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Abstract

We propose a model of the Universe (dubbed ηCDM) featuring a controlled stochastic evolution of the
cosmological quantities that is meant to render the effects of small deviations from homogeneity/isotropy on scales
of 30–50 h−1 Mpc at late cosmic times associated with the emergence of the cosmic web. Specifically, we prescribe
that the behavior of the matter/radiation energy densities in different patches of the Universe with such a size can
be effectively described by a stochastic version of the mass–energy evolution equation. The latter includes, besides
the usual dilution due to cosmic expansion, an appropriate noise term that statistically accounts for local
fluctuations due to inhomogeneities, anisotropic stresses, and matter flows induced by complex gravitational
processes. The evolution of the different patches as a function of cosmic time is rendered via the diverse
realizations of the noise term; meanwhile, at any given cosmic time, sampling the ensemble of patches will create a
nontrivial spatial distribution of the various cosmological quantities. Finally, the overall behavior of the Universe
will be obtained by averaging over the patch ensemble. We assume a simple and physically reasonable
parameterization of the noise term, gauging it against a wealth of cosmological data sets in the local and high-
redshift Universe. We find that, with respect to standard ΛCDM, the ensemble-averaged cosmic dynamics in the
ηCDM model is substantially altered by the stochasticity in three main respects: (i) an accelerated expansion is
enforced at late cosmic times without the need for any additional exotic component (e.g., dark energy), (ii) the
spatial curvature can stay small even in a low-density Universe constituted solely by matter and radiation, (iii)
matter can acquire an effective negative pressure at late times. The ηCDM model is Hubble tension–free, meaning
that the estimates of the Hubble constant from early- and late-time measurements do not show marked
disagreement as in ΛCDM. We also provide specific predictions for the variance of the cosmological quantities
among the different patches of the Universe at late cosmic times. Finally, the fate of the Universe in the ηCDM
model is investigated to show that the cosmic coincidence problem is relieved without invoking the anthropic
principle.

Unified Astronomy Thesaurus concepts: Cosmology (343); Cosmological models (337); Cosmological
principle (2363)

1. Introduction

The standard ΛCDM model of the Universe has proven to be
extremely successful in reproducing to a high degree of
accuracy many cosmological observations, most noticeably the
cosmic microwave background (CMB) temperature and
polarization spectra (e.g., Bennett et al. 2003; Planck
Collaboration et al. 2013, 2020a), supernova (SN) Ia
cosmography (e.g., Perlmutter et al. 1999; Scolnic et al.
2018; Brout et al. 2022), baryon acoustic oscillation (BAO)
measurements (e.g., Eisenstein et al. 2005; Beutler et al. 2011;
Zhao et al. 2022), cosmic shear galaxy surveys (e.g., Heymans
et al. 2013; Amon et al. 2022; Secco et al. 2022), galaxy
clusters (e.g., White et al. 1993; Allen et al. 2011; Mantz et al.
2022), and many others (e.g., see recent review by Turner 2022
and references therein; see also Efstathiou 2023). Despite these
astonishing successes, the ΛCDM model maintains a

fundamentally empirical character, in that it postulates the
existence of a mysterious dark energy component with exotic
negative pressure that, at late cosmic times, dominates the
energy budget and enforces an accelerated expansion of the
Universe.
From an observational perspective, the evidence for dark

energy remains mainly related to the interpretation of two
occurrences: the accelerated expansion of the Universe at late
cosmic times, as mainly indicated by Type Ia SN determina-
tions of the magnitude–redshift diagram, and the nearly zero
curvature (flat geometry) of a Universe with a low matter
(baryons and dark matter) content, as mainly indicated by CMB
and BAO data. From a theoretical perspective, the situation is
even more dramatic; the value of the present dark energy
density required to explain the aforementioned observations is
far below the Planck or any natural scale in particle physics.
Nonetheless, it is of the same order of magnitude with respect
to the matter density, rather than extremely smaller or fatally
larger, thus allowing its observability in this very precise
moment of cosmic history (e.g., Zel’dovich 1968; Weinberg
1989). Furthermore, in recent years, some discrepancies with
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the ΛCDM paradigm started to emerge with various degrees of
significance, among them the (in)famous Hubble tension that
concerns the disagreement between late-time measurements of
the Hubble constant with respect to the ΛCDM predictions
from the CMB (e.g., Efstathiou 2020; Riess et al. 2022; see also
Di Valentino et al. 2021) and the S8 tension that concerns a
deficit in the weak lensing amplitude measured by cosmic shear
galaxy surveys with respect to the CMB expectations (e.g.,
Asgari et al. 2021; Secco et al. 2022; see also Amon &
Efstathiou 2022).

In this complex landscape, a number of alternative
cosmological models have been designed with the aim to
interpret the cosmic acceleration without invoking a dark
energy component. For example, one may consider modified
gravity theories that introduce additional degrees of freedom in
the gravitational and/or matter action (see reviews by Clifton
et al. 2012; Nojiri et al. 2017; Saridakis et al. 2021; see also
Planck Collaboration et al. 2016), one may phenomenologi-
cally modify the Friedmann equation by additional terms that
depend on the matter density in a nonlinear way like in the
Cardassian scenarios (see Freese & Lewis 2002; Xu 2012;
Magana et al. 2018), or one may alter the mass–energy
evolution equation with bulk viscosity terms based on
thermodynamical considerations (see Lima et al. 1988; Brevik
et al. 2011; Herrera-Zamorano et al. 2020). Alternatively, the
interpretation of SN data may be biased if the observer is
located in a local underdense region (e.g., Celerier 2000) or
considering that the SN sources tend to be associated with
overdensities (e.g., Deledicque 2022).

Yet another possibility, more connected to this work, focuses
on the role of matter inhomogeneities and anisotropies that may
affect the cosmic expansion due to backreaction or statistical
sampling effects (e.g., Buchert & Ehlers 1997; Barausse et al.
2005; Wiltshire 2007; Buchert 2008; Kolb 2011; Buchert &
Räsänen 2012; Clifton 2013; Racz et al. 2017; Cosmai et al.
2019; Schander & Thiemann 2021). In fact, on the spatial
scales associated with cosmic structures, matter and radiation
are expected to be affected by a variety of complex physical
processes, including local inhomogeneities, clumping, fractal-
ity, anisotropic stresses, gravitational and electromagnetic
interactions, tidal torques, inflows and outflows, etc. When
investigating background cosmology, one usually does not care
about the fine details of such behavior but instead focuses on
the description of quantities spatially averaged over sufficiently
large scales, where a homogeneous/isotropic Universe is
assumed to hold according to the celebrated cosmological
principle. But given the nonlinear nature of Einsteinʼs general
relativity equations, it is far from clear to what extent the
complex gravitational dynamics on smaller scales can be
neglected in modeling the evolution of larger-scale patches and
the Universe as a whole.

From an observational perspective, testing homogeneity and
isotropy on large scales along cosmic history is not trivial. On
the one hand, observations of the CMB show a remarkable
consistency with statistical isotropy (meaning that small CMB
fluctuations that originated from inflation feature the same
power spectrum in different directions on the sky), apart from a
few “anomalies” on the largest scales (see Planck Collaboration
et al. 2020b; Chiocchetta et al. 2021). On the other hand, it may
well be that deviations from homogeneity and isotropy can
emerge at later cosmic times, thus requiring them to be checked
with different probes at lower redshift. In this vein, many

studies have been conducted exploiting galaxies (see Javanmardi
& Kroupa 2017; Sarkar et al. 2019), radio sources (see Bengaly
et al. 2019; Siewert et al. 2021; Secrest et al. 2022), gamma-ray
bursts (see Tarnopolski 2017; Andrade et al. 2019; Ripa &
Shafieloo 2019; Horvath et al. 2020), active galactic nuclei
(AGN)/quasars (see Gonçalves et al. 2021; Secrest et al. 2021;
Friday et al. 2022; Lopez et al. 2022; Tiwari et al. 2023), large-
scale bulk flows (see Kashlinsky et al. 2011; Atrio-Barandela
et al. 2015; Watkins et al. 2023), H I gas (see Hazra &
Shafieloo 2015; Avila et al. 2018, 2023), X-ray emission from
galaxy clusters (see Migkas et al. 2020, 2021), and Type Ia SNe
(see Javanmardi et al. 2015; Bernal et al. 2017; Colin et al. 2019;
Hu et al. 2020; Krishnan et al. 2022; Rahman et al. 2022; Zhai &
Percival 2022; McConville & Colgain 2023); the results are still
somewhat controversial, with some of these analyses supporting
the cosmological principle and others claiming statistically
significant deviations from it (see review by Kumar Aluri et al.
2023).
One of the most prominent manifestations of the anisotropic

and inhomogeneous nature of the gravitationally driven
evolution of the Universe is the progressive appearance of
the cosmic web toward late cosmic times. This spider network
of quasi-linear structures that permeates the cosmos on large
scales is constituted by anisotropic filamentary and planar
features (filaments and sheets) intersecting into nodes (knots)
where galaxy clusters tend to reside and surrounding large
underdense regions (voids) that occupy most of the volume. As
shown by numerical simulations, the formation and evolution
of the cosmic web are driven by gravitational tidal forces
induced by inhomogeneities in the mass distribution and by the
multistream migration of matter from adjacent structures (e.g.,
Springel et al. 2006; Shandarin et al. 2012; Vogelsberger et al.
2014; Libeskind et al. 2018; Martizzi et al. 2019; Wilding et al.
2021; see also Angulo & Hahn 2022).
It is instructive to highlight a few statistical properties of the

cosmic web by running an N-body numerical simulation in the
standard ΛCDM cosmology, in particular by extracting the
distribution of the (over)density field 1+ δ≡ δρ/ρ smoothed
on different coarse-graining scales R. Snapshots of such a
simulation at redshift z≈ 0 and smoothing scales
R≈ 5–50–500 h−1 Mpc are illustrated in the top panels of
Figure 1. Anisotropic/inhomogeneous conditions are manifest
for small R a few megaparsecs and progressively washed out
for larger R, to the point of becoming negligible at scales of
R hundreds of megaparsecs, i.e., an appreciable fraction of
the current Hubble radius. Interestingly, simulations show that
the emergence of the cosmic web via the gravitationally driven
growth of structures and voids transforms the statistical
distribution of the overdensity field Ω∼ 1+ δ from the initial
Gaussian to a lognormal shape (even on quasi-linear scales), as
also pointed out by theoretical and numerical studies in the
literature (e.g., Coles & Jones 1991; Neyrinck et al. 2009; Repp
& Szapudi 2017, 2018). Specifically, the average and
dispersion of such a lognormal distribution are plotted in the
bottom panels of Figure 1 as a function of the smoothing scale
and redshift. Moving from larger to smaller scales, the average
log 1( )dá + ñ gets progressively biased toward negative values
(corresponding to underdense regions, e.g., voids), and the
dispersion log 1( )s d+ increases; the effect is more pronounced
toward lower redshifts as structure formation proceeds. From
these outcomes, it should be clear that scales smaller than a few
megaparsecs are strongly inhomogeneous and anisotropic but

2

The Astrophysical Journal, 959:83 (21pp), 2023 December 20 Lapi et al.



dominated by nonlinear structures and peculiar motions
detached from the Hubble flow; hence, any major link with
the overall cosmic dynamics is presumably lost. At the other
end, scales larger than hundreds of megaparsecs are fully
homogeneous and isotropic, so that averaging cosmological
quantities over them brings about the standard dynamics but at
the price of ignoring any possible backreaction effects due to
structure formation from the quasi-linear scales of the cosmic
web that are still connected to the Hubble flow.

Motivated by the above, in this paper, we focus on scales of
tens of megaparsecs associated with the cosmic web and
investigate the impact on the cosmic dynamics of the small
residual anisotropies/inhomogeneities present there. Our
framework is inspired by some of the backreaction models
mentioned above, though we attack the problem via a different
approach based on stochastic differential equations. This
envisages that such patches of the Universe will undergo
slightly different evolutions due to local inhomogeneities,
matter flows related to anisotropic stresses, tidal forces,
gravitational torques, etc. However, we do not aim to follow
the details of such a complex dynamics (that would be
practically impossible to handle in semianalytic terms) and
revert instead to an effective statistical description for the
evolution of the various patches in terms of the different

realization of an appropriate noise term in the mass–energy
evolution equation. At any given cosmic time, sampling the
ensemble of patches will create a nontrivial spatial distribution
of the various cosmological quantities, while the overall
behavior of the Universe will then be obtained by averaging
over the patch ensemble. We assume a simple phenomen-
ological and physically reasonable parameterization of the
noise term, tuning it against a wealth of cosmological data sets
in the local and high-redshift Universe. We find that, with
respect to ΛCDM, in our stochastic model, an accelerated
expansion can be enforced at late cosmic times, and the
curvature can stay small even in a low-density Universe
constituted of matter and radiation; this behavior will ultimately
turn out to be due to the nature of the large-scale structure
formation, which places far more volume in underdense than in
overdense regions, causing the average expansion to skew
toward an accelerated behavior. Remarkably, matter can also
acquire an effective negative pressure at late times. We also
provide predictions for the variance of the cosmological
quantities among the different patches as induced by the noise.
Finally, we show that our model is capable of solving the
Hubble tension and relieving the coincidence problem.
The plan of the paper is as follows. In Section 2, we

introduce our cosmological model; in Section 3, we investigate

Figure 1. Top panels: snapshots at z ≈ 0 extracted from an N-body simulation in the ΛCDM cosmology with a box of 2 h−1 Gpc and 10243 particles, which shows the
amplitude log 1( )d+ of the overdensity field (color-coded) smoothed via a top-hat window function on scales of R ≈ 5 (left), 50 (middle), and 500 (right) h−1 Mpc.
Bottom panels: average and dispersion of the lognormal distribution followed by the density contrast field in the simulation when smoothed on different scales R at
redshifts z ≈ 0 (red), 0.5 (magenta), 1 (green), and 3 (blue). The red circles highlight the smoothing scales used in the snapshots shown in the top panels.
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its implications for the cosmic dynamics; in Section 4, we
gauge the noise term against a wealth of cosmological data sets;
in Section 5, we examine the time-dependent variance implied
by the noise on the cosmological quantities; in Section 6, we
explore the future evolution of the Universe; in Section 7; we
provide answers to some frequently asked questions; and
finally, in Section 8, we summarize our findings and outline
future perspectives.

2. Basic Setup

We consider a Universe composed of (baryonic+dark)
matter and radiation, subject to the laws of canonical general
relativity. We focus on patches of order tens of megaparsecs,
where the local density field is unbiased with respect to the
average density of the Universe (i.e., log 1 0( )dá + ñ » ), but
residual small anisotropies/inhomogeneities associated with
the cosmic web are present (see Section 1 and Figure 1). In
these conditions, we assume that the standard Friedmann–
Robertson–Walker metric can be applied to a good approx-
imation (as also shown by detailed GR simulations; see
Räsänen 2010; Koksbang 2019; Macpherson et al. 2019;
Adamek et al. 2019). Yet any of such patches of the Universe
will experience slightly different evolutions along cosmic
history due to local inhomogeneities, matter flows induced by
anisotropic stresses, tidal forces, and other complex gravita-
tional processes that for all practical purposes are extremely
difficult to model ab initio or handle (semi)analytically.
Therefore, we revert to a statistical description in terms of
stochastic differential equations, phenomenologically charac-
terizing the different evolution of the patches as a function of
cosmic time via the diverse realizations of a noise term;
meanwhile, at any given cosmic time, sampling the ensemble
of patches will create a nontrivial spatial distribution of the
various cosmological quantities. Finally, the overall behavior
of the Universe at any cosmic time will be obtained by
averaging over the patch ensemble.

Technically, we add a simple stochastic term to the mass–
energy evolution equation with the following properties (see
also Section 7 for an extended discussion): stochasticity is
driven by Gaussian white noise, η(t); the stochastic term scales
proportionally to the energy density of each component, so that
the linearity of the mass–energy evolution equation is
preserved; and the stochastic term features an inverse power-
law dependence on the Hubble parameter, so that at early times,
random effects become negligible, in order to be consistent
with the statistical isotropy of the CMB. The evolution of each
different patch of the Universe is described by the diverse
realizations of the noise term η(t) via the system of stochastic
differential equations (in the Stratonovich sense; see
Appendix A),
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here G is the standard gravitational constant, c is the speed of
light, a(t) is the scale factor normalized to unity at the present
time, H t a a( ) º is the Hubble rate, Hå≡ 100 km s−1 Mpc−1

is a reference value, κ is the curvature constant, and ρm,γ is the
energy density of matter and radiation with equation-of-state

parameters (wm;wγ)= (0; 1/3). In addition, as mentioned
above, η(t) is Gaussian white noise (physical dimensions

t1 ) with ensemble-averaged properties 〈η(t)〉= 0 and
t t t t2 D( ) ( ) ( )h h dá ¢ ñ = - ¢ , and (ζ� 0; α� 0) are two para-

meters regulating the strength and redshift dependence of the
noise that are yet to be specified (these will be set by
comparison with cosmological observables; see Section 4).
Note that when introducing the normalized Hubble rate
h≡H/Hå and the density parameters Ωm,γ≡ 8πGρm,γ/3H

2,
the Friedmann equation just reads Ωκ≡−κc2/a2h2=
1−Ωm−Ωγ.
The multiplicative factor in front of the Gaussian white noise

η is an ansatz inspired by the following naive argument. As it
occurs in ΛCDM (see Figure 1), one expects that at late times,
the overdensity 1+ δ∝ ρ smoothed on a certain coarse-
graining scale (e.g., tens of megaparsecs) constitutes a random
field following a lognormal distribution (see the theoretical
arguments by Coles & Jones 1991; see also Neyrinck et al.
2009; Repp & Szapudi 2017, 2018). In simple words, sampling
patches of the present Universe at different spatial locations
yields a lognormal distribution for ρ or, equivalently, a normal
distribution for log r. In terms of basic stochastic processes,
such a distribution would be naturally created by an ensemble
of regions whose density evolves stochastically in time under
Gaussian white noise η(t) or, in other words, for which
d tlogt ( )r r r h~ µ , with the proportionality constant being
related to the variance of the density distribution (see Risken
1996; Paul & Baschnagel 2013; see also Appendix A).
Although Equation (1) describes a more complex stochastic
system (since the second equation features a dilution term, and
it is coupled to the first via the Hubble parameter), this analogy
has inspired us to adopt a noise term Hr z r~ a , with the
parameters ζ and α describing our ignorance of the present
value and the redshift evolution of the variance in the density
distribution for a generic cosmology that can, in principle, be
different from ΛCDM.
We stress that Equation (1) should be meant to hold on

patches of the Universe with a typical smoothing (or coarse-
graining) scale that constitutes in itself a hidden parameter of
the model, though in turn fully determined by the noise and
cosmological ones. Such a scale will be estimated after setting
the noise and cosmological parameters via comparison with
data (Section 4.1) and evaluating the typical fluctuations of the
density field induced by the noise (Section 5); here we
anticipate that it will turn out to be around tens of megaparsecs,
a typical size associated with the cosmic web. In the same
perspective, notice that the noise term in Equation (1) subtends
deviations from local energy conservation in different patches
of the Universe with a size given by the aforementioned coarse-
graining scale that can be associated with, e.g., matter flows;
given the number of fluctuations in the density field induced by
the noise as computed in Section 5, these deviations will turn
out to be minor.
Finally, note that the noise term has a natural timescale tη

associated with it that can be easily derived by dimensional
analysis of the second term on the right-hand side of the mass–
energy evolution equation above; writing tr r~ h and

t1h ~ h , one finds tη∼ 1/(Håζ
2h2α). This has to be

compared with the typical timescale of deterministic dilution
expressed by the first term on the right-hand side of the same
equation, e.g., for matter t H1 3exp ( )~ . The competition
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between noise and dilution can be quantified by the ratio
t t h3exp

2 2 1( )z~h
a- , which will be evaluated in Section 4.1

after having determined the noise and cosmological parameters
via comparison with data.

Hereafter, we will refer to this model of the Universe as
ηCDM, since η is the standard mathematical symbol for the
noise ruling its dynamics. Although constituting a seemingly
simple modification to the standard cosmological framework,
our proposal has relevant implications for cosmic history.
Three preliminary remarks are in order. First, since
Equations (1) above are coupled, not only ρm,γ but also the
quantities a and H are promoted to stochastic variables; these
will fluctuate in time under the action of the noise in a slightly
different way for each of the patches (corresponding to
different noise realizations). This is better highlighted by
combining Equations (1) to obtain the acceleration equation,
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implying that the noise term acts as a random fluctuation onto
the dynamics in each patch of the Universe; plainly, posing
ζ= 0 yields the usual acceleration equation. Therefore, under
the influence of the noise, each patch of the Universe will
undergo a slightly different evolution in cosmic time; mean-
while, at any given cosmic time, sampling the ensemble of
patches will create a nontrivial spatial distribution of the
various cosmological quantities. Second, note that the noise
term is “multiplicative,” meaning that it depends on the system
state; as η(t) fluctuates, the variables ρm,γ and H appearing in
the stochastic term also vary. Therefore, in Equation (2), one
finds that 〈ρm,γH

α−1η〉 is not null even if 〈η〉 is; the result will
be a noise-induced drift affecting the late-time ensemble-
averaged cosmological evolution (actually accelerating it, as
shown in Section 3).

Third, it is plain that the overall cosmic dynamics will be
specified not only by the above equations but also by sensible
boundary conditions. Since the noise term is, by construction,
negligible at early times, the evolution should mirror that of a
standard cosmological model in the remote past. Then one may
envisage integrating the stochastic system forward in cosmic
time from such initial conditions; however, this procedure
cannot be correct, since it would possibly create an
uncontrolled diffusion of the cosmological quantities toward
the present to values that, in principle, may be very far from the
spatially average ones or even nonphysical in some inter-
mediate step of cosmic history. To avoid the issue, one must
require that the values of the cosmological quantities measured
by an observer here and now are close to the average values;
this means that the overall evolution cannot be a simple
diffusion but rather a diffusion bridge, i.e., a controlled
diffusion such that the initial and final values of the different
random paths are appropriately assigned (we anticipate that the
final values will be set by comparison with cosmological data
and the initial one by integrating back in time the equations
describing the average evolution; more on this below).
Diffusion bridges have recently found many applications
ranging from genetics, to economics, to data science (see
Pedersen 1995; Durham & Gallant 2002; Delyon & Hu 2006;
Lindstrom 2012; Bladt & Sørensen 2014; Whitaker et al. 2017;

Heng et al. 2022). The treatment of such conditioned diffusion
problems is not trivial at all (especially when drift terms are
present), and exact solutions are practically impossible to
obtain except for very peculiar setups; however, various
techniques have been developed to find approximate solutions
in general cases, as exploited below.
Before proceeding, it is convenient to put Equation (1) in a

more transparent and numerically tractable form. First of all,
we differentiate the Friedmann equation, reexpress the term
κc2/a2 in terms of H and ρm,γ, exploit the mass–energy
evolution equations to explicitly write m,r g, and then use

h h2m m m m, , , ,
  r rW W = -g g g g to obtain an equation for the
density parameters Ωm,γ. Finally, we introduce the normalized
Hubble rate h≡H/Hå and redefine the time variable τ≡Håt
such that t H( ) ( )h h t by the property of the Gaussian
noise. All in all, we get (an overdot means differentiation with
respect to τ)
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supplemented by the final boundary values (h0, Ωm,0, Ωγ,0) at
the present time τ0. Plainly, for ζ= 0, the usual dynamics of a
(nonzero curvature) patch of the Universe is recovered. As
mentioned above, in principle, a stochastic system just
characterized by a terminal boundary value is ill defined, since
the randomness naturally develops with the evolution proceed-
ing forward in time. However, in the present context, the
problem is made meaningful by the temporal behavior of the
noise term, which makes fluctuations negligible at early times,
to imply that the full stochastic solutions must converge in the
remote past to the spatially average one (i.e., obtained at each
cosmic time by averaging over the patch ensemble). Thus, the
technique to solve the problem (mutuated by Whitaker et al.
2017; details in Appendix B) is to separate the stochastic
variables h h h; ; ; ;m m m( ) ( ¯ ˜ ¯ ˜ ¯ ˜ )W W = + W + W W + Wg g g in an
average (barred variables) and a residual random (tilded
variables) component. On the one hand, the average behavior
can be shown to satisfy an ordinary differential equation that is
easily solved backward in time from the terminal condition at
τ0 to provide an initial condition at a time τin= τ0 for the full
system; remarkably, this equation inherits a noise-induced drift
term that will have relevant consequences on the late-time
cosmic dynamics (see next section). On the other hand, the
residual random component will render the fluctuations of the
various patches and create variance in the (spatial) distribution
of the cosmological quantities at a given cosmic time. Such a
random component can be shown to satisfy a stochastic
equation (actually also requiring the average solution as an
input) that can be integrated forward in time from an initial null
value at τin; moreover, this equation features a spurious drift
term that forces the solution to hit a null terminal value at τ0,
i.e., to execute a diffusion bridge (see Appendix B for details).
All in all, the overall stochastic process will be characterized by
well-defined initial and final values connected by the average
evolution plus some random behavior at intermediate times.
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In the next sections, we will apply such a technique to
Equation (3) to investigate the cosmic dynamics, set the
terminal conditions and noise parameters by comparison with
cosmological observables, and estimate the variance in the
evolution of the different patches as induced by the noise term.

3. Average Evolution

The equations ruling the ensemble-averaged behavior
h, ,m( ¯ ¯ ¯ )W Wg in the evolution of Equation (3) can be derived
from the procedure outlined in Appendix A. After some tedious
algebra, we obtain

where, on the right-hand side, the second addenda are the
noise-induced drift terms stemming from the multiplicative
nature of the noise; in fact, the average evolution is informed
on and affected by the noise of the original stochastic process.
This system of equations may be easily solved backward in
cosmic time from terminal conditions at the present epoch τ0
given by (h0;Ωm,0;Ωγ,0) to yield the average evolution of the
Hubble rate and density parameters across cosmic history. We
are now ready to point out that the dynamics implied by
Equation (4) has three relevant consequences.

1. Late-time acceleration without dark energy. One can
derive the deceleration parameter q from the first of
Equations (4), to read h h q12¯ ¯ ( ) º - + . At late times,
one can neglect radiation ( m

¯ ¯W Wg ) so that

q h1 1 ; 5h

h
m m2 2

2 1 1

2
m

2

2 ( )¯ ¯ ¯ ¯ ( )
¯
¯

¯
= - - = - W - Wz a aW - -

whenever 2 1m
¯ ( ) aW - , the stochastic term tends to

reduce the deceleration parameter expected from a
standard open cosmology without dark energy, and for
appropriate values of α and ζ, an accelerated expansion
with q< 0 at late times can be enforced. The physical
interpretation of this effect is that the overall ensemble of
patches tends to drift toward an evolution dominated by
low-density regions (see also Section 7). High-order
cosmographic quantities can be easily computed from the
expression above (e.g., Visser 2005); e.g., the jerk
parameter is given by

j q q1 3 2 6h

h

h

h h

q

h
2

2 3
¯ ¯ ¯ ( )

¯
¯

¯ ̈

¯ ¯
¯
¯

 
= + + = + -

and will be shown to have a nontrivial evolution at late
cosmic times.

2. Small curvature in a low-density Universe. One can
derive the average evolution of the global effective
curvature W̄k along the following lines. By combining
Equations (4) after some algebraic manipulation, one gets

h h2 . 7h

h m
2

1

3

2
2 2 2m

m

¯ ¯ ( ¯ ¯ ) ( )
¯

¯
¯ ¯

¯ ¯
  

z= - + W + Wa
g

W + W

- W -W
g

g

Formally integrating in time (recall that h dt d aln¯ ¯= in
terms of the scale factor) and recognizing that the
integration constant is related to the curvature parameter

h a2 2¯ ¯ ¯kW µ -k , one obtains the modified Friedmann
constraint,

⎡⎣ ⎤⎦d a h

1

exp ln . 8

m

m
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2
2 2 1 2

¯ ( ¯ ¯ )

¯ ¯ ( ¯ ¯ ) ( )òz
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´ - W + W

k g

a
g

-

Equation (8) directly implies that W̄k is negligible in the
remote past, since the exponential term containing the

noise parameters tends to 1, and 1m
¯ ¯W + W »g applies

like in the standard ΛCDM cosmology. However, kW̄
starts growing toward the present, then attains a
maximum value 0.1¯ Wk at the time when
h 1 1 2m

2 1 1 2¯ [ ( ( ) ¯ )] ( – )z a» - - W a and eventually
decreases again toward zero in the infinite future. On
the one hand, such an evolution is consistent with
inflationary scenarios, which predict that any possible
initial curvature has already been erased via a super-
exponential expansion at a time of around 10−32 s after
the Big Bang (see Efstathiou & Gratton 2020); on the
other hand, the noise induces, via Equation (8), a
nontrivial evolution of the curvature parameter implying
modest deviations from flatness around the cosmic times
where the acceleration sets in that could possibly
constitute a specific test of the ηCDM model in the
future. All in all, for appropriate values of ζ and α, the
curvature parameter ,0W̄k may, at present, be appreciably
reduced to small values, even in a low-density matter-
dominated Universe.

3. Matter with negative pressure at late times. One can
derive the effective equation of state for the matter
component at late times from the first two of
Equations (4); neglecting radiation and coming back to
the volume energy density via m m m m¯ ¯ ¯ ¯ r r = W W +

h h2 ¯ ¯ , one has

h h3

2 4 3 . 9

m m

m m m

2
2

2

2
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¯ [ ( ) ] ( )

r r

r a

= - +
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Then, introducing an effective equation-of-state parameter
wm¯ such that h w3 1m m m¯ ¯ ¯ ( ¯ )r r= - + , one can write

w h 2 4 3 ; 10m m m6
2 1 22

¯ ¯ [ ( ) ¯ ¯ ] ( )a= - - - W + Wz a-

this plainly tends to the standard w 0m¯ » at early times,
while values w 0m,0¯ < can apply toward the present,
implying that matter effectively behaves as a negative
pressure component. However, note from Equation (5) that
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in ηCDM, the condition w 1 3m¯ < - (e.g., violation of the
strong-energy condition in general relativity) is not required
to enforce cosmic acceleration.

4. Tuning the Noise

Now we move to determine the terminal conditions and the
parameters (ζ; α) regulating the noise strength and redshift
dependencies by comparing the evolution implied by
Equation (4) with the data. Since the early evolution of the
Universe in the ηCDM and ΛCDM models is indistinguishable
(noise is negligible at early times), for the sake of simplicity,
we set the radiation energy density parameter

h 2.47 10,0 0
2 5W » ´g

- to the value measured by the Planck
mission (Planck Collaboration et al. 2020a) and the baryon
density h 0.0222b,0 0

2W » to the value suggested by Big Bang
Nucleosynthesis constraints (Aver et al. 2015). Then our
cosmological model will be characterized by the parameter sets
(h0;Ωm,0; ζ; α) that we determine by fitting a number of
observables in the local and distant Universe; specifically, we
consider the following data sets.

1. Type Ia SNe with Cepheid zero-point calibration. We
exploit the Pantheon+ sample of ≈1700 Type Ia SNe in
the redshift range z∼ 0.001–2.3 with Cepheid zero-point
calibration from the SH0ES team (Brout et al. 2022;
Riess et al. 2022; Scolnic et al. 2022) to fit for the
distance modulus z D5 log Mpc 25L( ) ( )m = + , where
the luminosity distance in a positively curved Universe is
computed as

⎡
⎣

⎤
⎦

D z dzsinh . 11L
c z

H

z
H

H z

1
,0

00 ,0

0( ) ( )( )
( )ò= W ¢k

+
W ¢k

The full covariance matrix of the Pantheon+ data has
been exploited (this includes statistical and systematic
uncertainties in the distance modulus and Cepheid host
covariance).

2. CMB first peak angular scale. We require the model to
reproduce the angular scale of the first peak in the CMB
temperature spectrum θå≈ rå/DM(zå) as measured by the
Planck Collaboration (2020a); here rå is the comoving
sound horizon at recombination, and DM(zå) is the
transverse comoving distance at the recombination red-
shift zå. We use the approximations zå(h0, Ωm,0, Ωb,0) and
rå(h0, Ωm,0, Ωb,0) by Hu & Sugiyama (1996).

3. BAOs. We exploit 18 data points in the redshift range
z∼ 0.1–2.4 from various BAO isotropic measurements
(Beutler et al. 2011; Kazin et al. 2014; Ross et al. 2015;
Alam et al. 2017; Ata et al. 2018; du Mas des Bourboux
et al. 2020; Bautista et al. 2021; de Mattia et al. 2021;
Hou et al. 2021; Raichoor et al. 2021; Zhao et al. 2022)
and fit for the ratio rd/DV(z) between the sound horizon at
the drag epoch zd and the angle-averaged galaxy
BAO measurement D z cz D z H zV M

2 1 3( ) [ ( ) ( )]= , where
DM(z)=DL(z)/(1+ z) is the transverse comoving dis-
tance. We also consider the ratio between the Hubble
distance and the sound horizon at the drag epoch c/H(z)rd
inferred from transverse BAO⊥ measurements (see Alam
et al. 2017; du Mas des Bourboux et al. 2020; Bautista
et al. 2021; de Mattia et al. 2021; Hou et al. 2021),
properly taking into account the covariance with some of
the isotropic measurements mentioned above. We use the
approximations zd(h0, Ωm,0, Ωb,0) and rd(h0, Ωm,0, Ωb,0)

by Aubourg et al. (2015); see also Eisenstein &
Hu 1998).

4. Cosmic chronometers (CCs). We also consider the
redshift-dependent Hubble parameter H(z) as determined
from differential ages of early-type galaxies; the data set
includes 33 data points in the redshift range z∼ 0.07–2.4
from various authors (see Simon et al. 2005; Stern et al.
2010; Moresco et al. 2012a, 2012b, 2016; Zhang et al.
2014; Moresco 2015; Ratsimbazafy et al. 2017; Borghi
et al. 2022; Jiao et al. 2023). We use the full covariance
matrix, taking into account modeling uncertainties,
mainly related to the choice of the initial mass function,
of stellar libraries and stellar population synthesis models
(see Moresco et al. 2022 for details). Notice that this data
sets is characterized by considerable systematic and
statistical uncertainties and, as such, will not crucially
impact the determination of cosmological parameters.

5. Age of globular clusters. We include the latest estimate
on the age of the Universe from globular cluster dating
(Valcin et al. 2021); however, since the latter still has
large statistical uncertainties (and may be affected by
several systematics), we also include a hard lower bound
of 11 Gyr to the age of the Universe from classic
globular cluster age constraints (e.g., Krauss &
Chaboyer 2003).

For parameter inference, we exploit a Bayesian Markov
Chain Monte Carlo (MCMC) framework, numerically imple-
mented via the Python package emcee (Foreman-Mackey
et al. 2013). We use a standard Gaussian likelihood

2i i
2( ) ( )q c qº -å , where θ= {h0;Ωm,0; ζ; α} is the vector

of the parameters, and the summation is over different
observables; for the latter, the corresponding i

2c =
z z z,j j j j

2 2  [ ( ) ( )] ( )q så - is obtained by comparing our
empirical model expectations z ,j( )q to the data zj( ) with
their uncertainties zj

2
 ( )s , summing over the different redshifts

zj of the data points (when necessary, we take into account the
full covariance matrix of the observables). We adopt flat priors
π(θ) on the parameters within the ranges h0ä [0, 1], Ωm,0 ä [0,
1], ζ ä [0, 3], and α ä [−3, 1]. We then sample the posterior
distribution  ( ) ( ) ( )q q p qµ by running emcee with 104 steps
and 100 walkers; each walker is initialized with a random
position uniformly sampled from the (flat) priors. To speed up
convergence, we adopt a mixture of differential evolution (see
Nelson et al. 2014) and snooker (see ter Braak & Vrugt 2008)
moves of the walkers in proportions of 0.8 and 0.2,
respectively. After checking the autocorrelation time, we
remove the first 20% of the flattened chain to ensure the
burn-in; the typical acceptance fractions of the various runs are
around 30%–40%.

4.1. Fitting Results

The outcomes of the fitting procedure are illustrated in the
corner plot of Figure 2. The colored contours are the 1σ–2σ–3σ
confidence intervals of the posterior for the analysis based on
the different data sets: SN+Cepheid (blue), CC+transverse
BAO⊥ (red), BAO+CMB θå (green), and joint analysis
(black); the white crosses are the best-fit positions of the joint
analysis, and in the diagonal panels, the marginalized
distributions of the various parameters for the joint analysis
are also shown. The marginalized constraints are summarized
in Table 1, where the reduced r

2c of the fits are also reported.
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The joint analysis robustly constrains all of the parameters of
the ηCDM model. As expected, the value of h0 is mainly set by
SN+Cepheid and BAO+CMB, with the former strongly
contributing to reducing the overall uncertainty. It must be
stressed that in the ηCDM model, at variance with standard
ΛCDM, no h0 tension exists, in that the determinations from
SN+Cepheid and BAO+CMB are consistent within 2σ, with
BAO+CMB preferring slightly larger values. There is instead a
tendency for CC+BAO⊥ to give slightly smaller value of h0
(though still marginally consistent within 3σ), but the larger
uncertainties on such a data set do not impact the joint analysis
much. As to Ωm,0, the joint analysis is dominated by the
constraint from BAO+CMB that tends to require a universe
with a small average curvature. On the one hand, this does not
permit too-low values of Ωm,0, which is indeed larger than ≈0.3
at 3σ; on the other hand, the noise term acting in Equation (8)

allows for values of Ωm,0≈ 0.4 appreciably smaller than 1 at
the price of enhancing the noise strength ζ or setting an
appropriate negative value of the parameter α regulating the
time dependence of the noise. In particular, the latter is mainly
determined by BAO+CMB data that can actually probe,
though in an integrated way, the conditions in the early
Universe; the noise strength ζ is also appreciably constrained
by SN cosmography, as shown by Equation (5).
Recall from Section 2 that the relative importance of noise

and dilution terms in the mass–energy evolution equation
(second of Equations (1)) is quantified by the ratio
t t h3 ;exp

2 2 1( )z~h
a- using the best-fit values of the noise

and cosmological parameters, we can now evaluate that it is
very large (noise is negligible) at high redshift, it crosses unity
(i.e., noise starts to dominate and cosmic acceleration kicks in)
at z≈ 0.6, and it amounts to ∼1/3 at the present time.

Figure 2. MCMC posterior distributions in the ηCDM model for the normalized Hubble constant h0, the matter density parameter Ωm,0, and the parameters regulating
the noise strength ζ and time dependence α. Colored contours/lines refer to different observables: blue for SN+Cepheid, orange for CC+transverse BAO⊥, green for
BAO+CMB first peak angular position, and black for joint analysis. The contours show 1σ–2σ–3σ confidence intervals, white crosses mark the maximum-likelihood
estimates of the joint analysis, and the marginalized distributions of the joint analysis are reported in the diagonal panels in arbitrary units (normalized to 1 at their
maximum value).
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In Figure 3, we illustrate how the ηCDM model performs on
the fitted observables. In each panel, the median (solid lines)
and 2σ credible intervals (shaded areas) from sampling the
posterior distribution of the joint analysis are shown; for
reference, we also report (dashed lines) the median for the
analysis of the individual observables. The individual fits are
very good in all cases. The joint analysis fit performs decently
on all the observables, being consistent with all of the data
points within 2σ; the most evident discrepancy is with the
determinations of the Hubble constant from CC+BAO⊥,
though the large error bars of these data points impact
marginally on the overall goodness of the fit. However, it
should be stressed that the majority of the CC data reported in
the figure and exploited for the fit have been derived based
on the Bruzual & Charlot (2003) stellar population
synthesis libraries; it is known (see Moresco et al. 2022) that
using the Maraston & Stromback (2011) models instead yields
values of H(z) that are systematically higher, especially toward
higher z.

In Figure 4, we illustrate the evolution of the best-fit ηCDM
Universe from the joint analysis; for reference, a flat ΛCDM
and an open CDM model with the same values of h0≈ 0.75
and Ωm,0≈ 0.4 are also reported for comparison. The top panel
shows the evolution of the Hubble parameter, with the inset
zooming in on the late-time Universe. The behavior of our
ηCDM model closely mirrors the standard ΛCDM while
progressively departing from an open model toward the
present; this is because cosmic acceleration sets in with the
right timing, and the average curvature stays small despite the
rather low matter density. The middle panel displays the
evolution of the energy density parameters for the various
components. At high redshift, all models are indistinguishable,
since matter (blue) and radiation (orange) dominate the early-
time evolution, and the noise is negligible. Moving toward
lower redshifts, the open model departs from the other two,
since curvature (green) begins to grow early on, while the
ηCDM and ΛCDM models are similar. Spatial flatness in
ΛCDM is ensured by the presence of the additional dark energy
component (red), while in ηCDM, the curvature is kept to low
values (though not null) by the noise-induced drift term in
Equation (8). In the middle panel, for reference, the green
shaded area on the ηCDM curvature parameter illustrates the
typical 2σ uncertainty on the energy densities. The inset
focuses on the evolution of the equation-of-state parameter w̄
for the dominant component at late times; an open universe is
dominated by curvature with constant w 1 3,¯ = - the ΛCDM

model is dominated by dark energy with w 1¯ = - (general-
izations are obviously possible), and the ηCDM model is
dominated by matter with an evolving w̄ given by
Equation (10), which is zero at early times, grows slightly
positive, attains a maximum, and then decreases to negative
values toward the present.
The bottom panel illustrates relevant cosmological time-

scales, namely, the age of the Universe (cyan) and the look-
back time (magenta) as a function of redshift; the ηCDM and
ΛCDM are almost indistinguishable, with an age approxi-
mately given by 1/H0, while the open model is clearly
younger, since it lacks the cosmic acceleration phase at late
times. The inset displays the deceleration parameter q and jerk
j. The former is positive for the open model, which is
decelerating, while it assumes similar negative values around
q≈−0.6 for the accelerating ηCDM and ΛCDM models. As
for the jerk, in ΛCDM, it is strictly unity; in open models, it is
less than unity due to the presence of curvature, while for the
ηCDM model, it has a nontrivial evolution at late times due to
the competition between curvature and noise-induced accel-
eration. First, it grows above 1, then it attains a maximum value
of a few, and then it decreases again toward current values
slightly larger than unity. This nontrivial behavior of the jerk
could be a crucial observable to test the ηCDM model in the
near future, when data from the Euclid satellite will become
available.
Finally, a caveat is in order. We have found that the best-fit

values of Ωm,0 in the ηCDM model amount to around 0.4, a
value appreciably larger than the usual ≈0.3 applied for
ΛCDM. This will imply that, at a fixed power spectrum
normalization (quantified by σ8, the mass variance filtered on a
scale of 8 h−1 Mpc), the number density of collapsed halos will
be somewhat larger, especially toward high z, an occurrence
that may be pleasing in view of recent claims based on early
JWST data (e.g., Harikane et al. 2023; Labbé et al. 2023; Xiao
et al. 2023). In turn, the larger matter content will produce an
enhanced lensing probability, leading to higher CMB lensing,
galaxy–CMB lensing cross-correlation, and cosmic shear
amplitude. Actually, all of these observables only probe a
combination of σ8 and Ωm,0 to some power (e.g., for cosmic
shear, the relevant parameter is S 0.3m8 8 ,0sº W ), so that
lowering σ8 somewhat could still meet the associated
observational constraints. Relatedly, in the present work, we
focus on the determination of a restricted set of basic
cosmological parameters (essentially Ωm,0 and h0) mainly via
Type Ia SNe, BAOs, and the position of the first peak in the

Table 1
Marginalized Posterior Estimates in Terms of Mean and 1σ Confidence Interval (and Best-fit Value) for the Fits with the ηCDM Model to Different Cosmological

Data Sets, as Listed in the First Column

Data Set h0 Ωm,0 ζ α r
2c

Joint 0.752 0.005
0.012

-
+ [0.75] 0.403 0.018

0.005
-
+ [0.40] 1.78 0.03

0.08
-
+ [1.77] 1.41 0.07

0.07- -
+ [−1.36] 0.44

SN+Cepheid 0.73 0.01
0.01

-
+ [0.73] 0.47 0.27

0.14
-
+ [0.40] 1.45 0.13

0.20
-
+ [1.44] 0.74 0.48

1.10- -
+ [−0.96] 0.29

CC+BAO⊥ 0.64 0.05
0.05

-
+ [0.64] 0.39 0.06

0.06
-
+ [0.39] 1.14 0.20

0.20
-
+ [1.20] 0.48 0.44

0.71- -
+ [−0.41] 0.46

BAO+CMB 0.76 0.22
0.11

-
+ [0.84] 0.42 0.06

0.06
-
+ [0.38] 1.69 1.69

0.50
-
+ [2.31] 1.13 0.50

0.50- -
+ [−1.38] 1.57

Note. Other columns report the values of the normalized Hubble constant h0, present matter energy density Ωm,0, noise strength ζ, noise redshift dependence α, and
reduced r

2c of the various fits. We set the radiation density h 2.47 10,0 0
2 5W » ´g

- to the value measured by the Planck mission (Planck Collaboration et al. 2020a)
and the baryon density h 0.0222b,0 0

2W » to the value suggested by Big Bang Nucleosynthesis constraints (Aver et al. 2015); a hard bound on the age of the Universe
at 11 Gyr was placed.
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CMB power spectrum. In the future, it will be necessary to
conduct a global analysis of an extended cosmological
parameter set (e.g., including primordial spectral index ns,

power spectrum normalization σ8, etc.) by exploiting the
overall CMB power spectra in intensity and polarization and
including the aforementioned lensing observables; this could
possibly slightly change the best-fit values of Ωm,0 and h0
derived here.

Figure 3. Fits to SN+Cepheid (top panel), CC+BAO⊥ (middle panel), and BAO
+CMB θå (bottom panel) in the ηCDM model. In each panel, solid lines and
shaded areas illustrate the median and 2σ credible interval from sampling the
posterior distribution of the joint analysis, while the dashed line is the median from
the posterior distribution of the analysis to the individual data set. Data and
references for each observable are described in Section 4.

Figure 4. Average evolution in the ηCDM model. Top panel: Hubble parameter
as a function of redshift; the inset zooms in on the late-time evolution. Middle
panel: energy density parameters of matter (blue), dark energy (red), radiation
(orange), and curvature (green) as a function of redshift. The inset refers to the
equation of state for the dominant energy density component at late times. Bottom
panel: age of the Universe (cyan) and look-back time (magenta) as a function of
redshift. The inset shows the late-time evolution of the deceleration parameter q
(green) and jerk parameter j (brown). In all panels, solid lines are from ηCDMwith
best-fit parameters (h, Ωm,0, ζ, α) from the joint analysis of Section 4, dashed lines
are for a flat ΛCDM with the same parameters (h, Ωm,0), and dotted lines are for an
open CDM model with the same parameters (h, Ωm,0). In the middle panel, the
green shaded area on the ηCDM curvature parameter illustrates the typical 2σ
uncertainty on the plotted quantities.
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5. A (Mildly) Stochastic Universe

We now turn to quantifying the random component of the
ηCDM model. According to the procedure outlined in
Appendix B (see Equation (B1)), we need to solve the system
of stochastic differential equations (of the Ito type),

⎧

⎨

⎪⎪
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⎪
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with initial values h 0;min in in
˜( ) ˜ ( ) ˜ ( )t t t= W = W =g we choose

τin corresponding to redshift zin≈ 100, but the results are
unaffected as far as zin 10 (i.e., a redshift so large that the
noise term of the original process is negligible). In the above
equations, recall that, by definition, h h h¯ ˜= + and

m m m, , ,
¯ ˜W = W + Wg g g hold, with the barred quantities constitut-

ing the solution for the average behavior found in the previous
sections.

We solve the above system with the Euler–Maruyama
method6 and determine the stochastic evolution of h̃ and m,W̃ g
by running 104 realizations of the stochastic process. Then we
combine such random components with the average ones from
Section 3 to reconstruct the overall cosmic history of the
Hubble h and energy density parameters Ωm,γ in each patch of
the Universe. For an observer measuring the current values of
these quantities as estimated in Section 4 by comparison with
cosmological observables, the overall evolution is plotted in
Figure 5 (in the overall variance, we also include the
uncertainties in the determination of h0 and Ωm,0 from
cosmological observables, but this is negligible with respect
to that induced by the noise). Specifically, there we illustrate
the mean value and the 1σ–2σ variance induced by the noise as
a function of redshift. In the right panels, we also display
histograms showing the probability distribution of these
quantities at some representative redshifts in the late Universe
when noise is appreciably active; these represent the spatial
distribution of the cosmological quantities among different
patches of the Universe.

The Hubble parameter h fluctuates such that its 1σ variance
is about 0.07 dex at z≈ 0.1, increases up to 0.13 dex around
z≈ 1, and then starts to decrease, amounting to 0.08 dex at
z 3 and becoming progressively negligible at higher red-
shifts. For Ωm, the evolution of the variance is faster, being
0.03 dex at z≈ 0.01, increasing up to 0.08 dex at z≈ 0.1−0.3,
and then quickly decreasing to 0.03 dex at z≈ 1 and negligible
values at higher z; fluctuations in Ωκ are similar to these. For
Ωγ, the typical values of the variance are 0.05 dex at z≈ 0.025,
a maximal 0.1 dex at z≈ 0.25, and 0.03 at z≈ 1. As already
explained, such fluctuations of the relevant cosmological
quantities should be interpreted as residual deviations from
isotropy/homogeneity on different patches of the Universe. It
is a specific prediction of the ηCDM model that one should
observe the anisotropies/inhomogeneities estimated here via a

tomographic analysis in redshift shells on different patches of
the Universe. Given the magnitude of the fluctuations, such
observations will be quite challenging, though possibly within
the reach of future wide galaxy surveys like Euclid or LSST.
As anticipated in Section 2, one can now estimate the typical

coarse-graining scale associated with the ηCDM model. Given
that the fluctuation of the overdensity field log log 1( )dW ~ +
induced by the noise amounts to 0.08 dex, we can exploit the
relation between the smoothing scale and variance in the
overdensity field from Figure 1 (bottom right panel) and its
accuracy of 10% (see Repp & Szapudi 2017, 2018) to
estimate an ηCDM coarse-graining scale of around 42±
5 h−1 Mpc. On the one hand, such an estimate must be taken
with care, since it has been derived based on N-body
simulations performed in ΛCDM; on the other hand, the
relation between the smoothing scale and variance in the
overdensity field should not vary much given that ΛCDM and
ηCDM have very similar (spatially averaged) evolution in
cosmic time. All in all, we can confidently (at 2σ) quote for
ηCDM a coarse-graining scale in the range of 30–50 h−1 Mpc.
Pleasingly, the coarse-graining scale so obtained corresponds to
the typical size of the structures present in the cosmic web, as
envisaged in building our stochastic framework in Section 2.
Furthermore, on patches of this size, the corresponding
fluctuations in matter density hlog log 2( )r ~ W are of order
0.1 dex, implying in Equation (1) minor deviations from
local energy conservation induced by the noise term. Finally,
the mean bulk motions on such scales are expected to be
∼300 km s−1, which is substantially smaller than the Hubble
flow of ∼3500 km s−1, thus ensuring that the Friedmann
equation can still constitute a safe approximation.

6. The Fate of the Universe

What will be the fate of the Universe in the ηCDM model?
To answer the question, we go back to Equation (4); in
particular, since radiation is negligible at late times (and even
more in the future), one can focus on the first two equations for
the evolution of h̄ and mW̄ . It is quite easy to realize, and
straightforward to confirm numerically, that the system of
equations admits an attractor solution in the infinite future; this
can be found by putting h 0m¯ ¯ = W = and solving for the
asymptotic values h∞ and Ω∞. A simple algebraic calculation
yields

⎧
⎨
⎩

⎡⎣ ⎤⎦
h

3 2 4 4 0,

1 .
13

2

2 4

2

1 1 2( )
( )

( )( )
a

z

W + - W - =

= - Wa a
¥ ¥

¥
-

¥
-

Therefore, Ωm tends to a constant, nonzero value that depends
solely on the parameter α describing the time dependence of
the noise; for the value α≈−3/2, as estimated from the
comparison with cosmological data sets in Section 4, one finds
Ω∞≈ 1/3. Moreover, from Equation (10), it follows that the
effective equation of state for matter asymptotes to w∞≈−1;
as a matter of fact, in the infinite future, matter will behave like
a cosmological constant. The limiting value of h also depends
on the noise strength ζ, and for the best-fit parameters estimated
in Section 4, one finds h∞≈ 0.7; clearly, from Equation (5), it
follows that q∞≈−1. This implies that the Universe will
continue to expand forever in an exponential way so that the
asymptotic behavior of the scale factor a t eh t( ) µ ¥ will apply.

6 The Euler–Maruyama method is a generalization of the Euler method for
stochastic differential equations. It consists of discretizing an Ito-type equation,
x f x g x t( ) ( ) ( ) h= + , as x t x t f t t t g x tj j j j j j1 1( ) ( ) ( )( ) [ ( )]= + - ++ +

t t wj j j1 -+ in terms of random weights w 0, 2j ( )Î extracted from a
normal distribution with zero mean and variance of 2 (e.g., Kloeden & Platen 1992;
Risken 1996).
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Furthermore, Equation (8) directly implies that W̄k will tend to
zero as a 0h3 22 2 1 2

W̄ µ k
z- Wa

¥
-

¥ in the infinite future.
A crucial remark is in order here. The current estimates of

the parameters h0≈ 0.75 and Ωm,0≈ 0.4 inferred from
comparison with cosmological data sets in Section 4 are very
close to the asymptotic values h∞ and Ω∞ that will be attained
in the infinite future. This occurrence relieves coincidence

problems even in a wide sense; besides waiting for conditions
in the Universe that are suitable for the development of life,
there is no coincidence at all in the fact that we currently
measure certain values of the cosmological parameters h0 and
Ωm,0. This is because the Universe will have values very close
to those for essentially an infinite amount of time. In other
words, as soon as the noise starts affecting the cosmic evolution

Figure 5. Cosmic evolution and probability distribution of the Hubble (top panels), matter density (middle panel), and radiation density (bottom panel) parameters in
the ηCDM model. The left panels illustrate the average evolution (colored solid line), the 1σ–2σ variance of the different quantities as originated by the noise (colored
shaded areas), and some examples of the random component depurated by the average (gray lines); the insets zoom in on the late-time evolution, with that for h(z) also
reporting data from CCs. The right panels illustrate the corresponding probability distributions (histograms and kernel density estimators as solid lines) at different
representative redshifts in the late Universe (see legend); the dotted vertical line shows the present value (see Section 4).
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and brings cosmic acceleration into the game, such parameters
will stay put or change very little.

This is at variance with the situation in ΛCDM, where in the
past, Ωm was close to 1, ΩΛ was close to zero, and h was very
large, while in the infinite future, Ωm will tend to zero, ΩΛ to 1,
and h to h,0 0WL . Given that the currently measured values are
in between these extremes (even more, Ωm and ΩΛ are of the
same order), the coincidence problem is very pressing for
ΛCDM; why do we live in this very precise moment of cosmic
history? As shown above, the issue is cleared in ηCDM.

7. Frequently Asked Questions

Below, we try to answer some questions that may arise in
connection with our nonstandard ηCDM cosmological model.

1. What about the Meaning of the Noise Term?
The meaning of the noise term is to provide a mean-

field description of the slightly different evolution for
patches of the Universe that are tens of megaparsecs in
size, which are enforced by local inhomogeneities, matter
flows due to anisotropic stresses, tidal forces, gravita-
tional torques, and other complex gravitational processes
that for all practical purposes are extremely difficult to
model ab initio or handle (semi)analytically.

The situation is somewhat analogous to the classic
description of Brownian motion. A microscopic particle
immersed in a fluid continuously undergoes collisions
with the fluid molecules; the resulting motion, despite
being deterministic, appears to be random at the
macroscopic level, especially to an external observer
who has no access to the exact positions and velocities of
the innumerable fluid molecules and the initial conditions
of the particle. In the way of a statistical macroscopic
description, the problem is effectively treated via a
stochastic differential equation driven by a fluctuating
white noise, which allows one to implicitly account for
the complex microscopic dynamics of the system.

Note that the system's state often influences the
intensity of the driving noise, like when the Brownian
fluctuations of a microscopic particle near a wall are
reduced by hydrodynamic interactions, so that the noise
becomes multiplicative in terms of a nonuniform
diffusion coefficient. This adds complexity to the
dynamics because the multiplicative nature of the noise
brings a noise-induced drift into the game, which can
appreciably affect the overall evolution of the system
(even its average component). Similar stochastic models
with multiplicative noise have been employed to describe
a wide range of physical phenomena, from Brownian
motion in inhomogeneous media or close approach to
physical barriers, to thermal fluctuations in electronic
circuits, to the evolution of stock prices, to computer
science, to the heterogeneous response of biological
systems and randomness in gene expression (e.g., Risken
1996; Mitzenmacher 2004; Reed & Jorgensen 2004; Paul
& Baschnagel 2013). In cosmology, a similar formalism,
though with different premises and aims, has also been
exploited in models of stochastic inflation (see Vilen-
kin 1983; Starobinski 1986; Nakao et al. 1988; Salopek
& Bond 1990; see also recent review by Cruces 2022 and
references therein) and in the field of structure formation
to predict the halo mass function and related statistics

(e.g., Bond et al. 1991; Mo & White 1996; Lapi &
Danese 2020; Lapi et al. 2022).

In the ηCDM model, the noise-induced drift is
associated with the multiplicative nature of the stochastic
term in the mass–energy evolution equation. As we have
shown, it can substantially affect the cosmic dynamics at
late times, driving an accelerated expansion, forcing
matter to behave as a negative pressure component, and
keeping the curvature to small values even in a low-
density, matter-dominated Universe.

2. What about the Modeling of the Noise Term?
In the modeling of complex systems (see references

above), the stochastic equations and the noise terms are
designed on purpose to effectively describe the macro-
scopic dynamics and then checked by comparison with
observations and/or numerical simulations.

In the context of the ηCDM model, the noise term
can be naively justified by the fact that at a given cosmic
time, the overdensity log 1 log( )d r+ µ smoothed on a
scale of tens of megaparsecs in size is expected to follow
a lognormal distribution; as shown in Figure 1, this is
proved by simulations to be a good approximation in
ΛCDM (see Repp & Szapudi 2018; see also Kayo et al.
2001), and there are theoretical arguments supporting this
assumption in general (see discussion by Coles &
Jones 1991; see also Neyrinck et al. 2009; Repp &
Szapudi 2018). In terms of basic stochastic processes, an
ensemble of regions whose density evolves stochastically
in time under Gaussian white noise η(t)—or, in other
words, for which d tlogt ( )r r r h~ µ —features as a
solution a lognormal distribution with time-dependent
variance, as recalled in Appendix A (see also Risken
1996; Paul & Baschnagel 2013). Although the equations
ruling the ηCDM model (see Equation (1)) describe a
more complex stochastic system, this analogy has
inspired us to model the noise term as Hr z r~ a , with
the parameters ζ and α describing our ignorance of the
present value and the redshift evolution of the variance in
the density distribution for a generic cosmology that can,
in principle, be different from ΛCDM.

The adopted modeling for the noise also avoids
adding too much complexity (or too many parameters)
and yet satisfies a few physical requirements. First, the
stochasticity is driven by Gaussian white noise. In the
absence of a detailed control on the gravitational
dynamics, this is the natural choice in the modeling of
stochastic systems; in future developments, such an
assumption can be relaxed by allowing for more complex
frameworks with correlated or fractional noise, etc.
Second, the linear dependence of the noise on the energy
density of cosmic components pleasingly does not break
the linear nature of the mass–energy evolution equation.
Third, the inverse dependence of the noise term on the
Hubble parameter guarantees that the noise term vanishes
in the early Universe, where (statistical) isotropy/
homogeneity is robustly verified via CMB observations.
The choice of a power-law dependence is somewhat
arbitrary and has been dictated by our intention of
keeping the treatment as simple as possible and limiting
the number of noise-related parameters. However, we
have checked that the implications for the cosmic
dynamics are quite robust against different

13

The Astrophysical Journal, 959:83 (21pp), 2023 December 20 Lapi et al.



parameterizations of this dependence (we tested, e.g., an
exponential function of h), though making the equations
less transparent. Thus, in this first investigation, we prefer
to avoid such complications.

All in all, to describe the phenomenon of cosmic
acceleration, the ηCDM model features the same number
of parameters as the standard ΛCDM cosmology. In
ΛCDM, an additional component is added with abun-
dance ΩΛ,0 and equation of state wΛ (whose evolution, in
turn, can be characterized by one or more parameters). In
ηCDM, no additional component is added, and two
parameters are needed to describe the strength and
redshift dependence of the noise; the ensuing evolution
of the cosmic dynamics at late times is completely
specified (also including an effective, time-dependent
equation of state for the matter component; see
Equation (10)).

3. What about Alternative Physical Interpretations of
Stochasticity on Large Scales?

In the literature, other origins for stochasticity on
cosmological scales, though rather different from our
viewpoint, have been envisaged; for the sake of
completeness, we briefly mention them below.

Stochasticity can be plausibly created by baryonic
physics ongoing in collapsed objects (e.g., galaxies or
clusters), such as turbulence, feedback processes from SN
explosions or AGN outbursts/jets, etc. The problem with
this scenario is that such effects are rather contained in
space, influencing patches from kiloparsec to at most
megaparsec scales. In fact, it has been argued that the
effective casual limit of a galaxy is set by scales attained
by matter flows around it over the age of the Universe,
rather than by its usual light cone (see Ellis &
Stoeger 2009). However, there are some proposed
mechanisms to transfer such randomness on much larger
cosmological scales via chaotic dynamics or spontaneous
stochasticity (a kind of “butterfly effect”), but definite
conclusions on their effectiveness are still far from being
drawn (see Neyrinck et al. 2022 and references therein).

Stochasticity is also naturally created at the quantum
level. In this vein, a spatially fluctuating field that
describes random matter/radiation creation or disappear-
ance could permeate the Universe (e.g., Sivakumar et al.
2001; Lima et al. 2008; Amin & Baumann 2016;
Mantinan et al. 2023). Albeit being highly exotic, the
problem with such a scenario is that it requires some
unspecified mechanism (a sort of quantum spontaneous
stochasticity; see Eyink & Drivas 2015) to allow such
tiny fluctuations to expand, reinforce, and become large
enough to ultimately influence astrophysical and cosmo-
logical scales; moreover, a specific coupling of such a
random field with the gravitational metric is possibly
required to affect the cosmic dynamics at late times.

4. Is the ηCDM Model Violating the Cosmological or
Copernican Principles?

The cosmological principle is violated, but with a
grain of salt. The ηCDM model does not suggest strong
violation of isotropy or homogeneity on horizon scales,
which would require us to completely change our view of
the Universe and the description of the gravitational
metric (e.g., reverting to a Lematre–Tolman–Bondi or
Swiss-cheese universe; e.g., see Marra et al. 2007).

Instead, it just advocates, as supported by numerical
simulations (see Section 2), that small deviations of
isotropy/homogeneity are present on scales of tens of
megaparsecs associated with the quasi-linear structures of
the cosmic web.

The Copernican principle is not violated, either in the
strict (humans on Earth are not privileged observers) or in
the enlarged (no one in the Universe is a privileged
observer) sense. In the ηCDM, violation of isotropy and
homogeneity are small and imply minor fluctuations of
the cosmological quantities on top of a still dominant yet
noise-informed average evolution. Every observer in the
Universe will measure similar values of the cosmological
parameters and should be able to statistically verify the
same small deviations from isotropy/inhomogeneities on
large scales.

5. What Is the Origin of the Cosmic Acceleration in ηCDM?
In ηCDM, the cosmic acceleration is caused by the

noise-induced drift appearing in Equation (4), which
represents the ensemble-averaged evolution of the
stochastic system described by Equation (3). It is
instructive to mathematically and physically understand
how the cosmic acceleration comes about from a heuristic
analysis of the original Friedmann, mass–energy evol-
ution, and acceleration equations (see Equations (1) and
(2)). This can be done by considering the following
argument based on simple scaling laws. Neglecting
curvature from the Friedmann equation H∼ ρ1/2 applies;
hence, the random term in the mass–energy evolution
equation scales as H 1 2r z r h z r h~ ~a a+ , while
that in the acceleration equation goes like a ̈ ~

H ;1 1 2( )z r h z r h~a a- + given that α∼−1.5, the
scaling exponent 1+ α/2> 0 in the equation for r is
positive, while (1+ α)/2< 0 in the equation for a ̈ is
negative.

This implies that a fluctuation induced by the noise η
will be reinforced in high-density regions (e.g., filaments,
knots) as for the variation of ρ, but at the same time, it
will be softened in terms of contribution to the
acceleration; contrariwise, in low-density regions (voids),
the fluctuation will be damped in terms of r, while it will
be amplified in terms of a.̈ All in all, this mechanism
would statistically cause the overall ensemble of patches
to drift toward an evolution dominated by low-density
regions and characterized by an enhanced expansion rate.

6. Is ηCDM a Backreaction Model?
Our stochastic cosmology is inspired and has some

features in common with Newtonian backreaction
models, so it is worth pointing out the similarities and
crucial differences between these frameworks.

Newtonian (also called kinematical) backreaction is a
class of models that originated in a seminal paper by
Buchert & Ehlers (1997), who explored the effects of
matter anisotropy/inhomogeneities on the expansion rate
of a given patch of the Universe. Specifically, the authors
performed spatial averaging on an arbitrary domain of
volume V to derive an equation for the evolution of the
local expansion factor a≡ V1/3; working in a Newtonian
framework and assuming mass conservation and a
pressureless matter component, they got the modified
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where 〈ρm〉 is the average density in the volume, and ω
and σ are the magnitude of the rotation and shear tensors.
The terms on the right-hand side account for the fact that
anisotropy/inhomogeneities in the matter distribution can
modify the average expansion rate of the volume, which
for particular conditions could also be driven to accelerate
(e.g., Kolb 2011; Buchert & Räsänen 2012). However,
backreaction effects depend on the size of the volume
under consideration, and it is generally assumed that
these rapidly decrease for scales larger than the largest
inhomogeneity (see Kaiser 2017); on the other hand, this
treatment neglects the possibly different evolutions of the
various patches because of the local inhomogeneities/
anisotropies, matter flows, and the overall consequence of
sampling effects on the cosmic dynamics.

The ηCDM framework shares with the above
backreaction models the general idea that structure
formation could possibly modify the expansion rate on
larger scales. However, it attacks the problem with a
different statistical approach that envisages the Universe
tessellated with patches of tens of megaparsecs in size
where residual anisotropy/inhomogeneity, as indicated
by numerical simulations, is still present. Such regions
will undergo slightly different evolutions due to local
inhomogeneities, matter flows, and many complex
gravitational processes. The detailed dynamics is extre-
mely difficult to follow (semi)analytically; hence, a
statistical description of the evolution of the different
patches is adopted in terms of a stochastic noise term in
Equation (2), whereas the global evolution of the
Universe is then derived by averaging the behavior over
the patch ensemble.

In this respect, our approach is reminiscent of the
Average Expansion Rate Approximation (AvERA) algo-
rithm (see Racz et al. 2017); this is a procedure to extract
the cosmological expansion rate from an N-body
simulation via a volume-averaging technique. The basic
idea of AvERA is to account for local inhomogeneities by
inverting the usual order of volume-averaging and
expansion rate computation in the simulation; first, small
patches of the Universe with a certain coarse-graining
scale are evolved via the standard Friedmann equation
(with no dark energy) according to the local density, and
then the global expansion rate is obtained by volume-
averaging over the local scale factor increments.
Remarkably, the net outcome is a global expansion
history mirroring that of the standard ΛCDM model.

In AvERA and the ηCDM model, the cosmic
acceleration originates from the same basic underlying
physics, i.e., that the nature of the large-scale structure
formation places far more volume in underdense than
overdense regions, causing the average expansion to
skew toward acceleration. Both in AvERA and in the
ηCDM model, the coarse-graining scale involved is
essentially a free parameter (a spatial smoothing scale
used in the simulation for AvERA and a quantity fully
specified by the noise parameters ζ and α for the ηCDM
model) that is set by comparison with data.

However, in AvERA, the coarse-graining scale is

found to be smaller than a few megaparsecs (which
corresponds to 1012Me), while in the ηCDM model, it
turns out to be several tens of megaparsecs (which are
associated with the quasi-linear structures of the cosmic
web). This difference in the effective coarse-graining
scale can be traced back to the diverse assumptions of the
two models. Specifically, the AvERA approach is rooted
in the separate Universe conjecture, meaning that
spherically symmetric patches of the Universe are
assumed to behave like isolated islands evolving with
their own energy density Ω∼ 1+ δ, while anisotropic
stresses, tidal forces, external environment, and cross talk
of different regions by flows of matter and radiation are
neglected (see also Buchert 2018). On the other hand, the
ηCDM model allows for such processes to occur,
admittedly at the price of reverting to a mean-field
statistical description in terms of a phenomenological yet
physically reasonable noise term.

To sum up, AvERA and the ηCDM constitute
somewhat complementary approaches, concurring to
suggest that structure formation on nonlinear and quasi-
linear spatial scales can have relevant effects on the
overall cosmic expansion.

8. Summary

We have proposed a new model of the Universe called
ηCDM. Its marking feature is a controlled stochastic evolution
of the cosmological quantities that is meant to render the effects
of small deviations from homogeneity/isotropy on large scales
of tens of megaparsecs in size at late cosmic times associated
with the emergence of the cosmic web. Specifically, we
prescribe that, still in the context of standard general relativity,
the evolution of the matter/radiation energy densities in
different patches of the Universe can be effectively described
by a stochastic version of the mass–energy evolution equation.
The latter includes, besides the usual dilution due to cosmic
expansion, an appropriate multiplicative and time-dependent
noise term that statistically accounts for local fluctuations due
to inhomogeneities and matter flows induced by anisotropic
stresses and many complex gravitational processes. The
different evolution of the patches as a function of cosmic time
is rendered via the diverse realizations of the noise term;
meanwhile, at any given cosmic time, sampling the ensemble
of patches will create a nontrivial spatial distribution of the
various cosmological quantities. Finally, the overall behavior
of the Universe will be obtained by averaging over the patch
ensemble. We have assumed a very simple and physically
reasonable parameterization of the noise term, gauging it
against a wealth of cosmological data sets in the local and high-
redshift Universe, including SN+Cepheid cosmography,
baryon acoustic oscillations, cosmic chronometers, CMB first
angular peak position, and age estimates from globular clusters.
We have found that, with respect to standard ΛCDM, the

cosmic dynamics in the ηCDM model is substantially altered
by the noise in three main respects. First, an accelerated
expansion is enforced at late cosmic times without the need for
any additional exotic component (e.g., dark energy); the
physical interpretation of this effect is that the overall ensemble
of patches tends to drift toward an evolution dominated by low-
density regions. Second, the global spatial curvature can stay
small even in a low-density Universe constituted solely by
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matter and radiation. Third, matter can acquire an effective
negative pressure at late times. We have also pointed out that
the ηCDM model is Hubble tension–free, meaning that the
estimates of the Hubble constant from early- and late-time
measurements do not show marked disagreement as in ΛCDM.
We have then provided specific predictions for the variance of
the cosmological quantities induced by the noise at late cosmic
times, which is found to be associated with the residual
deviation from homogeneity/isotropy on large scales of order
tens of megaparsecs. These could be tested with observations
covering wide areas and large redshift intervals via a
tomographic analysis; such observations could be quite
challenging but within the reach of future surveys like Euclid
or LSST.

Remarkably, the ηCDM model admits an attractor solution
in the infinite future with very peculiar features; the Universe
will expand exponentially, a eh tµ ¥ , with an e-folding time
given by a limiting value of the Hubble parameter h∞; the
matter energy density parameter will saturate to a constant non-
null value Ω∞ and will be characterized by an effective
equation of state w∞≈−1, i.e., it will behave like a
cosmological constant; and the curvature will go to zero.
Remarkably, the limiting values h∞ and Ω∞ are found to be
only slightly smaller than the present ones; this implies that the
Universe will spend a very long (actually, infinite) amount of
time hovering around very similar values of the cosmological
parameters, thus resolving any cosmic coincidence issue even
in an wide sense without strongly invoking anthropic
considerations.

In a future perspective, it would be welcome to explore
whether different types of noise (e.g., beyond the white-noise
approximation) can alter the cosmic dynamics; investigate
whether the small residual anisotropy/inhomogeneity on large
scales can appreciably perturb the gravitational metric and
estimate how the related corrections can impact the estimation
of the noise and cosmological parameters; study the evolution
of perturbations and gauge the model parameters via an
extended analysis of the overall CMB power spectrum, the
integrated Sachs & Wolfe effect, and CMB lensing; compute
the growth function for cosmic structure formation and the
effects on weak lensing probes and hopefully address the S8
tension; and provide specific predictions for the observability
of the implied anisotropies/inhomogeneities in future surveys
both via standard messengers and via gravitational waves.

We conclude with disclaiming that the ηCDM framework
presented here is just a very basic model, and that substantial
work will admittedly be required for elevating it to a self-
contained cosmology and fully testing it against next-genera-
tion data sets. However, we very much hope that the new
perspectives offered by the ηCDM framework will contribute
to triggering further attempts at explaining the observed
phenomenology in the late-time cosmic expansion and curing
the plagues in the standard cosmological model, not necessarily
invoking exotic forms of energies or substantially revisiting the
standard (and, up to now, observationally undefeated) Einstein
theory of gravity.
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Appendix A
Stochastic Differential Equations

In this Appendix, we provide a primer on stochastic
differential equations, pointing out the mathematical meaning
of the noise term, the implications of adopting different
stochastic prescriptions (e.g., Ito versus Stratonovich), and the
related origin of noise-induced drift terms; for more details and
mathematical proofs, the reader may have a look at the classic
textbooks by Risken (1996) and Paul & Baschnagel (2013).
Consider an n-dimensional variable x= {xi; i= 1Kn}

satisfying the stochastic differential equation

x xx f g t , A1i i ij j( ) ( ) ( ) ( ) h= +

where {fi; i= 1Kn} is called the drift vector, {gij; i= 1Kn,
j= 1Km} is called the diffusion matrix, and {ηj; j= 1Km} is a
vector of independent noise with properties 〈ηi(τ)〉= 0 and

2 ;i j ij( ) ( ) ( )h t h t d d t tá ¢ ñ = - ¢ bold characters indicate vec-
tors, and summation over repeated indices is implicitly
understood.
The mathematical meaning of the noise term ηi(t) in the

stochastic differential equation can be clarified as follows.
For the sake of simplicity, the reader may focus on the one-
dimensional case, i.e., the scalar equation x f x( ) = +
g x t( ) ( )h , and consider that x refers to some physical property;
e.g., with reference to the main text, it could be the density ρ
associated with a given patch of the Universe. At every time t,
the noise η(t) should be considered as a value randomly
extracted from a Gaussian distribution with zero mean and
variance 2 (by the conventional correlation property of the
noise; but actually, this can be put to any value by
appropriately redefining g). For any realization of the noise,
the variable x(t) will execute a random walk, as schematically
depicted in Figure A1; e.g., in the main text, this can represent
the specific evolution of the density in a given patch of the
Universe. A different realization of the noise will yield a
different walk, and so on and so forth. At any given time t= T,
sampling the value of the variable x from the ensemble of
walkers would yield a nontrivial probability distribution

x T,( ) of the variable x, which is the solution to the stochastic
differential equation; e.g., in the main text, this distribution
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represents the spatial distribution of the density in different
patches of the Universe.

Generally, solving a stochastic differential equation and
obtaining the distribution x T,( ) requires a numerical
approach (e.g., see textbook by Kloeden & Platen 1992).
Nevertheless, it is worth mentioning a few very basic examples
with constant drift and diffusion coefficients and initial
condition x(0)= xin, which admit a closed-form analytic
solution. One is the Brownian motion, which describes a basic
fluctuating process defined by the equation x t ;( ) m s h= +
the solution is a normal distribution x T x, , x ( ) ( ¯ )s= with
mean x x Tin¯ m= + and variance Tx

2 2s s= . Another is the
Ohrnstein–Uhlenbeck model, which is defined by
x x t( ) ( ) k m s h= - + and describes a process naturally
falling back to an equilibrium level; the solution is a normal
distribution x T x, , x ( ) ( ¯ )s= with mean x x e t

in¯ ( )m m= - - k-

and variance e2 1x
t2 2 2( )( )s s k= - k- . Yet another is the

geometric Brownian motion, which is defined by
x x t x t t( ) ( ) ( ) m s h= + and often exploited in finance to
model stock prices; the solution is a lognormal distribution

x T x, Log , x
2 ( ) ( ¯ )s= with average x x e t

in¯ = m and var-
iance x e e 1x

t t2
in
2 2 2( )s = -m s .

In the general case of Equation (A1), the stochastic equations
are vectorial, and the drift/diffusion coefficients are a nontrivial
function of x; hence, things get very complicated. When
naively trying to solve the equations by integrating both sides
in time, a well-known problem arises: the delta-correlated
nature of the noise requires one to give a meaning to the ill-
defined integral

x xdt g t t g t tlim .

A2

ij j
n ℓ

n

ij ℓ j ℓ j ℓ
1

1[ ( )] ( ) [ ( )] [ ( ) ( )]

( )

ò åh t h h= -
¥ =

+

Note that here, since the variables are stochastic, the limit is
meant in the mean-square sense; i.e., X Xlimn n =¥ stands
for X Xlim 0n n

2( )á - ñ =¥ , where 〈·〉 denotes an average
over the ensemble. For a smooth function, the limit converges
to a unique value independent of τℓ, but this is not the case for
the white noise η, since it fluctuates an infinite number of times
with infinite variance in any small time interval (it is nowhere
differentiable). Thus, the result depends on the choice of τℓ in

the expression gij[x(τℓ)]= gij[(1− ω)x(tℓ)+ ω x(tℓ+1)], with
ωä [0, 1]. Different choices of ω imply different rules for
stochastic calculus; for example, for an arbitrary function
F[x(t)] of the stochastic variables, one can demonstrate that

x x
x x x

d F t F t x
g g F t1 2 A3

t i i

ik jk i j

[ ( )] [ ( )]
( ) ( ) ( ) [ ( )] ( )


w

= ¶
+ - ¶ ¶

holds. Two common choices are the midpoint Stratonovich
prescription (ω= 1/2) and the Ito prepoint prescription
(ω= 0); the former is mostly used by physicists and the latter
by mathematicians and numerical analysts. Note that the choice
of the prescription is made on the basis of convenience, since,
plainly, the overall dynamics of the system must be unique; in
fact, it is possible to represent the same stochastic process in
two arbitrary different prescriptions ω1→ ω2 just by appro-
priately rescaling the drift vector (e.g., Moreno et al. 2019),

x x x xf f g g2 . A4i i kj k ij1 2( ) ( ) ( ) ( ) ( ) ( )w w + - ¶

In the main text, we adopt the Stratonovich prescription
(ω= 1/2), since it has the advantage that, as shown by
Equation (A3), the standard rules of calculus continue to hold,
and this makes it easier to analytically manipulate the
stochastic equations. However, this comes at a price; the
average evolution x t¯ ( ) of the stochastic process in
Equation (A1) is ruled by the equation

x xx f g g x A5i i kj k ij¯ ( ¯ ) ( ¯ ) ( ¯) ( ) = + ¶

and hence depends not only on the true drift fi (as is true for the
Ito prescription) but also on an additional noise-induced term
(see Equation (A4)) that needs to be calculated. Demonstrating
the above equation requires one to evaluate the Kramers–
Moyal coefficient and derive the Fokker–Planck equation
associated with the stochastic differential equations; a primer
palatable for astrophysicists and cosmologists can be found in
Appendix A of Lapi & Danese (2020) and the classic textbook
by Risken (1996). However, naively, the nature of the noise-
induced drift can be understood by looking at the basic scalar
equation x f x g x t( ) ( ) ( ) h= + . Taking the average on both
sides yields x f x g x t( ) ( ) ( ) h= á ñ + á ñ. Clearly, f x f x( ) ( ¯)á ñ =
holds, since f (x) is a purely deterministic function of x. The

Figure A1. Schematics that illustrate the mathematical meaning of a stochastic differential equation x f x g x t( ) ( ) ( ) h= + . Each realization of the noise η(t) yields a
different random walk (e.g., with reference to the main text, the walkers in red, blue, and green correspond to the evolution of the density in three regions at different
spatial locations). At a given time t = T, sampling the value of the variable x from the ensemble of walkers (e.g., from the different patches in the Universe) would
yield a nontrivial probability distribution P(x, T) of the variable x, which is the solution to the stochastic differential equation. The average x̄ of this distribution will
evolve in time as prescribed by Equation (A5).
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other term is less trivial, although at first sight, one may think it
is null, since 〈η(t)〉= 0 holds by the property of the white noise.
However, this is not true, since as η(t) varies, x(t) and hence g(x
(t)) also change, making 〈g(x)η(t)〉 finite; it is this instance that
eventually leads to the noise-induced drift.

To make contact with the main text, note that the
fundamental Equation (3) constitutes a particular case of
Equation (A1) for the three cosmological variables x≡ (h, Ωm,
Ωγ) when just an independent noise η is present. Specifically,
one can define the following components: for the variable
vector, x0= h, x1=Ωm, and x2=Ωγ; for the drift vector,
f0= h2(−1−Ωm/2−Ωγ), f1=Ωmh(−1+Ωm+ 2Ωγ), and
f2=Ωγh(−2+Ωm+ 2Ωγ); for the noise vector, η0= η and
η1= η2= 0; and for the diffusion matrix, g00= ζ/2
(Ωm+Ωγ)h

α+1, g10= ζ(1−Ωm−Ωγ)Ωm hα, and g20= ζ
(1−Ωm−Ωγ)Ωγ h

α, with all other components null. Then it
is simple algebra to verify that Equation (3) can be put in the
vectorial form expressed by Equation (A1).

For the system of Equation (3), computing the noise-induced
drift and so obtaining the average evolution described by
Equation (4) is straightforward but quite tedious. For the
reader's convenience, we report some details of the computa-
tion for the component x0= h; considering only the non-null
elements in the summation involved in Equation (A5), one has
x f x g x g x g xx0 0 00 00 100¯ ( ¯) ( ¯) ( ¯) ( ¯) = + ¶ + g x g x g xx x00 20 001 2( ¯) ( ¯) ( ¯)¶ + ¶ , or, in
more explicit form, h h 1 2 2m m

2 2¯ ¯ ( ¯ ¯ ) ( ) ¯ z= - - W - W + Wg

h1 2m
2 1 2( ¯ ¯ ) ¯ ( ) ¯z- W - W + Wg
a

g
+ h1 m

2 1( ¯ ¯ ) ¯- W - Wg
a+

h4 1 m
2 2 2 1( )( )( ¯ ¯ ) ¯z a+ + W + Wg

a+ . Simplifying the last three

addenda, one finally obtains h h 1 2m
2¯ ¯ ( ¯ ¯ ) = - - W - W +g

h2 1 1 2m m
2 2 1( )( ¯ ¯ )[ ( )( ¯ ¯ ) ] ¯z aW + W - - W + Wg g

a+ , which is
the first of Equations (4); this explicitly includes on the right-
hand side both the true and noise-induced drifts. The average
evolution equations for Ωm and Ωγ can be derived analogously.

Appendix B
Diffusion Bridges

In this Appendix, we provide some basic information on
diffusion bridges, i.e., stochastic processes pinned at both ends
in some values. For more details, the reader may consult the
papers by Pedersen (1995), Durham & Gallant (2002), Delyon
& Hu (2006), Lindstrom (2012), Bladt & Sørensen (2014),
Whitaker et al. (2017), and Heng et al. (2022).

Suppose one has an N-dimensional continuous stochastic
process x(t)= {xi; i= 1KN} for t ä [0, T] satisfying the system

x xx t f t g t t, ,i i ij j( ) ( ) ( ) ( ) h= + in the Stratonovich sense, with
a boundary value x(T)= xT and the property that the random
term becomes negligible at early times. Here {fi; i= 1KN} is a
drift vector, {gij; i, j= 1KN} is a diffusion matrix, and
{ηj; j= 1KN} is a vector of independent noises; repeated
summation convention is adopted.

To (approximately) solve the stochastic system, the idea is to
partition the process x x x¯ ˜= + in an average x̄ and a residual
random x̃ component, satisfying the system of coupled
equations:

⎧
⎨
⎩

x x x x x

x x

x t f g g T

x t g t

,

, 0 0.
B1

i i kj k ij T

i
x t

T t ij j
i

¯ ( ) ( ¯ ) ( ¯ ) ( ¯ ) ¯ ( )

˜ ( ) ( ) ( ) ˜ ( )
( )˜ ( )



 h

= + ¶ =

= - + =
-

The first equation describes the average evolution of the system
and is analogous to Equation (A5); the first term on the right-

hand side is the true drift, while the second term is the noise-
induced one. Being an ordinary differential equation, this can
be evolved backward to the initial time via standard methods to
provide an initial condition x(0)= x0 for the full system.
The second equation is less trivial; it describes a residual

random process (in the Ito sense), executing a conditioned
diffusion that starts in x 0 0˜( ) = by the boundary condition, and
is also forced to end in x T 0˜( ) = by the spurious drift term

x T ti˜ ( )- - in such a way that the overall stochastic process
x x x¯ ˜= + behaves as expected, with x(0)= x0 and x(T)= xT
at the extremes. The origin of the spurious drift is a bit
technical. In fact, it can be rigorously demonstrated (e.g.,
Rogers & Williams 2000) that a diffusion process

xx t g t t,i ij j( ) ( ) ( ) h= with null drift constrained to start and
end in zero (in the Ito convention) is equivalent to an
unconditioned process with a spurious drift that forces the
walker to hit the final condition of the form

x x x xx t g t g t T t g t t, , 0, , ,i ik kj j ij j( ) ( ) ( ) ( ∣ ) ( ) ( ) h=  + , where
 is the transition density of the unconditioned process. Since
 is untractable in most cases, a linear Gaussian approximation
to it is often adopted (the so-called modified diffusion bridge;
see Durham & Gallant 2002; Delyon & Hu 2006) that leads to
the spurious drift reported in the second of Equations (B1).
Involving an ordinary and a stochastic differential equation, the
above system can be solved forward in time via standard
numerical techniques, with the only caveat that the argument of
the diffusion matrix on the right-hand side of the second
equation is the full process x x x¯ ˜= + ; hence, the second
equation requires the solution of the first as an input.
In the main text, all of the above has been applied to the

original stochastic system in Equation (3) to obtain
Equation (4) for the average evolution exploited in Section 3
(see derivation in Appendix A) and Equation (12) for the
random part exploited in Section 5. For example, to derive the
latter, consider the zeroth component of the second of
Equations (B1) that reads xx t x t T t g t0 0 00˜ ( ) ˜ ( ) ( ) ( ) ( ) h= - - + .
Recalling from Appendix A that x≡ (h, Ωm, Ωγ) and that
g00= (ζ/2)(Ωm+Ωγ)h

α+1 in terms of the cosmological
variables, we obtain h t h T t h t2 m

1˜ ( ) ˜ ( ) ( )( ) ( ) z h= - - + W + Wg
a+ ,

which is the first of Equations (12). The equations for the other
components corresponding to Ωm and Ωγ are derived
analogously.

Appendix C
Validation of the Fitting Pipeline

In this Appendix, we validate our fitting pipeline described
in Section 4 by applying it to the (curvature-free) ΛCDM
model. To this purpose, we solve the evolution equations

⎧

⎨

⎪⎪

⎩
⎪
⎪

h h

h w

h w

h w w

1

1 2 1 3

2 2 1 3

1 2 1 3 3

C1

w

m m m

m

m

2
2

1 3

2
m( )

[ ( )]
[ ( )]
[ ( ) ]

( )







= - - - W - W

W = W - + W + W + W +

W = W - + W + W + W +

W = W - + W + W + W + -

g

g

g g g

g

W
L

+

L L

L L

L L L L L

L

with boundary conditions (h0, Ωm,0, Ωγ,0, ΩΛ,0). For the sake of
simplicity, as in the main text, we set h 2.47 10,0 0

2 5W » ´g
-

and h 0.0222;b,0 0
2W » we also consider only the case of

constant equation of state wΛ=−1 for dark energy. We then fit
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such a model to the cosmological data sets described in
Section 4 and perform a Bayesian inference on the normalized
Hubble constant h0 and the present energy density parameters
of matter Ωm,0 and dark energy ΩΛ,0.

The marginalized constraints are shown in Figure C1 and
reported in Table C1. The fits to the individual data sets
produce the expected results, with SN+Cepheid mainly setting
h0 and constraining Ωm,0 and ΩΛ,0with some degeneracy; the

Figure C1. MCMC posterior distributions in the (curvature-free) ΛCDM model for the normalized Hubble constant h0, matter density parameter Ωm,0, and dark
energy density parameter ΩΛ,0. Colored contours/lines refer to different observables: blue for SN+Cepheid, orange for CC+transverse BAOs, green for isotropic
BAO+CMB first peak angular position, and black for joint. The contours show 1σ–2σ–3σ confidence intervals, crosses mark the maximum-likelihood estimates of the
joint analysis, and the marginalized distributions of the joint analysis are reported on the diagonal panels in arbitrary units (normalized to 1 at their maximum value).

Table C1
Marginalized Posterior Estimates in Terms of Mean and 1σ Confidence Interval (and Best-fit Value) for the Fits with the (Curvature-free) ΛCDM Model to Different

Cosmological Data Sets, as Listed in the First Column

Data Set h0 Ωm,0 ΩΛ,0 r
2c

Joint 0.674 0.004
0.004

-
+ [0.67] 0.35 0.01

0.01
-
+ [0.35] 0.65 0.01

0.01
-
+ [0.65] 0.74

SNe+Cepheid 0.734 0.015
0.005

-
+ [0.73] 0.30 0.10

0.08
-
+ [0.29] 0.56 0.11

0.14
-
+ [0.57] 0.29

CC+BAO⊥ 0.69 0.06
0.04

-
+ [0.69] 0.31 0.05

0.01
-
+ [0.29] 0.75 0.06

0.10
-
+ [0.78] 0.55

BAO+CMB 0.66 0.01
0.01

-
+ [0.66] 0.33 0.02

0.03
-
+ [0.32] 0.68 0.04

0.03
-
+ [0.68] 0.29

Note. Other columns report the values of the normalized Hubble constant h0, present matter energy density Ωm,0, dark energy density ΩΛ,0, and reduced r
2c of the

various fits.
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degeneracy is removed by BAO+CMB data, which basically
requires a flat Universe. From the one-dimensional posterior,
the h0 tension between late- and early-time measurements is
also quite evident, with BAO+CMB data preferring lower
values with respect to SN+Cepheid. The H0 tension is at the
origin of the weird behavior of the joint analysis posterior,
which tends to be maximized in a region where the Universe is
flat but close to the h0 determination from CMB+BAO;
clearly, the joint analysis is barely significant when the
individual fits are discordant on one crucial parameter like in
the ΛCDM model.
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