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Abstract
This work investigates the use of sparse polynomial interpolation as a model order reduction
method for the parametrized incompressible Navier–Stokes equations. Numerical results
are presented underscoring the validity of sparse polynomial approximations and compar-
ing with established reduced basis techniques. Two numerical models serve to assess the
accuracy of the reduced order models (ROMs), in particular parametric nonlinearities aris-
ing from curved geometries are investigated in detail. Besides the accuracy of the ROMs,
other important features of the method are covered, such as offline-online splitting, run time
and ease of implementation. The findings provide a clear indication that sparse polynomial
interpolation is a valid instrument in the toolbox of ROM methods.

Keywords Model order reduction · Sparse polynomial interpolation ·
Navier–stokes equations · Parametric systems · Curved geometries
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1 Introduction

A reduced order model (ROM) computes inexpensive yet accurate approximate solutions
to parametrized partial differential equations (PDEs) in a fast and computationally efficient
manner. For an introduction and overview to ROM methods, in particular the reduced basis
(RB) method, see for example [1–4, 15, 21].

This work aims to establish sparse polynomial interpolation as a ROM method for the
parametrized incompressible Navier–Stokes equations [18]. Two numerical models serve
to assess the accuracy of the ROM approximation. Numerical results for both models are
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available using the RB method [11, 12], which allows not only to compare the accuracy of
both methods, but also the run time, implementation effort and other desirable features, such
as offline-online splitting. The first model has one parametric variation in geometry, which
is affinely parametrized. The second model has two parametric variations, the kinematic
viscosity and the curvature. The curvature introduces a nonlinear parameter dependency,
which can not be easily resolved by RB methods.

There exists a significant body of literature on sparse polynomial interpolation, see
[6–9], which establishes the theoretical rationale behind the method. In particular, estimates
on the accuracy of the ROM approximations w.r.t. the full order model (FOM) are estab-
lished. This could be a promising step towards alleviating the so-called curse of dimension-
ality. The curse of dimensionality refers to a (sub-)exponentially increasing computational
effort with increasing parameter space dimension. It poses a bottleneck for complex applica-
tions where many parameters are present. For example models in uncertainty quantification
become unfeasible as the resolution in parameter space is increased.

The remainder of the work is structured as follows. Section 2 introduces the incompress-
ible Navier–Stokes equations and the non-linear solver, while Section 3 recapitulates the
sparse interpolation procedure. Section 4 provides and discusses the numerical results and
Section 5 concludes the findings and gives a brief outlook.

2 Model Setup

For simplicity of notation, the model setup is presented without explicit parameter depen-
dence. Let � ∈ R

2 denote the computational domain. Incompressible, viscous fluid
motion in spatial domain � over a time interval (0, T ) is governed by the incompressible
Navier–Stokes equations:

∂u
∂t

+ u · ∇u = −∇p + νvisc�u + f, (1)

∇ · u = 0, (2)

where u is the vector-valued velocity, p is the scalar-valued pressure, νvisc is the kinematic
viscosity and f is a body forcing. Boundary and initial conditions are prescribed as

u = d on �D × (0, T ),

∇u · n = g on �N × (0, T ),

u = u0 in � × 0,

with d, g and u0 given and ∂� = �D ∪�N , �D ∩�N = ∅. The Reynolds number Re, which
characterizes the flow ([16]), depends on the kinematic viscosity νvisc, on a characteristic
velocity U , and on a characteristic length L:

Re = UL

νvisc
. (3)

We are interested in the steady states, i.e., solutions where ∂u
∂t

vanishes. The high-order
simulations are computed through time-advancement, while the RB reduced order solutions
are computed through fixed-point iterations of a nonlinear solver.

The Oseen-iteration is a secant modulus fixed-point iteration, which in general exhibits
a linear rate of convergence. It solves for a steady-state solution, i.e., ∂u

∂t
= 0 is assumed.
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Given a current iterate (or initial condition) uk , the next iterate uk+1 is computed by solving
the following linear system:

−νvisc�uk+1 + (uk · ∇)uk+1 + ∇p = f in �,

∇ · uk+1 = 0 in �,

uk+1 = d on �D,

∇uk+1 · n = g on �N .

Iterations are stopped when the relative difference between iterates falls below a predefined
tolerance in a suitable norm, like the L2(�) or H 1

0 (�) norm.

3 Sparse Polynomial Interpolation

The presented sparse polynomial interpolation approach is based on the literature references
[6] and [7]. The aim is to define a sparse interpolation operator I� for a multiindex set �,
which acts on a function g as I�[g]. Lagrange interpolation will be used to define I�, but
first some preliminaries will be established. The function g is defined over the parameter
domain P and the parameter domain P consists of vectors y = (y1, . . . , yd) ∈ R

d with
d the number of parameters. Each parameter direction has been normalized to the interval
[−1, 1], such that

P = [−1, 1]d ⊂ R
d .

LetF denote the set multiindices ν = (ν1, ν2, . . . , νd) ∈ N
d
0 . For two multiindices ν and

μ, the relation ν ≥ μ is defined as νi ≥ μi for all parameter directions i. An index set � of
(multi-)indices ν, which fulfills the property that

(ν ∈ � and ν ≥ μ) ⇒ μ ∈ �,

is called a downward closed set. In particular, consider a hierarchical sequence of downward
closed sets {�1, . . . , �n}. Let (zk)k≥0 be a sequence of mutually distinct points in [−1, 1].
The notation zν refers to the point zν = (zν1 , zν2 , . . . , zνd

) ∈ R
d . The superscript νk refers

to a multiindex with entries νk = (νk
1 , ν

k
2 , . . . , ν

k
d ) ∈ N

d
0 .

The sparse interpolation operator is of the form

I�n [g] =
n∑

k=0

gνkHνk (4)

with

gνk = g(zνk ) −
k−1∑

i=1

gνi Hνi (zνk ),

where g(zνk ) is the coefficient vector in the discrete basis of the solution to the PDE (1)–(2)
at the parameter point zνk .

The polynomials Hν are defined over the parameter domain by tensorization as

Hν(y) =
d∏

j=1

hνj
(yj ),

using Lagrange interpolation in each parameter direction as

hk(y) =
k−1∏

j=0

y − zj

zk − zj

, k > 0, h0(y) = 1.
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The efficient hierarchical computation of the sparse interpolation operator is shown in more
detail in [6].

3.1 Leja Points

It remains to provide the sequences (zk)k≥0. The suggested point rules in [6] are Leja
sequences, composed of Leja points. Leja points are defined recursively by maximizing

FN(y) =
N−1∏

i=1

|(y − xi)|

over [−1, 1] for a given initial x1, such that

xN = arg max
y∈[−1,1] F

N(y). (5)

The equation (5) is not solved, but a fine grid of the interval [−1, 1] is used in practice.
Symmetrized Leja points are defined by choosing x1 = 0, x2 = 1, x3 = −1 and then
evaluating (5) on a fine grid for even N while for odd N the previous point is repeated with
a sign change. A set of points can be put in Leja ordering by restricting the maximization in
(5) to the set itself.

4 Numerical Simulations

The sparse polynomial approach is used to generate reduced order models for parametrized
channel flows with one and two parameters. To access the quality of the approximations,
they are compared against reduced basis (RB) methods based on the proper orthogonal
decomposition (POD).

The models are discretized with the spectral element method (SEM) [17] using the PDE
framework Nektar++1 and the model reduction software ITHACA-SEM2.

4.1 Channel with a Narrowing of VaryingWidth

Consider a channel flow with a narrowing of varying width. The velocity field solution at
the reference parameterμref = 1 is shown in Fig. 1. Some more field solutions are shown in
[11] and closely related models have been computed also in [13, 14] and [19]. The geometry
is decomposed into 36 triangular spectral elements and the velocity is resolved with modal
Legendre polynomials of order 11. The inflow profile on the left side is parabolic with
ux(0, y) = y(3− y) for y ∈ [0, 3]. At the outlet, a stress-free boundary condition is set and
everywhere else hold no-slip conditions.

The parameter domain is μ ∈ [0.1, 2.9], which is affinely mapped to the interval ν ∈
[−1, 1] to conformwith the sparse polynomial approximation assumptions. With a changing
parameter, the geometry always remains symmetric to the horizontal centerline at y = 1.5.
The kinematic viscosity is kept constant at νvisc = 1.

The parametric variation in geometry allows an affine decomposition of the Navier–
Stokes element matrix in the parameter. In particular, Figs. 2 and 3 show the mean
and maximum error with growing reduced order dimension for the standard reduced

1www.Nektar.info
2https://github.com/mathLab/ITHACA-SEM
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Fig. 1 Full order, steady-state solution for μ = 1: velocity in x-direction (top) and y-direction (bottom)

basis procedure, the Lagrange interpolation with Leja points, the Lagrange interpolation
with symmetrized Leja points and Lagrange interpolation with equidistant points in Leja
ordering.

Although the sparse polynomial interpolation and the RB are two very different approx-
imation algorithms, the results are both plotted versus the reduced dimension N . In both
cases the size of the ROM model is compared. For the sparse interpolation the reduced
dimension refers to the number of PDE solutions in the polynomial expansion, i.e., the n+1

Fig. 2 Comparison of mean error of the RB method with sparse polynomial approximations using Lagrange
interpolation and various point rules
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Fig. 3 Comparison of maximum error of the RB method with sparse polynomial approximations using
Lagrange interpolation and various point rules

in (4). For the RB the reduced dimension refers to the number of PODmodes used to project
the equations. This is not a perfectly fair comparison, since more PDE solutions were used
in the RB method to generate the POD modes (namely 40 for this model), but it still allows
to draw some conclusions.

It can be observed that all methods show a faster than polynomial order convergence,
since the slope is linear in a semi-log plot. The three sparse polynomial approximations
reach a mean accuracy of six digits in the velocity at a ROM dimension of about 35 and five
digits accuracy in the maximum at this dimension. The RB reaches a mean accuracy of six
digits in the velocity at a ROM dimension of 20 and five digits accuracy in the maximum at
ROM dimension 20.

All three point rules provide a similar approximation quality up a reduced dimension
of 35. The equidistantly distributed points in Leja ordering then diminish in approximation
quality, which is a known phenomenon, since high order Lagrange interpolants without
special choice of interpolation points are ill-conditioned. Using equidistantly distributed
points without Leja ordering provides no approximation at all and has consistently a mean
relative error of about 100%.

The approximations with Leja points do not provide a better approximation than sin-
gle precision, which can usually be improved up to double precision by re-arranging
how terms are computed. The same holds true for RB approximations. However, a stable
approximation with six digits of accuracy is usually enough in practical applications.

4.2 Channel with a Narrowing of Varying Curvature

A two parameter model is considered with parametric variation in the curvature of the nar-
rowing and variation in the kinematic viscosity. This model was analysed in [12] and the
results established there with the RB method and the empirical interpolation method (EIM)
will serve to compare the accuracy of ROMs by sparse polynomial interpolation.

Consider the channel flow through a narrowing created by walls of varying curvature and
with variable kinematic viscosity. See Figs. 4 and 5 for the steady-state velocity components
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Fig. 4 Full order, steady-state solution in the geometry with curved walls and for ν = 0.15: velocity in
x-direction (top) and y-direction (bottom)

for ν = 0.15 in a geometry with curved walls and straight walls, respectively. Figures 6 and
7 show the steady-state velocity components for ν = 0.2 in a geometry with curved walls
and straight walls, respectively. These are the four corners of the rectangular parameter
domain and constitute the most extreme solutions. Figures 4 and 6 also show the strongest
curvature of all configurations.

The spectral element expansion uses modal Legendre polynomials of order p = 10 for
the velocity. The pressure ansatz space is chosen of order p−2 to fulfill the inf-sup stability
condition ([5, 22]). A parabolic inflow profile is prescribed at the inlet (i.e., x = 0) with
horizontal velocity component ux(0, y) = y(3−y) for y ∈ [0, 3]. At the outlet (i.e., x = 18)
a stress-free boundary condition is imposed, while everywhere else a no-slip condition is
prescribed. Symmetric boundary conditions are considered in order to study the symmetry
breaking due to the nonlinearity in problem (1)–(2). A more realistic setting considers also
different inlet velocity profiles and the pulsatility of the flow and would then include the
Strouhal number as a parameter.

The viscosity varies in the interval νvisc ∈ [0.15, 0.2]. The Reynolds number Re, see (3),
depends on the kinematic viscosity. As Re is varied for each fixed geometry, a supercritical
pitchfork bifurcation occurs: for Re higher than the critical bifurcation point, three solutions
exist. Two of these solutions are stable, one with a jet towards the top wall and one with a
jet towards the bottom wall and one is unstable. The unstable solution is symmetric to the

Fig. 5 Full order, steady-state solution in the geometry with straight walls and for ν = 0.15: velocity in
x-direction (top) and y-direction (bottom)
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Fig. 6 Full order, steady-state solution in the geometry with curved walls and for ν = 0.2: velocity in
x-direction (top) and y-direction (bottom)

horizontal centerline at y = 1.5, while the jet of the stable solutions undergoes the Coanda
effect.

In this investigation, we do not deal with recovering all bifurcation branches, but limit
our attention to the stable branch of solutions with jets hugging the bottom wall. However,
we remark that recovering all bifurcating solutions with model reduction methods is also
possible, see, e.g., ([10]) and ([20]).

4.2.1 Generating Curved Geometries

The different curvatures are approximated by polynomials. Each curved wall is defined by
a second order polynomial, interpolating three prescribed points. While the points at the
domain boundary y = 0 and y = 3 are kept fixed, the inner points are moved towards x = 0
in order to create an increasing curvature. The tip of both narrowings and one intermediate
point between the tip and the wall are prescribed, while the point where the wall and the
narrowing meet remains constant. These three points define a quadratic polynomial, which
is used to model the edge from the tips to upper and lower wall, respectively. This is a
standard feature implemented in the PDE solver Nektar++.

The mesh remains topologically equivalent for each parametric configuration. This
allows to easily map the mesh to the reference configuration via a plain pullback (see [9]

Fig. 7 Full order, steady-state solution in the geometry with straight walls and for ν = 0.2: velocity in
x-direction (top) and y-direction (bottom)
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for a discussion of the plain pullback) acting directly on the degrees of freedom, i.e., the
entries of the solution vector.

4.2.2 Numerical Results

The Leja points are computed as in (5) in each parameter direction and a tensorized grid of
the two dimensional parameter domain is used. A grid rule has to be chosen that determines
how the sequence of multiindices (νn)n≥1 has to be chosen that defines the multivariate
points zνn . Here, a downward closed set is formed in a canonical way by choosing ν1 =
(0, 0), ν2 = (1, 0), ν3 = (0, 1), ν4 = (2, 0), ν5 = (1, 1), . . . , i.e., increasing the sum
νn
1 + νn

2 only after all possible combinations of elements with the same sum νn
1 + νn

2 have
been added to (νn)n≥1. The chosen points are depicted in Fig. 8 as blue crosses.

The set �, which defines the sparse interpolation operator (4) is given by �n = {νi, i =
1, . . . , n}. This defines a hierarchical sequence of index sets �1 ⊂ �2 ⊂ �3 ⊂, . . . , �n,
which allows to reuse the computed snapshot solutions when updating the interpolation
operator I�n−1 to I�n .

A second grid rule chooses the next point adaptively. Initialise with ν1 = (0, 0) and then
choose the next grid point by considering all points which would leave the following index
set in the hierarchy of index sets a downward closed set. These points are also called the set
of neighbours in [6]. Compute the PDE solutions at these points and compute the relative
error between the exact solution and the current approximation. Then add the grid point
which has the maximum error. The chosen points are depicted in Fig. 8 as red circles.

The interpolation operators are computed up to dimension 41 and the maximum and
meanL2 errors in the velocity are computed for 72 reference solutions. Only the Leja-points
without explicit symmetrization are used, since the first numerical test could show that the
results of the point rules are similar. Figure 9 shows the relative error in the velocity for
increasing ROM size of the sparse interpolation. Without adaptivity, a maximum error of
less than 1% is reached at dimension 17 and a maximum error of less than 0.1% is reached
at dimension 41. A mean error of less than 1% is reached at dimension 10 and a mean error

Fig. 8 Chosen Leja points plotted with the kinematic viscosity on the x-axis and a measure of the curvature
on the y-axis, where the ‘1’ refers to the maximum curvature. Blue crosses indicate no adaptivity and red
circles are with adaptivity
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Fig. 9 Relative error for increasing sparse interpolation ROM dimension evaluated over a fine grid of 72
snapshots with and without adaptivity

of less than 0.1% is reached at dimension 24. With adaptivity, a maximum error of less
than 1% is reached at dimension 13 and a maximum error of less than 0.1% is reached at
dimension 31. A mean error of less than 1% is reached at dimension 9 and a mean error of
less than 0.1% is reached at dimension 21. The error does not jump above these thresholds
for higher dimensions. This indicates, that the sparse polynomial interpolation generates
usable and reliable ROMs, that can be refined to higher accuracy as needed and there is
some benefit gained from using adaptivity.

The same model has been investigated using a reduced-basis (RB) framework with the
empirical interpolation method (EIM) in [12]. The reduced order model with N = 20 basis
functions, showed an absolute error at the bifurcation point value of less than 0.01 at 46
parameter locations and less than 0.1 at 63 parameter locations. The chosen bifurcation
point is the vertical velocity at the point (2, 1.5), which was used in [12] to access the
accuracy. This means, that the RB method was not able to generate overall accurate methods
in each of the 72 test points, in contrast to the sparse polynomial interpolation. To plot the
RB approximation accuracy as in Fig. 9 would not add helpful information as the error was
jumping up frequently when increasing the ROM dimension.

Another issue is that the EIM relies on the fast computation of a few matrix entries
during the online phase. However, the spectral element ansatz functions have support over
a whole spectral element, so this operation cannot be performed as fast as with a finite
element method for example. The speed-up will thus not be as significant when using EIM.
Also in the case of a finite-element or finite-volume discretization the sparse polynomial
approach would likely perform better, since the sparse polynomial approach avoids the EIM
completely. However, the gain in computational speed-up would not be as significant when
comparing to a finite-element or finite-volume discretization.

A few points are worth highlighting:

Relevance of Results The sparse polynomial interpolation was able to compute accurate
ROMs, which are stable when increasing the ROM size. While the first numerical example
shows that the ROM sizes are not as small as for the RB method, the RB still needs to compute
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a similar number of overall snapshots for the POD sample matrix. Taking this into account, both
methods show a comparable performance. The curved boundaries in the second numerical
example allow topologically equivalent mesh changes, but introduce a parametric nonlinear-
ity. The sparse interpolation nevertheless produced accurate ROMs, where the RB largely
failed. Parametric nonlinearities are inherently difficult for many ROMmethods, but at least
in the case of topologically equivalent meshes, the sparse polynomial interpolation could be
a method of choice. Additionally, the sparse polynomial interpolation offers adaptivity in
choosing the interpolation points with a heuristic error estimator, see [6].

Offline-Online Decomposition The offline-online decomposition separates the computa-
tions in two parts. The offline phase performs time-intensive computations such as the
snapshot computations, while the online phase is quickly solves the ROM for many param-
eters of interest or in a real-time context. The offline-online splitting is also present in the
sparse interpolation, since the snapshot solutions can be computed on a high-performance
cluster (HPC), while the evaluation of the sparse operator for a parameter of interest can
be done efficiently without a large computational effort. This is important for a wide
applicability of the method and the sparse interpolation shares this property with the RB.

Run Time Both methods require the computation of the snapshot solutions. There is hardly
any additional run time effort for the sparse interpolation, since the interpolation opera-
tors can be computed in a hierarchical way as long as the index sets are hierarchical. The
RB on the other hand is much more involved. For the assembly of the reduced order sys-
tems a reduced trilinear form is computed in the incompressible Navier–Stokes case, which
takes approximately as much time as computing the initial snapshot solutions in the shown
examples. Additionally, the compute time for an EIM can be significant in the RB method.

Implementation The sparse interpolation can be implemented as outlined in [6] with a
hierarchical computation. There are several choices for point rules and polynomials, but the
implementational effort is light when compared to the reduced basis method. The RB for
incompressible Navier–Stokes requires to compute the reduced operators of the affine form
and the EIM requires to identify the degrees of freedom, which most significantly contribute
to the system matrix. This is a significant implementation effort, which is not necessary for
and has no counterpart in the sparse interpolation.

5 Conclusion and Outlook

The sparse polynomial interpolation generates comparable reduced order models (ROMs)
to the reduced basis (RB) method in terms of accuracy and model size. In terms of appli-
cability, some parametric nonlinearities of the geometry can be treated without altering the
method, in particular if the mesh topology remains intact. Regarding the run time of the
method and the ease of implementation, the sparse interpolation is even superior to the
RB. The offline-online splitting is also present in the sparse interpolation, which allows to
offload time-consuming snapshot computations to a high-performance cluster, while eval-
uating the ROM on nearly any machine. The literature on sparse interpolation offers a lot
more than what is discussed here. Namely bounds on the approximation error and tech-
niques for dealing with more complicated nonlinearities as well as adaptive choices of
sample sets. Connecting these topics with the numerical models can be the topic of future
research.
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