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Abstract The hints for a new resonance at 750 GeV from
ATLAS and CMS have triggered a significant amount of
attention. Since the simplest extensions of the standard model
cannot accommodate the observation, many alternatives have
been considered to explain the excess. Here we focus on
several proposed renormalisable weakly-coupled models and
revisit results given in the literature. We point out that phys-
ically important subtleties are often missed or neglected. To
facilitate the study of the excess we have created a collec-
tion of 40 model files, selected from recent literature, for
the Mathematica package SARAH. With SARAH one can
generate files to perform numerical studies using the tailor-
made spectrum generators FlexibleSUSY and SPheno.
These have been extended to automatically include crucial
higher order corrections to the diphoton and digluon decay
rates for both CP-even and CP-odd scalars. Additionally, we
have extended the UFO and CalcHep interfaces of SARAH,
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to pass the precise information about the effective vertices
from the spectrum generator to a Monte-Carlo tool. Finally,
as an example to demonstrate the power of the entire setup,
we present a new supersymmetric model that accommodates
the diphoton excess, explicitly demonstrating how a large
width can be obtained. We explicitly show several steps in
detail to elucidate the use of these public tools in the precision
study of this model.
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1 Introduction

The first data from the 13 TeV run of the large hadron col-
lider (LHC) contained a surprise: ATLAS and CMS reported
a resonance at about 750 GeV in the diphoton channel with
local significances of 3.9σ and 2.6σ , respectively [1,2].
When including the look-elsewhere-effect, the deviations
from standard model (SM) expectations drop to 2.3σ and
1.2σ .1

This possible signal caused a lot of excitement, as it is
the largest deviation from the SM which has been seen by
both experiments. This in turn led to an avalanche of papers,
released very quickly, which analysed the excess from vari-
ous perspectives [5–359].

It is hard to explain the excess within the most com-
monly considered frameworks for physics beyond the stan-
dard model (BSM), like two-Higgs-doublet models (THDM)
or the minimal supersymmetric standard model (MSSM)
[360], to mention a couple of well-known examples. Thus,
many alternative ideas for BSM models have been consid-
ered, some of which lack a deep theoretical motivation and
are rather aimed at just providing a decent fit to the dipho-
ton bump. Most of the papers in the avalanche were written
quickly, some in a few hours, many in a few days, so the
analyses of the new models are likely to have shortcomings.
Some effects could be missed in the first attempt and some
statements might not hold at a second glance. Indeed we have
found a wide range of mistakes or unjustified assumptions,
which represented the main motivation that prompted this
work.

Now that the dust has settled following the stampede
caused by the presentation of the ATLAS and CMS data,
the time has come for a more detailed and careful study of
the proposed ideas. In the past few years several tools have
been developed which can be very helpful in this respect.
In the context of renormalisable models, the Mathematica
package SARAH [361–366] offers all features for the precise
study of a new model: it calculates all tree-level properties
of the model (mass, tadpoles, vertices), the one-loop correc-
tions to all masses as well as the two-loop renormalisation
group equations, and it can be interfaced with the spectrum
generators SPheno [367,368] and FlexibleSUSY [369].
These codes, in turn, can be used for a numerical analysis of
any model, which can compete with the precision of state-
of-the-art spectrum generators dedicated just to the MSSM
and NMSSM [370]. The RGEs are solved numerically at
the two-loop level and the mass spectrum is calculated at
one loop. Both codes have the option to include the known
two-loop corrections [371–376] to the Higgs masses in the
MSSM and NMSSM, which may, depending on the model,

1 We note, however, that the most recent measurements including data
collected in 2016 do not confirm the excess [3,4].
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provide a good approximation of the dominant corrections.
SPheno can also calculate the full two-loop corrections to
the Higgs masses in the gaugeless limit at zero external
momentum [377,378]. FlexibleSUSY has an extension
to calculate the two-loop Higgs mass corrections using the
complementary effective field theory approach, which is to
be released very soon.SPhenomakes predictions for impor-
tant flavour observables, which have been not yet imple-
mented in FlexibleSUSY. Of particular importance for
the current study is that SPheno and FlexibleSUSY cal-
culate the effective vertices for the diphoton and digluon
couplings of the scalars, which can then be used by Monte-
Carlo (MC) tools like CalcHep [379,380] or MadGraph
[381,382]. Other numerical tools like MicrOmegas [383],
HiggsBounds [384,385], HiggsSignals [386] or
Vevacious [387] can easily be included in the framework.

These powerful packages provide a way to get a thorough
understanding of the new models. The main goal of this work
is to support the model builders and encourage them to use
these tools. We provide several details about the features of
the packages in the spirit of making this paper self-contained
and bringing the reader unfamiliar with the tools to the level
of knowledge necessary to use them. More information can
be found in the manuals of each package. We have created
a database of diphoton models in SARAH, by implementing
40 among those proposed in recent literature, which is now
available to all interested researchers. For each model we
have written model files to interface SARAH with SPheno
and FlexibleSUSY.

Although in each case we have tried to check very care-
fully that we implement the model which has been proposed
in the literature, it is of course possible that some details
have been missed. The original authors of these models are
encouraged to check the implementation themselves to sat-
isfy that what we have implemented really does correspond
to the model they proposed. In the description of some of
the models we state cases where the model has problems
or where we find difficulties for the proposed solution. This
helps inform potential users about what they may see when
running these models through the tools we are discussing
here. However especially in these cases we encourage the
original authors to check what we have written and let us
know if they disagree with any claim we make.

The aim of this paper is to give a self-consistent picture of
how – and why – the diphoton excess can be studied with the
above mentioned public tools and the provided model files.
For this purpose, we do not only summarise the implemen-
tation and validation of the models, but we also give a short
introduction to the tools and explain their basic usage. In
addition, we present the example of anU (1) extended model
and how this can be studied in all detail. This should enable
the interested reader to directly make use of these powerful
packages without the need to consult other references or man-

uals. However, before we start we also summarise common
shortcomings of too simplified analyses and emphasise how
they are easily avoided by using the tools. This provides the
main motivation of this paper and we hope that other model
builders will also see the necessity of using these packages.
Of course, we do not intend to present a thorough study of
all the models which we have implemented. However, we
comment on some observations concerning the motivation
or validity of a model regarding the diphoton excess which
came to our mind during the implementation.

This paper is long but modular, and each section is to a
large extent self contained, so the reader can easily jump
to the section of greater interest. We have structured it as
follows:

• In Sect. 2, we give a list of common mistakes we have
found in the literature.

• In Sect. 3, we discuss at some length the implementation
of the diphoton and digluon effective vertices.

• In Sect. 4, we give an overview of the models which we
have implemented in SARAH.

• In Sect. 5, we provide an explicit example of how to
quickly work out the details of a model, analytically with
SARAH and numerically with the other tools. For this
purpose we extended a natural supersymmetric (SUSY)
model to accommodate the 750 GeV resonance.

• We conclude in Sect. 6.

2 Motivation

Precision studies in high energy physics have reached a high
level of automation. There are publicly available tools to per-
form Monte-Carlo studies at LO or NLO [388–393], many
spectrum generators [367,368,394–405] for the calculation
of pole masses including important higher order corrections,
codes dedicated only to Higgs [406–409] or sparticle decays
[410–412], and codes to check flavour [413–417] or other
precision observables [418]. This machinery has been used
in the past mainly for detailed studies of some promising
BSM candidates, like the MSSM, NMSSM or variants of
THDMs. There are two main reasons why these tools are
usually the preferred method to study these models: (i) it has
been shown that there can be large differences between the
exact numerical results and the analytic approximations; (ii)
writing private routines for specific calculations is not only
time consuming but also error prone. On the other hand, the
number of tools available to study the new ideas proposed
to explain the diphoton excess is still limited. Of these tools,
many are not yet widely used largely due to the community’s
reluctance in adopting new codes. However, we think it is
beneficial to adopt this new generation of generic tools like
SARAH.
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We noticed that several studies done in the context of
the 750 GeV excess have overlooked important subtleties
in some models, neglected important higher order correc-
tions, or made many simplifying assumptions which are dif-
ficult to justify. Using generic software tools in this context
can help address these issues: many simplifications will no
longer be necessary and important higher order corrections
can be taken into account in a consistent manner. In order to
illustrate this we comment, in the following subsections, on
several issues we became aware of when revisiting some of
the results in the literature.

2.1 Calculation of the diphoton and digluon widths

2.1.1 The diphoton and digluon rates beyond leading order

A precise calculation of the diphoton rate is of crucial impor-
tance. In the validation process of this work, we identi-
fied several results in the literature that deviate, often by an
order of magnitude or more, in comparison to our results
[106,304,336]. Additionally we observed that in many cases
there are important subtleties which we think are highly rel-
evant.

First of all, the choice of the renormalisation scale of the
running couplings appearing in the calculation. The major-
ity of recent studies use the electromagnetic coupling at
the scale of the decaying particle. However, one should
rather use αem(0), i.e. the Thompson limit (see for instance
Refs. [419,420]), in order to keep the NLO corrections under
control. Taking this into account already amounts to an
O(10 %) change of the diphoton rate compared to many
studies in the literature. In addition, as we will discuss in
Sect. 2.2.3, an important prediction of a model is the ratio
Br(S → gg)/Br(S → γ γ ), where S is the 750 GeV scalar
resonance. It is well known that the digluon channel receives
large QCD corrections. If one neglects these corrections the
ratio will be severely underestimated.

To demonstrate these effects we show in Fig. 1 the total
decay width2 of the singlet S as a function of the mass
MF1 and coupling YF1 for a simple toy model containing
only the vector-like fermions �F1 as presented in Ref. [276].
Table 1 contains benchmark points for the partial widths of
the digluon and diphoton channels as well as the ratio of
these two channels for both CP-even and CP-odd scalar res-
onances. This table contains the LO calculations performed
using SPheno as a comparison to results previously shown
in the literature [276]. We also show the partial widths includ-

2 Here, the total width is simply the sum of the diphoton and digluon
channels ignoring small contributions from other sub-dominant chan-
nels.

Fig. 1 The approximate total width (sum of the diphoton and digluon
channels) of S as a function of the coupling YF1 and the mass mF1

of the vector-like particle F1, calculated using SPheno (blue) at LO
(dashed) and NLO (solid). The orange contours are the results of the
LO calculation from Ref. [276]. Here we assume a single generation of
vector-like quarks

ing NLO corrections for the diphoton channel3 and N3LO
QCD corrections to the gluon fusion production as imple-
mented in Sect. 3.5. The discrepancies between the LO cal-
culations arise purely through the choice of the renormal-
isation scale for the gauge couplings. However, the NLO
results clearly emphasise that loop corrections at the consid-
ered mass scales are the dominant source of errors. To our
knowledge, these uncertainties have thus far not received a
sufficiently careful treatment in the literature; we give fur-
ther discussion of this (and the remaining uncertainty in the
SARAH calculation) in Sect. 3.7.

2.1.2 Constraints on a large diphoton width

In order to explain the measured signal, one needs a large
diphoton rate of �(S → γ γ )/MS � 10−6 assuming a
narrow width for S, while for a large width one requires
�(S → γ γ )/MS � 10−4 [192]. In weakly-coupled models
there are three different possibilities to obtain such a large
width:

1. Assuming a large Yukawa-like coupling between the res-
onance and charged fermions

3 NLO corrections in the case of a CP-odd vanish in the limitm f � mS ,
see Sect. 3.5 for more detail.
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Table 1 Branching fraction
ratio, as well as the partial decay
widths for the digluon and
diphoton channels for a toy
model containing only the
relevant vector-like fermion pair
�Fi . The above values are for
the benchmark points YFi = 1
and mFi = 1 TeV, where the
values are for a CP-even/CP-odd
scalar resonance, respectively.
The SPheno NLO calculation
includes N3LO corrections for
the digluon channel, while the
diphoton decay width is
calculated at NLO and LO for a
CP-even and odd scalar
respectively

Model Br (gg/γ γ ) �S→gg (MeV) �S→γ γ (MeV)

�F1

Ref. [276] LO 11.62/− 6.74/− 0.58/−
SPheno LO 13.47/12.22 6.78/14.27 0.50/1.17

SPheno NLO 23.27/20.27 11.04/23.71 0.47/1.17

�F2

Ref. [276] LO 24.42/− 15.14/− 0.62/−
SPheno LO 28.32/25.70 15.26/32.12 0.54/1.25

SPheno NLO 48.93/42.67 24.85/52.34 0.51/1.25

�F3

Ref. [276] LO 33.80/− 6.76/− 0.20/−
SPheno LO 39.20/35.56 6.78/14.27 0.17/0.40

SPheno NLO 67.72/59.06 11.04/23.71 0.16/0.40

�F4

Ref. [276] LO 49.84/− 14.95/− 0.30/−
SPheno LO 57.80/52.44 15.26/32.12 0.26/0.61

SPheno NLO 99.85/87.09 24.85/53.34 0.25/0.61

�F5

Ref. [276] LO 150.0/− 1.50/− 10.0 × 10−3/−
SPheno LO 177.0/160.6 1.70/3.57 9.58 × 10−3/22.22 × 10−3

SPheno NLO 305.8/266.7 2.76/5.93 9.03 × 10−3/22.22 × 10−3

�F6

Ref. [276] LO 390.0/− 7.80/− 2.00 × 10−2/−
SPheno LO 453.2/411.1 6.78/14.27 1.50 × 10−2/3.47 × 10−2

SPheno NLO 782.8/682.8 11.04/23.71 1.41 × 10−2/3.47 × 10−2

2. Assuming a large cubic coupling between the resonance
and charged scalars

3. Using a large multiplicity and/or a large electric charge
for the scalars and/or fermions in the loop

However, all three possibilities are also constrained by very
fundamental considerations, which we briefly summarise in
the following.

2.1.2.1 Large couplings to fermions A common idea to
explain the diphoton excess is the presence of vector-like
states which enhance the loop-induced coupling of a neutral
scalar to two photons or two gluons. This led some authors to
consider Yukawa-like couplings of the scalar to the vector-
like fermions larger than

√
4π , which is clearly beyond the

perturbative regime.4 Nevertheless, a one-loop calculation is
used in these analyses to obtain predictions for the partial
widths [353], despite being in a non-perturbative region of
parameter space.

4 This diphoton excess could be triggered by strong interactions. Of
course, in this case one cannot use perturbative methods to understand
it.

Moreover, even if the couplings are chosen to be within
the perturbative regime at the scale Q = 750 GeV, they can
quickly grow at higher energies. This issue of a Landau pole
has been already discussed to some extent in the literature
[40,68,192,212,343,346], and one should ensure that the
model does not break down at unrealistic small scales.
2.1.2.2 Large couplings to scalars One possibility to cir-
cumvent large Yukawa couplings is to introduce charged
scalars, which give large loop contributions to the dipho-
ton/digluon decay. A large cubic coupling between the
charged scalar and the 750 GeV one does not lead to a Landau
pole for the dimensionless couplings because of dimensional
reasons. However, it is known that large cubic couplings can
destabilise the scalar potential: if they are too large, the elec-
troweak vacuum could tunnel into a deeper vacuum where
U (1)em gauge invariance is spontaneously broken, depend-
ing on the considered scenario. The simplest example with
such a scenario is the SM, extended by a real scalar S and a
complex scalar X with hypercharge Y . The scalar potential
of this example is

V ⊃ κ S|X |2 + 1

2
MSS

2 + MX |X |2 + · · · . (2.1)
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Fig. 2 �(S → γ γ )/MS as a function of κ (left) and MX (right).
Green points have a stable vacuum, blue points have a meta-stable but
long-lived vacuum, while for the red ones it decays in a short time,

in comparison to cosmological time scales, with a survival probability
below 10 %. The hypercharge of X was set to Y = 1

In Fig. 2 the dependence of the diphoton partial width as a
function of κ and MX is shown, and the stability of the elec-
troweak potential as well as the life-time of its ground state
is checked with Vevacious and CosmoTransitions.
For more details about vacuum stability in the presence of
large scalar cubic terms, we refer to Ref. [343]. The overall
conclusion of [343] is that the maximal possible diphoton
width, even when allowing for a meta-stable but sufficiently
long-lived electroweak vacuum, is not much larger than in the
case of vector-like fermions when requiring that the model
is perturbative up to the Planck scale. It is therefore essential
to perform these checks when studying a model that pre-
dicts large cubic scalar couplings. An example of the impor-
tance of these checks is demonstrated in Ref. [176]. Here it is
shown that vacuum stability demands rule out an explanation
in the constrained MSSM, proposed in Ref. [120], where the
diphoton signal is produced through stop bound states. More-
over, vacuum stability also places stringent constraints on the
pMSSM explanation of the excess [171]. Thus far no valid
parameter point has been found which is in agreement with
both the diphoton rate and vacuum stability constraints. Sim-
ilar issues were observed in models with trilinear R-parity
violation [12,165] which are disfavoured by these constraints
and might work only in very fine-tuned parameter regions.
2.1.2.3 Large multiplicities To circumvent large Yukawa
or cubic couplings, other models require a large number of
generations of new BSM fields and/or large electric charges.
As a consequence the running of the U (1)Y gauge cou-
pling, g1, gets strongly enhanced well below the Planck
scale. Moreover, even before reaching the Landau pole, the
model develops large (eventually non-perturbative) gauge
couplings. This implies an enhancement of Drell–Yan pro-
cesses at the LHC, with current data already setting stringent
constraints and potentially excluding some of the models
proposed to explain the diphoton excess [216,421]. For gen-
eral studies on running effects in the context of the diphoton
excess see [40,68,192,212,346]. We briefly discuss dramatic
examples of this class of models proposed in Refs. [264] and

Fig. 3 Running of the U (1)Y gauge coupling, g1, in the model pre-
sented in [325] for Nk = 1000 (red), Nk = 6000 (green) and
Nk = 9000 (blue). The black dashed line corresponds to the SM running
below μN P = 2.5 TeV

[325], which feature approximately ∼100 and 6000–9000
generations of doubly-charged scalar fields respectively. In
the model of Ref. [325] the SM particle content is enlarged by
a vector-like doubly-charged fermion E , a Majorana fermion
NR , a singlet scalar S, a singly-charged scalar h+ and Nk

generations of the doubly-charged scalar field k++. At the
one-loop level the running of g1 is governed by the renor-
malisation group equation (RGE)

dg1

dt
= βg1 = 1

16π2 β(1)
g1

, (2.2)

where t = log μ, μ being the renormalisation scale, and

β(1)
g1

= g3
1

10
(75 + 8 Nk) (2.3)

is the one-loop β function. It is clear from Eq. 2.3 that a
large value of Nk necessarily leads to a very steep increase
of g1 with the renormalisation scale, soon reaching a Landau
pole. This is shown in Fig. 3, obtained by setting the masses
of all the charged BSM states to μNP = 2.5 TeV, which
is already the largest mass considered in this analysis. The
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Table 2 Energy scale at which a Landau pole in g1 appears as a function
of Nk in the model of Ref. [325]

Nk μLandau

10 2 × 1013 GeV

100 1.2 × 105 GeV

1000 3.8 TeV

6000 2.7 TeV

9000 2.6 TeV

running up to μNP is governed by the SM RGEs, and the
result for g1 is displayed with a black dashed line. For scales
above μNP = 2.5 TeV, the contributions from BSM fields
become effective. Figure 3 shows that a Landau pole can be
reached at relatively low energies once we allow for such
large values of Nk . In fact, for Nk = 9000, we find that a
Landau pole appears already at μ � 2.6 TeV. In this specific
example the appearance of a Landau pole below 1016 GeV
is unavoidable as soon as Nk > 10, as shown in Table 2.

2.1.3 How do the tools help?

The tools which we describe in more detail in the following
sections can help to address all the above issues:

1. FlexibleSUSY and SPheno can calculate the dipho-
ton and digluon rate including important higher order
corrections.

2. Using the effective vertices calculated by
FlexibleSUSY/SPheno and the interface to
CalcHep or MadGraph, the gluon-fusion production
cross-section of the 750 GeV mediator can be calculated
numerically and one does not have to rely on analytical
(and sometimes erroneous5) approximations.

3. SARAH calculates the RGEs for a model which can be
used to check for the presence of Landau pole.

4. Vevacious can be used to check the stability of the
scalar potential.

2.2 Properties of the 750 GeV scalar

2.2.1 Mixing with the SM Higgs

It is often assumed that S, although it is a CP-even scalar, does
not mix with the SM-like Higgs h. However, if this is done

5 It is straightforward to see that the analytical estimate of the pro-
duction cross section in Eq. (10) of Ref. [336] is wrong by orders
of magnitude: consider the production of a SM-like scalar H with
mH = 750 GeV via top-loops. Then, the factor h2

Fm
2
t /m

2
F drops out

and one obtains σ = 1440 pb which is too large by roughly three orders
of magnitude [422]. The authors of Ref. [304] (which originally made
use of this analytic estimate) have revised their results in an updated
version of their paper.

in a very ad hoc way and not motivated by any symmetry,
this assumption will not hold when radiative corrections are
taken into account. To see this, one can consider, for example,
the scalar potential

V = 1

2
MSS

2 + MX |X |2 + μ2|H |2 + κS|X |2

+ λS S
4 + λSX S

2X2 + λHX |H |2|X |2 + λ|H |4, (2.4)

where H is the SM Higgs SU (2)L doublet, which contains
the SM Higgs h. This potential in principle has all ingredi-
ents to get a large diphoton decay of S via a loop involving
the charged scalar X . Note, however, that the potentially dan-
gerous term κH S|H |2 has been omitted. One can see imme-
diately that this term would be generated radiatively by the
diagram below.

S

X

X∗

H

H∗

Note that it is also not possible to circumvent this decay by
forbidding the λHX term: since H and X are charged under
SU (2)L ×U (1)Y , also the λHX |H |2|X |2 term would be gen-

erated radiatively via diagrams like X

X∗

H

H∗

A mixing between the singlet and SM-like Higgs state
has important consequences, since the mass eigenstate state
would have additional tree level couplings to W and Z from
the SM Higgs component. For a singlet dominated mass
eigenstate, s, this would open up the decay channels s → hh
and s → Z Z , s → W+W−, which are tightly constrained.

Another possibility is that all terms allowed by symmetries
are taken into account, but very special relations among them
are imposed like in Ref. [313]. When these relations hold, the
above-mentioned tree-level decays in SM particles would
cancel. However, as long as there is no symmetry behind
these relations, they will not be invariant under RGE run-
ning. Therefore, immediately the question arises how large
the tuning among the parameters must be to have a point
that fulfils all constraints. To illustrate this issue, we make
small variations in the couplings λH3 and λ36,6 which cause

6 This model assumes the 750 GeV boson to be a linear combination
of two scalar fields χ3 and χ6. The quoted couplings arise in the scalar
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Fig. 4 The impact on small deviations from the parameter relations
assumed in Ref. [313]. Specifically, the y-axis axis represents the
deviation in the coupling λ36, while the x-axis represents deviations
in the coupling λH3. The contour lines show the ratio Br(S →
W+W−)/Br(S → γ γ ). The red line indicates where the model would
already be in conflict with current collider limits

non-vanishing tree-level couplings between S and the mas-
sive vector bosons, and check for which size of the deviations
the condition Br(S → W+W−)/Br(S → γ γ ) < 20 holds.
The result is shown in Fig. 4. Here, the diphoton rate was
maximised by setting the masses of the vector-like fields to
375 GeV and using a Yukawa coupling of O(1). In prin-
ciple, one could try to check what this means for the scale
dependence of these ratios by calculating the RGEs. How-
ever, this cannot really be done for this setup since one obtains
the following condition from the relations which have been

imposed: λH3 = f 2
Y

M2
S

M2
F

, i.e. λH3 = 4 f 2
Y is needed to max-

imise the diphoton branching ratio. Thus, fY of O(1) imme-
diately leads to a huge quartic coupling.

Thus, in general, it is very difficult to justify the assump-
tion that the 750 GeV particles do not mix with the SM-like
Higgs if there is no fundamental symmetry to forbid this
mixing. However, this can already be forbidden using the CP
symmetry: the mentioned problems can be circumvented in
models where the diphoton excess stems from a CP-odd par-
ticle. In the case of a CP-even particle, it is crucial to include
the mixing effects and to check at least how large the tuning
in parameters must be.

2.2.2 To VEV or not to VEV?

The possibility that the new scalar receives a vacuum expec-
tation value (VEV) is also often neglected. However, as we

potential as λH3|χ3|2|H |2 + λ36|χ3|2|χ6|2, with H being the usual
Higgs doublet. The couplings of χ3 to vector-like quarks are given by
the Yukawa couplings fY and fX .

Fig. 5 Tadpole terms for S generated at one-loop level

have just discussed, it often occurs that a H–S mixing will be
induced, at least radiatively, in many models. Such radiative
effects would immediately lead to a non-zero VEV for the
new scalar. Even in cases where there is a symmetry which
prevents a mixing with the SM Higgs, the 750 GeV particle
will still receive a VEV if it is a CP-even scalar. This arises
due to the introduced couplings to charged particles which
are necessary to allow diphoton and digluon decays. More
specifically, these introduced couplings will generate one-
loop tadpole diagrams for S as shown in Fig. 5. Thus, the
tadpole equation reads at the one-loop level

∂V (1L)

∂vS
= T (1L) = T (T ) + δT = 0, (2.5)

where T (T ) is the tree-level tadpole, given by

∂V (T )

∂vS
= T (T ) = c1vS + c2v

2
S + c3v

3
S = 0. (2.6)

Here, we have parametrised the tree-level expression so that
the general form has the solution vS = 0. One finds in general
that the one-loop corrections are

δT =
{

κA(M2
X ) for a scalar loop,

2YM� A(M2
�) for a fermion loop,

(2.7)

with A(x2) = 1
16π2 x

2[1 + log(Q2/x2)]. Taking M� , κ , MX

of the order 1 TeV, results in a VEV which is naturally of order
1 TeV3/(16π2c1). As a result, the simplifying assumption
that vS vanishes is in general hard to justify – apart from
the rare case in which S is a complete singlet under all local
and global symmetries; under this circumstance the VEV
can always be rotated away. Therefore, it is important to
check how the conclusions made about the model depend on
this assumption. Here, the tools discussed in the following
sections can really help, as including the non-vanishing vS is
no more difficult than assuming the VEV vanishes.

2.2.3 Additional decay channels

Many analyses concentrate only on the decay S → γ γ and
completely neglect other potential decay channels. However,
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Table 3 Limits on �(S → X)/�(S → γ γ ) assuming a production of S via gluon fusion or heavy quarks. Values are taken from Ref. [192]

e+e− + μ+μ− τ+τ− Zγ Z Z Zh hh W+W− t t̄ bb̄ j j Inv.

0.6 6 6 6 10 20 20 300 500 1300 400

there are stringent constraints on the branching ratios of S into
other SM final states, which are summarised in Table 3.

Thus, any model which tries to explain the excess via
additional coloured states in the loop must necessarily worry
about limits from dijet searches [423]. Therefore, an accu-
rate calculation of the digluon decay rate is a necessity. As
an example that illustrates why both additional channels and
the diphoton/digluon width calculation are important we con-
sider the model presented in Refs. [89,166] and considered
in more detail here in Sect. 4.2.1.

This model extends the SM with a singlet and a scalar
SU (2)-doublet colour octet. As an approximation the ratio
of the singlet decays to gluons and to photons is

�(S → gg)

�(S → γ γ )
� 9

2

α2
s

α2 . (2.8)

In [89] this is quoted as �750; before any NLO corrections
are applied, we find 700. However, once we include all of the
N3LO corrections this is enhanced to 1150, near the bound
for constraints on dijet production at 8 TeV and significantly
squeezing the parameter space of the model.

Additionally in many works we observed that potential
decay channels of the resonance were missed. For instance
in Ref. [184], the authors, who considered the Georgi-
Machacek model [424], missed the decay of the scalar into
W±H∓, which can be the dominant mode when kinemati-
cally allowed.

2.2.4 How do the tools help?

Many of the assumptions which we criticised were made to
keep the study simple. However, when using the public tools
presented in the next two section, there is no need for these
simplifying assumptions:

1. SARAH automatically calculates all expressions for the
masses and vertices in any renormalisable model, no mat-
ter how complicated they are.

2. FlexibleSUSY and SPheno give numerical predic-
tions for the mass spectrum and the mixing among all
states including higher order corrections.

Thus, for users the study becomes no more difficult when
they drop all simplifying assumptions, and instead consider
the model in full generality. Moreover, there is no chance to
miss important effects in the decays of the new scalar:

1. As outlined above, FlexibleSUSY and SPheno cal-
culate the diphoton and digluon rate very accurately

2. SPheno calculates all other two body decays7 of the
scalar. This makes it impossible to miss any channel.

2.3 Considering a full model

2.3.1 Additional constraints in a full model

There are several studies which extend an already existing
model by vector-like states and then assume that this part of
the model is decoupled from the rest. When this assumption
is made it is clear that the results from toy models, with
the minimal particle content will be reproduced. However,
it is often not clear if this decoupling can be done without
invoking specific structures in the choice of parameters, and
if these assumptions hold at the loop level.

On the other hand, if model-specific features are used
to explain the diphoton excess, it is likely that there will
be important constraints on the model coming from other
sectors. For instance, there might be bounds from flavour
observables, dark matter, Higgs searches, neutrino mixing,
electroweak precision observables, searches for BSM parti-
cles at colliders, and so on. All of that has to be checked to
be sure that any benchmark point presented is indeed a valid
explanation for all observations. Such a wide range of con-
straints is much easier to address by making exhaustive use
of tools which provide a high level of automation.

2.3.2 Theoretical uncertainties of other predictions

Even if attempts are made to include the effects of the new
states on other sectors of the model, it is important to be
aware that there are large uncertainties involved in certain
calculations. If the level of uncertainty is underestimated,
this can have an impact on what is inferred from the cal-
culation. The large uncertainty in a LO calculation of the
diphoton and digluon rate has already been addressed in Sect.
2.1.1. However, there are also other important loop correc-
tions especially in SUSY models: the accurate calculation
of the Higgs mass is a long lasting endeavour where for the
simplest SUSY models even the dominant three-loop correc-
tions are partially tackled [425]. The current ball-park of the
remaining uncertainty is estimated to be 3 GeV.

7 Even three-body decays into another scalar and two fermions can be
calculated with SPheno.
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Fig. 6 Comparison of the two-loop Higgs mass calculation of
Ref. [180] with the results obtained by SPheno. The parameters are
those of Fig. 7 in Ref. [180] and we fixed Xκ10 = 0. The lines are
the results from SPheno, while the green and red shades areas are
the ranges of κ10 which predict mh = [123, 127] GeV according to
Ref. [180]. Red takes Xt = 4 and green Xt = 2, where Xt is defined
in Eq. (9) of the reference

However, most likely the MSSM cannot explain the
excess, hence it would have to be extended. A common choice
is to add additional pairs of vector-like superfields together
with a gauge singlet, see Sect. 5. These new fields can also
be used to increase the SM-like Higgs mass. However, this
will in general also increase the theoretical uncertainty in
the Higgs mass prediction, because these new corrections
are not calculated with the same precision as the MSSM
corrections. For instance, Ref. [180] has taken into account
the effect of the new states on the SM-like Higgs. There,
they use a one-loop effective potential approach consider-
ing the new Yukawa couplings to be O(1) or below, while
also including the dominant two-loop corrections from the
stop quark. They assumed that including these corrections
is sufficient in order to achieve an uncertainty of 2 GeV in
the Higgs mass prediction. One can compare their results
encoded in Fig. 7 of Ref. [180] with a calculation includ-
ing, in addition to the corrections taken into account in the
paper, momentum dependence and electroweak corrections
at the one-loop level, as well as the additional two-loop cor-
rections arising from all the newly introduced states. These
corrections can be important, as was shown for instance in
Ref. [426]. The result of the comparison is shown in Fig. 6.
We find a similar behaviour, but still there are several GeV
difference between both calculations. For κ10 = 0.8 and
Xt = 4, the point would be within the interesting range for
mh = [123, 127] GeV, while the more sophisticated calcu-
lation predicts a mass below 120 GeV. Thus, the assumed
uncertainty of 2 GeV in Ref. [180], which would even be
optimistic in the MSSM, is completely unrealistic without
including all the aforementioned higher order corrections.

2.3.3 How do the tools help?

The tools help to ensure that one really considers all aspects
of a full model:

1. All masses of the model are calculated with high accu-
racy: FlexibleSUSY and SPheno include the full
one-loop contribution to all pole masses in a model, while
SPheno covers even the dominant two-loop corrections
introduced by adding new states.

2. SPheno makes predictions for all important flavour
observables in the model.

3. A link to MicrOmegas provides the possibility to cal-
culate the dark matter relic density.

4. The interface to HiggsBounds and HiggsSignals
offers the possibility to check all constraints from Higgs
searches and to check if the results for the SM-like Higgs
can be reproduced.

3 The SARAH framework and its diphoton extension

3.1 SARAH

One of the reasons that makes high energy particle physics an
exciting field is the vast amount of experimental data avail-
able. When proposing a model one first has to check its self
consistency, checking for instance the particle mass spectrum
and vacuum stability requirements. Then it has to be tested
against data related to collider searches, flavour observables,
dark matter observations and Higgs measurements. A lot of
effort has been devoted to developing an arsenal of specific
tools to explore these quantities with high precision for spe-
cific classes of models, such as the MSSM, the THDM and
the NMSSM to some extent. However, it is often very difficult
– if not impossible – to explain the excess in the simplest ver-
sions of these models.8 For the time being there is no specific
model which is clearly preferred over others as an explana-
tion of the excess, as reflected by the large variety of models
that different authors have proposed, and it would be imprac-
tical to repeat the process of developing a code for each one
of them. In the absence of a dedicated tool, the alternative
is often to resort to approximations or just to leading order

8 The MSSM with and without trilinear R-parity violation is dis-
favoured by the constrains from vacuum stability, see Sect. 2.1.2. In the
NMSSM one can explain this excess by assuming the presence of addi-
tional final states via four-body decays like � → (φa)(φa) → 4γ γ

[173,183]. This explanation requires the mass of φa to be tiny and
very close to the pion mass. In the absence of a specific approximate
U (1) symmetry (either Peccei-Quinn or R-symmetry), a very delicate
fine-tuning would be needed, rendering this possibility less attractive.
Another possibility was presented in Ref. [37] where the diphoton signal
originates from a parent resonance decay in very finely-tuned parameter
regions with a low UV cutoff.
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expressions, as described in the previous section, in which
case the analysis (in particular for more complicated models)
is of limited value.

Luckily, a dedicated powerful tool already exists. It is the
Mathematica package SARAH [361–366], which can per-
form the most advanced quantum field theory computations
and apply them generically to any given model. SARAH has
been optimised for an easy, fast, and exhaustive study of
renormalisable BSM models. Within a given model SARAH
analytically calculates the following:

• All tree-level masses, vertices and tadpole equations
• The two-loop RGEs for a general quantum field theory

and a softly broken SUSY theory using generic results of
[427–436]

• The one-loop corrections to all one- and two-point func-
tions

In addition SARAH also provides routines to export the
derived information in order to use it for numerical calcu-
lations with dedicated tools. We give in the following a brief
overview about the different possibilities.

3.2 SPheno

SARAH writes Fortran source code for SPheno [367,368]
using the derived information about the mass matrices, tad-
pole equations, vertices, loop corrections and RGEs for the
given model. With this code the user gets a fully functional
spectrum generator for the model of their choice. The fea-
tures of a spectrum generator created in this way are

• Full two-loop running of all parameters
• One-loop corrections to all masses
• Two-loop corrections to Higgs masses
• Complete one-loop thresholds at MZ

• Calculation of the hγ γ and hgg effective couplings at
N3LO, see Sect. 3.5

• Calculation of flavour and precision observables at full
one-loop level

• Calculation of decay widths and branching ratios for two–
and three body decays

• Interface to HiggsBounds and HiggsSignals
• Estimate of electroweak fine-tuning
• Prediction for LHC cross sections for all neutral scalars

3.3 FlexibleSUSY

FlexibleSUSY is a Mathematica package which uses the
SARAH-generated expressions for the mass matrices, self-
energies, tadpole equations, vertices and RGEs to create a
C++ spectrum generator for both SUSY and non-SUSY mod-

els. The spectrum generators created with FlexibleSUSY
have the following features:

• Full two-loop running of all parameters
• Three-loop running of all parameters in the SM and

MSSM, except for the VEVs
• Calculation of the pole mass spectrum at the full one-loop

level
• Partial two-loop corrections to the Higgs masses in

the SM, Split-MSSM, MSSM, NMSSM, UMSSM and
E6SSM and partial three-loop corrections to the Higgs
mass in the Split-MSSM

• Complete one-loop and partial two-loop and three-loop
threshold corrections to the Standard Model at the scale
Q = MZ or Q = Mt

• Calculation of the hγ γ and hgg effective couplings at
N3LO, see Sect. 3.5

• An interface to GM2Calc [418] in the MSSM without
flavour violation

FlexibleSUSY aims to generate spectrum generators
which are modular such that components can be easily reused
or replaced. This means that it is quite easy to re-use the pre-
cision calculations in FlexibleSUSY spectrum generators
for other purposes or add additional routines.

3.4 Mass spectrum calculation: SUSY vs. non-SUSY

We have outlined that FlexibleSUSY and SPheno can
include the radiative corrections to all particles up to the two-
loop level in the DR

′
scheme. These corrections are included

by default for supersymmetric models. It is known that loop
corrections, in particular to the Higgs mass, are crucial. Typ-
ically the DR

′
and on-shell calculations are in good agree-

ment. Consequently, the remaining difference between both
calculations is often a good estimate for the theoretical uncer-
tainty.

The treatment of non-supersymmetric models in
FlexibleSUSY and SPheno is very similar to the treat-
ment of supersymmetric models. The main difference is, that
in non-supersymmetric models the parameters are defined in
the MS scheme, while in supersymmetric ones the parame-
ters are defined in the DR

′
scheme. In this paper we perform

only tree-level mass calculations (if not stated otherwise), in
which the definition of the renormalisation scheme is irrele-
vant. Thus, in the mass spectrum calculations performed in
the following, one is allowed to use input parameters which
are defined in the on-shell scheme. This is for instance the
standard approach in the large majority of studies of the
THDM: there are in general enough free parameters to per-
form a full on-shell renormalisation keeping all masses and
mixing angles fixed. We find that the one-loop corrections
in the MS scheme can give huge corrections to the tree-level
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masses in nearly all models presented in the following. There-
fore large fine-tuning of the parameters is necessary once the
loop corrections are taken into account. A detailed analysis
using a full on-shell renormalisation scheme is possible for
each model, but is beyond the scope of this work. Of course,
for models where it turns out to be unavoidable that shifts in
the masses and mixings appear at the loop-level, the user can
simply turn on the loop corrections in FlexibleSUSY and
SPheno via a flag in the Les Houches input file.

3.5 Calculation of the effective diphoton and digluon
vertices in SPheno and FlexibleSUSY

For the calculation of the partial width of a neutral scalar �

decaying into two gluons or two photons we follow closely
[419] for the LO and NLO contributions. The partial widths
at LO are given by

�(� → γ γ )LO = GFα2(0)m3
�

128
√

2π3

∣∣∣∣∑
f

N f
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f r
�
f A f (τ f )

+
∑
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Ns
c r

�
s Q2

s As(τs)

+
∑

v

N v
c r

�
v Q2

vAv(τv)

∣∣∣∣
2

, (3.1)

�(� → gg)LO = GFα2
s (μ)m3

�

36
√

2π3

∣∣∣∣∑
f

3
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D f
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�
f A f (τ f )

+
∑
s

3

2
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2r
�
s As(τs)

+
∑

v

3

2
Dv

2r
�
v Av(τv)

∣∣∣∣
2

. (3.2)

Here, the sums are over all fermions f , scalars s and vector
bosons v which are charged or coloured and which couple to
the scalar �. Q is the electromagnetic charges of the fields,
Nc are the colour factors and D2 is the quadratic Dynkin index
of the colour representation which is normalised to 1

2 for the
fundamental representation. We note that the electromagnetic
fine structure constant α must be taken at the scale μ = 0,
since the final state photons are real [437]. In contrast, αs is
evaluated at μ = m� which, for the case of interest here,
is μ = 750 GeV. r�

i are the so-called reduced couplings,
the ratios of the couplings of the scalar � to the particle i
normalised to SM values. These are calculated as

r�
f = v

2M f
(CL

f̄ f �
+ CR

f̄ f�
), (3.3)

r�
s = v

2M2
s
Css∗�, (3.4)

r�
v = − v

2M2
v

Cvv∗�. (3.5)

Here, v is the electroweak VEV and C are the couplings
between the scalar and the different fields with mass Mi (i =
f, s, v). Furthermore,

τx = m2
�

4m2
x

(3.6)

holds and the loop functions are given by

A f = 2(τ + (τ − 1) f (τ ))/τ 2, (3.7)

As = −(τ − f (τ ))/τ 2, (3.8)

Av = −(2τ 2 + 3τ + 3(2τ − 1) f (τ ))τ 2, (3.9)

with

f (τ ) =
⎧⎨
⎩

arcsin2√τ for τ ≤ 1,

− 1
4

(
log 1+√

1−τ−1

1−√
1−τ−1 − iπ

)2
for τ > 1.

(3.10)

For a pure pseudo-scalar state only fermions contribute, i.e.
the LO widths read

�(A → γ γ )LO = GFα2m3
A
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(3.12)

where

AA
f = f (τ )/τ, (3.13)

and r Af takes the same form as r�
f in Eq. (3.3), simply replac-

ing CL ,R
f̄ f �

by CL ,R
f̄ f A

.

These formulae are used bySPheno andFlexibleSUSY
to calculate the full LO contributions of any CP-even or odd
scalar present in a model including all possible loop contri-
butions at the scale μ = m�. However, it is well known,
that higher order corrections are important. Therefore, NLO,
NNLO and even N3LO corrections from the SM are adapted
and used for any model under study. In case of heavy colour
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fermionic triplets, the included corrections for the diphoton
decay are

r�
f → r f

(
1 − αs

π

)
, (3.14)

r�
s → rs

(
1 + 8 αs

3π

)
. (3.15)

These expressions are obtained in the limit τ f → 0 and
thus applied only when m� < m f . r Af does not receive any
corrections in this limit. For the case m� > 100m f , we have
included the NLO corrections in the light quark limit given
by [419]

r Xf → r Xf
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− 2
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)])
(3.16)

for X = �, A. μNLO is the renormalisation scale used for
these NLO corrections, chosen to be μNLO = m�/2. In the
intermediate range of 100m f > m� > 2m f , no closed
expressions for the NLO correction exist. Our approach in
this range was to extract the numerical values of the correc-
tions from HDECAY [406] and to fit them. For the digluon
decay rate, the corrections up to N3LO are included and
parametrised by

�(X → gg) = �(X → gg)LO

×
(
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X + CNNLO

X + CN3LO
X

)
, (3.17)

with [404,419,438–442]
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370.196 + (−47.1864 + 0.90177NF )NF

+ (2.375 + 0.666667NF ) log
m2

�

m2
t

)
α2
s

π2 , (3.19)

CN3LO
� =

(
467.684 + 122.441 log

m2
�

m2
t

+10.941

(
log

m2
�

m2
t

)2
⎞
⎠ α3

s

π3 , (3.20)

and

CNLO
A =

(
97

4
− 7

6
NF

)
αs

π
, (3.21)

CNNLO
A =

(
171.544 + 5 log

m2
�

m2
t

)
α2
s

π2 (3.22)

For pseudo-scalars we include only corrections up to NNLO
as the N3LO are not known for CP-odd scalars.

One has to keep in mind that the NLO up to N3LO correc-
tions are calculated in the SM under the assumption that only
a (fermionic) colour triplet and the gluons play any role in
the loops. Of course, in BSM models this must not necessar-
ily be the case. For instance, in SUSY models gluinos would
also contribute at NLO. The impact of these additional cor-
rections is estimated in Sect. 3.7.2. Another possible effect
is the presence of a scalar triplet, such as the SUSY top part-
ners. However, it was found that the higher-order corrections
for this case can be well approximated by the SM results,
see Ref. [443]. Finally, other colour representations beyond
triplets can induce an effective digluon coupling in BSM
models. To our knowledge, NLO and higher order corrections
for these cases have not yet been discussed in the literature.
However, motivated by the observation of Ref. [443] that
the K-factor for the higher-order corrections in the MSSM is
nearly identical to the SM, because the largest contributions
by-far come from final state gluons, we consider the SM cor-
rections to also give the dominant effect at NLO and beyond
for this case. However, we also provide a flag inSPheno that
allows users to turn-off these corrections, if they think that
such corrections are not appropriate for the case at hand. Sim-
ilarly, in FlexibleSUSY these corrections may be turned
off by means of a flag in the generated code.

In order to check the accuracy of our implementation,
we compared the results obtained with SARAH–SPheno
for the SM Higgs boson decays with the ones given in the
CERN yellow pages [444]. In Fig. 7 we show the results
for the Higgs branching ratios into two photons and two
gluons with and without the inclusion of higher order cor-
rections. One sees that good agreement is generally found
when including higher order corrections. Figure 8 shows the
relative difference of the partial widths �(h → γ γ ) and
�(h → gg) as calculated bySPheno andFlexibleSUSY
compared to the benchmark values provided by the Higgs

Fig. 7 Comparison of Br(h → gg) (full lines) and Br(h → γ γ )

(dashed lines) as calculated by SPheno at LO (red) and including
higher order corrections as described in the text (blue). The green line
shows the values of the Higgs cross section working group
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Fig. 8 On the left comparison of the relative difference in the par-
tial width �(h → γ γ ) as calculated by SPheno (in red) and
FlexibleSUSY (in blue) to the benchmark values provided by the
Higgs cross section working group. The LO results are shown by the

dotted lines, while the NLO results are shown by the dashed lines. The
yellow rectangle indicates ±10 % errors compared to the results from
the Higgs cross section working group. On the right the same for the
partial width �(h → gg)

Fig. 9 Br(h → gg)/Br(h → γ γ ) as calculated by SPheno at LO (red) and including higher order corrections as described in the text. The green
band shows the values of the Higgs cross section working group including a 10 % uncertainty. On the right we zoom into the range mh ∈ [0.5, 2]mt

cross section working group. While the results obtained
from the two codes are not identical, there is good agree-
ment between them for both partial widths. The differences
between SPheno and FlexibleSUSY originate mainly
from a different treatment of unknown higher-order correc-
tions to the pole mass spectrum. In Fig. 9 we show the ratio
Br(h → gg)/Br(h → γ γ ) and compare it again with the
recommended numbers by the Higgs cross section working
group [444]. Allowing for a 10 % uncertainty, we find that our
calculation including higher order corrections agrees with the
expectations, while the LO calculation predicts a ratio that
is over a wide range much too small. The important range to
look at is actually not the one with mh ∼ 750 GeV because
this corresponds to a large ratio of the scalar mass compared
to the top mass. Important for most diphoton models is the
range where the scalar mass is smaller than twice the quark
mass. In this mass range we find that the NLO corrections are
crucial and can change the ratio of the diphoton and digluon
rate up to a factor of 2. We also note that if we had used α(mh)

instead of α(0) in the LO calculation, the difference would
have been even larger, with a diphoton rate overestimated by
a factor (α(mh)/α(0))2 � (137/124)2 � 1.22.

3.6 Monte-Carlo studies

3.6.1 Interplay SARAH-spectrum-generator-MC-tool

The tool chains SARAH–SPheno/FlexibleSUSY–MC-
Tools have one very appealing feature: the implementa-
tion of a model in the spectrum generator (SPheno or
FlexibleSUSY) as well as in a MC tool is based on just
one single implementation of the model in SARAH. Thus, the
user does not need to worry that the codes might use different
conventions to define the model. In addition, SPheno also
provides all widths for the particles so that this information
can be used by the MC-Tool to save time.

3.6.2 Effective diphoton and digluon vertices for neutral
scalars

The effective diphoton and digluon vertices calculated by
SPheno or FlexibleSUSY are directly available in the
UFO model files and the CalcHep model files: SARAH
includes the effective vertices for all neutral scalars to two
photons and two gluons, and the numerical values for these

123



Eur. Phys. J. C (2016) 76 :516 Page 15 of 57 516

vertices are read from the spectrum file generated with
SPheno or FlexibleSUSY. For this purpose, a new block
EFFHIGGSCOUPLINGS is included in these files, which
contains the values for the effective couplings including all
corrections outlined in Sect. 3.5.

It is important to mention that these effective couplings
correspond to the decay of the scalar; if we use CalcHep
or MadGraph to compute the decay � → gg then the
value matches (as closely as possible) the N3LO value, which
includes real emission processes such as � → ggg. There-
fore, the corrections at NLO and beyond for � → gg are not
the same as pp → � via gluon fusion [437]; the full N3LO
production cross-section includes all processes gg → �+jet
and is therefore described by a different k-factor to the decay.
This k-factor can for instance be obtained via

k = c�gg · σSM(pp → H(M�) + jet)

σMC(pp → �)
(3.23)

where c�gg is the ratio squared of the effective coupling
between � and two gluons at LO in the considered model and
the SM. These values can for instance be read off by the block
HiggsBoundsInputHiggsCouplingsBosons in the
SPheno spectrum file. σSM(pp → H(M�)) is the cross sec-
tion for a SM-like Higgs with mass M�. This value can be
calculated for instance with Higlu [445] or Sushi [446]
for the considered center-of-mass energy. SPheno also pro-
vides values for c�gg · σSM(pp → H(M�)) for the most
common energies in the blocks HiggsLHCX (X=7,8,13,14)
and HiggsFCC.

On the other hand, this approach is not entirely appropriate
for more refined collider analyses where the user would like
to actually include, for example, a hard jet in the final state
(without the full loop corrections to the effective vertex this
is not an infra-red safe quantity). In this case, we note that
around 750 GeV the effective vertex output by SARAH gives
a fairly accurate result – to within 30 % – of the total pro-
duction cross-section, at least in the Standard Model, when
we compute σSM (gg → � + jet) using MadGraph and the
standard cuts on momenta. This is illustrated in Fig. 10.

3.7 Accuracy of the diphoton calculation

Before concluding this section, we should draw the reader’s
attention to the question of how accurate the results are from
SARAH in combination withSPheno andFlexibleSUSY.
While every possible correction has been included, there are
still some irreducible sources of uncertainty, as we shall dis-
cuss below.

3.7.1 Loop corrections to Z Z ,WW, Zγ production

So far in SARAH, loop-level decays are only computed for
processes where the tree-level process is absent. This is to
avoid the technical issues of infra-red divergences. If the
particle that explains the 750 GeV excess is a scalar, then
it must mix with the Higgs and acquire tree-level couplings
to the Z and W bosons. The respective decays are fully taken
into account at tree level. However, due to the existence of
such terms, the loop corrections to the decays into Zs and
W s are more complicated and are therefore not yet avail-
able in SARAH. Even if hese technical issues do not apply
for pseudo-scalar bosons, for which the decays into vector
bosons are only possible at the loop level, these decays are
also not yet available at the loop level. However, it should be
mentioned that there are on-going efforts to close this gap in
the near future and to provide the full one-loop corrections
to any two-body decay of CP-even and -odd scalars.

That these loop induced decays are missing at the moment
in SARAH can trigger two issues the user has to keep in
mind. First, there are limits on the decays S → WW and
S → Z Z which could be violated if the loop induced cou-
plings between S and two massive vector bosons are too large.
Therefore, one has to be careful when studying models with
large additional SU (2) representations. The second issue is
that the prediction for the BR into two photons suffers from
an additional uncertainty because of the missing contribution
of the Z Z and WW decays to the total width.

To estimate the uncertainty incurred by their absence, let
us assume that our 750 GeV resonance S couples to the
U (1)Y and SU (2)L gauge bosons via the effective operators
SBμνBμν and SWμνWμν . If we can neglect the tree-level
contributions to the decays and assume that the dominant
contribution originates from a set of particles in the loops,
which have the hypercharge Y and the Dynkin index D2(W )

and dimension of the SU (2) representation d2, then the decay
widths are approximately given by

�(S → Z Z)

�(S → γ γ )
�

( D2
t2W

+ t2
Wd2Y 2)2

(d2Y 2 + D2)2 ,

�(S → Zγ )

�(S → γ γ )
� 2

t2
W

(D2 − t2
Wd2Y 2)2

(d2Y 2 + D2)2 ,

�(S → WW )

�(S → γ γ )
� 2D2

2cosec4θW

(d2Y 2 + D2)2 . (3.24)

where we abbreviated tW for tan θW . Put together, the uncer-
tainty that we find for the decay S → γ γ reads

δ�(S → anything)

�(S → anything)
�
[

55D2
2 − 2d2Y 2D2 + 0.69d2

2Y
4

(d2Y 2 + D2)2

]
×Br(S → γ γ ). (3.25)
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Fig. 10 Comparisons of the total Higgs production cross-section via gluon fusion in the Standard Model as a function of the Higgs mass, computed
using the SPheno output from SARAH, the Higgs cross-section working group data, and in MadGraph using our effective vertex

The factor in square brackets is therefore largest for fields
that only couple to SU (2)L gauge bosons, giving a factor of
∼ 55, and for SU (2) doublets with hypercharge 1/2 it is 13,
although the former case yields too many W bosons (the limit
from run 1 searches is �(S→WW )

�(S→γ γ )
� 20). Thus, provided that

Br(S → γ γ ) � 10−3, the relative uncertainty is guaranteed
to be less than 10 %. In such cases, the proportional error in
the total width transfers directly into the proportional error
in the total cross-section:

δσ (pp → S → γ γ )

σ (pp → S → γ γ )
� −δ�(S → anything)

�(S → anything)
(3.26)

On the other hand, for models where the dominant decay
channel of the singlet is into gluons, it is not possible to have
Br(S → γ γ ) � 10−3 without violating constraints from
dijet production, and the reader should be careful about the
possible errors incurred. Fortunately, provided that the loop
particles have a hypercharge the error is much smaller, for
example in the case that D2 = 0 the coefficient above is less
than one, thus giving an error of ∼ 10−3 for Br(S → γ γ ) =
10−3 .

3.7.2 BSM NLO corrections

As discussed above, SARAH includes the leading-order
computation of the diphoton and digluon decay amplitudes
including the effects of all Standard Model and Beyond-the-
Standard-Model particles in the loops. Furthermore, it also
includes the leading-log corrections to the digluon rate at
NLO, NNLO and N3LO order in αs in the Standard Model,
and some NLO corrections due to diagrams with an extra
gluon to both the digluon and diphoton rates. However, the
NLO corrections are absent for all other particles, which in
the case of large Yukawa couplings or hierarchies could be
sizeable. Two examples of such a diagrams are given in Fig.

11; in the context of supersymmetric theories, particularly
important are diagrams involving the gluino, which (if it is
a Majorana particle) would not couple to a singlet at leading
order – naively their contribution is

δ�(S → gg/γ γ )

�(S → gg/γ γ )
∼ αs

π
log

m2
g̃

μ2
NLO

−→
mg̃=2 TeV

∼ 10 %,

(3.27)

although as we shall discuss below this can be (potentially
significantly) an underestimate.

3.7.3 Presence of light fermions

The higher order corrections to the Higgs production and
decay via the effective digluon coupling is calculated in the
SM using an effective-field-theory (EFT) approach. This is
possible because the top mass is sufficiently heavy compared
to the Higgs boson. Also the presence of vector-like quarks
with masses below 750 GeV is already tightly constrained
by direct searches at the LHC [447]. Therefore, for realistic
scenarios the EFT approximation is also typically valid. Even
so, one might wonder how large the additional uncertainty is
due to the presence of light quarks. For a detailed discussion
of this, we refer to Ref. [448]. The overall result is that the
additional uncertainty is larger than the one stemming from
the choice of the QCD scale. Nevertheless, it was found that
the EFT computation still gives a good estimate for the overall
K-factor.

3.7.4 Tree vs pole masses in loops

For consistency of the perturbative series and technical expe-
diency, the masses inside loops (to calculate pole masses
and loop decay amplitudes) are MS or DR

′
parameters,

not the pole masses of observed particles. The difference
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Fig. 11 Examples of potentially important NLO corrections

between calculations performed in this scheme and the on-
shell scheme are at two-loop order, and so is generally small.
However, in particular when there are large hierarchies or
Yukawa couplings in a model, there can be a large difference
between the Lagrangian parameters and the pole masses, and
therefore a large discrepancy between the loop amplitudes
calculated from these. In principle, this should be accounted
for by including higher-order corrections such as the right-
hand diagram in Fig. 11 – but applying such a correction to
each propagator in the loop would actually correspond to a
four-loop diagram. The effect of using the pole mass instead
is to essentially resum part of these diagrams, which as is well
known is relevant in the case of large hierarchies of masses
– and so should give a more accurate result in that case.

If we define

δm2 ≡ (m2)MS/DR
′ − (m2)on-shell (3.28)

then for one dominant particle p in the loop, we can estimate
the uncertainty as

δ�(S → gg/γ γ )

�(S → gg/γ γ )
∼
⎧⎨
⎩

− 2δm2

m2

(
A′
p

Ap
+ 1
)

, p = s, v,

− 4δm
m

(
A′
p

Ap
+ 1

2

)
, p = f,

(3.29)

where the factor of 1 or 1/2 assumes that the couplingsCpp�

do not depend upon the mass mp (but the prefactor in r�
p

therefore does). For most values of mp the loop functions
are slowly changing (only peaking around τp = 1) so we

will have a proportional uncertainty in the result of
2δm2

s,v

m2
s,v

or
2δm f
m f

. As an example, in supersymmetric theories the soft

masses of coloured scalars S̃′ acquire a significant decrease
from gluino loops:

δm2
S̃′ � C2(S̃′)αs

π
m2

g̃ log
m2

g̃

μ2
NLO

. (3.30)

If the scalar is a colour triplet with a pole mass of 800 GeV,
then for 2 TeV gluinos and the DR

′
mass is ∼1100 GeV; but

δm2
S̃′

m2
S̃′

∼ 1! This corresponds to a shift of a factor of two in the

amplitude, and, if the scalar dominates the total amplitude, a
factor of four in �(S → gg/γ γ ); in fact in this case SARAH
would be potentially underestimating the diphoton rate. This
is a relatively mild example regarding this excess: given that
the vast majority of models proposed to explain the dipho-
ton signature contain large Yukawa couplings and many new
particles, there is a significant potential for large values of
δm2

m2 , about which the user should be careful. It is worth not-
ing that this is an effect that would not be significant in the
(N)MSSM, where the Higgs couplings to photons/gluons are
dominated by the top quark (and, for photons, the W bosons)
whose masses are protected by chiral symmetry from large
shifts: this issue is a novelty for the 750 GeV excess.

For non-supersymmetric models, due to the fact that
(almost) every parameter point is essentially fine-tuned, we
have not calculated loop corrections to the masses by default,
and this issue does not arise in the same way. The user is then
free to regard the result as involving the pole masses of par-
ticles instead, if they so desire – the issue then becomes one
of tuning the potentially large corrections to the other input
parameters.

4 Models

A large variety of models have been proposed to explain the
diphoton excess at 750 GeV. We have selected and imple-
mented several possible models in SARAH. Our selection
is not exhaustive, but we have tried to implement a suffi-
cient cross-section which are representative of many of the
ideas put forward in the context of renormalisable models.
These are the ones that SARAH can handle. Their description
is organised in the subsections that follow. Before we turn
to this discussion we first want to mention other proposals
which we do not deal with in this paper.

Many authors [16,35,50,59,67,72,99,144,150,190,192,
207,249,251,265,298,301,319,331,341] have studied the
excess with effective (non-renormalisable) models, which
is sensible given that there are thus far no other striking
hints of new physics at the LHC. As more data becomes
available and the evidence for new physics becomes more
substantial, one might want to UV complete these mod-
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els, at which point the tools we are advertising become
relevant and necessary. Other authors [42,52,60,73,114,
122,131,233,235,273,293,297,308,315,320,323,346] con-
sidered strongly coupled models, in which the resonance is
a composite state. This possibility would be favoured by
a large width of the resonance, as first indications seem
to suggest. Another possibility is to interpret the signal in
the context of extra-dimensional models [5,9,29,30,48,84,
125,141,203,225,312], with the resonance being a scalar, a
graviton, a dilaton, or a radion, depending on the scenario.
However, some of these interpretations are in tension with
the non-observation of this resonance in other channels. In
supersymmetry, the scalar partner of the goldstino could pro-
vide an explanation to the diphoton signal [97,147,167,335].
Other ideas, slightly more exotic, include: a model with a
space-time varying electromagnetic coupling constant [135],
Gluinonia [337], Squarkonium/Diquarkonium [299], flavons
[244], axions in various incarnations [8,24,63,246,274,336],
a natural Coleman–Weinberg theory [22,307], radiative neu-
trino mass models [264,325,327], and string-inspired models
[19,132,188,240,254].

We turn now to the weakly coupled models, and list the
ones which we have implemented in SARAH.

All model files are available for download at http://sarah.
hepforge.org/Diphoton_Models.tar.gz and an overview of all
implemented models is given in Tables 4 and 5, where we
have divided the models into five different categories. The
first three models can be regarded as toy models which sim-
ply extend the Standard Model by some basic ingredients for
explaining the diphoton excess, namely a singlet scalar and
a number of different vector-like fermions. The second cate-
gory contains models which are also based on the SM gauge
group but feature a more complicated structure than the toy
models mentioned before. Table 5 contains a variety of non-
supersymmetric models with an enlarged gauge group such
as gauged U (1) extensions or left-right-symmetric models,
as well as some supersymmetric models, both with and with-
out an enlarged gauge sector.

Some of the models which were implemented can be seen
as a straightforward extension or a modification of known
models like the Standard Model, the NMSSM, a two-Higgs-
doublet model, or a U (1)′ model. They are derived from
models already available in the SARAH model repository and
will not be discussed here in detail. Note however, that some
model classes, like left-right-symmetric models, are now for
the first time publicly available for SARAH. For all the nec-
essary information regarding the particle content, symme-
tries and the Lagrangian, we refer the interested reader to the
documentation provided alongside the tarball containing the
model files. As a selection, we discuss below in some detail
the implementation of four rather involved models (one with
scalar octets, two 3-3-1 models and one supersymmetric E6-
inspired model).

It is beyond the scope of this paper to discuss every model
with its diphoton phenomenology in detail: many of the orig-
inal papers for which we created the model files discussed
their model in specific limits, e.g. decoupling complete parts
of the sector without showing that the respective limit can
even be consistently obtained. Therefore, a complete phe-
nomenological study of each model would be necessary for
checking all claims. Instead, we regard our model implemen-
tations as a starting point for the authors of these models or
other researchers to perform a more thorough study them-
selves. Whenever benchmark points in terms of the model
parameters were given in the respective literature, however,
we have compared our results, and deviations are noted
below.

In case of questions, comments or bug reports concerning
these models, please, send an e-mail to diphoton-tools
@cern.ch which includes all authors.

4.1 Validation

All SARAH model files which have been created, as well as
the numerical codes derived thereof, have been validated by
us using the following procedure:

1. First, the SARAH files themselves have been tested for
consistency using basic SARAH commands, which are
easy to use and we recommend these to readers. First of
all, we have checked every model for anomalies as well
as for the invariance under all gauge and discrete sym-
metries which is automatically done when the model is
loaded within SARAH. Furthermore, the CheckModel
command was executed which in addition checks the san-
ity of all field and parameter definitions as well as whether
all possible particle admixtures have been correctly taken
into account.

2. Whenever analytic formulas such as mass matrices were
presented in the original studies which propose the
model, we have reproduced and checked the respective
expressions with SARAH.

3. For each model, we have produced and successfully com-
piled the tailor-made code for the spectrum generators
SPheno and FlexibleSUSY.

4. Whenever the reference proposing the model has pre-
sented the necessary information to reproduce their
results, we have done so. Differences are noted below.

5. The model files for MadGraph and CalcHep have
been produced for all models and checked for consis-
tency using the internal routines of the respective tools.
Furthermore, we have computed representative pro-
cesses like the production and/or decay of the candidate
for the diphoton resonance and compared the obtained
branching ratios between MadGraph, CalcHep and
SPheno/FlexibleSUSY.
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Table 4 Part I of the overview of proposed models to explain the dipho-
ton excess which are now available in SARAH. Special characters are
added in the last column if we found serious problems with the model

during the implementation. The respective problem is described in the
above text

Model Name Refs.

Toy models with vector-like fermions

CP-even singlet SM+VL/CPevenS

CP-odd singlet SM+VL/CPoddS

Complex singlet SM+VL/complexS

Models based on the SM gauge-group

Portal dark matter SM+VL/PortalDM [108,228]

Scalar octet SM-S-Octet [89,166] ♣
SU (2) triplet quark model SM+VL/TripletQuarks [62]

Single scalar leptoquark LeptoQuarks/ScalarLeptoquarks [53]

Two scalar leptoquarks LeptoQuarks/TwoScalarLeptoquarks [106] ♠
Georgi-Machacek model Georgi-Machacek [116,184]

THDM w. colour triplet THDM+VL/min-3 [74]

THDM w. colour octet THDM+VL/min-8 [74]

THDM-I w. exotic fermions THDM+VL/Type-I-VL [260,360]

THDM-II w. exotic fermions THDM+VL/Type-II-VL [260,360]

THDM-I w. SM-like fermions THDM+VL/Type-I-SM-like-VL [36]

THDM-II w. SM-like fermions THDM+VL/Type-II-SM-like-VL [36]

THDM w. scalar septuplet THDM/ScalarSeptuplet [227,317]

6. For each model, we provide a set of input parame-
ters which can be used to produce a valid spectrum
which itself can then serve as an input for programs like
MadGraph or CalcHep.

During the validation process, we noticed inconsistencies
in the definition of some models when using the field content
and symmetries as provided in the respective references. We
therefore modified the respective model in order to restore
consistency. For other models, we obtain results that are dif-
ferent to those quoted in the study proposing the model. We
individually marked the affected models in the last column
of the tables with a special character. The issues we found
are the following:

• ♣As explained in more detail in the following subsection,
after the inclusion of higher-order corrections, the dijet
constraints cut deeply into the allowed parameter space.

• ♠ We find disagreement with the diphoton rate as calcu-
lated in the original reference: we have reproduced the
partial widths presented in Fig. 3 of Ref. [106] and find
values which are roughly an order of magnitude smaller.

• †The U (1)D charge of the H ′ field as defined in
Ref. [355] has been changed to −1 in order to make the
Yukawa interaction terms gauge invariant.

• ‡The model cannot explain the diphoton excess with
Yukawa couplings in the perturbative range, but the

authors use values between 5 and 10. As stressed in
Sect. 2.1.2.1, this renders the perturbative calculation,
and hence the results, to be invalid.

• §We had to change the Yukawa interactions: in Ref. [138],
they are defined as, e.g., qL H

†
LUL which contracts to

zero because of the implicit left/right projection opera-
tors. Moreover, in Refs. [138,149] the ‘conjugate’ assign-
ments of the fields HL/R need to be exchanged in order to
obtain a gauge-invariant Lagrangian. For more details see
the actual model implementation or the notes provided
with the model files.

• ¶We had to adapt the scalar potential as Eq. (6) and Eq. (7)
in Ref. [90] are not gauge invariant. In the model imple-
mentation, we allow for every gauge-invariant term in the
Lagrangian.

• � Here, couplings of about 5 are needed to explain dipho-
ton excess, rendering the perturbative calculation to be
inconsistent.

4.2 Examples of model implementations

4.2.1 Scalar octet extension

• Reference: [89,166]
• Model name: SM-S-Octet

A charged scalar colour octet O coupled to a scalar sin-
glet S was proposed in Refs. [89,166]. Here the singlet is the
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Table 5 Part II of the overview of proposed models to explain the
diphoton excess which are now available in SARAH. Special characters
are added in the last column if we found serious problems with the

model during the implementation. The respective problem is described
in the above text

Model Name Refs.

U (1) extensions

Dark U (1)′ U1Extensions/darkU1 [280]

Hidden U (1) U1Extensions/hiddenU1 [136]

Simple U (1) U1Extensions/simpleU1 [104]

Scotogenic U (1) U1Extensions/scotoU1 [355] †

Unconventional U (1)B−L U1Extensions/BL-VL [313]

Sample of U (1)′ U1Extensions/VLsample [107]

Flavour-nonuniversal charges U1Extensions/nonUniversalU1 [304]

Leptophobic U (1) U1Extensions/U1Leptophobic [277] ‡

Z ′ mimicking a scalar resonance U1Extensions/trickingLY [102]

Non-abelian gauge-group extensions of the SM

LR without bidoublets LRmodels/LR-VL [138,149,153] §

LR with U (1)L ×U (1)R LRmodels/LRLR [90] ¶

LR with triplets LRmodels/tripletLR [64]

Dark LR LRmodels/darkLR [154]

331 model without exotic charges 331/v1 [80]

331 model with exotic charges 331/v2 [88]

Gauged THDM GTHDM [250]

Supersymmetric models

NMSSM with vector-like top NMSSM+VL/VLtop [353] �
NMSSM with 5’s NMSSM+VL/5plets [180,220,350]

NMSSM with 10’s NMSSM+VL/10plets [180,220,350]

NMSSM with 5’s & 10’s NMSSM+VL/10plets [220]

NMSSM with 5’s and RpV NMSSM+VL/5plets+RpV [180]

Broken MRSSM brokenMRSSM [100]

U (1)′-extended MSSM MSSM+U1prime-VL [258,449]

E6 with extra U (1) E6MSSMalt [110]

Table 6 Extra scalar field content of the octet extended SM

Field Gen. SU (3)C SU (2)L U (1)Y

S 1 1 1 0

O 1 8 2 1
2

750 GeV candidate, while the octet enters the loops that con-
tribute to the generation of the couplings of the singlet to the
gauge bosons. While Ref. [166] considers a toy model involv-
ing only the term S |O|2, Ref. [89] takes the singlet extended
Manohar-Wise model [450]. For the SARAH implementation
we have used the full model. However, since the cubic and
quartic terms in O do not play a significant role, they are
turned off by default in the SARAH model file.

The extra particle content with respect to the SM is a real
singlet S and a scalar colour octet O which is also charged
under SU (2)L×U (1)Y , see Table 6. The isospin components
of O are

OA =
(
O+ A

O0 A

)
, (4.1)

where A = 1, . . . , 8 is the adjoint colour index. The full
scalar

V = 1

2
m2

S S
2 + λS S

4 − μ2|H |2 + λH |H |4 + κ1S
2|H |2

+ 2m2
OTr(O†O) + κ2S

2Tr(O†O)

+ λ1|H |2Tr(O†O) + λ2H
†
i H jTr(O†

j Oi )

+ λ6Tr(O†OO†O) + λ7Tr(O†
i O j O

†
j Oi )

+ λ8Tr(O†O)2 + λ9Tr(O†
i O j )Tr(O†

j Oi )

+ λ10Tr(Oi O j )Tr(O†
i O

†
j ) + λ11(Oi O j O

†
j O

†
i )

+
(
λ3H

†
i H

†
j Tr(Oi O j ) + λ4H

†
i Tr(O†

j O j Oi )

+ λ5H
†
i Tr(O†

j Oi O j ) + h.c.
)

. (4.2)
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Electroweak symmetry-breaking (EWSB) is driven by the
VEV of the neutral component of the SM Higgs doublet,
which can be decomposed as

H0 = 1√
2

(v + φH + i σH ) . (4.3)

Here φH ≡ h is the Higgs boson, to be identified with the
125 GeV state discovered at the LHC. Similarly, the singlet
S receives a VEV, and the neutral component of the octet is
split into its CP-even and CP-odd eigenstates:

S = vS + φS, O0 → 1√
2

(
OR + i O I

)
. (4.4)

We will now briefly discuss the parameter space of the
model in order to justify our choice of input parameters. First,
we consider the tadpole equations, which can be automati-
cally derived by SARAH. Their solution for μ2 and κ1 is

μ2 = − 1

v2 (λHv4 − m2
Sv

2
S − 4λSv

4
S),

κ1 = − 1

v2 (m2
S + 4λSv

2
S). (4.5)

The tree-level mass matrix for the CP-even neutral scalars in
the (φH , φS) basis is given by

M2 =
(

μ2 + 3λHv2 + κ1v
2
S 2κ1vvS

2κ1vvS m2
S + κ1v

2 + 12λSv
2
S

)

=
(

2λHv2 − 2vS
v

(m2
S + 4λSv

2
S)

− 2vS
v

(m2
S + 4λSv

2
S) 8λSv

2
S

)
. (4.6)

We note that, in general, there is singlet-doublet mixing.
There are two reasons to consider a small singlet-doublet
mixing angle, θ . First, the stringent constraints derived from
Higgs physics measurements, and second, the required sup-
pressed decay widths into Higgses, W s and Zs in order to fit
the diphoton signal – indeed in [89] values of ∼10−2 were
found to be required. If we have a small mixing angle, then
we can write

M2 ∼
(

m2
h sθcθ (m2

h − m2
750)

sθcθ (m2
h − m2

750) m2
750

)
. (4.7)

This implies λS > 0, but also

μ2 � −1

2
m2

h + v2
S

v2 (m2
S + 1

2
m2

750). (4.8)

However, we also have v2
S ∼ m2

750/8λS , and so

μ2 � − 1

2
m2

h + 1.2

λS
(m2

S + 1

2
m2

750). (4.9)

We thus require a tachyonic m2
S for the SM Higgs mass con-

dition:

m2
S � −1

2
m2

750 + λS

1.2
(μ2 + 1

2
m2

h) � −(500 GeV)2 (4.10)

where in the last step we have taken λS = 1.2, a rather
large value. If we want κ1 ∼ −1 then we require m2

S ∼
−(600 GeV)2. On the other hand, from the second tadpole
equation we have

m2
S = −κ1v

2 − 1

2
m2

750, (4.11)

which, if we require |κ1| < 2, gives

−(630 GeV)2 ≤ m2
S ≤ −(400 GeV)2, (4.12)

so putting these together we find the narrow window

−(630 GeV)2 ≤ m2
S ≤ −(500 GeV)2. (4.13)

Alternative implementation in SARAH

The above discussion suggests to use a different choice for the
input parameters of the model in ourSARAH implementation:
ideally we would like the particle masses, the mixing and only
dimensionless couplings to be the inputs. We shall take the
input parameters to be

mh,m750, sθ , λS . (4.14)

In terms of these the other parameters are determined to be

λH = c2
θm

2
h + s2

θm
2
750

2v2 , v2
S = c2

θm
2
750 + s2

θm
2
h

8λS
,

m2
S = −κ1v

2 − 1

2
m2

750, κ1vvS = sθcθ (m
2
h − m2

750),

→ κ1 =
√

2λSsθcθ (m2
h − m2

750)

v

√
(c2

θm
2
750 + s2

θm
2
h)

� −4.3 × sθ
√

λS . (4.15)

The exact version of these equations is implemented in
SARAH and can be selected using the InputFile
→“SPheno_diphoton.m” option in MakeAll or
MakeSPheno.

Octet masses

One further input is taken in [89]: the physical mass of the
octet scalars. These are given in terms of the Lagrangian
parameters as:

m2
O0
r

= m2
O + κ2v

2
S + v2

2
(λ1 + λ2 + 2 Reλ3),

m2
O0
i

= m2
O + κ2v

2
S + v2

2
(λ1 + λ2 − 2 Reλ3),
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m2
O+ = m2

O + κ2v
2
S + 1

2
λ1v

2. (4.16)

The values of λi are taken to be small and equal in order
for the octets to have similar masses, but since this is not
the general case, we do not impose this choice in SARAH.
The choice in that paper does however hide the possibility
of tachyonic m2

O (and hence possible charge/colour breaking
minima) – indeed, if we insist that m2

O > 0 we have a lower
bound on the masses of

m2
O0,+ >

κ2

8λS
m2

750. (4.17)

Clearly this is violated for mO0,+ = 600 GeV when κ2 ∼
1, λS � 1. On the other hand, this does not guarantee a
problem.

The desired vacuum has energy

V0 = m2
Sv

2
S

2
− λH

4
v4 + λSv

4
S

� −1

8
v2m2

h − v2
S

(
1

2
κ1v

2 + 1

4
m2

750 − m2
750

8

)

� −1

8
v2m2

h − m2
750

8λS

(
−2sθ

√
λS + m2

750

8

)
. (4.18)

If we instead concentrate on the potential terms containing
the octets, where only one component develops a VEV, we
find

V (OR) = 1

2
(OR)2

[
m2

O + 1

8
(λ9 + λ10 + 1

9
λ6 + 1

9
λ7 + 1

9
λ11)(O

R)2
]

,

V (OI ) = 1

2
(OI )2

[
m2

O + 1

8
(λ9 + λ10 + 1

9
λ6 + 1

9
λ7 + 1

9
λ11)(O

I )2
]

,

V (O+) = |O+|2
[
m2

O + 1

4
(λ9 + λ10 + 1

9
λ6 + 1

9
λ7 + 1

9
λ11)|O+|2

]
.

(4.19)

Arranging for the additional minimum of the potential to
be higher than the colour-breaking one then places a lower
bound on the octet self-couplings, but for the phenomenology
of the diphoton excess – when we neglect loop corrections
to the mass of the octet – they play no other role.

Comments on fitting the excess

In [89] the authors find that the diphoton excess can be eas-
ily fit with octets at 600 or 1000 GeV and κ2 ∼ 1.5 or 4.5,
respectively. The scenario involves merely the simplifying
assumption λ1 = λ2 = λ3 so that the octets are of approxi-
mately equal mass. The ratio between the digluon and dipho-
ton decay rates is then

�(S → gg)

�(S → γ γ )
� 9

2

α2
s

α2 . (4.20)

In [89] this is quoted as �715. In SARAH, before any NLO
corrections are applied, the running of the Standard Model
gauge couplings yields αs(750 GeV) = 0.091 and we use
α(0) � 137−1, giving a ratio of 700, in good agreement.
However, when we include corrections up to N3LO, this
ratio rises to 1150, putting the model near the boundary of
exclusion due to dijet production at 8 TeV. These differences
are illustrated in plots produced from SARAH/SPheno in
Fig. 12. To produce these plots, all branching ratios/widths
are calculated in SPheno, as is the production cross-section
of the resonance at 8 TeV. To calculate 13 TeV cross-sections
the 8 TeV cross-section was rescaled by the parton luminosity
factor for gluons of 4.693.

4.2.2 3-3-1 models

Models based on the SU(3)c ×SU(3)L ×U(1)X gauge sym-
metry [451–457], 331 for short, constitute an extension of
the SM that could explain the number of generations of mat-
ter fields. This is possible as anomaly cancellation forces the
number of generations to be equal to the number of quark
colours.

Regarding the diphoton excess, 331 models automatically
include all the required ingredients to explain the hint. First,
the usual SU (2)L Higgs doublet must be promoted to a
SU (2)L triplet, the new component being a singlet under
the standard SU(3)c × SU(2)L × U(1)Y symmetry. Simi-
larly, the group structure requires the introduction of new
coloured fermions to complete the SU (3)L quark multiplets,
these exotic quarks being SU(3)c ×SU(2)L ×U(1)Y vector-
like singlets after the breaking of SU(3)c ×SU(3)L ×U(1)X .
Therefore, SU(3)c × SU(3)L × U(1)X models naturally
embed the simple singlet + vector-like fermions framework
proposed to explain the diphoton excess.

There are several variants of SU(3)c × SU(3)L × U(1)X
models. These are characterized by their β parameter,9 which
defines the electric charge operator as10

Q = T3 + β T8 + X . (4.21)

First, in Sect. 4.2.2.1 we consider the model in Ref. [80].
This 331 variant has β = 1/

√
3, which fixes the electric

charges of all the states contained in the SU (2)L triplets
and anti-triplets to the usual 0,±1 values. In Sect. 4.2.2.2
we consider a 331 model with β = −√

3, a value leading to
exotic electric charges. This 331 variant has been discussed in
the context of the diphoton excess in [88,243,459]. Although
the mechanism to explain the diphoton excess is exactly the

9 See [458] for a complete discussion of 331 models with generic β.
10 Equation (4.21) assumes that the SU (3) generators are Ta = λa

2 ,
with λa (a = 1, . . . , 8) the Gell-Mann matrices. However, this is not
the convention used in SARAH, see below.
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Fig. 12 Scan over sine of Higgs-singlet mixing angle θ and κ2 for octet
masses of 600 GeV, λS = 0.07 corresponding to vS � 1000 GeV. The
contours show the 750 GeV resonance production cross-sections σ X

YY at

energy X TeV decaying into channel YY . On the left plot, only leading
order contributions to the decays are used; on the right, all corrections
up to N3LO available in SARAH are included

same as in [80], the presence of the exotic states leads to
slightly different numerical results.

On the SU (3) generators in SARAH The most common
choice for the SU (3) generators is Ta = λa

2 , with λa (a =
1, . . . , 8) the Gell-Mann matrices. However, this is just one of
the possible representations. In fact, SARAH uses a different
set of matrices, T SARAH

a = �a
2 , following the conventions

of Susyno [460]. The relation between the non-diagonal
matrices in the two bases is

λ1 = �1, (4.22a)

λ2 = �4, (4.22b)

λ4 = −�6, (4.22c)

λ5 = −�3, (4.22d)

λ6 = �2, (4.22e)

λ7 = �5. (4.22f)

Concerning the diagonal matrices, the usual λ3,8 Gell-Mann
matrices,

λ3 =
⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ , λ8 = 1√

3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠ , (4.23)

are replaced by �7,8,

�7 = 1√
3

⎛
⎝ 2 0 0

0 −1 0
0 0 −1

⎞
⎠ , �8 =

⎛
⎝ 0 0 0

0 1 0
0 0 −1

⎞
⎠ . (4.24)

The electric charge operator can be written, using the con-
ventions in SARAH, as

QSARAH = −T8 − β T7 + X . (4.25)

This in turn implies that the charge assignments in the SU (3)

multiplets must be adapted as well. For example, one can
easily check that the electric charges of the first and third
components of a SU (3) triplet t are exchanged when going
from the usual Gell-Mann representation to the basis choice
employed in SARAH,

t =
⎛
⎝ t1
t2
t3

⎞
⎠ −→ tSARAH =

⎛
⎝ t3
t2
t1

⎞
⎠ . (4.26)

In the following we will use the standard conventions based
on the Gell-Mann matrices in order to keep the discussion as
close to the original works as possible. However, we empha-
size that the implementation of the 331 models in SARAH
requires this dictionary between the bases. It should also be
noted that in the current implementation in SARAH of the
331 models described below, vertices involving four vector
bosons in the generated model files for CalcHep cannot
yet be handled correctly. In order to generate model files
that will work with CalcHep, one must therefore exclude
these vertices from being written out by SARAH by speci-
fying Exclude -> {VVVV} in the options of SARAH’s
MakeCHep.
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Table 7 Fermionic and scalar particle content of the 331-v1 model.
The scalar and fermion fields are shown in the top and bottom of the
table respectively

Field Gen. SU (3)C SU (2)L U (1)X U (1)L Z2

�1 1 1 3̄ 2
3

2
3 +

�2 1 1 3̄ − 1
3 − 4

3 +
�3 1 1 3̄ − 1

3
2
3 −

�X 1 1 3̄ − 1
3 − 4

3 +
ψL 3 1 3̄ − 1

3 − 1
3 +

eR 3 1 1 −1 −1 +
s 3 1 1 0 1 +
Q1,2

L 2 3 3 0 − 2
3 +

Q3
L 1 3 3̄ 1

3
2
3 −

uR 3 3 1 2
3 0 +

TR 1 3 1 2
3 0 −

dR 3 3 1 − 1
3 0 −

DR, SR 2 3 1 − 1
3 0 +

4.2.2.1 331 model without exotic charges

• Reference: [80]
• Model name: 331/v1

The model is based on the SU(3)c × SU(3)L × U(1)X
gauge symmetry, extended with a global U (1)L and an aux-
iliary Z2 symmetry to forbid some undesired couplings. The
fermionic and scalar particle content of the model is sum-
marized in Table 7. In addition, due to the extended group
structure, the model contains 17 gauge bosons: the usual 8
gluons; 8 Wi bosons associated to SU (3)L and the B boson
associated to U (1)X .

The fermionic SU (3)L triplets of the model can be decom-
posed as

ψL =
⎛
⎝ �−

−ν

Nc

⎞
⎠

e,μ,τ

L

, Q1
L =

⎛
⎝u
d
D

⎞
⎠

L

, Q2
L =

⎛
⎝ c
s
S

⎞
⎠

L

,

Q3
L =

⎛
⎝b

−t
T

⎞
⎠

L

. (4.27)

The notation used for the extra quarks that constitute the third
components of the SU (3)L triplets Q1,2,3

L is motivated by the
fact that their electric charges are −1/3 and 2/3 for D/S and
T , respectively. The scalar multiplets can be written as

�1 =
⎛
⎝φ1

−φ−
1

S−
1

⎞
⎠ , �2 =

⎛
⎝φ+

2
−φ2

S2

⎞
⎠ , �3 =

⎛
⎝φ+

3
−φ3

S3

⎞
⎠ ,

�X =
⎛
⎝φ+

X−φX

X

⎞
⎠ . (4.28)

While φ−
1 , φ+

2,3 and S−
1 are electrically charged scalars, the

components φ1,2,3,X , S2,3 and X are neutral.
The Yukawa Lagrangian of the model can be split as

LY = Lq
Y + L�

Y , (4.29)

where

Lq
Y = Q̄1,2

L yuuR�∗
1 + Q̄3

L ỹddR�1

+Q̄1,2
L ȳd d̂R�∗

2 + Q̄3
L ȳuTR�2

+ Q̄3
L ỹuuR�3 + Q̄1,2

L yddR�∗
3

+Q̄1,2
L ȳdX d̂R�X + Q̄3

L ȳuX TR�X + h.c., (4.30)

and

L�
Y = y�ψ̄LeR�1+yaψc

LψL�1+ysψ̄L s �2+ms

2
sc s+h.c.

(4.31)

We defined d̂R ≡ (DR, SR). We note that Eq. (4.31) leads to
an inverse seesaw mechanism for neutrino masses [461,462].
Here, ya is anti-symmetric while ms is symmetric, whereas
the rest of Yukawa couplings are generic matrices, including
those in Eq. (4.30). An additional term ysX ψ̄Ls�X could be
added to Eq. (4.31), but given that 〈�X 〉 = 0, it does not con-
tribute to neutrino masses and we will drop it for simplicity.
Finally, the scalar potential is given by

V =
∑
i

μ2
i |�i |2 + λi |�i |4 +

∑
i �= j

λi j |�i |2|� j |2

+ f (�1�2�3 + h.c.) + κ

2

[
(�

†
2�X )2 + h.c.

]
, (4.32)

where i = 1, 2, 3, X . TheZ2-soft-breaking term, f �1�2�3,
is required to break unwanted accidental symmetries in the
scalar potential.

We will assume the following symmetry breaking pattern

〈�1〉 = 1√
2

⎛
⎝ k1

0
0

⎞
⎠ , 〈�2〉 = 1√

2

⎛
⎝0

0
n

⎞
⎠ ,

〈�3〉 = 1√
2

⎛
⎝0
k3

0

⎞
⎠ , 〈�X 〉 =

⎛
⎝ 0

0
0

⎞
⎠ . (4.33)

4.2.2.2 331 model with exotic charges

• Reference: [88] (see also [243,459] for similar construc-
tions)

• Model name: 331/v2

Now, we will consider a 331 variant with β = −√
3,

as discussed in the context of the diphoton excess in [88].
The fermionic and scalar particle content of the model is
summarized in Table 8. In addition, the model contains 17
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Table 8 Fermionic and scalar particle content of the 331-v2 model.
The scalar and fermion fields are shown in the top and bottom of the
table respectively

Field Gen. SU (3)C SU (2)L U (1)X

ρ 1 1 3 1

η 1 1 3 0

χ 1 1 3 −1

ψL 3 1 3̄ −1

eR 3 1 1 −1

ER 3 3 3 −2

Q1,2
L 2 3 3 2

3

Q3
L 1 3 3̄ − 1

3

uR 3 3 1 2
3

TR 1 3 1 − 4
3

dR 3 3 1 − 1
3

DR, SR 2 3 1 5
3

gauge bosons: the usual 8 gluons; 8 Wi bosons associated to
SU (3)L and the B boson associated to U (1)X .

The fermionic SU (3)L triplet representations of the model
can be decomposed as

ψL =
⎛
⎝ �−

−ν

E−−

⎞
⎠

e,μ,τ

L

, Q1
L =

⎛
⎝u
d
D

⎞
⎠

L

, Q2
L =

⎛
⎝ c
s
S

⎞
⎠

L

,

Q3
L =

⎛
⎝ b

−t
T

⎞
⎠

L

. (4.34)

Due to the choice β = −√
3, the electric charges for the extra

quarks that constitute the third components of the SU (3)L
triplets Q1,2,3

L are 5/3, 5/3 and −4/3, respectively. The scalar
triplets can be written as

ρ =
⎛
⎝ρ+

ρ0

ρ++

⎞
⎠ , η =

⎛
⎝η0

η−
1

η+
2

⎞
⎠ , χ =

⎛
⎝χ−

χ−−
χ0

⎞
⎠ . (4.35)

Therefore, the particle spectrum of the model contains the
exotic quarks in Eq. (4.34), as well as the doubly-charged
fermion E−− and the scalars ρ++ and χ−−.

The Yukawa Lagrangian of the model can be split as

LY = Lq
Y + L�

Y , (4.36)

where

Lq
Y = yd Q1,2

L ρ dR + ỹd Q3
L η∗ dR

+ yu Q1,2
L η uR + ỹu Q3

L ρ∗ uR

+ y J Q1,2
L χ d̂R + ỹ J Q3

L χ∗ TR + h.c., (4.37)

where we have defined d̂R ≡ (DR, SR), and

L�
Y = y� ψL η∗ eR + yE ψL χ∗ ER + h.c. (4.38)

We note that the exotic fermions E , D, S and T only couple to
the χ scalar triplet, and thus only via its vacuum expectation
value (VEV) they will acquire masses. Finally, the scalar
potential is given by

V = μ2
1 |ρ|2 + λ1|ρ|4 + μ2

2 |η|2 + λ2|η|4 + μ2
3 |χ |2

+ λ3|χ |4 + λ12|ρ|2|η|2 + λ13|η|2|χ |2
+ λ23|η|2|χ |2 + +λ̃12(ρ

†η)(η†ρ) + λ̃13(ρ
†χ)(χ†ρ)

+ λ̃23(η
†χ)(χ†η)

+√
2 f
(
εi jk ρiη jχk + h.c.

)
. (4.39)

We will assume the following symmetry breaking pattern

〈ρ〉 = 1√
2

⎛
⎝0

v1

0

⎞
⎠ , 〈η〉 = 1√

2

⎛
⎝ v2

0
0

⎞
⎠ ,

〈χ〉 = 1√
2

⎛
⎝0

0
v3

⎞
⎠ . (4.40)

In this case, the non-zero VEV of χ is responsible for
the breaking SU (3)L × U (1)X → SU (2)L × U (1)Y . The
requirement that this occurs at a scale much above the EW
scale then imposes a hierarchy amongst the VEVs, namely
that v3 � v1, v2. Consequently, one of the CP-even scalar
states is predominantly from the χ triplet and decouples from
the SM. This scalar is then identified as the candidate for the
750 GeV resonance in this model. The decays of this state into
two photons proceed via loops involving the heavy fermions,
as well as those involving the charged scalars and additional
charged vector bosons.

4.2.3 E6-inspired SUSY model with extra U (1)

• Reference: [110]
• Model name: SUSYmodels/E6SSMalt

E6-inspired SUSY models predict extra SM-gauge singlets
and extra exotic fermions, so they immediately have the
ingredients that many authors have tried to use to fit the
diphoton excess. These models are often motivated as a solu-
tion to the μ-problem of the MSSM, because the extra U (1)

gauge symmetry forbids the μ-term, while when one of the
singlet fields develops a VEV at the TeV scale this breaks
the extra U (1) giving rise to a massive Z ′ vector boson and
at the same time generates an effective μ term through the
singlet interaction with the up- and down-type Higgs fields,
λŜ Ĥu Ĥd . The matter content of the model at low energies
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fills three generations of complete 27-plet representations of
E6, which ensures that anomalies automatically cancel.

A number of models of this nature have been proposed
as explanations of the diphoton excess [110,275,463]. The
example we implement here [110] is a variant of the E6SSM
[464,465]. In this version two singlet states develop VEVs
and the idea is that the 750 GeV excess is explained by one
of these singlet states with a loop-induced decay through the
exotic states.

In E6 models the extra U (1) which extends the SM gauge
group is given as a linear combination of U (1)ψ and U (1)χ
which appear from the breakdown of the E6 symmetry as
E6 → SO(10) × U (1)ψ followed by SO(10) into SU (5),
SO(10) → SU (5) × U (1)χ . In the E6SSM and the variant
implemented here the specific combination is,

U (1)N = 1

4
U (1)χ +

√
15

4
U (1)ψ . (4.41)

To allow one-step gauge coupling unification some incom-
plete multiplets must be included in the low energy matter
content. So in addition to the matter filling complete 27 repre-
sentations of E6 there are also two SU (2) multiplets Ĥ ′ and

Ĥ
′
, which are the only components from additional 27′ and

27
′

representations that survive to low energies. All gauge
anomalies cancel between these two states, so they do not
introduce any gauge anomalies. Furthermore, the low energy
matter content of the model beyond the MSSM includes three

generations of exotic diquarks,11 D̂i ,
ˆ̄Di , three generations

of SM singlet superfields Ŝi and extra Higgs-like states Hu
1,2

and Hd
1,2 that do not get VEVs.

The full set of superfields are given in Table 9 along
with their representations under SU (3) and SU (2) and their
charges under the two U(1) gauge groups and the discrete
symmetries, which we will now discuss.

The Z
L
2 symmetry plays a role similar to R-parity in the

MSSM, being imposed to avoid rapid proton decay in the
model. However with this imposed there are still terms in the
superpotential that can lead to dangerous flavour changing
neutral currents (FCNCs). To forbid these, an approximate
Z
H
2 symmetry is imposed. In the original E6SSM model only

Ŝ3, Ĥd and Ĥu were even under theZH
2 symmetry, however in

this variant S2 is also even under this approximate symmetry.
The full superpotential before imposing any discrete sym-

metries is given by

WE6 = W0 + W1 + W2, (4.42)

11 In the original E6SSM these states could be either diquark or lepto-
quark in nature, depending on the choice of a discrete symmetry, but
in the model considered here the allowed superpotential terms for the
decay of these exotic quarks imply they are diquark.

Table 9 The representations of the chiral superfields under the SU (3)C
and SU (2)L gauge groups, and their U (1)Y and U (1)N charges with-

out the E6 normalisation. The GUT normalisations are
√

5
3 for U (1)Y

and
√

40 for U (1)N . The transformation properties under the discrete
symmetries ZH

2 , ZL
2 are also shown, where ‘+’ indicates the superfield

is even under the symmetry and ‘−’ indicates that it is odd under the
symmetry

Field Gen SU (3)C SU (2)L U (1)Y U (1)N Z
H
2 Z

L
2

Q̂i 3 3 2 1
6 1 − +

ûci 3 3 1 − 2
3 1 − +

d̂ci 3 3 1 1
3 2 − +

L̂i 3 1 2 − 1
2 2 − −

êci 3 1 1 1 1 − −
N̂ c
i 3 1 1 0 0 − −

Ŝi 2 1 1 0 5 + +
Ŝ1 1 1 1 0 5 − +
Ĥu 1 1 2 1

2 −2 + +
Ĥd 1 1 2 − 1

2 −3 + +
Ĥu

α 2 1 2 1
2 −2 − +

Ĥd
α 2 1 2 − 1

2 −3 − +
D̂i 3 3 1 − 1

3 −2 − +
D̂ 3 3 1 1

3 −3 − +
L̂4 1 1 2 − 1

2 2 − +
L̂4 1 1 2 1

2 −2 − +

where

W0 = λi jk Ŝi Ĥ
d
j Ĥ

u
k + κi jk Ŝi D̂ j

ˆ̄Dk + hN
i jk N̂

c
i Ĥ

u
j L̂k

+ hUi jk û
c
i Ĥ

u
j Q̂k + hD

i jk d̂
c
i Ĥ

d
j Q̂k + hE

i jk ê
c
i Ĥ

d
j L̂k,

(4.43)

W1 = gQi jk D̂i Q̂ j Q̂k + gqi jk
ˆ̄Di d̂

c
j û

c
k, (4.44)

W2 = gNi jk N̂
c
i D̂ j d̂

c
k + gEi jk ê

c
i D̂ j û

c
k + gDi jk Q̂i L̂ j

ˆ̄Dk . (4.45)

However, with the discrete symmetries imposed and integrat-
ing out the heavy right-handed neutrinos, the superpotential
in this specific variant reduces to,12

WE6SSM variant

= W (μ=0)
MSSM

+
3∑

α=2

3∑
i=1

Ŝα(λα i Ĥ
i
u Ĥ

i
d + κα i D̂

i D̂
i
)

+μ′ Ĥ ′Ĥ ′ + hE
4 j (Ĥd Ĥ

′)êcj (4.46)

12 In the paper proposing this variant to explain the excess [110], the
terms involving the surviving Higgs states on the second line are omitted
from the superpotential.
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One should remember that the Z
H
2 can only be an approx-

imate symmetry as otherwise the exotic quarks could not
decay. In this variant the exotic quarks decay through the ZH

2
violating interactions of W1.

In the paper it is assumed that the singlet mixing can
be negligible and the numerical calculation was performed
under this assumption, neglecting any mixing between the
singlet state which decays to γ γ via the exotic states and the
other CP-even Higgs states from the standard SU (2) dou-
blets. However it is clear that there must be some mixing from
the D-terms, and therefore if that is included one important
check would be to test whether other decays are sufficiently
suppressed. Moreover, the parameters needed to simultane-
ously get a 125 GeV SM-like Higgs state and a 750 GeV
singlet-dominated state are not given. In this respect we note
that the singlet VEVs appear both in the diagonal entries of
the mass matrix and in the off-diagonal entries that mix the
singlet states with the doublet states.

We finally note that other similar E6 models have also
been proposed in the context of the diphoton excess. These
include a model by two authors from the original paper [275],
a model with a different U (1) group at low energies [466],
and a model that is still E6-inspired, but where no extraU (1)

survives down to low energies [269].

5 Study of a natural SUSY explanation for the diphoton
excess

We show in this section how one can use the described setup
to perform easily a detailed study of a new model that aims
at explaining the diphoton anomaly. This model was not pro-
posed before in the literature to explain the diphoton excess
and offers a very rich phenomenology. We will not only dis-
cuss the main phenomenological features of the model, but
we will also show the necessary steps to obtain this informa-
tion with the discussed tools. However, we emphasise once
again that we are not aiming at a thorough exploration of the
entire phenomenology of the model, something that would
be clearly beyond the purpose of this example.

5.1 The model

We are now going to study a SUSY model which enhances the
tree-level Higgs mass due to non-decoupling D-terms. The
model is based on that proposed in Ref. [467] as a natural
SUSY model which allows for light stops compatible with
the measured Higgs boson mass, extended by three gener-
ations of pairs of vector-like quarks and leptons. We want
to achieve a tree-level enhancement of the SM-like Higgs
mass and an explanation of the diphoton excess via the loop-
induced decay of a CP-odd scalar. In addition, we will also

Table 10 Scalars and fermions in the U (1)X -extended MSSM

SF Spin 0 Spin 1
2 Generations U (1)Y SU (2)L SU (3)C U (1)X

q̂ q̃ q 3 1
6 2 3 0

l̂ l̃ l 3 − 1
2 2 1 0

d̂ d̃∗
R d∗

R 3 1
3 1 3 1

2

û ũ∗
R u∗

R 3 − 2
3 1 3 − 1

2

ê ẽ∗
R e∗

R 3 1 1 1 1
2

ν̂ ν̃∗
R ν∗

R 3 0 1 1 − 1
2

Û Ũ∗ U∗ 3 − 2
3 1 3 − 1

2

ˆ̄U ˜̄U Ū 3 2
3 1 3 1

2

Ê Ẽ∗ E∗ 3 1 1 1 1
2

ˆ̄E ˜̄E Ē 3 −1 1 1 − 1
2

Ĥd Hd H̃d 1 − 1
2 2 1 − 1

2

Ĥu Hu H̃u 1 1
2 2 1 1

2

η̂ η η̃ 1 0 1 1 −1

ˆ̄η η̄ ˜̄η 1 0 1 1 1

Ŝ S S̃ 1 0 1 1 0

check whether one can get a broad diphoton resonance in this
model.

The matter field content is shown in Table 10 and the
considered superpotential reads:

W = −Yd d̂ q̂ Ĥd − Ye ê l̂ Ĥd + Yu û q̂ Ĥu

+Yν ν̂ l̂ Ĥu + Yx ν̂ ˆ̄η ν̂ + (μ + λŜ) Ĥu Ĥd

+ Ŝ(ξ + λX η̂ ˆ̄η) + MS Ŝ Ŝ

+1

3
κ Ŝ Ŝ Ŝ + M̃E ê

ˆ̄E + M̃U û
ˆ̄U

+ Ŝ(λe Ê ˆ̄E + λu Û
ˆ̄U ) + Me Ê

ˆ̄E + Mu Û
ˆ̄U

+Y ′
e Ê l̂ Ĥd + Y ′

u Û q̂ Ĥu . (5.1)

We will not make the simplifying assumption that mixings
between the MSSM states and the new vector-like fields can
be neglected. Of course, such mixing could have been for-
bidden by choosing differentU (1)X charges for the new par-
ticles. However, in such case there would be a conserved Z2

symmetry associated to the vector-like states (under which
all vector-like superfields are odd and the rest are even) that
would make the lightest of them absolutely stable. This would
be a problem unless that state is neutral and colourless, and
thus this scenario can only be viable if we also consider addi-
tional singlet vector-like states, such as vector-like partners
for the right-handed neutrinos, and make them lighter than
the other vector-like states. Thus, this setup would predict
two stable particles to make the dark matter. Such a scenario
could also be studied with the tools presented here. However,
we decided not to consider this option in the following.
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The other main ingredients of the model are the general
soft-SUSY breaking terms, which read

−L = [Tdd̃q̃Hd + (Teẽ + T ′
e Ẽ)l̃ Hd + (Tuũ + T ′

uŨ )q̃ Hu

+Tν ν̃l̃ Hu + Tx ν̃η̄ν̃ + (Bμ + TλS)HuHd

+S(tξ + TXηη̄) + BSSS

+1

3
Tκ SSS + S(TE Ẽ

˜̄E + TUŨ
˜̄U )

+BE Ẽ
˜̄E + BUŨ

˜̄U + B̃E ẽ
˜̄E + B̃U ũ

˜̄U + h.c.
]

+q̃†m2
q q̃ + ũ†m2

uũ

+d̃†m2
d d̃ + ẽ†m2

e ẽ + l̃†m2
l l̃ + Ũ †m2

UŨ

+ ˜̄U †m2
Ū

˜̄U + Ẽ†m2
E Ẽ + ˜̄E†m2

Ē
˜̄E

+(Ũ †m2
Uuũ + Ẽ†m2

Ee Ẽ + h.c.) + m2
Hd

|Hd |2
+m2

Hu
|Hu |2 + m2

Hs
|S|2 + m2

η|η|2 + m2
η̄|η̄|2

+(M1λBλB + M2λWλW

+M3λgλg + MXλXλX + M1XλBλX + h.c.) (5.2)

Note that we have included the gaugino mass term M1X

arising from gauge kinetic mixing. All the terms shown in
Eq. (5.2) are automatically added by SARAH based on the
information provided by the user about the particle content
and the superpotential. Several scalar fields acquire VEVs.
We decompose them as

H0
d = 1√

2
(φd + vd + iσd) , H0

u = 1√
2

(φu + vu + iσu) ,

(5.3)

η = 1√
2

(
φη + vη + iση

)
, η̄ = 1√

2

(
φη̄ + vη̄ + iση̄

)
,

(5.4)

S = 1√
2

(φs + vS + iσs) . (5.5)

We define tan β = vu
vd

, v =
√

v2
d + v2

u as well as tan βx = vη

vη̄
,

x =
√

v2
η + v2

η̄ . In addition, the sneutrinos are decomposed

with respect to their CP eigenstates,

ν̃L ,i → 1√
2

(
φL ,i+iσL ,i

)
, ν̃R,i→ 1√

2

(
φR,i + iσR,i

)
,

(5.6)

which in general have different masses due to the Majorana
mass-term YX 〈η̄〉 in the superpotential. Since H0

d and H0
u

carry charges under both U (1) gauge groups, there will be

non-zero Z–Z ′ mixing even in the limit of vanishing gauge
kinetic mixing. The list of particle mixings, which go beyond
the usual MSSM mixings reads

(B,W3, B
′) −→ (γ, Z , Z ′), (5.7)

(φd , φu, φη, φη̄, φs) −→ hi , i = 1 . . . 5, (5.8)

(σd , σu, ση, ση̄, σs) −→ A0
i , i = 1 . . . 5, (5.9)

(φL ,i , φR,i ) −→ ν̃R
j , i = 1 . . . 3, j = 1 . . . 6, (5.10)

(σL ,i , σR,i ) −→ ν̃ I
j , i = 1 . . . 3, j = 1 . . . 6, (5.11)

(B̃, W̃3, H̃
0
d , H̃0

u , X̃ , η̃, ˜̄η, S̃) −→ χ̃0
i , i = 1 . . . 8,

(5.12)

(eL ,i , Ē
∗
i )/(eR,i , Ei ) −→ e j , i = 1 . . . 3, j = 1 . . . 6,

(5.13)

(uL ,i , Ū
∗
i )/(uR,i ,Ui ) −→ ui , i = 1 . . . 3, j = 1 . . . 6,

(5.14)

(ẽL ,i , ẽR,i , Ẽi ,
˜̄Ei ) −→ ẽ j , i = 1 . . . 3, j = 1 . . . 12,

(5.15)

(ũL ,i , ũ R,i , Ũi ,
˜̄Ui ) −→ ũ j , i = 1 . . . 3, j = 1 . . . 12,

(5.16)

The model files which implement this model in SARAH are
available in the SARAH model repository as U1xMSSM3G. A
FlexibleSUSYmodel file for the model is also available in
the current release of FlexibleSUSY. Finally, we provide
all files to reproduce the computations that follow at http://
sarah.hepforge.org/U1xMSSM_example.tar.gz.

5.2 Analytical results with Mathematica

Before we perform a numerically precise study of the model,
we show how already with just SARAH and Mathematica
one can gain a lot of information about a new model.

5.2.1 Consistency checks

The model is initialised after loading it in SARAH via

SARAH automatically performs some basic consistency
checks for the model. For instance, it checks whether the
model is free from gauge anomalies:
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Table 11 Fermions in the
considered model. We show
here the names used by SARAH
during the Mathematica
session as well as the names in
the output files for Monte-Carlo
tools. Here, g denotes a
generation index and c a colour
index

LATEX SARAH Output

χ̃−
i =

(
λ−
i

λ
+,∗
i

)
Cha[{g}] =

(
Lm[{g}]

conj[Lp[{g}]]

)
C

χ̃0
i =

(
λ0
i

λ
0,∗
i

)
Chi[{g}] =

(
L0[{g}]

conj[L0[{g}]]

)
N

diα =
(
DL ,iα
D∗

R,iα

)
Fd[{g, c}] =

(
FDL[{g, c}]

conj[FDR[{g, c}]]

)
d

ei =
(
EL ,i
E∗
R,i

)
Fe[{g}] =

(
FEL[{g}]

conj[FER[{g}]]

)
e

uiα =
(
UL ,iα
U∗

R,iα

)
Fu[{g, c}] =

(
FUL[{g, c}]

conj[FUR[{g, c}]]

)
u

νi =
(

λν,i
λ∗

ν,i

)
Fv[{g}] =

(
Fvm[{g}]

conj[Fvm[{g}]]

)
nu

g̃α =
(

λg̃,α
λ∗
g̃,α

)
Glu[{c}] =

(
fG[{c}]

conj[fG[{c}]]

)
go

One can see that SARAH tests all different combinations
of gauge anomalies and, given that no warning is printed on
the screen, confirms that all of them cancel. Similarly, it also
checks that all terms in the superpotential are in agreement
with all global and local symmetries. More detailed checks
can be carried out by running CheckModel[] when the
initialisation is finished.

After a few seconds, a message is printed telling that the
model is loaded.

5.2.2 Particles and parameters

An overview of all particles and parameters present in this
model is given in Tables 11, 12 and 13. The user has also
access to this information by calling

to get all particles present after EWSB and by calling

to see all existing parameters. Moreover, it is possible to
get similar tables as the ones shown here in LATEX-format for
each model via the commands

5.2.3 Gauge sector

Before we discuss the matter sector or the scalar potential,
we have a brief look at the gauge bosons. We make use of the
mass matrices calculated by SARAH during the initialisation
of the model. We find a handy expression for the mass matrix
of the neutral gauge bosons in the limit of vanishing gauge
kinetic mixing (gX1 = g1X = 0) via
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Table 12 Scalars, vector bosons and ghosts in the considered model. We show here the names used by SARAH during the Mathematica session
as well as the names in the output files for Monte-Carlo tools. Here, t denotes a generation index and c a colour index

LATEX SARAH Output LATEX SARAH Output

d̃iα Sd[{g, c}] sd ũiα Su[{g, c}] su

ẽi Se[{g}] se νii SvIm[{g}] nI

νR
i SvRe[{g}] nR hi hh[{g}] h

A0
i Ah[{g}] Ah H−

i Hpm[{g}] {Hm, Hp}

gαρ VG[{c, lorentz}] g γρ VP[{lorentz}] A

Zρ VZ[{lorentz}] Z Z ′
ρ VZp[{lorentz}] Zp

W−
ρ VWm[{lorentz}] {Wm, Wp}

ηGα gG[{c}] gG ηγ gP gA

ηZ gZ gZ ηZ ′
gZp gZp

η− gWm gWm η+ gWmC gWpC

which reads

⎛
⎜⎝

g2
1v2

4 − 1
4g1g2v

2 1
4g1gXv2

− 1
4g1g2v

2 g2
2v2

4 − 1
4g2gXv2

1
4g1gXv2 − 1

4g2gXv2 1
4g

2
X

(
v2 + 4x2

)
⎞
⎟⎠ . (5.17)

Note, that MassMatrix[VP] and MassMatrix[VZ]
would have given the same result. We can check the eigen-

values of this matrix to first order in v2

x2 using the Series
command of Mathematica

and find{
0,

1

4
(g2

1 + g2
2)v2,

1

4
g2
X (4x2 + v2)

}
(5.18)

As expected, the first two eigenvalues are just the ones of the
SM gauge bosons, while the mass of the new gauge boson is
given by

MZ ′ = 1

2
gX
√

4x2 + v2. (5.19)

We will use this relation in the following to replace x by
MZ ′ in all equations.

5.2.4 Scalar sector

Solving the tadpole equationsWe turn now to the scalar sec-
tor of the model. First, we make a list with a few simplifying
assumptions which we are going to use in the following

Here we assume all parameters to be real, remove any
complex conjugation (conj) and use the Landau gauge (
RXi[_]->0), then we turn off again gauge kinetic mixing
and take the VEVs of η and η̄ to be equal. In the fourth
line, we parametrise vd and vu as usual in terms of v and
tan β. Finally, we set the parameters κ , Tκ , λ, Tλ and Lξ

to zero. We can now solve the tadpole equations, stored by
SARAH in TadpoleEquations[Eigenstates], with
respect to the parameters m2

Hd
, m2

Hu
, m2

η, m2
S and ξ using the

aforementioned assumptions:
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Table 13 Names of parameters in the considered model used by SARAH within Mathematica and in the output for other codes

LATEX SARAH Output LATEX SARAH Output LATEX SARAH Output

g1 g1 g1 g2 g2 g2 g3 g3 g3

gX gX gX gY X g1X gYX gXY gX1 gXY

lw lw lw Llw L[lw] Llw M̃E MtE MtE

B̃E B[MtE] BtE ME MVE mve BE B[MVE] Bmve

μ \[Mu] Mu Bμ B[\[Mu]] Bmu MS MS ms

BS B[MS] Bms M̃U MtU MtU B̃U B[MtU] BtU

MU MVU mvu BU B[MVU] Bmvu Yd Yd Yd

Td T[Yd] Td Ye Ye Ye Te T[Ye] Te

Y ′
e Yep yep T ′

e T[Yep] Tyep λC lambdaC lamc

TλC T[lambdaC] Tlc λE lambdaE lame TλE T[lambdaE] Tle

λH lambdaH lamh TλH T[lambdaH] Tlh κ kappa kap

Tκ T[kappa] Tkap λU lambdaU lamu TλU T[lambdaU] Tlu

Yu Yu Yu Tu T[Yu] Tu Y ′
u Yup yup

T ′
u T[Yup] Tyup Yx Yn Yx Tx T[Yn] Tx

Yν Yv Yv Tν T[Yv] Tv m2
q mq2 mq2

m2
l ml2 ml2 m2

Hd
mHd2 mHd2 m2

Hu
mHu2 mHu2

m2
d md2 md2 m2

u mu2 mu2 m2
uU X muUX2 muux2

m2
e me2 me2 m2

eEX meEX2 meex2 m2
ν mvR2 mv2

m2
η mC12 mC12 m2

η̄ mC22 mC22 m2
S mS2 ms2

m2
UX mUX2 mux2 m2

UXp mUXp2 muxp2 m2
EX mEX2 mex2

m2
EXp mEXp2 mexp2 M1 MassB M1 M2 MassWB M2

M3 MassG M3 MBL MassBX MBp MBB′ MassBBX MBBp

vd vd vd vu vu vu vη x1 x1

vη̄ x2 x2 xS xS xS Zγ Z Z ′
ZZ ZZ

ZW ZW ZW ZW̃ ZfW ZfW φg̃ PhaseGlu pG

ZD ZD ZD ZU ZU ZU Z E ZE ZE

Zi ZVI ZVI Z R ZVR ZVR ZH ZH ZH

Z A ZA ZA Z+ ZP ZP N ZN ZN

U UM UM V UP UP UV UV UV

Ue
L ZEL ZEL Ue

R ZER ZER Ud
L ZDL ZDL

Ud
R ZDR ZDR Uu

L ZUL ZUL Uu
R ZUR ZUR

e e el �W ThetaW TW β \[Beta] betaH

�′
W ThetaWp TWp α−1 v v v

We have saved the solution in the variable sol for further
usage.

Obtaining a 750 GeV pseudo-scalar We use the solution
and our assumptions to get simpler expressions for the mass
matrix of the CP-even (called hh) and CP-odd (called Ah)
scalars:
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These matrices can be expressed as

m2
H �

(
m2,MSSM

H m2,mix
H

(m2,mix
H )T m2,X

H

)
, m2

A �
(
m2,MSSM

A 0
0 m2,X

A

)
(5.20)

with

m2,MSSM
H �

⎛
⎜⎜⎝
tβB(μ) + v2

(
g2

1+g2
2+g2

X

)
4
(
t2β+1

) −B(μ) − tβv2
(
g2

1+g2
2+g2

X

)
4
(
t2β+1

)
−B(μ) − tβv2

(
g2

1+g2
2+g2

X

)
4
(
t2β+1

) B(μ)
tβ

+ t2βv2
(
g2

1+g2
2+g2

X

)
4
(
t2β+1

)

⎞
⎟⎟⎠ , (5.21)

m2,mix
H �

⎛
⎜⎜⎝

1
4gXv

√
4M2

Z ′−g2
X v2

2t2β+2
− 1

4gXv

√
4M2

Z ′−g2
X v2

2t2β+2
0

− 1
4gX tβv

√
4M2

Z ′−g2
X v2

2t2β+2
1
4gX tβv

√
4M2

Z ′−g2
X v2

2t2β+2
0

⎞
⎟⎟⎠ , (5.22)

m2,MSSM
A �

(
tβB(μ) B(μ)

B(μ)
B(μ)
tβ

)
. (5.23)

We omit here the analytical expressions for m2,X
A and m2,X

H because of their length and since they are not needed for the
following brief discussion. The mass matrix for the CP-odd states is block-diagonal since the MSSM part is unchanged, while
we have mixing in the CP-even sector among all five components.13 The additional D-Terms can be found in the MSSM
block, m2,MSSM

H . This also explains our choice of a pseudo-scalar as the resonance behind the diphoton excess: the tree-level
mixing between the scalar singlet and the doublets would cause tree-level decays of a 750 GeV scalar into all kinds of SM
particles. In particular, those into WW and Z Z are constrained and could easily spoil our setup as an explanation of the excess
in this model. Of course, we have to check whether it is possible to obtain a pseudo-scalar of the correct mass, and get the
corresponding scalar sufficiently heavy so as to escape detection. For that purpose, we calculate the eigenvalues of the lower
3 × 3 block of the pseudo-scalar mass matrix, and fix BS by demanding to have a pseudo-scalar of the correct mass:

We now make an arbitrary choice for the numerical values of the remaining parameters, except m2
η̄ and MZ ′ ,

and calculate all CP-even and CP-odd mass eigenvalues for specific values of m2
η̄ and MZ ′ :

The results are

13 The mixing between the MSSM scalars and S is vanishing here only because of our simplifying assumption λ = 0 but is non-zero in general.
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Thus, as expected, we have two massless (up to numeri-
cal errors) states in the CP-odd sector, which are the neutral
Goldstone bosons to be eaten by the Z and Z ′ gauge bosons,
accompanied by a particle with a mass of 750 GeV. In the
scalar sector we find the lightest state with a mass very close
to MZ and another scalar below 1 TeV. However, checking
the composition of the 750 and 825 GeV particles via

we see that the CP-odd state is, as expected, mainly a singlet
while the CP-even one is mainly a X -Higgs (composed by
φη and φη̄). That looks already very promising.

Higgs mass enhancement via non-decoupling D-terms
Now, we want to confirm that one gets non-decoupling D-
terms in this model which cause an enhancement of the tree-
level mass of the SM-like scalar. For this purpose, we define
a simple function which calculates the lightest CP-even mass
for input values of m η̄ and MZ ′ ,

Fig. 13 Contours of the mass of the lightest CP-even scalar in the
model as a function of MZ ′ and mη̄

and create a contour plot using this function. The result is
depicted in Fig. 13, where one sees that for m η̄ � MZ ′ it is
indeed possible to find a tree-level mass well above 100 GeV,
while for mη̄ � MZ ′ the tree-level mass approaches MZ .
Is there a second light scalar? One can now start to play
also with the values we have chosen for num to see how the
eigenvalues of both matrices change. One finds, for instance,

that it is also possible to get a second, relatively light scalar
in the model. With the values

we find a tree-level mass of 38 GeV for the lightest CP-even
scalar, which is mainly a mixture of η and η̄. It will be inter-
esting to see if this scenario is still in agreement with all
experimental constraints and how important the loop correc-
tions are.

How to obtain a broad width? So far, we have not con-
sidered the total decay width of the 750 GeV scalar. The
experimental data shows a slight preference for a rather large
width of about 40 GeV, which is not easy to accommodate in
weakly coupled models, typically requiring a large branching
ratio into invisible states. Therefore, it would be interesting
to see if this can be realised in this model. There are three
possibilities for invisible decays: (i) neutralinos, (ii) (heavy)
neutrinos, (iii) sneutrinos. We are going to consider the third
option here. For this purpose, we have to check two ingredi-
ents: can the mass of the sneutrinos be sufficiently light and
how can the coupling to the 750 GeV scalar be maximised?
To get a feeling for that, we first consider the mass matrix of
the CP-even and CP-odd sneutrinos. We assume that flavour
and left-right mixing effects are negligible. In that case, it is
sufficient to take a look only at the (4,4) entry of the mass
matrices:
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After some simplifications, we get the following expres-
sions from SARAH:

M2
ν̃ I ,ν̃R = 1

8

g2
Xv2

(1 + t2
β)

− 1

8

g2
X t

2
βv2

(1 + t2
β)

+ m2
ν,11 + Y 2

x,11

4g2
X

(4M2
Z ′ − g2

Xv2)

±
(

vSYx,11

2
√

2gX
λC

√
4M2

Z ′ − g2
Xv2

+ 1

2gX

√
4M2

Z ′ − g2
Xv2Tx,11

)
. (5.24)

We see that the terms in the second line, ∝ TxMZ ′ and
∝ vSλCYx , induce a mass splitting between the CP-even and
CP-odd states. Thus, in order to have the decay A → ν̃ I ν̃R

kinematically allowed, these terms must be individually
small or cancel each other. In addition, one has to com-
pensate the large terms ∼MZ ′ in order to get sufficiently
light sneutrinos. This could be done by assuming a negative
m2

ν = − 1
4g2

X
(4M2

Z ′ − g2
Xv2)Y 2

x,11. Of course, we must check

whether this leads to spontaneous R-parity breaking via sneu-
trino VEVs, and for this purpose one can use Vevacious,
see below.

We can now check the vertex Aν̃ I ν̃R using the same
assumptions:

and we obtain after some simplification14

14 We give for simplicity the results in LATEXformat. The SARAH
internal conventions for the vertices are the following: the
results for each vertex are returned as arrays in the format
{Particles,{Coeff1,Lor1},{Coeff2,Lor2}}: first, the
involved particles with the names for their generation and colour indices
are shown and then the coefficients for the different Lorentz structures
are given. For the example of a triple scalar vertex, {Coeff2,Lor2} is
absent, and Lor1 is just 1. For vertices involving fermions, PL and PR
are used for the polarisation operators.

1

2

1√
2gX

λC

√
4M2

Z ′ − g2
Xv2Yx,11Z

A
35

+ λCvSYx,11Z
A
33 − √

2Z A
34Tx,11. (5.25)

If the pseudo-scalar is a pure singlet, only the term ∝ Z A
35

contributes. This term is independent of vS and Tx , i.e. we
can reduce the mass splitting between the CP-even and CP-
odd sneutrinos by adjusting these parameters without having
a negative impact on the coupling strength to the 750 GeV
scalar.

5.2.5 Vector-like sector

Before we finish the analytical discussion of the masses, we
briefly discuss the extended matter sector. The mass matrices
responsible for the mixing between the SM fermions and the
vector-like fermions can be obtained from SARAH by calling

which return

me =
(

vdYe√
2

− vdY ′
e√

2
0 λevS√

2
+ Me

)
, mu =

(
vuYu√

2
vuY ′

u√
2

0 λuvS√
2

+ Mu

)
.

(5.26)

Thus, for large λi (i = u, e) and vS , there are two impor-
tant sources for the mass of the vector-like states. The full
sfermion matrices containing the new scalars are too lengthy
to be shown here. We only check the new mass matrix for
one generation of the vector-like selectrons which are the 7th
and 10th gauge eigenstates. We can pick the values via

and obtain by setting all parameters to be diagonal⎛
⎜⎜⎜⎝

D̃+4
(
t2β+1

)(
λ2
ev

2
S+2

√
2λeMevS+2m2

E+2M2
e

)
8
(
t2β+1

) BE + λe

(
λX M2

Z ′
4g2

X
− λX v2

16 + ξ + √
2MSvS

)

BE + λe

(
λX M2

Z ′
4g2

X
− λX v2

16 + ξ + √
2MSvS

)
4
(
t2β+1

)(
λ2
ev

2
S+2

√
2λeMevS+2m2

Ē
+2M2

e

)
−D̃

8
(
t2β+1

)

⎞
⎟⎟⎟⎠ (5.27)

where we have defined D̃ = (t2
β − 1)v2(2g2

1 + g2
X ). There is

a potentially dangerous term λeξ which rapidly increases for
increasing λe. To keep all scalar masses positive, it is neces-
sary to choose a rather large BE as well. Therefore, we are
going to choose always

BE = −λe(ξ + √
2MSvS), BU = −λu(ξ + √

2MSvS)

(5.28)

in our numerical study to circumvent tachyonic scalars.
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5.2.6 RGEs and gauge kinetic mixing

We have so far made the simplifying assumption that gauge
kinetic mixing vanishes. However, if the two Abelian gauge
groups are not orthogonal, kinetic mixing would be generated
via RGE running even if it vanishes at some energy scale.
Thus, one of the first checks on the RGEs of the model we can
make is whether the two U (1) gauge groups are orthogonal.
For this purpose, we first calculate the one-loop RGEs with
SARAH via

We have chosen one-loop RGEs only to save time. With-
out the TwoLoop->False flag, the full two-loop RGEs
would have been calculated automatically. Other options for
CalcRGEs are:

• ReadLists: If the RGEs have already be calculated,
the results are saved in the output directory. The RGEs
can be read from these files instead of doing the complete
calculation again.

• VariableGenerations: Some theories contain
heavy superfields which should be integrated out above
the SUSY scale. Therefore, it is possible to calculate
the RGEs assuming the number of generations of spe-
cific superfields as free variable to make the depen-
dence on these fields obvious. The new variable is named
NumberGenerations[X], whereX is the name of the
superfield.

• NoMatrixMultiplication: Normally, the β-
functions are simplified by writing the sums over gen-
eration indices as matrix multiplication. This can be
switched off using this option.

• IgnoreAt2Loop: The calculation of 2-loop RGEs for
models with many new interactions can be very time-
consuming. However, often one is only interested in
the dominant effects of the new contributions at the 1-
loop level. Therefore, IgnoreAt2Loop -> $LIST
can be used to neglect parameters at the two-loop level
The entries of $LIST can be superpotential or soft SUSY-
breaking parameters as well as gauge couplings.

• WriteFunctionsToRun: Defines if a file should be
written to evaluate the RGEs numerically in
Mathematica

We can now check the entries in BetaGauge and find

16π2βgY = 15g3
Y + 15gY g2

Y X

+ 16

√
3

5
gY gY X gX + 32

√
3

5
g2
Y gXY

+ 16

√
3

5
g2
Y X gXY + 15gY X gX gXY

+ 15gY g2
XY , (5.29)

16π2βgX = 15g2
Y X gX + 15g3

X + 16

√
3

5
gY gX gXY

+ 15gX g2
XY

+ gY X

(
32

√
3

5
g2
X + 15gY gXY + 16

√
3

5
g2
XY

)
,

(5.30)

16π2βgXY = 15g3
Y X + 32

√
3

5
g2
Y X gX + 15gY X g2

X

+ g2
Y

(
15gY X + 16

√
3

5
gX

)

+ gY

(
16

√
3

5
gY X gXY + 15gX gXY

)
,

(5.31)

16π2βgY X = 15g3
Y X + 32

√
3

5
g2
Y X gX + 15gY X g2

X

+ g2
Y

(
15gY X + 16

√
3

5
gX

)

+ gY

(
16

√
3

5
gY X gXY + 15gX gXY

)
.

(5.32)

The standard normalisation factor
√

5/3 for the hypercharge
has been included. One can see that the β-functions for gY X

and gXY are non-zero even in the limit gXY , gY X → 0, i.e.
these couplings will be induced radiatively. Thus, in general
one has not only two couplings g1 and gX in this model, but
a gauge coupling matrix G defined as

G =
(
gYY gXY
gY X gXX

)
. (5.33)

In the limit of vanishing kinetic mixing, gY X = gXY = 0,
the relations gYY = g1 and gXX = gX hold. Even if gauge
kinetic mixing is present, one has the freedom to perform a
change in basis to bring G into a particular form. The most
commonly considered cases are the symmetric basis with
gXY = gY X and the triangle basis with gY X = 0. The tri-
angle basis has the advantage that the new scalars do not
contribute to the electroweak VEV, and the entire impact of
gauge kinetic mixing is encoded in one new coupling g̃. The
relations between gi j (i, j = X,Y ) and g1, gX , g̃ are [468]

123



516 Page 36 of 57 Eur. Phys. J. C (2016) 76 :516

g1 = gYY gXX − gXY gY X√
g2
XX + g2

XY

, (5.34)

gX =
√
g2
XX + g2

XY , (5.35)

g̃ = gY X gXX + gYY gXY√
g2
XX + g2

XY

. (5.36)

It is interesting to see how large g̃ is naturally. With ‘natu-
rally’ we mean under the assumption that the off-diagonal
gY X and gXY couplings vanish at some high scale � and are
generated by RGE running down to the SUSY scale. Thus, in
this setup, the size of gauge kinetic mixing is a function of �

and gX at this scale. We can write a simple Mathematica
function to get a feeling for the off-diagonal gauge couplings:

In the first line, we load the file written by SARAH which
provides the RGEs in a form which Mathematica can
solve. This file also contains the function RunRGEs that can
be used to solve the RGEs numerically. As boundary condi-
tion, we used g1 = 0.45 at the scale 1 TeV. After the running
we rotate the couplings to the basis where gXY vanishes. We
can make a contour plot via

and get the result shown in Fig. 14. Thus, we find that at the
SUSY scale the gauge mixing coupling g̃ is negative and not
much smaller than an ordinary gauge coupling unless � is
assumed to be very small.

Fig. 14 Gauge kinetic mixing g̃ at the SUSY scale as a function of the
high energy scale �, where it is assumed to vanish, and of the coupling
gX (�)

5.2.7 Boundary conditions and free parameters

For the subsequent numerical analysis we are going to
assume some simplified boundary conditions applied at the
SUSY scale:
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m2
q = m2

d = m2
u = m2

l = m2
e = m2

E = m2
Ē

= m2
U = m2

Ū
≡ 1m2

SUSY , (5.37)

λe = 1λE , λu ≡ 1λU , (5.38)

Me = 1ME , Mu ≡ 1MU , (5.39)

Ti = A0Yi (i = {u, e, d}), T ′
i = A0Y

′
i (i = {u, e}),

Ti = A0λi (i = {U, E}), (5.40)

Tλ = Aλλ, TX = AXλX , (5.41)

M1 = M2 = 1

2
M3 = MX ≡ Mλ. (5.42)

In addition, we can set Yν = 0 since this parameter is highly
constrained to be small by the small neutrino masses. In addi-
tion, we set the mixing parameters m2

eE , m2
uU , M̃E , M̃U , B̃E ,

B̃U , M1X to zero and also assume vanishing λ, κ , and Tκ .
However, we stress that this is just done to keep the following
discussion short and simple. All effects of these parameters
can be included without any additional efforts. Thus, the free
parameters mainly considered in the following are

mSUSY , Mλ, μ, Bμ, A0, tan β,

gX , g1X , MZ ′ ,m η̄, tan βX , λX , AX ,Yx ,

MS, BS, vs, Aλ,

λE , λU , ME , MU ,Y ′
u,Y

′
e.

The tadpole equations are solved for m2
Hd

, m2
Hu

, m2
η, m2

S and
ξ , while BE and BU are fixed via Eq. (5.28).

5.3 Analysis of the important loop corrections to the Higgs
mass

We now turn to the numerical analysis of this model. In the
first step, we have written a SPheno.m file for the boundary
conditions, see Sect. 5.2.7, and generated the SPheno code
with the SARAH command

We copy the generated Fortran code to a new sub-directory
of SPheno-3.3.8 and compile it via

We now have an executable SPhenoU1xMSSM which
expects the input parameters from a file called
LesHouches.in.U1xMSSM. TheSPheno code provides
many important calculations which would be very time-
consuming to be performed ‘by hand’ for this model, but
could be expected to be relevant. A central point is the cal-
culation of the pole mass spectrum at the full one-loop (and

partially two-loop) level. In particular, the loop corrections
from the vector-like states are known to be very important.
However, the focus in the literature has usually been only
on the impact on the SM-like Higgs. We can automatically
go beyond that and consider the corrections to the 750 GeV
state as well. Moreover, SPheno calculates all additional
two-loop corrections in the gaugeless limit including all new
matter interactions. Thus, we can check the impact of the
vector-like states even at two-loop level. These effects have
not been studied in any of the SUSY models proposed so
far to explain the diphoton excess. Of course, SPheno also
makes a very precise prediction for the diphoton and digluon
decay rate of all neutral scalars as described in Sect. 3.5, and
it checks for any potential decay mode. Thus, it is impossible
to miss any important decay as sometimes has happened in
the literature when discussing the diphoton excess. Finally,
there are also other important constraints for this model like
those from flavour observables or Higgs coupling measure-
ments. As will be shown in the next sections, all of this can
be checked automatically withSPheno and tools interacting
with it.

If not mentioned otherwise, we make the following choice
for the input parameters

mSUSY = 1.5 TeV, Mλ = 1 TeV,

tan β = 20, tan βx = 1, gX = 0.5, MZ ′ = 3 TeV,

m η̄ = 2 TeV,

μ = 1 TeV, Bμ = (1 TeV)2, vS = 0.5 TeV,

MS = −0.1 TeV, BS = 3.895 TeV2,

λX = −0.2, AX = 1 TeV, λE = λU = 1,

ME = 0.4 TeV, MU = 1 TeV.

5.3.1 New loop corrections to the SM-like Higgs

In this model we have two new important loop corrections
to the SM-like Higgs: (i) the corrections from vector-like
states, proportional to Y ′

u and Y ′
e, and (ii) the new corrections

from the extended gauge sector. The corrections from vector-

like (s)tops up to two-loop have been discussed in detail in
Ref. [426] using the SARAH/SPheno framework. There are
several important effects which are often neglected in stud-
ies of vector-like states which only make use of the one-loop
effective potential: the momentum effects at one-loop, the
two-loop corrections, and the shift of the top-Yukawa cou-
pling. In general, the user does not need to worry about these
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details because SARAH/SPheno take care of them automat-
ically. However, it might be interesting to have an intuitive
feeling about the size of the different effects. Since it demands
some ‘hacking’ of the code to disentangle the calculation in
that way, we are not making this analysis here, but we briefly
summarise the main results of Ref. [426] in Fig. 15. We see
that all these effects can alter the Higgs mass by several GeV.
Thus, an estimated uncertainty of about 2–3 GeV when using
only the one-loop effective potential approximation is usu-
ally over optimistic.

Furthermore, in models with non-decoupling D-terms the
new loop corrections are usually neglected in the literature.
Therefore, we are going to check whether this is a good
approximation or not. For this purpose we show the SM-
like Higgs pole mass at tree and one-loop level as a function
of gX for two different values of MZ ′ . Since SPheno per-
forms the two-loop corrections in the gaugeless limit, addi-
tional corrections from the extended gauge sector are not
included at two-loop, and we concentrate on the one-loop
effects here. For this purpose, we use the different flags in
the Les Houches input file from SPheno to turn the cor-
rections at the different loop levels on or off:

Here, A and B are either 1 or 0. With flag 55 the
entire loop-corrections to all masses can be turned on (1)
or off (0), while flag 7 only skips (1) or includes (0) the
two-loop corrections in the Higgs sector. The results are
shown in Fig. 16. All scans have been performed using
the Mathematica package SSP [469] for which SARAH
already writes a template input when generating theSPheno
code (SSP_Template.m.U1xMSSM) for a given model.
We see that the tree-level mass rises quickly with increasing
gX . However, for both MZ ′ values this shift is compensated to
some extent when one-loop corrections are included. Thus,
the inclusion of non-decoupling D-terms only at tree-level
would overestimate the positive effect on the SM-like Higgs
mass by 20–30 %. In addition, we also see that off-diagonal
gauge couplings of a realistic size arising from gauge kinetic
mixing reduce the positive effect from the non-decoupled
D-terms on the Higgs mass by a few GeV.

5.3.2 Loop corrections to the 750 GeV scalar

There are also important loop corrections to all other scalars
in the model if large Yukawa-like couplings are present. We
discuss this briefly for the 750 GeV pseudo-scalar: in Fig. 17,
the mass at tree, one- and two-loop level for varying λV ≡
λe = λu for two different values of mSUSY , 1.5 and 2.5 TeV,
is given. For mSUSY = 1.5 TeV there is only a moderate
difference between tree-level, one- and two-loop for λV →
0, but for λV of O(1) the one-loop corrections cause a shift by
100 GeV and more, which is compensated to some extent by
the two-loop corrections. For larger mSUSY we see already
a large positive shift for small λV , which quickly increases
and reaches 300–400 GeV for λV ∼ 0.8. For even larger
values of λV , the difference between tree-level and the loop
corrected mass becomes smaller. Still, the overall shift is
more than 100 GeV, and this would be highly overestimated
by only including one-loop corrections. As we will see in the
next section, one needs λV ∼ O(1) to explain the diphoton
signal. For this value, a naive tree-level analysis gives a mass
for the lightest CP-odd state which is far off the correct value.

Thus, one has to be much more careful with the choice for
BS .

5.4 Diphoton and digluon rate

We now discuss the diphoton and digluon decay rate of the
pseudo-scalar, and its dependence on the new Yukawa-like
couplings. As we have just seen, large couplings induce a
non-negligible mass shift. Therefore, it is necessary to adjust
BS carefully to get the correct mass, 750 GeV, after including
all loop corrections. This can be done by SSP, which can
adjust BS for each point to obtain the correct mass within
5 GeV uncertainty. The results for the calculated diphoton
and digluon rate at LO and with the higher order corrections
discussed in Sect. 3.5 are shown in Fig. 18. In order to see
the size of the higher order corrections, one can use the flag
521 in SPheno to turn them on and off
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Fig. 15 Top left light Higgs mass as a function of Yt ′ (which corre-
sponds to Y ′

u,33 in this model) with all other entries of Y ′
u vanishing. The

red line corresponds to the effective potential calculation at one-loop,
orange is the one-loop corrections with external momenta but neglect-
ing the new threshold correction stemming from vector-like states, blue
is the full one-loop calculation including the momentum dependence
and all thresholds, and green includes the dominant two-loop correc-
tions together with the full one-loop correction. Top right impact of
the threshold corrections (red), the momentum dependence at one-loop

(orange) and the two-loop corrections (green), given as the difference
�mh = mh−mh(1L, p2 �= 0, all thresholds).Bottom left absolute size
of the one- (blue) and two-loop (green) corrections stemming from the
vector-like states. For better readability we re-scaled the two-loop cor-
rections by a factor of 10. Bottom right relative importance of the one-
(blue) and two-loop (green) corrections normalised to the size of the
purely MSSM-like corrections. The solid lines are for tan β = 10 and
the dashed ones are for tan β = 2. Here, a mass of 1 TeV for the
vector-like quarks was assumed. These plots are taken from Ref. [426]

Fig. 16 Mass of the SM-like
Higgs as a function of gX at
tree-level (dashed) and one-loop
(full line). The red lines are
without gauge-kinetic mixing,
for the green ones we set
g1X = 1

5 gX . MZ ′ on the left is 3
and 4 TeV on the right. On the
bottom we show the difference
�mh ≡ mh(gX ) − mh(gX = 0)

at tree-level (dashed) and
including loop corrections (full)
for the case with gauge kinetic
mixing (green) and without
(red)
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Fig. 17 Mass of the CP-odd scalar with a tree-level mass of 750 GeV (dotted), at one-loop (dashed) and two-loop (full) for a variation of
λV ≡ λe = λu . On the left we set mSUSY = 1.5 TeV, on the right mSUSY = 2.5 TeV

This can also be achieved in FlexibleSUSY by setting
a flag in the generated C++ code as desired. Note that, as dis-
cussed in Sect. 3.5, there is close agreement for the diphoton
and digluon effective vertices computed using SPheno and
FlexibleSUSY. Therefore we present here only the results
obtained usingSPheno. Nevertheless, it might be often help-
ful to compare the results between both codes since they use
a slightly different matching and renormalisation procedure
which results in some differences in the mass spectrum and
consequently also in the calculated decays and branching
ratios. Therefore, these differences can be used as a rough
estimate of the theoretical uncertainty of the different calcu-
lations.

One finds the expected behaviour: the partial widths rise
quadratically with the coupling. For about λV � 1.0 one has
�(S → γ γ )/MS ∼ 10−6, which is necessary to explain
the observed excess. In Fig. 18 we also show a comparison
between a purely LO calculation and the one including the
higher order QCD corrections described in Sect. 3.5. There is
no change for the decay into two photons, because its NLO
corrections for a pseudo-scalar are non vanishing only for
mA > 2MF . Instead, the digluon width is enhanced by a fac-
tor of 2 when including NLO and NNLO QCD corrections.
This also changes the ratio of the digluon-to-diphoton width
from about 10 (LO only) to 20 (including higher orders).

5.5 Constraints on choice of parameters

5.5.1 Singlet-doublet mixing

So far, we made some strong assumptions about some param-
eters in this model. In particular, we set the coupling between
the singlet and the two Higgs doublets λ = 0. This raises
the question how sensitive the results are to this choice. For
this purpose, we can test what happens if we slightly devi-
ate from it. The branching ratios of the CP-odd scalar of
750 GeV mass, which is nearly a pure singlet, as a function

of λ are shown in Fig. 19. For comparison we also show the
branching ratios for the CP-even scalar with a mass around
800 GeV. This particle is mainly a mixture of η and η̄ with
a small singlet component. For both particles we depict the
branching ratios when calculating only tree-level masses and
when including loop-corrections. At the tree level we find
that the impact of λ on the branching ratios of A is very
small. This does not change much when including the loop
corrections to the pseudo-scalar rotation matrix. On the other
hand, for vanishing λ we already have a large branching ratio
of the CP-even scalar into hh even at tree level. Moreover,
the decay modes into two massive vector bosons or t t̄ at
tree level increase very quickly with λ and for λ > 0.01 they
already dominate. At one-loop level, the large dependence on
λ is no longer visible, because for very small λ the branch-
ing ratios into massive SM vector bosons and fermions are
already large. This can be seen in Fig. 20 where we compare
the doublet fraction of the two states at tree level and one
loop. In general, the behaviour shows that a CP-odd scalar
might be a much less fine-tuned candidate for the observed
excess.

5.5.2 Constraints from Higgs coupling measurements

We have seen in theMathematica session that it is possible
to obtain two light scalars at tree-level. One question is: is this
also possible when including all loop contributions? In order
to address this question we change some input parameters to

mSUSY = 1.75 TeV, tan β = 20, mη̄ = 1 TeV,

MZ ′ = 2.5 TeV, vS = 3.5 TeV,

BS = 45000 GeV2, λX = −0.3,

AX = 750 GeV.

The pole masses and the doublet fraction of two lightest CP-
even states as a function of tan βX is shown in Fig. 21. We find
the very strong dependence on tan βX , known in many U (1)

extensions [468,470,471]. One difference here is that, due
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Fig. 18 Partial widths into two photons (left) and two gluons (right) of
the lightest pseudo-scalar, normalised to the mass MS . BS was adjusted
to keep the mass constant within (750 ± 5) GeV. The solid lines were

drawn including higher order QCD corrections to loop induced decays,
the dashed ones at leading order only

Fig. 19 Branching ratios of the 750 GeV CP-odd particle (left), and
a CP-even scalar (right) close in mass as function of λ. In the first
row the tree-level rotation matrices are used, while in the second row

the rotation matrices including loop corrections are used. Here, we set
Aλ = 1 TeV. The colour code is as follows: γ γ (pink), gg (red), hZ
(blue), t t̄ (orange), hh (black), Z Z (purple), W+W− (green)

to the mixing with the singlet, the light state in the extended
sector does not become massless for tan βX = 1, but for
small deviations from it. We see in Fig. 21 that the SM-like
Higgs gets a positive mass shift after the level crossing, while
the mass of the lightest state drops very quickly. Of course,
it is important to know if such light Higgs-like particles are
compatible with all limits from Higgs searches at LEP, Teva-
tron and the LHC. For this purpose, we can make use of
HiggsBounds, which checks whether the decay rates of a

scalar into SM states are compatible with the observations at
all experiments performed so far. If any of these rates is above
1 (normalised to the SM expectation), such a parameter point
would be ruled out. Similarly, we can use HiggsSignals
to obtain a χ2 estimator for each parameter point, based on
how well the measured Higgs properties are reproduced. In
order to use HiggsBounds and HiggsSignals, we set
the flag
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Fig. 20 Doublet fraction of the 750 GeV pseudo-scalar (green) and
the 800 GeV scalar (red) at tree-level (dashed lines) and including loop
corrections (full lines), as function of λ

in the input file for SPheno. In this way, SPheno writes
out all files which are necessary to run HiggsBounds
and HiggsSignals via the effective couplings input
mode (effC). However, there is one caveat: SPheno does
not automatically write the file MHall_uncertainties
which gives an estimate for the theoretical uncertainty in the
mass prediction of all scalars. The reason is that SPheno
cannot do such an estimate automatically. However, if this
file is missing,HiggsBounds andHiggsSignalswould
assume that the uncertainty is zero. Therefore, we add this
file by hand and assume a 3 GeV uncertainty for all masses.
We can now use this setup to make a scan in the (tan βX ,λ)
plane, for instance by using the SSP option to automatically
call HiggsBounds and HiggsSignals during a param-
eter scan. The results are shown in Fig. 22. One can see that
both, the discovery potential and the χ2 value, are very sensi-
tive on small changes in these two parameters. The reason is
mainly the large dependence of the masses of the two lightest
scalars and their mixing. One sees that the best χ2 value is
found close to the tan βX range where the SM-like particle
is the second lightest CP-even state, and the lightest one is

about 80 GeV. In addition, for a very small stripe close to
λ = 0 also points with very light scalars with masses below
40 GeV pass all constraints, but for slightly larger values of
λ the mixing already becomes too large and the points are
excluded by e+e− → (h1)Z → (bb̄)Z from LEP searches.

5.5.3 Large decay width and constraints from vacuum
stability

We have already considered the possibility to enhance the
total decay width of the CP-odd scalar via decays in pairs of
right-sneutrinos. In our tree-level analysis with SARAH we
found that one can reduce the mass splitting between the two
mass eigenstates by demanding

Tx = − 1√
2
λXvSYx . (5.43)

In addition, as already discussed above, one has to use a
negative soft-mass for the sneutrinos,

m2
ν = − Y 2

x

4g2
X

(
4M2

Z ′ − g2
Xv2
)

, (5.44)

to get the states light enough. This immediately raises two
questions: (i) how large can the total width be for large values
of Yx? (ii) Is the electroweak vacuum stable or not? First of
all, we notice that a negative m2

ν does not necessarily imply
spontaneous R-parity violation, as shown in Ref. [472], in
contrast to some claims in this direction in the previous lit-
erature. However, the danger of disastrous vacuum decays
increases, of course, with decreasing m2

ν . Therefore, we use
Vevacious to check the stability of the potential. For this
purpose, we have written a second SARAH model file where
we include the possibility of VEVs for the right sneutrinos.
We also added in this new implementation those mixings
among states which were forbidden by R-parity conserva-
tion. This is actually necessary because Vevacious calcu-
lates the one-loop corrections to the effective potential and
the full mass matrices are required. The Vevacious model
file is generated via

We can now run a point with SPheno. If we turn on

we can pass the SPheno spectrum file in a second step to
Vevacious, which finds all minima of the potential with
the additional VEV. If the global minimum is not the local
one found by SPheno with correct EWSB, Vevacious
uses CosmoTransitions [473] to get the life-time of
‘our’ vacuum. If our survival probability is found to be below
10 %, we label the points as short-lived. Metastable points
with a longer life-time are called long-lived. We choose the
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Fig. 21 Left the masses of the two lightest CP-even eigenstates as a
function of tan βX at tree-level (dotted), one-loop (dashed) and two-
loop (full green line). Right the corresponding doublet fraction of the

lightest (blue) and second lightest (red) scalar at tree-level (dotted),
one-loop (dashed) and two-loop (full) levels

following set of input parameters15

mSUSY = 2.5 TeV, tan β = 10, tan βx = 1, gX = 0.5,

MZ ′ = 2.5 TeV, m η̄ = 1 TeV, vS = 0.5 TeV,

BS = 755000 GeV2, λX = −0.4, AX = 0.4 TeV.

The final result is summarised in Fig. 23.16 To maximise
the effect on the total width, we take all sneutrinos to be
degenerate and with the same coupling to the 750 GeV scalar.

We see that we can get a large total width of the pseudo-
scalar for large diagonal entries in Yx . Up to values of Yx
of 0.25, which corresponds to a total width of 15 GeV, the
vacuum is absolutely stable. One can even reach Yx ∼ 0.36
(� ∼ 30 GeV) before the life-time of the correct vacuum
becomes too short. The dependence of the tunnelling time on
the value of m2

ν is shown in the middle of Fig. 23. One might
wonder how dangerous this vacuum decay is, since sponta-
neous R-parity violation is not a problem per se. However,
we show also in the right plot in Fig. 23 that the electroweak
VEV v changes dramatically in the global minimum. There-
fore, these points are clearly ruled out.

Even if we cannot reach a width of 45 GeV with the chosen
point, we see that the principle idea to enhance the width is
working very well. Thus, with a bit more tuning of the param-
eters, one might even be able to accommodate this value.
Furthermore, as the diphoton rate decreases with increasing
total width, the relevant couplings or masses would need to
be adjusted in order to maintain the explanation of the γ γ

excess. However, this is beyond the scope of this example.

15 This choice might be a bit unlucky but shows the dangers of the two-
loop effective potential calculation: in the gauge-less limit, one of the
pseudo-scalars has a tree-level mass close to 0. This causes divergences
(‘Goldstone catastrophe’) [474,475] and makes it necessary to turn off
the 2L corrections in SPheno via the flag 7 set to 1.
16 For this example we had to turn off the thermal corrections to the tun-
nelling by inserting vcs.ShouldTunnelThermally = False
in Vevacious.py because CosmoTransitions failed otherwise
to calculate the tunnelling time in the six-dimensional potential.

We emphasise that, since the large coupling responsible for
the large width is a dimensionful parameter, it will not gen-
erate a Landau pole. Thus, the large width hypothesis does
not necessarily point to a strongly coupled sector close to the
observed resonance.

5.5.4 Dark matter relic density

We have seen in the last section that light sneutrinos are a
good possibility in this model to enhance the width of the
750 GeV particle. Of course, it would be interesting to see
if they can also be a dark matter candidate. For this purpose,
we can implement the model in MicrOmegas to calculate
the relic density and to check current limits from direct and
indirect detection experiments. In order to implement the
model inMicrOmegas, it is sufficient to generate the model
files for CalcHep with SARAH via

and copy the generated files into the work/models
directory of a newMicrOmegas project.SARAH also writes
main files which can be used to run MicrOmegas. For
instance, the file CalcOmega.cpp calculates the dark mat-
ter relic density and writes the result as well as all impor-
tant annihilation channels to an external file. This informa-
tion can then be stored when running a parameter scan. The
parameters are easily exchanged betweenMicrOmegas and
a SARAH-based spectrum generator by copying the spectrum
file into the main directory of the current MicrOmegas
project directory.17 However, it is important to remember that
MicrOmegas cannot handle complex parameters. There-
fore, one has to make sure, even in the case without CP viola-
tion, that all rotation matrices of Majorana fermions are real.
This can be done by using the following flag for SPheno:

17 If the spectrum file is not called SPheno.spc.$MODEL, one can
change the file-name by editing the fourth line in func1.mdl written
by SARAH.
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Fig. 22 First row on the left, we show the mass of the lightest CP-
even scalar in the (tan βX , λ) plane. On top of this, we give the con-
tour lines for constant values of the doublet fraction of the lightest
scalar (orange lines with red labels). On the right we show the results
from HiggsBounds and HiggsSignals (white contour lines with
bold labels for constant χ2 divided by the number of considered Higgs

observables: 81) in the same plane. The red shaded regions are excluded
by Higgs searches. Second row zoom into the region with tan βX close
to 1. On the left the mass of the two lightest CP-even scalars are shown.
The plot on the right provides the same information as the one in the
first row
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Fig. 23 Left total width of the 750 GeV particle as function of the
diagonal entries in Yx . The stability of the vacuum has been checked
with Vevacious: the green region is absolutely stable, in the blue
region the vacuum is unstable but long-lived, while in the red region
the EW vacuum would decay too fast. Middle the life-time τ in ages of

the universe, τ0, as a function of the potential difference between the
electroweak minimum and the global one. Note that the largest value
Vevacious returns is 1030. Right the value of the electroweak VEV
v at the global minimum of the potential as function of the diagonal
entries of m2

ν

Fig. 24 Dark matter relic density �h2 (solid lines) of the lightest sneu-
trino and total width of the 750 GeV scalar (dashed lines) as function
of Yx . For the green line the relation Eq. (5.44) was used, while the red
and blue lines deviate from this relation by ±0.4 %. The yellow shaded
region is the 3σ band of Planck + WP + hihgL + BAO [476]

The results from a small scan18 are shown in Fig. 24.
Here, we have used again the condition of Eq. (5.44) as well
as very small deviations from it. One can see that the impact
of this small variation on the total width is marginal, but
the relic density is clearly affected. Thus, with some tun-
ing of the parameters one can expect that it is possible to
explain the dark matter relic density and the total width by
light right-handed sneutrinos. However, also finding such a
point is again beyond the scope of the example here.

Moreover, there are plenty of other dark matter candidates
which mainly correspond to the gauge eigenstates S̃, X̃ , η̃,
˜̄η beyond the ones from the MSSM. The properties of all
of them could be checked with MicrOmegas as well. A
detailed discussion of neutralino and sneutrino dark matter
in U (1) extensions of the MSSM and different mechanism

18 The relic density calculation for this model can be very time-
consuming, especially for the sneutrinos where a large number of co-
annihilation channels have to be calculated: the first parameter point
might take several hours, all following points should take no longer
than seconds, if no new channels are needed.

to obtain the correct abundance was given for instance in
Ref. [477].

5.5.5 Flavour constraints

As mentioned above, we decided to include in this model
mixing terms between the extra vector-like fermions and the
MSSM particles in order to let the new states decay. In this
way, we have a safe solution to circumvent any potential cos-
mological problem. If one assumes the new coupling matrices
to have a generic form, i.e. large entries of O(1), including
off-diagonal ones as well, they can trigger flavour violation
effects. For instance, let us assume that Y ′

e has the following
form

Y ′
e =

⎛
⎝ X α γ

α X β

γ β X

⎞
⎠ , (5.45)

with degenerate diagonal entries X , and flavour violating
entries α, β, γ . We can now check how strong the constraints
on α, β, γ would be for given X . For this purpose, we use
the results from SPheno for Br(μ → 3e), Br(τ → 3μ),
Br(τ → 3e), and μ–e conversion in Ti and Au, and compare
the results with the current experimental limits, see Fig. 25.
We find, for instance for X = 0.1, that α must be smaller than
∼10−9, while the limits on β, γ , obtained from τ decays, can
still be as large as O(10−6).

If other vector-like states mixing with the left-handed
quarks or the right-handed down-like quarks are present –
as would be the case for instance when assuming 5 or 10-
plets of SU (5) – there would also be stringent constraints
on their couplings: they would cause tree-level contributions
to �MBs . Since these observables are also calculated by
SPheno, one can easily check the limits on models featuring
those states.
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Fig. 25 Left Br(μ → 3e) (green), and μ–e conversion in Ti (blue) or Au (orange). Right Br(τ → 3μ) (green), Br(τ → 3e) (black). The dashed
lines are the current experimental limits [478–481]. Here, we used X = 0.1

5.6 Z ′ mass limits

So far, we have picked a Z ′ mass of at least 2.5 TeV. Of
course, we have to check that this is consistent with current
exclusion limits. Recent exclusion limits for pp → Z ′ →
e+e− have been released by ATLAS using 13 TeV data and
3.2 fb−1 [482]. To compare the prediction for our model with
these numbers, we can use the UFO model files generated by
SARAH via

and add them toMadGraph. For this purpose, we copy the
SARAHgenerated files to a subdirectorymodels/U1xMSSM
of the MadGraph installation. Afterwards, we generate all
necessary files to calculate the cross section for the process
under consideration by running in MadGraph

Note the option -modelname when loading the model.
This ensures that MadGraph is using the names for the
particles as defined in our model implementation. Using
the default names of MadGraph causes naming conflicts
because of the extended Higgs sector. One can give the spec-
trum files written bySPheno as input (param_card.dat)
for MadGraph. One just has to make sure that the blocks
written forHiggsBounds andHiggsSignals are turned
off because theSLHA parser ofMadGraph is not able to han-
dle them. This can be done by setting the following flag in
the Les Houches input file:

Fig. 26 Limit on MZ ′ for three different values of gX : 0.3 (green),
0.5 (black), 0.7 (blue). For the dashed line, we assumed in addition
g1X = − 1

5 gX , while for the full lines gauge kinetic mixing has been
neglected. The red line shows the exclusion limit from ATLAS [482]

In principle, one could also change the mass directly in the
param_card without re-running SPheno for each point.
However, the advantage of SPheno is that it calculates the
width of the Z ′ gauge boson including SUSY and non-SUSY
states. This usually has some impact on the obtained limits
[471,483,484]. We can now scan over MZ ′ for fixed val-
ues of gX and compare the predicted cross section with the
exclusion limits. In addition, we can also check the impact
of gauge-kinetic mixing: as we have seen, these couplings
are negative and can be sizeable. Therefore, we compare
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the results without gauge kinetic mixing and when setting
g1X = − 1

5gX at the SUSY scale. The results are summarised
in Fig. 26. We see that for gX = 0.5 the limit is about 2.8 TeV
without gauge-kinetic mixing. Including kinetic mixing, it
gets reduced by about 200 GeV. Thus, one sees that kinetic
mixing is not necessarily a small effect. This contradicts some
claims that sometimes appear in the literature, where it is
often argued that kinetic mixing can be ignored. In particu-
lar, we emphasise that this is very relevant when discussing
a GUT theory with RGE running over many orders of mag-
nitude in energy scale.

6 Summary

We have given an overview on weakly-coupled renormal-
isable models proposed to explain the excess observed by
ATLAS and CMS around 750 GeV in the diphoton chan-
nel. We have pointed out that many of the papers quickly
written after the announcement of the excess are based on
assumptions and simplifications which are often unjustified
and can lead to wrong conclusions. A very common mis-
take is the lack of inclusion of higher order corrections to the
digluon and diphoton decay rates, which results in underes-
timating the ratio typically by a factor of 2. Several authors
assume that the new 750 GeV scalar does not mix with the SM
Higgs, which is often not justified. Including such a mixing
can give large constraints. These and other problems can be
easily avoided by using SARAH and related tools which were
created with the purpose of facilitating precision studies of
high energy physics models. In particular, the link between
SARAH and the spectrum generators FlexibleSUSY and
SPheno is a powerful approach to obtain the mass spec-
trum and all the rotation matrices for any given model with-
out neglecting flavour mixing, complex phases or 1st and
2nd generation Yukawa couplings. Optionally, one can also
include all the important radiative corrections up to two
loops. In addition, we have improved the functionality of
FlexibleSUSY and SPheno to calculate the diphoton
and digluon decay widths of neutral scalars, including the
higher order QCD corrections up to N3LO. One can now
pass on this information directly to Monte-Carlo tools, like
CalcHep and MadGraph, by using the appropriate model
files generated with SARAH.

In order to study as many models in as much detail as
possible, we have created a database of SARAH model files
for many of the ideas proposed so far in the literature. The
database is also meant to provide many examples in the con-
text of the diphoton excess with which the novel user can try
out to familiarise with SARAH, in order to build up the level
of expertise needed to implement their own models in the
future.

Finally, we have introduced an attractive SUSY model
which combines the idea of non-decoupling D-terms with
the explanation of the diphoton excess. We have used this as
a new example to show how to use SARAH to first understand
the model analytically at leading order. As a second step,
we have performed a numerical analysis of the important
loop corrections to the different masses, checked limits from
Higgs searches, neutral gauge bosons searches, and from lep-
ton flavour violation. We have demonstrated that this model
could explain a large width of the 750 GeV scalar, but in this
context limits from spontaneous R-parity violation become
important. These limits can be checked by using the interface
to Vevacious.
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