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Abstract

We consider toy models of holography arising from 3d Chern-Simons theory. In this con-
text a duality to an ensemble average over 2d CFTs has been recently proposed. We put
forward an alternative approach in which, rather than summing over bulk geometries,
one gauges a one-form global symmetry of the bulk theory. This accomplishes two tasks:
it ensures that the bulk theory has no global symmetries, as expected for a theory of quan-
tum gravity, and it makes the partition function on spacetimes with boundaries coincide
with that of a modular-invariant 2d CFT on the boundary. In particular, on wormhole
geometries one finds a factorized answer for the partition function. In the case of non-
Abelian Chern-Simons theories, the relevant one-form symmetry is non-invertible, and
its “gauging” corresponds to the condensation of a Lagrangian anyon.
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1 Introduction and summary

According to the holographic principle [1,2] and the AdS/CFT correspondence [3–5], a theory
of quantum gravity in asymptotically anti-de-Sitter (AdS) spacetime is dual to a conformal field
theory (CFT) placed on the conformal boundary of that spacetime. Various examples of low-
dimensional gravities, however, appeared in the literature in the last few years, which are dual
not to a conventional unitary quantum system, but rather to an average (with respect to some
measure) over a family of quantum systems. A smoking gun for that is the lack of factorization
of the partition function in the presence of disconnected boundaries. If the spacetime on which
the dual boundary theory lives is of the form X = X1 ⊔ . . .⊔ Xn (a disconnected sum), the lack
of factorization amounts to

Zgrav[X ] ̸= Zgrav[X1] · · ·Zgrav[Xn] , (1.1)

where Zgrav[X ] is the gravitational partition function with fixed boundary conditions X . This
can be associated to the presence of non-trivial (Euclidean) spacetime wormholes connecting
different boundaries.

One example [6–9] is provided by two-dimensional Jackiw-Teitelboim (JT) dilaton gravity
[10, 11], dual to the Sachdev-Ye-Kitaev (SYK) model [12, 13], namely a family of quantum
mechanical systems with a large number of fermions, averaged over the couplings among
those fermions. A complete calculation of the path integral on the gravity side was possible,
confirming the duality to an ensemble average [14]. A different example [15,16] is provided by
a three-dimensional Euclidean gravity defined as a sum over hyperbolic geometries, in which
the small fluctuations around each geometry are described by an Abelian Chern-Simons (CS)
theory. Its dual is the family of free conformal field theories of D compact bosons, averaged
over their Narain moduli space [17]. Variations of this example have been considered, e.g.,
in [18–23]. The non-factorized contribution due to off-shell wormholes in 3d gravity was
studied in [24].

In view of these examples, it is natural to wonder whether there exist two types of holo-
graphic correspondences — the standard one and the averaged one — and thus of gravitational
theories. Since an average over unitary theories is not a unitary quantum system, at least not
in the traditional sense, one asks whether the corresponding gravitational theories suffer from
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some pathology that prevents them from being UV complete.1 Various approaches to this
question have been taken, e.g., in [26–32].

Within the class of solvable 3d gravitational theories defined in terms of CS theories with
compact gauge group, we propose an answer. We notice that those theories possess a global
symmetry, generated by the topological line operators in the theory [33]. Abelian CS theories
have a conventional 1-form symmetry, while in the non-Abelian case the full 1-form symmetry
is non-invertible [34].2 This is in tension with the expectation that quantum gravity should
not have any global symmetry [35–39]. Thus, we propose a connection between the presence
of global symmetries in the gravitational theory, and averaging in the boundary theory.3

Indeed, a simple way to remove the global symmetry is to gauge a suitable non-anomalous
subgroup thereof. In the Abelian case this is a standard gauging of a discrete 1-form symmetry,
that may be implemented by coupling the theory to dynamical gauge fields, while in the non-
Abelian case one needs to resort to anyon condensation [41,42]— a sort of analog of gauging
for non-invertible symmetries. In both cases, after gauging, the bulk Chern-Simons theory
acquires the following pleasant properties:

1) The theory becomes trivial in the bulk, in the sense that the Euclidean partition function
on any (oriented) closed 3-manifold equals 1. After all, this is what we expect from a
holographic theory: the degrees of freedom only live at the boundary.

2) Given a (possibly disconnected) 2d boundary and a boundary condition, the Euclidean
partition function on any 3-manifold with that boundary gives the same result (this
follows from point 1). Chern-Simons theory is a generally-covariant theory [43,44], in
the sense that its partition function on closed 3-manifolds does not depend on a choice
of metric — but it does depend on the topology. After gauging, the theory becomes
independent from the bulk topology as well.

3) The partition function of the gravitational theory is defined as the one on an arbitrary 3-
manifold with the given boundary conditions (not as a sum over all possible geometries,
or some subset thereof), because of point 2). Factorization in the case of disconnected
boundaries immediately follows.

4) The partition function with boundary conditions equals the partition function of a single
and well-defined boundary CFT. The details of such a CFT are encoded in the bulk gauge
group and in the specific chosen gauging of the 1-form symmetry.

5) What we described extends to correlation functions of the boundary theory, and hinges
on the fact that all lines are transparent in the bulk (because of point 1).

The properties 2) and 3) have already been observed in a much more complicated example,
namely string theory on AdS3×S3× T4 in the tensionless limit, after performing the full non-
perturbative path integral [45, 46]. A property analogous to 3) was also observed in [47] for
the SYK model reduced to one dimension [48]. The above observations clarify the relationship
between averaging and global symmetries, at least in the class of models under consideration.
The bulk theory has a (possibly non-invertible) global 1-form symmetry if and only if it has
non-trivial topological line operators. In that case, the partition function with fixed boundary
conditions depends on the topology of the chosen bulk 3-manifold, and it is natural to define
the gravitational theory as a sum over those topologies. This leads to a lack of factorization,
i.e., to averaging over a family of boundary CFTs. This can be rephrased in the language of

1In the case of JT gravity, it has recently been noticed [25] that a certain non-local deformation can resolve the
lack of factorization and lead to well-defined quantum mechanical systems with discrete spectrum.

2Besides, in both cases there usually are 0-form symmetries as well.
3A connection between averaging in the boundary theory and the presence of global symmetries in the bulk

theory (with a focus on 2d gravity) has also been proposed in [40] from a different point of view.
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Coleman’s α-states [49] (see also [50,51]) with each α-state being the dual to a specific CFT.
In our class of models, each CFT is built from the 2d left- and right-moving chiral algebras
dual [44] to the bulk CS theory before gauging.4

After gauging, we obtain a bulk theory which is holographically dual — in the standard
sense — to a specific 2d rational conformal field theory (RCFT) at a finite value of the central
charge, defined in terms of its holomorphic and anti-holomorphic halves and a prescription
for gluing them. The relation between 3d topological quantum field theories (TQFTs) and
the holomorphic half of 2d RCFTs has been known for a long time [44, 52–56]. Besides,
the formulation of modular-invariant parings between the holomorphic and anti-holomorphic
sectors of a CFT in the language of TQFT, in particular in terms of Frobenius algebra objects
(that we review in Section 4.1), has also been understood [57]. The latter has been more
physically interpreted in terms of topological interfaces and boundary conditions in TQFT
[58,59] and in terms of anyon condensation [60].5

In this paper we elaborate on the interpretation in terms of gauging, showing that it makes
more transparent the construction of generally-covariant and topology-independent theories
— i.e., of gravitational theories — in terms of CS theory.6 As we already mentioned, exploit-
ing the categorical formulation (in terms of Frobenius algebras) of the notion of gauging of
(possibly higher-form) symmetries and its non-invertible analog, anyon condensation, is very
useful in order to treat non-Abelian Chern-Simons theories. See [65–71] for interesting recent
works that explore the gauging of non-invertible symmetries.

The paper is organized as follows. In Section 2 we describe the main ideas in the simplest
example: a free compact scalar at rational radius. This serves as a gentle introduction to most
of the relevant concepts. It is shown explicitly how to recover a well-defined dual RCFT by
gauging a maximal (Lagrangian) subgroup of the one-form symmetry in the bulk, and how
this gauging factorizes wormhole contributions automatically. In Section 3 we discuss the ex-
tension to more general Abelian theories with U(1)D chiral algebras. In Section 4 we discuss
the extension to the non-Abelian case, for which we implement the machinery of anyon con-
densation. We describe how the relevant concepts on discrete gauging naturally extend to this
case, by introducing the condensation of commuting Lagrangian anyons [42]. The properties
of such objects are then used explicitly to show factorization of wormhole geometries and the
projection to a well-defined RCFT. We conclude in Section 5 with implications and possible
extensions of our results. Technical parts are collected in appendices.

2 The free compact scalar

The simplest example in which we can exhibit the main physical ideas of this paper is that of
the 2d CFT of a free compact real scalar field. We will first review a few facts about such a
CFT, and then move on to its holographic bulk description.

2.1 2d CFT

We consider a free massless compact real boson ϕ, with action7

S =
1

8π

∫

d2σ∂µϕ∂
µϕ . (2.1)

4This was conjectured in [18,21] from the point of view of the boundary CFT.
5In the context of 2d gravity, it has been understood that α-eigenstates can be related to certain types of brane

insertions [61–63].
6Ref. [64] described a different approach to promote the correspondence between Chern-Simons theory and

the holomorphic half of a RCFT, to a holographic duality to a full CFT.
7We follow the notation of [72] with g = 1/4π.
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The theory enjoys a U(1) symmetry that shifts ϕ, which is enhanced to u(1) × u(1) current
algebra by the holomorphic currents ∂ ϕ and ∂̄ ϕ. We identify ϕ ∼= ϕ + 2πR (where R is
dimensionless). The Euclidean torus partition function can be written as

Z(R,τ) =
Θ(R,τ)
|η(τ)|2

, (2.2)

where τ= τ1+ iτ2 is the modular parameter of the torus, one defines q = e2πiτ as usual, η(τ)
is the Dedekind eta function, and

Θ(R,τ) =
∑

n,w∈Z
exp
�

−2πτ2

�

n2

R2
+

w2R2

4

�

+ 2πiτ1nw
�

=
∑

n,w∈Z
q

1
2( n

R+
wR
2 )

2

q̄
1
2( n

R−
wR
2 )

2

(2.3)

is the Siegel-Narain theta function. The integers n, w are the electric charge (or momentum)
and the magnetic charge (or vorticity), respectively, under the U(1) symmetry. From the parti-
tion function one reads off the dimension ∆ and spin s of the primary operators einϕ/ReiwRϕ̃/2

(where ϕ̃ is the dual field such that ∂µϕ̃ = εµν∂ νϕ) of the current algebra:

∆n,w =
n2

R2
+

w2R2

4
, sn,w = nw . (2.4)

Electric/magnetic T-duality acts as R↔ 2/R. The left- and right-moving dimensions of primary
operators are

hn,w =
1
2

�

n
R
+

wR
2

�2

, h̄n,w =
1
2

�

n
R
−

wR
2

�2

. (2.5)

The theory has an infinite number of primaries, whose dimensions, for generic R, are real
numbers. However when R2 ∈ Q, the theory is a rational CFT: the dimensions are rational
numbers, the chiral algebra is enhanced, and the primaries organize into a finite number
of modules under the extended chiral algebra. The left-moving part of the extended chiral
algebra is given by the fields with h̄n,w = 0, in other words one has to solve n = R2

2 w for
n, w ∈ Z. Therefore one sets

R2

2
=

p′

p
, with p′, p ∈ N coprime . (2.6)

The solutions to h̄n,w = 0 are n = p′ℓ, w = pℓ with ℓ ∈ Z, and yield the spectrum h = 2p′p
2 ℓ

2.
This corresponds to the chiral algebra (see, e.g., [73]):

u(1)k , with k = 2p′p . (2.7)

Since k ∈ 2N, this is a bosonic chiral algebra (all chiral fields have integer dimension).
The characters of u(1)k are

K(k)
λ
(τ)≡ Tr qL0−

c
24 =

1
η(τ)

∑

n∈Z
q
(kn+λ)2

2k , (2.8)

for λ = 0, . . . , k − 1 (defined modulo k).8 The modular transformations of the characters can
be written as

K(k)
λ
(γ ·τ) =

k−1
∑

µ=0

M (γ)
λµ

K(k)µ (τ) , (2.9)

8The characters for λ and −λ (corresponding to charge conjugate representations) are identical, however they
could be distinguished by considering the refined characters with a fugacity for the U(1) symmetry. For the sake
of simplicity, we will not do that here.
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where γ ∈ SL(2,Z) and γ ·τ is its action on the modular parameter τ. One finds

T : τ 7→ τ+ 1 , Tλµ = e
2πi
h

λ2
2k −

1
24

i

δλµ ,

S : τ 7→ −
1
τ

, Sλµ =
1
p

k
e−2πi λµk .

(2.10)

They satisfy S2 = C (where C : λ 7→ −λ is charge conjugation), SS† = S4 = 1, and (ST )3 = C .
The torus partition function can be written in terms of characters, by correctly combining

left- and right-moving fields into physical fields. In order to construct the pairing of primaries,
one finds integers r0, s0 such that

pr0 − p′s0 = 1 (2.11)

and then defines
ω= pr0 + p′s0 mod k . (2.12)

Since k ∈ 2N, it follows that ω2 = 1 mod 2k. Therefore the map

ω : λ 7→ωλ , for λ ∈ Zk (2.13)

provides an involution on the set of integrable representations of the chiral algebra. This invo-
lution is an outer automorphism of the algebra that preserves the chiral dimension h(λ) = λ2

2k
modulo 1, and therefore the S-matrix. With some algebra, one shows that9

Z(R,τ) =
k−1
∑

λ=0

K(k)
λ
(τ) K(k)

ωλ
(τ) . (2.14)

In particular, the pairing of representations (λ,ωλ) guarantees that all physical fields have
integer spin, because the left and right dimensions agree modulo 1. Notice that for R2 ∈ 2N
one gets k = R2 andω= 1, which yields a diagonal partition function. In the dual case R2 = 4

k
with k ∈ 2N, one gets k = 4/R2 andω= −1: in this case the partition function is non-diagonal,
and the pairing of representations is through charge conjugation λ↔ k−λ.

The partition function (2.14) is modular invariant. This is guaranteed by the expressions
of T, S in (2.10), as long as multiplication by ω is a group automorphism of Zk that preserves
the quadratic function

q(λ) =
λ2

2k
mod 1 (2.15)

(the chiral dimension mod 1). This is equivalent toω2 = 1 mod 2k. In that case, the symmetric
bilinear form q(λ+µ)− q(λ)− q(µ) = λµ

k mod 1 is preserved as well.
The equations (2.6), (2.7), (2.11) and (2.12) provide a map from R2 ∈ Q to the pair

(k,ω). The inverse map (assuming thatω, which is an element of the multiplicative group Z∗k
of integers mod k, preserves (2.15)) can be constructed as follows. If we restrict to momen-
tum modes (i.e., to modes with equal left and right charge), then the minimal dimension is
h = h̄ = 1

2R2 . Momentum modes are solutions to λ+ kn = ωλ+ kn̄ for n, n̄ ∈ Z, and given a
solution for λ there always is a solution in which n = 0. We conclude that 1

2R2 is equal to the

minimal value of λ
2

2k over those solutions, or in other words,

R2 =
k
λ2

, (2.16)

9Given the SL(2,Z) matrix S =
�

p p′
s0 r0

�

, one performs the redefinition
�

N
−ℓ̄

�

= S
�

n
w

�

. The inverse transformation

is S−1 =
�

r0 −p′
−s0 p

�

. Then (2.2) takes the form Z = 1
|η|2
∑

N ,ℓ̄∈Z q
1

2k (N)
2

q̄
1

2k (kℓ̄+ωN)2 . Now rewrite
∑

N∈Z as
∑k−1
λ=0

∑

ℓ∈Z

setting N = kℓ+λ. Shifting ℓ̄→ ℓ̄−ωℓ, one obtains (2.14).
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where λ > 0 is the minimal positive integer solution to

λ(ω− 1) = 0 mod k . (2.17)

In particular notice that, for a given chiral algebra determined by k, there is a family of RCFTs
— one for each choice of ω — which might be constructed from it.

Higher genus. The complex structure of a Riemann surface Σ of genus g ≥ 1 is described
by a period matrix Ω:10 a symmetric g× g matrix, that we split into real and imaginary part as
Ωi j = x i j + i yi j , with positive-definite imaginary part, ImΩ = y > 0. The Euclidean partition
function on Σ is

ZΣ(R,Ω) =
Θ(R,Ω)
Φ

, (2.18)

where

Θ(R,Ω) =
∑

n,w∈Zg

exp
�

−2π yi j

�

nin j

R2
+

wiw jR2

4

�

+ 2πi x i jn
iw j
�

(2.19)

is the Siegel-Narain theta function. The denominator Φ can be written as [74]

Φ=
�

�det′Γ ∂̄0

�

� , (2.20)

where ∂̄0 is the Dolbeault operator mapping functions to (0, 1)-forms, with zero-modes re-
moved, while Γ indicates a certain regularization (we provide more details in Appendix A).
For g > 1, Φ suffers from the conformal anomaly and holomorphic factorization fails. How-

ever both ZΣ(R,Ω),
�

det ImΩ
�1/2
Θ(R,Ω), and
�

det ImΩ
�1/2
Φ are modular invariant under the

Sp(2g,Z) action of the mapping class group.
The theta function can be rewritten as

Θ =
∑

n,w∈Zg

exp
�

πi
�

n
R
+

wR
2

�T

Ω

�

n
R
+

wR
2

�

−πi
�

n
R
−

wR
2

�T

Ω∗
�

n
R
−

wR
2

��

. (2.21)

In the rational case R2 ∈ Q, with (k,ω) defined as before, following the same steps as in
footnote 9, one obtains

ZΣ =
∑

λ∈(Zk)g

1
Φ

∑

ℓ∈Zg

exp
�

2πi
2k

�

kℓ+λ
�T
Ω
�

kℓ+λ
�

�

∑

ℓ̄∈Zg

exp
�

−
2πi
2k

�

kℓ̄+ωλ
�T
Ω∗
�

kℓ̄+ωλ
�

�

.

(2.22)
This is a sum over higher-genus conformal blocks labelled by λ.

2.2 U(1)k ×U(1)−k Chern-Simons theory

Two-dimensional current algebra is intimately related to three-dimensional Chern-Simons the-
ory [44]. In particular [56], the quantization of Chern-Simons theory with gauge group G at
level k on D2 ×R (where D2 is a two-dimensional spatial ball, or disk, while R is time) with
holomorphic boundary conditions yields, when G is a connected and simply-connected sim-
ple Lie group, the chiral WZW model Gk [75], i.e., the Hilbert space on D2 is the Kac-Moody
current algebra. Adding a Wilson line in an integral representation λ along R through the
disk, yields a Hilbert space which is the representation λ of the current algebra [56]. If G
is not simply-connected, one obtains an extended chiral algebra [55]. In particular, U(1)k

10Given a canonical basis {Ai , B j} of 1-cycles onΣwith intersection numbers (Ai , A j) = (Bi , B j) = 0, (Ai , B j) = δi j ,
and a basis of holomorphic 1-forms ωi such that

∮

Ai
ω j = δi j , one defines Ωi j =

∮

Bi
ω j .
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Cherns-Simons theory (with k ∈ 2N) yields the u(1)k chiral algebra and its representations
λ ∈ Zk.

Indeed, U(1)k CS theory is an Abelian topological quantum field theory (TQFT) with k line
operators, labelled by λ ∈ Zk. Under fusion, the lines reproduce the group structure of Zk,
which is the one-form symmetry of the theory (in the terminology of [33]). The lines are the
unitary defect operators that implement Zk one-form symmetry transformations.

Euclidean path integrals of U(1)k CS theory on solid tori and higher-genus handlebodies,
with holomorphic (conformal) boundary conditions on the boundary Riemann surface Σ, and
with Wilson line insertions along the non-contractible cycles, have been addressed with a
variety of approaches, see for instance [56, 76–79]. The boundary conditions fix the anti-
holomorphic part of the pull-back of the connection to the boundary, introducing a dependence
on the complex structure of Σ [56]:

Az̄dz̄ = ∂z̄χ dz̄ + iπu(ImΩ)−1ω̄ . (2.23)

Here z is a local complex coordinate on Σ, ωI for I = 1, . . . , g are a basis of holomorphic
differentials that define Ω, χ is a periodic function on Σ, and the vector uI of complex num-
bers fixes the harmonic part of the differential Az̄dz̄. Then, with the insertion of Wilson lines
parametrized by λ ∈ (Zk)g along the non-contractible cycles of the handlebody, the Euclidean
path integral reads [79]:11

Z[Az̄ ,λ,Ω] =
(det′∆0)

3
4

(det′∆1)
1
4

e
kπ
2 u(ImΩ)−1u e

k
2π

∫

Σ
d2 x ∂zχ ∂z̄χ θ

�

λ/k
0

�

(ku, kΩ) . (2.24)

Here

θ
� a

b

�

(u,Ω) =
∑

n∈Zg

eπi(n+a)TΩ(n+a)+2πi(n+a)T(u+b) , with u ∈ Cg , a, b,∈ Rg . (2.25)

On the other hand, ∆0 and ∆1 are Laplacian operators acting on scalars and one-forms, re-
spectively. As long as we are dealing with only half of the theory, here U(1)k, the definition
of the determinants in (2.24) requires some care, reflecting the obstruction to holomorphic
factorization in the boundary theory for g > 1. However, we are eventually interested in the
U(1)k×U(1)−k CS theory with holomorphic/antiholomorphic boundary conditions for the two
factors. As discussed in [16], in that case the determinants combine to give

(det′∆0)
3
2

(det′∆1)
1
2

=
1
Φ

. (2.26)

The Φ appearing here is equal to the one defined in (2.20), in particular it gives |η(τ)|−2 in
the case of g = 1, see Appendix A for more details. For the sake of simplicity, we simply take
holomorphic boundary conditions Az̄ = 0 for U(1)k, and similarly antiholomorphic boundary
conditions for U(1)−k. With the insertion of Wilson lines λ,µ ∈ (Zk)g for the two group factors,
respectively, we obtain the Euclidean path-integral on a genus-g handlebody:12

Z =























1 , g = 0 ,

K(k)
λ
(τ)K(k)µ (τ) , g = 1 ,

1
Φ

�

∑

ℓ∈Zg
e
πi
k (kℓ+λ)

TΩ(kℓ+λ)
��

∑

ℓ̄∈Zg

e
πi
k (kℓ̄+µ)

TΩ(kℓ̄+µ)
�∗

, g ≥ 1 .

(2.27)

11We adopt here a slightly different regularization than in [79], more natural for the U(1)k × U(1)−k theory we
discuss below, leading to a non-holomorphic factor in front of the Euclidean path integral.

12The ambiguity due to the 2d Euler counterterm is fixed by setting to 1 the result for g = 0, after which the
normalization of the g > 1 partition functions is also fixed.
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In the case g = 1 of a solid torus, we have expressed the path integral in terms of u(1)k
characters (2.8).

The expressions above are not modular invariant, so a further prescription is needed to
get a candidate physical RCFT dual. One possibility is to sum the expressions above over their
modular images. This imitates the sum over handlebodies [80] for three-dimensional gravity.
Such a setup has been studied, e.g., in [18, 21, 81] with the conclusion that it gives rise to
an ensemble average over different RCFTs with the same chiral algebras (i.e., over different
choices of ω in the language of Section 2.1). In the remainder of this section, instead, we will
introduce an alternative procedure which selects a member of the ensemble and gives rise to
a single dual RCFT.

2.3 Gauging a Zk one-form symmetry

The U(1)k ×U(1)−k CS theory has 1-form global symmetry Zk ×Zk. If we are going to regard
this theory, being generally covariant in the language of [43,44], as a sort of three-dimensional
theory of gravity, along the lines of [16], we encounter a tension with the expectation that
theories of gravity should not have global symmetries (see, e.g., [35–38]). We might hope
that, if we remove the global symmetry, the behavior of the theory as a unitary quantum
system improves.

A simple way to remove a global symmetry is to gauge it, that is, to couple it to dynamical
gauge fields. Therefore, we would like to gauge the 1-form symmetry group, or a subgroup
thereof. From the point of view of the spectrum of lines, this gauging was understood in [55].
The 1-form symmetry subgroup we gauge is given by a subset A of the simple lines. Such a
subgroup is gaugeable, i.e., its ’t Hooft anomaly vanishes [33], if and only if the lines in A
are mutually transparent — i.e., they have trivial mutual braiding — and moreover they have
integer spin.13 The 1-form symmetry group is necessarily Abelian [33], and for Abelian lines
the braiding is completely characterized by their spins:

B(λ,µ) = e2πi[h(λ+µ)−h(λ)−h(µ)] . (2.28)

Here h(λ) mod 1 is the spin of the line λ, which is equal to the chiral dimension mod 1 of
any field in the integrable representation λ of the associated 2d chiral algebra. Therefore, it
is enough to require that all lines in the Abelian subgroup A have integer spin.

The algorithm in [55] tells us what the spectrum of lines after gauging is. In an Abelian
theory, if we gauge a 1-form subgroup of order p, we reduce the number of lines by a factor of
p2. Thus, if we start from Zk ×Zk and we want to get rid of all lines but the identity, then we
should gauge a subgroup of order k. This is a Lagrangian subgroup, i.e., a subgroup of lines
with integer spin and whose order squares to the order of the group. Let us assume that we
gauge a Zk subgroup generated by the line (1,ω) for some ω ∈ Zk.14 The condition that the
generator has integer spin boils down to

ω2 = 1 mod 2k . (2.29)

We have already encountered this condition in Section 2.1. It implies that ω, k are coprime,
and that such anω ∈ Z∗k defines an involutive group automorphism of Zk which pairs the lines

of U(1)k with those of U(1)−k. We will indicate the subgroup generated by (1,ω) as Z(ω)k . All

13The condition on the spin of the lines guarantees that, if we start from a bosonic theory (i.e., a theory that
does not depend on a spin structure), after gauging the theory is still bosonic. It is possible to gauge A even when
some lines in it have semi-integer spin, however at the expense of making the theory fermionic (i.e., dependent on
a choice of spin structure).

14This is not the most general case. We discuss some generalizations in Section 3.2.
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its lines have integer spin, and thus it can be gauged. This leads us to study

T [k,ω] ≡
U(1)k × U(1)−k

Z(ω)k

Chern-Simons theory. (2.30)

In particular, we are interested in its Euclidean partition and correlation functions.
Gauging of the 1-form symmetry can be described in two equivalent ways. The conven-

tional point of view is that we couple the symmetry to an external background 2-form gauge
field, and then make the latter dynamical. For a discrete (Abelian) symmetry A, the second
step is particularly simple because it reduces to a discrete sum over 1-form bundles. On an ori-
ented closed three-manifold M , this is a sum over the singular cohomology group H2(M ;A).
The other point of view is that flat bundles can be engineered by inserting networks of sym-
metry defects, which here are the lines in A. For Abelian lines, the networks can be broken
into simple lines wrapping the non-contractible cycles of M . Therefore the sum over 1-form
bundles can be expressed as a sum over the insertion of lines along the homology cycles of M ,
namely over H1(M ;A)∼= H2(M ;A).

We fix the normalization. Let G = ÒA be the Pontriagyn dual to A, namely the Abelian
group of linear functions from A to R/Z, which is isomorphic to A. For an oriented closed
3-manifold M , gauging of a discrete Abelian 0-form symmetry G gives the partition function

Z0-form gauged =
1
�

�H0(M ; G)
�

�

∑

α∈H1(M ;G)

Z[α] , (2.31)

where Z[α] is the partition function of the original theory coupled to the bundle α. This
could be equivalently written as a sum over the insertion of codimension-1 symmetry defects
α ∈ H2(M ; G). The normalization is standard [82]: for each bundle, we divide by the number
of automorphisms of that bundle, which, for G Abelian, does not depend on the bundle and
is the number of global gauge transformations, i.e., transformations that are constant on each
connected component of M . Similarly, gauging of a discrete (Abelian) 1-form symmetry A
gives the partition function

Z1-form gauged =

�

�H0(M ;A)
�

�

�

�H1(M ;A)
�

�

∑

λ∈H2(M ;A)
Z[λ] . (2.32)

This could be written as a sum over the insertion of line symmetry defects λ ∈ H1(M ;A). We
have divided by the number of global 1-form gauge transformations, but we have removed
overcounting by 0-form gauge transformations of 1-form gauge transformations.

The normalizations in (2.31) and (2.32) are compatible. When we gauge a discrete Abelian
0-form symmetry ÒA, the new theory acquires a 1-form symmetry A, and gauging the latter we
get back the original theory (as in [83]). The simple identity
�

�H0(M ;A)
�

�

�

�H1(M ;A)
�

�

∑

β∈H2(M ;A)
e2πi
∫

M γ∪β
1
�

�H0(M ; ÒA)
�

�

∑

α∈H1(M ; ÒA)

e2πi
∫

M α∪β Z[α] = Z[γ] , (2.33)

where γ ∈ H1(M ; ÒA), expresses this fact. Here ∪ is the cup product, the bilinear form
ÒA×A→ R/Z is the natural one, and we used that |H1|= |H2|.

For holographic applications, we need a generalization of the gauging formula (2.32) to
oriented three-manifolds M with boundary, with Dirichelet boundary conditions b. The for-
mula is the following:15

Z1-form gauged
b =

�

�

�

�

H0(M ,∂M ∖ P)
H1(M ,∂M ∖ P)

�

�

�

�

∑

a∈H2(M ,∂M∖P)
i∗(a)=b

Z[a] . (2.34)

15We are grateful to Pavel Putrov for explaining this formula to us. See also Section 5 of [84].
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Here ∂M is the two-dimensional boundary of M , P is a set made of one point in each connected
component of ∂M , H∗(M , B) is the singular cohomology of M relative to B,16 i is the inclusion

map ∂M
i
,→ M , b ∈ H2(∂M) is the boundary condition, while Z[a] is the partition function of

the original theory with background a. All cohomology groups take values in A, that we have
kept implicit. We provide a derivation of this formula in Appendix C. It is convenient to use
homology — as opposed to cohomology — classes, since the former have a direct interpretation
as line insertions. Using Poincaré duality, we obtain:

Z1-form gauged
b =

�

�

�

�

H3(M)
H2(M)

�

�

�

�

∑

a∈H1(M ,P)
∂ a=b

Z[a] , (2.35)

where H∗(M , P) is singular homology of M relative to P. Here b ∈ H0(P), and the map

H1(M , P)
∂
→ H0(P) is in the long exact sequence for the pair (M , P). Notice that H1(M , P) is

larger than H1(M) because it includes relative 1-cycles going from one connected component
of the boundary to another, however these extra 1-cycles are precisely fixed by the boundary
conditions.

The theory T in (2.30) is completely trivial on closed three-manifolds. As we explained, it
only contains a single transparent line. As a consequence, the Hilbert space is one-dimensional
on any closed spatial two-manifold and thus T is an invertible TQFT. Besides, the partition
function ZT [M] = 1 on any (oriented) closed three-manifold M , irrespective of its topology
[86].17 We interpret this as the fact that T is not just a generally-covariant theory: rather,
it is independent both of a local metric and of the global topology, and therefore it behaves
as a full-fledged theory of gravity without the need of extra sums over topologies. The total
Hilbert space on closed manifolds is referred to as the “baby universes” Hilbert space [49–51],
and in T it is one-dimensional. As we discuss in the following sections, things become more
interesting in the presence of boundaries.

2.4 Partition functions and factorization

We proceed to compute the Euclidean partition function of the gauged Chern-Simons theory
T [k,ω] ≡
�

U(1)k × U(1)−k

�

/Z(ω)k on general (oriented) three-manifolds with boundary, and
compare with 2d CFT. We focus on factorization: we show that the partition function of T
on a three-manifold whose boundary is made of one or more connected components, is equal
to the product of partition functions on handlebodies, each one having as boundary one of
the connected components. In particular, the partition function of T on any oriented three-
manifold with a given (connected or disconnected) boundary is the same, and it only depends
on the boundary.

We will always take holomorphic and antiholomorphic boundary conditions for the gauge
fields of the two factors U(1)k × U(1)−k, respectively. We also define the so-called algebra
object

A=
⊕

λ∈Zk

(λ,ωλ) , (2.36)

as the set of lines which generate the group to be gauged. Note that A is a line itself. To gauge
the 1-form symmetry Z(ω)k we use (2.35) with trivial boundary conditions, b = 0 (we discuss
more general boundary conditions in Section 4.3). The sum over line insertions can be viewed
as the insertion of the single line A on each generator of H1(M). With some abuse of notation

16See, e.g., [85] for the definitions of relative singular cohomology and homology.
17In general, the invertible TQFT could be a multiple of the (E8)1 TQFT with c− = 8. In our construction, as

long as the left and right part before gauging are related by orientation reversal, the invertible TQFT is completely
trivial. In the general case, it can be made trivial by stacking with (E8)1.
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AA

=

A A (µ, µ̄)

A
= kδωµ,µ̄

(µ, µ̄) A (λ,ωλ)

=

A

A

A

(λ,ωλ)

(λ,ωλ)

Figure 1: Basic properties of the Abelian Lagrangian algebra object A.

we indicate as A both the 1-form symmetry group Z(ω)k to be gauged, and the set of lines in
CS theory that implement it.

The line A has the following properties:

1) A is transparent with respect to itself (this is the anomaly-free condition).

2) Wrapping A around a generic line (µ, µ̄) is equal to kδωµ,µ̄ times that line, i.e., it is
proportional to a projector onto A.

3) Parallel fusion of A with a line (λ,ωλ) in A gives back A.

These properties are represented in Figure 1. We reviewed in (2.27) the partition function
of U(1)k × U(1)−k CS theory on handlebodies with line insertions along the non-contractible
cycles. Here we will first discuss a few simple examples of factorization, and argue for the
general case at the end. We will sometimes use latin letters a, b, c, . . . to denote the composite
lines (µ, µ̄) of the full theory. The orientation reversal of λ will be denoted as λ̌.

Genus g = 0. We introduce the notation SΣg for a genus g handlebody. Notice that
SΣ0 = SS2 = D3 is a solid ball, while SΣ1 = ST2 = D2 × S1 is a solid torus. We also in-
troduce the geometries Xn = S3 ∖ n�D3: their boundaries ∂ Xn consist of n disconnected S2’s.
Note that X1 = D3 is a solid ball, while X2 = S2 × I is a spherical cylinder, or “Euclidean
wormhole”, where I = [0, 1] is a closed interval. The homology groups are

H3(Xn;A) = 0 , H2(Xn;A) =An−1 , H1(Xn, P;A)
�

�

b=0 = 0 . (2.37)

Note that H1(Xn, P;A) = An−1, but the boundary condition b = 0 reduces it to zero. This
implies that on this class of geometries the gauging is trivial, and it can only affect the nor-
malization.

The partition function of T on a solid ball X1 = D3, according to (2.27), is

ZT [D3] = ZCS[D3] = 1 , (2.38)

in agreement with the CFT result.
Next, consider the cylinder X2 = S2 × I . In order to compute ZCS[S2 × I] we exploit

the completeness relation. The Hilbert space on S2 is one-dimensional and the unique state
is produced by the path integral on D3, therefore we can split the cylinder S2 × I in two
disks, up to a normalization factor c0. In order to compute c0, we split the cylinder twice:
ZCS[S2 × I] = c0 ZCS[D3] ZCS[D3] = c2

0 ZCS[D3] ZCS[S3] ZCS[D3]. This implies

c0 = ZCS[S
3]−1 = S−1

00 =D , (2.39)

where D =
q

∑

a∈C d2
a = k is the total quantum dimension of the TQFT. For A Lagrangian,

|A|= c0. Since ZT [S2 × I] = 1
|A|ZCS[S2 × I], we conclude that

ZT [S
2 × I] = ZT [D3] ZT [D3] = 1 . (2.40)
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A1

A2 A3

An−1

A⊥

Figure 2: Line configuration for the gauging on Yn. We draw S2 ∖ n�D2, while the
transverse S1 is implicit. The n − 1 lines denoted as A wrap one of the boundary
circles, while A⊥ (drawn as a broken line) wraps the transverse S1.

The partition function of T exhibits factorization, as expected in the boundary CFT.
The argument easily generalizes to all geometries Xn by applying the completeness relation

n times, once around each of the S2 boundaries. One obtains

ZT [Xn] =
1

|A|n−1
ZCS[Xn] =

cn
0

|A|n−1
ZCS[D3]

nZCS[S
3] = ZT [D3]

n = 1 , (2.41)

again exhibiting factorization.

Genus g = 1. We introduce the geometries Yn = (S2 ∖ n�D2) × S1: their boundaries ∂ Yn
consist of n disconnected T2’s. Note that Y1 = D2×S1 = ST2 is a solid torus, while Y2 = T2× I
is a toroidal cylinder.18 The homology groups are

H3(Yn;A) = 0 , H2(Yn;A) =An−1 , H1(Yn, P;A)
�

�

b=0 =An . (2.42)

We can represent Yn with line insertions along H1 as in Figure 2. In the case n= 1 of the solid
torus, H1 is generated by the non-contractible cycle and the partition function is

ZT [ST2] = ZCS[ST2;A] =
∑

a∈A
ZCS[ST2; a] = Z(R,τ) , (2.43)

where Z(R,τ) is the modular-invariant CFT torus partition function (2.14). In the middle we
have a sum over the insertion of lines a ≡ (λ,ωλ) ∈A along the non-contractible cycle, which,
according to (2.27), produce the characters of the representations a in RCFT.

In order to discuss factorization, we need once again the completeness relation in CS the-
ory, which allows us to perform surgery around a boundary component. The Hilbert space
on T2 has dimension equal to the total number of lines, and a basis of states — that we in-
dicate as |ST2; a〉 — is produced by the path integral on a solid torus with line insertions
a. The inner product between these states is obtained by taking two solid tori with opposite
orientation, each with a line insertion, and gluing them along their boundaries. We obtain
S2 × S1 with two lines wrapping S1 at different points on S2. The resulting partition function

18In the context of a different approach to the factorization problem [87], Chern-Simons theory on this wormhole
geometry was also studied recently in [88].
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1
|A| AA

=
1
|A|

∑

a a AA ǎ
=

A A

Figure 3: Surgery performed on Y2 = T2 × I (the transverse S1 is kept implicit) in
order to reduce it to ST2 × ST2 and show factorization of the partition function of
theory T .

is ZCS[S2 × S1; ǎ, b] = 〈ST2; a|ST2; b〉 = δab, expressing the orthonormality of states. The
completeness relation reads

1T2 =
∑

a
|ST2; a〉 〈ST2; a| , (2.44)

where the sum is over all simple lines in the theory. In terms of the partition function of CS
theory, it gives ZCS[T2 × I] =

∑

a ZCS[ST2; a] ZCS[ST2; ǎ].
Hence, in the case n = 2 of the toroidal cylinder (or wormhole), using the properties of

the line A spelled after (2.36) and the completeness relation, we obtain:

ZT [T
2 × I] =

1
|A|

ZCS[T
2 × I ;A,A⊥] = 1

|A|

∑

a

ZCS[ST2;A, (A), a] ZCS[ST2; ǎ]

=
∑

a∈A
ZCS[ST2;A, a] ZCS[ST2; ǎ] =

∑

a∈A
ZCS[ST2;A] ZCS[ST2; ǎ]

= ZCS[ST2;A] ZCS[ST2;A] = ZT [ST2] ZT [ST2] .

(2.45)

Here A⊥ is inserted perpendicularly to A. After performing surgery, a cycle becomes con-
tractible in the bulk, and the line inserted around that cycle (which wraps a) is denoted by
(A). The main steps are graphically represented in Figure 3.

The same procedure can be applied inductively to Yn, as is clear from Figure 2. Indeed,
applying the completeness relation to the neighborhood of one boundary T2, one detaches a
copy of ST2 with A inserted, produces a factor of |A|, and is left with Yn−1 with its insertions
of A. Finally:

ZT [Yn] =
�

ZT [ST2]
�n

. (2.46)

Genus g > 1. We will only consider two geometries: the handlebody SΣg , and the cylinder
Σg × I . For the handlebody, the homology groups are H3(SΣg ;A) = H2(SΣg ;A) = 0 and
H1(SΣg , P;A)
�

�

b=0 = Ag , generated by the non-contractible cycles. Therefore the partition
function of the gauged theory is

ZT [SΣg] =
∑

a1,...,ag∈A
ZCS[SΣg ; a1, . . . , ag] . (2.47)

According to (2.27), the sum on the RHS is over conformal blocks and thus this reproduces
the modular invariant partition function (2.22) of the compact boson theory.

The completeness relation says that

ZCS[Σg × I] = cg

∑

a1,...,ag

ZCS[SΣg ; a1, . . . , ag] ZCS[SΣg ; ǎ1, . . . , ǎg] , (2.48)

where the lines ai are inserted along the non-contractible cycles, and the coefficient cg is deter-
mined by the normalization of states: c−1

g = 〈SΣg ; a1 . . . ag |SΣg ; a1 . . . ag〉. In order to compute
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cg , one uses the following argument. Represent S3 = SΣg ∪ SΣg as the gluing of two handle-
bodies:19 the g non-contractible cycles of the first handlebody form g disconnected Hopf links
with the cycles of the second handlebody. Since all states have the same normalization c−1

g ,
we find

〈SΣg ; a1, . . . , ag |S1 · · ·Sg |SΣg ; b1, . . . , bg〉= 〈a1 · b1, . . . , ag · bg〉S3 (2.49)

= e−2πi
∑

j(a j ,b j) 〈1〉S3 = c−1
g Sa1...ag ,b1...bg

.

Here ai · bi indicates a Hopf link, (a, b) is the product that for u(1)k is (µ,ν) = µν
k , and in

the last expression we have rewritten the first expression in terms of the matrix elements of
S ≡ S1 · · ·Sg , where each of the matrices S j performs an S-transformation on one of the handles
of Σg . Equating the last two terms and using 〈1〉S3 = D−1 and the expression (2.10) for the
S-matrix gives cg =D1−g . Thus the completeness relation reads

1Σg
=D1−g
∑

a1,...,ag

|SΣg ; a1 . . . ag〉 〈SΣg ; a1 . . . ag | . (2.50)

Consider now the cylinderΣg×I , with homology groups H3[Σg×I ;A] = 0, H2[Σg×I ;A] =A,
and H1[Σg × I , P;A]

�

�

b=0 =A2g . The partition function of T is

ZT [Σg × I] =
1
|A|

ZCS

�

Σg × I ; {A}i , {A⊥} j

�

. (2.51)

Using the completeness relation we find:

ZT [Σg × I] = |A|−g
∑

a1...ag

ZCS

�

SΣg ; {A}i , {(A)} j , {ai}
�

ZCS[SΣg ; {ǎi}]

=
∑

a1...ag∈A
ZCS

�

SΣg ; {A}i
�

ZCS[SΣg , {ǎi}] =
�

ZT [SΣg]
�2

.
(2.52)

Once again, the partition function factorizes as expected in the boundary CFT.
The CFT partition functions are modular invariant, which means that the partition func-

tion of T on a handlebody does not depend on which particular handlebody (distinguished
by the set of boundary 1-cycles that are contractible) is attached to the boundary. This is a
manifestation of the fact that the path integral of T is completely independent of the bulk
geometry, since this theory is trivial in the bulk.

Bulk independence and factorization. Let us finally discuss the general case, after having
analyzed several explicit examples. We can prove factorization of the partition function from
the fact that the gauged theory T is trivial in the bulk.

Let M be an oriented three-manifold with boundary B =
⊔

i Σ(i), where each Σ(i) is a
Riemann surface of genus gi . In order to compute the partition function of T on M , we induc-
tively use surgery around each of the boundary components Σ(i) [44] (see Figure 4). Since
ZT = 1 on any closed 3-manifold, ZT [M] = ZT [M ⊔ S3]. We divide S3 in two handlebod-
ies with the same genus gi as Σ(i). Then we use that the Hilbert space of T on any Rie-
mann surface is one-dimensional, and that in a one-dimensional Hilbert space we can swap
〈χ1|χ2〉〈χ3|χ4〉= 〈χ1|χ4〉〈χ3|χ2〉. We end up with the disconnected sum of a handlebody with

19Cut S3 along an S2 so as to divide it in two balls, S3 = D3 ∪ D3. This is the case g = 0. Now modify one
D3 by removing from its interior a solid handle attached to its boundary S2, and add that handle to the other D3.
This gives S3 = ST 2 ∪ ST 2, which is the case g = 1. By repeating the removal/addition of handles, one obtains
S3 = SΣg ∪ SΣg for any g.
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←→

Figure 4: Surgery around a boundary component for a trivial bulk TQFT.

boundary Σ(i), and a manifold M ′ whose boundary is B∖Σ(i). Repeating the procedure for all
boundary components, we end up with a disconnected sum of handlebodies with boundaries
Σ(i), and a closed manifold. The partition function of T on the latter is 1. Hence

ZT [M] =
∏

i
ZT [SΣ(i)] . (2.53)

This shows that the partition function is completely independent of the choice of M with given
boundary condition B, and that, therefore, it factorizes as expected in the CFT.

2.5 Correlators

Besides partition functions, one can also reproduce the correlation functions of local operators
in the compact boson RCFT from the bulk U(1)k×U(1)−k description with gauged Z(ω)k 1-form
symmetry. In the bulk we follow a two-step procedure: first, we consider correlation functions
of bulk lines with endpoints at the boundary, in the ungauged U(1)k × U(1)−k theory. Then,
we gauge Z(ω)k as in the previous section. After gauging, only a subset of the correlators is left,
which is in bijection with the physical correlators of the boundary CFT. (We provide a slightly
different and more general perspective in Section 4.3.)

Sphere two-point function. We start by considering the two-point correlation function on
the sphere. In the U(1)k×U(1)−k theory, the two-point function is given by a D3 path integral
with a Wilson line anchored to two points at the boundary. We denote Wilson lines as (λ, µ̄)
as before. We pick the same orientation for the two lines, so that one endpoint z1 has charge
(λ, µ̄) while the other endpoint z2 has charge (−λ,−µ̄). For the purpose of obtaining the most
general two-point function after gauging, it is sufficient to consider the case in which the line
is unknotted in the bulk (by the same bulk-independence argument as in the previous section,
any knotted line would yield the same result after gauging). The resulting two-point correlator
in the ungauged theory is [44,89]20




λz1→z2
µ̄z1→z2

�

D3
=
�z1 − z2

ℓ

�− λ
2
k
�

z̄1 − z̄2

ℓ

�− µ̄
2

k

. (2.54)

The normalization depends on the arbitrary length scale ℓ, and it reflects the arbitrariness in
the normalization of vertex operators on the boundary.21 Such a correlation function is not a
singled-valued function of the endpoints, and its monodromy is related to the spin of the bulk
line.

20Here we choose − k
2 < λ, µ̄ ≤ k

2 , representing correlators of primary operators of chiral algebra, because with

that choice h= λ2

2k is the dimension of the primary. Shifts of λ by k represent chiral-algebra descendants.
21The length scale ℓ can be thought of as that appearing in the propagator of the chiral boson:



φ(z1)φ(z2)
�

∝ log( z1−z2
ℓ ).
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Next, we gauge Z(ω)k . This consists in inserting the object A along all generators of H1, see
eqn. (2.35). The insertion of the line (λ, µ̄) inside the ball adds an element to H1, generated
by the 1-cycle linking the line:

A

z1

z2

(λ , µ̄)

.

(2.55)

The effect of A is to project onto physical fields:




λz1→z2
µ̄z1→z2

�

Z(ω)k gauged = kδ[ωλ]k ,µ̄

�z1 − z2

ℓ

�− λ
2
k
�

z̄1 − z̄2

ℓ

�−
[ωλ]2k

k

, (2.56)

where [x]k denotes the integer − k
2 < [x]k ≤

k
2 which equals x mod k. The only non-vanishing

two-point functions coincide, up to normalization, with those of the primary operators of the

compact boson RCFT, which have (h, h̄) =
�

λ2

2k ,
[ωλ]2k

2k

�

. The constraint ω2 = 1 mod 2k ensures
that all correlation functions are single-valued.

Sphere n-point function. It is straightforward to extend the above procedure to the case
of n-point function of vertex operators with n = 2m an even integer, and assuming that the
operators come in m pairs of opposite charge. The starting point is now the correlator of m
lines of the U(1)k × U(1)−k theory. We denote the endpoints of the i-th line as z1i and z2i ,
where i runs from 1 to m. We take unknotted and unlinked lines. We have [89]:

 m
∏

i=1

λ(i)z1i→z2i
µ̄(i)z1i→z2i

·

=
m
∏

i=1

�z1i − z2i

ℓ

�− λ
(i)2
k
�

z̄1i − z̄2i

ℓ

�− µ̄
(i)2

k

×
m
∏

i< j

�

(z1i − z1 j)(z2i − z2 j)

(z1i − z2 j)(z1 j − z2i)

�
λ(i)λ( j)

k
�

(z̄1i − z̄1 j)(z̄2i − z̄2 j)

(z̄1i − z̄2 j)(z̄1 j − z̄2i)

�

µ̄(i)µ̄( j)

k

. (2.57)

Gauging Z(ω)k entails inserting A along the m 1-cycles of the complement of the lines inside
the ball, i.e., the cycles that link one of the m lines. Each insertion of A projects the line that
it links to the subspace of charges µ̄(i) =

�

ωλ(i)
�

k that are allowed for RCFT primaries. As a
result:

 m
∏

i=1

λ(i)z1i→z2i
µ̄(i)z1i→z2i

·

Z(ω)k gauged
= km

m
∏

i=1

δ[ωλ(i)]k ,µ̄(i)

�z1i − z2i

ℓ

�− λ
(i)2
k
�

z̄1i − z̄2i

ℓ

�−
[ωλ(i)]2k

k

×
m
∏

i< j

�

(z1i − z1 j)(z2i − z2 j)

(z1i − z2 j)(z1 j − z2i)

�
λ(i)λ( j)

k
�

(z̄1i − z̄1 j)(z̄2i − z̄2 j)

(z̄1i − z̄2 j)(z̄1 j − z̄2i)

�

[ωλ(i)]k[ωλ
( j)]k

k

. (2.58)

A few comments are in order:
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• The km prefactor may be adsorbed consistently by an appropriate normalization of the
two-point function.22 After that, all correlators coincide with those of the physical vertex
operators in the boundary RCFT.

• As for the two-point function, these correlation functions are single-valued after gauging.
Furthermore, since the surviving lines are transparent, the result does not depend on the
bulk knotting pattern.

More general charge-conserving n-point correlation functions can be obtained starting from
the 2m-point functions above and performing OPEs. They can be obtained considering con-
figurations of anchored lines that fuse in the bulk before gauging.

Correlators on wormhole geometries. One may ask whether, after gauging, correlators on
“wormhole” geometries factorize as it happens for partition functions. The topical example is
a four-point function on T2 × I (or, more generally, on Σg × I) with two operator insertions
on each end of the interval, connected by two Wilson lines threading the bulk. We denote
doubled lines (λ , µ̄) by a, b:

a

b
=

a

b .

Before gauging, this does not factorize (see also [90]). Based on the previous discussion, after
gauging Z(ω)k one can explain factorization in two ways:

1. Lines stretching in the bulk can now “recombine” with the defect network for the gaug-
ing, as on the right in Figure 1. Resolving the four-valent junctions and using crossing
leads to a factorized correlator.

2. One can use the fact that the bulk Hilbert space is one-dimensional. One performs
surgery on the interval and glues a representative of the (only) state on the two- punc-
tured torus (in the figure we keep the transverse S1 implicit):23

1H(T2;a,b) = δǎ,b δa∈A a ǎ .

This leads to the factorized answer:

a

b

= δǎ,b δa∈A a ǎ

.

While we have presented the arguments for a fixed configuration, the generalization to more
complicated geometries and operator insertions seems quite straightforward.

22This is achieved by rescaling an operator with scaling dimensions (h, h̄) by the factor
p

k ℓh+h̄.
23In this case the bulk theory is gauged, but we do not draw the network for simplicity.
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2.6 Comments on symmetries

Dual symmetry. In our discussion, two bulk theories play a prominent role: the Chern-
Simons theory U and its gauging, i.e., the two following gauge theories:

U = U(1)k × U(1)−k , T =
U(1)k × U(1)−k

Z(ω)k

. (2.59)

Theory T is obtained fromU by gauging a discrete 1-form symmetry, therefore it should feature
a dual global Zk 0-form symmetry [83]. On the other hand, T is trivial and thus the 0-form
symmetry does not act on anything. If we gauge it, we go back to U : this shows that U should
be equivalent to a pure Zk gauge theory. Restricting for simplicity to the diagonal case ω= 1,
this is easy to see with a simple field redefinition in the Lagrangian of U :

U : L= k
4π

ada−
k

4π
ãd ã =

k
4π

bd b+
k

2π
bd b̃ , (2.60)

where we defined a = b+ b̃, ã = b̃, and lowercase fields are dynamical. We see that U is (Zk)k,
which is parity invariant (because CS level ℓ is equivalent to ℓ+2k). On the other hand, theory
T can be written as

T ′ : L= k
4π

BdB +
k

2π
Bd b̃ , (2.61)

where B is a background field, and b̃ is a Lagrange multiplier restricting B to Zk. We see that,
if one activates a non-trivial background B for the 0-form symmetry, T behaves as an invertible
TQFT. We have used a prime here because, although T = T ′ as theories, the two descriptions
are different.

Non-diagonal case. The Z2 automorphism of U(1)k CS theory used to define Z(ω)k can be
given a Lagrangian description as follows.24 We first integrate in two auxiliary gauge fields
a1, a2 and consider the Lagrangian

L= k
4π

ada+
1

2π
a1da2 . (2.62)

The fields a1,2 are Lagrange multipliers that simply set each other to zero [86]. As in Sec-
tion 2.1, let k = 2pp′ with p, p′ coprime integers, find r0, s0 such that pr0 − p′s0 = 1, and
define ω= pr0 + p′s0 so that ω2 = 1+ 2r0s0k. Then perform the SL(3,Z) field redefinition





a
a1
a2



→





ω 1 −r0s0
ks0 p s0(1− pr0)
−kr0 −p′ r0(1+ p′s0)









a
a1
a2



 . (2.63)

The matrix has unit determinant. The transformation leaves the action invariant, but it acts
on the lines as

ei q
∫

a→ eiωq
∫

a , (2.64)

where we used that a1,2 are set to zero by the equations of motion.
By performing this transformation on ã in (2.60) before changing variables to b, b̃, we

obtain the same Lagrangian for U on the RHS of (2.60), but with a redefinition b = a −ωã
(up to auxiliary gauge fields that can be set to zero). This shows that b gauges precisely the
Zk 0-form symmetry (parametrized by ω) that does not act on physical operators.

24This symmetry has also been studied in [91]. The technique used here is similar to the one in [92].
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Global symmetry on the boundary. Let us now discuss the global symmetries present in
the boundary theory. In the standard holographic dictionary, a gauge symmetry in the bulk
corresponds to a global symmetry on the boundary. In our setup, we have 0-form U(1) gauge
symmetries in the bulk associated to the two Chern-Simons gauge fields, and they induce
U(1) global symmetries of both chiralities on the boundary. An important role is played by the
boundary action

S∂ =
k

4π

∫

∂

d2 x
p

g gzz̄
�

azaz̄ − ãz ãz̄

�

(2.65)

that is needed to impose holomorphic/antiholomorphic boundary conditions, as we review in
Appendix B, where we also discuss the relevance of a certain boundary contact term.

In addition, since we gauge a discrete Zk 1-form symmetry in the bulk, one might naively
expect the existence of this global symmetry on the boundary. In the holographic dictionary
the boundary charge operators are obtained by letting the bulk charge operators, over whose
insertions we are summing to gauge the symmetry, end on the boundary. Therefore, for the Zk
1-form symmetry, one might expect topological local operators on the boundary arising from
the endpoint of bulk lines generating the Zk subgroup:

(λ,ωλ)

.

On the other hand, we have already seen that actually these endpoints give rise to the physical
primary operators of the compact boson CFT, which are not topological. We conclude that
this symmetry is explicitly broken by the holomorphic boundary conditions we have imposed.
Indeed, the boundary action (2.65) gives rise to a boundary Sugawara stress tensor that assigns
a non-zero energy to the endpoints of lines, corresponding to the conformal dimension of the
primaries. More directly, one can check that the boundary term (2.65) would not be invariant
under Zk 1-form gauge transformations of a that are non-vanishing at the boundary.25

Finally, let us comment on the implications of the dual Zk 0-form symmetry on the bound-
ary. We can let a dual symmetry charge operator end on a line on the boundary, defining a
topological defect line. In the bulk, a line bounded by a Zk surface can be thought of as a line
of the initial theory U , that is not gauge invariant under the Zk one-form symmetry and there-
fore can be defined only as a semi-local operator with a surface attached to it. Such semi-local
operators are defined modulo fusion with A. For convenience let us label a basis of these lines
by Li . By the the braiding rules of the initial theory U , these lines will act on operators φa at
the boundary (which are the endpoints of a ∈ A) by Li [φa] =

Sia
S0a
φa. This is the action of

Verlinde lines in RCFTs on primary operators [93–95]. Thus we conclude that this procedure
gives rise to the set of Verlinde lines of the physical RCFT.

3 Abelian generalizations

The simple example of a 2d compact scalar, dual to the U(1)k × U(1)−k/Z
(ω)
k Chern-Simons

theory, can be generalized in many ways. In this section we consider a few Abelian general-
izations, including a multi-component compact scalar and a non-rational case.

25This is also related to the fact that when gauging Z(ω)k in Section 2.3, we impose Dirichelet boundary conditions
to the Zk 2-form gauge fields at the boundary.
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3.1 Multi-component compact scalar

Consider D real free compact bosons X j ∼= X j + 2π, with Euclidean action:26

S =
1

8π

∫

d2σ

�

Gi j δ
αβ ∂αX i ∂βX j + iBi j ϵ

αβ ∂αX i ∂βX j
�

. (3.1)

The target space is a torus T D with metric Gi j and B-field Bi j . There exists a moduli space MD
worth of CFTs obtained by varying the metric and the B-field, modulo field redefinitions and
dualities,27 and it is known as the Narain moduli space [17]:

MD = O(D, D;Z)\O(D, D;R)/O(D)×O(D) . (3.2)

Moreover, the theory has u(1)D × u(1)D current algebra generated by the currents ∂ X i and
∂̄ X i , respectively.

Given a CFT identified by m ∈MD, the torus partition function is

Z(m,τ) =
Θ(m,τ)
|η(τ)|2D

, (3.3)

where

Θ(m,τ) =
∑

n⃗,w⃗∈ZD

exp
�

−2πτ2

�

G i j vi v j +
1
4 Gi jw

iw j
�

+ 2πiτ1niw
i
�

=
∑

n⃗,w⃗∈ZD

qhn⃗,w⃗ q̄h̄n⃗,w⃗ (3.4)

is the Siegel-Narain theta function, while

vi = ni +
1
2 Bi jw

j (3.5)

is the velocity (in the presence of B-field). In the rightmost expression we used the left and
right dimensions of primary operators,

hn⃗,w⃗ =
1
2

�

�

�

�

n⃗+
G + B

2
w⃗

�

�

�

�

2

G−1

, h̄n⃗,w⃗ =
1
2

�

�

�

�

n⃗−
G − B

2
w⃗

�

�

�

�

2

G−1

. (3.6)

In order to avoid clutter, we introduced the notation | x⃗ |2M = x i Mi j x
j .

Chiral algebras. When G, B ∈ QD×D, the theory is a RCFT. In order to determine the chiral
algebras, we proceed as follows. First define the matrix

M =
G + B

2
⇒ MT =

G − B
2

, G = M +MT , B = M −MT . (3.7)

The left-moving chiral algebra is given by all operators with h̄n⃗,w⃗ = 0, which are solutions to
the equation

n⃗= MTw⃗ , with n⃗ , w⃗ ∈ ZD . (3.8)

This equation gives rise to two lattices. One is the lattice ΛL of vectors w⃗ such that MTw⃗ ∈ ZD.
We package a set of generators of ΛL into an integer matrix PL (defined up to multiplication
by unimodular matrices from the right) as its columns. In other words, ΛL = PL ZD. The other

26To make contact with (2.1), set D = 1 and then Gii = R2 here and ϕ = RX there.
27The set of equivalences was clearly reviewed in [96]. It includes unimodular transformations of the fields X j ,

as well as gauge transformations that shifts the components of Bi j by even integers.
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lattice is MTΛL of image values of n⃗, and a set of generators is given by the columns of the
integer matrix ePL = MTPL . We can rewrite this relation as

MT = ePL P−1
L , (3.9)

which could be regarded as the matrix version of writing a fraction in the irreducible form.28

The chiral operators are labelled by n⃗ = MTPL ℓ⃗, w⃗ = PL ℓ⃗ with ℓ⃗ ∈ ZD and their left-moving
dimensions are h= 1

2 ℓ⃗
TPT

L GPL ℓ⃗. We recognize the chiral algebra

u(1)DKL
, with KL = PT

L GPL = eP
T
L PL + PT

L
ePL . (3.10)

These relations should be compared with (2.6) and (2.7) in the case D = 1. We see that
KL is a positive symmetric even integer matrix, namely KL > 0, (KL)i j ∈ Z and (KL)ii ∈ 2Z
(corresponding to a bosonic Chern-Simons theory).

The chiral algebra u(1)DKL
has integrable representations labelled by the discriminant group

DL = ZD/KLZD, where KLZD is the integer lattice generated by the columns of KL . The order
of the discriminant is |DL|= det KL , the dimensions of chiral primary operators are

h=
1
2
|λ⃗|2

K−1
L

(3.11)

where λ⃗ is the left-moving charge of the primary operator, and the characters are

K(KL)
λ⃗
(τ) =

1
η(τ)D
∑

ℓ⃗∈ZD

q
1
2 |λ⃗+KL ℓ⃗ |2K−1

L , (3.12)

for λ⃗ ∈ DL . Indeed, comparing (3.11) with (3.6), we identify the left-moving charge of a
generic operator as q⃗L = PT

L n⃗ + PT
L Mw⃗. This can be written as λ⃗ + KL ℓ⃗, where the integer

vector ℓ⃗ parametrizes the chiral algebra descendants. The left-moving dimension h mod 1
provides a quadratic function h : DL → R/Z that can be used to construct the bilinear form
K−1

L (·, ·) : DL ×DL → R/Z.
The right-moving chiral algebra is obtained in a similar way. Its operators are solutions to

hn⃗,w⃗ = 0, namely to n⃗ = −Mw⃗ with n⃗, w⃗ ∈ ZD. One defines the lattice ΛR of integer vectors
w⃗ such that Mw⃗ ∈ ZD, and packages a set of generators into the integer matrix PR as its
columns. The lattice MΛR of image values of n⃗ is generated by the columns of the integer
matrix ePR = M PR. The chiral algebra is then u(1)DKR

with

M = ePR P−1
R , KR = PT

R GPR = eP
T
R PR + PT

R
ePR . (3.13)

Notice that det KL = det KR.

Left-right pairing. Let us understand how left- and right-moving representations of chiral
algebra are paired into physical fields. The operator (n⃗, w⃗) has left- and right-moving charges
q⃗L = PT

L n⃗ + PT
L Mw⃗ and q⃗R = PT

R n⃗ − PT
R MTw⃗, respectively. If we mod out the lattice Z2D of

vectors
�

n⃗
w⃗

�

by the holomorphic and anti-holomorphic fields corresponding to the sublattice
J Z2D where

J =

�

MTPL −M PR
PL PR

�

, (3.14)

28Special representatives for PL , ePL can be found by performing Smith decomposition of MT, namely writing
MT = U DQV where U , V are integer unimodular matrices, while DQ is a diagonal rational matrix. We write
DQ = Num ·Den−1 where Num, Den are the two diagonal integer matrices of numerators and denominators of the
entries of DQ written in the irreducible form. Then PL = V−1Den and ePL = U Num. We also find PR = U−1T Den
and ePR = VT Num for the two other matrices defined below.
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then we are left with the group Z2D/J Z2D of order det J = det KL = det KR. These are the
integrable representations, paired by a group isomorphism. We say that two integer matrices
P,Q are coprime if ZD is the only integer lattice such that both PZD and QZD are sublattices
thereof (this condition is invariant under multiplication of P,Q by integer unimodular matrices
from the right). In our case, the matrices PT

L and ePT
L are coprime.29 It follows that there exist

integer matrices N1,2 such that

S =

�

PT
L PT

L M
N1 N2

�

∈ SL(2D,Z) . (3.15)

Indeed the columns of PT
L , ePT

L = PT
L M generate ZD, and thus there exists a linear integer

and invertible change of coordinates S from (n⃗, w⃗) to (q⃗L , ℓ⃗ ), for some integer coordinate ℓ⃗
that parametrizes the chiral algebra descendants on the anti-holomorphic side. Let the inverse
integer matrix be

S−1 =

�

R0 MN3
−S0 −N3

�

, (3.16)

so that
�

n⃗
w⃗

�

= S−1
� q⃗L

ℓ⃗

�

. In particular30 PT
L R0 − ePT

L S0 = 1. Substituting into the right-moving
charge q⃗R, we determine31 that q⃗R =ω q⃗L mod KRZD, where

ω= PT
R R0 + eP

T
R S0 . (3.17)

This integer matrix gives the group isomorphism ω : DL → DR. With some algebra, one can
show that ωTK−1

R ω= K−1
L + ST

0 R0 + RT
0 S0. This implies that

h̄
�

ωλ⃗
�

= h
�

λ⃗
�

(mod 1) , for all λ⃗ ∈DL , (3.18)

namely, that ω maps the quadratic function h on DL to the quadratic function h̄ on DR. As
proven in [97], the Abelian Chern-Simons theories constructed with the matrices KL and KR
are equivalent, either at the classical level (by a field redefinition, if KR = V̌TKL V̌ for some
integer unimodular matrix V̌ ) or at the quantum level.

Eventually, the torus partition function can be written as

Z(m,τ) =
∑

λ⃗∈DL

K(KL)
λ⃗
(τ) K(KR)

ωλ⃗
(τ) . (3.19)

In the following, in order to avoid clutter, we will assume that the left and right matrices
defining the chiral algebras are equal,

KL = KR ≡ K , (3.20)

so that ω defines an automorphism of D0 = ZD/K ZD.

29Suppose that they are not. Then there exists an integer lattice LZD (with det L > 1) such that PT
L Z

D and ePT
L Z

D

are sublattices thereof. Hence one can write PT
L = LRT, ePT

L = LeRT in terms of integer matrices R, eR providing a
decomposition MT = eRR−1. However RZD, which is finer than PLZD, is mapped by MT into ZD, in contradiction
with the hypothesis that PLZD is the totality of vectors w⃗ with that property.

30In the representation of footnote 28, R0, S0 are easily determined. Set R0 = VTRred
0 and S0 = U−1TSred

0 . The
reduced matrices satisfy: Den Rred

0 −Num Sred
0 = 1, which is a diagonal equation, hence Rred

0 , Sred
0 are diagonal. Then

N1 = Sred
0 V−1T, N2 = Rred

0 UT, and N3 = −PR.
31One finds q⃗R = PT

R (R0 + MTS0)q⃗L + PT
R GN3ℓ⃗. Since ℓ⃗ parametrizes the anti-holomorphic sector, N3 = PRǓ

for some unimodular integer matrix Ǔ . Note that different solutions to the problem in (3.15)-(3.16) are re-
lated by N1 → N1 −W PT

L , N2 → N2 −W ePT
L , R0 → R0 + MN3W , S0 → S0 + N3W for integer matrices W . The

matrix ω shifts by KR(ǓW ), showing that ω is well-defined as a map to DR. By some algebra one shows that
ωKL = −KRǓ(N1

ePL + N2PL) so that ω is a map from DL to DR.
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Chern-Simons bulk dual. In the three-dimentional bulk we consider the Chern-Simons the-
ory U(1)DK × U(1)D−K with action

SCS =
Ki j

4π

∫

�

Ai
LdAj

L − Ai
RdAj

R

�

, (3.21)

where i = 1, . . . , D. Here K is the positive symmetric even integer matrix constructed above,
so that the resulting Chern-Simons theory is bosonic and has vanishing chiral central charge.32

On the left side, U(1)DK , the lines correspond to the elements of D0, and the S and T matrices
— that can be read off from the characters (3.12) — are

Sλ⃗,µ⃗ =
1
|K |1/2

e−2πi λ⃗TK−1µ⃗ ,

Tλ⃗,µ⃗ = e−2πiD/24 θλ⃗δλ⃗,µ⃗ , with θλ⃗ = eπi |λ⃗|2
K−1 ,

(3.22)

where |K |= |det K | is the order of D0. The phase of θλ⃗ is the chiral dimension h in (3.11) mod
1, i.e., the spin, and it provides a quadratic refinement of the braiding matrix,
B(λ⃗, µ⃗) = S ∗λ⃗,µ⃗S0,0/(S0,λ⃗S0,µ⃗) = θλ⃗+µ⃗/θλ⃗ θµ⃗. In the presence of a boundary, we impose holo-
morphic boundary conditions for U(1)DK and antiholomorphic for U(1)D−K .

The lines of an Abelian Chern-Simons theory form a group under fusion, the 1-form sym-
metry group, which in this case is D0 ×D0. We want to gauge a non-anomalous subgroup A.
The anomaly cancelation condition is that each line in A has integer spin [33, 55], implying
that each line in A has trivial braiding with all other lines. Now the total number of lines is
|K |2, therefore if A has order |K | then after gauging the theory has only one line — the iden-
tity — and is trivial in the bulk (without gravitational anomaly). A particularly simple way to
satisfy both conditions is to find a group isomorphism ω : D0→D0 that preserves the spin of
the lines, eqn. (3.18).33 Then

A=
⊕

λ⃗∈D0

(λ⃗,ωλ⃗) , (3.23)

where (λ⃗,ωλ⃗) is a line of U(1)DK×U(1)D−K . The gauging procedure and the factorization of the
partition functions follow exactly the same steps as in the previous section, with k replaced
by the matrix K . After gauging, this theory is holographically dual to the multi-component
compact boson RCFT defined by (K ,ω). In particular, the partition function on a solid torus is
Z(m,τ) in (3.19). The triviality of the bulk theory implies factorization and independence of
the bulk geometry.

3.2 More general Lagrangian subgroups

As repeated above, the lines of an Abelian Chern-Simons theory form the 1-form symmetry
group of the theory. A subgroup A is non-anomalous if each line has integer spin. A non-
anomalous subgroup A is called Lagrangian if it has maximal order, namely if |A| is equal
to the square root of the total number of lines. Gauging a Lagrangian subgroup generates a
theory that is trivial in the bulk.

We are interested in theories of the form CL×CR, where both CL and CR are Abelian Chern-
Simons theories with positive-definite matrix. On general grounds, Lagrangian subgroups
are in correspondence with topological boundary conditions [58, 59, 67], and we can use the

32More generally, one could relax the condition that K is positive, or take a more general (symmetric even
integer) Chern-Simons matrix that does not have the block-diagonal form

�

K 0
0 −K

�

as we did. These cases have been
studied in [64].

33In the presence of generic left and right sectors KL , KR, the condition is that ω : DL → DR satisfies
ωTK−1

R ω= K−1
L + N for some symmetric even integer matrix N .
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folding trick to map them to topological interfaces between CL and CR. One possibility is that
the interface is invertible: it then represents an isomorphism between the 1-form symmetry
groups of CL and CR that preserves the spin. This is precisely the isomorphism ω that we
described before, and the Lagrangian subgroup is (3.23).

However, there are more general possibilities. For instance, CL and CR could be non-
isomorphic. Or, CL could have a Lagrangian subgroup AL , CR could have a Lagrangian sub-
group AR, so that AL ⊗AR is a Lagrangian subgroup of CL × CR. This case would produce a
partition function which is the product of a left and a right part, each separately modular in-
variant. In the general case, Lagrangian subgroups are still in correspondence with topological
interfaces between CL and CR, but these might be non-invertible. Two necessary conditions for
the existence of Lagrangian subgroups are that the total number of lines is a perfect square,
and that the signature of the total Chern-Simons matrix is a multiple of 24.34

We should mention an interesting subtlety: a model whose maximally extended chiral
algebra is C, can also be described in terms of a sub-algebra eC ⊂ C. Let us give a simple example.
The theory U(1)2×U(1)−2 has a unique Lagrangian subgroup A= (0, 0)⊕ (1, 1), which gives
rise to the compact boson CFT at self-dual radius R2 = 2. Also the theory U(1)8 × U(1)−2 has
a unique Lagrangian subgroup A = (0, 0)⊕ (2, 1)⊕ (4, 0)⊕ (6, 1), isomorphic to Z4. Gauging
of A produces the modular-invariant torus partition function35

Z =
�

K(8)0 (τ)+K(8)4 (τ)
�

K(2)0 (τ)+
�

K(8)2 (τ)+K(8)6 (τ)
�

K(2)1 (τ) =
�

�

�K(2)0 (τ)
�

�

�

2
+
�

�

�K(2)1 (τ)
�

�

�

2
, (3.24)

which describes, once again, the compact boson at R2 = 2. The two models describe the very
same RCFT, but in the latter one uses the chiral algebra u(1)8 which is a subalgebra of u(1)2.
The theory U(1)8 × U(1)−8 has three Lagrangian subgroups: Z(1)8 and Z(−1)

8 that we already
described, as well as A = (0,0)⊕ (0,4)⊕ (4, 0)⊕ (4, 4)⊕ (2, 2)⊕ (2, 6)⊕ (6, 2)⊕ (6, 6) which
is isomorphic to Z2 × Z4. Gauging the first two gives the compact boson CFT at R2 = 8 and
R2 = 1/2, respectively, that are dual to each other. Gauging the latter gives, once again, the
compact boson CFT at R2 = 2.

3.3 Non-rational theories

We conclude this section with a non-rational example. The starting point is a non-compact
Abelian theory: Chern-Simons with gauge group R (which can be easily generalized to RD).
We do not have full control over all details (in particular the normalization of states should
be treated carefully), but we present some interesting ideas. When the gauge group is R, the
level is not physical (it can be rescaled by a field redefinition) and the action reads

SR =
1

4π

∫

AdA . (3.25)

This theory has a continuous family of Wilson lines Ws = eis
∫

A labeled by s ∈ R. With this
normalization, the solid torus partition function gives the u(1) characters

χRs (τ) =
1
η(τ)

q
s2
2 . (3.26)

34The signature of the total CS matrix can just be a multiple of 8, if we allow stacking by the bosonic invertible
theory (E8)1. Necessary and sufficient conditions, easily computable, for the existence of Lagrangian subgroups
have recently been found in [67]. Unfortunately, they do not tell us which nor how many inequivalent Lagrangian
subgroups there exist.

35One uses the identity
∑p−1

i=0 K (kp2)
p(λ+ki)(τ) = K (k)

λ
(τ), which extends to the characters refined by U(1).
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The modular matrices are

Ts,t = e
2πi
�

s2
2 −

1
24

�

δ(s− t) , Ss,t = e−2πist , Cs,t = δ(s+ t) . (3.27)

We can now stack the theory R with its parity reversal, that we indicate as R, and look for
maximal non-anomalous subgroups of the 1-form symmetry to be gauged. The definition of a
Lagrangian subgroup should be modified because the theory has an infinite number of lines.
We define a Lagrangian (Abelian) subgroup by:

1) The lines in A must form a group.

2) The lines in A must have integer spin, and thus be mutually transparent.

3) Every other line in the theory must link non-trivially with at least one line in A.

Condition 3) is the same as asking that A be maximal, in the sense that no other line can be
added to A while preserving 1) and 2). Each line in A will be of the form Ls ⊗ L t . Asking the
lines in A to have integer spin implies

(s+ t)(s− t) = 0 mod 2 . (3.28)

This automatically implies that the lines in A are mutually transparent. There are two types
of solutions.

One possibility to solve (3.28) is to set s = ±t. If we include in A lines with both signs,
their composition does not close inside A. Therefore, without loss of generality, let us consider
the diagonal case s = t (the antidiagonal case s = −t leads to the same result). The Lagrangian
condition implies that all diagonal lines Ls ⊗ Ls appear in A:

A∞ =
∫

ds Ls ⊗ Ls . (3.29)

This is a Lagrangian subgroup, whose gauging gives the CFT of a non-compact free boson
(with zero-mode removed). In particular the torus partition function is

ZT2 =

∫

ds
�

�χRs (τ)
�

�

2
=

1
p

2τ2 |η(τ)|2
. (3.30)

The integral in (3.29) could have in principle included a non-trivial measure factor µ(s). A
more refined argument36 shows that the measure must be constant, and we set it to one.

Another possibility to solve (3.28) is to set

s+ t =
2n
R

, s− t = wR , with n, w ∈ Z , (3.31)

for some real positive number R. The Lagrangian condition forces us to include all possible
values of n, w. Thus:

AR =
⊕

n,w∈Z
L n

R+
wR
2
⊗ L n

R−
wR
2

. (3.32)

Gauging of this Lagrangian subgroup gives the compact boson CFT at generic radius R, and
the torus partition function is indeed (2.2).

The treatment above can be extended to the multi-component case (RD Chern-Simons
theory) in a straightforward way. As expected, one finds that all the free CFTs of D compact
or non-compact (with zero-modes removed) scalars are described by Lagrangian algebras.

36In Section 4.1 we describe a more general formalism, based on modular tensor categories. In (4.18), ZA
s plays

the role of µ(s). Since the F -matrix is [F stu
s+t+u]t+u,s+t = 1, the associativity condition (4.23) implies µ(s+t) = µ(t+u)

for all s, t, u ∈ R, from which it follows that µ(s) must be constant.
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4 Non-Abelian case

Let us now move to the case of non-Abelian Chern-Simons theories. They describe interact-
ing boundary RCFTs, for instance Wess-Zumino-Witten (WZW) models.37 In the bulk we take
Gk × G−k Chern-Simons theory, where G is a compact Lie group and k is its level. As be-
fore, we impose holomorphic and anti-holomorphic boundary conditions for the two factors,
respectively, in order to obtain a gk ⊕ gk chiral algebra [56].

In the non-Abelian case, the fusion of lines does not give rise to a group structure but
rather to a full-fledged fusion algebra. There might be a subset of the simple lines, called
Abelian, with the property that their fusion with any other simple line gives a single simple
line (as opposed to a composite line). Under fusion, the set of Abelian lines has the structure
of an Abelian group, the 1-form symmetry of the theory. A non-anomalous subgroup of it
could be gauged, however this is not sufficient to render the theory trivial.38 The reason is
that most lines are not Abelian. The fact that they are topological, though, implies that they
constitute a sort of symmetry. Indeed, the full set of lines form the so-called non-invertible
1-form symmetry of the theory, which is a modular tensor category (MTC).

There exists an analogous concept to the gauging of a symmetry group that applies to non-
invertible symmetries, called anyon condensation [41,42]. This is an algebraic procedure that,
given an initial MTC and a piece of data called an “algebra object” A, produces a new MTC
corresponding to the TQFT after gauging. The algebra object must satisfy certain consistency
conditions, that are the analog of picking a non-anomalous subgroup. If the algebra object
has maximal dimension, it is called a Lagrangian algebra and its condensation produces a
trivial theory. It turns out that in Gk × G−k Chern-Simons theory there always are one or
more Lagrangian algebra objects, whose condensation produces the holographic duals to many
RCFTs.

4.1 Review of anyon condensation in modular tensor categories

To set our notation, let us review the main data of a modular tensor category and the procedure
of anyon condensation. For more detailed expositions, we refer, e.g., to [52,54,57,98,99] for
the former and to [42] for the latter.

Modular tensor categories (MTC). To a Chern-Simons theory (or to a chiral algebra) one
associates a category C whose objects are the Wilson lines (or the integrable representations
of chiral algebra), and whose morphisms are maps between lines (or intertwiners between
representations). We indicate the objects as L.

In a tensor category one can take tensor products of objects and morphisms, and there is
a unique trivial line L0 (sometimes indicated also as L1) providing the neutral element. The
tensor product is associative. A MTC is semisimple: simple objects La are the ones whose only
endomorphisms are multiples of the identity, and a category is semisimple if every object is the
direct sum of finitely many simple objects. We label the simple objects by a, b, c, . . . (comparing
with previous sections, they are the lines (λ, µ̄) discussed before). Morphisms from La⊗ Lb to
Lc form a vector space V c

ab = Hom(La ⊗ Lb, Lc) over C, and we label a basis of it by the index
µc

ab. The number of independent morphisms is the fusion coefficient N c
ab = dim V c

ab, which is
required to be symmetric in ab.

For each object L there is a dual object Ľ, associated to the conjugate representation of
chiral algebra, such that the product of L and Ľ contains the trivial line: L ⊗ Ľ = L0 + . . .

37Coset models can also be described in this way [55], but we will not consider them here.
38For instance, the SU(2)k CS theory has k + 1 lines Lλ labeled by the Dynkin label λ ∈ {0,1, . . . , k}. The 1-

form symmetry group is Z2 = {L0, Lk}. In SU(2)k × SU(2)−k, the diagonal Z2 given by (L0, L0) and (Lk, Lk) is
non-anomalous and can be gauged, however the resulting theory is a non-trivial TQFT.
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(notice that Ľ0 = L0). Dual objects allow us to define dual morphisms from Lc to La ⊗ Lb.
Morphisms and dual morphisms are associated to trivalent junctions of lines:

c

ba

µc
ab

c

ba ba

µab
c

.

(4.1)

The dimensions of the morphism vector spaces satisfy N c
ab = N b

ǎc as well as the other relations
that follow from symmetry. Morphisms admit orthogonality and completeness relations:

a

b

µ

µ′

c d = δab δµµ′

a a b

=
∑

c

∑

µ∈V c
ab

a b

a b

c
µ

µ

. (4.2)

On the left, δµµ′ can be non-vanishing only if N a
cd > 0. Besides, one can define a trace and

associate to each object L a number called the quantum dimension and denoted by dim L:

L = Tr
�

idL

�

= dim L = dim Ľ . (4.3)

For simple lines we introduce the notation da = dim La. Such quantum dimensions are com-
pletely fixed by N c

ab. The total dimension of the category is dimC ≡D =
q

∑

a d2
a .

The MTC is characterized by braiding and fusion matrices, that define linear relations
between isomorphic spaces of morphisms. The brading matrix R is defined as

c

a b

µ =
∑

ν∈V c
ab

[Rab
c ]µν

c

ba

ν
(4.4)

while the fusion matrix F is defined as39

d

a c

e

b

ν

µ
=
∑

f

∑

ρ∈V f
ab

σ∈V d
f c

[F abc
d ](e;µν)( f ;ρσ)

d

a

f

cb

σ

ρ (4.7)

39One can also define the inverse G of the fusion matrix F , satisfying
∑

f ,αβ
[F abc

d ](e;µν)( f ;αβ) [G
abc
d ]( f ;αβ)(g;ρσ) = δegδµρδνσ . (4.5)

One can show that G is expressed in terms of F as

[Gabc
d ](e;µν)( f ;ρσ) =

∑

αβγδ
[Rab

e ]
−1
µα
[Rec

d ]
−1
νβ
[F cba

d ](e;αβ)( f ;γδ)[R
bc
f ]γρ[R

a f
d ]δσ . (4.6)
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and it encodes associativity of the fusion product a ⊗ b ⊗ c. These matrices satisfy several
consistency conditions [52]. One set is given by the pentagon equations
∑

λ

[F ab f
e ](g;βγ)(ℓ;σλ)[F

ℓcd
e ]( f ;αλ)(k;ψρ) =

∑

h

∑

δµν

[F abc
k ](h;δν)(ℓ;σψ)[F

ahd
e ](g;µγ)(k;νρ)[F

bcd
g ]( f ;αβ)(h;δµ) . (4.8)

The indices of morphisms run over the corresponding spaces (when they are not vanishing),
in particular λ ∈ V e

ℓ f , δ ∈ V h
bc , µ ∈ V g

hd , and ν ∈ V k
ah. Another set is given by the hexagon

equations:
∑

γδ

[Rac
e ]αγ[F

bac
d ](e;γβ)( f ;δλ)[R

ab
f ]δµ =
∑

g

∑

νρσ

[F bca
d ](e;αβ)(g;νρ)[R

ag
d ]ρσ[F

abc
d ](g;νσ)( f ;µλ) . (4.9)

Here γ ∈ V e
ac , δ ∈ V f

ba, ν ∈ V g
bc , ρ ∈ V d

ga, and σ ∈ V d
ag .

The matrices R and F are “gauge dependent”, in the sense that they depend on a choice
of basis in the vector spaces of morphisms. Two important gauge-invariant quantities are the
topological spin θa and the S-matrix.40 The former is defined by

a

=

a

= θa

a

or θa = θǎ =
1
da a

, (4.10)

it is a phase, |θa|= 1, and it satisfies

θa =
da [F aǎa

a ]00

[Raǎ
0 ]

=
∑

c,µ

dc

da
[Raa

c ]µµ ,
∑

ν

[Rab
c ]µν[R

ba
c ]νρ =

θc

θaθb
δµρ . (4.11)

The absolute value of the first relation provides an alternative formula for da. The S-matrix is
defined by

Sab =
1
D ba =

1
D

∑

c

N c
ǎb dc

θc

θaθb
, (4.12)

which implies

b

a =
Sab

S0b
b

. (4.13)

In particular S00 = 1/D and S0a = da/D. One can prove that Sab = Sba = S∗ǎb and that S is a
unitary matrix. The Verlinde formula [93] is

N c
ab =
∑

x∈C

SaxSbxS∗cx

S0x
. (4.14)

Together with the matrix Tab = e−2πic−/24θaδab and the charge-conjugation matrix Cab = δab̌,
the S-matrix obeys the modular relations

(ST )3 = S2 = C , C2 = 1 . (4.15)

The chiral central charge c−, defined modulo 8, is given by 1
D
∑

a θad2
a = e2πic−/8.

40Another one is the Frobenius-Schur indicator ca = da[F aaa
a ]00 = ±1 for lines such that ǎ = a.
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b12
µ1

a1

ν2

c2
b23

µ2

a2

bg−1,g νg

ag

Figure 5: Left: a basis of line insertions in a genus-g handlebody that generate the
Hilbert space of states on the boundary Riemann surface Σg . Right: example of
insertions for g = 2.

The Hilbert space Hg of the TQFT on a Riemann surface Σg of genus g is generated by a
handlebody SΣg with line insertions. A basis for the Hilbert space is provided by the insertion
of simple lines a1, . . . , ag , c2, . . . , cg−1 along the non-contractible cycles (similarly to the Abelian
case), together with g − 1 lines b12, b23, . . . , bg−1,g such that bi,i+1 connects the i-th to the
(i + 1)-th non-contractible cycle and at each junction the homomorphism space is non-trivial.
See Figure 5. The total number of states is thus

dimHg =
∑

a1,...,ag
c2,...,cg−1

∈C

∑

b12,...,bg−1,g ∈C
N b12

a1 ǎ1
N b12

a2c2
N b23

a2c2
. . . N

bg−1,g
ag−1cg−1

N
bg−1,g

ag ǎg
. (4.16)

Using Verlinde’s formula, this reduces to

dimHg =D2g−2
∑

a∈C
d2−2g

a . (4.17)

Algebra objects and anyon condensation. In the case of MTCs whose lines are not all
Abelian, gauging a one-form symmetry is not enough to make the theory trivial in the bulk
(and thus achieve a good holographic dual to a boundary CFT). Instead, one should invoke a
procedure called anyon condesation which is the analog of gauging in the case of non-invertible
symmetries. We keep following the notation of [57], and refer to [42] for details on conden-
sation. The procedure can be summarized as follows.

First, one packages a set of lines (possibly with degeneracies) into a composite line A:

A=
∑

a∈C
ZA

a La , ZA
a ∈ Z≥0 . (4.18)

What substitutes the group structure is a morphism m : A ⊗A → A, which we denote by a
red dot. The trivial line is required to be inside A, and this is represented by a unit morphism
η : L0→A:

A

AA

m

A

η

.

(4.19)

In components, m is represented by a tensor mcγ;µ
aα,bβ as follows:

c

ba

γ
βα =
∑

µ∈V c
ab

mcγ;µ
aα,bβ

c

a b

µ
. (4.20)
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Here α = 1, . . . , ZA
a labels a choice of basis vectors in Hom(La,A) (and similarly for β ,γ),

and the blue cup is the projector from A to the corresponding vector. The projectors satisfy
orthogonality and completeness relations:

a

b

A
α

β
= δab δαβ

a A

=
∑

a,α
A

a

A
α

α . (4.21)

The morphism m is required to be associative and compatible with the unit morphism:

A

A AA

=

A

A AA

A

A

=

A

=

A

A .

(4.22)
The pictures corresponds to the equations

ZA
f
∑

ϕ=1

m f ϕ;ρ
aα,bβ mdδ;σ

f ϕ,cγ =
∑

e∈C

ZA
e
∑

ϵ=1

∑

µν

mdδ;ν
aα,eϵ meϵ;µ

bβ ,cγ [F
abc
d ](e;µν)( f ;ρσ) , (4.23)

ZA
0
∑

γ=1

∑

µ

ηγmaα;µ
0γ,bβ =

ZA
0
∑

γ=1

∑

µ

ηγmaα;µ
bβ ,0γ = δabδαβ , (4.24)

where ηγ are the components of the unit morphism. These properties define a so-called algebra
object A. One requires it to be haploid, or connected: there is a unique copy of the trivial line
inside A, i.e., dimHom(L0,A) = ZA

0 = 1.
Besides m, one also defines an associative co-morphism ∆ : A → A ⊗A and a co-unit

ε : A→ L0, making A into a co-algebra as well. One requires A to be special: in a normaliza-
tion of ∆ such that m ◦∆= idA, the condition is

A

A

=

A

A

= dimA=
∑

a∈C
ZA

a da . (4.25)

One requires the Frobenius condition, that allows one to relate morphisms and co-morphisms
by crossing:41

A

A

A

A

=

A A

A A

=

A

A

A

A

.

(4.27)

41In components, the relations read:
∑

e,ϵ

∑

µν

∆cγ,eϵ
aα;µ mdδ;ν

eϵ,bβ [F
ceb
f ](d;νσ)(a;µρ) =

∑

φ

m f φ;ρ
aα,bβ ∆

cγ,dδ
f φ;σ =
∑

e,ϵ

∑

µν

∆eϵ,dδ
bβ;µ mcγ;ν

aα,eϵ [G
aed
f ](c;νσ)(b;µρ) . (4.26)
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These properties define a special Frobenius algebra object A.
As opposed to the Abelian case, the line A is in general not transparent with respect to

itself. Instead, anomaly cancellation corresponds to the condition

A

A A

=

A

AA ,

(4.28)

which in components reads

mcγ;ν
aα,bβ =
∑

µ∈V c
ba

mcγ;µ
bβ ,aα [R

ab
c ]µν . (4.29)

An algebra with this property is called commutative. Therefore, a gaugeable (or condensable)
algebra A — the non-invertible analog of a non-anomalous 1-form symmetry — is a connected
commutative special Frobenius algebra, or equivalently a connected commutative separable
algebra, in C [42].

The partition function of the “gauged theory” after anyon condensation on an orientable
3-manifold M is defined as the partition function of the original theory with the insertion of
a fine mesh of lines A along the dual edges of a triangulation of M , with morphisms m or
∆ at the vertices (see for instance Figure 7).42 Only in the case that A is Abelian (i.e., that
all lines La appearing in the decomposition (4.18) are Abelian and ZA

a ∈ {0,1}), a fine mesh
can be reduced to a copy of H1(M ;A) — and the normalization factors appearing in (2.32)
are reproduced. We give more details on the Abelian case below. When M has boundaries
with Dirichelet boundary conditions, there are dual edges of the triangulation that terminate
at the boundary (inside the faces that triangulate it), and one should fix projection maps for
all of them. To compute partition functions, one imposes trivial boundary conditions, as in
Sections 2.3 and 2.4: one terminates each boundary dual edge with a unit/co-unit morphism
η (4.19) and includes a boundary term (dimA)−χ(boundary)/2 in order to normalize to 1 the S2

partition function of the boundary theory. More general boundary conditions come into play
when computing correlation functions of local operators placed at the boundary (as discussed
in Section 4.3). In this case, one considers a triangulation such that each insertion point is
inside a boundary face (and no face contains more than one point). The dual edges of the
triangulation can end at those points, and for each of them one chooses a projector map α, as
in (4.20), from A to the representation La of chiral algebra (with ZA

a > 0) that corresponds to
the inserted 2d primary operator. When ZA

a > 1 there are multiple choices for the projector,
as there exist multiple operators in the same representation La in the spectrum of the RCFT.

The lines of the gauged theory are local A-modules M, and their category Cloc
A inherits a

MTC structure from C. A (left) A-module is a pair (M,ρM) of an object M ∈ C and an action
ρM : A⊗M→M (below on the left), satisfying the compatibility condition in the middle of

42The dual edges of a triangulation have 4-valent vertices, each of which should be resolved into two 3-valent
vertices. Associativity, commutativity, and the Frobenius property guarantee that the result is independent from
the resolution, as well as from the chosen triangulation. Note that, since A is not transparent with respect to itself,
generic meshes not dual to a triangulation would lead to different (and inconsistent) results.
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the following picture:

M

M

A

ρM

M

M

AA

=

M

M

A A A M

M

=

M

M

A ,

(4.30)

as well as the condition ρM ◦ (η⊗ idM) = idM. The module is local if it has trivial braiding
with A, as on the right in the picture above. This allows one to define a canonical right action
in terms of the left action,

M

M

A

def
=

M

M

A

=

AM

M

,

(4.31)

and, by virtue of the commutativity of A, the two actions commute. This makes M into an
A-bimodule as well. Notice that (A, m) is always a local A-module, which corresponds to
the trivial line of Cloc

A and of the gauged theory. The total dimension of the category Cloc
A is

dimCloc
A =D/dimA [100,101]. Hence, the gauged theory is trivial in the bulk if and only if

dimA=D . (4.32)

This condition defines a Lagrangian algebra object (or anyon) A.
One can prove that a condensable anyon has trivial spin,43 in other words

θa = 1 ∀ a such that ZA
a > 0 . (4.33)

Moreover, a Lagrangian condensable anyon is modular invariant [57,67]:
∑

b∈C
Sab ZA

b = ZA
a . (4.34)

Gauss law. Given a commuting special Frobenius algebra A, the effect of its condensation is
encoded in a projector44 PA(L) ∈ Hom(A⊗ L,A⊗ L). In the following, we will only apply it
to simple lines Lb and write PA(b). The projector is defined as

PA(b) ≡

A b

=

A b ,

(4.35)

43One considers a loop as in (4.10), but where the anyon running in the loop is A. On the one hand, A can
be decomposed into simple lines. On the other hand, the properties of a special Frobenius algebra together with
commutativity allow one to untwist the loop. This leads to the equation

∑

a ZA
a daθa =
∑

a ZA
a da.

44This projector was defined in [57] for a generic Frobenius algebra object, but it simplifies in the commuting
case.
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c

b

d

γ

β

α

δ

Mκ′
A

Mκ

=
db

dimMκ

δκκ′ δαβ δ
(d,δ)
(c,γ)

c A

bA

α

β

A

=
db

dimA
δαβ

A

Figure 6: Left: orthogonality of A-modules. The index κ labels different mod-
ules. Right: this relation is obtained from the left by setting Mκ =Mκ′ = A and
ρM = m, composing with the projections γ below and δ above, and then summing
over c,γ, d,δ.

and is easily seen to satisfy PA(b) ◦ PA(b) = PA(b) [57]. In the case that A is Lagrangian,
using modular invariance of the vector ZA

a , one computes the trace of PA(b):

Tr PA(b) = A
b

= b A = D ZA
b . (4.36)

This shows that PA only has support on the lines Lb ∈A.
For Lagrangian A, the projector can equivalently be represented as

PA(b) =
dimA

db

ZA
b
∑

β=1

A

A

A

b

b

β

β

. (4.37)

To prove it, one uses the orthogonality between A-modules [57], depicted in Figure 6 on
the left. Specializing to the case that the two modules are (A, m), composing with projec-
tion maps δ and γ above and below, respectively, and summing over them, one obtains the
relation in Figure 6 on the right. Let us call bPA(b) the operator in (4.37) and relax the
assumption that A is Lagrangian. The relation in Figure 6 implies that bPA(b) is a projec-
tor, bPA(b) ◦ bPA(b) = bPA(b). One also easily shows that placing the operator bPA(b) along
a 1-cycle is equivalent to placing the line ZA

b A, that Tr bPA(b) = ZA
b dimA, as well as that

PA(b) ◦ ÒPA(b) = ÒPA(b) ◦PA(b) = ÒPA(b). In the case that A is Lagrangian, they imply that
bPA(b) = PA(b) [102].

The Abelian case. A line La is said to be Abelian when da = 1. Abelian lines have unique
fusion with all other lines, namely

∑

c N c
ab = 1 for all b. The set of Abelian lines forms a finite

Abelian group under fusion: the 1-form symmetry group of the bulk theory. An algebra object
A is said to be invertible when it is made of Abelian lines with no degeneracies, namely when
ZA

a ∈ {0,1} and daZA
a = ZA

a . In this case the components Li of A form an Abelian subgroup of
the total 1-form symmetry group, that we also denote as A. The morphism components reduce
to mk

i j , which can be non-zero only when i ⊗ j = k. We can thus regard them as a normalized

group-cohomology 2-cochain m ∈ C2(A;C∗) labelled by i j ∈ A⊗A, with ma
0a = ma

a0. If we
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regard [F i jk
ℓ
]mn as a 3-cochain labelled by i jk (because m= j⊗ k, n= i⊗ j and ℓ= i⊗ j⊗ k),

then the pentagon equation (4.8) reduces to dF = 1 (using multiplicative notation), while the
associativity condition (4.23) reduces to

F = (dm)−1 , (4.38)

namely F must be trivial in H3(A;C∗). If we regard [Ri j
k ] as a 2-cochain labelled by i j, then

the commutativity condition (4.28) reduces to Ri j
k = mk

i j/m
k
ji and one easily checks that the

anomaly cancelation condition θi = 1 is satisfied.
One can prove the following relation for invertible special Frobenius algebras A:

=
1

dimA . (4.39)

The dotted notation means that the line should close, however there could be other lines
passing in the middle, or the line could close through a topologically non-trivial 1-cycle. The
relation holds because, in the invertible case, only the identity can run along the horizontal
channel. Applying the relation to PA(b) we immediately reproduce the construction we used
in the Abelian case, in Section 2.4. In particular, PA(b) = ZA

b idA⊗ idb.

4.2 Partition functions and factorization

There is a correspondence between RCFTs with a given chiral algebra, and condensable La-
grangian anyons in the MTC C = CL×CR, where CL and CR (the overline stands for orientation
reversal) correspond to the left and right part of the chiral algebra (that in general could be
different), respectively [53, 57, 59, 102]. On the one hand, given a (bosonic) RCFT, its torus
partition function takes the form

ZA
T2 =
∑

µ∈CL , ν̄∈CR

ZA
µν̄ χµ(τ)χν̄(τ̄) , (4.40)

where ZA
µν̄ are non-negative integers while χ are characters. One can prove that

A ≡
∑

µ∈CL , ν̄∈CR

ZA
µν̄ Lµ ⊗ Lν̄ , (4.41)

is a condensable Lagrangian anyon, with a suitable morphism m. With respect to our previous
notation, simple lines are labeled by a = (µ, ν̄). For instance, modular invariance of the torus
partition function,

∑

a∈C SabZA
b = ZA

a , and uniqueness of the vacuum, ZA
0 = 1 where the index

0= (0,0), imply that A is Lagrangian (recall that da =DS0a):

dimA=
∑

a∈C
ZA

a da =D . (4.42)

Commutativity, instead, follows from the fact that physical conformal primaries Oa, with
a ⊂A, of the RCFT have trivial braiding.

On the contrary, consider a bulk Chern-Simons theory Gk×G−k (that can be generalized in
various ways) with a given condensable Lagrangian line A as in (4.41). We want to determine
the partition functions of the theory T obtained after condensation of A, on oriented three-
manifolds with boundaries and holomorphic/anti-holomorphic boundary conditions for Gk
and G−k, respectively. Let us start from handlebodies.
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Figure 7: Left: triangulation of the ball SS2 = D3 by a single tetrahedron, and dual
network. Right: triangulation of the solid torus ST2 by three tetrahedra. We identify
the right face with the left face, and the two faces in the front with the two in the
back, while the two upper faces triangulate the boundary T2. The dual network has
been drawn only after simplification, and it wraps the non-contractible cycle.

The case of SS2 = D3 is simple: this geometry can be triangulated by a single tetrahedron,
and its faces triangulate the boundary S2 (Figure 7 on the left). The dual network reduces to
the segment in (4.25) on the right, equal to dimA=D. The Chern-Simons partition function
is ZCS[D3] = 1, therefore, in order to normalize to 1 the S2 partition function of the boundary
theory, we include a boundary counterterm45 (dimA)−χ(boundary)/2. This gives

ZT [D3] = ZCS[D3] = 1 . (4.43)

The solid torus ST2 can be triangulated by three tetrahedra (with suitable gluing of the
faces, see Figure 7 on the right), and two faces triangulate the boundary T2. The dual network
reduces to a loop ofA along the non-contractible cycle. The partition function of Chern-Simons
theory on the solid torus with holomorphic boundary conditions and a simple line insertion
reproduces the corresponding character of chiral algebra (or extensions thereof, if G is not
simply connected) [56, 77, 79]. This has been shown very explicitly in [79]. The partition
function of the gauged theory, thus, reproduces the torus partition function (4.40).

Triangulation of a handlebody SΣg produces (after simplifications) a dual network as in
Figure 5 on right, in which the lines are A and the (co)morphisms are m or ∆. Once again,
the partition function of the three-dimensional gauged theory T , with holomorphic boundary
conditions, is equal to the partition function of the RCFT on Σg . Using the identity on the
right of (4.21) on each segment of the line A, and the definition (4.20) of the components
of m (and the similar definition for ∆), the network gets rewritten in terms of the insertions
in Figure 5 on the left, with: (i) for each segment of A, a sum over representations a ∈ A
and a sum over projectors α : A → La at the two ends; (ii) for each junction between lines
with labels a, b, c, a sum over morphisms µ ∈ V c

ab (or co-morphisms µ ∈ V ab
c , depending on

orientation). Each term in these sums contains a coefficient mcγ;µ
aα,bβ for each morphism and

∆
aα,bβ
cγ;µ for each co-morphism.46 The partition function of Gk×G−k Chern-Simons theory with

the insertions of Figure 5 (left) gives the (product of left and right) conformal blocks of the
chiral algebra on Σg [44]. The conformal blocks are labeled by the primaries a, . . . and the
morphisms µ, . . . in Figure 5, while do not depend on the projector labels α, . . . which instead
reflect the multiplicities of chiral algebra representations in the operator content of the RCFT (if

45The choice of counterterm is related to the choice of normalizations in (4.25). For instance, in a normalization
in which the bubble is equal to dimA while the segment is equal to 1, the boundary counterterm would be trivial,
but there would be a bulk counterterm to ensure independence from the triangulation.

46Each segment connecting the loops in the network of Figure 5 will have a morphism at one junction, and a
co-morphism at the other junction. The choice of normalization (4.25) for the bubble fixes the normalization of
the components of ∆ in terms of those of m. Since we have g − 1 insertions of ∆, we see that this normalization
enters with a power of g − 1, and is related to the Euler counterterm (dimA)1−g .
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A

=
∑

b∈C

A b b̌

=
∑

b∈C
ZA

b
A b̌

Figure 8: Factorization of the T2× I partition function of the gauged theory T . Left:
the T2×I geometry (the upper and lower faces are indentified in all pictures) with the
network of algebra object A inserted. Middle: two solid tori, obtained by inserting
the completeness of states at some point along I . We recognise the projector PA(b).
Right: The ST2×ST2 partition function of T . This picture is the non-Abelian analog
of Figure 3.

one works with the maximally extended chiral algebra, then there are no multiplicities [53]).
What we described from the condensation of A are precisely the ingredients of the partition
function of the RCFT on Σg [52–54] (in the Abelian case one recovers the construction of
higher-genus partition functions of, e.g., [74] that we reviewed in Section 2.1). Indeed, when
the bulk geometry is a handlebody, it is always possible to pull the condensation network of
A to the boundary: the lines become Verlinde lines [93] and one reduces to the pair-of-pants
decomposition of 2d partition functions.

The partition functions of T on general oriented three-dimensional manifolds M can be
computed using the fact that T is completely trivial in the bulk — the Hilbert space on any
closed two-dimensional spatial manifold is one-dimensional, and the partition function on
any closed three-manifold is 1 — and then applying the very same formal argument that led
to (2.53) and depicted in Figure 4. As in the Abelian case, it implies that:

• The partition function only depends on the boundary conditions, and not on the particu-
lar 3d geometry that is used in the bulk. In particular, such a background independence
implies that no sum over geometries should be performed.

• When the boundary consists of a connected Riemann surface Σg , the partition function
is the one computed by the corresponding handlebody. When the boundary consists of
multiple components, the partition function factorizes as the product of partition func-
tions on handlebodies, as in (2.53).

Alternatively, one can exhibit factorization by explicitly constructing a triangulation of the
multi-boundary geometry and computing the expectation value of the dual network of A. Let
us show how this works for the simple case of the T2 × I Euclidean wormhole, confirming
that it factorizes into the product of two partition functions on solid tori, as expected from
the point of view of the boundary theory. The manifold T2 × I is an annulus times a circle,
and we represent it on the LHS of Figure 8. In the same figure we indicate the network of A
produced by a triangulation [57]. We cut T2× I along a T2 at some point of the interval I , and
insert a complete basis of states on T2 represented by solid tori with the insertion of lines Lb.
This produces the expression in the middle of Figure 8, in which the projector PA(b) of (4.35)
appears. Using the expression (4.37) for PA(b), and its reduction to ZA

b A when placed on a
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=

Figure 9: Triangulation of the ball SS2 = D3 with three local operator insertions on
the boundary. It is triangulated by a single tetrahedron, with three of the boundary
faces containing an insertion point. The dual triangulation is attached to those faces
via a projector from A to the chiral algebra representation of the corresponding oper-
ator. The network that computes the three-point function can be simplified as shown
on the right.

cycle, we finally obtain the RHS of Figure 8, which is the partition function of T on ST2×ST2.
A similar argument may be extended to the more general case Σg × I (see Appendix D).

4.3 Correlators

Let us now discuss how to obtain correlation functions of the RCFT using the dual description
in terms of the topological theory T after condensation of A. The physical primary operators
are labeled by the representations a of the (left and right) chiral algebra with ZA

a > 0, and in
addition by the projectors α from A to La, that run over the ZA

a copies of the representation
in the physical spectrum of the RCFT. In order to obtain correlations functions, as explained
in Section 4.1, we take a fine enough triangulation of the bulk three-manifold M such that
each boundary local operator is inside one boundary face, and no face contains more than one
operator. One of the edges of the dual triangulation will terminate on the local operator (a,α)
at the boundary, and the prescription is to place the projector α at that point (while edges
landing at boundary points where no operator is inserted, terminate with the unit projector
η). This is depicted in Figure 9 for the case of a three-point function on S2. The properties of A
ensure that the correlators obtained this way satisfy modular invariance in the extended sense
of a surface with punctures, that includes crossing symmetry. This construction of physical
correlators, when the bulk geometry is a handlebody, can be mapped to that of [52–54] by
pulling the network to the boundary.

4.4 Examples

We conclude this section by presenting some concrete examples of algebra objects in U(1)k
and SU(2)k, and by algebraically checking the factorization of the T2 × I partition function
after condensation. We exploit a formula given in [57] for the topological partition function
ZA

ab with insertion of a dual network of the algebra object A in the topology T2× I , in the case
that N c

ab and ZA
a take values in {0,1}:47

ZA
ab =
∑

d,e, f ∈A
m f

de∆
de
f

∑

g∈C

θg

θb
[F deb

â ]g f [G
deb
â ] f g . (4.44)

This quantity is the transition amplitude from the state |a〉 in H(T2) to the state |b〉, and the
physical partition function of the gauged theory is then

ZT [T
2 × I] =
∑

(µ,ν̄),(ρ,σ̄)∈C
ZA
(µ,ν̄)(ρ,σ̄)χµ(τ1)χν̄(τ̄1)χρ(τ2)χσ̄(τ̄2) , (4.45)

47With the notation a, b, c, . . . ∈A we indicate all simple anyons La such that ZA
a > 0.
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where τ1, τ2 are the modular parameters of the two torus boundaries. Here we have special-
ized the formula of [57] to the case of a commuting algebra A. We also introduced the inverse
matrix G, as in (4.6), and the co-morphism ∆, which can be expressed as

[Gabc
d ]e f =

Rbc
f Ra f

d

Rab
e Rec

d

[F cba
d ]e f , ∆ab

c =
1

dimA
mb

ǎc [F
aǎc
c ]b0

m0
ǎa [F

aǎa
a ]00

. (4.46)

Since here we consider the non-chiral case that the total category is C = CL × C L , using the
double-index notation we have48

R(µ,µ̄) (ν,ν̄)
(ρ,ρ̄) = Rµνρ
�

Rµ̄ν̄ρ̄
�∗

,
�

F (µ,µ̄) (ν,ν̄) (ρ,ρ̄)
(σ,σ̄)

�

(λ,λ̄) (κ,κ̄) = [F
µνρ
σ ]λκ [F

µ̄ν̄ρ̄
σ̄ ]∗

λ̄κ̄
, (4.48)

and so on. Factorization is the statement that

ZA
ab = ZA

a ZA
b . (4.49)

This immediately follows from Figure 8, i.e., it is a special case of the Gauss law action.

The case of U(1)k . We consider k ∈ 2N. There are k simple lines labelled by µ ∈ Zk, forming
the Abelian group Zk under fusion, Lµ ⊗ Lν = Lµ+ν, thus Nρµν = δµ+ν=ρ mod k. The conjugate
line is µ̌ = k − µ. The theory is Abelian and the quantum dimensions of all simple lines are
dµ = 1. The topological spins, R-matrices and F -matrices are

θµ = eiπ µ
2

k , Rµνρ = (−1)µ⌊
ν
k⌋+ν⌊µk⌋ eiπ µνk , [Fµνρσ ]λκ = (−1)µ(⌊

ν+ρ
k ⌋−⌊νk⌋−⌊ρk⌋) , (4.50)

where ⌊x⌋ ∈ Z is the floor function. Recall that Rµνρ is defined only when Nρµν > 0, and similarly
[Fµνρσ ]λκ is defined only when NλνρNσ

µλ
NκµνNσκρ > 0. The total quantum dimension is D =

p
k

and the chiral central charge is c− = 1. The S-matrix is Sab = e−2πi ab
k . The two Frobenius-

Schur indicators are c0 = 1, ck/2 = (−1)k/2.
The modular invariant associated to the integerω is described by the Lagrangian condens-

able anyon

A=
⊕

µ∈Zk

Lµ ⊗ Lωµ , mc
ab ≡ m(ρ,ωρ)

(µ,ωµ)(ν,ων) = (−1)µ⌊
ν
k⌋+ωµ⌊ωνk ⌋ , (4.51)

where mc
ab is defined only when Nρµν > 0, and the unit morphism is η = 1. In particular

ZA
(µ,µ̄) = δµ̄=ωµ mod k. One can check that the factorization property (4.49) is indeed satisfied.

The case of SU(2)k . Next, we consider the WZW model SU(2)k. To this end, we recall
some basic facts about that the SU(2)k TQFT. There are k + 1 simple lines labeled by the
SU(2) Dynkin label µ= 0,1, . . . , k. The fusion algebra is

Lµ ⊗ Lν =
min(µ+ν, 2k−µ−ν)
∑

ρ=|µ−ν|
ρ=µ−ν mod 2

Lρ , (4.52)

48The matrices of C L are obtained from those of CL with a parity transformation. This leads to

�

R
ab

c

�

µν
= [Rab

c ]
−1
νµ

,
�

F
abc

d

�

(e;µν)( f ;ρσ) = [G
abc
d ]( f ;ρσ)(e;µν) . (4.47)

Exploiting the fact that Rab
c , F abc

d and Gabc
d are unitary matrices (and specializing to the case that the fusion coeffi-

cients N ∈ {0, 1}), one obtains the formulas in the main text.
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from which the fusion coefficients Nρµν follow. Each line is self-conjugate: µ̌= µ. The quantum
dimensions, topological spins, R-matrices and F -matrices are

dµ = [µ+ 1] , θµ = e2πi∆µ , ∆µ =
µ(µ+ 2)
4(k+ 2)

,

Rµνρ = (−1)
µ+ν−ρ

2 eiπ(∆ρ−∆µ−∆ν) Nρµν ,

[Fµνρσ ]λκ =
§

ρ/2 ν/2 λ/2
µ/2 σ/2 κ/2

ª

NσµλNλνρNκµνNσκρ ,

(4.53)

where we introduced the q-number and q-factorial:

[n] =
sin
�

πn
k+2

�

sin
�

π
k+2

� , [n]!=
n
∏

m=1

[m] , [0]!= [1]!= 1 . (4.54)

Then the curly bracket symbol is defined by
§

a b e
c d f

ª

= (−1)a+b−c−d−2e
Æ

[2e+ 1] [2 f + 1]∆(a, b, e)∆(a, d, f )∆(c, b, f )∆(c, d, e)

×
zmax
∑

z=zmin

(−1)z [z + 1]!
�

[z−a−b−e]! [z−a−d− f ]! [z−c−b− f ]! [z−c−d−e]!

[a+b+c+d−z]! [a+c+e+ f −z]! [b+d+e+ f −z]!
�−1

,

(4.55)

where the integer z is summed in the interval

zmax =min
�

a+ b+ c + d, a+ c + e+ f , b+ d + e+ f
�

,

zmin =max
�

a+ b+ e, a+ d + f , c + b+ f , c + d + e
�

.
(4.56)

We used the function

∆(a, b, c) =

√

√[−a+ b+ c]! [a− b+ c]! [a+ b− c]!
[a+ b+ c + 1]!

. (4.57)

The total quantum dimension and the chiral central charge are

D =
√

√k+ 2
2

1

sin
�

π
k+2

� , c− =
3k

k+ 2
. (4.58)

The S-matrix is

Sµν =
1
D
�

(µ+ 1)(ν+ 1)
�

. (4.59)

It is real, symmetric, and it squares to the identity. The FS indicators are cµ = (−1)µ.
The modular invariants of SU(2)k follow an ADE classification [103]. The simplest one,

that exists for every k ≥ 1, is the diagonal Ak+1 modular invariant:

ZA
(µ,µ̄) = δµµ̄ , m(ρ,ρ)

(µ,µ) (ν,ν) = Nρµν , (4.60)

with unit morphism η= 1. One can explicitly verify that the factorization (4.49) holds.
The other permutation modular invariant (i.e., in which the left and right modes are paired

through a permutation) exists for k = 2 mod 4 with k ≥ 6, and is called the Dk
2+2 invariant.

The permutation π acts as

π(µ) =

¨

µ for µ even ,

k−µ for µ odd ,
(4.61)
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and is an isomorphism of the SU(2)k TQFT. The algebra object is given by

ZA
(µ,µ̄) = δµπµ̄ , m(ρ,ρπ)

(µ,µπ) (ν,νπ)
= Nρµν ×



















1 for meven
even,even ,

i ρ+µ+1 for meven
odd,odd ,

i ν for modd
odd,even ,

i µ+ν−ρ for modd
even,odd ,

(4.62)

where we used the notation µπ ≡ π(µ), and with unit morphism η= 1.
In general, a permutation invariant is defined by an automorphism π such that

Rµνρ = Rµπνπρπ

Π
ρ
µν

Π
ρ
νµ

, [Fµνρσ ]λκ = [F
µπνπρπ
σπ

]λπκπ
ΠκνρΠ

σ
µκ

ΠλµνΠ
σ
λρ

, (4.63)

where Πρµν is a gauge transformation. Using the fact that F and R are unitary, it is simple to
show that the choice

m(ρ,ρ̄)
(µ,µ̄) (ν,ν̄) = δµµ̄π δνν̄π δ

ρρ̄π
�

Πρµν

�−1
Nρµν , (4.64)

satisfies both associativity and commutativity. We can then perform a gauge transformation on
the right movers by Π−1. This sets em(ρ,ρ̄)

(µ,µ̄) (ν,ν̄) = δµµ̄π δνν̄π δ
ρρ̄πNρµν, and the computation of

the partition function reduces to the one of the diagonal invariant, which exhibits factorization.
The case of non-permutation invariants, such as the Dk

2+2 invariant for k = 0 mod 4, is a
bit more complicated. Writing the theory as SU(2)4l , the D-type invariant is described by the
Lagrangian anyon

A=
� k/2−2
⊕

λ=0
λ even

�

Lλ + Lk−λ
�

⊗
�

Lλ + Lk−λ
�

�

+ 2Lk/2 ⊗ Lk/2 . (4.65)

Note in particular that ZA
k
2 , k

2

= 2. Let us give some details on the simplest case, SU(2)4:

A= L0 ⊗ L0 + L0 ⊗ L4 + L4 ⊗ L0 + L4 ⊗ L4 + 2L2 ⊗ L2 . (4.66)

Denoting e = (0,0), q = (0,4), q̃ = (4, 0), b = (4,4), and n = (2,2) with α = 1,2, the
non-vanishing components of the algebra morphism are:49

maα
aα,e = me

aα,aα = maα
e,aα = 1 ,

mb
q,q̃ = mq̃

q,b = mb
q̃,q = mq

q̃,b = mq̃
b,q = mq

b,q̃ = 1 ,

mn1
q,n2 = −mn2

q,n1 = mn2
q̃,n1 = −mn1

q̃,n2 = mn2
n1,q = −mn1

n2,q = mn1
n2,q̃ = −mn2

n1,q̃ = i ,

mq
n1,n2 = −mq

n2,n1 = mq̃
n2,n1 = −mq̃

n1,n2 = −i ,

mn1
b,n1 = mn2

b,n2 = mn1
n1,b = mn2

n2,b = mb
n1,n1 = mb

n2,n2 = −1 ,

mn1
n1,n1 = −mn2

n1,n2 = −mn2
n2,n1 = −mn1

n2,n2 = 1 .

(4.67)

With this choice and the version of formula (4.44) valid when ZA
a can be bigger than 1, one

can check that factorization holds.
49There is a continuous family of solutions that depends on the chosen basis in the space of projectors A→ n.

This is not a physical parameter, and we set it to a nice value to simplify the expressions.
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5 Discussion

In this paper we have shown how the known relation [52,57,59] between modular invariants
in 2d RCFT, Lagrangian commutative special Frobenius algebras, and topological boundary
conditions in 3d TQFTs, can be recast in the following form. A three-dimensional theory T ,
constructed by starting with a Chern-Simons theory and then gauging a maximal one-form
symmetry (or, in the non-Abelian case, performing anyon condensation of a maximal non-
invertible one-form symmetry), behaves non-perturbatively as a theory of gravity and indeed is
holographically dual, in the standard sense, to a well-defined (rational) conformal field theory.
The bulk theory T has a number of interesting properties. First, it is background independent:
the full non-perturbative partition function is computed by choosing any three-dimensional
manifold with the correct boundary conditions, with no need to sum over geometries (in a
sense, the theory automatically sums over all needed geometries). A similar behavior has
been observed in examples of full-fledged string theories in AdS3 [45, 46]. Second, T is a
unitary theory of gravity: its partition functions with fixed boundary conditions are equal to
the partition functions of a unitary 2d boundary CFT. In particular, the partition functions with
disconnected boundaries factorize. Third, T does not have any bulk observable, rather, it is
completely blind to the bulk geometry, which follows from the fact that it is trivial in the bulk.
This is what one would expect from a holographic theory, once the full non-perturbative path
integral has been done. Fourth, the bulk theory does not have any global symmetry: bulk
symmetries are precisely removed by gauging the one-form symmetry.

Our initial motivation was to establish a link between the presence of (possibly non-
invertible) global symmetries in the bulk, and the fact that the dual boundary system is an
ensemble of theories (as signalled by the failure of factorization of the partition functions).
At least in the class of models we have considered here — 3d bulk theories constructed out
of Chern-Simons or other topological field theories — it is easy to convince oneself that bulk
(possibly non-invertible) global symmetries imply averaging. Symmetries imply that there are
local or non-local topological operators [33], therefore the bulk theory has non-trivial Hilbert
spaces, hence there is a dependence on 3d topologies and factorization fails. It would be in-
teresting to extend this argument to more general theories of gravity, in order to provide yet
another argument that quantum gravities cannot have global symmetries.

A given Chern-Simons theory, in general, admits multiple maximal gaugings — described
by multiple Lagrangian condensable anyons A. Each gauging produces the dual to a precise
2d CFT, while the partition functions of the original CS theory, summed over 3d geometries in
order to ensure modular invariance, display ensemble averaging. Therefore, it is tempting to
interpret the gauging of A as a concrete realization of the projectors to the so-called α-states
of the bulk system (using the language of [49]).

In this paper we have only considered very simple topological theories, dual to RCFTs. It
would be fascinating if similar ideas could be extended to non-compact Chern-Simons theories
(or other non-semisimple TQFTs), possibly related to three-dimensional Einstein gravity. We
considered in Section 3.3 the straighforward example of R CS theory, but it is clear that such
an example is too simplistic to be representative of the general case.

Let us conclude with a few remarks and comments.

Semiclassical limits. One might want to compare the results emerging from the formalism
used here to some sort of semiclassical gravity. To do this we need to discuss possible semi-
classical limits. In a semiclassical limit the central charge c = cL + cR should go to infinity. In
WZW models for the current algebra bgk, the central charge is cL = k dim(g)/(k+ čg), where čg
is the dual Coxeter number. One possibility is to take dim(g) large, which is somewhat akin
to the standard large N limit. Another possibility is to take k → −čg. At least for Òsu(2)k, it

42

https://scipost.org
https://scipost.org/SciPostPhys.14.2.019


SciPost Phys. 14, 019 (2023)

might be possible to interpret this limit through analytic continuation to bsl(2,R)k, for which
the central charge formula is cL = k dim(g)/(k − čg) (see [104] where ideas along these lines
have been applied to 3d de Sitter gravity).

Let us also notice that the dimensions of chiral vertex operators are

hλ =
Qλ

2(k+ čg)
, (5.1)

where Qλ the quadratic Casimir of the representation λ. This implies that, in the second type
of limit, a gap of order ∆gap ∼ c opens up between the identity module and the first integral
representation of chiral algebra. This behavior resembles a semiclassical gravity.

Dissecting Poincaré sums. Our construction offers a suggestive way to think of Poincaré
sums of RCFT characters (i.e., sums over their modular images). Consider the Poincaré sum

Zavg
λµ̄
(τ, τ̄) =
∑

γ∈Γ
χλ(γ ·τ)χµ̄(γ ·τ) , (5.2)

for a “seed" character χλχ̄µ̄. Here Γ is the quotient of the modular group that acts non-trivially
on the seed character. For RCFTs this is a finite group, so the sum is finite. Such sums were
considered, e.g., in [18, 21] and could be thought of as an avatar of sums over gravitational
geometries. Since Zavg

λµ̄
is a modular invariant function, constructed as a linear combination of

character bilinears χρχ̄σ̄, it can be expanded in a complete basis of modular invariant functions

ZA(τ, τ̄) =
∑

ρ,σ̄

ZA
ρσ̄ χρ(τ)χσ̄(τ) , (5.3)

labelled by the index A and forming a finite-dimensional vector space. The expansion reads

Zavg
λµ̄
(τ, τ̄) =
∑

A
pAλµ̄ ZA(τ, τ̄) , (5.4)

in terms of coefficients pA
λµ̄

. In general the basis elements ZA cannot be all chosen to corre-
spond to physical modular invariants of the corresponding chiral algebra: some of them might
involve coefficients ZA

ρσ̄ that are not non-negative integers. However [18,21] found by inspec-

tion that, in some cases, the ZA’s involved are all physical. We will assume that we are in such
a favorable situation.

The expansion (5.4) looks like an ensemble average over theories, in a basis of Coleman’s
α-states [49]. In our formalism, we can give each of them a bulk interpretation as the (unique)
state resulting from the condensation of the bulk Lagrangian anyon A. Thus, our prescription
could be viewed as defining a projection to a fixed α-state.

We can be more explicit and compute the “probabilities” pA
λµ̄

by inverting (5.4). One first
defines the positive-definite scalar product

MAA′ = 〈A|A′〉=
∑

ρ,σ̄

ZA
ρσ̄ ZA′

ρσ̄ . (5.5)

Then, using modular invariance of the elements ZA, one finds

pAλµ̄ = |Γ |
∑

A′
[M−1]AA′ Z

A′
λµ̄ . (5.6)

Unfortunately, the “probabilities” pA are not guaranteed to be non-negative. This is an impor-
tant indicator for the possibility of interpreting the sum as a proper ensemble average.
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The α-states associated to two distinct Lagrangian anyons A, A′ fail, in general, to be
orthogonal using the product (5.5), because both anyons contain the vacuum line. Since
different α-states should be orthogonal as they represent different superselection sectors, this
seems to hint that a different scalar product should be used.

The procedure we outlined allows us to “dissect” Poincaré sums with one boundary in
terms of bulk data. The case with multiple boundaries is in principle also tractable. One
could start from a sum over higher-genus handlebodies and take a pinching limit in which the
complex structure Ω becomes block diagonal, as in [105]. The computation of overlaps in the
non-Abelian case is tedious, although in principle doable using surgery techniques.

Non-compact theories. It would be very interesting to understand whether the formulation
of modular invariants in terms of Lagrangian condensable anyons can be extended to the case
of Chern-Simons theories with non-compact gauge group, or to non-semisimple TQFTs. A
natural objective would be towards Einstein gravity in AdS3 in its Chern-Simons formulation.
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A Higher-genus partition functions

Here we review the computation of the non-holomorphic function Φ appearing in the higher-
genus partition functions (2.18) and (2.27). From the point of view of the 2d CFT, Φ can be
written as (see Section 3 of [74] and references therein):

Φ=
�

�det′Γ ∂̄0

�

� , (A.1)

where ∂̄0 is the Dolbeault operator mapping functions to (0,1)-forms, and the symbol det′

denotes that the zero-modes are removed. The subscript Γ reminds us that this regularized
determinant depends on a choice of Lagrangian (primitive) sublattice Γ ⊂ H1(Σ,Z), i.e., on a
choice of contractible cycles in the corresponding three-dimensional handlebody. On the other
hand, using two-dimensional holomorphic factorization [106–108]

det′∆0 =
�

det ImΩ
�

·
�

�det′Γ ∂̄0

�

�

2
, (A.2)

where ∆0 is the scalar Laplacian on Σ and the choice of Ω is related to Γ (see [16], sections
3.1 and 4.2), one gets the alternative expression

Φ=
�

det′∆0

det ImΩ

�1/2

. (A.3)

Notice that both
�

�det′Γ ∂̄0

�

� and (det′∆0)1/2 suffer from the conformal anomaly for g ̸= 1. The
Laplacian determinant det′∆0 is modular invariant.
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On the other hand, following the discussion in Section 4 of [16], we can make contact
with the partition function of 3d CS theory by using Zograf’s three-dimensional holomorphic
factorization formula [109,110]:

Φ=
�

det′∆0

det ImΩ

�1/2

= e−SL/24π

�

�

�

�

�

∏

γ∈P

∞
∏

n=1

�

1− qn
γ

�

�

�

�

�

�

2

. (A.4)

Here G is a Schottky group such that H3/G is a handlebody whose boundary is Σ and whose
contractible cycles are indicated by Γ , while P is the set of primitive subgroups of G and γ are
their generators. For each generator γ, we write γ ∈ G ⊂ PSL(2,C) as a 2 × 2 matrix, then
use 2 cosπτγ = Trγ to define τγ (the real part of τγ is only defined mod 1, while we choose
the sign of τγ in such a way that Imτγ > 0), and finally define qγ = e2πiτγ . The function SL
is a Liouville action, defined in [111], which reproduces the conformal anomaly and obstructs
holomorphic factorization [112].

It was proven in [113] that SL is equal to the holographically regularized volume of the
handlebody H3/G:

SL = −4 Vol
�

H3/G
�

+ counterterms . (A.5)

For instance, for g = 1 one finds Vol(H3/G) = −π2τ2 while P has a unique element, so that
Φ= e−πτ2/6
�

�

∏

n(1−qn)
�

�

2
=
�

�η(τ)
�

�

2
.50 Finally, one can use heat kernel methods to express the

ratio of determinants in (2.26) [16, 114], arising from the perturbative partition function of
U(1)k × U(1)−k Chern-Simons theory on a handlebody with conformal boundary conditions,
in terms of the quantities discussed above:

Zpert
CS ≡

(det′∆0)3/2

(det′∆1)1/2
= exp
�

−
Vol(H3/G)

6π

�

�

�

�

�

�

∏

γ∈P

∞
∏

n=1

1
1− qn

γ

�

�

�

�

�

2

=
1
Φ

. (A.6)

This partition function does not include the sum over disconnected flat connections.

B Boundary symmetry and contact term

Consider the Abelian Chern-Simons theory with action

SCS = i
k

4π

∫

M3

ada . (B.1)

We study it on a manifold M3 with a boundary ∂M3 = M2. We pick a complex structure on
M2 and we write the boundary term

S∂ =
k

4π

∫

M2

d2 x
p

g gzz̄ azaz̄ , (B.2)

using a Hermitean metric. The Hermitean metric and the volume form which are compatible
with the complex structure are related by εzz̄ = i gzz̄ . Using this, we get the following variation
of the total action:

δ
�

SCS + S∂
�

= i
k

2π

∫

M3

δa da+
k

2π

∫

M2

d2 x
p

g gzz̄ az δaz̄ . (B.3)

50Note that in this case of g = 1, the prefactor e−SL/24π in eqn. (A.4) gives a factorized contribution
e−πτ2/6 = q

1
24 q̄

1
24 . We can also compare with eqn. (2.3) of [79], taking into account that they include a factorized

contribution in their definition of eF , see their footnote 3.
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Therefore the equation of motion is da = 0 and the boundary condition that makes the action
stationary is az̄

�

�

M2
= Az̄ , where the uppercase letter denotes a fixed c-number connection.

Evaluating the EOM on the boundary we get

0= da
�

�

M2
= (∂zaz̄ − ∂z̄az)

�

�

M2
dz ∧ dz̄ =
�

∂zAz̄ − ∂z̄az

�

�

M2

�

dz ∧ dz̄ . (B.4)

We see that az

�

�

M2
is a holomorphic current when the boundary value Az̄ is set to zero, and

otherwise it satisfies the “anomalous” conservation equation

∂z̄az

�

�

M2
= ∂zAz̄ . (B.5)

Defining the partition function

Z[Az̄] =

∫

az̄ |M2
=Az̄

Da exp
�

−SCS − S∂
�

=

∫

az̄ |M2
=Az̄

Da exp
�

−i
k

4π

∫

M3

ada−
k

4π

∫

M2

d2 x
p

g gzz̄ Az̄az

�

,

(B.6)

a natural normalization of the holomorphic current on M2 is to take

〈 jz〉Az̄
= −

gzz̄p
g
δ

δAz̄
log Z[Az̄] , (B.7)

from which we get

jz =
k

4π
az

�

�

M2
. (B.8)

There are several related unpleasant features in these formulas:

(i) The current is not invariant under gauge transformations a→ a+ dλ, namely

jz → jz +
k

4π
∂zΛ , (B.9)

where here and in the following Λ(z, z̄) denotes the restriction of the gauge parameter λ to
M2.

(ii) The current does not satisfy the standard anomaly equation:

∂z̄ jz =
k

4π
∂zAz̄ ̸=

k
4π

Fzz̄ , (B.10)

which is a trivial consequence of the fact that the holomorphic component Az does not enter
in our formulas.

(iii) The partition function does not transform in the expected way under a background gauge
transformation. To compute how the partition function transforms under a gauge trans-
formation a → a + dλ ≡ a′, we perform a change of variables in the path integral setting
a = a′ − dλ. We obtain

Z[Az̄] =

∫

a′z̄ |M2
=Az̄+∂z̄Λ

Da′ exp
�

−i
k

4π

∫

M3

a′da′ −
k

4π

∫

M2

d2 x
p

g gzz̄
�

Az̄ + ∂z̄Λ
�

a′z

−
k

2π

∫

M2

d2 x
p

g gzz̄ Λ∂zAz̄ +
k

4π

∫

M2

d2 x
p

g gzz̄ ∂zΛ∂z̄Λ

�

. (B.11)
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Collecting the c-numbers on the second line as a factor in front of the path integral, we
recognize the remaining path integral to be precisely the partition function with source
Az̄ + ∂z̄Λ, so we obtain

Z[Az̄ + ∂z̄Λ] = exp
�

k
2π

∫

M2

d2 x
p

g gzz̄Λ∂zAz̄ −
k

4π

∫

M2

d2 x
p

g gzz̄∂zΛ∂z̄Λ

�

Z[Az̄] . (B.12)

All of these unpleasant features can be fixed simply by adding a boundary contact term:

Sct = −
k

4π

∫

M2

d2 x
p

g gzz̄ AzAz̄ , (B.13)

and defining accordingly a new partition function

eZ[Az , Az̄] = exp
�

k
4π

∫

M2

d2 x
p

g gzz̄ AzAz̄

�

Z[Az̄] . (B.14)

With the same definition as before,

〈 ȷ̃z〉Az ,Az̄
= −

gzz̄p
g
δ

δAz̄
log eZ[Az , Az̄] , (B.15)

we now get

ȷ̃z =
k

4π

�

az

�

�

M2
− Az

�

, (B.16)

which has the advantage of being gauge-invariant, at least if we accompany the gauge trans-
formation of the dynamical field by a background gauge transformation with the same param-
eter. At the same time, with this modification the current now satisfies the standard anomaly
equation:

∂z̄ ȷ̃z =
k

4π
Fzz̄ . (B.17)

Moreover, using (B.12) we can easily check that the new partition function has a standard
anomalous transformation under background gauge transformations:

eZ
�

Az + ∂zΛ, Az̄ + ∂z̄Λ
�

= exp
�

k
4π

∫

M2

d2 x
p

g gzz̄ Λ Fzz̄

�

eZ[Az , Az̄]

= exp
�

−i
k

4π

∫

M2

Λ F
�

eZ[Az , Az̄] .

(B.18)

C Gauging formulas with boundary

In this appendix we derive formula (2.34) for the partition function of a 3d theory in which a
discrete (Abelian) 1-form symmetry is gauged, on a manifold with boundary.51

Let M be a closed (oriented) 3-manifold. Gauging of a discrete 1-form symmetry A, as in
(2.32), leads to the partition function

Zgauged[M] =
|H0(M)|
|H1(M)|

∑

a∈H2(M)

Z[M ; a] . (C.1)

51We are grateful to Pavel Putrov for explaining the context of this appendix to us.
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Here and in the following we make explicit the manifolds on which the Euclidean path integrals
Z are computed. On the other hand, all cohomology groups are with coefficients in the Abelian
group A, which we then keep implicit.

Now, let M = M+ ∪ M− such that ∂M+ = ∂M− = Σ and M+ ∩ M− = Σ. Here Σ is a 2-
dimensional closed manifold, not necessarily connected. We would like to define the partition
functions Z[M±] on M± with Dirichelet boundary conditions on Σ, in such a way that Z[M]
factorizes into them, with a sum over the boundary conditions. We would like to use the
Mayer-Vietoris sequence (see, e.g., [85]):

. . .
Φ
−→ Hn−1(Σ)

δ
−→ Hn(M)

Ψ
−→ Hn(M+)⊕Hn(M−)

Φ
−→ Hn(Σ)

δ
−→ . . . , (C.2)

to express H2(M) in terms of H2(M+)⊕ H2(M−). The map Φ restricts cocycles in M+ and in
M− to Σ and then takes the difference. Therefore the kernel of Φ inside H2(M+) ⊕ H2(M−)
consists of a sum over 1-form bundles on M± with equal boundary conditions (summed over
such fixed and equal boundary conditions). However this is not isomorphic to H2(M) because
Ψ has a kernel, equal to δ

�

H1(Σ)
�

.
To solve the problem, we consider cohomology relative to a subspace of Σ, such that H1

of Σ becomes trivial but H2 of Σ remains the same. This can be achieved using Σ∖ P, where
P consists of one point in each connected component of Σ. Heuristically, the relative coho-
mology group H2(Σ,Σ∖ P) focuses the 2-cocycles to a point in each connected component,
and this indeed captures the full cohomology. Thus, we apply the Mayer-Vietoris sequence to
(M ,Σ∖ P) = (M+,Σ∖ P)∪ (M−,Σ∖ P).

Let us first apply the long exact sequence to the pair (Σ,Σ∖ P), which involves the local
cohomology groups Hn(Σ,Σ∖ P):

0 −→ H0(Σ,Σ∖ P)
︸ ︷︷ ︸

0

−→ H0(Σ)
≈
−→ H0(Σ∖ P) −→

−→ H1(Σ,Σ∖ P)
︸ ︷︷ ︸

0

−→ H1(Σ)
≈
−→ H1(Σ∖ P)

0
−→

0
−→ H2(Σ,Σ∖ P)

≈
−→ H2(Σ) −→ H2(Σ∖ P)

︸ ︷︷ ︸

0

−→ 0 .

(C.3)

Here ≈ means isomorphism. For a connected 2-manifold N2, x ∈ N2 a point, and D2 a disk
around x , Poincaré duality implies Hn(N2 ∖ {x}) ≈ Hn(N2 ∖�D2) ≈ H2−n(N2 ∖�D2,∂ D2). The
Mayer-Vietoris sequence then gives:

0 −→ H0(M ,Σ∖ P)
≈
−→ H0(M+,Σ∖ P)⊕H0(M−,Σ∖ P) −→ H0(Σ,Σ∖ P)

︸ ︷︷ ︸

0

−→

−→ H1(M ,Σ∖ P)
≈
−→ H1(M+,Σ∖ P)⊕H1(M−,Σ∖ P) −→ H1(Σ,Σ∖ P)

︸ ︷︷ ︸

0

−→

−→ H2(M ,Σ∖ P) −→ H2(M+,Σ∖ P)⊕H2(M−,Σ∖ P)
Φ
−→ H2(Σ,Σ∖ P)
︸ ︷︷ ︸

H2(Σ)

−→ . . . ,

(C.4)
which implies

H2(M ,Σ∖ P)≈ KerΦ ⊂ H2(M+,Σ∖ P)⊕H2(M−,Σ∖ P) . (C.5)

The inclusion Σ
i
,→ M+ induces the homomorphism H2(M+,Σ∖ P)

i∗
→ H2(Σ,Σ∖ P) ≈ H2(Σ)

therefore
H2(M+,Σ∖ P) =

⊕

b∈H2(Σ)

H2(M+,Σ∖ P)
�

�

�

Im i∗=b
, (C.6)
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where the groups on the RHS have fixed boundary conditions, and the sum is over those bound-
ary conditions. The restriction to KerΦ corresponds to imposing that the boundary conditions
are the same on M+ and M−.

On the other hand, we would like to obtain an expression for the group H2(M), as opposed
to the relative cohomology group H2(M ,Σ∖P). The long exact sequence for the pair (M ,Σ∖P)
is:

0 −→ H0(M ,Σ∖ P) −→ H0(M) −→ H0(Σ∖ P)
︸ ︷︷ ︸

H0(Σ)

−→

−→ H1(M ,Σ∖ P) −→ H1(M) −→ H1(Σ∖ P)
︸ ︷︷ ︸

H1(Σ)

γ
−→

γ
−→ H2(M ,Σ∖ P) −→ H2(M) −→ H2(Σ∖ P)

︸ ︷︷ ︸

0

−→ . . . ,

(C.7)

and similar sequences can be written for M±. In particular

H2(M) ≈ H2(M ,Σ∖ P)/ Im
�

H1(Σ∖ P)
γ
−→ H2(M ,Σ∖ P)

�

. (C.8)

Notice that H2(M ,Σ∖ P) is given by 2-cocycles that vanish on Σ∖ P modulo coboundaries of
1-cochains that vanish on Σ∖ P; while the former represent the whole cohomology H2(Σ)—
see (C.3) — the latter do not represent any element of H1(Σ), and as a result H2(M ,Σ∖ P)
is larger than H2(M). However Z[M ; a] only depends on a ∈ H2(M), therefore if we vary a
by an element in the kernel of the map H2(M ,Σ∖ P)→ H2(M) (which is equal to Imγ) then
Z[M ; a] remains invariant. This shows that if we parametrize bundles using H2(M ,Σ∖ P) we
only suffer from an overcounting problem, which can be taken care of by dividing by | Imγ|.
From (C.7) we obtain

| Imγ|=
|H1(Σ)| |H1(M ,Σ∖ P)| |H0(M)|
|H1(M)| |H0(Σ)| |H0(M ,Σ∖ P)|

=
|H1(Σ)| |H0(M)|
|H0(Σ)| |H1(M)|

∏

i=+,−

|H1(Mi ,Σ∖ P)|
|H0(Mi ,Σ∖ P)|

,
(C.9)

where in the second equality we used (C.4).
We conclude that the partition function (C.1) takes the form:

Zgauged[M] =

�

�

�

�

H0(M)
H1(M)

�

�

�

�

1
| Imγ|

∑

a∈H2(M ,Σ∖P)

Z[M ; a] (C.10)

=

�

�

�

�

H0(M)
H1(M)

�

�

�

�

1
| Imγ|

∑

b∈H2(Σ)

∑

a+∈H2(M+,Σ∖P)
i∗(a+)=b

∑

a−∈H2(M−,Σ∖P)
i∗(a−)=b

Z[M+; a+] Z[M−; a−] .

This prompts the following definition of the gauged partition function with Dirichelet boundary
conditions b ∈ H2(Σ), which coincides with (2.34):

Zgauged
b [M+] =

�

�

�

�

H0(M+,Σ∖ P)
H1(M+,Σ∖ P)

�

�

�

�

∑

a∈H2(M+,Σ∖P)
i∗(a)=b

Z[M+; a] , (C.11)

and similarly for M−. It yields the gluing formula

Zgauged[M] =

�

�

�

�

H0(Σ)
H1(Σ)

�

�

�

�

∑

b∈H2(Σ)

Zgauged
b [M+] Zgauged

b [M−] . (C.12)
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The sum over boundary conditions corresponds to gauging a 1-form symmetry on the two-
dimensional closed manifold Σ, and the normalization factor agrees with (2.32).

If M is orientable, we can express (C.11) and (2.34) in terms of homology, as opposed to
cohomology, groups. Using Poincaré duality and with a few steps, we can prove

Hn(M+,∂M+∖ P) ≈ Hd−n(M+, P) . (C.13)

In particular with d = 3 we have H0(M+,Σ∖P)≈ H3(M+) and H1(M+,Σ∖P)≈ H2(M+). The
group H1(M+, P) is larger than H1(M+) because it includes relative 1-cycles going from one
connected component of the boundary to another, however these extra 1-cycles are precisely
fixed by the boundary conditions. This leads to the alternative formula (2.35).

To finish, let us prove (C.13). We let M+ be an orientable compact manifold of dimension
d with boundary, and P ⊂ ∂M+ be a set of points consisting of one point in each connected
component of ∂M+. Moreover, let D ⊂ ∂M+ be a set of closed disks Dd−1, one disk around
each point of P. The long exact sequence for the triple (M+,∂M+∖ P,∂M+∖�D) is

. . . −→ Hn(M+,∂M+∖ P) −→ Hn(M+,∂M+∖�D) −→ Hn(∂M+∖ P,∂M+∖�D) −→ . . . , (C.14)

Using excision and homotopy invariance, for each i-th connected component of ∂M+ we get

Hn(∂M+∖P,∂M+∖�D)
�

�

�

i
≈ Hn(Rd−1∖{0},Rd−1∖�D)≈ Hn(Rd−1∖�D,Rd−1∖�D) = 0 , (C.15)

where, by abuse of notation, D is also a (d − 1)-dimensional disk in Rd−1 around the origin.
This implies Hn(M+,∂M+ ∖ P) ≈ Hn(M+,∂M+ ∖�D). To the spaces on the RHS we can apply
Poincaré duality, ≈ Hd−n(M+, D), and by homotopy invariance ≈ Hd−n(M+, P).

D Factorization for higher genus

Here we discuss factorization in the case of two boundaries with higher genus. We explicitly
perform the calculation that proves factorization on Σ2 × I , while for the case of g > 2 we
explain all the relevant ingredients but do not perform the full calculation.

The defect network for gauging on Σ2 × I can be reduced to a network lying on Σ2 at a
certain point in I . We represent that Σ2 by gluing the following building blocks:

A

1

2

A

21

3

A

3

4 5

A

5

4

,

(D.1)

with the understanding that we glue along matching numbers. We will henceforth omit A
labels for ease of notation. As a convention, the lines are oriented upwards, which automati-
cally defines for us which intersections are morphisms or co-morphisms. Such choice is carried
throughout the computations.

We perform surgery along a Σ2 slice by inserting a complete set of states on Σ2:

1=
∑

a,b,c∈A
µ∈Hom(a⊗ǎ,b), ν∈Hom(c⊗č,b)

cµνabc |a, b, c;µ,ν〉〈a, b, c;µ,ν| , (D.2)
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where cµνabc = 〈a, b, c;µ,ν|a, b, c;µ,ν〉−1. The state |a, b, c;µ,ν〉 is defined by the following
path integral on SΣ2 (gluings are as in the previous figure, and brown disks indicate that the
surfaces are filled):

|a, b, c;µ,ν〉 =
a

ǎa

b

µ

ν

b

c č

c
. (D.3)

We can also represent this more economically as follows:

=

a

b

c

µ ν× × , (D.4)

where crosses indicate non contractible cycles. A computation leads to52

cµνabc =
da dc

D db
. (D.5)

On one side of the surgery we find the diagram

[SΣ2]
+ =

a

ǎa

b

µ

ν

b

c č

c

= × ×

a

b

c

µ ν

.

(D.6)

Inside the first and fourth block we recognize the projectors PA(a) and PA(c), which, for
Lagrangian A, we can write as in (4.37). After that, we move all morphisms into the pairs of
pants. This leads to considering the following identity:

D
da

ZA
a
∑

α=1

α

α

µ
a

a

b
=

2

1

3
D
da

∑

α,β

∆aα,bβ
aα;µ

b

2

1

3

β

. (D.7)

52The gist of the computation is as follows: when one glues together the two SΣ2, the contractible disks combine
(locally) into an S2. Thus the glued geometry locally looks like S2 ×R, with the R direction winding around in a
non-trivial way carrying the lines a, â, b, b̂, and c, ĉ. Since the Hilbert space on a bi-punctured S2 is one dimensional
if the punctures are conjugate and empty otherwise, we use this to perform surgery locally. We cut transversally
to the local R direction, and on each side of the cut we glue a D3 containing a line that connects the two conjugate
punctures, for instance a, â. When we do that, we need to divide by the norm of the state, which is d/D, where d
is the dimension of the line. We cut in this way each of the lines a, b, c (with their conjugates). Eventually, we are
left with a simple configuration of lines in S3.
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The numbers here correspond to those in (D.1). To show this equality, one uses crossing twice
to isolate a bubble containing the projectors, the relationship

c

A

βα

ba
µ

=
∑

γ

∆aα, bβ
cγ;µ

c

A

γ
,

(D.8)

and a bit of care with the orientations of lines. The same is done in the second pair of pants,
with now c instead of a and the morphism m instead of ∆. We then find the following

× ×
β β ′b

=
db

D
δββ ′ × × .

(D.9)

Putting everything together we get

[SΣ2]
+ =

D db

dadc
cµνabc

∑

α,β ,γ

∆aα,bβ
aα;µ mcγ;ν

cγ,bβ × ×
. (D.10)

The overall factor cancels with cµνabc and the diagram on the right is the gauging network for
SΣ2. The factors of m and∆ can now be brought over to the other part [SΣ2]− of the surgery.
Summing over a, b, c and µ,ν, and combining with the factors of m and ∆, one reconstructs
the gauging network on [SΣ2]− as well, showing factorization.

The case of higher genus is tractable in a similar way, by replacing locally the projector
PA with the expression in (4.37). On Σg × I , in order to perform surgery along a Σg slice,
it is convenient to choose a complete set of states in the Hilbert space on Σg defined by the
following network of lines:

×

× ×

. . . ×

××

.
(D.11)

This is labeled by the choice of lines on each segment, and the choice of morphisms at each
junction. This basis of states is alternative to the one in Figure 5. The network in (D.11)
comes from the building blocks in (D.3) for a certain choice of pair-of-pants decomposition of
Σg . We will take as the network for the condensation of A on Σg × I the one that is obtained
from the same pair-of-pants decomposition, but using the building blocks in (D.1) instead.
After surgery along Σg , the goal is to obtain two factors of SΣg each with the insertion of the
condensation network on SΣg . The latter takes the same form of the network (D.11), only
with the line A on the segments and the algebra (co)morphisms at the junctions.

To simplify the sides of the surgery that contains the condensation network, we apply to
each of the loops around the non-contractible cycles in (D.11) the identity (D.7) (the segment
with endpoints 1 and 2 wraps the non-contractible cycle). In this way, up to factors of quantum
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dimensions and of algebra (co)morphisms, we obtain the following configuration:

×

× ×

. . . ×

××

.

(D.12)

To simplify further, we apply the following generalization of (D.7) to the shaded region:

α1

α2

a1
a2

µ
a3

=
∑

α3
ma3α3;µ

a1α1,a2α2

a3
α3

.
(D.13)

This simplification can be iterated, and at the end one finds precisely the gauging network
on SΣg , times (co)morphisms factors for every junction of the initial network (D.11). These
factors can be used to convert the network on the other side of the surgery to a gauging
network. The leftover factors of quantum dimensions, and a factor of the state normalization
(D.11) which appears when inserting the completeness relation, cancel yielding factorization.
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