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We perform a systematic comparison of various numerical schemes for the approximation of interface problems. 
We consider unfitted approaches in view of their application to possibly moving configurations. Particular 
attention is paid to the implementation aspects and to the analysis of the costs related to the different phases of 
the simulations.
1. Introduction

The efficient numerical solution of partial differential equations 
modeling the interaction of physical phenomena across interfaces with 
complex, possibly moving, shapes is of great importance in many scien-
tific fields. We refer, for instance, to fluid-structure interaction, or crack 
propagation, just to mention two relevant examples. A crucial issue is 
the handling of computational grids. In this respect, we can classify 
computational methods for interface problems into two families: bound-
ary fitted methods and boundary unfitted methods. For time dependent 
problems, the former are typically handled using the Arbitrary Eule-
rian Lagrangian formulation ([13], [22]), where meshes are deformed 
in a conforming way with respect to movements of the physical do-
mains. In this case, the imposition of interface conditions is usually 
easy to implement. However, an accurate description of both meshes 
is required, and the allowed movements are restricted by the topolog-
ical structure of the initial state. When topology may change, or when 
the grid undorgoes severe deformations, these methods require remesh-
ing. An operation which is computationally very expensive in time de-
pendent scenarios and three dimensional settings. Conversely, unfitted 
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approaches are based on describing the physical domains as embedded 
into a constant background mesh. As it does not require remeshing, this 
approach is extremely flexible, but it requires sophisticated methods to 
represent interfaces. Among unfitted approaches, we mention the Im-
mersed Boundary Method [7,28], the Cut Finite Element Method [11], 
and the Extended Finite Element Method [26]. Another popular choice 
is the Fictitious Domain Method with Lagrange multipliers, proposed 
by Glowinski, Pan and Periaux in [17] for a Dirichlet problem, ana-
lyzed in [15], and then extended to particulate flows in [16].

The use of a Lagrange multiplier for dealing with Dirichlet bound-
ary conditions was introduced in the seminal work by Babuška [3]. This 
is formulated in terms of a symmetric saddle point problem where the 
condition at the interface is enforced through the use of a Lagrange 
multiplier. The main drawback of this method is that it suffers from a 
loss of accuracy at interfaces, even if it is known [20] that this detri-
mental effect on the convergence properties of the approximate solution 
is a local phenomenon, restricted to a small neighborhood of the inter-
face. From the computational standpoint, the Fictitious Domain Method 
poses the additional challenge of assembling coupling terms involving 
basis functions living on different meshes. In this context, one can dis-
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tribute quadrature points on the immersed mesh and let it drive the 
integration process, or one may compute a composite quadrature rule 
by identifying exact intersections (polytopes, in general) between the 
two meshes. This approach has been presented in different papers and 
frameworks: for instance, in [24], a high performance library has been 
developed to perform such tasks, and in [5] it has been shown how com-
posite rules on interfaces turn out to be necessary to recover optimal 
rates for a fluid-structure interaction problem where both the solid and 
the fluid meshes are two dimensional objects. In the cut-FEM frame-
work, we mention [25] for an efficient implementation of Nitsche’s 
method on three dimensional overlapping meshes.

In this paper we consider a two or three dimensional domain with 
an immersed interface of co-dimension one and we study the numer-
ical approximation of the solution of an elliptic PDE whose solution 
is prescribed along the interface. Although in our case the domain 
and the interface are fixed, we are discussing the presented numeri-
cal schemes in view of their application to more general settings. We 
perform a systematic comparison between three different unfitted ap-
proaches, analyzing them in terms of accuracy, computational cost, and 
implementation effort. In particular, we perform a comparative anal-
ysis in terms of accuracy and CPU times for the Lagrange multiplier 
method, Nitsche’s penalization method, and cut-FEM for different test 
cases, and discuss the benefit of computing accurate quadrature rules 
on mesh intersections.

The outline of the paper is as follows. In Section 2 we introduce the 
model Poisson problem posed on a domain with an internal boundary 
and in Section 3 we review the Lagrange multiplier method, the Nitsche 
penalization method, and the cut-FEM method for its solution. In Sec-
tion 4 we discuss the central issue of the numerical integration of the 
coupling terms, while in Section 5 we present a numerical comparison 
of the three methods, focusing on the validation of the implementa-
tion, on how coupling terms affect the accuracy of numerical solutions, 
and on computational times. Finally, the results are summarised in Sec-
tion 6.

2. Model problem and notation

Let 𝜔 be a closed and bounded domain of ℝ𝑑 , 𝑑 = 2, 3, with Lipschitz 
continuous boundary 𝛾 ∶= 𝜕𝜔, and Ω ⊂ℝ𝑑 a Lipschitz domain such that 
𝜔 ⋐Ω; see Fig. 1 for a prototypical configuration. We consider the model 
problem

⎧⎪⎨⎪⎩
−Δ𝑢 = 𝑓 in Ω ⧵ 𝛾,
𝑢 = 𝑔 on 𝛾,

𝑢 = 0 on Γ ∶= 𝜕Ω,
(1)

for given data 𝑓 ∈𝐿2(Ω) and 𝑔 ∈𝐻
1
2 (𝛾). Throughout this work we refer 

to Ω as the background domain, while we refer to 𝜔 as the immersed do-
main, and 𝛾 as the immersed boundary. The rationale behind this setting 
is that it allows to solve problems in a complex and possibly time de-
pendent domain 𝜔, by embedding the problem in a simpler background 
domain Ω – typically a box – and imposing some constraints on the im-
mersed boundary 𝛾 . For the sake of simplicity, we consider the case 
in which the immersed domain is entirely contained in the background 
domain, but more general configurations may be considered.

As ambient spaces for (1), we consider 𝑉 (Ω) ∶= 𝐻1
0 (Ω) = {𝑣 ∈

𝐻1(Ω) ∶ 𝑣|Γ = 0} and 𝑄(𝛾) ∶= 𝐻− 1
2 (𝛾). Given a domain 𝐷 ⊂ ℝ𝑑 and a 

real number 𝑠 ≥ 0, we denote by ‖ ⋅ ‖𝑠,𝐷 the standard norm of 𝐻𝑠(𝐷). In 
particular, ‖ ⋅ ‖0,𝐷 stands for the 𝐿2-norm stemming from the standard 
𝐿2-inner product (⋅, ⋅)𝐷 on 𝐷. Finally, with ⟨⋅, ⋅⟩𝛾 we denote the standard 
duality pairing between 𝑄(𝛾) and its dual 𝑄′(𝛾) =𝐻

1
2 (𝛾).

Across the immersed boundary 𝛾 , we define the jump operator as

�𝑣�|𝛾 = 𝑣+ − 𝑣−,

�𝝉�|𝛾 = 𝝉
+ − 𝝉

−,
102
for smooth enough scalar- and vector- valued functions 𝑣 and 𝝉 . Here, 
𝑣± and 𝝉± are external and internal traces defined according to the 
direction of the outward normal 𝒏 to 𝜔 at 𝛾 .

Problem (1) can be written as a constrained minimization problem 
by introducing the Lagrangian  ∶ 𝑉 (Ω) ×𝑄(𝛾) →ℝ defined as

(𝑣, 𝑞) ∶= 1
2
(∇𝑣,∇𝑣)Ω − (𝑓, 𝑣)Ω + ⟨𝑞, 𝑣− 𝑔⟩𝛾 . (2)

Looking for stationary points of  gives the following saddle point prob-
lem of finding a pair (𝑢, 𝜆) ∈ 𝑉 (Ω) ×𝑄(𝛾) such that

(∇𝑢,∇𝑣)Ω + ⟨𝜆, 𝑣⟩𝛾 = (𝑓, 𝑣)Ω ∀𝑣 ∈ 𝑉 (Ω), (3)

⟨𝑞, 𝑢⟩𝛾 = ⟨𝑞, 𝑔⟩𝛾 ∀𝑞 ∈𝑄(𝛾), (4)

Below in Theorem 1 we show that this problem admits a unique solu-
tion. Starting from (1) and integrating by parts, one can easily show 
that setting 𝜆 = −�∇𝑢 ⋅ 𝒏�|𝛾 , the pair (𝑢, 𝜆) ∈ 𝑉 (Ω) ×𝑄(𝛾) is the solution 
of (3)-(4). Conversely, with proper choices for 𝑣 ∈ 𝑉 (Ω) in (3) one gets 
that −Δ𝑢 = 𝑓 in Ω ⧵ 𝛾 , while (4) implies 𝑢 = 𝑔 on 𝛾 , so that (3)-(4) are 
equivalent to (1) with −𝜆 equal to the jump of the normal derivative 
of 𝑢 on the interface 𝛾 . Moreover, if the datum 𝑔 is sufficiently smooth, 
say 𝑔 ∈𝐻𝑠(𝛾) for 𝑠 > 1, we can further take 𝜆 ∈𝐿2(𝛾) and use in practice 
𝑄(𝛾) =𝐿2(𝛾).

In the following theorem we sketch the proof of existence and 
uniqueness of the solution of (3)-(4).

Theorem 1. Given 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈𝐻1∕2(𝛾), there exists a unique solu-

tion of Problem (3)-(4) satisfying the following stability estimate

‖𝑢‖1,Ω + ‖𝜆‖−1∕2,𝛾 ≤ 𝐶(‖𝑓‖0,Ω + ‖𝑔‖1∕2,𝛾 ).
Proof. Problem (3)-(4) is a saddle point problem, hence to show ex-
istence and uniqueness of the solution we need to check the ellipticity 
on the kernel and the inf-sup condition [4]. The kernel 𝕂 = {𝑣 ∈ 𝑉 (Ω) ∶⟨𝑞, 𝑣⟩ = 0 ∀𝑞 ∈ 𝑄(𝛾)}, can be identified with the subset of functions in 
𝑉 (Ω) with vanishing trace along 𝛾 . Then thanks to the Poincaré in-
equality we have that there exists 𝛼0 > 0 such that

(∇𝑢,∇𝑢)Ω ≥ 𝛼0‖𝑢‖21,Ω.
The inf-sup condition can be verified using the definition of the norm 
in 𝑄(𝛾) and the fact that, by the trace theorem, for each 𝑤 ∈𝐻1∕2(𝛾)
there exists at least an element 𝑣 ∈ 𝑉 (Ω) such that 𝑣 = 𝑤 on 𝛾 , with ‖𝑣‖1,Ω ≤ 𝐶1‖𝑤‖1∕2,𝛾 . Hence we get the inf-sup condition

inf
𝑞∈𝑄(𝛾)

sup
𝑣∈𝑉 (Ω)

⟨𝑞, 𝑣⟩‖𝑞‖−1∕2,𝛾‖𝑣‖1,Ω ≥ 𝛽0,
with 𝛽0 = 1∕𝐶1. □

A detailed analysis for the Dirichlet problem, where the Lagrange 
multiplier is used to impose the boundary condition, can be found in 
the pioneering work by Glowinski, Pan and Periaux [17].

3. Non-matching discretizations

We assume that both Ω and 𝜔 are Lipschitz domains and we dis-
cretize the problem introducing computational meshes for the domain 
Ω and for the immersed boundary 𝛾 which are unfitted with respect to 
each other in that they are constructed independently. The computa-
tional meshes Ωℎ of Ω and 𝛾ℎ of 𝛾 consist of disjoint elements such that 
Ω =⋃

𝑇∈Ωℎ 𝑇 and 𝛾 =⋃
𝐾∈𝛾ℎ 𝐾 . When 𝑑 = 2, Ωℎ will be a triangular or 

quadrilateral mesh and 𝛾ℎ a mesh composed by straight line segments. 
For 𝑑 = 3, Ωℎ will be a tetrahedral or hexahedral mesh and 𝛾ℎ a surface 
mesh whose elements are triangles or planar quadrilaterals embedded 
in the three dimensional space. We denote by ℎΩ and ℎ𝛾 the mesh sizes 
of Ωℎ and 𝛾ℎ, respectively. For simplicity, we ignore geometrical errors 
in the discretizations of Ω, and 𝛾 , and we assume that the mesh sizes 
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ℎΩ and ℎ𝛾 are small enough so that the geometrical error is negligible 
with respect to the discretization error (see Sect. 4.3 for a quantitative 
estimate of the geometrical error in our numerical experiments).

We consider discretizations of 𝑉 (Ω) based on standard Lagrange fi-
nite elements, namely

𝑉ℎ(Ω) ∶= {𝑣 ∈𝐻1
0 (Ω) ∶ 𝑣|𝑇 ∈𝑝(𝑇 ),∀𝑇 ∈Ωℎ} 𝑝 ≥ 1, (5)

with 𝑝(𝑇 ) ∶= 𝑝(𝑇 ) or 𝑝(𝑇 ), the spaces of polynomials of total de-
gree up to 𝑝 or of degree 𝑝 separately in each variable, respectively, 
depending on whether 𝑇 is a simplex or a quadrilateral/hexahedron. 
For the cut-FEM method, the corresponding spaces will be constructed 
separately in each subdomain; this results in a doubling of the degrees 
of freedom on the elements cut by the interface (see Sect. 3.3).

For the Lagrange multiplier space 𝑄(𝛾) we employ the space of 
piecewise-polynomial functions

𝑄ℎ(𝛾) ∶= {𝑞 ∈𝐿2(𝛾) ∶ 𝑞|𝐾 ∈𝑝(𝐾),∀𝐾 ∈ 𝛾ℎ} 𝑝 ≥ 0, (6)

which we equip with the mesh dependent norm

‖𝑞‖− 1
2 ,𝛾

∶= ‖ℎ− 1
2 𝑞‖0,𝛾 ∀𝑞 ∈𝑄ℎ(𝛾), (7)

where ℎ is the piecewise constant function given by ℎ|𝐾 = ℎ𝐾 the diam-
eter of 𝐾 for each 𝐾 ∈ 𝛾ℎ. The definition and the notation are justified 
by the fact that, on a quasi-uniform meshe, the mesh dependent norm 
is equivalent to the norm in 𝐻1∕2(𝛾).

3.1. The method of Lagrange multipliers

The discrete counterpart of (3)-(4) is to find a pair (𝑢ℎ, 𝜆ℎ) ∈ 𝑉ℎ ×𝑄ℎ
such that

(∇𝑢ℎ,∇𝑣ℎ)Ω + ⟨𝜆ℎ, 𝑣ℎ⟩𝛾 = (𝑓, 𝑣ℎ)Ω ∀𝑣ℎ ∈ 𝑉ℎ, (8)

⟨𝑞ℎ, 𝑢ℎ⟩𝛾 = ⟨𝑞ℎ, 𝑔⟩𝛾 ∀𝑞ℎ ∈𝑄ℎ. (9)

The next theorem states existence, uniqueness, and stability of the dis-
crete solution together with optimal error estimates.

Theorem 2. Assume that the mesh 𝛾ℎ is quasi uniform and that there exists 
a constant C𝑟 > 1 independent of ℎΩ and ℎ𝛾 such that ℎΩ∕ℎ𝛾 ≤ C𝑟. Then, 
there exists a unique solution (𝑢ℎ, 𝜆ℎ) ∈ 𝑉ℎ ×𝑄ℎ of Problem (8)-(9). More-

over, it holds

‖𝑢− 𝑢ℎ‖1,Ω +‖𝜆−𝜆ℎ‖−1∕2,𝛾 ≤ C inf
𝑣ℎ∈𝑉ℎ
𝜇ℎ∈𝑄ℎ

(‖𝑢− 𝑣ℎ‖1,Ω + ‖𝜆− 𝜇ℎ‖−1∕2,𝛾) , (10)

with C > 0 a constant independent of the mesh sizes ℎΩ and ℎ𝛾 .

Proof. The existence, uniqueness, and stability of the discrete solution 
can be obtained by showing that there exist positive constants 𝛼 and 
𝛽, independent of ℎΩ and ℎ𝛾 , such that the ellipticity on the kernel 
and inf-sup condition hold true at the discrete level [4]. Since 𝑄ℎ ⊂
𝐿2(𝛾), we have that the discrete kernel ℎ = {𝑣ℎ ∈ 𝑉ℎ ∶ ⟨𝑞ℎ, 𝑣ℎ⟩ = 0 ∀𝑞ℎ ∈
𝑄ℎ} contains element with ∫

𝛾
𝑣ℎ𝑑𝑠 = 0. Hence, the Poincaré inequality 

(see [9, (5.3.3)])

‖𝑣ℎ‖1,Ω ≤ CΩ

⎛⎜⎜⎝
|||||||∫𝛾 𝑣ℎ𝑑𝑠

|||||||+ ‖∇𝑣ℎ‖0,Ω⎞⎟⎟⎠ = CΩ‖∇𝑣ℎ‖0,Ω,
implies that

(∇𝑣ℎ,∇𝑣ℎ)Ω ≥ 𝛼‖𝑣ℎ‖21,Ω ∀𝑣ℎ ∈ℎ.

The discrete inf-sup condition

inf
𝑞ℎ∈𝑄ℎ

sup
𝑣 ∈𝑉

⟨𝑞ℎ, 𝑣ℎ⟩‖𝑞 ‖ ‖𝑣 ‖ ≥ 𝛽,

ℎ ℎ ℎ −1∕2,𝛾 ℎ 1,Ω

103
Fig. 1. Model problem setting, with immersed domain 𝜔, immersed boundary 
𝛾 , and background domain Ω.

is more involved and makes use of the continuous inf-sup, together with 
Clément interpolation, trace theorem and inverse inequality. The inter-
ested reader can find the main arguments of this proof in [6, sect. 5].

Thanks to the above conditions, the theory on the approximation 
of saddle point problems gives both existence and uniqueness of the 
solution of Problem (8)-(9) satisfying the a priori estimate

‖𝑢ℎ‖1,Ω + ‖𝜆ℎ‖−1∕2,𝛾 ≤ C(‖𝑓‖0,Ω + ‖𝑔‖1∕2,𝛾 ),
and the error estimate (10). □

Given basis functions {𝑣𝑖}𝑁𝑖=1 and {𝑞𝑖}𝑀𝑖=1 such that 𝑉ℎ ∶= span{𝑣𝑖}𝑁𝑖=1
and 𝑄ℎ ∶= span{𝑞𝑖}𝑀𝑖=1, we have that (8), (9) can be written as the fol-
lowing algebraic problem(
𝐴 𝐶⊤

𝐶 0

)(
𝑈

𝜆

)
=
(
𝐹

𝐺

)
(11)

where

𝐴𝑖𝑗 = (∇𝑣𝑗 ,∇𝑣𝑖)Ω 𝑖, 𝑗 = 1,… ,𝑁

𝐶𝛼𝑗 = ⟨𝑞𝛼, 𝑣𝑗⟩𝛾 𝑗 = 1,… ,𝑁,𝛼 = 1,… ,𝑀

𝐹𝑖 = (𝑓, 𝑣𝑖)Ω 𝑖 = 1,… ,𝑁

𝐺𝛼 = ⟨𝑞𝛼, 𝑔⟩𝛾 𝛼 = 1,… ,𝑀.

To solve the block linear system (11) we use Krylov subspace itera-
tive methods applied to the Schur complement system:

𝜆 = 𝑆−1(𝐶𝐴−1𝐹 −𝐺), (12)

𝑈 =𝐴−1(𝐹 −𝐶⊤𝜆), (13)

where 𝑆 ∶= 𝐶𝐴−1𝐶⊤, and we use 𝐶𝐴𝐶⊤ +𝑀 as preconditioner for 𝑆, 
where 𝑀 is the immersed boundary mass matrix with entries (𝑀)𝑖𝑗 =⟨𝑞𝑗 , 𝑞𝑖⟩𝛾 .

We next show how the Lagrange multiplier formulation is directly 
linked to a penalization approach used to impose the Dirichlet condition 
𝑢 = 𝑔 on the internal curve 𝛾 , by locally eliminating the multiplier in the 
same spirit of the work by Stenberg [30].

3.2. The method of Nitsche

Instead of enforcing the constraint on 𝛾 with a multiplier, it is pos-
sible to impose it weakly through a penalization approach following 
the so-called method of Nitsche. Here we show that the enforcement of 
boundary conditions via Nitsche’s method can be derived from a sta-

bilized Lagrange multiplier method by adding a consistent term that 
penalizes the distance between the discrete multiplier 𝜆ℎ and the nor-
mal derivative [30]. With this in mind, we penalize the jump of the 
normal derivative along the internal curve 𝛾 to impose the constraint 
𝑢 = 𝑔. The consistency here follows from the observation that at the con-
tinuous level the multiplier is the jump of the normal derivative on the 
interface.
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We define ℎ(𝒙) as the piecewise constant function describing the 
mesh-size of 𝛾 and we choose the discrete spaces 𝑉ℎ and 𝑄ℎ as in the 
Lagrange multiplier case.

Adding the normal gradient penalization term to the Lagrange multi-
plier formulation (8)-(9) leads to the problem of seeking a pair (𝑢ℎ, 𝜆ℎ) ∈
𝑉ℎ ×𝑄ℎ such that

(∇𝑢ℎ,∇𝑣ℎ)Ω + ⟨𝜆ℎ, 𝑣ℎ⟩𝛾 + 1
𝛽
⟨�∇𝑣ℎ ⋅ 𝒏�, ℎ(𝜆ℎ + �∇𝑢ℎ ⋅ 𝒏�)⟩𝛾 = (𝑓, 𝑣ℎ)Ω

∀𝑣ℎ ∈ 𝑉ℎ,⟨𝑞ℎ, 𝑢ℎ⟩𝛾 − 1
𝛽
⟨𝑞ℎ,ℎ(𝜆ℎ + �∇𝑢ℎ ⋅ 𝒏�)⟩𝛾 = ⟨𝑞ℎ, 𝑔⟩𝛾 ∀𝑞ℎ ∈𝑄ℎ,

where 𝛽 is a positive penalty parameter. In the discrete setting, ⟨𝑞, 𝑣⟩𝛾
is identified with the scalar product in 𝐿2(𝛾) for 𝑞 ∈𝑄ℎ and 𝑣 ∈ 𝑉ℎ and 
we use the notation ⟨𝑞, 𝑣⟩𝛾 =∑

𝐾∈𝛾ℎ (𝑞, 𝑣)𝐾 . The second equation gives

⟨𝑞ℎ, 𝑢ℎ − 1
𝛽
ℎ(𝜆ℎ + �∇𝑢ℎ ⋅ 𝒏�) − 𝑔⟩𝛾 = 0 ∀𝑞ℎ ∈𝑄ℎ,

and, introducing the 𝐿2-projection on 𝑄ℎ as Πℎ ∶ 𝐿2(𝛾) → 𝑄ℎ, we can 
eliminate the multiplier locally on each element 𝐾 ∈ 𝛾ℎ:

𝜆ℎ|𝐾 = −
(
Πℎ�∇𝑢ℎ ⋅ 𝒏�

)
𝐾
+ 𝛽ℎ−1

𝐾

(
Πℎ(𝑢ℎ − 𝑔)

)
𝐾
.

We observe that it is possible to formally refine 𝛾ℎ to 𝛾 ′
ℎ

such that 
the element boundaries of Ωℎ coincide with some element boundaries 
of the immersed grid 𝛾 ′

ℎ
. If we now choose a space 𝑄′

ℎ
which contains 

piece wise polynomials of degree compatible with that of the elements 
in 𝑉ℎ, we can avoid the projection operator altogether, and are allowed 
to write

𝜆′
ℎ
= −�∇𝑢ℎ ⋅ 𝒏�+ 𝛽ℎ−1(𝑢ℎ − 𝑔).

Inserting this back into the first equation we get the variational problem 
(in which no multiplier is involved) of finding 𝑢ℎ ∈ 𝑉ℎ such that

(∇𝑢ℎ,∇𝑣ℎ)Ω − ⟨�∇𝑢ℎ ⋅ 𝒏�, 𝑣ℎ⟩𝛾 − ⟨�∇𝑣ℎ ⋅ 𝒏�, 𝑢ℎ⟩𝛾 + 𝛽⟨ℎ−1𝑢ℎ, 𝑣ℎ⟩𝛾
= (𝑓, 𝑣ℎ)Ω − ⟨�∇𝑣ℎ ⋅ 𝒏�, 𝑔⟩𝛾 + 𝛽⟨ℎ−1𝑔, 𝑣ℎ⟩𝛾 , (14)

holds for every 𝑣ℎ ∈ 𝑉ℎ.
Equation (14) represents the Nitsche method [27] applied to Prob-

lem (1). Owing to the non-matching nature of our discretization, the 
immersed and background mesh facets are not expected to be aligned 
in general. If indeed for all facets (elements) 𝐾 of 𝛾 and facets 𝐹 of Ωℎ
we have 𝑑−1(𝐾 ∩𝐹 ) = 0, with 𝑑−1 denoting the Hausdorff measure in 
𝑑 − 1-dimensions, then the variational problem can be simplified since 
all the jump terms vanish.

3.3. The cut-FEM method

When using the cut-FEM discretization approach, one changes the 
perspective of the original variational problem, which is no longer 
solved on a single space defined globally on Ω: instead, one solves two 
separate problems on the two domains 𝜔 and Ω ⧵𝜔. This approach gives 
additional flexibility on the type of problems that can be solved. For 
example, problems with more general transmission conditions across 𝛾
where the solution 𝑢 is allowed to jump. Moreover, separating the prob-
lem transforms the cut-FEM method into a boundary-fitted approach, 
where the approximation space is changed to resolve the interface.

The usual approach to impose constraints on 𝛾 in the cut-FEM 
method is to use Nitsche’s method applied on the two subdomains sep-
arately:{

Ω1 ∶= 𝜔,
Ω2 ∶= Ω ⧵ �̄�.

In this context, it is necessary to take special care of those elements of 
Ωℎ that are cut by 𝛾 . First, we introduce the corresponding computa-
tional meshes Ω𝑖

ℎ
given by

Ω𝑖
ℎ
∶= {𝑇 ∈Ωℎ ∶ 𝑇 ∩Ω𝑖 ≠ ∅} 𝑖 = 1,2,
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and notice that both meshes share the set of cells intersected by the 
curve 𝛾 , namely

𝜏 ∶= {𝑇 ∈Ωℎ ∶ 𝑇 ∩ 𝛾 ≠ ∅}, 𝜏𝑖 ∶= {�̃� 𝑖 ∶= 𝑇 ∩Ω𝑖, 𝑇 ∈ 𝜏},

where we distinguish between entire cells that intersect 𝛾 (these are in 
the set 𝜏) and cut cells (with arbitrary polytopal shape, which are in the 
set 𝜏𝑖), i.e., (𝑇 ∈ 𝜏) = (�̃� 1 ∈ 𝜏1) ∪ (�̃� 2 ∈ 𝜏2) ∪ (𝛾 ∩ 𝑇 ) with �̃� 1 ∩ �̃� 2 = ∅.

When defining a finite element space on these elements, one uses the 
same definition of the original finite element space defined on entire 
elements 𝑇 ∈ 𝜏 , which is then duplicated and restricted to the corre-
sponding domain, i.e., one introduces on Ω𝑖

ℎ
, 𝑖 = 1, 2 the discrete spaces

𝑉 𝑖
ℎ
∶= 𝑉ℎ(Ω𝑖ℎ)|Ω𝑖 = {𝑣ℎ|Ω𝑖 , 𝑣ℎ ∈ 𝑉ℎ(Ω𝑖ℎ)}.

Then, applying twice Nitsche’s method requires to find 𝑢𝑖
ℎ
∈ 𝑉 𝑖

ℎ
such 

that

𝑎𝑖
ℎ
(𝑢𝑖
ℎ
, 𝑣𝑖
ℎ
) = 𝑙𝑖

ℎ
(𝑣𝑖
ℎ
) ∀𝑣𝑖

ℎ
∈ 𝑉 𝑖

ℎ
𝑖 = 1,2,

with

𝑎𝑖
ℎ
(𝑢𝑖
ℎ
, 𝑣𝑖
ℎ
) = (∇𝑢𝑖

ℎ
,∇𝑣𝑖

ℎ
)Ω𝑖
ℎ
∩Ω𝑖 − ⟨�∇𝑢𝑖

ℎ
⋅ 𝒏�, 𝑣𝑖

ℎ
⟩𝛾 − ⟨𝑢𝑖

ℎ
, �∇𝑣𝑖

ℎ
⋅ 𝒏�⟩𝛾

+
𝛽1
ℎ
⟨𝑢𝑖
ℎ
, 𝑣𝑖
ℎ
⟩𝛾 , (15)

and

𝑙𝑖
ℎ
(𝑣𝑖
ℎ
) = (𝑓, 𝑣𝑖

ℎ
)Ω𝑖
ℎ
∩Ω𝑖 +

⟨
𝑔,
𝛽1
ℎ
𝑣𝑖
ℎ
− �∇𝑣𝑖

ℎ
⋅ 𝒏�

⟩
𝛾

. (16)

This formulation is known to suffer from the so called small-cut prob-
lem deriving from the fact that the size of the cuts 𝑇 ∩ Ω𝑖 cannot be 
controlled and hence can be arbitrarily small. This may result in a loss 
of coercivity for the bilinear forms 𝑎𝑖

ℎ
when the size of a cut cell goes 

to zero. As shown in [11], the formulation can be stabilized by adding 
to the bilinear form the following penalty term acting on the interior or 
exterior faces of the intersected cells, depending on the domain Ω𝑖

ℎ
:

𝑖
ℎ
∶= {𝐹 = 𝑇 + ∩ 𝑇 − ∶ 𝑇+ ∈ 𝜏, 𝑇− ∈ Ω𝑖

ℎ
} 𝑖 = 1,2, (17)

𝑗𝑖
ℎ
(𝑢, 𝑣) ∶= 𝛽2

∑
𝐹∈𝑖

ℎ

⟨ℎ𝐹 �∇𝑢 ⋅ 𝒏�, �∇𝑣 ⋅ 𝒏�⟩𝐹 , (18)

where 𝛽2 is a positive penalty parameter and ℎ𝐹 the size of 𝐹 ∈ 𝑖
ℎ
. With 

such definition at hand we set

𝑉ℎ ∶= 𝑉 1
ℎ
+ 𝑉 2

ℎ
, with elements 𝑣ℎ =

{
𝑣1
ℎ

in Ω1,

𝑣2
ℎ

in Ω2,
(19)

𝑎ℎ(𝑢ℎ, 𝑣ℎ) ∶=
2∑
𝑖=1

(𝑎𝑖
ℎ
(𝑢𝑖
ℎ
, 𝑣𝑖
ℎ
) + 𝑗𝑖

ℎ
(𝑢𝑖
ℎ
, 𝑣𝑖
ℎ
)), (20)

𝑙ℎ(𝑣ℎ) ∶=
2∑
𝑖=1
𝑙𝑖
ℎ
(𝑣𝑖
ℎ
), (21)

and the method reads: find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = 𝑙ℎ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ.

The penalization term in (18), usually called ghost-penalty, is not the 
only choice that allows to recover optimal rates. Another practical alter-
native, developed earlier in [18], consists in associating “bad elements”, 
i.e. elements with small cuts, with suitable neighboring elements hav-
ing sufficiently large intersections with the domain in order to extend 
the polynomial approximation. This technique is usually referred to as 
agglomeration and it has been applied to several unfitted methods in 
recent years [10,23].

4. Integration of coupling terms

In all three methods, some terms need to be integrated over the non-
matching interface 𝛾 . For example, in the Lagrange multiplier method, 
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we need to compute ⟨𝜆ℎ, 𝑣ℎ⟩𝛾 where 𝑣ℎ ∈ 𝑉ℎ and 𝜆ℎ ∈𝑄ℎ, while in the 
Nitsche’s interface penalization method and in the cut-FEM method, one 
needs to integrate terms of the kind ⟨𝛽ℎ−1𝑢ℎ, 𝑣ℎ⟩𝛾 , where both 𝑢ℎ and 
𝑣ℎ belong to 𝑉ℎ, but the integral is taken over 𝛾 .

We start by focusing our attention on the term ⟨𝜆ℎ, 𝑣ℎ⟩𝛾 where 
𝑣ℎ ∈ 𝑉ℎ and 𝜆ℎ ∈ 𝑄ℎ. This is delicate to assemble as it is the prod-
uct of trial and test functions living on different meshes and it encodes 
the interaction between the two grids. Let 𝐾 ∈ 𝛾ℎ and 𝐹𝐾 be the map 
𝐹𝐾 ∶ �̂� →𝐾 from the reference immersed cell �̂� to the physical cell 𝐾 , 
𝐽𝐹𝐾 (𝒙) the determinant of its Jacobian and assume to have a quadra-

ture rule {�̂�𝑞 , 𝑤𝑞}
𝑁𝑞

𝑞=1 on �̂� . Since the discrete functions are piecewise 
polynomials, we can use the scalar product in 𝐿2(𝛾) instead of the dual-
ity pairing, then standard finite element assembly reads:

⟨𝜆ℎ, 𝑣ℎ⟩𝛾 = ∑
𝐾∈𝛾ℎ

⟨𝜆ℎ, 𝑣ℎ⟩𝐾. (22)

In the forthcoming subsections we discuss three strategies to com-
pute this integral. Identical considerations apply in order to compute 
the term 𝛽⟨ℎ−1𝑢ℎ, 𝑣ℎ⟩𝛾 in (14).

In general, such integrals are always computed using quadrature 
formulas. What changes is the algorithm that is used to compute these 
formulas, and the resulting accuracy. Independently on the strategy that 
is used to compute the quadrature formulas, all algorithms require the 
efficient identification of pairs of potentially overlapping cells, or to 
identify background cells where quadrature points may fall. This task 
can be performed efficiently by using queries to R-trees of axis-aligned 
bounding boxes of cells for both the background and immersed mesh.

An R-tree is a data structure commonly used for spatial indexing of 
multi-dimensional data that relies on organizing objects (e.g., points, 
lines, polygons, or bounding boxes) in a hierarchical manner based on 
their spatial extents, such that objects that are close to each other in 
space are likely to be located near each other in the tree.

In an R-tree, each node corresponds to a rectangular region that en-
closes a group of objects, and the root node encloses all the objects. 
Each non-leaf node in the tree has a fixed number of child nodes, and 
each leaf node contains a fixed number of objects. R-trees support ef-
ficient spatial queries such as range queries, nearest neighbor queries, 
and spatial joins by quickly pruning parts of the tree that do not satisfy 
the query constraints.

In particular, we build two R-tree data structures to hold the bound-
ing boxes of every cell of both the background and the immersed 
meshes. Spatial queries are performed traversing the R-tree structure 
generated by the Boost.Geometry library [8]. The construction of an 
R-tree with 𝑀 objects has a computational cost that is proportional to 
𝑂(𝑀 log(𝑀)), while the cost of a single query is 𝑂(log(𝑀)).

4.1. Integration driven by the immersed mesh

Applying straightforwardly a given quadrature rule defined over 𝛾
to equation (22) gives:

⟨𝜆ℎ, 𝑣ℎ⟩𝛾 ≈ ∑
𝐾∈𝛾ℎ

𝑁𝑞∑
𝑞=0
𝜆ℎ

(
𝐹𝐾 (�̂�𝑞)

)
𝑣ℎ

(
𝐹𝐾 (�̂�𝑞)

)
𝐽𝐹𝐾 (�̂�𝑞)𝑤𝑞, (23)

with respect to some reference quadrature points �̂�𝑞 and weights 𝑤𝑞 , let-
ting the immersed domain drive the integration. In this case the compu-
tational complexity stems from the evaluation of the terms 𝑣ℎ(𝐹𝐾 (�̂�𝑞)), 
since the position within the background mesh Ωℎ of the quadrature 
point 𝐹𝐾 (�̂�𝑞) is not known a-priori (see Fig. 2). A possible algorithm for 
the evaluation of 𝑣ℎ(𝐹𝐾 (�̂�𝑞)) can be summarized as follows:

• Compute the physical point 𝒚 = 𝐹𝐾 (�̂�𝑞);
• Find the cell 𝑇 ∈Ωℎ s.t. 𝒚 ∈ 𝑇 ;
• Given the shape function �̂�ℎ(�̂�) in the reference element �̂� , compute 
𝑣ℎ

(
𝐺−1
𝑇
(𝒚)

)
, where 𝐺𝑇 ∶ �̂� → 𝑇 denotes the reference map associ-

ated to 𝑇 ∈Ωℎ for the background domain.
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Fig. 2. Squares: DoF for linear basis functions attached to some elements 𝐾𝑗 of 
𝛾 intersecting a background element 𝑇𝑖 ∈Ωℎ . Dots: DoF for a linear Lagrangian 
basis attached to cells 𝑇𝑖 . Crosses: quadrature points corresponding to a Gaus-
sian quadrature rule of order 3 on elements of 𝛾 .

The first part of the computation takes linear time in the number of 
cells of the immersed mesh 𝛾ℎ, while the second part requires a com-
putational cost that scales logarithmically with the number of cells of 
the background grid for each quadrature point. Finally, the evaluation 
of the inverse mapping 𝐺−1

𝑇
requires Newton-like methods for general 

unstructured meshes or higher order mappings (i.e., whenever 𝐹𝐾 is 
non-affine). Overall, implementations based on R-tree traversal will re-
sult in a computational cost that scales at least as 𝑂((𝑀 +𝑁) log(𝑁)), 
where 𝑀 is the total number of quadrature points (proportional to the 
number of cells of the immersed mesh), and 𝑁 is the number of cells of 
the background mesh.

The main drawbacks of this approach are twofold: i) on one side 
it does not yield the required accuracy even if quadrature rules with 
the appropriate order are used, due to the piecewise polynomial nature 
of the integrands, that may have discontinuities within the element 𝐾 , 
and ii) since the couplings between the two grids are based solely on 
a collection of quadrature points on the immersed surface, it may hap-
pen that two elements overlap, but no quadrature points fall within the 
intersection of the two elements.

This is illustrated in a pathological case in Fig. 3 (top), where we 
show a zoom-in of a solution computed with an insufficient number of 
quadrature points, and an overly refined background grid. In this case 
the quadrature rule behaves like a collection of Dirac delta distributions, 
and since the resolution of the background grid is much finer than the 
resolution of the immersed grid, one can recognize in the computed 
solution the superposition of many small fundamental solutions, that, 
in the two-dimensional case, behave like many logarithmic functions 
centered at the quadrature points of 𝛾ℎ.

These issues with the quadrature driven approach may hinder the 
convergence properties of the methods, as shown in [5] for a 2D-2D 
problem, and require a careful equilibrium between the resolution of 
the immersed grid 𝛾ℎ, the choice of the quadrature formula on 𝐾 , and 
the resolution of the background grid Ωℎ. Alternatively, one can follow 
a different approach that is based on the identification of the inter-
sections between the two grids, and on the use of a quadrature rules 
defined on the intersection of the two elements, to remove the artifacts 
discussed above (at the cost of computing the intersection between two 
non-matching grids), as shown in Fig. 3 (bottom).

4.2. Integration on mesh intersections

An accurate computation of the interface terms may be performed 
by taking into account the intersection between the two grids. First, the 
non-empty intersections �̃� ∶= 𝑇 ∩𝐾 ≠ ∅ between any 𝑇 ∈Ωℎ and 𝐾 ∈ 𝛾ℎ
are identified and the intersection is computed accordingly. Then, given 
that the restriction of 𝑣ℎ to �̃� is smooth, a suitable quadrature formula 
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Fig. 3. Comparison between exact and non exact integration (zoomed-in on the interface in order to highlight the kinks) for a pathological case. (a) Spurious kinks 
around the interface, on the location of the immersed quadrature points. (b) Well-resolved solution around the interface.

Fig. 4. Triangulation of the intersected region �̃� for a line immersed in 2D. The one-dimensional cell 𝐾 is allowed to be positioned arbitrarily w.r.t. to the 
two-dimensional quadrilateral 𝑇 .

Fig. 5. Triangulation of the intersected region �̃� for a triangle cutting a square and the relative sub-tessellation.
can be applied in �̃�. Since �̃� is a polygon in general, we use a sub-

tessellation technique, consisting in splitting �̃� into sub-elements 𝑆 ∈
𝑆�̃� such that �̃� =

⋃
𝑆∈𝑆�̃�

𝑆 and we use standard Gaussian quadrature 
rules on each of these sub-elements. See Figs. 4 and 5 for an example in 
two and three dimensions, respectively.

In conclusion, interface terms such as ⟨𝜆ℎ, 𝑣ℎ⟩𝛾 are assembled by 
summing the contribution of each intersection �̃� computed by appro-

priate quadrature:
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⟨𝜆ℎ, 𝑣ℎ⟩�̃� =
∑
𝑆∈𝑆�̃�

⟨𝜆ℎ, 𝑣ℎ⟩𝑆 ≈
∑
𝑆∈𝑆�̃�

𝑁𝑞∑
𝑞=1
𝜆ℎ(𝐹𝑆 (�̂�𝑞))𝑣ℎ(𝐹𝑆 (�̂�𝑞))𝐽𝐹𝑆 (�̂�𝑞)𝑤𝑞,

(24)

where 𝐹𝑆 ∶ �̂� → 𝑆𝑆 is the mapping from the reference element �̂� to 𝑆
and {�̂�𝑞 , 𝑤𝑞}

𝑁𝑞

𝑞=1 a suitable quadrature rule defined on �̂� .

The efficient identification of pairs of potentially overlapping cells 
is performed using queries to R-trees of axis-aligned bounding boxes of 
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Fig. 6. Quadrature points distributed on 𝑂, 𝑆 and 𝐼 for a cell 𝑇 cut by the curve 𝛾 .
cells for both the background and immersed mesh. While this allows 
to record the indices of the entries to be allocated during the assembly 
procedure and the relative mesh iterators, the actual computation of 
the geometric intersection �̃� between two elements 𝑇 ⊂ Ωℎ and 𝐾 ⊂

𝛾 is computed using the free function CGAL::intersection(). The 
resulting polytope is sub-tessellated into simplices, i.e., �̃� = ∪𝑁𝑠

𝑖=0𝑆𝑖, even 
though other techniques for numerical quadrature on polygons may be 
employed [12].

In Figs. 4 and 5 we show this procedure graphically for cells 𝑇
and 𝐾 and provide an example for the corresponding sub-tessellations 
of the intersection �̃� in two and three dimensions. The resulting sub-
tesselations are used to construct the quadrature rules {𝑄𝑖}𝑖 in (24).

The overall complexity of the algorithm is 𝑂((𝑁 +𝑀) log(𝑁)), where 
𝑁 and 𝑀 are the numbers of cells in the background and immersed 
mesh, respectively. Notice, however, that the complexity of the al-
gorithm should be multiplied by the complexity of the CGAL::in-
tersection() function, which is 𝑂(𝑛𝑚) for the intersection of two 
polygons with 𝑛 and 𝑚 vertices, respectively. In practice, this is not a 
problem since the number of vertices of the polygons is typically small, 
and the complexity of the algorithm is dominated by the complexity of 
the R-tree queries, but these costs are non-negligible for large grids, and 
many overlapping cells (see, e.g., the discussion in [5]).

4.3. Integration through level set splitting

If a level set description of the immersed domain is available, this 
may be used to generate quadrature formulas without explicitly com-
puting the geometric intersection (see [11] for some implementation 
details). It has also been shown in [29] how to generate quadrature 
rules on different regions of a cut element using Ψ, identified as

𝑂 = {(𝑥, 𝑦) ∈ 𝑇 ∶ Ψ > 0},

𝑆 = {(𝑥, 𝑦) ∈ 𝑇 ∶ Ψ = 0},

𝐼 = {(𝑥, 𝑦) ∈ 𝑇 ∶ Ψ < 0},

where Ψ ∶ ℝ𝑑 → ℝ is the level set function determining the immersed 
domain. A typical configuration including quadrature points for each 
entity is shown in Fig. 6.

In practical computations, however, the interface 𝛾 is not available 
in terms of a simple analytical description of the level set function. 
Should one still wish to use quadrature formulas based on a level set, a 
discrete (possibly approximated) level set function Ψℎ that is zero on 𝛾ℎ
must be provided when 𝛾ℎ is a triangulated surface. Such level set would 
also allow a robust partitioning of the background computational mesh 
into cells that are completely inside 𝜔, cells cut by 𝛾 , and cells that are 
completely inside Ω ⧵𝜔.

We propose a simple implementation of a discrete level set func-
tion Ψℎ constructed from a triangulated interface 𝛾ℎ. Point classification 
(i.e., detecting if a point is inside or outside 𝜔) is performed using a 
query to the CGAL library, to detect if a point is inside or outside the 
coarsest simplicial mesh bounded by 𝛾ℎ (denoted by ℎ).

We then define a discrete level set function Ψℎ(𝒙) on top of 𝛾ℎ as 
follows:
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Ψℎ(𝒑) =

{
−𝑑(𝒑, 𝛾) if 𝒑 ∈ ℎ,
𝑑(𝒑, 𝛾) if 𝒑 ∉ ℎ, (25)

where 𝑑(𝒑, 𝛾) ∶= min𝒚∈𝛾 𝑑(𝒑, 𝒚) is constructed by first finding the closest 
elements of 𝛾 to 𝒑 using efficient R-tree data structures indexing the 
cells of the immersed triangulation, and then computing the distance 
between 𝒑 and those elements.

This procedure is summarized in Algorithm 1. We validate our ap-
proach with a manufactured case by choosing randomly distributed 
points {𝑝𝑖}𝑖 in the interval [−1, 1]2 and computing the relative error 
𝐸𝑟(𝒑) ∶=

|Ψ(𝒑)−Ψℎ(𝒑)||Ψ(𝒑)| for a level set describing a circle of radius 𝑅 = 0.3, 
and a corresponding approximated grid 𝛾ℎ.

In Fig. 7 we report the relative error committed by replacing the 
exact level set with the discrete one (induced by replacing the exact 
curve with a triangulated one). The initial discretization of 𝛾 is chosen 
so that the error is below 10−6 everywhere, and we can safely neglect it 
when computing convergence rates of the error computed w.r.t. exact 
solutions known on the analytical level set.

As long as such geometrical error is not dominating we can observe 
optimal rates in the numerical experiments for cut-FEM. At the same 
time, this setting allows for a fair comparison between all the schemes. 
We expect that other practical implementations would require similar 
tasks and hence that the observed computational cost is representative.

Algorithm 1: Evaluation of the discrete level set (25) for a given 
mesh 𝛾 .

Input : 𝛾 polygonal surface mesh,
ℎ coarse triangulation for the interior of 𝛾 ,
𝒑 ∈Ω.

Output : 𝑑(𝒑, 𝛾).
1 if 𝒑 ∈ ℎ then

2 𝑠 ← −1
3 else

4 𝑠 ← +1
5 end

6 Find{𝐾𝑖} ∈ 𝛾ℎ nearest to 𝒑.
7 for 𝐾 ∈ {𝐾𝑖}𝑖 do

8 𝑑𝑖 ← 𝑑(𝒑, 𝐾);
9 end

10 Return 𝑠 ⋅min𝑖 𝑑𝑖

5. Numerical experiments

Our implementation is based on the C++ finite element library
deal.II [1,2], providing a dimension independent user interface. The 
implementation of the Lagrange multiplier and of the Nitsche’s interface 
penalization methods are adapted from the tutorial programs step-

60 and step-70 of the deal.II library, respectively, while the cut-FEM 
algorithm is adapted from the tutorial program step-85, developed 
in [31].

As a result of this work, we added support and wrappers for the 
C++ library CGAL ([32], [14]) into the deal.II library [2], in order 
to perform most of the computational geometry related tasks. Thanks to 
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Fig. 7. The relative error for the discrete level set describing a disk of radius 𝑅 = 0.3 as a function of the distance from the center 𝒙
𝒄
= ( 1

2
,
1
2
).

Table 1

Rates in 𝐿2 and 𝐻1 for a smooth 𝑢 and 𝐻− 1
2 rates for the Lagrange multiplier method.

Results for 𝛾 = 𝛾1 and smooth solution with Lagrange multiplier

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

‖𝜆− 𝜆ℎ‖− 1
2 ,𝛾

𝐻
− 1

2 (𝛾)
rate

Iter.

389+32 5.579e-02 - 1.879e+00 - 7.402e-02 - 7
1721+64 1.393e-02 1.87 9.391e-01 0.93 1.042e-02 2.83 7
7217+128 3.479e-03 1.94 4.690e-01 0.97 2.805e-03 1.89 9
29537+256 8.691e-04 1.97 2.343e-01 0.98 6.716e-04 2.06 11
119489+512 2.172e-04 1.98 1.171e-01 0.99 2.078e-04 1.69 11
Table 2

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾1 and a smooth solution with Nitsche.

Results for 𝛾 = 𝛾1 and smooth solution with Nitsche

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

389 5.597e-02 - 1.879e+00 - 1
1721 1.396e-02 1.87 9.391e-01 0.93 11
7217 3.487e-03 1.94 4.690e-01 0.97 11
29537 8.712e-04 1.97 2.343e-01 0.98 12
119489 2.177e-04 1.98 1.171e-01 0.99 12

Table 3

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾1 and a smooth solution with cut-FEM.

Results for 𝛾 = 𝛾1 and smooth solution with cut-FEM

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

329 8.7560e-02 - 2.1335e+00 - 2
1161 2.2064e-02 1.99 1.0582e+00 1.01 2
4377 5.4875e-03 2.01 5.2351e-01 1.02 15
16953 1.3554e-03 2.02 2.5863e-01 1.02 17
66665 3.3152e-04 2.03 1.2855e-01 1.01 18

the so called exact computation paradigm provided by CGAL, which re-
lies on computing with numbers of arbitrary precision, our intersection 
routines are guaranteed to be robust.

We assume that the background mesh Ωℎ is a 𝑑-dimensional triangu-
lation and the immersed mesh 𝛾ℎ is (𝑑−1)-dimensional with 𝑑 = 2, 3. We 
validate our implementations with several experiments varying mesh 
configurations, algorithms, and boundary conditions. The source code 
used to reproduce the numerical experiments is available from GitHub.3

3 https://github .com /fdrmrc /non _matching _test _suite .git.
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The tests are designed to analyze the performance of the methods 
presented in Section 3 in different settings, varying the complexity of 
the interface and the smoothness of the exact solution in both two and 
three dimensions. All tests are performed using background meshes 
made of quadrilaterals or hexahedra and immersed boundary meshes 
made of segments and quadrilaterals. For the Lagrange multiplier and 
Nitsche’s interface penalization methods, we perform an initial pre-
processing of the background grid Ω by applying a localized refinement 
around the interface (where most of the error is concentrated), so that 
the resulting number of degrees of freedom for the variable 𝑢ℎ is roughly 
the same for all methods. Sample grids resulting from this process are 
shown in Fig. 8, where the interface has been resolved from Ωℎ. We then 
proceed by computing errors and convergence rates against a manufac-
tured solution under simultaneous refinement of both the background 
and immersed mesh.

Classical 1 Lagrangian elements are used for the background space 
while piecewise constant elements are used to discretize the Lagrange 
multiplier. For the Nitsche penalization method (14), we set the penalty 
parameter as 𝛽 = 10. Errors in the 𝐻1- and 𝐿2-norm are reported for the 
main variable while for the Lagrange multiplier we use the discrete 
norm in (7) which, as already observed, is equivalent to the 𝐻−1∕2(𝛾)
norm on a quasi-uniform mesh. In the case of the Lagrange multiplier 
method, we report the sum of the number of Degrees of Freedom (DoF) 
for 𝑢ℎ and 𝜆ℎ to underline the fact that a larger system must be solved, 
while rates are computed against the number of DoF of each unknown.

For the (symmetric) penalized methods, the resulting linear sys-
tems are solved using a preconditioned conjugate gradient method, with 
an algebraic multigrid preconditioner based on the Trilinos ML im-
plementation [21], while for the Lagrange multiplier we exploit the 
preconditioner described in Section 3.1 with the same preconditioned 
conjugate gradient method for inner solves of the stiffness matrices, and 
flexible GMRES as the outer solver. In the case of the Lagrange multi-
plier method, we list the total number of inner iterations required to 
invert the Schur complement.

https://github.com/fdrmrc/non_matching_test_suite.git
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Table 4

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾2 and a smooth solution with Lagrange multiplier method.

Results for 𝛾 = 𝛾2 and smooth solution with Lagrange multiplier

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

‖𝜆− 𝜆ℎ‖− 1
2 ,𝛾

𝐻
− 1

2 (𝛾)
rate

Iter.

1958+256 5.327e-02 - 1.781e+00 - 6.551e-03 - 17
8783+512 1.331e-02 1.85 8.916e-01 0.92 1.183e-03 2.47 20
37037+1024 3.326e-03 1.93 4.458e-01 0.96 5.237e-04 1.18 33
151961+2048 8.312e-04 1.96 2.228e-01 0.98 1.959e-04 1.42 49
615473+4096 2.078e-04 1.98 1.114e-01 0.99 5.327e-05 1.88 53
Table 5

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾2 and a smooth solution with Nitsche.

Results for 𝛾 = 𝛾2 and smooth solution with Nitsche

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

1958 5.327e-02 - 1.781e+00 - 13
8783 1.331e-02 1.85 8.916e-01 0.92 12
37037 3.326e-03 1.93 4.458e-01 0.96 13
151961 8.312e-04 1.96 2.228e-01 0.98 12
615473 2.078e-04 1.98 1.114e-01 0.99 14

Table 6

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾2 and a smooth solution with cut-FEM.

Results for 𝛾 = 𝛾2 and smooth solution with cut-FEM

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

1209 2.2306e-02 - 1.0422e+00 - 2
4487 5.7207e-03 1.96 5.2424e-01 0.99 17
17163 1.4123e-03 2.02 2.5901e-01 1.02 17
67089 3.4377e-04 2.04 1.2865e-01 1.01 19
265249 8.5223e-05 2.01 6.4118e-02 1.00 20

5.1. 2D numerical tests

In order to make the comparison between the three methods as 
close to real use cases as possible, we do not exploit any a-priori knowl-
edge of analytical level set descriptions of the exact interfaces. Indeed, 
using this information one could expect faster computations of the in-
tersections, and an overall reduction of the computational costs of the 
assembly routines. Instead, we fix the same discretization of the inter-
face as input data of the computational problem for all three methods.

In particular, we consider as computational domain Ω = [−1, 1]2 with 
immersed domains of different shapes originating from an unfitted dis-
cretization of two different curves:

• circle interface: we let

𝛾1 ∶= 𝜕𝐵𝑅(𝒄),

• flower-shaped interface: we let

𝛾2 ∶=
{
(𝑥, 𝑦) ∶

√
𝑥2 + 𝑦2 − 𝑟

(
1−2 𝑦2

𝑥2 + 𝑦2
)(

1−16 𝑥2𝑦2

(𝑥2 + 𝑦2)2
)
−𝑅 = 0

}
,

where the first is a circle of radius 𝑅 centered at 𝒄 and the second is a 
flower-like interface. We choose as parameter values 𝒄 = ( 12 , 

1
2 ), 𝑅 = 0.3

and 𝑟 = 0.1. The initial discretization of the immersed domains is chosen
so that the geometrical error is negligible w.r.t. the discretization errors 
(see Fig. 8). In the case of the circle interface 𝛾1, the discrete interface 
is generated using a built-in mesh generatorsfrom deal.II while the 
flower-shaped interface 𝛾2 is imported from an external file. When re-
quired, we implement a discrete level set function Ψℎ as described in 
Algorithm 1. Fig. 8 shows a representation of the two interfaces.

In the first two tests, we set up the problem using the method of 
manufactured solutions, imposing the data 𝑓 in Ω and the boundary 
conditions on Γ and 𝛾 according to the exact solution
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𝑢(𝑥, 𝑦) ∶= sin(2𝜋𝑥) sin(2𝜋𝑦). (26)

Hence, the right hand side of (1) is 𝑓 = 8𝜋2𝑢(𝑥, 𝑦) and the data on the 
outer boundary Γ and on 𝛾 are computed accordingly. Notice that the 
smoothness of the solution implies 𝜆 ≡ 0 in this case, meaning that the 
Dirichlet condition does not constraint the solution 𝑢 at the interface.

This test is meant to assess the basic correctness of the implemen-
tation of the three methods, and corresponds to a case in which the 
interface is truly not an interface. Instead, when we impose an arbitrary 
value for the solution at the interface, we expect the solution 𝑢 to be 
only in 𝐻

3
2 −𝜀(Ω) for any 𝜀 > 0, even thought its local regularity on the 

two subdomains 𝜔 and Ω ⧵𝜔 may be higher. This is due to the fact that 
the gradient of the solution is not a continuous function across the inter-
face, and therefore the solution cannot be in 𝐻2(Ω). In this case, we can-
not expect non-matching methods that does not resolve the interface ex-

actly, such as the Lagrange multiplier and the Nitsche’s interface penal-
ization method, to be able to recover the optimal rate of convergence.

In the tables below we also report the number of iterations required 
in the solution phase in the column ‘Iter.’. We observe for all experi-
ments a similar number of iterations for the three methods (which are 
independent on the number of degrees of freedom, indicating a good 
choice of preconditioner for all three methods) even though the solu-
tion of the linear system stemming from the Lagrange multiplier method 
is generally more expensive compared to the other two methods, ow-
ing to the higher computational complexity of the preconditoner for 
the saddle-point problem. The balance in the computational cost of the 
three different methods is discussed in details in Section 5.3.

5.1.1. Test 1: smooth solution over circular interface

We report in Tables 1, 2, and 3 the errors and computed rates for 
the Lagrange multiplier, Nitsche’s interface penalization, and cut-FEM 
method, respectively. In each case, the background variable converges 
linearly and quadratically in the 𝐻1- and 𝐿2-norm, respectively. As for 
the Lagrange multiplier, we observe a convergence rate close to two in-
stead of the theoretical rate of one, most likely due to the very special 
exact solution that the multiplier converges to (i.e., the zero function). 
For a direct comparison, we also report in Fig. 9 (left) the convergence 
history of all three methods against the number of DoF. These results 
clearly indicate that for smooth problems with relatively simple inter-
faces the three methods perform similarly.

5.1.2. Test 2: smooth solution over flower-shaped interface

We report in Tables (4), (5) and (6) the error with the computed 
rates of convergence for the three schemes. Again we observe the theo-
retical rates of convergence for all three methods. This time, however, 
the direct comparison of the errors shown in Fig. 9 (right) indicates 
that the cut-FEM approach has an advantage over the other two meth-
ods. This may be due to the worst approximation properties of the 
non-matching methods based on Lagrange multipliers and Nitsche’s in-
terface penalization in the presence of high curvature sections of the 
immersed boundary, as can be seen by comparing the meshes shown 
in Fig. 8. Despite the fact that the reached accuracy is the same for 
the Lagrange multiplier, we further note that the Nitsche’s interface pe-
nalization method requires less iterations than the Lagrange multiplier 
method.
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Fig. 8. Zoom on pre-processed background grid Ωℎ for the circle interface 𝛾 = 𝛾1 (left) and the flower-shaped interface 𝛾 = 𝛾2 (right).

Fig. 9. 𝐿2 , 𝐻1, and 𝐻− 1
2 errors versus the number of DoF for all schemes applied to 𝛾1 (left) and to 𝛾2 (right).
5.1.3. Test 3: non-smooth solution over circular interface

In this test, we fix once more 𝛾 = 𝛾1 and we define an exact solution 
with a non-zero jump of the normal gradient ∇𝑢 ⋅ 𝒏 across 𝛾 taken from 
[20], namely

𝑢(𝑥, 𝑦) =

{
−ln(𝑅) if |𝑟| ≤𝑅,
−ln(𝑟) if |𝑟| >𝑅, (27)

where 𝑟 ∶= 𝒙 − 𝒄, implying as right hand side 𝑓 = 0. The Lagrange 
multiplier associated to this solution is 𝜆(𝒙) ≡ 𝜆 = − 1

𝑅
, as 𝑢 solves the 

following classical interface problem:

⎧⎪⎪⎨⎪⎪⎩

−Δ𝑢 = 0 in Ω ⧵ 𝛾,
𝑢 = −ln(𝑟) on Γ,
�∇𝑢 ⋅ 𝒏� = 1

𝑅
on 𝛾,

�𝑢� = 0 on 𝛾.

(28)

Since the global regularity of the solution is 𝐻
3
2 −𝜀(Ω) for any 𝜀 > 0, 

theoretically we would expect the convergence rates of the 𝐿2(Ω), 
𝐻1(Ω), and 𝐻− 1

2 (𝛾) norms of the errors to be 1, 0.5, and 0.5 for the La-
grange multiplier method, the same for the variable 𝑢ℎ in the Nitsche’s 
interface penalization method, and the optimal convergence rates ob-
served in the smooth case in the case of the cut-FEM method. These are 
shown in Tables 7, 8 and 9 and plotted in Fig. 10.
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The results show a clear advantage in terms of convergence rates and 
absolute values of the errors for the cut-FEM method. In all cases (both 
smooth and non-smooth), the Nitsche’s interface penalization method 
and the Lagrange multiplier give essentially the same errors. A simple 
way to improve the situation for the latter two methods would be to use 
a weighted norm during the computation of the error, which was proven 
to be localized at the interface in [20]. This would allow to reduce the 
overall error, but it would still result in a solution that does not capture 
correctly the jump of the normal gradient across the interface, which is 
the main source of error.

5.2. 3D numerical tests

We mimic the tests reported above for the two-dimensional setting 
also in the three-dimensional case, but we restrict our analysis to the 
case of a sphere immersed in a box. We fix Ω = [−1, 1]3 and consider 
as immersed interface a sufficiently fine discretization of the sphere 
𝛾3 ∶= 𝜕𝐵𝑅(𝒄) with 𝒄 = ( 12 , 

1
2 , 

1
2 ), 𝑅 = 0.3. In this setting, we consider two 

test cases with smooth and non-smooth solution.

5.2.1. Test 1: smooth solution over spherical interface

We proceed analogously to the previous section by computing con-
vergence rates when the solution 𝑢 is smooth and defined as

𝑢(𝑥, 𝑦, 𝑧) ∶= sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧), (29)
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Table 7

𝐿2-error and 𝐻1-error for non smooth 𝑢 in (27) and for the multiplier.

Results for 𝛾 = 𝛾1 and non-smooth solution with Lagrange multipliers

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

‖𝜆− 𝜆ℎ‖− 1
2 ,𝛾

𝐻
− 1

2 (𝛾)
rate

Iter.

389+32 1.413e-02 - 3.656e-01 - 3.354e-02 - 2
1721+64 5.698e-03 1.22 2.254e-01 0.65 1.112e-02 1.59 2
7217+128 3.248e-03 0.78 1.621e-01 0.46 6.273e-03 0.83 2
29537+256 1.796e-03 0.84 1.141e-01 0.50 4.094e-03 0.62 2
119489+512 1.099e-03 0.70 8.015e-02 0.51 2.845e-03 0.52 2

Fig. 10. 𝐿2, 𝐻1 , and 𝐻− 1
2 errors versus the number of DoF for all schemes applied to 𝛾1, with non-smooth solution.
Table 8

𝐿2-error, 𝐻1-error for non smooth 𝑢 in (27).

Results for non-smooth 𝑢 with Nitsche

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

389 9.216e-03 - 3.667e-01 - 1
1721 3.324e-03 1.37 2.286e-01 0.64 11
7217 1.936e-03 0.75 1.640e-01 0.46 11
29537 9.957e-04 0.94 1.151e-01 0.50 12
119489 5.016e-04 0.98 8.070e-02 0.51 13

Table 9

𝐿2-error, 𝐻1-error for non smooth 𝑢 in (27) with cut-FEM.

Results for non-smooth 𝑢 with cut-FEM

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

329 3.1670e-02 - 5.6660e-01 - 2
1161 1.5998e-03 4.31 1.2352e-01 2.20 2
4377 3.6791e-04 2.12 5.8327e-02 1.08 16
16953 8.5282e-05 2.11 2.7307e-02 1.09 18
66665 2.1914e-05 1.96 1.3726e-02 0.99 19

which corresponds to the right hand side 𝑓 = 12𝜋2𝑢(𝑥, 𝑦, 𝑧). We report 
in Tables 10, 11 and 12 the error rates for the three schemes, while in 
Fig. 11 (left) we plot errors against the number of DoF.

The convergence rates are as expected and the results are in line 
with the two-dimensional case. The Lagrange multiplier method and 
the interface penalization method give again very close computational 
errors for 𝑢ℎ. As in the smooth two-dimensional case, this test should 
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only be considered as a validation of the code and of the error computa-
tion, since the interface does not have any effect on the computational 
solutions.

5.2.2. Test 2: non-smooth solution over spherical interface

We consider the test case in [20]:

𝑢(𝑥, 𝑦) =

{ 1
𝑅

if |𝑟| ≤𝑅,
1|𝑟| if |𝑟| >𝑅, (30)

where 𝑟 ∶= 𝒙−𝒄, 𝑓 = 0, and 𝑅 = 0.3. Analogously to the two dimensional 
case, the multiplier associated to this problem is 𝜆(𝒙) = 𝜆 = − 1

𝑅2 , since 𝑢
solves the following problem:

⎧⎪⎪⎨⎪⎪⎩

−Δ𝑢 = 0 in Ω ⧵ 𝛾,
𝑢 = 1|𝑟| on Γ,

�∇𝑢 ⋅ 𝒏� = 1
𝑅2 on 𝛾,

�𝑢� = 0 on 𝛾.

(31)

We report in Tables 13, 14, 15 the error rates for the three schemes 
and in Fig. 11 (right) the error decay in 𝐿2(Ω) and 𝐻1(Ω) for 𝑢ℎ and 
the decay in 𝐻− 1

2 (𝛾) for 𝜆ℎ. A contour plot of the discrete solution 𝑢ℎ
obtained with Nitsche’s penalization method is shown in Fig. 12.

The difference between the three methods is less evident in terms 
of absolute values of the errors when compared to the two dimensional 
case: while it is still clear that the convergence rates of cut-FEM are 
higher compared to the other two methods, the difference between the 
three methods is smaller. In particular, the Nitsche’s interface penal-
ization method seems to perform better than the Lagrange multiplier 
method when considering the 𝐿2 norm.



D. Boffi, A. Cangiani, M. Feder et al. Computers and Mathematics with Applications 151 (2023) 101–115

Table 10

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾3 and a smooth solution with Lagrange multiplier.

Results for 𝛾 = 𝛾3 and smooth solution with Lagrange multiplier

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

‖𝜆− 𝜆ℎ‖− 1
2 ,𝛾

𝐻
− 1

2 (𝛾)
rate

Iter.

4127+96 6.416e-02 - 2.432e+00 - 0.1027 - 9
37031+384 1.590e-02 1.91 1.212e+00 0.95 0.0287 1.84 14
313007+1536 3.963e-03 1.95 6.051e-01 0.98 0.0069 2.06 19
2572511+6144 9.996e-04 1.96 3.024e-01 0.99 0.0019 1.89 14

Fig. 11. 𝐿2 , 𝐻1, and 𝐻− 1
2 error versus the number of DoF for all schemes applied to 𝛾3 with a smooth solution 𝑢 (left) and with a non-smooth solution 𝑢 (right).

Fig. 12. Background mesh Ωℎ and immersed mesh of the sphere interface 𝛾ℎ for the three dimensional case (left) and section of the contour plot for the approximate 
solution 𝑢ℎ in (30), 𝛾 = 𝛾3.
112
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Table 11

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾3 and a smooth solution with Nitsche.

Results for 𝛾 = 𝛾3 and smooth solution with Nitsche

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

4127 6.411e-02 - 2.432e+00 - 17
37031 1.588e-02 2.01 1.212e+00 1.00 14
313007 3.959e-03 2.00 6.050e-01 1.00 14
2572511 9.887e-04 2.00 3.023e-01 1.00 14

Table 12

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾3 and a smooth solution with cut-FEM.

Results for 𝛾 = 𝛾3 and smooth solution with cut-FEM

DoF number ‖𝑢− 𝑢ℎ‖0,Ω 𝐿2(Ω)
rate

‖𝑢− 𝑢ℎ‖1,Ω 𝐻1(Ω)
rate

Iter.

5163 7.0847e-02 - 2.4835e+00 - 24
36781 1.7743e-02 2.12 1.2479e+00 1.05 21
278157 4.5124e-03 2.03 6.2396e-01 1.03 22
2160541 1.1302e-03 2.03 3.1154e-01 1.02 22

5.3. Computational times

In order to better understand the performance of the three methods, 
we consider a breakdown of the computational costs into work precision 
diagrams. These provide a more fair measure of efficiency as they take 
into account the computational cost required to reach a given accuracy.

We report hereafter a breakdown of the computational times needed 
by our implementations of the three proposed methods. All computa-
tions were carried out on a 2.60 GHz Intel Xeon processor. For each 
benchmark we report the average time required to solve 10 times the 
3D smooth Problem 5.2.1. We recall that a smooth solution implies a 
vanishing Lagrange multiplier 𝜆, hence the solution 𝑢 is not constrained. 
We compute separately the required CPU times (in seconds) for the 
main tasks that each scheme has to perform. On a quasi-uniform mesh, 
the number 𝑁 of background cells in Ωℎ scales with (ℎ−3Ω ), and we 
expect the assembly of the stiffness matrix to scale linearly in the num-
ber of cells. On the other hand, the number of facets in 𝛾ℎ scales with 
(ℎ−2

𝛾
); in our experiments, the ratio ℎΩ∕ℎ𝛾 is kept fixed, therefore we 

expect the assembly of the coupling terms ⟨𝜆, 𝑣⟩𝛾 and ⟨𝑢, 𝑣⟩𝛾 to scale 
with (𝑁 2

3 ).
This is indeed what we observe in the experiments as shown in CPU 

breakdown plots of Fig. 13 for each method.
The three schemes have comparable computational times. In partic-

ular, the Nitsche interface penalization method exhibits lower global 
assembly times compared to the others. However, it is well known 
that the number of iterations required to solve the algebraic prob-
lem is influenced by the choice of the penalty parameter 𝛽 in (14), 
which determines simultaneously also the accuracy of the numerical 
solution 𝑢ℎ. This can be better seen in work-precision diagrams, where 
we compare the CPU times to solve each refinement cycle versus the 
𝐿2 error for both test problems (29) and (30) in Fig. 14. In the smooth 
scenario, results for the Lagrange multiplier and Nitsche’s interface pe-
nalization methods are almost overlapping both in terms of time and 
accuracy, while cut-FEM shows larger computational times. The situa-
tion is different in the non-smooth case where cut-FEM better captures 
the discontinuity at the interface and thus gives more accurate results, 
with a larger cost in terms of time for low degrees of freedom count, 
and with smaller cost for large degrees of freedom count, owing to the 
better convergence rate of the method. These results indicate that the 
additional implementation complexity eventually pays back for non-
smooth solutions. This would be even more the case with higher order 
elements, as cut-FEM would keep optimal rates while the other methods 
would not be optimal.
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Based on the higher efficiency of the Lagrange multiplier and 
Nitsche penalization method in the smooth case, we speculate that these 
methods can be made competitive also in the non-smooth case by an im-
proved local refinement strategy [19].

6. Conclusions

The numerical solution of partial differential equations modeling the 
interaction of physical phenomena across interfaces with complex, pos-
sibly moving, shapes is of great importance in many scientific fields. 
Boundary unfitted methods offer a valid alternative to remeshing and 
Arbitrary Lagrangian Eulerian formulations, but require care in the rep-
resentation of the coupling terms between the interface and the bulk 
equations.

In this work, we performed a comparative analysis of three non-
matching methods, namely the Lagrange multiplier method (or ficti-
tious domain method), the Nitsche’s interface penalization method, and 
the cut-FEM method, in terms of accuracy, computational cost, and im-
plementation effort.

We presented the major algorithms used to integrate coupling terms 
on non-matching interfaces, discussed the benefit of computing accurate 
quadrature rules on mesh intersections, and concluded our analysis with 
a set of numerical experiments in two and three dimensions.

Our results show that accurate quadrature rules can significantly 
improve the accuracy of the numerical methods, and that there are 
cases in which simpler methods, like the Nitsche’s interface penaliza-
tion method, are competitive in terms of accuracy per computational 
effort. In general, the additional implementation burden of the cut-FEM 
method is justified by the higher accuracy that it achieves, especially in 
three dimensions and for the solution of non-smooth problems.

We believe that this paper provides a valuable resource for re-
searchers and practitioners working on numerical methods for interface 
problems, particularly in the context of elliptic PDEs coupled across het-
erogeneous dimensions. Source codes used to produce the results of this 
paper are available at github .com /fdrmrc /non _matching _test _suite .git, 
and on the platform Code Ocean codeocean .com /capsule /1296846.
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Table 13

𝐿2 and 𝐻1 error rates for 𝛾 = 𝛾3 and non-smooth solution 𝑢 in (30) with Lagrange multiplier.
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Fig. 13. Breakdown of CPU times for the three schemes. In (bottom left) Setup level set indicates the time required to interpolate the discrete level set described 
in Algorithm 1 onto the finite element space. Mesh classification shows the time needed to partition the computational mesh and classify the cells in cut, interior or 

outside cells. Bottom right: overall CPU times to assemble the algebraic system for the smooth 3D test. For the cut-FEM method, we also show the CPU time obtained 
by using an analytical representation of the interface through an analytic level set function.
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