The self-adjoint and reversibility-preserving matrix
B� associated, as in (3.11), to the self-adjoint and reversibility-preserving operator
B�, defined in (4.15), with respect to the basis F of Vμ,ε in (4.1), admits the
expansion

B� =

⎛

⎜⎜⎜
⎝

−μ2

4 bh i (μ
2 e12 + r2(με2)) 0 0

−i (μ
2 e12 + r2(με2)) −μ2

4 bh i r6(με) 0
0 −i r6(με) 0 0
0 0 0 μ tanh(hμ)

⎞

⎟⎟⎟
⎠

+O(μ2ε, μ3), (4.39)

where e12 is defined in (1.2) and

bh := γhch + c−1h h(1− c4h)(γh − 2(1− c2hh)) . (4.40)

Proof. Wehave to compute the expansionof thematrix entries (B� f σ
k (μ, ε), f σ ′

k′ (μ, ε)).
First, by (4.6), (4.15) and since fε = O(ε2) (cfr. (2.15)) we have

B� f −0 (μ, ε) =
[

0
μ tanh

(
hμ
)
]
+
[

0
O(μ2ε)

]
.

Hence, by (4.3)–(4.6), the entries of the last column (and row) of B� are

(
B� f −0 (μ, ε), f +1 (μ, ε)

) = O(μ2ε) ,
(
B� f −0 (μ, ε), f −1 (μ, ε)

) = μ tanh(hμ)O(ε2)+O(μ2ε2) = O(μ2ε2)
(
B� f −0 (μ, ε), f +0 (μ, ε)

) = O(μ2ε, μ3) ,
(
B� f −0 (μ, ε), f −0 (μ, ε)

) = μ tanh(hμ)+O(μ2ε) ,

in agreement with (4.39).
In order to compute the other matrix entries we expand B� in (4.15) at μ = 0,

obtaining

B� = μB�
1(0)+ μR�(ε)+ μ2B�

2 +O(μ2ε, μ3) , where

B�
1(0) :=

[
hD

(
1− tanh2(h|D|))+ sgn(D) tanh(h|D|)

]
�II , �II :=

[
0 0
0 Id

]
,

R�(ε) := O(ε2)�II , B�
2 :=

[
h
(
1− tanh2(h|D|))(1− h tanh(h|D|)|D|)

]
�II .

(4.41)

We note that

μ
(R�(ε) f σ

k (μ, ε), f σ ′
k′ (μ, ε)

) = μ
(R� f σ

k (0, ε), f σ ′
k′ (0, ε)

)+O(μ2ε2)

=
{
O(μ2ε2) if σ = σ ′ ,
O(με2) if σ �= σ ′ .

(4.42)
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Indeed, if σ = σ ′,
(R� f σ

k (0, ε), f σ ′
k′ (0, ε)

)
is real by (3.12), but purely imag-

inary3 too, since the operator R� is purely imaginary (as B� is) and the basis
{ f ±k (0, ε)}k=0,1 is real. The terms (4.42) contribute to r2(με2) and r6(εμ) in (4.39).

Next we compute the other scalar products. By (4.3), (4.41), and the identities
sgn(D) sin(kx) = −i cos(kx) and sgn(D) cos(kx) = i sin(kx) for any k ∈ N, we
have

μB
�
1(0) f +1 (μ, ε) = −iμ�1

[
0

cos(x)

]
− μ2

4
γh�1

[
0

sin(x)

]

−iμε�2

[
0

cos(2x)

]
+ iO(με2)

[
0

even0(x)

]
+O(μ2ε, μ3)

where

�1 := c
− 1

2
h (c2h + (1− c4h)h)

�2 := βh

(
tanh(2h)+ 2h(1− tanh2(2h))

)

= βh

( 2c2h
1+ c4h

+ 2h
(
1− 4c4h

(1+ c4h)
2

))
.

(4.43)

Similarly μ2B
�
2 f +1 (μ, ε) = μ2�3

[
0

sin(x)

]
+O(μ2ε, μ3), where

�3 := h
(
1− tanh2(h)

)(
1− tanh(h)h

)
c
− 1

2
h = h(1− c4h)(1− c2hh)c

− 1
2

h . (4.44)

Analogously, using (4.4),

μB
�
1(0) f −1 (μ, ε) = iμ�1

[
0

sin(x)

]
− μ2

4
γh�1

[
0

cos(x)

]

+iμε�3

[
0

sin(2x)

]
+ iO(με2)

[
0

odd(x)

]
+O(μ2ε, μ3),

and μ2B
�
2 f −1 (μ, ε) = μ2�3

[
0

cos(x)

]
+O(μ2ε, μ3), with � j , j = 1, 2, 3, defined

in (4.43) and (4.44). In addition, by (4.5)–(4.6), we get that

μB
�
1(0) f +0 (μ, ε) = iμεδh�1

[
0

cos(x)

]
+ iO(με2)

[
0

even0(x)

]
+O(μ2ε) ,

μ2B
�
2 f +0 (μ, ε) =

[
0

O(μ2ε)

]

3 An operatorA is purely imaginary if Ā = −A. A purely imaginary operator sends real
functions into purely imaginary ones.
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with�1 in (4.43).By taking the scalar products of the above expansions ofB
� f σ

k (μ, ε)

with the functions f σ ′
k′ (μ, ε) expanded as in (4.3)-(4.6) we obtain that (recall that

the scalar product is conjugate-linear in the second component)

(
μB

�
1(0) f +1 (μ, ε), f +1 (μ, ε)

)
,
(
μB

�
1(0) f −1 (μ, ε), f −1 (μ, ε)

)

= −μ2

4
γh�1c

− 1
2

h +O(μ2ε, μ3)

(
μ2B

�
2 f +1 (μ, ε), f +1 (μ, ε)

)
,
(
μ2B

�
2 f −1 (μ, ε), f −1 (μ, ε)

)

= μ2

2
�3c

− 1
2

h +O(μ2ε, μ3)

and, recalling (4.41), (4.43), (4.44), we deduce the expansion of the entries (1, 1)

and (2, 2)of thematrixB� in (4.39)withbh = c
− 1

2
h (γh�1−2�3) in (4.40).Moreover

(
μB

�
1(0) f −1 (μ, ε), f +1 (μ, ε)

) = i
μ

2
e12 +O(με2, μ2ε, μ3) ,

(
μ2B

�
2 f −1 (μ, ε), f +1 (μ, ε)

) = O(μ3, μ2ε),

where e12 := �1c
− 1

2
h is equal to (1.2). Finally we obtain

(
μ(B

�
1(0)+ μB

�
2) f −1 (μ, ε), f +0 (μ, ε)

) = O(με, μ3)

(μ(B
�
1(0)+ μB

�
2) f +1 (μ, ε), f +0 (μ, ε)) = O(μ3, μ2ε) ,

(
μ(B

�
1(0)+ μB

�
2) f +0 (μ, ε), f +0 (μ, ε)

) = O(μ2ε2).

The expansion (4.39) is proved. #$
Finally, we consider B�.

Lemma 4.6. (Expansion ofB�) The self-adjoint and reversibility-preserving matrix
B� associated, as in (3.11), to the self-adjoint and reversibility-preserving operators
B�, defined in (4.16), with respect to the basis F of Vμ,ε in (4.1), admits the
expansion

B� =

⎛

⎜⎜⎜
⎝

0 i r2(με2) 0 iμεc
− 1

2
h + i r4(με2)

−i r2(με2) 0 −i r6(με) 0
0 i r6(με) 0 −i r9(με2)

−iμεc
− 1

2
h − i r4(με2) 0 i r9(με2) 0

⎞

⎟⎟⎟
⎠

+O(μ2ε). (4.45)

Proof. Since B� = −iμpεJ and pε = O(ε) by (2.19), we have the expansion

(
B� f σ

k (μ, ε), f σ ′
k′ (μ, ε)

) = (B� f σ
k (0, ε), f σ ′

k′ (0, ε)
)+O(μ2ε). (4.46)



Arch. Rational Mech. Anal. (2023) 247:91 Page 33 of 54 91

Thematrix entries (B� f σ
k (0, ε), f σ

k′ (0, ε)), k, k′ = 0, 1, σ = {±} are zero, because
they are simultaneously real by (3.12), and purely imaginary, being the operator
B� purely imaginary and the basis { f ±k (0, ε)}k=0,1 real. Hence B� has the form

B� =

⎛

⎜⎜
⎝

0 i β 0 i δ
−i β 0 −i γ 0
0 i γ 0 i η
−i δ 0 −i η 0

⎞

⎟⎟
⎠+O(μ2ε) where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
B� f −1 (0, ε) , f +1 (0, ε)

)
=: i β ,

(
B� f −1 (0, ε) , f +0 (0, ε)

)
=: i γ ,

(
B� f −0 (0, ε) , f +1 (0, ε)

)
=: i δ ,

(
B� f −0 (0, ε) , f +0 (0, ε)

)
=: i η ,

(4.47)

and α, β, γ , δ are real numbers. As B� = O(με) in L(Y ), we deduce that γ =
r(με). Let us compute the expansion of β, δ and η. By (2.20) and (2.2) we write
the operator B� in (4.16) as

B� = iμεB
�
1 +O(με2) , B

�
1 := 2c−1h cos(x)

[
0 Id
−Id 0

]
, (4.48)

withO(με2) ∈ L(Y ). In view of (4.3)–(4.6), f ±1 (0, ε) = f ±1 +O(ε), f +0 (0, ε) =
f +0 +O(ε), f −0 (0, ε) =

[
0
1

]
, where f σ

k are in (4.2). By (4.48) we have B�
1 f −1 =

⎡

⎣c
− 3

2
h (1+ cos(2x))

c
− 1

2
h sin(2x)

⎤

⎦, B�
1 f −0 =

[
2c−1h cos(x)

0

]
and then

β = με
(
B

�
1 f −1 , f +1

)
+ r(με2) = r(με2) ,

δ = με
(
B

�
1 f −0 , f +1

)
+ r(με2) = μεc

− 1
2

h + r(με2) ,

η = με
(
B

�
1 f −0 , f +0

)
+ r(με2) = r(με2).

This proves (4.45). #$
Lemmata 4.4, 4.5, 4.6 imply (4.9) where the matrix E has the form (4.10) and

e22 := 2(bh − 4ζh) = 2γhch + 2c−1h h(1− c4h)(γh − 2(1− c2hh))− chγ
2
h ,

withbh in (4.40) and ζh in (4.18). The terme22 has the expansion in (1.3).Moreover

G := G(μ, ε) =
(
1+ r8(ε2, μ2ε, μ3) −i r9(με2, μ2ε, μ3)

i r9(με2, μ2ε, μ3) μ tanh(hμ)+ r10(μ2ε, μ3)

)
(4.49)

F := F(μ, ε) =
(
f11ε + r3(ε3, με2, μ2ε, μ3) iμεc

− 1
2

h + i r4(με2, μ2ε, μ3)

i r6(με, μ3) r7(μ2ε, μ3)

)

.

(4.50)

In order to deduce the expansion (4.11)–(4.12) of the matrices F, G we exploit
further information for

Lμ,0 := JBμ,0 , Bμ,0 :=
[

1 −ch∂x

ch∂x |D + μ| tanh (h|D + μ|)
]

. (4.51)

We have
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Lemma 4.7. At ε = 0 the matrices are F(μ, 0) = 0 and G(μ, 0) =(
1 0
0 μ tanh(hμ)

)
.

Proof. ByLemmaA.5 and (4.51)wehaveBμ,0 f +0 (μ, 0) = f +0 andBμ,0 f −0 (μ, 0) =
μ tanh(hμ) f −0 , for any μ. Then the lemma follows recalling (3.11) and the fact
that f +1 (μ, 0) and f −1 (μ, 0) have zero space average by Lemma A.5. #$

In view of Lemma 4.7 we deduce that the matrices (4.49) and (4.50) have the
form (4.11) and (4.12). This completes the proof of Proposition 4.3.

We now show that the constant e22 in (1.3) is positive for any depth h > 0.

Lemma 4.8. For any h > 0 the term e22 in (1.3) is positive, e22 → 0 as h→ 0+
and e22 → 1 as h → +∞. As a consequence for any h0 > 0 the term e22 is
bounded from below uniformly in h > h0.

Proof. The quantity z := c2h = tanh(h) is in (0, 1) for any h > 0. Then the
quadratic polynomial (0,+∞) % h �→ (1 − z2)(1 + 3z2)h2 + 2z(z2 − 1)h + z2

is positive because its discriminant −4z4(1 − z2) is negative as 0 < z2 < 1. The
limits for h→ 0+ and h→+∞ follow by inspection. #$

5. Block-Decoupling and Emergence of the Whitham–Benjamin Function

In this section we block-decouple the 4×4 Hamiltonian matrix Lμ,ε = J4Bμ,ε

obtained in Proposition 4.3.
We first perform a singular symplectic and reversibility-preserving change of

coordinates.

Lemma 5.1. (Singular symplectic rescaling) The conjugation of the Hamiltonian
and reversible matrix Lμ,ε = J4Bμ,ε obtained in Proposition 4.3 through the
symplectic and reversibility-preserving 4× 4-matrix

Y :=
(

Q 0
0 Q

)
with Q :=

(
μ

1
2 0

0 μ− 1
2

)

, μ > 0 , (5.1)

yields the Hamiltonian and reversible matrix

L(1)
μ,ε := Y−1Lμ,εY = J4B

(1)
μ,ε =

(
J2E (1) J2F (1)

J2[F (1)]∗ J2G(1)

)
(5.2)

where B(1)
μ,ε is a self-adjoint and reversibility-preserving 4× 4 matrix

B(1)
μ,ε =

(
E (1) F (1)

[F (1)]∗ G(1)

)
, E (1) = [E (1)]∗ , G(1) = [G(1)]∗ , (5.3)
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where the 2× 2 reversibility-preserving matrices E (1), G(1) and F (1) extend ana-
lytically at μ = 0 with the following expansion

E (1) =
(
e11με2(1+ r ′1(ε, με))− e22

μ3

8 (1+ r ′′1 (ε, μ)) i
( 1
2e12μ+ r2(με2, μ2ε, μ3)

)

−i ( 12e12μ+ r2(με2, μ2ε, μ3)
) −e22 μ

8 (1+ r5(ε, μ))

)

,

(5.4)

G(1) =
(

μ+ r8(με2, μ3ε) −i r9(με2, μ2ε)

i r9(με2, μ2ε) tanh(hμ)+ r10(με)

)
, (5.5)

F (1) =
(
f11με + r3(με3, μ2ε2, μ3ε) iμεc

− 1
2

h + i r4(με2, μ2ε)

i r6(με) r7(με)

)

(5.6)

where e11,e12,e22,f11 are defined in (4.13), (1.2), (1.3).

Remark 5.2. The matrix L(1)
μ,ε , a priori defined only for μ �= 0, extends analytically

to the zero matrix at μ = 0. For μ �= 0 the spectrum of L(1)
μ,ε coincides with the

spectrum of Lμ,ε .

Proof. The matrix Y is symplectic, i.e. (3.13) holds, and since μ is real, it is
reversibility preserving, i.e. satisfies (3.12). By (3.14),

B(1)
μ,ε = Y ∗Bμ,εY =

(
E (1) F (1)

[F (1)]∗ G(1)

)
,

with, Q being self-adjoint, E (1) = QE Q = [E (1)]∗, G(1) = QG Q = [G(1)]∗ and
F (1) = QF Q. In view of (4.10)–(4.12), we obtain (5.4)–(5.6). #$

5.1. Non-perturbative Step of Block-Decoupling

We first verify that the quantity Dh := h − 1
4e

2
12 is nonzero for any h > 0.

In view of the comment 3 after Theorem 1.1, we have that Dh = h − c2g . The
non-degeneracy property Dh �= 0 corresponds to that in Bridges-Mielke [9, p.183]
and [38, p.409].

Lemma 5.3. For any h > 0 it results

Dh := h− 1
4e

2
12 > 0 , and lim

h→0+
Dh = 0 . (5.7)

Proof. We write Dh = (
√
h+ 1

2e12)(
√
h− 1

2e12) whose first factor is positive for
h > 0. We claim that also the second factor is positive. In view of (1.2) it is equal
to 1

2c
−1
h f (h) with

f (h) := (√h tanh(h)−√h+√tanh(h)
)(√

h tanh(h)+√h−√tanh(h)
)

=: q(h)p(h) .

The function p(h) is positive since h > tanh(h) for any h > 0. We claim that also
the function q(h) is positive. Indeed its derivative

q ′(h) = 1− tanh(h)

2
√
h
√
tanh(h)

(
−√tanh(h)+√h+√h tanh(h)

)
+√h

(
1− tanh2(h)

)
> 0

for any h > 0. Since q(0) = 0 we deduce that q(h) > 0 for any h > 0. This proves
the lemma. #$
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We now state the main result of this section.

Lemma 5.4. (Stepof block-decoupling)There exists a2×2 reversibility-preserving
matrix X, analytic in (μ, ε), of the form

X :=
(

x11 i x12
i x21 x22

)
with xi j ∈ R , i, j = 1, 2 ,

=
(

r11(ε) i r12(ε)

−i 1
2D
−1
h (e12f11 + 2c

− 1
2

h )ε + i r21(ε2, με) 1
2D
−1
h (c

− 1
2

h e12 + 2hf11)ε + r22(ε2, με)

)

,

(5.8)

where e12, f11 are defined in (1.2), (4.13) and Dh is the positive constant in (5.7),
such that the following holds true. By conjugating the Hamiltonian and reversible
matrix L(1)

μ,ε , defined in (5.2), with the symplectic and reversibility-preserving 4×4
matrix

exp
(

S(1)
)

, where S(1) := J4

(
0 �

�∗ 0

)
, � := J2X , (5.9)

we get the Hamiltonian and reversible matrix

L(2)
μ,ε := exp

(
S(1)

)
L(1)

μ,ε exp
(
−S(1)

)
= J4B

(2)
μ,ε =

(
J2E(2) J2F(2)

J2[F(2)]∗ J2G(2)

)
,

(5.10)

where the reversibility-preserving 2× 2 self-adjoint matrix [E (2)]∗ = E (2) has the
form

E (2) =
(

με2eWB + r ′1(με3, μ2ε2)− e22
μ3

8 (1+ r ′′1 (ε, μ)) i
( 1
2e12μ+ r2(με2, μ2ε, μ3)

)

−i ( 12e12μ+ r2(με2, μ2ε, μ3)
) −e22

μ
8 (1+ r5(ε, μ))

)

,

(5.11)

where

eWB = e11 − D−1h

(
c−1h + hf211 + e12f11c

− 1
2

h

)
(5.12)

(with constants e11, Dh, f11, e12, defined in (4.13), (5.7), (1.2)), is the Whitham-
Benjamin function defined in (1.1), the reversibility-preserving 2 × 2 self-adjoint
matrix [G(2)]∗ = G(2) has the form

G(2) =
(

μ+ r8(με2, μ3ε) −i r9(με2, μ2ε)

i r9(με2, μ2ε) tanh(hμ)+ r10(με)

)
, (5.13)

and

F (2) =
(

r3(με3) i r4(με3)

i r6(με3) r7(με3)

)
. (5.14)
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The rest of the section is devoted to the proof of Lemma 5.4. For simplicity let
S = S(1).

Thematrix exp(S) is symplectic and reversibility-preserving because thematrix
S in (5.9) is Hamiltonian and reversibility-preserving, cfr. Lemma 3.8 in [6]. Note
that S is reversibility preserving, since X has the form (5.8).

We now expand in Lie series the Hamiltonian and reversible matrix L(2)
μ,ε =

exp(S)L(1)
μ,ε exp(−S).

We splitL(1)
μ,ε into its 2×2-diagonal and off-diagonalHamiltonian and reversible

matrices

L(1)
μ,ε = D(1) + R(1) ,

D(1) :=
(

D1 0
0 D0

)
:=
(
J2E (1) 0

0 J2G(1)

)
, R(1) :=

(
0 J2F (1)

J2[F (1)]∗ 0

)
,

(5.15)

and we perform the Lie expansion

L(2)
μ,ε = exp(S)L(1)

μ,ε exp(−S) = D(1) +
[

S , D(1)
]

+ 1

2
[S, [S, D(1)]] + R(1) + [S, R(1)]

+ 1

2

∫ 1

0
(1− τ)2 exp(τ S)ad3S(D(1)) exp(−τ S) dτ

+
∫ 1

0
(1− τ) exp(τ S) ad2S(R(1)) exp(−τ S) dτ (5.16)

where adA(B) := [A, B] := AB− B A denotes the commutator between the linear
operators A, B.

We look for a 4 × 4 matrix S as in (5.9) (which is Hamiltonian, reversibility-
preserving and off-diagonal as the term R(1) we wish to eliminate) that solves the
homological equation R(1) + [S , D(1)

] = 0, which, recalling (5.15), reads
(

0 J2F (1) + J2�D0 − D1J2�
J2[F (1)]∗ + J2�∗D1 − D0J2�∗ 0

)
= 0 . (5.17)

Note that the equation J2F (1) + J2�D0 − D1J2� = 0 implies also J2[F (1)]∗ +
J2�∗D1 − D0J2�∗ = 0 and viceversa. Thus, writing � = J2X , namely X =
−J2�, the equation (5.17) amounts to solve the “Sylvester" equation

D1X − X D0 = −J2F (1) . (5.18)

We write the matrices E (1), F (1), G(1) in (5.2) as

E (1) =
(

E (1)
11 i E (1)

12

−i E (1)
12 E (1)

22

)

, F (1) =
(

F (1)
11 i F (1)

12

i F (1)
21 F (1)

22

)

,

G(1) =
(

G(1)
11 i G(1)

12

−i G(1)
12 G(1)

22

)

(5.19)
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where the real numbers E (1)
i j , F (1)

i j , G(1)
i j , i, j = 1, 2, have the expansion in (5.4),

(5.5), (5.6). Thus, by (5.15), (5.8) and (5.19), the equation (5.18) amounts to solve
the 4× 4 real linear system
⎛

⎜⎜⎜
⎝

G(1)
12 − E (1)

12 G(1)
11 E (1)

22 0
G(1)

22 G(1)
12 − E (1)

12 0 −E (1)
22

E (1)
11 0 G(1)

12 − E (1)
12 −G(1)

11

0 −E (1)
11 −G(1)

22 G(1)
12 − E (1)

12

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
=:A

⎛

⎜⎜
⎝

x11
x12
x21
x22

⎞

⎟⎟
⎠

︸ ︷︷ ︸
=:&x

=

⎛

⎜⎜⎜
⎝

−F (1)
21

F (1)
22

−F (1)
11

F (1)
12

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
=: &f

.

(5.20)

We solve this system using the following result, verified by a direct calculus:

Lemma 5.5. The determinant of the matrix

A :=

⎛

⎜⎜
⎝

a b c 0
d a 0 −c
e 0 a −b
0 −e −d a

⎞

⎟⎟
⎠ (5.21)

where a, b, c, d, e are real numbers, is

det A = a4 − 2a2(bd + ce)+ (bd − ce)2

= (bd − a2)2 − 2ce
(
a2 + bd − 1

2
ce
)
. (5.22)

If det A �= 0 then A is invertible and

A−1 = 1

det A

⎛

⎜⎜
⎝

a
(
a2 − bd − ce

)
b
(−a2 + bd − ce

) −c
(
a2 + bd − ce

) −2abc
d
(−a2 + bd − ce

)
a
(
a2 − bd − ce

)
2acd −c

(−a2 − bd + ce
)

−e
(
a2 + bd − ce

)
2abe a

(
a2 − bd − ce

)
b
(
a2 − bd + ce

)

−2ade −e
(−a2 − bd + ce

)
d
(
a2 − bd + ce

)
a
(
a2 − bd − ce

)

⎞

⎟⎟
⎠ . (5.23)

The Sylvester matrixA in (5.20) has the form (5.21) where, by (5.4)-(5.6) and since
tanh(hμ) = hμ+ r(μ3),

a = G(1)
12 − E (1)

12 = −e12
μ

2

(
1+ r(ε2, με, μ2)

)
, b = G(1)

11 = μ+ r8(με2, μ3ε) ,

c = E (1)
22 = −e22

μ

8
(1+ r5(ε, μ)) , d = G(1)

22 = μh+ r(με, μ3) ,

e = E (1)
11 = r(με2, μ3) , (5.24)

where e12 and e22, defined respectively in (1.2), (1.3), are positive for any h > 0.
By (5.22), the determinant of the matrix A is

detA = (bd − a2)2 + r(μ4ε2, μ6) = μ4D2h(1+ r(ε, μ2)) (5.25)

where Dh is defined in (5.7). By (5.23), (5.24), (5.25) and, since Dh = h − 1
4e

2
12,

we obtain

A−1 = (1+ r(ε, μ))
1

μD2h
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⎛

⎜⎜
⎝

1
2e12Dh Dh

1
32e22(e

2
12 + 4h) − 1

8e12 e22
hDh

1
2e12Dh

1
8e12e22h − 1

32e22 (e212 + 4h)

r(ε2, μ2) r(ε2, μ2) 1
2e12Dh −Dh

r(ε2, μ2) r(ε2, μ2) −hDh 1
2e12Dh

⎞

⎟⎟
⎠ .

(5.26)

Therefore, for any μ �= 0, there exists a unique solution &x = A−1 &f of the linear
system (5.20), namely a unique matrix X which solves the Sylvester equation
(5.18).

Lemma 5.6. The matrix solution X of the Sylvester equation (5.18) is analytic in
(μ, ε), and admits an expansion as in (5.8).

Proof. By (5.20), (5.26), (5.19), (5.6) we obtain, for any μ �= 0
⎛

⎜⎜
⎝

x11
x12
x21
x22

⎞

⎟⎟
⎠ =

1

D2h

⎛

⎜⎜
⎝

1
2e12Dh Dh

1
32e22(e

2
12 + 4h) − 1

8e12 e22
hDh

1
2e12Dh

1
8e12e22h − 1

32e22 (e212 + 4h)

r(ε2, μ2) r(ε2, μ2) 1
2e12Dh −Dh

r(ε2, μ2) r(ε2, μ2) −hDh 1
2e12Dh

⎞

⎟⎟
⎠

⎛

⎜⎜⎜
⎝

r(ε)

r(ε)

−f11ε + r(ε3, με2, μ2ε)

c
− 1

2
h ε + r(ε2, με)

⎞

⎟⎟⎟
⎠

(1+ r(ε, μ)) ,

which proves (5.8). In particular each xi j admits an analytic extension at μ = 0.
Note that, for μ = 0, one has E (2) = G(2) = F (2) = 0 and the Sylvester equation
reduces to tautology. #$
Since the matrix S solves the homological equation

[
S , D(1)

]+ R(1) = 0, identity
(5.16) simplifies to

L(2)
μ,ε = D(1) + 1

2

[
S , R(1)

]
+ 1

2

∫ 1

0
(1− τ 2) exp(τ S) ad2S(R(1)) exp(−τ S)dτ .

(5.27)

The matrix 1
2

[
S , R(1)

]
is, by (5.9), (5.15), the block-diagonal Hamiltonian and

reversible matrix
1

2

[
S , R(1)

]

=
( 1

2J2(�J2[F (1)]∗ − F (1)J2�∗) 0
0 1

2J2(�
∗J2F (1) − [F (1)]∗J2�)

)

=
(
J2 Ẽ 0
0 J2G̃

)
,

(5.28)

where, since � = J2X ,

Ẽ := Sym
(
J2XJ2[F (1)]∗) , G̃ := Sym

(
X∗F (1)) , (5.29)

denoting Sym(A) := 1
2 (A + A∗).
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Lemma 5.7. The self-adjoint and reversibility-preserving matrices Ẽ, G̃ in (5.29)
have the form

Ẽ =
(
ẽ11με2 + r̃1(με3, μ2ε2) i r̃2(με2)

−i r̃2(με2) r̃5(με2)

)
, G̃ =

(
r̃8(με2) i r̃9(με2)

−i r̃9(με2) r̃10(με2)

)
,

ẽ11 := −D−1h

(
c−1h + hf211 + e12f11c

− 1
2

h

)
.

(5.30)

Proof. For simplicity we set F = F (1). By (5.8), (5.6), one has

J2XJ2F∗ =
(

x21F12 − x22F11 i (x21F22 + x22F21)

i (x11F12 + x12F11) −x11F22 + x12F21

)

=
(
ẽ11με2 + r(με3, μ2ε2) i r(με2)

i r(με2) r(με2)

)
,

with ẽ11 being defined as in (5.30). The expansion of Ẽ in (5.30) follows in view
of (5.29). Since X = O(ε) by (5.8) and F = O(με) by (5.6) we deduce that
X∗F = O(με2) and the expansion of G̃ in (5.30) follows. #$

Note that the term ẽ11με2 in the matrix Ẽ in (5.29)–(5.30), has the same order
of the (1, 1)-entry of E (1) in (5.4), thus will contribute to the Whitham-Benjamin
function eWB in the (1, 1)-entry of E (2) in (5.11). Finally we show that the last term
in (5.27) is small.

Lemma 5.8. The 4× 4 Hamiltonian and reversibility matrix

1

2

∫ 1

0
(1− τ 2) exp(τ S) ad2S(R(1)) exp(−τ S) dτ =

(
J2 Ê J2F (2)

J2[F (2)]∗ J2Ĝ

)
(5.31)

where the 2× 2 self-adjoint and reversible matrices Ê, Ĝ have entries

Êi j Ĝi j = r(με3) , i, j = 1, 2 , (5.32)

and the 2× 2 reversible matrix F (2) admits an expansion as in (5.14).

Proof. Since S and R(1) areHamiltonian and reversibility-preserving then adS R(1) =
[S, R(1)] is Hamiltonian and reversibility-preserving as well. Thus each exp(τ S)

ad2S(R(1)) exp(−τ S) isHamiltonian and reversibility-preserving, and formula (5.31)
holds. In order to estimate its entries we first compute ad2S(R(1)). Using the form
of S in (5.9) and [S, R(1)] in (5.28) one gets

ad2S(R(1)) =
(

0 J2 F̃
J2 F̃∗ 0

)
where F̃ := 2

(
�J2G̃ − ẼJ2�

)
(5.33)

and Ẽ , G̃ are defined in (5.29). Since Ẽ, G̃ = O(με2) by (5.30), and � = J2X =
O(ε) by (5.8), we deduce that F̃ = O(με3). Then, for any τ ∈ [0, 1], the matrix
exp(τ S) ad2S(R(1)) exp(−τ S) = ad2S(R(1))(1+O(μ, ε)). In particular the matrix
F (2) in (5.31) has the same expansion of F̃ , namely F (2) = O(με3), and the
matrices Ê , Ĝ have entries as in (5.32). #$
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Proof of Lemma 5.4. It follows by (5.27)–(5.28), (5.15) and Lemmata 5.7 and 5.8.
Thematrix E (2) := E (1)+ Ẽ+ Ê has the expansion in (5.11), witheWB = e11+ẽ11
as in (5.12). Similarly G(2) := G(1) + G̃ + Ĝ has the expansion in (5.13). #$

5.2. Complete Block-Decoupling and Proof of the Main Results

We now block-diagonalize the 4 × 4 Hamiltonian and reversible matrix L(2)
μ,ε

in (5.10). First we split it into its 2× 2-diagonal and off-diagonal Hamiltonian and
reversible matrices

L(2)
μ,ε = D(2) + R(2) ,

D(2) :=
(
J2E (2) 0

0 J2G(2)

)
, R(2) :=

(
0 J2F (2)

J2[F (2)]∗ 0

)
. (5.34)

Lemma 5.9. There exist a4×4 reversibility-preserving Hamiltonian matrix S(2) :=
S(2)(μ, ε) of the form (5.9), analytic in (μ, ε), of size O(ε3), and a 4 × 4 block-
diagonal reversible Hamiltonian matrix P := P(μ, ε), analytic in (μ, ε), of size
O(με6) such that

exp(S(2))(D(2) + R(2)) exp(−S(2)) = D(2) + P . (5.35)

Proof. We set for brevity S = S(2). The equation (5.35) is equivalent to the system
{

�D
(
eS
(
D(2) + R(2)

)
e−S

)− D(2) = P

�∅

(
eS
(
D(2) + R(2)

)
e−S

) = 0 ,
(5.36)

where�D is the projector onto the block-diagonal matrices and�∅ onto the block-
off-diagonal ones. The second equation in (5.36) is equivalent, by a Lie expansion,
and since [S, R(2)] is block-diagonal, to

R(2) +
[

S , D(2)
]
+�∅

∫ 1

0
(1− τ)eτ Sad2S

(
D(2) + R(2))e−τ Sdτ

︸ ︷︷ ︸
=:R(S)

= 0 . (5.37)

The “nonlinear homological equation" (5.37),

[S, D(2)] = −R(2) −R(S) , (5.38)

is equivalent to solve the 4× 4 real linear system

A&x = &f (μ, ε, &x) , &f (μ, ε, &x) = μ&v(μ, ε)+ μ&g(μ, ε, &x) (5.39)

associated, as in (5.20), to (5.38). The vector μ&v(μ, ε) is associated with −R(2)

where R(2) is in (5.34). The vectorμ&g(μ, ε, &x) is associatedwith thematrix−R(S),
which is a Hamiltonian and reversible block-off-diagonal matrix (i.e of the form
(5.15)). The factor μ is present in D(2) and R(2), see (5.11), (5.13), (5.14) and the
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analytic function &g(μ, ε, &x) is quadratic in &x (for the presence of ad2S in R(S)). In
view of (5.14) one has

μ&v(μ, ε) := (−F (2)
21 , F (2)

22 ,−F (2)
11 , F (2)

12 )�, F (2)
i j = r(με3) . (5.40)

System (5.39) is equivalent to &x = A−1 &f (μ, ε, &x) and, writing A−1 = 1
μ
B(μ, ε)

(cfr. (5.26)), to

&x = B(μ, ε)&v(μ, ε)+B(μ, ε)&g(μ, ε, &x).

By the implicit function theorem this equation admits a unique small solution
&x = &x(μ, ε), analytic in (μ, ε), with size O(ε3) as &v in (5.40). Then the first
equation of (5.36) gives P = [S, R(2)]+�D

∫ 1
0 (1−τ)eτ Sad2S

(
D(2)+R(2)

)
e−τ Sdτ ,

and its estimate follows from those of S and R(2) (see (5.14)). #$
Proof of Theorems 2.5 and 1.1. By Lemma 5.9 and recalling (3.1) the operator
Lμ,ε : Vμ,ε → Vμ,ε is represented by the 4×4 Hamiltonian and reversible matrix

ichμ+ exp(S(2))L(2)
μ,ε exp(−S(2)) = ichμ+

(
J2E (3) 0

0 J2G(3)

)
=:
(
U 0
0 S

)
,

where the matrices E (3) and G(3) expand as in (5.11), (5.13). Consequently the
matrices U and S expand as in (2.40). Theorem 2.5 is proved. Theorem 1.1 is
a straightforward corollary. The function μ(ε) in (1.4) is defined as the implicit
solution of the function �BF(h;μ, ε) in (1.6) for ε small enough, depending
on h. #$

Acknowledgements. Research supported by PRIN 2020 (2020XB3EFL001) “Hamiltonian
and dispersive PDEs”.

Funding Open access funding provided by Scuola Internazionale Superiore di Studi Avan-
zati - SISSA within the CRUI-CARE Agreement.

Data Availability This manuscript has no associated data.

Declarations
Conflict of interest The authors have no competing interests to declare that are
relevant to the content of this article.
Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Arch. Rational Mech. Anal. (2023) 247:91 Page 43 of 54 91

A. Expansion of the Kato Basis

In this appendix we prove Lemma 4.2. We provide the expansion of the basis
f ±k (μ, ε) = Uμ,ε f ±k , k = 0, 1, in (4.1), where f ±k defined in (4.2) belong to the
subspace V0,0 := Rg(P0,0). We first Taylor-expand the transformation operators
Uμ,ε defined in (3.5). We denote ∂ε with a prime and ∂μ with a dot.

Lemma A.1. The first jets of Uμ,ε P0,0 are

U0,0P0,0 = P0,0 , U ′
0,0P0,0 = P ′0,0P0,0 , U̇0,0P0,0 = Ṗ0,0P0,0 , (A.1)

U̇ ′
0,0P0,0 =

(
Ṗ ′0,0 − 1

2 P0,0 Ṗ ′0,0
)
P0,0 , (A.2)

where

P ′0,0 =
1

2π i

∮

�

(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1dλ , (A.3)

Ṗ0,0 = 1

2π i

∮

�

(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ , (A.4)

and

Ṗ ′0,0 = −
1

2π i

∮

�

(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1dλ

(A.5a)

− 1

2π i

∮

�

(L0,0 − λ)−1L ′
0,0(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ

(A.5b)

+ 1

2π i

∮

�

(L0,0 − λ)−1L̇ ′
0,0(L0,0 − λ)−1dλ . (A.5c)

The operators L ′
0,0 and L̇0,0 are

L ′
0,0 =

[
∂x ◦ p1(x) 0
−a1(x) p1(x) ◦ ∂x

]
, L̇0,0 =

[
0 sgn(D)m(D)

0 0

]
, (A.6)

where sgn(D) is defined in (2.31) and m(D) is the real, even operator

m(D) := tanh(h|D|)+ h|D|(1− tanh2(h|D|)) (A.7)

and a1(x) and p1(x) are given in Lemma 2.2.
The operator L̇ ′

0,0 is

L̇ ′
0,0 =

[
i p1(x) 0

0 i p1(x)

]
. (A.8)
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Proof. By (3.5) and (3.6) one has the Taylor expansion in L(Y )

Uμ,ε P0,0 = Pμ,ε P0,0 + 1

2
(Pμ,ε − P0,0)

2Pμ,ε P0,0 +O(Pμ,ε − P0,0)
4 ,

where O(Pμ,ε − P0,0)
4 = O(ε4, ε3μ, ε2μ2, εμ3, μ4) ∈ L(Y ). Consequently

one derives (A.1), (A.2), using also the identity Ṗ0,0P ′0,0P0,0 + P ′0,0 Ṗ0,0P0,0 =
−P0,0 Ṗ ′0,0P0,0, which follows differentiating P2

μ,ε = Pμ,ε . Differentiating (3.4)
one gets (A.3)-(A.5c). Formulas (A.6)-(A.8) follow by (3.2) using also that the
Fourier multiplier �0

(
tanh(h|D|)+ h|D|(1− tanh2(h|D|))) = 0. #$

By the previous lemma we have the Taylor expansion

f σ
k (μ, ε) = f σ

k + εP ′0,0 f σ
k + μṖ0,0 f σ

k

+με
(
Ṗ ′0,0 −

1

2
P0,0 Ṗ ′0,0

)
f σ
k +O(μ2, ε2) . (A.9)

In order to compute the vectors P ′0,0 f σ
k and Ṗ0,0 f σ

k using (A.3) and (A.4), it is
useful to know the action of (L0,0 − λ)−1 on the vectors

f +k :=
[
c1/2h cos(kx)

c−1/2h sin(kx)

]

,

f −k :=
[
−c1/2h sin(kx)

c−1/2h cos(kx)

]

,

f +−k :=
[

c1/2h cos(kx)

−c−1/2h sin(kx)

]

, f −−k :=
[
c1/2h sin(kx)

c−1/2h cos(kx)

]

, k ∈ N .

(A.10)

Lemma A.2. The space H1(T) decomposes as H1(T) = V0,0 ⊕ U ⊕WH1 , with

WH1 =
∞⊕

k=2
Wk

H1

where the subspaces V0,0,U and Wk , defined below, are invari-

ant under L0,0 and the following properties hold:

(i) V0,0 = span{ f +1 , f −1 , f +0 , f −0 } is the generalized kernel of L0,0. For any
λ �= 0 the operator L0,0 − λ : V0,0 → V0,0 is invertible and

(L0,0 − λ)−1 f +1 = −
1

λ
f +1 , (L0,0 − λ)−1 f −1 = −

1

λ
f −1 ,

(L0,0 − λ)−1 f −0 = −
1

λ
f −0 , (A.11)

(L0,0 − λ)−1 f +0 = −
1

λ
f +0 +

1

λ2
f −0 . (A.12)
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(ii) U := span
{

f +−1, f −−1
}
. For any λ �= ±2i the operator L0,0 − λ : U → U is

invertible and

(L0,0 − λ)−1 f +−1 =
1

λ2 + 4c2h

(−λ f +−1 + 2ch f −−1
)
,

(L0,0 − λ)−1 f −−1 =
1

λ2 + 4c2h

(−2ch f +−1 − λ f −−1
)

.

(A.13)

(iii) Each subspace Wk := span
{

f +k , f −k , f +−k, f −−k

}
is invariant under L0,0.

Let WL2 =
∞⊕

k=2
Wk

L2

. For any |λ| < δ(h) small enough, the operator

L0,0 − λ :WH1 →WL2 is invertible and for any f ∈WL2

(L0,0 − λ)−1 f = (
c2h∂

2
x + |D| tanh(h|D|)

)−1
[
ch∂x −|D| tanh(h|D|)
1 ch∂x

]
f

+λϕ f (λ, x) , (A.14)

for some analytic function λ �→ ϕ f (λ, ·) ∈ H1(T,C2).

Proof. By inspection the spaces V0,0, U and Wk are invariant under L0,0 and, by
Fourier series, they decompose H1(T,C2). Formulas (A.11)–(A.12) follow using
that f +1 , f −1 , f −0 are in the kernel of L0,0, and L0,0 f +0 = − f −0 . Formula (A.13)
follows using that L0,0 f +−1 = −2ch f −−1 and L0,0 f −−1 = 2ch f +−1. Let us prove
item (i i i). Let W := WH1 . The operator (L0,0 − λId)

∣∣W is invertible for any
λ /∈ {±i√|k| tanh (h|k|)± i kch, k ≥ 2, k ∈ N} and

(L0,0
∣∣W )−1 =

(
c2h∂

2
x + |D| tanh(h|D|)

)−1 [ch∂x −|D| tanh(h|D|))
1 ch∂x

]

|W
.

By Neumann series, for any λ such that |λ|‖(L0,0
∣∣W )−1‖L(W,H1(T)) < 1 we have

(L0,0
∣∣W − λ)−1 = (L0,0

∣∣W )−1
(
Id − λ(L0,0

∣∣W )−1
)−1

= (L0,0
∣∣W )−1

∑

k≥0
((L0,0

∣∣W )−1λ)k .

Formula (A.14) followswithϕ f (λ, x) := (L0,0
∣∣W )−1

∑
k≥1 λk−1[(L0,0

∣∣W )−1]k f .
#$
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We shall also use the following formulas obtained by (A.6), (A.7) and (4.2):

L ′
0,0 f +1 =

[
2c−1/2h sin(2x)

1
2c

5/2
h (1− c−4h )(1+ cos(2x))

]

,

L ′
0,0 f −1 =

[
2c−1/2h cos(2x)

− 1
2c

5/2
h (1− c−4h ) sin(2x)

]

,

L ′
0,0 f +0 =

[
2c−1h sin(x)(

c2h + c−2h

)
cos(x)

]

, L ′
0,0 f −0 = 0 ,

L̇0,0 f +1 = −i b(h)

[
cos(x)

0

]
, L̇0,0 f −1 = i b(h)

[
sin(x)

0

]
,

b(h) := c−1/2h

(
c2h + h(1− c4h)

)
,

L̇0,0 f +0 = 0 , L̇0,0 f −0 = 0 .

(A.15)

Remark. In deep water we have L̇0,0 f −0 = f +0 (cfr. formula (A.14) in [6]). In
finite depth instead L̇0,0 f −0 = 0 because the Fourier multiplier sgn(D)m(D) in
(A.7) vanishes on the constants.

We finally compute P ′0,0 f σ
k and Ṗ0,0 f σ

k .

Lemma A.3. One has

P ′0,0 f +1 =
⎡

⎣
1
2c
− 11

2
h (3+ c4h) cos(2x)

1
4c
− 13

2
h (1+ c4h)(3− c4h) sin(2x)

⎤

⎦ ,

P ′0,0 f −1 =
⎡

⎣ − 1
2c
− 11

2
h (3+ c4h) sin(2x)

1
4c
− 13

2
h (1+ c4h)(3− c4h) cos(2x)

⎤

⎦ ,

P ′0,0 f +0 = 1
4c
− 5

2
h (3+ c4h) f +−1 , P ′0,0 f −0 = 0 , Ṗ0,0 f +0 = 0 , Ṗ0,0 f −0 = 0 ,

Ṗ0,0 f +1 =
i

4

(
1+ c−2h h(1− c4h)

)
f −−1 , Ṗ0,0 f −1 =

i

4

(
1+ c−2h h(1− c4h)

)
f +−1 .

(A.16)

Proof. We first compute P ′0,0 f +1 . By (A.3), (A.11) and (A.15) we deduce

P ′0,0 f +1 = −
1

2π i

∮

�

1

λ
(L0,0 − λ)−1

[
2c−1/2h sin(2x)

1
2c

5/2
h (1− c−4h )(1+ cos(2x))

]

dλ .

We note that

[
2c−1/2h sin(2x)

1
2c

5/2
h (1− c−4h )(1+ cos(2x))

]

= 1
2c

5/2
h (1−c−4h ) f −0 +W . There-

fore by (A.11) and (A.14) there is an analytic function λ �→ ϕ(λ, ·) ∈ H1(T,C2)

so that

P ′0,0 f +1 = − 1

2π i

∮

�

1

λ

(
− c5/2h (1− c−4h )

2λ
f −0 −

1+ c4h
4c6h

⎡

⎢
⎣
2ch

c
− 1

2
h (3+c4h)

1+c4h
cos(2x)

c
− 1

2
h (3− c4h) sin(2x)

⎤

⎥
⎦



Arch. Rational Mech. Anal. (2023) 247:91 Page 47 of 54 91

+λϕ(λ)
)
dλ ,

where we exploited the identity tanh(2h) = 2c2h
1+c4h

in applying (A.14). Thus, by

means of residue Theorem we obtain the first identity in (A.16). Similarly one
computes P ′0,0 f −1 . By (A.3), (A.11) and (A.15), one has P ′0,0 f −0 = 0. Next we

compute P ′0,0 f +0 . By (A.3), (A.11), (A.12) and (A.15) we get

P ′0,0 f +0 = −
1

2π i

∮

�

1

λ
(L0,0 − λ)−1

[
2c−1h sin(x)

(c2h + c−2h ) cos(x)

]
dλ .

Nextwedecompose

[
2c−1h sin(x)

(c2h + c−2h ) cos(x)

]
= 1

2
c
− 3

2
h (c4h + 3)

︸ ︷︷ ︸
=:α

f −−1+
1

2
c
− 3

2
h (c4h − 1)

︸ ︷︷ ︸
=:β

f −1 .

By (A.15) and (A.13) we get

P ′0,0 f +0 = − 1

2π i

∮

�

(
− 2αch

λ(λ2 + 4c2h)
f +−1 −

α

λ2 + 4c2h
f −−1 +

β

λ2
f −1
)
dλ = α

2ch
f +−1 ,

where in the last step we used the residue theorem. We compute now Ṗ0,0 f +1 .

First we have Ṗ0,0 f +1 = i
2π i b(h)

∮
�

1
λ
(L0,0 − λ)−1

[
cos(x)

0

]
dλ, where b(h) is

in (A.15), and then, writing

[
cos(x)

0

]
= 1

2c
− 1

2
h ( f +1 + f +−1) and using (A.13), we

conclude using again the residue theorem Ṗ0,0 f +1 = i
4

(
1 + h(1 − c4h)c

−2
h

)
f −−1.

The computation of Ṗ0,0 f −1 is analogous. Finally, in view of (A.15), we have

Ṗ0,0 f +0 =
1

2π i

∮

�

(L0,0 − λ)−1L̇0,0
( 1
λ2

f −0 −
1

λ
f +0
)
dλ = 0 ,

Ṗ0,0 f −0 = −
1

2π i

∮

�

1

λ
(L0,0 − λ)−1L̇0,0 f −0 dλ = 0 .

In conclusion all the formulas in (A.16) are proved. #$
So far we have obtained the linear terms of the expansions (4.3), (4.4), (4.5), (4.6).
We now provide further information about the expansion of the basis atμ = 0. The
proof of the next lemma follows as that of Lemma A.4 in [6].

Lemma A.4. The basis { f σ
k (0, ε), k = 0, 1, σ = ±} is real. For any ε it results

f −0 (0, ε) ≡ f −0 . The property (4.8) holds.

We now provide further information about the expansion of the basis at ε = 0.
The following lemma follows as Lemma A.5 in [6]. The key observation is that the
operator Lμ,0

∣∣Z , where Z is the invariant subspace Z := span{ f +0 , f −0 }, has the
two eigenvalues ±i√μ tanh(hμ), which, for small μ, lie inside the loop � around
0 in (3.4).

Lemma A.5. For any small μ, we have f +0 (μ, 0) ≡ f +0 and f −0 (μ, 0) ≡ f −0 .
Moreover the vectors f +1 (μ, 0) and f −1 (μ, 0) have both components with zero
space average.



91 Page 48 of 54 Arch. Rational Mech. Anal. (2023) 247:91

We finally consider the με term in the expansion (A.9).

Lemma A.6. The derivatives (∂μ∂ε f σ
k )(0, 0) =

(
Ṗ ′0,0 − 1

2 P0,0 Ṗ ′0,0
)

f σ
k satisfy

(∂μ∂ε f +1 )(0, 0) = i

[
odd(x)

even(x)

]
, (∂μ∂ε f −1 )(0, 0)− = i

[
even(x)

odd(x)

]
,

(∂μ∂ε f +0 )(0, 0) = i

[
odd(x)

even0(x)

]
, (∂μ∂ε f −0 )(0, 0) = i

[
even0(x)

odd(x)

]
.

(A.17)

Proof. We prove that Ṗ ′0,0= (A.5a) + (A.5b) + (A.5c) is purely imaginary, see
footnote 3. This follows since the operators in (A.5a), (A.5b) and (A.5c) are purely
imaginary because L̇0,0 is purely imaginary,L ′

0,0 in (A.6) is real and L̇
′
0,0 in (A.8)

is purely imaginary (argue as in Lemma 3.2-(i i i) of [6]). Then, applied to the real
vectors f σ

k , k = 0, 1, σ = ±, give purely imaginary vectors.
The property (3.9) implies that (∂μ∂ε f σ

k )(0, 0) have the claimed parity structure
in (A.17). We shall now prove that (∂μ∂ε f ±0 )(0, 0) have zero average. We have, by
(A.12) and (A.15)

(A.5a) f +0 := 1

2π i

∮

�

(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1 1
λ

[
2c−1h sin(x)(

c2h + c−2h

)
cos(x)

]

dλ

and since the operators (L0,0 − λ)−1 and L̇0,0 are both Fourier multipliers, hence
they preserve the absence of average of the vectors, then (A.5a) f +0 has zero average.
Next (A.5b) f +0 = 0 since L̇0,0 f ±0 = 0, cfr. (2.31). Finally, by (A.12) and (A.8),

where p1(x) = p[1]1 cos(x),

(A.5c) f +0 =
i p[1]1

2π i

∮

�

(L0,0 − λ)−1
(
− 1

λ

[
cos(x)

0

]
+ 1

λ2

[
0

cos(x)

] )
dλ

is a vector with zero average. We conclude that Ṗ ′0,0 f +0 is an imaginary vector with

zero average, as well as (∂μ∂ε f +0 )(0, 0) since P0,0 sends zero average functions in
zero average functions. Finally, by (3.9), (∂μ∂ε f +0 )(0, 0) has the claimed structure
in (A.17).

We finally consider (∂μ∂ε f −0 )(0, 0). By (A.11) andL ′
0,0 f −0 = 0 (cfr. (A.15)),

it results

(A.5a) f −0 = −
1

2π i

∮

�

(L0,0 − λ)−1

λ
L̇0,0(L0,0 − λ)−1L ′

0,0 f −0 dλ = 0 .

Next by (A.11) and L̇0,0 f −0 = 0 we get (A.5b) f −0 = 0. Finally by (A.11) and
(A.8)

(A.5c) f −0 = −
1

2π i

∮

�

(L0,0 − λ)−1 1
λ

[
0

i p[1]1 cos(x)

]
dλ

has zero average since (L0,0 − λ)−1 is a Fourier multiplier (and thus preserves
average absence). #$

This completes the proof of Lemma 4.2.
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B. Expansion of the Stokes Waves in Finite Depth

In this Appendix we provide the expansions (2.6)–(2.7), (2.15), (2.20)–(2.23).

Proof of (2.6)-(2.7). Writing

ηε(x) = εη1(x)+ ε2η2(x)+O(ε3) ,

ψε(x) = εψ1(x)+ ε2ψ2(x)+O(ε3) ,
cε = ch + εc1 + ε2c2 +O(ε3) ,

(B.1)

where ηi is even(x) and ψi is odd(x) for i = 1, 2, we solve order by order in ε the
equations (2.5), that we rewrite as

⎧
⎪⎨

⎪⎩

−c ψx + η + ψ2
x

2
− η2x

2(1+ η2x )
(c − ψx )

2 = 0

c ηx + G(η)ψ = 0 ,

(B.2)

having substituted G(η)ψ with−c ηx in the first equation.We expand theDirichlet-
Neumann operator G(η) = G0 + G1(η) + G2(η) + O(η3) where, according to
[13, formula (2.14)],

G0 := D tanh(hD) = |D| tanh(h|D|),
G1(η) := D

(
η − tanh(hD)η tanh(hD)

)
D

= −∂xη∂x − |D| tanh(h|D|)η|D| tanh(h|D|),
G2(η) := −1

2
D
(

Dη2 tanh(hD)+ tanh(hD)η2D

− 2 tanh(hD)ηD tanh(hD)η tanh(hD)
)

D .

(B.3)

First order in ε. Substituting in (B.2) the expansions in (B.1), we get the linear
system
{ −ch(ψ1)x + η1 = 0
ch(η1)x + G0ψ1 = 0 ,

i.e.

[
η1
ψ1

]
∈ Ker B0 with B0 :=

[
1 −ch∂x

ch∂x G0

]
,

(B.4)

where η1 is even(x) and ψ1 is odd(x). #$
Lemma B.1. The kernel of the linear operator B0 in (B.4) is

Ker B0 = span
{ [ cos(x)

c−1h sin(x)

] }
. (B.5)

Proof. The action of B0 on each subspace span
{ [cos(kx)

0

]
,

[
0

sin(kx)

] }
, k ∈ N,

is represented by the 2×2matrix

[
1 −chk

−chk k tanh(hk)

]
. Its determinant k tanh(hk)−
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c2hk2 = k2
(
tanh(hk)

k − tanh(h)
)
vanishes if and only if k = 1. Indeed the func-

tion x �→ tanh(hx)
x is monotonically decreasing for x > 0, since its derivative

2xh−sinh(2hx)

2 cosh2(hx)x2
is negative for x > 0. For k = 1 we obtain the kernel of B0 given in

(B.5). For k = 0 it has no kernel since ψ1(x) is odd. #$
We set η1(x) := cos(x), ψ1(x) := c−1h sin(x) in agreement with (2.6).

Second order in ε. By (B.2), and since c2h(η1)
2
x = (G0ψ1)

2, we get the linear
system

B0

[
η2
ψ2

]
=
[

c1(ψ1)x − 1
2 (ψ1)

2
x + 1

2 (G0ψ1)
2

−c1(η1)x − G1(η1)ψ1

]
, (B.6)

where B0 is the self-adjoint operator in (B.4). System (B.6) admits a solution if and
only if its right-hand term is orthogonal to the Kernel of B0 in (B.5), namely

( [c1(ψ1)x − 1
2 (ψ1)

2
x + 1

2 (G0ψ1)
2

−c1(η1)x − G1(η1)ψ1

]
,

[
cos(x)

c−1h sin(x)

] )
= 0 . (B.7)

In view of the first order expansion (2.6), (B.3) and the identity tanh(2h) = 2c2h
1+ c4h

,

it results [G0ψ1](x) = ch sin(x),
[
G1(η1)ψ1

]
(x) = 1−c4h

ch(1+c4h)
sin(2x) so that (B.7)

implies c1 = 0, in agrement with (2.6). Equation (B.6) reduces to

[
1 −ch∂x

ch∂x G0

] [
η2
ψ2

]
=
[− 1

4 (c
−2
h − c2h)− 1

4 (c
−2
h + c2h) cos(2x)

− 1−c4h
ch(1+c4h)

sin(2x)

]

. (B.8)

Setting η2 = η
[0]
2 + η

[2]
2 cos(2x) and ψ2 = ψ

[2]
2 sin(2x), system (B.8) amounts to

⎧
⎨

⎩

η
[0]
2 + (η[2]2 − 2chψ

[2]
2

)
cos(2x) = − 1

4

(
c−2h − c2h

)
− 1

4

(
c−2h + c2h

)
cos(2x)

(−2chη[2]2 + 2ψ [2]2 tanh(2h)) sin(2x) = − 1−c4h
ch(1+c4h)

sin(2x) ,

which leads to the expansions of η
[0]
2 , η[2]2 , ψ [2]2 given in (2.6)-(2.7).

Third order in ε. It remains to determine c2 in (2.8). We get the linear system

B0

[
η3
ψ3

]
=
[

c2(ψ1)x − (ψ1)x (ψ2)x − (η1)
2
x (ψ1)xch + (η1)x (η2)xc2h−c2(η1)x − G1(η1)ψ2 − G1(η2)ψ1 − G2(η1)ψ1

]
. (B.9)

System (B.9) has a solution if and only if the right hand side is orthogonal to the
Kernel of B0 given in (B.5). This condition determines uniquely c2. Denoting �1
the L2-orthogonal projector on span {cos(x), sin(x)}, we get that

c2(ψ1)x = c2c
−1
h cos(x) , c2(η1)x = −c2 sin(x) ,

�1[(ψ1)x (ψ2)x ] = ψ
[2]
2 c−1h cos(x) ,

�1[ch(η1)2x (ψ1)x ] = 1
4 cos(x) , �1[c2h(η1)x (η2)x ] = η

[2]
2 c2h cos(x) ,
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and, in view of (B.3), and (2.6), (2.7),

�1[G1(η1)ψ2] = ψ
[2]
2

1− c4h
1+ c4h

sin(x) , �1[G2(η1)ψ1] = ch
3c4h − 1

4(1+ c4h)
sin(x) ,

�1[G1(η2)ψ1] = c−1h

(
η
[0]
2 (1− c4h)+ 1

2η
[2]
2 (1+ c4h)

)
sin(x) .

Therefore the orthogonality condition proves (2.8).

Proof of (2.15). We expand the function p(x) = εp1(x)+ε2p2(x)+O(ε3) defined
by the fixed point equation (2.14). We first note that the constant fε = O(ε2)

because η1(x) = cos(x) has zero average. Then p(x) = H
tanh(h|D|)

[
εη1 + ε2

(
η2 +

(η1)xp1
)+O(ε3)

]
, and, using that H cos(kx) = sin(kx), for any k ∈ N, we get

p1(x) = H
tanh(h|D|) cos(x) = c−2h sin(x) , (B.10)

p2(x) = H
tanh(h|D|) ((η1)xp1 + η2) = (1+ c4h)(c

4
h + 3)

8c8h
sin(2x) . (B.11)

Finally,

fε = ε2

2π

∫

T

(
η2 + (η1)xp1

)
dx +O(ε3)

= ε2
(
η
[0]
2 − 1

2c
−2
h

)+O(ε3)
(2.7)= ε2

c4h − 3

4c2h
+O(ε3) .

The expansion (2.15) is proved. #$
Proof of Lemma 2.2. In view of (2.6)–(2.7), the expansions of the functions B, V
in (2.10) are

B =: εB1(x)+ ε2B2(x)+O(ε3) = εch sin(x)+ ε2
3− 2c4h
2c5h

sin(2x)+O(ε3)

(B.12)

and

V =: εV1(x)+ ε2V2(x)+O(ε3) = εc−1h cos(x)

+ ε2
[ch
2
+ 3− c8h

4c7h
cos(2x)

]
+O(ε3) . (B.13)

In view of (2.18), denoting derivatives w.r.t x with a prime and suppressing depen-
dence on x when trivial, we have

ch + pε(x) = (ch + ε2c2 − V (x)− V ′(x)p(x)

+O(ε3))(1− p′(x)+ (p′(x))2 +O(ε3))

= ch + ε (−V1 − chp
′
1)︸ ︷︷ ︸

=:p1
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+ ε2
(
c2 + V1p

′
1 − V2 − V ′1p1 − chp

′
2 + ch(p

′
1)

2)

︸ ︷︷ ︸
=:p2

+O(ε3) .

(B.14)

Similarly, by (2.18),

1+ aε(x) := 1

1+ px (x)
− (ch + pε(x))Bx (x + p(x))

= 1+ ε
(− p′1 − chB ′1

)

︸ ︷︷ ︸
=:a1

+ ε2
(
(p′1)2 − p′2 − chB ′2 − chB ′′1 p1(x)+ B ′1V1 + chB ′1p′1

)

︸ ︷︷ ︸
=:a2

+O(ε3) .

(B.15)

By (B.13), (B.10), (2.6), (B.11), (B.12) we deduce that the functions p1, p2, a1, a2
in (B.14) and (B.15) have an expansion as in (2.20)–(2.23). #$
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