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Objective. Automated machine learning (autoML) platforms allow health care professionals to play an active role in
the development of machine learning (ML) algorithms according to scientific or clinical needs. The aim of this study was
to develop and evaluate such a model for automated detection and grading of distal hand osteoarthritis (OA).

Methods. A total of 13,690 hand radiographs from 2,863 patients within the Swiss Cohort of Quality Management
(SCQM) and an external control data set of 346 non-SCQM patients were collected and scored for distal interphalangeal
OA (DIP-OA) using the modified Kellgren/Lawrence (K/L) score. Giotto (Learn to Forecast [L2F]) was used as an autoML
platform for training two convolutional neural networks for DIP joint extraction and subsequent classification according
to the K/L scores. A total of 48,892 DIP joints were extracted and then used to train the classification model. Heatmaps
were generated independently of the platform. User experience of a web application as a provisional user interface was
investigated by rheumatologists and radiologists.

Results. The sensitivity and specificity of this model for detecting DIP-OA were 79% and 86%, respectively. The
accuracy for grading the correct K/L score was 75%, with a κ score of 0.76. The accuracy per DIP-OA class differed,
with 86% for no OA (defined as K/L scores 0 and 1), 71% for a K/L score of 2, 46% for a K/L score of 3, and 67% for
a K/L score of 4. Similar values were obtained in an independent external test set. Qualitative and quantitative user
experience testing of the web application revealed a moderate to high demand for automated DIP-OA scoring among
rheumatologists. Conversely, radiologists expressed a low demand, except for the use of heatmaps.

Conclusion. AutoML platforms are an opportunity to develop clinical end-to-end ML algorithms. Here, automated
radiographic DIP-OA detection is both feasible and usable, whereas grading among individual K/L scores (eg, for clinical
trials) remains challenging.

INTRODUCTION

Digital transformation, enabled by advances in computer

performance, data storage, and interoperable user interfaces,

has made significant inroads into health care. Deep learning and

convolutional neural networks (CNNs) allow the exploitation of

medical data on a higher level and provide new forms of clinical

decision support.1 Some of the first artificial intelligence

(AI) applications to receive US Food and Drug Administration

approval in rheumatology were algorithms for image recognition

of radiographs, such as in knee osteoarthritis (OA), which are on

the market and available for routine clinical practice.2 Applications

for the automated radiographic detection of inflammatory lesions,

such as in rheumatoid arthritis (RA), are also in development.3

No models currently address hand OA at the joint level, such

as distal interphalangeal (DIP) joints,4 a common condition

without an effective treatment.5 Üreten et al developed a classifi-

cation model that can identify the presence of OA or RA on a

whole-hand radiograph.6 However this model does not identify

the presence of OA at individual joint level and cannot tell which

joint is affected.
The radiographic evolution of DIP-OA is complex because of

its multiphasic and potentially erosive course.7 Instant diagnostic

support for interpreting radiographic images of hand OA could
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be valuable for clinicians with less experience or without direct

access to radiologists. In addition to providing diagnostic support

for routine hand radiographs, automated radiographic grading in

clinical trials has the potential to save time and enhance research

in this field.
Automated machine learning (autoML) or so called

no-coding platforms, which allow users to apply machine learning
(ML) algorithms, including neural networks, without coding
experience, are becoming increasingly popular.8 These platforms
are of particular interest to health care professionals, who have
access to clinical data or images but lack coding skills or the
ability to collaborate with data scientists, as they allow these
professionals to develop their own algorithms.9 For image classifi-
cation, autoML platforms enable an end-to-end process, from
data upload and augmentation to the training of a CNN and
integration into a user interface (eg, a web application).

A few studies have compared the performance of algorithms
generated on autoML platforms to the performance of those
created by data scientists and found similar results.10,11 Faes
et al explored the feasibility of creating automated deep learning
models for medical image classification by health care profes-
sionals without coding experience using Google AutoML.8

Although the models produced by Faes et al showed good
performance on internal test sets, the performance on external
test sets has room for improvement.8

The potential value of user-centric algorithms is broad,
including support for health care and administrative workforces
in smart hospitals and quality control. It is important to test the
user experience of such algorithms via integrated user interfaces
or web applications with future target groups. In this study, we
demonstrate the full process for the detection and grading of
hand OA in a large Swiss arthritis cohort.

MATERIALS AND METHODS

Training, test, and external validation data sets. A
total of 13,690 hand radiographs (6,706 of the right hand and
6,984 of the left hand) from 2,863 patients with concomitant RA
were extracted from the Swiss Clinical Quality Management in
Rheumatic Diseases (SCQM) registry. Patient characteristics are
shown in Table 1. As an external test set, 346 DIP joints were
extracted, independent of the indication, from 86 hand radio-
graphs of patients aged >55 years but without a history of RA
from the radiology department of Centre Hospitalier Universitaire

Vaudois (Lausanne University Hospital). Ethical approval from
the local committee was obtained for this study.

Radiographic assessment. For the purpose of another
study,12 DIP-OA from the training set was scored by a trained
radiology resident according to the modified Kellgren/Lawrence
(K/L) score on DIP joints13 2 to 5. On each joint, the modified
K/L score defined severity as no OA (grade 0), questionable
osteophyte(s) and/or joint space narrowing (grade 1), definite
small osteophyte(s) and/or mild joint space narrowing (grade 2),
moderate osteophyte(s) and/or moderate joint space narrowing
(grade 3), or severe osteophytes and/or severe joint space
narrowing (grade 4). Erosions and subchondral sclerosis may be
present in each class. In the training set, the number of images
with a K/L score of 0 was 17,404, the number of images with a
K/L score of 1 was 5,187, the number of images with a K/L score
of 2 was 9,861, the number of images with a K/L score of 3 was
1,984, and the number of images with a K/L score of 4 was 743.

DIP-OA from the external test set was scored by two other
radiologists according to the modified K/L score.13 The number
of images with a K/L score of 0 was 88, the number of images
with a K/L score of 1 was 31, the number of images with a K/L
score of 2 was 142, the number of images with a K/L score of
3 was 58, and the number of images with a K/L score of 4 was
27 (Table 1). To calculate interobserver variability, 56 images from
the external test set were scored by both radiologists, allowing us
to calculate a κ score of 0.73.

No-coding platform and user experience. The
algorithm was developed by a clinician without experience in
coding and ML on Giotto (www.giotto.ai, Learn to Forecast
[L2F]), an autoML platform. The clinician was trained for three
hours on the use of the platform and basic ML knowledge by a
developer of the platform. A written tutorial was available and
consulted for further questions. Episodic support by a developer
was also needed.

The algorithm was transferred into a user interface (web
application). The user experience was analyzed in a questionnaire
that was sent to five radiologists and five rheumatologists
(Table S1). They were given the choice to either upload their
own radiographs of DIP joints to the web application or upload
10 provided precropped images of DIP joints. The corresponding
heatmaps were also separately provided.

Table 1. Data set characteristics*

Mean age (±SD)
Male

proportion, %
Female

proportion, % K/L 0, n K/L 1, n K/L 2, n K/L 3, n K/L 4, n

Training set 60.4 (±10.6) 24 76 17,442 5,120 9,874 1,994 749
Test set - - - 88 31 142 58 27

*K/L, Kellgren/Lawrence score.
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Segmentation model and joint extraction. For this
study, two models were trained: a segmentation model used for
joint recognition and extraction and a classification model for OA
severity scoring. Because the classification task is performed with
the whole image provided to the classification model, the image
needs to depict only one joint. Joint recognition was done by a
segmentation model capable of recognizing each DIP joint in the
hand. This model was trained on Giotto by the clinician. DIP joints,
proximal interphalangeal joints, metacarpophalangeal joints, and
carpometacarpal joints were labeled by the clinician on 519 single
hand radiographs. Data augmentation was performed, and the
model was trained for 37 epochs. The neural network architecture
was a ResNet34. The platform automatically and randomly split
the data set into a training set (419 images) and a validation set
(100 images). The segmentation algorithm was then used to
obtain a mask depicting each joint for each hand radiograph.
Python code was written by a developer to allow the DIP joints
to be extracted from the masks. Each extracted joint was evalu-
ated by the clinician and was considered correctly extracted if
the full joint was represented on the picture without any adjacent
joint. All incorrectly extracted joints were discarded. A total of
48,892 (94%) DIP joints were correctly extracted.

Classification model and DIP-OA scoring. The 48,892
scored and extracted DIP joints were used for the training of a
classification model to predict the individual K/L score. Among
the 48,892 DIP joint images, 10% (4,888 images) were taken out
of the data set and used as an internal test set. The 43,973
remaining images were uploaded on the platform. The images in
the internal test set came from different patients to those in the
training set. Among the images uploaded on the platform, 20%
(8,794) were automatically and randomly selected by Giotto as a
validation set and were not used to train the algorithm. The
classification model was trained on Giotto by the clinician. Data
augmentation was performed with the following transformations
conducted: rotation, contrast, vertical flip, horizontal flip,
brightness, and symmetric warp. The model used was ResNet34,
and the number of epochs was 53. When testing the model, the
K/L scores 0 and 1 were grouped together and called “no OA.”

Heatmap. We performed a heatmap analysis outside the
Giotto platform to improve interpretability of the model. Heatmaps
allow for the identification of the regions of the image deemed
most important by the algorithm for prediction. For a fixed output
class, heatmaps identify the regions of the image where the
largest gradients of the loss function over the activation function
of a chosen inner convolutional layer are located. Thus, the algo-
rithm14 can be intuitively explained by considering that a change
in the network classification decision is mostly due to large gradi-
ents: this is a consequence of the stochastic gradient descent15

algorithm used to train the network. Hence, regions of large gradi-
ents would highlight the areas of the image that mostly influence

the final classification. Thus, by overlaying the heatmap on the
original image, it becomes easier to interpret the model’s behavior
and identify the specific regions that drive the network’s
predictions.

Statistics. The model performances were tested in terms of
accuracy, sensitivity, and specificity. For the segmentation model,
the Dice score and the Mean Intersection Over Union (MIOU)
score were automatically calculated by the platform. The
quadratic κ coefficient was calculated to evaluate the interob-
server variability between the model and the human who scored
the data set.

RESULTS

Overall process and handling of the platform. The
end-to-end process of the autoML platform from data upload to
user interface deployment and evaluation is shown in Figure 1.
Because the classification model could only score one joint at a
time, two subsequent models were created. First, single hand
radiographs were uploaded and their joints were labeled. A
segmentation model for DIP joint recognition was trained and
used to produce a mask for each radiograph of the data set iden-
tifying each joint. This mask was used to extract DIP joints from
the data set of single hand radiographs and to upload them on
the platform for the training of a classification model. Given the
large data set, data upload was performed by the administrator
and not by the clinician. They were used as a training set for the
generation of a classification model for DIP-OA scoring according
to the K/L score. For each model, the platform performed different
steps of data augmentation. The platform provided confusion
matrixes and accuracy. Heatmaps were produced separately by
the administrator (see Heatmaps section). Integration of the
model in a web application with the classification model, but not
the segmentation model, was done on the platform by the
clinician.

Algorithm performances. For the joint segmentation
model, the MIOU was 0.79 and the Dice score was 0.88. The loss
function across epochs is shown in Figure S1. From the 51,980
scored DIP joints, 48,862 were correctly extracted. The extraction
success rate was 94% (see Materials and methods for the
metric’s definition).

On the internal test set of 4,888 images, the accuracy was
75.5% and the κ score was 0.76 (Table 2). The confusion matrix
is shown in Figure 2, and the loss function across epochs is
shown in Figure S1. Sensitivity and specificity of the detection of
OA were 79% and 86%, respectively.

Tested with an external test set of 346 images, the model
showed an accuracy of 66%, and the quadratic κ score was
0.75. The accuracy for each K/L class was as follows: no OA,
79%; K/L class 2, 65%; K/L class 3, 40%; and K/L class 4, 70%
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(Table 2). To take into account the unbalanced testing set,
in which a majority was K/L class 0, we calculated the mean
accuracy, which was 63%. This was done by summing the

accuracy for each class and dividing it by the number of classes.
Sensitivity and specificity for the detection of OA, regardless of
its severity, were 79% and 80%, respectively. The confusion

Figure 1. Overview of the autoML procedure from data upload to UX testing via the integrated web application. (A) The data set is uploaded to
Giotto following a proper structure indicated by the platform documentation. (B) A segmentation model (model 1) is first created for joint extraction.
The task begins by labeling each joint on each hand radiograph (519 hand radiographs). After labeling, the segmentation model is trained. (C) The
whole data set (13,690 hand radiographs) is passed to this model, and a mask is obtained for each image. This mask depicts the different joints
identified by the model. (D) The mask for each joint is used to extract the DIP joints (48,892 images). (E) The DIP joint images are uploaded to
the platform, and a second model is created. This model is a classification model that will classify each DIP joint according to the K/L score. The
uploaded data are preprocessed and augmented with different kinds of transformations (eg, vertical flip, rotation, brightness). (F) The model is
used as a classifier that allows the grading of DIP-OA on a test set. (G) On request, a heatmap can be generated outside the platform. The heatmap
shows the regions of maximum interest for the model’s prediction. (H) Once the model’s performances are satisfactory, a web application is
deployed, allowing anyone to use the model at their own convenience. (I) UX and satisfaction are evaluated through a survey. autoML, automated
machine learning; DIP, distal interphalangeal; K/L, Kellgren/Lawrence; OA, osteoarthritis; UX, user experience.

AUTOML PLATFORM ANALYSIS OF HAND OA 391
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matrix is shown in Figure 2. Another model with a balanced
training set (approximately 850 images in each class randomly
selected from the original data set) was also developed, and its
results were not better than the results of the unbalanced model
(Table S1 and Figure S2).

Heatmap. Heatmaps showing the regions of highest
importance for class prediction were obtained (Figure 3). They
were used as a quality control to assess correct structure recog-
nition by the model (osteophytes, joint space narrowing). Images
correctly classified as no OA showed a pattern along the con-
served joint space. In images classified as grade 2, the region of
interest was at the osteophytes and focal joint space narrowing.
In images classified as grade 4, osteophytes, joint space narrow-
ing, and central erosion were correctly identified by the model. A
totally fused joint was misclassified as having grade 2 OA. The
model appears to have mistaken an enthesophyte as an osteo-
phyte (Figure S3).

User experience testing. The user experience of the sec-
ondmodel (DIP-OA classification) was tested in focus groups with
five radiologists and five rheumatologists. Among the five

radiologists, one found an algorithm for automated scoring of
DIP-OA moderately useful, and the rest found it of little use
because all of them were familiar with the different stages of hand
OA. In contrast, all five radiologists considered the heatmaps to
be very helpful for understanding and trusting in the model.
Among the five rheumatologists, three found the web application
very useful and two found it moderately useful to detect and grade
DIP-OA because they were relatively unfamiliar with its radio-
graphic progression. All rheumatologists appreciated the algo-
rithm as a potential tool to differentiate OA from inflammatory
diseases such as psoriatic arthritis (mean 9.2, SD 1.1) and as
moderately important for documenting grading of hand OA over
time (mean 6.2, SD 1). Four of five rheumatologists found heat-
maps to be useful for understanding and trusting in the model,
but only two of five believed that the heatmap would be of added
value in the web application (Table S2).

DISCUSSION

This study introduces a robust algorithm for detecting and
scoring DIP-OA in hands. Specifically, we outline an end-to-end
process using an autoML platform to generate a CNN model

Table 2. Accuracy*

Accuracy, % κ score
No DIP-OA
accuracy, %

K/L 2
accuracy, %

K/L 3
accuracy, %

K/L 4
accuracy, %

Mean
accuracy, %

Sensitivity for
DIP-OA

detection, %

Specificity for
DIP-OA

detection, %

Internal test set 75.5 0.76 86 71 46 67 67.5 79 86
External test set 66 0.75 79 65 40 70 63.5 79 80

*No DIP-OA was defined as K/L 0 and 1. DIP-OA, distal interphalangeal osteoarthritis; K/L, Kellgren/Lawrence score.

Figure 2. Confusion matrix for the (A) internal test set and (B) external test set. The confusion matrix displays the comparison of the model’s pre-
dictions and the truth (graded by the radiologists) for the images of the external test set. On the x-axis for each class, the corresponding number of
predicted images is reported. On the y-axis for each class, the corresponding number of images according to the human grader (true) is reported.
The confusion matrix allows us to evaluate the model’s performances for each class. KL, Kellgren/Lawrence score.

CARATSCH ET AL392
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and tested the user interface in two target user groups. With a
data set comprising more than 13,000 hand radiographs, the
model demonstrated good performance in detecting hand OA,
achieving a sensitivity and specificity of approximately 80%. The
accuracy for grading OA severity based on the K/L score varied,

ranging from 40% to 86% for different grades and revealing the
algorithm’s limitations, which may also reflect challenges in
human grading of hand OA radiographs. The considerable inter-
observer variability of the modified hand OA K/L score (κ from
0.55 to 0.8) outlines the difficulty of grading OA.13,16,17

Rheumatologists found this tool more useful than radiolo-
gists, which probably is inherent in the nature of the matter and
may also be due to the fact that rheumatologists have prescribed
and interpreted fewer hand radiographs since the advent of
ultrasound. All users found accompanying heatmaps useful,
highlighting regions of interest in individual images. Heatmaps,
as attractive clinical decision support tools, have been recognized
by others in various medical contexts, such as in the evaluation of
pathology slides.18 As illustrated in the heatmaps in Figure 3, each
predicted class exhibits distinctive features corresponding to the
key anatomic characteristics of each K/L score (a preserved joint
space in grade 0 or 1, small osteophytes in grade 2, and signifi-
cant joint space narrowing with a prominent osteophyte in grade
4). In misclassified images, heatmaps can indicate nonanatomic
discriminant features. Illustrated in Figure S3A, our model
misidentified a fused joint as a K/L score of 2, mistakenly inter-
preting an enthesophyte as an osteophyte and the epiphyseal line
as joint space because the model lacked training to recognize
ankylosis. However, heatmaps are not designed to elucidate the
rationale behind the prediction of one grade over another. In a
different instance (Figure S3B), the model accurately identified a
conserved joint space and thus predicted a K/L score of 0.
Conversely, the radiologist graded this image as mild OA
(K/L score of 2) because of focal joint space narrowing. In this
example, the heatmap was not able to explain the misclassification.

The model itself achieved a similar performance to that of
radiologists reported in the literature.13 Compared to previous
knee OA CNN prediction models, our model has a similar mean
accuracy19 of 67%. This is assuring because the radiographic
progression in DIP-OA is more complex than that in knee OA,
notably with a nonlinear dynamic of the joint space with repair
phases and erosions. Additionally, compared to other autoML
platforms, our model performed similarly.8

An implication of this work is that AI support as an adjunct will
likely appear for hand OA because it is already the case for knee
OA and other indications. We postulate that heatmaps are a
candidate to be integrated into the clinical workflow, accessible
via the electronic medical record (EMR). The future use of auto-
mated AI platforms is more controversial. Obviously, algorithms
generated by autoML such as this one cannot be simply imple-
mented in the routine because they require medical device certifi-
cation. In our example, two algorithms needed to be connected to
extract the correct joints and then to classify the OA grade. For
the large number of images used here, the drag and drop function
did not work. In other words, the use of autoML platforms still
requires training or at least support from data scientists. In terms
of research, however, autoML platforms give clinicians and

Figure 3. Heatmaps of different joints from the external test set. The
delineated portions of the images represent parts of the image with a
higher gradient and thus are of higher interest for the prediction. (A) A
normal joint. The most important parts for the prediction were located
at the joint space and at the joint margin, which correspond to the fea-
tures used for osteoarthritis grading by humans. The model achieved
a correct prediction of KL class 0 (B) Mild OA. The gradients were
higher at the left joint margin and joint space. The image depicts an
osteophyte and focal joint space narrowing at this place. The model
correctly classified it as KL class 2. (C) Severe OA. The model identi-
fied severe joint space narrowing and severe osteophytes, which led
to the correct prediction of KL class 4. KL, Kellgren/Lawrence.

AUTOML PLATFORM ANALYSIS OF HAND OA 393
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researchers new options to better analyze clinical or preclinical
data. This refers especially to large data sets such as EMR
systems, registries such as the one used in this study, and
experimental preclinical data sources such as histologic slides.
As an example, we would like to mention ML algorithms created
from deidentified EMR databases, such as Epic, which uses the
data of more than 180 million patients in their Cosmos program.
It comes as no surprise that services have been established to
reply to specific clinical queries within the clinical workflow.20

Our study is subject to several limitations. Accuracy may not
be the most suitable metric indicator in this context. Instead,
performance could be more accurately conveyed through the
quadratic kappa score, which assesses the variability between
two different observers, such as the radiologist and the algorithm,
taking into consideration the continuous nature of the task. Given
the substantial interobserver variability inherent in the K/L score,
our model’s performance is deemed satisfactory. Concerning
the grading of hand OA, the model exhibited lower performance.
Notably, the accuracy in predicting DIP-OA grade 3 posed a
significant challenge, impacting the reliability of the model for use
in clinical trials. This difficulty may be attributed to the limited
representation of this class in the training set, suggesting potential
improvement in subsequent studies. Furthermore, the underrep-
resentation of severe DIP-OA in our model could introduce biases
during training. Interestingly, attempts to rectify this imbalance
through a balanced data set, with equal distribution among the
classes, did not result in a significant enhancement in recognizing
severe OA (see Table S1 and Figure S2). The fact that we trained
this DIP-OA model in patients with an RA background is another
limitation. Of note, RA normally does not affect the DIP joints,
and in a previous study of the same data set we demonstrated
that RA disease activity was not associated with radiographic
DIP-OA progression.12 In the external test set without concomi-
tant RA, the model was effective despite its performance being
slightly better in the internal data set. This could be explained by
the fact that the training set and internal test set of images were
labeled by one single radiologist, whereas the external validation
images were labeled by several radiologists. This difference could
be attributed to interobserver variability and may represent
another limitation. Finally, we only trained the model on a single
autoML platform and tested the user experience properties only
in the provided web application. Potentially, alternative platforms
with more intuitive web applications would have convinced radiol-
ogists about the use of hand OA prediction.

Nonetheless, the simplicity of use of autoML platforms
makes ML models accessible to more clinicians and scientists.
There are already such applications in which concrete clinical
questions are entered and automated reports and publishable
graphics via a dashboard are received.21 Care must be taken to
ensure quality of the generated models and robust assessment
of their performance. To be reliable, an MLmodel must have been
trained on quality and diverse data, and its generalizability must

have been tested by an external test set.22 Models trained on
dubious data in term of quality or size can produce extremely
good results when tested internally, but they may not fare as well
when applied to real-world data.8 For this reason, guidelines such
as SPIRIT-AI and DECIDE-AI have been published to guide
clinical trials on ML models.23,24 The simplicity of use of these
platforms is as much an asset as it is a danger, and their clinical
use (eg, in using EMR data) must follow regulation. Most of all,
the usefulness of the task of the algorithm should be questioned.
In our case, we see a clear value of automated hand OA detection
to answer quicker research questions (eg, in larger radiographic
data sets, such as the Osteoarthritis Initiative) and to correlate it
with other variables.

In conclusion, autoML platforms are an innovative tool that
can make data science and ML more accessible to develop
sustainable user-centric algorithms, such as the automated
detection of radiographic DIP-OA. However, we believe that
those platforms have the responsibility to raise awareness on
how to develop trustable models.
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