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We give explicit expressions for the finite frequency greybody factor, quasinormal modes, and Love
numbers of Kerr black holes by computing the exact connection coefficients of the radial and angular parts
of the Teukolsky equation. This is obtained by solving the connection problem of the confluent Heun
equation in terms of the explicit expression of irregular Virasoro conformal blocks as sums over partitions
via the Alday, Gaiotto, and Tachikawa correspondence. In the relevant approximation limits our results are
in agreement with existing literature. The method we use can be extended to solve the linearized Einstein
equation in other interesting gravitational backgrounds.
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I. INTRODUCTION AND OUTLOOK

The recent experimental verification of gravitational
waves [1] renewed the interest in the theoretical studies of
general relativity and black hole physics. A particularly
interesting aspect is the development of exact computational
techniques to produce high precision tests of general rela-
tivity equations. From this perspective, the study of exact
solutions of differential equations rather than their approxi-
mate or numerical solutions is of paramount importance both
to deepen our comprehension of physical phenomena and to
reveal possible physical fine structure effects.
On the other hand, recent developments in the study of

two-dimensional conformal field theories, their relation with
supersymmetric gauge theories, equivariant localization and
duality in quantum field theoryproduced new toolswhich are
very effective to study long-standing classical problems in
the theory of differential equations. Indeed, it has been
known for a long time that the study of two-dimensional
conformal field theories (CFTs) [2] and of the representa-
tions of its infinite-dimensional symmetry algebra provide
exact solutions to partial differential equations in terms of
conformal blocks and the appropriate fusion coefficients.
The prototypical example is the null-state equation at level

two for primary operators of Virasoro algebra which reduce,
in the large central charge limit, to a Schrödinger-like
equation with regular singularities, corresponding to a
potential term with at most quadratic poles. In this way
one can engineer solutions of second-order linear differential
equations of Fuchsian type by making use of the appropriate
two dimensional CFT.1 While under the operator/state
correspondence the vertex operators in the above construc-
tion correspond to primary (highest-weight) states, one can
insert more general irregular vertex operators corresponding
to universal Whittaker states. The latter generate irregular
singularities in the corresponding null-state equation and
therefore allow the engineering of more general potentials
with singularities of order higher than two. Schematically,
given a multivertex operator OVðz1;…; zNÞ satisfying the
operator product expansion (OPE)

TðzÞOVðz1;…;zNÞ∼Vðz;ziÞOVðz1;…;zNÞ as z∼ zi; ð1Þ

one finds the corresponding level two null-state equation

�
b−2∂2

z þ
X
i

Vðz; ziÞ
�
ΨðzÞ ¼ 0

ΨðzÞ ¼ hΦ2;1ðzÞOVðz1;…; zNÞi ð2Þ

satisfied by the correlation function of the multivertex and
the level two degenerate field Φ2;1ðzÞ. If the multivertex
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1Our analysis is here limited—for the sake of presenting the
general method—to second-order linear differential equations,
but all we say can be generalized to higher-order equations by
considering higher-level degenerate field insertions, as already
considered in [2].
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contains primary operators only, the OPE (1) and the
potential in (2) contain at most quadratic poles, while
the insertions of irregular vertices generate higher order
singularities in

P
i Vðz; ziÞ. Actually, Vðz; ziÞ is a function

in z and in differential operators with respect to the zi. The
dependence on the latter is specified by the semiclassical
limit b → 0 of Liouville CFT,2 corresponding to large
Virasoro central charge c → ∞. In this way, one finds a
Schrödinger-like equation

ϵ21
d2ΨðzÞ
dz2

þ VCFTðzÞΨðzÞ ¼ 0; ð3Þ

where ϵ1 is a parameter which stays finite in the large
central charge limit and plays the role of the Planck
constant. The advantage of this approach is that the explicit
solution of the connection problem on the z-plane for
Eq. (31) can be derived from the explicit computation of the
full CFT2 correlator (45) and from its expansions in
different intermediate channels. A crucial ingredient to
accomplish this program is a deep control on the analytic
structure of regular and irregular Virasoro conformal
blocks. This has been recently obtained after the seminal
Alday, Gaiotto, and Tachikawa (AGT) paper [3], where
conformal blocks of Virasoro algebra have been identified
with concrete combinatorial formulas arising from equiv-
ariant instanton counting in the context of N ¼ 2 four-
dimensional supersymmetric gauge theories [4,5]. The
explicit solution of the instanton counting problem has
been decoded in the CFT language in terms of overlap of
universal Whittaker states in [6–9].
More precisely, the wave function ΨðzÞ corresponds to

the insertion of a Bogomol’nyi-Prasad-Sommerfield (BPS)
surface observable in the gauge theory path integral [10].
The specific case studied in this paper corresponds to a
surface observable in the SUð2Þ N ¼ 2 gauge theory with
Nf ¼ 3 fundamental hypermultiplets. The relevant gauge
theory moduli space in these cases is the one of ramified
instantons [11], with vortices localized on the surface
defect, the z-variable providing the fugacity for the vortex
counting. In the simplest cases the latter is indeed captured
by hypergeometric functions [12].
An important consequence of the AGT correspondence

between CFT correlation functions and exact BPS partition
functions in N ¼ 2 four-dimensional gauge theories has
been the discovery of the so called “Kiev formula” in the
theory of Painlevé transcendents [13], which established
the latter to be a further class of special functions with an
explicit combinatorial expression in terms of equivariant
volumes of instanton moduli spaces [4,14]. This corre-
spondence between Painlevé and gauge theory has been
extended to the full Painlevé confluence diagram in [15],

used in [16] to produce recurrence relations for instanton
counting for general gauge groups and studied in terms of
blowup equations in [17–19]. These results are related via
the AGT correspondence to the c ¼ 1 limit of Liouville
conformal field theory. On the other hand, it is well known
that a direct relation exists between the linear system
associated to the Painlevé VI equation and the Heun
equation [20]. Further studies on this subject appeared
recently in [21–24]. This perspective has been analyzed in
the context of black hole physics in [25–28] where it was
suggested that some physical properties of black holes,
such as their greybody factor and quasinormal modes, can
be studied in a particular regime in terms of Painlevé
equations. Numerical checks appeared in [29,30]. A deci-
sive step forward about the quasinormal mode problem has
been taken in [31], where a different approach making use
of the Seiberg-Witten quantum curve of an appropriate
supersymmetric gauge theory has been advocated to justify
their sprectrum and whose evidence was also supported by
comparison with numerical analysis of the gravitational
equation (see also [32,33] for further developments). This
view point has been further analysed in [34], where the
context is widely generalized to D-branes and other types of
gravitational backgrounds in various dimensions. From the
CFT2 viewpoint, the gauge theoretical approach corre-
sponds to the large Virasoro central charge limit recalled
above. It would be interesting to explore the relation
between the c ¼ 1 and c ¼ ∞ approaches (see [35] for
recent interesting developments). Let us remark that in our
view the CFT2 framework is the suitable one to provide a
physical explanation of the above described relations among
black hole physics and supersymmetric gauge theories.
In this paper, for the sake of concreteness and with a

specific application to the Kerr black hole problem in mind,
we study Eq. (2) for Nf ¼ 3 in the case of two regular and
one irregular singularity of fourth order. In Sec. II we
review the relativistic massless wave equation in the Kerr
black hole background, giving rise to the Teukolsky
equation, whose solution can be obtained by separation
of variables. In Sec. III we recall how both the radial and
angular parts reduce, under an appropriate dictionary, to (2)
with an irregular singularity of order four at infinity and
two regular singularities, which is the confluent Heun
equation [36]. We provide the explicit exact solution of
the connection coefficients in Sec. IV. The efficiency of the
instanton expansion in the exact solution against the
numerical integration is demonstrated by a detailed quan-
titative analysis in Sec. IV C. In Sec. V we apply these
results to Kerr black hole physics.
We perform the study of the greybody factor of the Kerr

black hole at finite frequency for which we give an exact
formula. This reduces to the well-known result of
Maldacena and Strominger [37] in the zero-frequency limit
and in the semiclassical regime reproduces the results
computed via standard WKB approximation in [38].

2This is not to be confused with the semiclassical approxi-
mation of the Schrödinger equation.
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By using the explicit solution of the connection
problem, we also provide a proof of the exact quantization
of Kerr black hole quasinormal modes as proposed in [31].
By solving the angular Teukolsky equation, we also prove
the analogue dual quantization condition on the corre-
sponding parameters of the spin-weighted spheroidal
harmonics.
Finally, we discuss the use of the precise asymptotics of

our solution to determine the tidal deformation profile in
the far away region of the Kerr black hole and compare it to
recent results on the associated Love numbers in the static
[39] and quasistatic [40,41] regimes. We observe that our
method naturally distinguishes the source and response
terms in the solution without needing analytic continuation
in the angular momentum [42,43] and provides an alter-
native regularization procedure for the computation of
static Love numbers.
Let us discuss some selected open points and possible

further developments.
(a) From the CFT2 perspective, Eq. (2) arises in the

semiclassical limit of Liouville field theory. An
intriguing question to investigate is whether the
quantum corrections in CFT2 can have a physical
interpretation in the black hole description. In princi-
ple, this could be related to quantum gravitational
corrections or more generally to some deviations from
general relativity, which will affect the physical
properties of the black hole’s gravitational field.

(b) Although in a very different circle of ideas, a link of
holographic type between CFT2 and Kerr black hole
physics emerged in the last years since [44]. It would
be very interesting to find whether the mathematical
structure behind the solution of the Kerr black hole
radiation problem we present in this paper could have
a clear interpretation in the context of the Kerr/CFT
correspondence.

(c) A further possible application of the method presented
in this paper is the study of the physics of the last
stages of coalescence of compact objects with the
Zerilli function [45], see [46] for recent developments.
The corresponding potential displays a fifth-order
singularity which can be engineered with a higher
irregular state, corresponding to Argyres-Douglas
superconformal field theory in gauge theory [47].
Let us remark that the CFT2 methods extend beyond
the equivariant localization results in gauge theory,
making it possible to quantitatively study higher-order
singularities [8].

(d) Other black hole backgrounds can be analyzed with
methods similar to the ones used in this paper. An
important example is given by Kerr black hole
solutions which asymptote to the (anti–)de Sitter
metric at infinity. These correspond to the Heun
equation, which has four regular singularities on
the Riemann sphere, and can be engineered from

five-point correlators in Liouville CFT with four
primary operator insertions and one level two degen-
erate field. This will provide explicit formulas for the
corresponding connection problem and wave func-
tions allowing for an example to give an exact
expression for the greybody factor studied in [48].

(e) Our method can be extended to other gravitational
potentials studied to analyze possible deviations from
general relativity with a modified quasinormal mode
spectrum [49] and Love numbers [50].

(f) The results we present are given as a perturbative
series in the instanton counting parameter Λ, which, as
we show from comparison with the numerical solution
in Sec. IV C, actually converges very efficiently. From
the gauge theory reader’s viewpoint let us notice that
understanding how to extend our approach to the
connection problem on the Λ plane [51] would
improve our understanding the strong coupling
effects in gauge theory. Moreover, it could reveal to
be useful for other applications in gravitational
problems.

II. PERTURBATIONS OF KERR BLACK HOLES

The Kerr metric describes the spacetime outside of a
stationary, rotating black hole in asymptotically flat space.
In Boyer-Lindquist coordinates it reads,

ds2 ¼ −
�
Δ − a2sin2θ

Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�ðr2 þ a2Þ2 − Δa2sin2θ

Σ

�
sin2θdϕ2

−
2asin2θðr2 þ a2 − ΔÞ

Σ
dtdϕ; ð4Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð5Þ

The horizons are given by the roots of Δ,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð6Þ

Two other relevant quantities are the Hawking temperature
and the angular velocity at the horizon,

TH ¼ rþ − r−
8πMrþ

; Ω ¼ a
2Mrþ

: ð7Þ

Perturbations of the Kerr metric by fields of spin s ¼ 0;
−1;−2 are described by the Teukolsky equation [52], who
found that an ansatz of the form

Φs ¼ eimϕ−iωtSλ;sðθ; aωÞRsðrÞ: ð8Þ
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permits a separation of variables of the partial differential
equation. One gets3 the following equations for the radial
and the angular part (see for example [53] Eq. (25)),

Δ
d2R
dr2

þðsþ1ÞdΔ
dr

dR
dr

þ
�
K2−2isðr−MÞK

Δ
−Λλ;sþ4isωr

�
R¼ 0;

∂xð1−x2Þ∂xSλþ
�
ðcxÞ2þλþs−

ðmþsxÞ2
1−x2

−2csx

�
Sλ¼0:

ð9Þ

Here x ¼ cos θ, c ¼ aω and

K¼ðr2þ a2Þω− am; Λλ;s ¼ λþ a2ω2−2amω: ð10Þ

λ has to be determined as the eigenvalue of the angular
equation with suitable boundary conditions imposing
regularity at θ ¼ 0; π. In general no closed-form expression
is known, but for small aω it is given by λ ¼
lðlþ 1Þ − sðsþ 1Þ þOðaωÞ. We give a way to calculate
it to arbitrary order in aω in Sec. V C.
For later purposes it is convenient to write both equations

in the form of a Schrödinger equation. For the radial
equation we define

z ¼ r − r−
rþ − r−

; ψðzÞ ¼ ΔðrÞsþ1
2 RðrÞ: ð11Þ

With this change of variables the inner and outer horizons
are at z ¼ 0 and z ¼ 1, respectively, and r → ∞ corre-
sponds to z → ∞. We obtain the differential equation

d2ψðzÞ
dz2

þ VrðzÞψðzÞ ¼ 0; ð12Þ

with potential

VrðzÞ ¼
1

z2ðz − 1Þ2
X4
i¼0

Âr
i zi: ð13Þ

The coefficients Âr
i depend on the parameters of the black

hole and the frequency, spin, and angular momentum
of the perturbation. Their explicit expression is given in
Appendix A.
For the angular part instead we define

z ¼ 1þ x
2

; yðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p Sλ
2
: ð14Þ

After this change of variables, θ ¼ 0 corresponds to z ¼ 1,
and θ ¼ π to z ¼ 0. The equation now reads

d2yðzÞ
dz2

þ VangðzÞyðzÞ ¼ 0; ð15Þ

with potential

VangðzÞ ¼
1

z2ðz − 1Þ2
X4
i¼0

Âθ
i zi: ð16Þ

Again, we give the explicit expressions of the coefficients
Âθ
i in Appendix A. When written as Schrödinger equations,

it is evident that the radial and angular equations share the
same singularity structure. They both have two regular
singular points at z ¼ 0, 1, and an irregular singular point
of Poincaré rank one at z ¼ ∞. Such a differential equation
is well known in mathematics literature as the confluent
Heun equation [36].

III. THE CONFLUENT HEUN EQUATION
AND CONFORMAL FIELD THEORY

A. The confluent Heun equation in standard form

The confluent Heun equation (CHE) is a linear differ-
ential equation of second order with regular singularities at
z ¼ 0 and 1, and an irregular singularity of rank 1 at z ¼ ∞.
In its standard form it is written as

d2w
dz2

þ
�
γ

z
þ δ

z − 1
þ ϵ

�
dw
dz

þ αz − q
zðz − 1Þw ¼ 0: ð17Þ

By defining wðzÞ¼PðzÞ−1=2ψðzÞ with PðzÞ¼eϵzzγðz−1Þδ,
we can bring the standard form of the CHE into the form of a
Schrödinger equation

d2ψðzÞ
dz2

þ VHeunðzÞψðzÞ ¼ 0 ð18Þ

where the potential is

VHeunðzÞ ¼
1

z2ðz − 1Þ2
X4
i¼0

AH
i z

i; ð19Þ

with coefficients Ai given in terms of the parameters of the
standard form of the CHE by

AH
0 ¼ γð2 − γÞ

4
;

AH
1 ¼ qþ γ

2
ðγ þ δ − ϵ − 2Þ;

AH
2 ¼ −q − α −

γ2

4
þ δ

2
−
ðδ − ϵÞ2

4
þ γ

2
ð1 − δþ 2ϵÞ;

AH
3 ¼ α −

ϵ

2
ðγ þ δ − ϵÞ;

AH
4 ¼ −

ϵ2

4
: ð20Þ3Dropping the ‘s’ subscript to ease the notation.

BONELLI, IOSSA, LICHTIG, and TANZINI PHYS. REV. D 105, 044047 (2022)

044047-4



B. The confluent Heun equation as a BPZ equation

In this section we work at the level of chiral conformal
field theory/conformal blocks, which are fixed completely
by the Virasoro algebra. Throughout this paper we work
with conformal momenta related to the conformal
weight by Δ ¼ Q2

4
− α2. The representation theory of the

Virasoro algebra contains degenerate Verma modules of

weight Δr;s ¼ Q2

4
− α2r;s with αr;s ¼ − br

2
− s

2b, where Q ¼
bþ 1

b and b is related to the central charge as c ¼ 1þ 6Q2.
At level two, the degenerate field Φ2;1 has weight Δ2;1 ¼
− 1

2
− 3

4
b2 and satisfies the null-state equation

ðb−2L2
−1 þ L−2Þ ·Φ2;1ðzÞ ¼ 0: ð21Þ

When this field is inserted in correlation functions, Eq. (21)
translates into a differential equation for the correlator
called Belavin-Polyakov-Zamolodchikov (BPZ) equation
[2]. Consider then the following conformal block with a
degenerate field insertion, which by a slight abuse of
notation we denote by

ΨðzÞ ≔ hΔ;Λ0; m0jΦ2;1ðzÞV2ð1ÞjΔ1i: ð22Þ
Φ2;1 is the degenerate field mentioned above, V2ð1Þ is a

primary operator of weight Δ2 ¼ Q2

4
− α22 inserted at z ¼ 1

and jΔ1i is a primary state of weight Δ1 ¼ Q2

4
− α21

corresponding via the state-operator correspondence to
the insertion of V1ð0Þ. The state hΔ;Λ0; m0j, called an
irregular state of rank 1, is a more exotic kind of state,
defined in [54] as

hΔ;Λ0;m0j¼
X
Y

X
p

hΔjLYm
jYj−2p
0 ΛjYj

0 Q−1
Δ ð½2p;1jYj−2p�;YÞ:

ð23Þ

The first sum runs over Young tableaux Y, jYj denotes the
total number of boxes in the tableau and Q is the
Shapovalov form QΔðY; Y 0Þ ¼ hΔjLYL−Y 0 jΔ0i. The nota-
tion ½2p; 1jYj−2p� refers to a Young tableau with p columns
of two boxes and jYj − 2p columns of single boxes. p then
runs from 0 to jYj=2. All in all this implies the following
relations, derived in [54]

hΔ;Λ0; m0jL0 ¼
�
Δþ Λ0

∂
∂Λ0

�
hΔ;Λ0; m0j;

hΔ;Λ0; m0jL−1 ¼ m0Λ0hΔ;Λ0; m0j;
hΔ;Λ0; m0jL−2 ¼ Λ2

0hΔ;Λ0; m0j;
hΔ;Λ0; m0jL−n ¼ 0 for n ≥ 3; ð24Þ

so it is a kind of coherent state for the Virasoro algebra. The
investigation of these kind of states in CFT was motivated
by the AGT conjecture [3] according to which they are
related to asymptotically free gauge theories [6,8,9].

Indeed, this state can be obtained by colliding two primary
operators mimicking the decoupling of a mass in the gauge
theory [9,54]. The result of the collision, understood as a
scaling limit of an OPE, naturally has nonzero overlap with
any Verma module. This gives a so-called Whittaker state
[9,51,55], denoted by hΛ0; m0j that makes no reference to
any Verma module and is completely characterized by the
following action of the Virasoro generators

hΛ0; m0jL0 ¼ Λ0

∂
∂Λ0

hΛ0; m0j;

hΛ0; m0jL−1 ¼ m0Λ0hΛ0; m0j;
hΛ0; m0jL−2 ¼ Λ2

0hΛ0; m0j;
hΛ0; m0jL−n ¼ 0 for n ≥ 3; ð25Þ

The state introduced here is the projection of a Whittaker
state onto a specific Verma module. Indeed, inserting
explicitly the projector gives back the series (23),

hΔ;Λ0;m0j≔Λ−Δ
0 hΛ0;m0j

X
Y;Y 0

Q−1
Δ ðY;Y 0ÞL−Y 0 jΔihΔjLY

¼
X
Y

X
p

hΔjLYm
jYj−2p
0 ΛjYj

0 Q−1
Δ ð½2p;1jYj−2p�;YÞ;

ð26Þ

where the overlap of the Whittaker state with a primary is
defined as hΛ0; m0jΔi ¼ ΛΔ

0 . This correlator satisfies the
following BPZ equation (see Appendix B for details),

0¼hΔ;Λ0;m0jðb−2∂2
z þL−2·ÞΦ2;1ðzÞV2ð1ÞjV1i

¼
�
b−2∂2

z −
1

z
∂z−

1

z
1

z−1
ðz∂z−Λ0∂Λ0

þΔ2;1þΔ2

þΔ1−ΔÞþ Δ2

ðz−1Þ2þ
Δ1

z2
þm0Λ0

z
þΛ2

0

�
ΨðzÞ: ð27Þ

We now take a double-scaling limit known as the
Nekrasov-Shatashvili (NS) limit in the AGT dual gauge
theory [56], which corresponds to the semiclassical limit of
large Virasoro central charge in the CFT. This amounts to
introducing a new parameter ℏ, and sending ϵ2 ¼ ℏb → 0,
while keeping fixed

ϵ1 ¼ ℏ=b;

Δ̂ ¼ ℏ2Δ; Δ̂1 ¼ ℏ2Δ1; Δ̂2 ¼ ℏ2Δ2;

Λ ¼ 2iℏΛ0; m3 ¼
i
2
ℏm0: ð28Þ

Furthermore, arguments from CFT [57] and the AGT
conjecture tell us that in this limit the correlator exponen-
tiates and the z-dependence appears only at subleading
order
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ΨðzÞ ∝ exp
1

ϵ1ϵ2
ðF instðϵ1Þ þ ϵ2Wðz; ϵ1Þ þOðϵ22ÞÞ: ð29Þ

Introducing the normalized wave function ψðzÞ¼
limϵ2→0ΨðzÞ=hΔ;Λ0;m0jV2ð1ÞjΔ1i, and multiplying every-
thing by ℏ2, the BPZ equation in the NS limit becomes

0 ¼
�
ϵ21∂2

z −
1

z
1

z − 1
ð−Λ∂ΛF inst þ Δ̂2 þ Δ̂1 − Δ̂Þ

þ Δ̂2

ðz − 1Þ2 þ
Δ̂1

z2
−
m3Λ
z

−
Λ2

4

�
ψðzÞ: ð30Þ

All other terms vanish in the limit. It takes the form of a
Schrödinger equation,

ϵ21
d2ψðzÞ
dz2

þ VCFTðzÞψðzÞ ¼ 0 ð31Þ

with potential

VCFTðzÞ ¼
1

z2ðz − 1Þ2
X4
i¼0

Aizi: ð32Þ

Written in this form it is clear that the BPZ equation for this
correlation function takes the form of the confluent Heun
equation. Using conformal momenta instead of dimensions
wewrite Δ̂i ¼ 1

4
− a2i ,wherewehave used Δ̂i ¼ ℏ2Δi,ℏQ ¼

ϵ1 þ ϵ2 ¼ ϵ1 and defined ai ≔ ℏαi. Furthermore, defining
E ≔ a2 − Λ∂ΛF inst, the coefficients of the potential are

A0 ¼
ϵ21
4
− a21;

A1 ¼ −
ϵ21
4
þ Eþ a21 − a22 −m3Λ;

A2 ¼
ϵ21
4
− Eþ 2m3Λ −

Λ2

4
;

A3 ¼ −m3Λþ Λ2

2
;

A4 ¼ −
Λ2

4
: ð33Þ

Comparing with the coefficients AH
i of the CHE in (20) and

setting ϵ1 ¼ 1 to match the coefficient of the second
derivative, we can identify the parameters of the standard
form with the parameters of the CFT as

α ¼ θ00Λð1þ θa1 þ θ0a2 þ θ00m3Þ;
γ ¼ 1þ 2θa1;

δ ¼ 1þ 2θ0a2;

ϵ ¼ θ00Λ;

q ¼ E −
1

4
− ðθa1 þ θ0a2Þ2 − ðθa1 þ θ0a2Þ

þ θ00Λ
�
1

2
þ θa1 − θ00m3

�
; ð34Þ

for any choice of signs θ; θ0; θ00 ¼ �1. These 8 ¼ 23 dic-
tionaries reflect the symmetries of the equation, which is
invariant independently under a1 → −a1, a2 → −a2, and
ðm3;ΛÞ → −ðm3;ΛÞ.

C. The radial dictionary

We see that the BPZ equation takes the same form as the
radial and angular equations of the black hole perturbation
equation if we set ϵ1 ¼ 1. Wewill do this from now on. This
implies b ¼ ℏ. Comparing with the coefficients Âr

i we find
the following eight dictionaries between the parameters of
the radial equation in the black hole problem and the CFT,

E ¼ 1

4
þ λþ sðsþ 1Þ þ a2ω2 − 8M2ω2

− ð2Mω2 þ isωÞðrþ − r−Þ;

a1 ¼ θ

�
−i

ω −mΩ
4πTH

þ 2iMωþ s
2

�
;

a2 ¼ θ0
�
−i

ω −mΩ
4πTH

−
s
2

�
;

m3 ¼ θ00ð−2iMωþ sÞ;
Λ ¼ −2iθ00ωðrþ − r−Þ; ð35Þ

where θ; θ0; θ00 ¼ �1. We will make the following choice
for the dictionary from now on,

E ¼ 1

4
þ λþ sðsþ 1Þ þ a2ω2 − 8M2ω2

− ð2Mω2 þ isωÞðrþ − r−Þ;

a1 ¼ −i
ω −mΩ
4πTH

þ 2iMωþ s
2
;

a2 ¼ −i
ω −mΩ
4πTH

−
s
2
;

m3 ¼ −2iMωþ s;

Λ ¼ −2iωðrþ − r−Þ; ð36Þ

which corresponds to θ ¼ θ0 ¼ θ00 ¼ þ1. Using AGT this
dictionary gives the following masses in the gauge theory
(see Appendix C for details),

m1 ¼ a1 þ a2 ¼ −i
ω −mΩ
2πTH

þ 2iMω;

m2 ¼ a2 − a1 ¼ −2iMω − s;

m3 ¼ −2iMωþ s: ð37Þ

This is the same result as the one found in [31] except for a
shift in E, which is due to a different definition of theUð1Þ-
factor. For s ¼ 0 the values are purely imaginary and
correspond to physical Liouville momenta. For s ≠ 0 the
conformal block gets analytically continued. Note that in
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the supersymmetric gauge theory the masses are naturally
complex parameters.

D. The angular dictionary

Comparing instead (33) with the Âθ
i in (A4) we find the

following eight dictionaries between the parameters of the
angular equation in the black hole problem and the CFT,

E ¼ 1

4
þ c2 þ sðsþ 1Þ − 2csþ λ;

a1 ¼ θ

�
−
m − s
2

�
;

a2 ¼ θ0
�
−
mþ s
2

�
;

m3 ¼ −θ00s;

Λ ¼ θ004c; ð38Þ
where again θ; θ0; θ00 ¼ �1 and our choice from here on
will be θ ¼ θ0 ¼ θ00 ¼ þ1, i.e.,

E ¼ 1

4
þ c2 þ sðsþ 1Þ − 2csþ λ;

a1 ¼ −
m − s
2

;

a2 ¼ −
mþ s
2

;

m3 ¼ −s;

Λ ¼ 4c: ð39Þ
Using AGT this dictionary gives the following masses in
the gauge theory (see Appendix C for details),

m1 ¼ a1 þ a2 ¼ −m;

m2 ¼ a2 − a1 ¼ −s;

m3 ¼ −s: ð40Þ

Again we note the discrepancy with [31] due to the
different Uð1Þ-factor.

IV. THE CONNECTION PROBLEM

Exploiting crossing symmetry of Liouville correlation
functions we can connect different asymptotic expansions
of the solutions of BPZ equations around different field
insertion points. The Dorn-Otto and Zamolodchikov-
Zamolodchikov (DOZZ) formula can be obtained exploit-
ing the known connection formulae for hypergeometric
functions [58,59]. Here we do the reverse; namely, knowing
the DOZZ formula we reconstruct connection formulae for
irregular degenerate conformal blocks. Asymptotic expan-
sions are computed via OPEs with regular and irregular
insertions. To this end, we recall that the OPE of the
degenerate field of our interest and a primary field reads [2],

Φ2;1ðz; z̄ÞVαiðw;w̄Þ
¼
X
�
Cαi�α2;1;αi jz−wj2k�ðVαi�ðw;w̄ÞþOðjz−wj2ÞÞ; ð41Þ

where αi� ≔ αi � −b
2
, and k� ¼ Δαi� − Δαi − Δ2;1 is fixed

by the L0 action. The OPE coefficient Cαi�α2;1;αi is computed in
terms of DOZZ factors [60,61] (see Appendix B 2), namely

Cαi�α2;1;αi ¼ G−1ðαi�ÞC
�
αi�;

−b −Q
2

; αi

�
: ð42Þ

The OPE with the irregular state is constrained by
conformal symmetry, and the leading behavior is fixed
by the action of L0, L1, L2 instead of just L0. The overall
factors are again given in terms of DOZZ factors (see
Appendix B 3). One finds

hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄Þ ¼ Cαþα;α2;1

����
X

�;k
Aαþ;m0�ð�ΛÞ−1

2
�m3þbαþz

1
2
ðbQ−1�2m3Þe�Λz=2z−khΔαþ ;Λ0; m0�; kj

����
2

þ Cα−α;α2;1

����
X

�;k
Aα−;m0�ð�ΛÞ−1

2
�m3−bα−z

1
2
ðbQ−1�2m3Þe�Λz=2z−khΔα− ;Λ0; m0�; kj

����
2

: ð43Þ

Here the irregular state depending on Λ0, Λ̄0 denotes the
full (chiral ⊗ antichiral) state, and the modulus squared of
the chiral states (depending only on Λ0) also has to be
understood as a tensor product. The coefficients A are
given by

Aαþ;m0þ ¼
Γð1−2bαþÞ

Γð1
2
þm3−bαþÞ

; Aαþ;m0−
¼ Γð1−2bαþÞ
Γð1

2
−m3−bαþÞ

;

Aα−;m0þ ¼
Γð1þ2bα−Þ

Γð1
2
þm3þbα−Þ

; Aα−;m0−
¼ Γð1þ2bα−Þ
Γð1

2
−m3þbα−Þ

:

ð44Þ
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Since the results presented in this section are formulated
purely in a CFT context, they will be written for finite b
unless otherwise specified.

A. Connection formulas for the irregular
four-point function

Let us consider the irregular correlator

Ψðz; z̄Þ ¼ hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄ÞVα2ð1; 1̄ÞjΔα1i: ð45Þ

The physical, crossing symmetric correlator has to be built
using the Whittaker state (25) introduced before, which
makes no reference to Δα. Here instead we use the state
projected onto the Verma module Δα which provides us
with the explicit expression (23). In particular, the Λ0 → 0
limit is simple; it is just a primary state with the usual
normalization. In any case, we still expect (45) to be
crossing symmetric and we will exploit this in what
follows. In a forthcoming paper4 we will show that the
result presented here is consistent with crossing symmetry

of the physical correlator. The asymptotics of Ψ for
z ∼ 1;∞, respectively t, u-channels, are given by the
OPEs. Due to crossing symmetry, the two expansions have
to agree, therefore

Ψðz; z̄Þ ¼ KðtÞ
α2þ;α2þjfðtÞα2þðzÞj2 þ KðtÞ

α2−;α2− jfðtÞα2−ðzÞj2

¼ KðuÞ
αþ;αþjfðuÞαþ ðzÞj2 þ KðuÞ

α−;α− jfðuÞα− ðzÞj2: ð46Þ

where

KðtÞ
α2þ;α2þ ¼ Cα2þα2;1α2Cðα; α2þ; α1Þ;

KðtÞ
α2−;α2− ¼ Cα2−α2;1α2Cðα; α2−; α1Þ;
KðuÞ

αþ;αþ ¼ Cαþα2;1αCðαþ; α2; α1Þ;
KðuÞ

α−;α− ¼ Cα−α2;1αCðα−;α2; α1Þ; ð47Þ

are the DOZZ factors for the two fusion channels in the t-
and u-channel OPEs and

fðtÞα2þðzÞ ¼ hΔα;Λ0; m0jVα2þð1ÞjΔα1iðz − 1ÞbQþ2bα2
2 ð1þOðz − 1ÞÞ;

fðtÞα2−ðzÞ ¼ hΔα;Λ0; m0jVα2−ð1ÞjΔα1iðz − 1ÞbQ−2bα2
2 ð1þOðz − 1ÞÞ;

fðuÞαþ ðzÞ ¼
X
�
hΔαþ ;Λ0; m0�jVα2ð1ÞjΔα1iAαþ;m0�e

�Λz
2 ð�ΛÞ−1

2
�m3þbαþz

1
2
ðbQ−1�2m3Þð1þOðz−1ÞÞ;

fðuÞα− ðzÞ ¼
X
�
hΔα− ;Λ0; m0�jVα2ð1ÞjΔα1iAα−;m0�e

�Λz
2 ð�ΛÞ−1

2
�m3−bα−z

1
2
ðbQ−1�2m3Þð1þOðz−1ÞÞ; ð48Þ

give the expansions of the conformal blocks in the two
fusion channels of the t- and u-channels. Here, and in the
following, the chiral correlators have to be understood as
conformal blocks, we have extracted the DOZZ factors and
they appear in (47). Note that in line with the definition
(23), the irregular state contributes to the DOZZ factor
the same as a regular state. Here, as noted in Sec. III B,

fðt;uÞ� in the NS limit are (up to a rescaling by one of
the correlators, to keep them finite) the two linearly-
independent confluent Heun functions expanded around
1 and ∞, respectively. We remark that due to the presence
of the irregular singularity the α� channels at infinity
contribute with two different irregular states each, corre-
sponding to m0�. This is consistent with the fact that the
irregular state comes from the collision of two primary
operators [9]. The two expansions are related via a
connection matrix M by

fðtÞi ðzÞ ¼ Mijf
ðuÞ
j ðzÞ; i ¼ α2�; j ¼ α�: ð49Þ

This equation, combined with the requirement of crossing
symmetry (46) gives the constraints

KðtÞ
ij MikMjl ¼ KðuÞ

kl : ð50Þ

Equation (50) give three quadratic equations for the four
entries Mij. Other constraints come from noticing that the
Mij have to respect the symmetry under reflection of the
momenta. The sign ambiguity inherent in the quadratic
constraints (50) is resolved by imposing that for Λ → 0
they reduce to the known hypergeometric connection
matrix, since

hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄ÞVα2ð1; 1̄ÞjΔα1i
→ hΔαjΦ2;1ðz; z̄ÞVα2ð1; 1̄ÞjΔα1i; as Λ → 0; ð51Þ

and conformal blocks of the regular degenerate four-point
functions are hypergeometric functions. This gives4See reference [62].
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Mα2þ;αþ ¼
Γð−2bαÞΓð1þ2bα2Þ

Γð1
2
þbðα1þα2−αÞÞΓð1

2
þbð−α1þα2−αÞÞ ;

Mα2−;α− ¼
Γð2bαÞΓð1−2bα2Þ

Γð1
2
þbðα1−α2þαÞÞΓð1

2
þbð−α1−α2þαÞÞ ;

Mα2þ;α− ¼
Γð2bαÞΓð1þ2bα2Þ

Γð1
2
þbðα1þα2þαÞÞΓð1

2
þbð−α1þα2þαÞÞ ;

Mα2−;αþ ¼
Γð−2bαÞΓð1−2bα2Þ

Γð1
2
þbðα1−α2−αÞÞΓð1

2
þbð−α1−α2−αÞÞ :

ð52Þ

Note that Mij is given by the hypergeometric connection
matrix even for finite Λ, since all Λ corrections are encoded
in the asymptotics of the functions (48). Proceeding in the
same way we can find connection coefficients between 0,1.
Using crossing symmetry we have

Ψðz; z̄Þ ¼ KðsÞ
α1þ;α1þjfðsÞα1þðzÞj2 þ KðsÞ

α1−;α1− jfðsÞα1−ðzÞj2

¼ KðtÞ
α2þ;α2þjfðtÞα2þðzÞj2 þ KðtÞ

α2−;α2− jfðtÞα2−ðzÞj2; ð53Þ

where

fðsÞα1þðzÞ ≃ hΔα;Λ0; m0jVα2ð1ÞjΔα1þiz
bQþbα1

2 ;

fðsÞα1−ðzÞ ≃ hΔα;Λ0; m0jVα2ð1ÞjΔα1−iz
bQ−bα1

2 : ð54Þ

Imposing again

fðsÞi ðzÞ ¼ Nijf
ðtÞ
j ðzÞ; ð55Þ

substituting (55) in (53) and imposing that fðs;tÞ reduce
to hypergeometric functions as Λ → 0 we find (see
Appendix B 2),

Nα1þ;α2þ ¼
Γð−2bα2ÞΓð1þ 2bα1Þ

Γð1
2
þbðα1 −α2þαÞÞΓð1

2
þbðα1−α2 −αÞÞ ;

Nα1−;α2− ¼
Γð2bα2ÞΓð1− 2bα1Þ

Γð1
2
þbð−α1þα2−αÞÞΓð1

2
þbð−α1þα2þαÞÞ ;

Nα1þ;α2− ¼
Γð2bα2ÞΓð1þ 2bα1Þ

Γð1
2
þbðα1þα2−αÞÞΓð1

2
þbðα1þα2þαÞÞ ;

Nα1−;α2þ ¼
Γð−2bα2ÞΓð1−2bα1Þ

Γð1
2
þbð−α1−α2þαÞÞΓð1

2
þbð−α1 −α2−αÞÞ :

ð56Þ

B. AGT dual of irregular correlators and NS limit

The irregular correlators appearing in the asymptotics of
the functions (48) can be efficiently computed as Nekrasov
partition functions thanks to the AGT correspondence [3].
In particular, the irregular conformal block is identified
with [54]

hΔα;Λ0; m0jVα2ð1ÞjΔα1i ¼ ZinstðΛ; a; m1; m2; m3Þ; ð57Þ

where ZinstðΛ; a; m1; m2; m3Þ is the Nekrasov instanton
partition function of SUð2Þ N ¼ 2 gauge theory in the Ω-
background (see Appendix C). While the analysis in the
last section was completely general, in order to apply the
obtained results to the Teukolsky equation, one needs to
take the NS limit ϵ2 → 0, ϵ1 ¼ 1 as discussed in Sec. III B.
In this limit the correlators diverge, but rescaling the
functions in (48) by one of the correlators, the resulting
ratios are finite. In a slight abuse of notation, we write the
connection coefficients in the NS limit as

Ma2þ;aþ ¼ Γð−2aÞΓð1þ 2a2Þ
Γð1

2
þ a1 þ a2 − aÞΓð1

2
− a1 þ a2 − aÞ ;

Ma2−;a− ¼ Γð2aÞΓð1 − 2a2Þ
Γð1

2
þ a1 − a2 þ aÞΓð1

2
− a1 − a2 þ aÞ ;

Ma2þ;a− ¼ Γð2aÞΓð1þ 2a2Þ
Γð1

2
þ a1 þ a2 þ aÞΓð1

2
− a1 þ a2 þ aÞ ;

Ma2−;aþ ¼ Γð−2aÞΓð1 − 2a2Þ
Γð1

2
þ a1 − a2 − aÞΓð1

2
− a1 − a2 − aÞ ; ð58Þ

and similarly

Na1þ;a2þ ¼ Γð−2a2ÞΓð1þ 2a1Þ
Γð1

2
þ a1 − a2 þ aÞΓð1

2
þ a1 − a2 − aÞ ;

Na1−;a2− ¼ Γð2a2ÞΓð1 − 2a1Þ
Γð1

2
− a1 þ a2 − aÞΓð1

2
− a1 þ a2 þ aÞ ;

Na1þ;a2− ¼ Γð2a2ÞΓð1þ 2a1Þ
Γð1

2
þ a1 þ a2 − aÞΓð1

2
þ a1 þ a2 þ aÞ ;

Na1−;a2þ ¼ Γð−2a2ÞΓð1 − 2a1Þ
Γð1

2
− a1 − a2 þ aÞΓð1

2
− a1 − a2 − aÞ ; ð59Þ

where ai ¼ ℏαi ¼ bαi for ϵ1 ¼ ℏ=b ¼ 1.

C. Plots of the connection coefficients

In the following we illustrate the power of the connection
coefficients obtained above by comparing our analytical
solution to the numerical one. Furthermore, this illustrates
how to evaluate the connection coefficients. For simplicity
we focus on the connection problem between z ¼ 0 and 1.
The confluent Heun function wðzÞ solving the CHE in
standard form (17) can be expanded as a power series near
z ¼ 0 as

wðzÞ ¼ 1 −
q
γ
zþ αγ þ qðq − γ − δþ ϵÞ

2γðγ þ 1Þ z2 þOðz3Þ: ð60Þ

We are interested in analytically continuing this series
toward the other singular point at z ¼ 1. This problem is
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solved by our connection coefficients, we just need to
identify the functions and parameters; in terms of the
function ψðzÞ solving the CHE in Schrödinger form (18),
we have around z ¼ 0

ψðzÞ ¼ eϵz=2zγ=2ðz − 1Þδ=2wðzÞ
¼ z

1
2
þθa1ð1þOðzÞÞ ¼ f̂ðsÞα1θðzÞ; ð61Þ

where we have introduced the normalized s-channel
function, related to the s-channel function defined

before by fðsÞα1θðzÞ ¼ hΔα;Λ0; m0jVα2ð1ÞjΔα1θif̂ðsÞα1θðzÞ.
Similarly, we define the normalized t-channel function,

related to the one defined before by fðtÞα2θ0 ðzÞ ¼
hΔα;Λ0; m0jVα2θ0 ð1ÞjΔα1if̂ðtÞα2θ0 ðzÞ. It is a solution to the
CHE given as a power series around the singular point
z ¼ 1 which can be obtained by the Fröbenius method,

f̂ðtÞα2θ0 ðzÞ ¼ ð1 − zÞ12þθ0a2

�
1 −

1=4 − a21 − a22 þ E
1þ 2θ0a2

ð1 − zÞ þOðð1 − zÞ2Þ
�
: ð62Þ

The s- and t-channel solutions are related by fðsÞi ¼ Nijf
ðtÞ
j , with the coefficients Nij given before, which we now give more

explicitly,

f̂ðsÞα1θðzÞ ¼
Γð−2a2ÞΓð1þ 2θa1Þ

Γð1
2
þ θa1 − a2 þ aÞΓð1

2
þ θa1 − a2 − aÞ

hΔα;Λ0; m0jVα2þð1ÞjΔα1i
hΔα;Λ0; m0jVα2ð1ÞjΔα1θi

f̂ðtÞα2þðzÞ

þ Γð2a2ÞΓð1þ 2θa1Þ
Γð1

2
þ θa1 þ a2 þ aÞΓð1

2
þ θa1 þ a2 − aÞ

hΔα;Λ0; m0jVα2−ð1ÞjΔα1i
hΔα;Λ0; m0jVα2ð1ÞjΔα1θi

f̂ðtÞα2−ðzÞ; ð63Þ

for θ ¼ �. A further complication arises from the fact that the parameter in the CHE is E, but in the connection formula the
parameter a appears which is related to E in a nontrivial way and has to be obtained by inverting the Matone relation5

[63,64] (See Appendix C for details),

E ¼ a2 − Λ∂ΛF inst: ð64Þ

Everything has to be computed for general ϵ1, ϵ2 using Nekrasov formulas and then specialized to the NS limit by setting
ϵ1 ¼ 1 and taking the limit ϵ2 → 0 in the end. To work consistently at one instanton one also needs to expand the gamma
functions since they contain a which is given as an instanton expansion. We get

f̂ðsÞα1θðzÞ ¼
Γð−2a2ÞΓð1þ 2θa1Þ

Γð1
2
þ θa1 − a2 þ

ffiffiffiffi
E

p ÞΓð1
2
þ θa1 − a2 −

ffiffiffiffi
E

p Þ f̂
ðtÞ
α2þðzÞ

×

�
1 −

�
θa1 þ a2
1
2
− 2E

þ
1
4
− Eþ a21 − a22ffiffiffiffi
E

p ð1 − 4EÞ

�
ψ ð0Þ

�
1

2
−

ffiffiffiffi
E

p
þ θa1 − a2

�
− ψ ð0Þ

�
1

2
þ

ffiffiffiffi
E

p
þ θa1 − a2

���
m3Λ

�

þ Γð2a2ÞΓð1þ 2θa1Þ
Γð1

2
þ θa1 þ a2 þ

ffiffiffiffi
E

p ÞΓð1
2
þ θa1 þ a2 −

ffiffiffiffi
E

p Þ f̂
ðtÞ
α2−ðzÞ

×

�
1 −

�
θa1 − a2
1
2
− 2E

þ
1
4
− Eþ a21 − a22ffiffiffiffi
E

p ð1 − 4EÞ

�
ψ ð0Þ

�
1

2
−

ffiffiffiffi
E

p
þ θa1 þ a2

�
− ψ ð0Þ

�
1

2
þ

ffiffiffiffi
E

p
þ θa1 þ a2

���
m3Λ

�

þOðΛ2Þ: ð65Þ

Here ψ ð0ÞðzÞ ¼ d
dz logΓðzÞ is the digamma function. The

higher instanton corrections to the connection coefficients
can be computed in an analogous way. We have identified

f̂ðsÞα1θðzÞ ¼ eϵz=2zγ=2ðz − 1Þδ=2wðzÞ by using the power series
expansion near z ¼ 0. We can then use the connection
formula given above to obtain the power series expansion

near z ¼ 1 in terms of f̂ðtÞα2�ðzÞ, and compare it to the
numerical solution. In the following (Figs. 1–7) we
illustrate the power of the connection formula by giving
random values (in a suitable range) to the various

5From the gauge theory viewpoint a ∈ C parametrizes the
Cartan flat direction of the potential for the scalar field compo-
nent φ of the N ¼ 2 vector multiplet. The parameter E in the
gauge theory is the gauge invariant coordinate hTrφ2i of the
Coulomb branch.

BONELLI, IOSSA, LICHTIG, and TANZINI PHYS. REV. D 105, 044047 (2022)

044047-10



FIG. 1. Real and imaginary parts of the rescaled confluent Heun function eϵz=2zγ=2ðz − 1Þδ=2wðzÞ (blue, dashed), computed
numerically, and of the three-term power expansion near z ¼ 1 (solid, orange), obtained analytically using the connection coefficients
computed at zero instantons. The validity of the series expansion around z ¼ 1 (orange) is limited to a neighborhood of z ¼ 1, but going
to higher orders in the expansion to extend the validity is straightforward. The values of the parameters are a1 ¼ 0.970123þ 1.36981i,
a2 ¼ −0.386424 − 2.99783i, E ¼ 5.41627þ 6.40871i, m3 ¼ 1.68707 − 0.707722i, and Λ ¼ 1.96772þ 1.80414i.

FIG. 2. Real and imaginary parts of the rescaled confluent Heun function eϵz=2zγ=2ðz − 1Þδ=2wðzÞ (blue, dashed), computed
numerically, and of the three-term power expansion near z ¼ 1 (solid, orange), obtained analytically using the connection coefficients
computed at one instanton. The validity of the series expansion around z ¼ 1 (orange) is limited to a neighborhood of z ¼ 1, but going to
higher orders in the expansion to extend the validity is straightforward. The values of the parameters are a1 ¼ 0.970123þ 1.36981i,
a2 ¼ −0.386424 − 2.99783i, E ¼ 5.41627þ 6.40871i, m3 ¼ 1.68707 − 0.707722i, and Λ ¼ 1.96772þ 1.80414i.

FIG. 3. Real and imaginary parts of the rescaled confluent Heun function eϵz=2zγ=2ðz − 1Þδ=2wðzÞ (blue, dashed), computed
numerically, and of the three-term power expansion near z ¼ 1 (solid, orange), obtained analytically using the connection coefficients
computed at two instantons. The validity of the series expansion around z ¼ 1 (orange) is limited to a neighborhood of z ¼ 1, but going
to higher orders in the expansion to extend the validity is straightforward. The values of the parameters are a1 ¼ 0.970123þ 1.36981i,
a2 ¼ −0.386424 − 2.99783i, E ¼ 5.41627þ 6.40871i, m3 ¼ 1.68707 − 0.707722i, and Λ ¼ 1.96772þ 1.80414i.
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FIG. 4. Real and imaginary parts of the rescaled confluent Heun function eϵz=2zγ=2ðz − 1Þδ=2wðzÞ (blue, dashed), computed
numerically, and of the three-term power expansion near z ¼ 1 (solid, orange), obtained analytically using the connection coefficients
computed at zero instantons. The validity of the series expansion around z ¼ 1 (orange) is limited to a neighborhood of z ¼ 1, but going
to higher orders in the expansion to extend the validity is straightforward. The values of the parameters are a1 ¼ 0.5þ 1.24031i,
a2 ¼ −0.5þ 1.55419i, E ¼ 5.52396, m3 ¼ 0.92039þ 1.36765i, and Λ ¼ 1.60238þ 1.25941i.

FIG. 5. Real and imaginary parts of the rescaled confluent Heun function eϵz=2zγ=2ðz − 1Þδ=2wðzÞ (blue, dashed), computed
numerically, and of the three-term power expansion near z ¼ 1 (solid, orange), obtained analytically using the connection coefficients
computed at one instanton. The validity of the series expansion around z ¼ 1 (orange) is limited to a neighborhood of z ¼ 1, but going to
higher orders in the expansion to extend the validity is straightforward. The values of the parameters are a1 ¼ 0.5þ 1.24031i,
a2 ¼ −0.5þ 1.55419i, E ¼ 5.52396, m3 ¼ 0.92039þ 1.36765i, and Λ ¼ 1.60238þ 1.25941i.

FIG. 6. Real and imaginary parts of the rescaled confluent Heun function eϵz=2zγ=2ðz − 1Þδ=2wðzÞ (blue, dashed), computed
numerically, and of the three-term power expansion near z ¼ 1 (solid, orange), obtained analytically using the connection coefficients
computed at two instantons. The validity of the series expansion around z ¼ 1 (orange) is limited to a neighborhood of z ¼ 1, but going
to higher orders in the expansion to extend the validity is straightforward. The values of the parameters are a1 ¼ 0.5þ 1.24031i,
a2 ¼ −0.5þ 1.55419i, E ¼ 5.52396, m3 ¼ 0.92039þ 1.36765i, and Λ ¼ 1.60238þ 1.25941i.
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parameters and plotting the confluent Heun function
numerically versus the three-term power expansion at
z ¼ 1, computed analytically by using the connection
formula from 0 to 1. Here we use the dictionary between
the parameters of the CHE in standard form and the CFT
parameters given in (34), with θ ¼ þ1, θ0 ¼ −1, θ00 ¼ −1.
As a concluding remark, we notice that already the

first instanton correction significantly improves the
approximation.

V. APPLICATIONS TO THE
BLACK HOLE PROBLEM

There are several interesting physical quantities in the
black hole problem which are governed by the Teukolsky
equation. Having the explicit expression for the connection
coefficients allows us to compute them exactly. We turn to
this now.

A. The greybody factor

While all our analysis has been for classical black holes,
it is known that quantum black holes emit thermal radiation
from their horizons [65]. However, the spacetime outside of
the black hole acts as a potential barrier for the emitted
particles, so that the emission spectrum as measured by an
observer at infinity is no longer thermal, but is given by

σðωÞ
expω−mΩ

TH
−1, where σðωÞ is the so-called greybody factor.

Incidentally, it is the same as the absorption coefficient of
the black hole, which tells us the ratio of a flux of particles
incoming from infinity which penetrates the potential
barrier and is absorbed by the black hole [65,66]. More
precisely, the radial equation with s ¼ 0 has a conserved
flux, given by the “probability flux” when written as a

Schrödinger equation; ϕ ¼ Imψ†ðzÞ∂zψðzÞ for z on the real
line. The absorption coefficient is then defined as the ratio
between the flux ϕabs absorbed by the black hole (ingoing
at the horizon) and the flux ϕin incoming from infinity. For
nonzero spin, the potential (13) becomes complex, and the
flux is no longer conserved. In that case the absorption
coefficient can be computed using energy fluxes [67], but
for simplicity we stick here to s ¼ 0.

1. The exact result

On physical grounds we impose the boundary condition
that there is only an ingoing wave at the horizon

Rðr → rþÞ ∼ ðr − rþÞ−i
ω−mΩ
4πTH ; ð66Þ

so the wave function near the horizon is given by

ψðzÞ ¼ f̂ðtÞα2þðzÞ ¼ ðz − 1Þ12þa2ð1þOðz − 1ÞÞ; ð67Þ

with a2 ¼ −i ω−mΩ
4πTH

and recall that the time-dependent part
goes like e−iωt. This boundary condition is independent of
whether ω −mΩ is positive or negative; an observer near
the horizon always sees an ingoing flux into the horizon,
but when ω −mΩ < 0 it is outgoing according to an
observer at infinity. This phenomenon is known as super-
radiance [68]. In any case, this gives the flux

ϕabs ¼ Ima2; ð68Þ

ingoing at the horizon. Using our connection formula, we
find that near infinity the wave function behaves as

ψðzÞ ¼ Mα2þ;α−f
ðuÞ
α− ðzÞ

hΔα;Λ0; m0jVα2þð1ÞjΔα1i
þ Mα2þ;αþf

ðuÞ
αþ ðzÞ

hΔα;Λ0; m0jVα2þð1ÞjΔα1i

¼ Mα2þ;α−Λ
−1
2
−a
X
�
Aα−;m3�e

�Λz
2 ðΛzÞ�m3

hΔα−;Λ0; m0�jVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

ð1þOðz−1ÞÞ þ ðα → −αÞ: ð69Þ

At infinity, the ingoing part of the wave is easy to identify: recalling that Λ ¼ −2iωðrþ − r−Þ it corresponds to the positive
sign in the exponential. So the flux incoming from infinity is

ϕin ¼ Im
Λ
2

����Mα2þ;α−Aα−;m3þΛ
−1
2
−aþm3

hΔα−;Λ0; m0þjVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

þ ðα → −αÞ
����
2

¼ −
1

2

���� Γð1þ 2aÞΓð2aÞΓð1þ 2a2ÞΛ−aþm3

Γð1
2
þm3 þ aÞQ�Γð12 � a1 þ a2 þ aÞ

hΔα−;Λ0; m0þjVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

þ ða → −aÞ
����
2

: ð70Þ

The minus sign comes from the fact that we have simplified Λ and we have ImΛ ¼ −jΛj. Note that also the flux at the
horizon is negative (for nonsuperradiant modes). So the full absorption coefficient/greybody factor, defined as the flux
going into the horizon normalized by the flux coming in from infinity is
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σ ¼ ϕabs

ϕin
¼ −Im2a2

j Γð1þ2aÞΓð2aÞΓð1þ2a2ÞΛ−aþm3

Γð1
2
þm3þaÞ

Q
�Γð12�a1þa2þaÞ

hΔα−;Λ0;m0þjVα2
ð1ÞjΔα1

i
hΔα;Λ0;m0jVα2þð1ÞjΔα1

i þ ða → −aÞj2
: ð71Þ

This is the exact result, given as a power series in Λ. The correlators have to be understood as computed in the NS limit with
ϵ1 ¼ 1. The ratio of correlators can be written in terms of the NS free energy (see Appendix D), and substituting the
dictionary (36) we get

σ¼ϕabs

ϕin

¼ω−mΩ
2πTH

����
Γð1þ2aÞΓð2aÞΓð1− iω−mΩ

2πTH
Þð−2iωðrþ− r−ÞÞ−a−2iMωe−iωðrþ−r−Þ expð∂F inst

∂a1 Þja1¼a;a2¼−a

Γð1
2
−2iMωþaÞΓð1

2
− iω−mΩ

2πTH
þ2iMωþaÞΓð1

2
−2iMωþaÞ þða→−aÞ

����
−2

: ð72Þ

HereF instðΛ; a1; a2; m1; m2; m3Þ is the instanton part of the
NS free energy as defined in Appendix C computed for
general a⃗ ¼ ða1; a2Þ and after taking the derivative one
substitutes the values a⃗ ¼ ða;−aÞ appropriate for SUð2Þ.
The same holds for the second summand but one sub-
stitutes a⃗ ¼ ð−a; aÞ in the end. To write this result fully in
terms of the parameters of the black hole problem using
the dictionary (36), one has to invert the relation E ¼
a2 − Λ∂ΛF inst to obtain aðEÞ, which can be done order by
order inΛ. In the literature, the absorption coefficient forKerr
black holes has been calculated using various approxima-
tions. As a consistency check, we show that our result
reproduces the known results in the appropriate regimes.

2. Comparison with asymptotic matching

In [37], the absorption coefficient is calculated via an
asymptotic matching procedure. They work in a regime in

which aω ≪ 1 such that the angular eigenvalue
λ ≈ lðlþ 1Þ, and solve the Teukolsky equation for s ¼ 0
asymptotically in the regions near and far from the outer
horizon. Then one also takesMω ≪ 1 such that there exists
an overlap between the far and near regions and one
can match the asymptotic solutions. For us these limits
imply that also jΛj ¼ 4ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
≪ 1, so we expand our

exact transmission coefficient to lowest order in aω, Mω
and Λ. Since from the dictionary (36) E ¼ a2 þOðΛÞ ¼
1
4
þ lðlþ 1Þ þOðaω;MωÞ, in this limit we have a¼lþ1

2
.

Then the second term in the denominator of (71) which
contains Λa vanishes for Λ → 0 while the first one survives
and passes to the numerator. The instanton part of the NS
free energy also vanishes, F instðΛ → 0Þ ¼ 0. Equation (72)
then becomes

σ ≈
ω −mΩ
2πTH

ð2ωðrþ − r−ÞÞ2lþ1

����
Γðlþ 1ÞΓðlþ 1 − i ω−mΩ

2πTH
ÞΓðlþ 1Þ

Γð2lþ 2ÞΓð2lþ 1ÞΓð1 − i ω−mΩ
2πTH

Þ

����
2

: ð73Þ

Using the relation Γðlþ1Þ
Γð2lþ2Þ ¼

ffiffi
π

p
22lþ1Γðlþ3

2
Þ (and sending i → −i inside the modulus squared) we reduce precisely to the result of

[37] [Eq. (2.29)]

σ ≈
ω −mΩ
2TH

ðrþ − r−Þ2lþ1ω2lþ1

22lþ1

����
Γðlþ 1ÞΓðlþ 1þ i ω−mΩ

2πTH
Þ

Γðlþ 3
2
ÞΓð2lþ 1ÞΓð1þ i ω−mΩ

2πTH
Þ

����
2

; ð74Þ

which is valid for Mω; aω ≪ 1.

3. Comparison with semiclassics

We now show that the exact absorption coefficient
reduces to the semiclassical result obtained via a standard
WKB analysis of the equation

ϵ21∂2
zψðzÞ þ VðzÞψðzÞ ¼ 0: ð75Þ

where we have reintroduced the small parameter ϵ1 which
plays the role of the Planck constant to keep track of the
orders in the expansion. For the Teukolsky equation (which
has ϵ1 ¼ 1) the semiclassical regime is the regime in which
l ≫ 1. Following [38], we also take Mω ≪ 1 and s ¼ 0
such that there are two zeros of the potential between the
outer horizon and infinity for real values of z which we
denote by z1 and z2 with z2 > z1, between which there is a
potential barrier for the particle [VðzÞ becomes negative,
notice the “wrong sign” in front of the second derivative].
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Without these extra conditions, the potential generically
becomes complex, or does not form a barrier. The main
difference with the regime used for the asymptotic match-
ing procedure in the previous section is that there we
worked to leading order in Mω; aω. Now we still assume
them to be small but keep all orders, while working to first
subleading order in ϵ1. The standard WKB solutions are

ψðzÞ ∝ VðzÞ−1
4 exp

�
� i
ϵ1

Z
z

z�

ffiffiffiffiffiffiffiffiffiffiffi
Vðz0Þ

p
dz0

�
; ð76Þ

where z� is some arbitrary reference point, usually taken to
be a turning point of the potential, here corresponding to a
zero. The absorption coefficient is given by the trans-
mission coefficient from infinity to the horizon and
captures the tunneling amplitude through this potential
barrier. It is simply given by

σ ≈ exp

�
2i
ϵ1

Z
z2

z1

ffiffiffiffiffiffiffiffiffiffiffi
Vðz0Þ

p
dz0

�

¼ exp

�
−

2

ϵ1

Z
z2

z1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðz0Þj

p
dz0

�
: ð77Þ

On the other hand it is known that in the semiclassical
limit the potential of the BPZ equation reduces to the
Seiberg-Witten differential of the AGT dual gauge theory
[3], which for us is SUð2Þ gauge theory with Nf ¼ 3:
VðzÞ → −ϕ2

SWðzÞ. The integral between the two zeroes
then corresponds to half a B-cycle, so we identify

σ ≈ exp

�
−

2

ϵ1

Z
z2

z1

ϕSWðz0Þdz0
�

¼ exp

�
−

1

ϵ1

I
B
ϕSWðz0Þdz0

�
≕ exp

�
−
aD
ϵ1

�
; ð78Þ

where we have chosen an orientation of the B-cycle. Our
exact absorption coefficient reduces to this expression in
the semiclassical limit ϵ1 → 0. The detailed calculation is
deferred to Appendix D.

B. Quantization of quasinormal modes

With the explicit expression of the connection matrix
(52) in our hands we can extract the quantization condition
for the quasinormal modes. The correct boundary con-
ditions for quasinormal modes is only an ingoing wave at
the horizon and only an outgoing one at infinity [see e.g.,
[53], Eq. (80)], that is

RQNMðr → rþÞ ∼ ðr − rþÞ−i
ω−mΩ
4πTH

−s;

RQNMðr → ∞Þ ∼ r−1−2sþ2iMωeiωr: ð79Þ

In terms of the function ψðzÞ satisfying the Teukolsky
equation in Schrödinger form,

ψQNMðz → 1Þ ∼ ðz − 1Þ12þa2 ;

ψQNMðz → ∞Þ ∼ e−Λz=2ðΛzÞ−m3 : ð80Þ

However, imposing the ingoing boundary condition at the
horizon and using the connection formula, we get that near
infinity

FIG. 7. Forms of the potential −VðzÞ forM ¼ 1, a ¼ 0.5, λ ¼ 10,m ¼ 0, s ¼ 0, and ω ¼ 0.01 (left) and ω ¼ 1 (right). We see that for
Mω not small enough, the potential does not form a barrier.
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ψQNMðz → ∞Þ ∼
�
ΛaMα2þ;αþAαþm0−

hΔαþ;Λ0; m0−jVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

þ Λ−aMα2þ;α−Aα−m0−

hΔα−;Λ0; m0−jVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

�

× e−Λz=2ðΛzÞ−m3

þ
�
ΛaMα2þ;αþAαþm0þ

hΔαþ;Λ0; m0þjVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

þ Λ−aMα2þ;α−Aα−m0þ
hΔα−;Λ0; m0þjVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

�

× eΛz=2ðΛzÞm3 ; ð81Þ

which contains both an ingoing an an outgoing wave at infinity. In order to impose the correct boundary condition (80) we
need to impose that the coefficient of the ingoing wave vanishes,

ΛaMα2þ;αþAαþm0þ
hΔαþ;Λ0; m0þjVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

þ Λ−aMα2þ;α−Aα−m0þ
hΔα−;Λ0; m0þjVα2ð1ÞjΔα1i
hΔα;Λ0; m0jVα2þð1ÞjΔα1i

¼ 0

⇒ 1þ Λ−2a Mα2þ;α−Aα−m0þhΔα−;Λ0; m0þjVα2ð1ÞjΔα1i
Mα2þ;αþAαþm0þhΔαþ;Λ0; m0þjVα2ð1ÞjΔα1i

¼ 0: ð82Þ

Identifying in the NS limit

hΔα−;Λ0; m0þjVα2ð1ÞjΔα1i
hΔαþ;Λ0; m0þjVα2ð1ÞjΔα1i

¼ ZðΛ; aþ ϵ2
2
; m1; m2; m3 þ ϵ2

2
Þ

ZðΛ; a − ϵ2
2
; m1; m2; m3 þ ϵ2

2
Þ

¼ exp
1

ϵ1ϵ2

�
F inst

�
Λ; aþ ϵ2

2
; m1; m2; m3 þ

ϵ2
2

�
− F inst

�
Λ; a −

ϵ2
2
; m1; m2; m3 þ

ϵ2
2

��

→ exp
∂aF instðΛ; a; m1; m2; m3Þ

ϵ1
: ð83Þ

Moreover,

Mα2þ;α−Aα−m0þ

Mα2þ;αþAαþm0þ
¼

Γð2aϵ1ÞΓð1þ 2a
ϵ1
Þ

Γð− 2a
ϵ1
ÞΓð1 − 2a

ϵ1
Þ
Γð1

2
þ a2þa1−a

ϵ1
ÞΓð1

2
þ a2−a1−a

ϵ1
Þ

Γð1
2
þ a2þa1þa

ϵ1
ÞΓð1

2
þ a2−a1þa

ϵ1
Þ
Γð1

2
þ m3−a

ϵ1
Þ

Γð1
2
þ m3þa

ϵ1
Þ

¼
Γð2aϵ1ÞΓð1þ 2a

ϵ1
Þ

Γð− 2a
ϵ1
ÞΓð1 − 2a

ϵ1
Þ
Y3
i¼1

Γð1
2
þ mi−a

ϵ1
Þ

Γð1
2
þ miþa

ϵ1
Þ ¼ e−iπ

�Γð1þ 2a
ϵ1
Þ

Γð1 − 2a
ϵ1
Þ
�2Y3

i¼1

Γð1
2
þ mi−a

ϵ1
Þ

Γð1
2
þ miþa

ϵ1
Þ

¼ exp

�
−iπ þ 2 log

Γð1þ 2a
ϵ1
Þ

Γð1 − 2a
ϵ1
Þ þ

X3
i¼1

log
Γð1

2
þ mi−a

ϵ1
Þ

Γð1
2
þ miþa

ϵ1
Þ

�
: ð84Þ

Including the Λ factor (restoring the factor of ϵ1), we identify the exponent with (see Appendix C)

1

ϵ1

�
−iπϵ1 − 2a log

Λ
ϵ1

þ 2ϵ1 log
Γð1þ 2a

ϵ1
Þ

Γð1 − 2a
ϵ1
Þ þ ϵ1

X3
i¼1

log
Γð1

2
þ mi−a

ϵ1
Þ

Γð1
2
þ miþa

ϵ1
Þ
�
¼ −iπ þ 1

ϵ1
∂aF 1−loop: ð85Þ

The instanton and one-loop part combine to give the full NS free energy, and hence (82) can be conveniently rewritten for
ϵ1 ¼ 1 (as required by the dictionary), as

1 − e∂aF ¼ 0 ⇒ ∂aF ¼ 2πin; n ∈ Z: ð86Þ

To solve for the quasinormal mode frequencies, we need to invert the relation E ¼ a2 − Λ∂ΛF inst to obtain aðEÞ. Then the
quantization condition for the quasinormal mode frequencies that we have derived reads

∂aF
�
−2iωðrþ − r−Þ; aðEÞ;−i

ω −mΩ
2πTH

þ 2iMω;−2iMω − s;−2iMωþ s; 1

�
¼ 2πin; n ∈ Z; ð87Þ
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with E ¼ 1
4
þ λþ sðsþ 1Þ þ a2ω2 − 8M2ω2 − ð2Mω2þ

isωÞðrþ − r−Þ. This gives an equation that is solved for
a discrete set of ωn, in agreement with [31].6

C. Angular quantization

Yet another application of the connection formulas is the
computation of the angular eigenvalue λ. To this end, we
impose regularity of the angular eigenfunctions at z ¼ 0, 1.
According to the angular dictionary (39),

1� 2a1
2

¼ 1

2
∓ m − s

2
;

1� 2a2
2

¼ 1

2
∓ mþ s

2
; ð88Þ

therefore, according to (14) the behavior of Sλ as z → 0 is
given by

Sλðz → 0Þ ∝ z∓m−s
2 : ð89Þ

Since λs;m ¼ λ�s;−m, λ−s;m ¼ λs;m þ 2s [69], we can restrict
without loss of generality to the case m;−s ≥ 0. Regularity
of Sλ as z → 0 requires the boundary condition

ym>sðz → 0Þ ¼ f̂ðsÞα1−ðzÞ ≃ z
1
2
þm−s

2 : ð90Þ

Therefore near z → 1,

ym>sðz → 1Þ ¼ Na1−;a2−

hΔα;Λ0; m0jVα2−ð1ÞjΔα1i
hΔα;Λ0; m0jVα2ð1ÞjΔα1−i

f̂ðtÞα2−ðzÞ þ Na1−;a2þ

hΔα;Λ0; m0jVα2þð1ÞjΔα1i
hΔα;Λ0; m0jVα2ð1ÞjΔα1−i

f̂ðtÞα2þðzÞ

≃
Γð−m − sÞΓð1þm − sÞ
Γð1

2
− a − sÞΓð1

2
þ a − sÞ

hΔα;Λ0; m0jVα2−ð1ÞjΔα1i
hΔα;Λ0; m0jVα2ð1ÞjΔα1−i

ð1 − zÞ12þmþs
2

þ Γðmþ sÞΓð1þm − sÞ
Γð1

2
− aþmÞΓð1

2
þ aþmÞ

hΔα;Λ0; m0jVα2þð1ÞjΔα1i
hΔα;Λ0; m0jVα2ð1ÞjΔα1−i

ð1 − zÞ12−mþs
2 : ð91Þ

Let us start by assuming mþ s > 0. Then the second term
in (91) has a pole at z ¼ 1 for generic values of a, and the
first gamma function is divergent as it stands. However
both divergences are cured by imposing that

a ¼ lþ 1

2
; ð92Þ

for some positive integer l ≥ m ≥ −s. Analogously if
mþ s ≤ 0, regularity is ensured by imposing a ¼ lþ 1

2

with l ≥ m ≥ −s. Therefore in general the quantization
condition for the angular eigenvalue is

aðΛ; E;m1; m2; m3Þ ¼ lþ 1

2
;l ≥ maxðm;−sÞ: ð93Þ

As before, a is obtained by inverting the expression
E ¼ a2 − Λ∂ΛF inst order by order in Λ. Let us denote by

λ0 ¼ λðΛ ¼ 0Þ ¼ lðlþ 1Þ − sðsþ 1Þ: ð94Þ

Then the above quantization condition for the angular
eigenvalue λ can be more conveniently written as

λ− λ0 ¼ 2cs− c2−Λ∂ΛF inst

�
Λ;lþ 1

2
;−m;−s;−s

�����
Λ¼4c

;

ð95Þ

which is the result already obtained in [31].

D. Love numbers

Applying an external gravitational field to a self-
gravitating body generically causes it to deform, much
in the same way as an external electric field polarizes a
dielectric material. The response of the body to the external
gravitational tidal field is captured by the so-called tidal
response coefficients or Love numbers, named after A. E. H.
Love who first studied them in the context of the Earth’s
response to the tides [70]. In general relativity, the tidal
response coefficients are generally complex, and the real
part captures the conservative response of the body, whereas
the imaginary part captures dissipative effects. There is
some naming ambiguity where sometimes only the real,
conservative part is called the Love number, whereas
sometimes the full complex response coefficient is called
Love number. For us the Love number will be the full
complex response coefficient. For four-dimensional Kerr
black holes, the conservative (real part) of the response
coefficient to static external perturbations has been found to
vanish [39,41]. Moreover, Love numbers are measurable
quantities that can be probed with gravitational wave
observations [71,72]. Using our conformal field theory
approach to the Teukolsky equation we compute the Love
number of a slowly rotating Kerr black hole at linear order in

6In order to match with [31], it is important to notice that they
use the variable −ia instead of a, have a different Uð1Þ factor as
previously noticed, and a sign difference in the definition of the
free energy F. Moreover, their ∂aF is shifted by a factor of −iπ
with respect to ours.
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the frequency of the perturbation. The extension of our
computation to higher orders is straightforward.

1. Definition of Love number and the
intermediate region

For the definition of Love numbers we follow [41,39], to
which we refer for a more complete introduction. In the
case of a static external perturbation (ω ¼ 0), one imposes
the ingoing boundary condition on the radial part of the
perturbing field at the horizon, which then behaves near
infinity as

Rðr → ∞Þ ¼ Arl−sð1þOðr−1ÞÞ þ Br−l−s−1ð1þOðr−1ÞÞ

¼ Arl−s
�
ð1þOðr−1ÞÞ

þ kðsÞlm

�
r

rþ − r−

�
−2l−1

ð1þOðr−1ÞÞ
�
; ð96Þ

for some constants A and B. The Love number kðsÞlm is then
defined as the coefficient of ðr=ðrþ − r−ÞÞ−2l−1 [note that
this differs from the definition in [41] where they define it
as the coefficient of ðr=2MÞ−2l−1 instead]. In the nonstatic
case however, the definition of the Love number is less
clear, since the behavior of the radial function at infinity is
now qualitatively different from (96); it is oscillatory
[cf. (69)] due to the term ∝ ω2 in the potential (A3). For
small frequencies we can however define an intermediate
regime r ≫ M, rω ≪ 1 in which the multipole expansion
(96) is still valid and we can read off the Love numbers in
the same way as in the static case. Recall the Teukolsky
equation written as a Schrödinger equation

d2ψðzÞ
dz2

þ VCFTðzÞψðzÞ ¼ 0; ð97Þ

with the potential (30)

VCFTðzÞ ¼ −
1

z
1

z − 1
ð−Λ∂ΛF inst þ Δ̂2 þ Δ̂1 − Δ̂Þ

þ Δ̂2

ðz − 1Þ2 þ
Δ̂1

z2
−
m3Λ
z

−
Λ2

4
: ð98Þ

The intermediate regime corresponds to z ≫ 1, Λz ≪ 1.
Expanding in these variables the potential reads

VCFTðzÞ
Λ2

¼
1
4
− E

Λ2z2
ð1þOðz−1;ΛzÞÞ: ð99Þ

We see that in this regime the leading term in the potential is
the one∝ 1=z2, and themultipole expansion holds. In a sense
we are taking z to be big enough to be far from the horizon,
but not so far as to reach the oscillatory region at infinity, as
alreadymentioned in [40]. In the static case this intermediate
region where the multipole expansion is valid extends all the
way to infinity. On the CFT side, the conformal blocks in this
regime are computed by expanding the irregular state as in
(23) and doing the OPE of the degenerate state near infinity
term by term. This gives an expansion in Λz and z−1.

E. Slowly rotating Kerr Love numbers

Let us compute the Kerr Love numbers up to first order in
Mω ∼MΩ. In order to do this we have to consider only the
first instanton correction since Λ ∝ Mω. The wave function
up to one instanton can be derived from the conformal blocks
in the intermediate regime. Schematically,

ψðzÞ ∼ hΔ;Λ0; m0jϕðzÞV2ð1ÞjΔ1i
hΔ;Λ0; m0jV2ð1ÞjΔ1i

≃
ðhΔj þ m0Λ0

2Δ hΔjL1ÞϕðzÞV2ð1ÞjΔ1i
ðhΔj þ m0Λ0

2Δ hΔjL1ÞV2ð1ÞjΔ1i
: ð100Þ

Imposing the ingoing boundary condition at the horizon, this
gives the followingwave function in the intermediate regime,

ψðzÞ ¼
�
1þ m3Λ

1
2
− 2a2

��
1 −

1

z

�
∂1=z þ z −

1

2

��X
θ¼�

Ma2þaθz
1
2
−θa

�
1 −

1

z

�1
2
þa2

× 2F1

�
1

2
þ a2 þ θa − a1;

1

2
þ a2 þ θaþ a1; 1þ 2θa;

1

z

�
þOðΛ2Þ: ð101Þ

Note that the first instanton contributes at this order only if s ≠ 0 since for zero spinm3Λ ∼OðM2ω2Þ. For a slowly rotating
black hole the connection coefficients start with OððMωÞ0Þ ¼ OððMΩÞ0Þ terms. Indeed, substituting the dictionary we find

Ma2þaþ ¼
Γð−1 − 2l − 2ΔlÞΓð1 − 2i ω−mΩ

4πTH
− sÞ

Γð−l − Δl − 2i ω−mΩ
4πTH

þ 2iMωÞΓð−l − Δl − 2iMω − sÞ

¼ l!ðlþ sÞ!
ð2lþ 1Þ! ð−1Þ

sþ1
ð2iMωÞð−2i ω−mΩ

4πTH
þ 2iMωÞ

2Δl
þOðMωÞ;

Ma2þa− ¼ Γð1þ 2lÞΓð1 − sÞ
Γðlþ 1ÞΓðl − sþ 1Þ þOðMωÞ; ð102Þ
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where a ¼ lþ 1=2þ Δl. It turns out that the first correction to a vanishes, soΔl ∼OðM2ω2Þ. Also note that all the gamma
functions are finite since s ≤ 0. Plugging in the dictionary and expanding the hypergeometrics gives

2F1

�
1

2
þa2þa−a1;

1

2
þa2þaþa1;1þ2a;

1

z

�
≃ 2F1

�
1þl− s−2iMω;1þl−2i

ω−mΩ
4πTH

þ2iMω;2þ2l;
1

z

�
;

2F1

�
1

2
þa2−a−a1;

1

2
þa2−aþa1;1−2a;

1

z

�
≃
X2l
n¼0

ð−l− s−2iMωÞðnÞð−l−2iω−mΩ
4πTH

þ2iMωÞðnÞ
ð−2lÞðnÞ

z−n

n!

þ
Γð−2l−2ΔlÞΓð1þl− s−2iMωÞΓð1þl−2iω−mΩ

4πTH
þ2iMωÞ

Γð−l− s−2iMωÞΓð−l−2iω−mΩ
4πTH

þ2iMωÞΓð2lþ2Þ z−2l−1

× 2F1

�
1þl− s−2iMω;1þl−2i

ω−mΩ
4πTH

þ2iMω;2þ2l;
1

z

�
:

ð103Þ

Note that

Γð−2l − 2ΔlÞΓð1þ l − s − 2iMωÞΓð1þ l − 2i ω−mΩ
4πTH

þ 2iMωÞ
Γð−l − s − 2iMωÞΓð−l − 2i ω−mΩ

4πTH
þ 2iMωÞΓð2lþ 2Þ Ma2þa− ¼ −Ma2þaþ þOððMωÞ2Þ; ð104Þ

therefore at this order the hypergeometrics simplify one against the other up to a finite polynomial, hence

ψðzÞ ¼
�
1þ m3Λ

1
2
− 2a2

��
1 −

1

z

�
∂1=z þ z −

1

2

��

×Ma2þa−z
1
2
þa

�
1 −

1

z

�1
2
þa2 X2l

n¼0

ð−l − s − 2iMωÞðnÞð−l − 2i ω−mΩ
4πTH

þ 2iMωÞðnÞ
ð−2lÞðnÞ

z−n

n!
þOðM2ω2Þ: ð105Þ

The radial wave function is given by

RðrÞ ¼ Δ−sþ1
2 ðrÞψðzÞ; ð106Þ

where

z ¼ r
2M

þOðM2Ω2Þ; ΔðrÞ−sþ1
2 ¼ ðrþ − r−Þ−s−1z−s−1

�
1 −

1

z

�
−sþ1

2

: ð107Þ

To find the Love numbers, we need the ratio between the coefficient of r−l−s−1 (the response) and the coefficient of rl−s (the
source). The term coming from the first instanton in (105) will not contribute at this order. Indeed this term gives

ψðzÞ⊃−4iM2ωs
lðlþ1Þ

��
1−

1

z

�
∂1=zþ z−

1

2

�
Ma2þa−z

lþ1

�
1−

1

z

�1−s
2 Xlþs

n¼0

ð−l− sÞðnÞð−lÞðnÞ
ð−2lÞðnÞ

z−n

n!
þOðM2ω2Þ

¼−4iM2ωs
lðlþ1Þ Ma2þa−z

lþ1

�
1−

1

z

�1−s
2

�
−zlþ2lþ s

2
þ
�
1−

1

z

�
∂1=z

�Xlþs

n¼0

ð−l− sÞðnÞð−lÞðnÞ
ð−2lÞðnÞ

z−n

n!
þOðM2ω2Þ: ð108Þ

After taking into account the factor ofΔ from (106), one sees that this contribution toRðrÞ does not contain the power that we
are interested in. Focusing on the zero instanton contribution, the ð1 − 1=zÞ prefactor has anOðMωÞ term in the exponent that
has to be expanded, resulting in

RðrÞ ⊃ i
ω −mΩ
4πTH

Ma2þa−

ðrþ − r−Þsþ1

rl−s

ðð2MÞlþ1

�
1þ s

2M
r

þ sðsþ 1Þ
2

�
2M
r

�
2
�X∞

k¼1

X2l
n¼0

ð−l − sÞðnÞð−lÞðnÞ
ð−2lÞðnÞ

ð r
2MÞ−n−k
n!k

: ð109Þ
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This term contains the correct power, with coefficient

RðrÞ ⊃ Ma2þa−

ðrþ − r−Þsþ1

rl−s

ðð2MÞlþ1
i
ω −mΩ
4πTH

�
r
2M

�
−2l−1

�Xlþs

n¼0

ð−l − sÞðnÞð−lÞðnÞ
ð−2lÞðnÞn!ð2lþ 1 − nÞ

þ s
Xlþs

n¼0

ð−l − sÞðnÞð−lÞðnÞ
ð−2lÞðnÞn!ð2l − nÞ þ

sðsþ 1Þ
2

Xlþs

n¼0

ð−l − sÞðnÞð−lÞðnÞ
ð−2lÞðnÞn!ð2l − 1 − nÞ

�
: ð110Þ

A surprising identity reveals that

Xlþs

n¼0

ð−l − sÞðnÞð−lÞðnÞ
ð−2lÞðnÞn!ð2lþ 1 − nÞ þ s

Xlþs

n¼0

ð−l − sÞðnÞð−lÞðnÞ
ð−2lÞðnÞn!ð2l − nÞ þ

sðsþ 1Þ
2

Xlþs

n¼0

ð−l − sÞðnÞð−lÞðnÞ
ð−2lÞðnÞn!ð2l − 1 − nÞ

¼ ðlþ sÞ!ðl − sÞ!ðl!Þ2
ð2lÞ!ð2lþ 1Þ! ð−1Þs; ð111Þ

therefore

RðrÞ ⊃ Ma2þa−

ðrþ − r−Þsþ1

rl−s

ð2MÞlþ1

�
1þ i

ω −mΩ
4πTH

�
r
2M

�
−2l−1 ðlþ sÞ!ðl − sÞ!ðl!Þ2

ð2lÞ!ð2lþ 1Þ! ð−1Þs
�
: ð112Þ

Noticing that 1=4πTH ≃ 2M finally gives the Love number

ksa;m ¼ 2iMðω −mΩÞð−1Þs ðlþ sÞ!ðl − sÞ!ðl!Þ2
ð2lÞ!ð2lþ 1Þ! þOðM2ω2;M2Ω2;M2ωΩÞ: ð113Þ

This result matches with formula (6.17) in [41]. Note that the Love number remains purely imaginary for a small frequency
perturbation, and that it vanishes in the case of a static perturbation of a Schwarzschild black hole.
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APPENDIX A: THE RADIAL AND ANGULAR POTENTIALS

Both the radial and angular part of the Teukolsky equation can be written as a Schrödinger equation

d2ψðzÞ
dz2

þ VðzÞψðzÞ ¼ 0; ðA1Þ

with potential

VðzÞ ¼ 1

z2ðz − 1Þ2
X4
i¼0

Âizi: ðA2Þ

For the radial part, the coefficients are given by
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Âr
0 ¼

a2ð1 −m2Þ −M2 þ 4amMωðM −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ þ 4M2ω2ða2 − 2M2Þ þ 8M3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ω2

4ða2 −M2Þ

þ ðisÞ am
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
− 2a2Mωþ 2M2ωðM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ

2ða2 −M2Þ −
s2

4
;

Âr
1 ¼

4a2λ − 4M2λþ ð8amMωþ 16a2Mω2 − 32M3ω2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
þ 4a4ω2 − 36a2M2ω2 þ 32M4ω2

4ða2 −M2Þ

þ ðisÞ
�
−iþ ð2a2ω − amÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

a2 −M2

�
þ s2;

Âr
2 ¼ −λ − 5a2ω2 þ 12M2ω2 − 12Mω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
þ ðisÞ

�
i − 6ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p 	
− s2;

Âr
3 ¼ 8a2ω2 − 8M2ω2 þ 8Mω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
þ ðisÞ4ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
;

Âr
4 ¼ 4ðM2 − a2Þω2; ðA3Þ

while for the angular part they are

Âθ
0 ¼ −

1

4
ð−1þm − sÞð1þm − sÞ;

Âθ
1 ¼ c2 þ sþ 2cs −msþ s2 þ λ;

Âθ
2 ¼ −s − ðcþ sÞð5cþ sÞ − λ;

Âθ
3 ¼ 4cð2cþ sÞ;

Âθ
4 ¼ −4c2: ðA4Þ

APPENDIX B: CFT CALCULATIONS

1. The BPZ equation

To calculate the BPZ equation for the correlator (22) we first evaluate the correlator with an extra insertion of the energy-
momentum tensor,

hΔ;Λ0; m0jTðwÞΦ2;1ðzÞV2ðyÞjV1i

¼
X
n≥0

1

wnþ2
hΔ;Λ0; m0j½Ln;Φ2;1ðzÞV2ðyÞ�jV1i þ

�
Δ1

w2
þm0Λ0

w
þ Λ2

0

�
hΔ;Λ0; m0jΦ2;1ðzÞV2ðyÞjV1i

¼
�
z
w

1

w − z
∂z þ

Δ2;1

ðw − zÞ2 þ
y
w

1

w − y
∂y þ

Δ2

ðw − yÞ2 þ
Δ1

w2
þþm0Λ0

w
þ Λ2

0

�
hΔ;Λ0; m0jΦ2;1ðzÞV2ðyÞjV1i: ðB1Þ

Now we can simply compute

hΔ;Λ0; m0jL−2 ·Φ2;1ðzÞV2ðyÞjV1i ¼
I
Cz

dw
w − z

hΔ;Λ0; m0jTðwÞΦ2;1ðzÞV2ðyÞjV1i

¼
�
−
1

z
∂z þ

y
z

1

z − y
∂y þ

Δ2

ðz − yÞ2 þ
Δ1

z2
þm0Λ0

z
þ Λ2

0

�
hΔ;Λ0; m0jΦ2;1ðzÞV2ðyÞjV1i: ðB2Þ

Using the Ward identity for L0,

ðz∂z þ y∂y − Λ0∂Λ0
þ Δ2;1 þ Δ2 þ Δ1 − ΔÞhΔ;Λ0; m0jΦ2;1ðzÞV2ðyÞjV1i ¼ 0; ðB3Þ

we can eliminate ∂y. Then setting y ¼ 1 we obtain
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hΔ;Λ0; m0jL−2 ·Φ2;1ðzÞV2ð1ÞjV1i

¼
�
−
1

z
∂z −

1

z
1

z − 1
ðz∂z − Λ0∂Λ0

þ Δ2;1 þ Δ2 þ Δ1 − ΔÞ þ Δ2

ðz − 1Þ2 þ
Δ1

z2
þm0Λ0

z
þ Λ2

0

�
ΨðzÞ; ðB4Þ

which gives the BPZ equation

0 ¼ hΔ;Λ0; m0jðb−2∂2
z þ L−2·ÞΦ2;1ðzÞV2ð1ÞjV1i

¼
�
b−2∂2

z −
1

z
∂z −

1

z
1

z − 1
ðz∂z − Λ0∂Λ0

þ Δ2;1 þ Δ2 þ Δ1 − ΔÞ þ Δ2

ðz − 1Þ2 þ
Δ1

z2
þm0Λ0

z
þ Λ2

0

�
ΨðzÞ: ðB5Þ

2. DOZZ factors

We normalize vertex operators so that the DOZZ three-point function [60,61] reads

Cðα1; α2; α3Þ ¼
1

ϒbðα1 þ α2 þ α3 þ Q
2
Þϒbðα1 þ α2 − α3 þ Q

2
Þϒbðα2 þ α3 − α1 þ Q

2
Þϒbðα3 þ α1 − α2 þ Q

2
Þ ; ðB6Þ

where

ϒbðxÞ ¼
1

ΓbðxÞΓbðQ − xÞ ; ΓbðxÞ ¼
Γ2ðxjb; b−1Þ
Γ2ðQ2 jb; b−1Þ

; ðB7Þ

and Γ2 is the double gamma function. ϒb satisfies the shift relation

ϒbðxþ bÞ ¼ γðbxÞb1−2bxϒbðxÞ: ðB8Þ

Moreover, γðxÞ ¼ ΓðxÞ=Γð1 − xÞ, and satisfies the following relations

γð−xÞγðxÞ ¼ −
1

x2
; γðxþ 1Þ ¼ −x2γðxÞ; γðxÞ ¼ 1

γð1 − xÞ : ðB9Þ

The two-point function normalization is given in terms of the DOZZ factors, that is

hΔαjΔαi ¼ GðαÞ ¼ C
�
α;−

Q
2
; α
�

¼ 1

ϒbð0Þϒbð0Þϒbð2αÞϒbð2αþQÞ : ðB10Þ

The regular OPE coefficient appearing in Sec. IV can be explicitly computed in terms of DOZZ factors, that is

Cαi�α2;1;αi ¼ G−1ðαi�ÞC
�
αi�;

−b −Q
2

; αi

�
¼ γð−b2Þγð∓ 2bαiÞb2bð�2αþQÞ: ðB11Þ

Another relevant ratio is

Cðα1; α2; α3þÞ
Cðα1; α2; α3−Þ

¼ b−8bα3
Y
�;�

γ

�
1

2
þ bð�α1 � α2 þ α3Þ

�
; ðB12Þ

that is readily computed from the shift relation (B8). With these relations at our disposal, we can evaluate ratios of the Ks
appearing in Eq. (50). In particular,

KðtÞ
α2−;α2−

KðtÞ
α2þ;α2þ

¼ G−1ðα2−ÞCðα2−; −b−Q2
; α2ÞCðα; α2−;α1Þ

G−1ðα2þÞCðα2þ; −b−Q2
; α2ÞCðα; α2þ; α1Þ

¼ γð2bα2Þ
γð−2bα2Þ

Y
�;�

γ

�
1

2
þ bð�α� α1 − α2Þ

�
; ðB13Þ

and similarly
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KðuÞ
αþ;αþ

KðuÞ
α−;α−

¼ γð−2bαÞ
γð2bαÞ

Y
�;�

γ

�
1

2
þ bðα� α1 � α2Þ

�
: ðB14Þ

3. Irregular OPE

Following [9] let us make the following ansatz for the OPE with the irregular state

hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄Þ ¼
X
β

C̃βα;α2;1

����
X

μ0;k
Aβ;μ0z

ζΛλ
0e

γΛ0zz−khΔβ;Λ0; μ0; kj
����
2

; ðB15Þ

with all the parameters to be determined. Here hΔβ;Λ0; μ0; kj is the kth irregular descendant, that schematically has the form

jΔβ;Λ0; μ0; ki ∼
X

L−JΛ−k00
0 ∂k0

Λ0
jΔβ;Λ0; μ0i; ðB16Þ

where the sum runs over all k0; k00; J such that k0 þ k00 þ jJj ¼ k, with appropriate coefficients that can be determined from
the Ward identities. Note that in principle the parameters ζ, λ, γ depend both on β and μ0. The first constraint comes from
comparing with the regular OPE; namely,

hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄ÞjΔβi ∼ hΔα;Λ0; Λ̄0; μ0jΔβ�i ¼ hΔαjΔβ�i ⇒ β� ¼ α: ðB17Þ

The other coefficients can be fixed by acting with the Virasoro generators on the left- and right-hand sides of the ansatz
(B15). Focusing on the chiral correlator and comparing powers of Λ and z we have

hΔα;Λ0; m0jΦ2;1ðzÞL0 ¼ ðΔα þ Λ0∂Λ0
− Δ2;1 − z∂zÞhΔα;Λ0; m0jΦ2;1ðzÞ

¼
X
k

zζ−kΛλ
0e

γΛ0zðΔα − Δ2;1 − ζ þ kþ λþ Λ0∂Λ0
ÞhΔβ;Λ0; μ0; kj

¼
X
k

zζ−kΛλ
0e

γΛ0zðΔβ þ kþ Λ0∂Λ0
ÞhΔβ;Λ0; μ0; kj; ðB18Þ

that gives the constraint

λ − ζ ¼ Δβ − Δα þ Δ2;1: ðB19Þ

Now let us consider the action of L−1. We have

hΔα;Λ0; m0jΦ2;1ðzÞL−1 ¼ ðm0Λ0 − ∂zÞhΔα;Λ0; m0jΦ2;1ðzÞ
¼

X
k

zζΛλ
0e

γΛ0zððm0 − γÞΛ0z−k þ ðk − ζÞz−k−1ÞhΔβ;Λ0; μ0; kj

¼ zζΛλ
0e

γΛ0zðhΔβ;Λ0; μ0jμ0Λ0 þ z−1hΔβ;Λ0; μ0; 1jL−1 þ…Þ: ðB20Þ

Comparing powers,

OðzζÞ ⇒ m0 − γ ¼ μ0;

Oðzζ−1Þ ⇒ μ0Λ0hΔβ;Λ0; μ0; 1j − ζhΔβ;Λ0; μ0j ¼ hΔβ;Λ0; μ0; 1jL−1: ðB21Þ

The first irregular descendant is of the form7

hΔβ;Λ0; μ0; 1j ¼ AhΔβ;Λ0; μ0jL1 þ B∂Λ0
hΔβ;Λ0; μ0j; ðB22Þ

therefore Eq. (B21) gives

7The term ∼Λ−1 cannot be determined at this order. Luckily, it doesn’t play any role in the following discussion.
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μ0Λ0ðAhΔβ;Λ0; μ0jL1 þ B∂Λ0
hΔβ;Λ0; μ0jÞ − ζhΔβ;Λ0; μ0j ¼ AhΔβ;Λ0; μ0jL1L−1 þ B∂Λ0

hΔβ;Λ0; μ0jL−1: ðB23Þ

The right-hand side gives

Að2Δβ þ 2Λ0∂Λ0
ÞhΔβ;Λ0; μ0j þ Aμ0Λ0hΔβ;Λ0; μ0jL1 þ Bμ0hΔβ;Λ0; μ0j þ Bμ0Λ0∂Λ0

hΔβ;Λ0; μ0j
¼ ð2AΔβ þ Bμ0ÞhΔβ;Λ0; μ0j þ ð2AΛ0 þ Bμ0Λ0Þ∂Λ0

hΔβ;Λ0; μ0j þ Aμ0Λ0hΔβ;Λ0; μ0jL1: ðB24Þ

Comparing term by term, we obtain equations for A, B

2AΔβ þ Bμ0 ¼ −ζ; 2AΛ0 þ Bμ0Λ0 ¼ Bμ0Λ0; ⇒ A ¼ 0; B ¼ −
ζ

μ0
: ðB25Þ

Another constraint comes from the action of L2. We have

hΔα;Λ0; m0jΦ2;1ðzÞL−2 ¼ ðΛ2
0 − z−1∂z þ Δ2;1z−2ÞhΔα;Λ0; m0jΦ2;1ðzÞ

¼
X
k

zζΛλ
0e

γΛ0zðΛ2
0z

−k − γΛ0z−k−1 þ ðk − ζ þ Δ2;1Þz−k−2ÞhΔβ;Λ0; μ0; kj

¼ zζΛλ
0e

γΛ0zðhΔβ;Λ0; μ0jΛ2
0 þ z−1hΔβ;Λ0; μ0; 1jL−2 þ…Þ

¼ zζΛλ
0e

γΛ0z

�
hΔβ;Λ0; μ0jΛ2

0 − z−1
ζ

μ0
ð2Λ0 þ Λ2

0∂Λ0
ÞhΔβ;Λ0; μ0j þ…

�
: ðB26Þ

The previous equation is trivially satisfied at order OðzζÞ, and comparing at order Oðzζ−1Þ gives
�
−Λ2

0

ζ

μ0
∂Λ0

− γΛ0

�
hΔβ;Λ0; μ0j ¼ −

ζ

μ0
ð2Λ0 þ Λ2

0∂Λ0
ÞhΔβ;Λ0; μ0j; ðB27Þ

that finally gives

γ ¼ 2
ζ

μ0
: ðB28Þ

The last constraint we need is most easily obtained by looking at the null-state equation satisfied by the irregular three-point
function (B17). We have

hΔα;Λ0; m0jTðwÞΦ2;1ðzÞjΔα�i ¼ hΔα;Λ0; m0j
�
m0Λ0

w
þ Λ2

0 þ
Δα�

w2
þ Δ2;1

ðw − zÞ2 þ
z=w
w − z

∂z

�
Φ2;1ðzÞjΔα�i; ðB29Þ

therefore

�
b−2∂2

z −
1

z
∂z þ

Δα�
z2

þm0Λ0

z
þ Λ2

0

�
hΔα;Λ0; m0jΦ2;1ðzÞjΔα�i ¼ 0: ðB30Þ

Substituting the irregular OPE and looking at the leading term as z → ∞ gives

�
γΛ0

b

�
2

þ Λ2
0 ¼ 0 ⇒ γ ¼ �ib: ðB31Þ

Putting all the constraints together yields, for a fixed channel β ¼ αθ, θ ¼ �,
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γ ¼ �ib;

ζ ¼ 1

2
ðb2 � ibm0Þ ¼

1

2
ðbQ − 1� 2m3Þ;

λ − ζ ¼ −
1

2
bQþ θbαθ;

μ0 ¼ m0� ¼ m0 � ð−ibÞ: ðB32Þ

Finally, the irregular OPE reads

hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄Þ ¼ C̃αþα;α2;1

����
X

�;k
Aαþ;m0�Λ

−1
2
bQþbαþðΛzÞ12ðbQ−1�2m3Þe�Λz=2z−khΔαþ ;Λ0; m0�; kj

����
2

þ C̃α−α;α2;1

����
X

�;k
Aα−;m0�Λ

−1
2
bQ−bα−ðΛzÞ12ðbQ−1�2m3Þe�Λz=2z−khΔα− ;Λ0; m0�; kj

����
2

: ðB33Þ

where we absorbed a 2ib factor in the OPE coefficients for later convenience, Λ ¼ 2ibΛ0 and m3 ¼ i
2
bm0. Here the

irregular state depending on Λ0, Λ̄0 denotes the full (chiral ⊗ antichiral) state, and the modulus squared of the chiral states
(depending only on Λ0) has to be understood as a tensor product. Now we can fix the OPE coefficients C̃α�α;α2;1 , Aα�;m0�
making use of the BPZ equation for the full irregular three-point function. Namely,

�
b−2∂2

z −
1

z
∂z þ

Δα�
z2

þm0Λ0

z
þ Λ2

0

�
hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄ÞjΔα�i ¼ 0: ðB34Þ

If we define hΔα;Λ0; Λ̄0; m0jΦ2;1ðz; z̄ÞjΔα�i ¼ je−Λz
2 ðΛzÞ12ðbQþ2bα�Þj2G�ðz; z̄Þ, then Gðz; z̄Þ will satisfy

�
z∂2

z þ ð1þ 2bα� − ΛzÞ∂z −
Λ
2
ð1þ 2m3 þ 2bα�Þ

�
G�ðz; z̄Þ ¼ 0: ðB35Þ

Note that we can rewrite the previous equation using the natural variable w ¼ Λz, and obtain

�
w∂2

w þ ð1þ 2bα� − wÞ∂w −
1

2
ð1þ 2m3 þ 2bα�Þ

�
G�ðw; w̄Þ ¼ 0: ðB36Þ

Equation (B36) is the confluent hypergeometric equation, therefore8

G�ðw; w̄Þ ¼ Kð1Þ
�

����1F1

�
1

2
þm3 þ bα�; 1þ 2bα�; w

�����
2

þ Kð2Þ
�

����w−2bα�
1F1

�
1

2
þm3 − bα�; 1 − 2bα�; w

�����
2

: ðB37Þ

Expanding the correlator near zero and comparing the solution (B37) with the regular OPE near zero,

Kð1Þ
� jðΛzÞ12bQþbα�j2 þ Kð2Þ

� jðΛzÞ12bQ−bα�j2 ¼ GðαÞCαα2;1α�jz
1
2
bQ∓bα�j2; ðB38Þ

and hence

Kð1Þ
þ ¼ 0; Kð2Þ

þ ¼ GðαÞCαα2;1αþjΛ−1
2
bQþbαþj2; Kð1Þ

− ¼ GðαÞCαα2;1α− jΛ−1
2
bQ−bα− j2; Kð2Þ

− ¼ 0: ðB39Þ

Now expanding the confluent hypergeometric near infinity and matching with the OPE we can finally fix all the
coefficients. Recall that as w → ∞

8Note that in principle also mixed terms could appear. However, they cannot be there in order to correctly match the behavior near
zero.
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1F1

�
1

2
þm3þbα�;1þ2bα�;w

�
≃

Γð1þ2bα�Þ
Γð1

2
þm3þbα�Þ

eww−1
2
þm3−bα� þ Γð1þ2bα�Þ

Γð1
2
−m3þbα�Þ

ð−1Þ−1
2
−m3−bα�ðwÞ−1

2
−m3−bα� ;

w−2bα�
1F1

�
1

2
þm3−bα�;1−2bα�;w

�
≃

Γð1−2bα�Þ
Γð1

2
þm3−bα�Þ

eww−1
2
þm3−bα� þ Γð1−2bα�Þ

Γð1
2
−m3−bα�Þ

ð−1Þ−1
2
−m3þbα�ðwÞ−1

2
−m3−bα� :

ðB40Þ

Let us concentrate on the αþ channel. Expanding the full correlator and matching z powers gives

GðαÞCαα2;1αþjΛ−1
2
bQþbαþj2

���� Γð1 − 2bαþÞ
Γð1

2
þm3 − bαþÞ

ew=2w
bQ
2
−1
2
þm3 þ Γð1 − 2bαþÞ

Γð1
2
−m3 − bαþÞ

ð−1Þ−1
2
−m3þbαþe−w=2ðwÞbQ2 −1

2
−m3

����
2

¼ GðαþÞC̃αþα;α2;1
����
X

�Aαþ;m0�Λ
−1
2
bQþbαþðΛzÞ12ðbQ−1�2m3Þe�Λz=2

����
2

: ðB41Þ

Finally, from Eq. (B41) we can read off the coefficients (the
coefficients for the α− channel are obtained simply sending
αþ → −α−)

C̃α�α;α2;1 ¼ Cα�α2;1α;

Aαþ;m0þ ¼ Γð1 − 2bαþÞ
Γð1

2
þm3 − bαþÞ

;

Aαþ;m0−
¼ Γð1 − 2bαþÞ

Γð1
2
−m3 − bαþÞ

ð−1Þ−1
2
−m3þbαþ ;

Aα−;m0þ ¼ Γð1þ 2bα−Þ
Γð1

2
þm3 þ bα−Þ

;

Aα−;m0−
¼ Γð1þ 2bα−Þ

Γð1
2
−m3 þ bα−Þ

ð−1Þ−1
2
−m3−bα− : ðB42Þ

Two remarks about equations (B42): first of all, the OPE is
symmetric in α → −α, as it should be. Moreover, we
expect the full irregular three-point correlator to be sym-
metric under the simultaneous transformation Λ → −Λ,
m3 → −m3. Under this transformation

Aαþ;m3þΛ
−1
2
ðbQ−2bαþÞe

Λz
2 ðΛzÞ12ðbQ−1þ2m3Þ

→ ð−1Þ−1
2
−m3þbαþ

Γð1 − 2bαþÞ
Γð1

2
−m3 − bαþÞ

× Λ−1
2
ðbQ−2bαþÞe−

Λz
2 ðΛzÞ12ðbQ−1−2m3Þ

¼ Aαþ;m3−
Λ−1

2
ðbQ−2bαþÞe−

Λz
2 ðΛzÞ12ðbQ−1−2m3Þ; ðB43Þ

and the same happens for the other channel. This suggests
that the ð−1Þ−1

2
−m3�bα� factor naturally multiplies Λ in the

irregular OPE. Therefore, after this minor change we obtain
formulas (43), and (44).

APPENDIX C: NEKRASOV FORMULAS

1. The AGT dictionary

The irregular conformal blocks of the form
hΔα;Λ0; m0jVα2ð1ÞjΔα1i can be efficiently computed as a
gauge theory instanton partition function thanks to the AGT
correspondence [3]. Concretely, we have

hΔα;Λ0;m0jVα2ð1ÞjΔα1i ¼Zinst
SUð2ÞðΛ;a;m1;m2;m3Þ; ðC1Þ

where Zinst is the Nekrasov instanton partition function of
N ¼ 2 SUð2Þ gauge theory with three hypermultiplets.
The Nekrasov partition function contains a fundamental
mass scale ℏ ¼ ffiffiffiffiffiffiffiffiffi

ϵ1ϵ2
p

which sets the units in which
everything is measured. The mapping of parameters
between CFT and gauge theory is then

ϵ1 ¼
ℏ
b
; ϵ2 ¼ ℏb; ϵ ¼ ϵ1 þ ϵ2 → Q ¼ ϵ

ℏ
;

Δi ¼
Q2

4
− α2i ¼

ϵ2

4
− a2i
ℏ2

; ai ≔ ℏαi;

Λ ¼ 2iℏΛ0; m3 ¼
i
2
ℏm0;

m1 ¼ a1 þ a2; m2 ¼ −a1 þ a2: ðC2Þ

The factors of iℏ in Λ and m3 do not appear in [54] where
the irregular state is defined because they drop terms of the
form

ffiffiffiffiffiffiffiffiffiffiffiffi−ϵ1ϵ2
p

.

2. The instanton partition function

The SUð2Þ partition function is given by the Uð2Þ
partition function divided by the Uð1Þ-factor,

Zinst
SUð2ÞðΛ;a;m1;m2;m3;ϵ1;ϵ2Þ
¼Z−1

Uð1ÞðΛ;m1;m2;ϵ1;ϵ2ÞZinst
Uð2ÞðΛ;a;m1;m2;m3;ϵ1;ϵ2Þ;

ðC3Þ
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where the Uð2Þ partition function is given by a combinatorial formula which we review now. We often suppress the
dependence on ϵ1, ϵ2. We mostly follow the notation of [3].
Let Y ¼ ðλ1 ≥ λ2 ≥ …Þ be a Young tableau where λi is the height of the i-th column and we set λi ¼ 0 when i is larger

than the width of the tableau. Its transpose is denoted by YT ¼ ðλ01 ≥ λ02 ≥ …Þ. For a box s at the coordinate ði; jÞwe define
the arm-length AYðsÞ and the leg-length LYðsÞ with respect to the tableau Y as

AYðsÞ ¼ λi − j; LYðsÞ ¼ λ0j − i: ðC4Þ

Note that they can be negative when s is outside the tableau. Define a function E by

Eða; Y1; Y2; sÞ ¼ a − ϵ1LY2
ðsÞ þ ϵ2ðAY1

ðsÞ þ 1Þ: ðC5Þ

Using the notation a⃗ ¼ ða1; a2Þ with a1 ¼ −a2 ¼ a and Y⃗ ¼ ðY1; Y2Þ, the contribution of a vector multiplet is

zinstvectorða⃗; Y⃗Þ ¼
Y2
i;j¼1

Y
s∈Yi

1

Eðai − aj; Yi; Yj; sÞ
Y
t∈Yj

1

ϵ1 þ ϵ2 − Eðaj − ai; Yj; Yi; tÞ
ðC6Þ

and that of an (antifundamental) hypermultiplet

zinstmatterða⃗; Y⃗; mÞ ¼
Y2
i¼1

Y
s∈Yi

�
aþmþ ϵ1

�
i −

1

2

�
þ ϵ2

�
j −

1

2

��
: ðC7Þ

This is different from the formula given in [3] because our masses are shifted with respect to theirs by ϵ=2. Finally, theUð2Þ
partition function is given by

Zinst
Uð2ÞðΛ; a; m1; m2; m3Þ ¼

X
Y⃗

ΛjY⃗jzinstvectorða⃗; Y⃗Þ
Y3
n¼1

zinstmatterða⃗; Y⃗; mnÞ; ðC8Þ

where jY⃗j denotes the total number of boxes in Y1 and Y2.
The Uð1Þ-factor on the other hand can be obtained by decoupling one mass from the Uð1Þ-factor for Nf ¼ 4. Before

decoupling, the third and fourth masses are given by

m3 ¼ a3 þ a4; m4 ¼ a3 − a4; ðC9Þ

where a3 and a4 are related to the momenta of the two vertex operators that collide to form the irregular state. The Uð1Þ-
factor is

Z
Nf¼4

Uð1Þ ¼ ð1 − qÞ2ða2þϵ=2Þða3þϵ=2Þ=ϵ1ϵ2 : ðC10Þ

The decoupling limit is given by q → 0, m4 → ∞ with qm4 ≡ Λ finite. This gives the Nf ¼ 3 Uð1Þ-factor

ZUð1Þ ¼ e−ðm1þm2þϵÞΛ=2ϵ1ϵ2 : ðC11Þ

For reference, we give the one-instanton partition functions,

Zinst
Uð2ÞðΛ; a; m1; m2; m3Þ ¼ 1þ

Q
3
i¼1 ð−aþmi þ ϵ

2
Þ

2aϵ1ϵ2ð−2aþ ϵÞ Λ −
Q

3
i¼1 ðaþmi þ ϵ

2
Þ

2aϵ1ϵ2ð2aþ ϵÞ ΛþOðΛ2Þ;

Zinst
SUð2ÞðΛ; a; m1; m2; m3Þ ¼ 1 −

ϵ2 − 4a2 − 4m1m2

2ϵ1ϵ2ðϵþ 2aÞðϵ − 2aÞm3ΛþOðΛ2Þ: ðC12Þ
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3. The Nekrasov-Shatashvili limit

While the above formulas are valid for arbitrary ϵ1, ϵ2, in the context of the black hole we work in the Nekrasov-
Shatashvili limit which is defined by ϵ2 → 0while keeping ϵ1 finite [56]. Furthermore, we set ϵ1 ¼ 1. The conformal blocks
hΔα;Λ0; m0jVα2ð1ÞjΔα1i then need to be understood as being computed as a partition function in the NS limit. This is done
by computing it for arbitrary ϵ1, ϵ2 and taking ϵ1 ¼ 1 and ϵ2 → 0 in the end, because the partition function itself diverges in
this limit, while the ratios appearing e.g., in the connection formulas remain finite. Furthermore, we define the instanton part
of the NS free energy as

F instðΛ; a; m1; m2; m3; ϵ1Þ ¼ ϵ1 lim
ϵ2→0

ϵ2 logZinst
SUð2ÞðΛ; a; m1; m2; m3; ϵ1; ϵ2Þ: ðC13Þ

One also uses the Matone relation [63]

E ¼ a2 − Λ∂ΛF inst; ðC14Þ

which can be inverted order by order in Λ to obtain aðEÞ. For reference, we give some relevant quantities computed up to
one instanton, with ϵ1 ¼ 1 and the leading power of ϵ2.

Zinst
SUð2ÞðΛ; a; m1; m2; m3Þ ¼ 1 −

1
4
− a2 −m1m2

1
2
− 2a2

m3Λ
ϵ2

þOðΛ2Þ;

F instðΛ; a; m1; m2; m3Þ ¼ −
1
4
− a2 −m1m2

1
2
− 2a2

m3ΛþOðΛ2Þ;

aðEÞ ¼
ffiffiffiffi
E

p
−

1
4
− Eþ a21 − a22ffiffiffiffi
E

p ð1 − 4EÞ m3ΛþOðΛ2Þ;

Zinst
SUð2ÞðΛ; a;m1 −

θ0ϵ2
2
; m2 −

θ0ϵ2
2
; m3Þ

Zinst
SUð2ÞðΛ; a; m1 −

θϵ2
2
; m2 þ θϵ2

2
; m3Þ

¼ 1 −
θðm1 −m2Þ þ θ0ðm1 þm2Þ

1 − 4a2
m3ΛþOðΛ2Þ: ðC15Þ

Finally, we define the full NS free energy, including the classical and the one-loop part by

∂aF ðΛ; a; m1; m2; m3; ϵ1Þ ¼ −2a log
Λ
ϵ1

þ 2ϵ1 log
Γð1þ 2a

ϵ1
Þ

Γð1 − 2a
ϵ1
Þ þ ϵ1

X3
i¼1

log
Γð1

2
þ mi−a

ϵ1
Þ

Γð1
2
þ miþa

ϵ1
Þ

þ ∂aF instðΛ; a; m1; m2; m3; ϵ1Þ: ðC16Þ

APPENDIX D: THE SEMICLASSICAL ABSORPTION COEFFICIENT

We give the detailed reduction of the full absorption coefficient in the semiclassical regime to the final result
σ ¼ exp−aD=ϵ1, with

aD ≔
I
B
ϕSWðzÞdz ¼ lim

ϵ1→0
∂aF; ðD1Þ

where ϕSWðzÞ is the Seiberg-Witten differential of the N ¼ 2 SUð2Þ gauge theory with three flavors, and F is the full NS
free energy introduced in the previous section. First we restore the powers of ϵ1 which were previously set to one in the
exact absorption coefficient and substitute the AGT dictionary (see Appendix C),

σ ¼
−Im m1þm2

ϵ1���� Γð1þ
2a
ϵ1
ÞΓð2aϵ1ÞΓð1þ

m1þm2
ϵ1

ÞðΛϵ1Þ
−aþm3

ϵ1Q
3

i¼1
Γð1

2
þmiþa

ϵ1
Þ

Zinst
SUð2ÞðΛ;aþ

ϵ2
2
;m1;m2;m3þϵ2

2
Þ

Zinst
SUð2ÞðΛ;a;m1−

ϵ2
2
;m2−

ϵ2
2
;m3Þ þ ða → −aÞ

����
2
: ðD2Þ

In the regime where we have two real turning points and where we have obtained the semiclassical transmission coefficient
we have jΛj ≪ 1. Then a can be obtained order by order in an expansion inΛ, starting from a ¼ lþ 1

2
þOðΛÞ by using the
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relation E ¼ a2 − Λ∂ΛF inst. SinceΛ∂ΛF inst is real for real a, we see that all terms in the expansion and therefore a itself are
real. We anticipate that in σ the term surviving in the semiclassical limit will be the first term in the denominator. This can be
seen quickly by approximating ΓðzÞ ≈ ez log z for large z. In the semiclassical limit a ≫ mi and the contribution of the five

gamma functions containing a in the first term goes like e
a
ϵ1
log a

ϵ1 . Extracting the term ϵ
− a
ϵ1

1 cancels the explicit power of ϵ1
outside, and the rest of the exponential blows up. On the other hand the behavior of the second term in the denominator of
the transmission coefficient can be obtained by sending a → −a, so we see that in this case the exponential vanishes, and
indeed the dominant term is the first one. The gamma functions give the correct semiclassical one-loop contributions using
Stirling’s formula, and the ratio of partition functions gives the correct instanton contribution to aD.
In more detail, we can split the contributions to aD as

aD ¼ a1−loopD þ ainstD ¼ a1−loopD;vector þ
X3
i¼1

a1−loopD;matter þ ainstD;vector þ
X3
i¼1

ainstD;matter: ðD3Þ

We take all matter multiplets to be in the antifundamental representation of SUð2Þ. The vector and matter multiplet one-loop
contributions to aD are

a1−loopD;vectorðaÞ ¼ −8aþ 4a log
2a
Λ

þ 4a log
−2a
Λ

;

a1−loopD;matterða;mÞ ¼ ða −mÞ
�
1 − log

�
−aþm

Λ

��
þ ðaþmÞ

�
1 − log

�
aþm
Λ

��
: ðD4Þ

These are antisymmetric under a → −a as they should be. On the other hand, in the absorption coefficient we have several
gamma functions, which we can expand in the semiclassical limit using Stirling’s approximation
logΓðzÞ ¼ ðz − 1=2Þ log z − zþOðz−1Þ. We neglect the constant factors of 2π since we have the same amount of
gamma functions in the numerator and denominator and they will cancel. We have for the vector multiplet

ϵ1 log

����Γ
�
2a
ϵ1

�
Γ
�
1þ 2a

ϵ1

�����
−2

→ 8a − 8a log 2aþ 8a log ϵ1 ¼ −a1−loopD;vectorðaÞ − 4πia − 8a log
Λ
ϵ1
; ðD5Þ

and for the matter multiplets,

ϵ1 log

����Γ
�
1

2
þmþ a

ϵ1

�����
2

→ ða −mÞ logða −mÞ þ ðaþmÞ logðaþmÞ − 2að1þ log ϵ1Þ

¼ −a1−loopD;matterða;mÞ þ iπða −mÞ þ 2a log
Λ
ϵ1
; ðD6Þ

and there is one more gamma function,

����Γ
�
1þm1 þm2

ϵ1

�����
2

→ i
m1 þm2

ϵ1
e−iπðm1þm2Þ=ϵ1 : ðD7Þ

The last contribution is

���� Λϵ1
����
2
a−m3
ϵ1 ¼

�
Λ
ϵ1

�2a
ϵ1eiπ

aþm3
ϵ1 : ðD8Þ

Putting it all together we have

−Im
m1 þm2

ϵ1

����
Q

3
i¼1 Γð12 þ miþa

ϵ1
ÞðΛϵ1Þ

a−m3
ϵ1

Γð1þ 2a
ϵ1
ÞΓð2aϵ1ÞΓð1þ

m1þm2

ϵ1
Þ

����
2

→ e−a
1−loop
D =ϵ1 : ðD9Þ

Now let us look at the instanton partition functions,
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Zinst
SUð2ÞðΛ; a; m1 −

ϵ2
2
; m2 −

ϵ2
2
; m3Þ

Zinst
SUð2ÞðΛ; aþ ϵ2

2
; m1; m2; m3 þ ϵ2

2
Þ ¼

Zinst
SUð2ÞðΛ; ã − ϵ2

2
; m1 −

ϵ2
2
; m2 −

ϵ2
2
; m̃3 −

ϵ2
2
Þ

Zinst
SUð2ÞðΛ; ã; m1; m2; m̃3Þ

; ðD10Þ

where we have defined ã ¼ aþ ϵ2
2
and m̃3 ¼ m3 þ ϵ2

2
. Now, looking at the explicit expressions for the Uð2Þ Nekrasov

partition functions, we see that the part corresponding to the gauge field depends only on a1 − a2, and the part
corresponding the hypermultiplets only on a1 þmi and a2 þmi. So, we see that

Zinst
Uð2Þ

�
Λ;a1¼ ã−

ϵ2
2
;a2¼−ãþ ϵ2

2
;m1−

ϵ2
2
;m2−

ϵ2
2
;m̃3−

ϵ2
2

�
¼Zinst

Uð2ÞðΛ;a1 ¼ ã−ϵ2;a2 ¼−ã;m1;m2; m̃3Þ: ðD11Þ

The Uð1Þ part behaves as

Z−1
Uð1Þ

�
Λ; m1 −

ϵ2
2
; m2 −

ϵ2
2

�
¼ eðm1þm2−ϵ2ÞΛ=2ϵ1ϵ2 ¼ e−Λ=2ϵ1Z−1

Uð1ÞðΛ; m1; m2Þ; ðD12Þ

therefore,

Zinst
SUð2ÞðΛ; a; m1 −

ϵ2
2
; m2 −

ϵ2
2
; m3Þ

Zinst
SUð2ÞðΛ; aþ ϵ2

2
; m1; m2; m3 þ ϵ2

2
Þ ¼ e−Λ=2ϵ1

Zinst
SUð2ÞðΛ; ã − ϵ2;−ã; m1; m2; m̃3Þ
Zinst

SUð2ÞðΛ; ã;−ã; m1; m2; m̃3Þ

¼ e−Λ=2ϵ1 exp
1

ϵ1ϵ2
fF instðΛ; ã − ϵ2;−ã; m1; m2; m̃3Þ − F instðΛ; ã;−ã; m1; m2; m̃3Þg

¼ e−Λ=2ϵ1 exp−
1

ϵ1

∂
∂a1F

instðΛ; a1; a2; m1; m2; m̃3Þja1¼ã;a2¼−ã: ðD13Þ

Now there are no more factors of 1=ϵ2 so we can safely drop the tildes. On the other hand, by symmetry considerations
which are most easily seen in the expression as a conformal block, and using the fact that Λ and the three masses are purely
imaginary while a is real, we have

Zinst
SUð2ÞðΛ; a; m1 −

ϵ2
2
; m2 −

ϵ2
2
; m3Þ

Zinst
SUð2ÞðΛ; aþ ϵ2

2
; m1; m2; m3 þ ϵ2

2
Þ ¼

Zinst
SUð2Þð−Λ; a;−m1 þ ϵ2

2
;−m2 þ ϵ2

2
;−m3Þ

Zinst
SUð2Þð−Λ; aþ ϵ2

2
;−m1;−m2;−m3 −

ϵ2
2
Þ

¼
Zinst

SUð2ÞðΛ�; a�; m�
1 þ ϵ2

2
; m�

2 þ ϵ2
2
; m�

3Þ
Zinst

SUð2ÞðΛ�; a� þ ϵ2
2
; m�

1; m
�
2; m

�
3 −

ϵ2
2
Þ : ðD14Þ

Therefore, repeating the same steps as above,

�Zinst
SUð2ÞðΛ; a; m1 −

ϵ2
2
; m2 −

ϵ2
2
; m3Þ

Zinst
SUð2ÞðΛ; aþ ϵ2

2
; m1; m2; m3 þ ϵ2

2
Þ
��

¼ eΛ=2ϵ1 exp
1

ϵ1

∂
∂a2F

instðΛ; a1; a2; m1; m2; m3Þja1¼a;a2¼−a: ðD15Þ

Now using ∂aF ¼ ∂a1F − ∂a2F we have:

�����
Zinst

SUð2ÞðΛ; a; m1 −
ϵ2
2
; m2 −

ϵ2
2
; m3Þ

Zinst
SUð2Þ

�
Λ; aþ ϵ2

2
; m1; m2; m3 þ ϵ2

2

	
�����
2

¼ e−a
inst
D =ϵ1 ; ðD16Þ

which combined with the one-loop part finally gives

σ ≈ e−aD=ϵ1 : ðD17Þ

This result is valid for l ≫ 1 and Mω; aω ≪ 1, while keeping all orders in Mω; aω.
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