
Article https://doi.org/10.1038/s41467-024-45970-0

Direct contribution of the sensory cortex to
the judgment of stimulus duration

Sebastian Reinartz 1,2,4, Arash Fassihi1,3,4, Maria Ravera 1, Luciano Paz1,
Francesca Pulecchi1, Marco Gigante1 & Mathew E. Diamond 1

Decision making frequently depends on monitoring the duration of sensory
events. To determine whether, and how, the perception of elapsed time
derives from the neuronal representation of the stimulus itself, we recorded
and optogenetically modulated vibrissal somatosensory cortical activity as
male rats judged vibration duration. Perceived duration was dilated by opto-
genetic excitation. A second set of rats judged vibration intensity; here,
optogenetic excitation amplified the intensity percept, demonstrating sensory
cortex to be the common gateway both to time and to stimulus feature pro-
cessing. A model beginning with the membrane currents evoked by vibrissal
and optogenetic drive and culminating in the representation of perceived time
successfully replicated rats’ choices. Time perception is thus as deeply inter-
meshed within the sensory processing pathway as is the sense of touch itself,
suggesting that the experience of time may be further investigated with the
toolbox of sensory coding.

The neuronal mechanisms underlying the feeling of the elapsed time
of sensory events remain unknown. If the neuronal substrate for per-
ceived time is envisioned as a distributed network1,2 rather than as a
single restricted population dedicated to the function of time mea-
surement, then a working definition for this network is the set of brain
regions within which a variation in firing leads directly and system-
atically to a variation in perceived time.One series of studies addresses
the role of the striatum3–5. There is also evidence for a role of cortical
processing networks in time perception6–8. However, it is commonly
believed that within cortical networks the primary sensory cortex
merely relays start and stop signals to a central processing network. In
disagreement withmost current frameworks9–12, our hypothesis is that
the ongoing activity of the primary somatosensory cortex plays a
direct and systematic role in the judgment of time. The neural sub-
strate of time perception, we posit, might involve integration and
accumulation of the drive within the sensory processing pathway13, as
suggested in human psychophysical experiments across various sen-
sory modalities14–18. As such, it is useful to pinpoint which sensory
processing structure participates in the percept. If the cortical sensory
representation is one component of the substrate for the timepercept,

then the detailed firing patterns within the primary sensory cortex will
directly mediate the feeling of the passage of time. To support or
refute this hypothesis, and to compare it to competing hypotheses, a
quantitative, causal relationship between neuronal firing and time
perception is needed.

Alongside the investigation of the role of sensory cortical firing in
time perception, we examine the psychophysical effects of optoge-
netic intervention in a set of rats who judged the intensity of tactile
stimuli. This control group provides a demonstration that, while
manipulation of the tactile sensory cortex affords unexpected results
in time perception, it also leads to expected effects on tactile per-
ception. Somatosensory cortex, we will argue, functions within its
sensory modality, and beyond it.

In sum, here we seek to determine whether the tactile sensory
cortex is part of the neuronal substrate for perceived time and, if so,
what are the features of firing that causally lead to shifts in perceived
time. The coding algorithms for sensory features are well
established19–25. Guided by these algorithms, we tested whether the
effects of optogenetic manipulation on duration judgment could be
predicted using real neuronal spiking patterns as input. The successful
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implementation of a computational framework for the perceived
duration of tactile stimuli based on the firing patterns evoked by those
stimuli opens up the field of time perception to the tools of sensory
coding.

Results
The subjective experience of an external stimulus has a dual nature –

the feeling of the physical features of the sensory input and, in parallel,
the feeling of the time occupied by that stimulus13. While decades of
research have built an understanding of the basic neuronal coding
algorithms for stimulus features19–25, a mechanistic, causal under-
standing of the percept of the elapsed duration of an event is still
lacking. Here, we combine rat psychophysics with optogenetics to
demonstrate that perception of stimulus durationmay be treated with
the language of sensory coding.

Duration and intensity percepts interact
On each trial, rats compared two vibrissal vibrations (stimulus 1, sti-
mulus 2; Fig. 1a). Vibrations were constructed by concatenating a
sequence of speed values, sampled from a half Gaussian distribution26.
A single vibrationwas definedby its intensity (I) inunits ofmean speed,
and its duration (T). We trained two sets of rats. Duration rats had to
compare the two stimuli according to their relative time spans (T1 > T2
or T2 > T1) and select the associated reward spout. Intensity rats had to
compare the two stimuli according to the analogous relation (I1 > I2 or
I2 > I1). The twogroups received the same stimulus set (Supplementary
Fig. 1), the only difference being the feature they were trained to
extract – for duration rats, stimulus intensities were irrelevant to
reward location, while for intensity rats stimulus durations were irre-
levant (Fig. 1a, gray and red arrows prior to choice).

In the upper plot of Fig. 1b, the left bar depicts the performance
(78% correct) of duration rats when choices are analyzed according to
relative stimulus durations. When the same choices are analyzed
according to relative stimulus intensities (right bar), performance was
above chance (54% correct). Intensity rats performed at 85% correct
according to relative stimulus intensities (lower plot, right bar); when
analyzed according to relative stimulus durations (left bar), perfor-
mance was above chance (53% correct). The 3–4% deviation from 50%
when choices are analyzed according to the untrained feature indi-
cates that this feature influences judgments that would, ideally, be
based on only the relevant feature13.

We further examined the effects of the relevant and irrelevant
features. The psychometric curves of Fig. 1c showchoices according to
graded stimulus differences. In the upper plot, choices in duration rats
(gray) were governed by ΔT (normalized duration difference, defined
as (T2 - T1)/(T2 + T1)) while choices in intensity rats (red) were weakly
modulated by ΔT. In the lower plot, choices in intensity rats (red) were
governed byΔI (normalized intensity difference, (I2 – I1)/(I2+ I1)) while
choices in duration rats (gray) were weakly modulated by ΔI.

To quantify the bias caused by the irrelevant feature (intensity) on
duration perception, we computed how the average incidence of
judging T2 > T1 was affected by ΔI (Fig. 1d, upper plot; also see Meth-
ods). Similarly, we quantified theduration-dependent bias in perceived
intensity by computing how the average incidence of judging I2 > I1
was affected by ΔT (Fig. 1d, lower plot).

While earlier work5, using a data set partially overlapping that of
the present study, demonstrated the effect of the irrelevant feature
through overall performance (as in Fig. 1b) and by choice probabilities,
thepsychometric curves (Fig. 1c) and thebiasmeasure (Fig. 1d) given in
the current analysis are novel.

Optogenetic control of perception
The systematic interaction between perceived duration and perceived
intensity (Fig. 1a–d) leads to the hypothesis that the neuronal repre-
sentation of stimulus features – here, vibration intensity – might

constitute the basis of some forms of time perception. The remaining
experiments test this hypothesis by trying to specify an underlying
neuronal code within vibrissal somatosensory cortex (vS1) that could
account for rats’ judgment of both features. ChR2(H134R) was
expressed in left vS1 (Fig. 2a, left) of 5 rats and neuronal populations
were accessed bymovable microdrive arrays coupled with optic fibers
(Fig. 2a, middle). If vS1 directly participates in generating time judg-
ments, optogenetic excitation of vS1 (Fig. 2a, right panel, lower left
data) will systematically bias the psychometric curves. Specifically,
boosting the firing evoked by the tactile stimulus will cause that sti-
mulus to be perceived as occupying a longer period. As a control, in 2
duration-trained rats eNpHR3.0, was expressed in left vS1 (Fig. 2a, right
panel, lower right data). Hereafter, optogenetic interventions in
ChR2(H134R)-expressing rats and in eNpHR3-expressing rats are
referred to as photoexcitation and photoinhibition, respectively.

The principal findings are shown in Fig. 2b. The effects of pho-
toexcitation and photoinhibition during stimulus 2 of the delayed
comparison task are compared to the no-light condition (left panel).
The psychometric curves associated with these conditions, pooled
across rats and sessions, are given in Fig. 2b, middle panel. Under
photoexcitation, the psychometric curve shifted leftward, indicating
an overestimation of stimulus 2 duration, as compared to the no-light
condition (Fig. 2b, middle, light blue versus black). The control con-
dition, photoinhibition, gave aweakbut significant rightward shift (red
versus black). If the effects of blue light application in ChR2(H134R)-
expressing rats were due to tissue heating, one would also expect to
find tissue-heating effects with red light application in eNpHR3.0-
expressing rats; instead, red light appeared to yield an effect con-
sistent with opsin-mediated neuronal inhibition.

The right panel shows the opposing perceptual biases of photo-
excitation versus photoinhibition during stimulus 2, visualized by
plotting the psychometric curve point of subjective equality (PSE)
against the percent of trialswhereT2was judged longer thanT1, across
different values of ΔT (see Methods). Notwithstanding individual dif-
ferences in the magnitude of effect, the separation between the blue
and red distributions signifies that rats were biased towards judging
stimulus 2 as having longer duration in the photoexcitation condition,
as compared to the photoinhibition condition.

Rats showed the same acuity in detecting duration differences on
light-on versus no-light trials, as assessed by the slopes (quantified as
the inverse of the psychometric parameter σ) of the three psycho-
metric curves of themiddle panel (vS1 photoexcitation versus no-light
trials, p =0.93; photoinhibition versus no-light trials, p = 0.23; resam-
pling method, permutation test, 1000×). Thus, while optogenetic
intervention caused changes in perceived time, the altered percept
was reliable (see also Supplementary Fig. 2b, c).

Photoexcitation during presentation of stimulus 2 caused a left-
ward shift of the psychometric curve, indicating an overestimation of
that vibration’s duration, as compared to the shift obtained with
photoexcitation during stimulus 1 (Fig. 2c; see also Supplementary
Fig. 3 for the individual rat psychometric curves). Estimation of the
fitting parameters (Supplementary Fig. 4) indicates that changes in
psychometric curves are explained by a horizontal shift (μ) and not by
changes in acuity (σ) or lapse rates (γ, λ).

Three additional experiments further support the argument that
vS1 firing is a key ingredient in perceiving stimulus duration. EYFP-
ChR2(H134R)-expressing rats (n = 4) trained to compare the duration
of each trial’s single vibration duration to a fixed, reference duration
showed a bias towards longer perceived duration on trials with
photoexcitation (Supplementary Fig. 5). Here the light was modu-
lated stochastically across the tactile stimulus presentation. This
finding indicates that the vS1 role in stimulus duration perception is
not specific to the delayed comparison working memory task, nor is
it specific to the profile of light application in optogenetic trials.
Additionally, blue light presented above the apparatus, applied with
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Fig. 1 | Interacting perception of duration and intensity. a Rat enters nose poke,
bringing its right whiskers into plate contact. Following a pre-stimulus delay (0.5 s),
stimulus 1 is delivered through plate motion. Stimulus 2 is presented after the 2-s
inter-stimulus delay. Acoustic go cue prompts the rat to make a choice. b Upper:
performance of duration rats (n = 6) with choices computed according to duration
and intensity rules. Lower: performance of intensity rats according to duration and
intensity rules (n = 10). Analysis of choices according to duration rule done on trials
with largest ΔT; analysis of choices according to intensity rule done on trials with
largest ΔI. Each dot represents a single subject. c Upper: Psychometric curves of
both sets of rats based onΔT. Lower: Psychometric curves of both sets of rats based

onΔI. Bothplots are averagedacross all subjects.dUpper: Intensity-dependentbias
in perceived duration. For a given ΔI, bias is the average of the percent of trials
judged T2 > T1 across ΔT values. Lower: Duration-dependent bias in perceived
intensity, computed in the analogous way. Bias measure details in Methods. Stan-
dard error of the mean (SEM) across animals (upper: n = 6 rats, examined over 531
independent experiments; lower: n = 10 rats, examined over 878 independent
experiments) indicated as error bars. Part of the behavioral data presented here
reanalyzed from an earlier study5 (all 6 duration rats shown in their Fig. 1c, and 7 of
10 intensity rats shown in their Figure 6B). Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-45970-0

Nature Communications |         (2024) 15:1712 3



the same temporal alignment to the vibration, had no effect (Fig. 2d),
indicating that behavioral biases were not likely to be due to visual
cues. The intensity bias of Fig. 1 (T2 > T1 choice more likely when
I2 > I1) was conserved across all three experimental conditions
(photoexcitation, control, and photoinhibition), indicating that
optogenetic intervention acted within the regime of natural coding

and decoding (Supplementary Fig. 6). One final control experiment
indicates that the vS1 neuronal population involved in building the
duration percept also participates in the perception of tactile sti-
mulus features. In intensity rats expressing EYFP-ChR2(H134R),
optogenetic excitation during presentation of stimulus 2 or stimulus
1 caused overestimation of that vibration’s intensity (Fig. 2e).
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In each of the experiments illustrated in Fig. 2, optogenetic inter-
vention had no choice effect when the two stimuli differed substantially
in the sensory feature to be compared, namely, when ΔT = −0.35 or 0.35
for duration rats and when ΔI =−0.3 or 0.3 for intensity rats. If optoge-
neticmanipulation haddisrupted performancedirectly at the decisional
level, it would be expected to affect choices no matter which stimulus
pair was presented; instead, the manipulations merely shifted the per-
cept in a systematic way, as borne out by the psychometric parameters
(Supplementary Fig. 4). Taken together, the results point to a multi-
plexing of informationwithin vS1, where neuronal activity appears to be
used to construct percepts both within the tactile modality (vibration
intensity) and beyond the tactile modality (elapsed time).

Time coding
Through what physiological mechanisms does the neuronal firing
within vS1 contribute to the percept of the passage of time? Fig. 3a
illustrates two example neuronal clusters from duration-trained EYFP-
ChR2(H134R)-expressing rats, representative of the population’s het-
erogeneity in responsiveness to vibrissal stimulation and
photoexcitation27. The neuronal cluster in the left plots responded
weakly to vibrissal stimulation, showing only an onset transient. The
same cluster was robustly excited by blue light. The neuronal cluster in
the right plots gave a strong, non-adapting response to vibrissal sti-
mulation, but was not excited by blue light. Population sensory
responses, with and without optogenetic excitation, are shown in
Fig. 3b. Color indicates the deviation of firing rate from the baseline
level (z-score; see Methods for definition of baseline). In the upper
plot, neuronal clusters are ordered by responsemagnitude to stimulus
2, which was accompanied by photoexcitation. In the lower plot,
neurons are ordered by response magnitude to stimulus 1, which was
accompanied by photoexcitation. The population’s response to
vibrissal stimulation alone and vibrissal-plus-photoexcitation can be
seen by comparing the vertically aligned upper and lower plots
(quantification in Supplementary Figs. 7, 8).

The temporal profile of vS1 sensory responses was conserved
under photoexcitation (similarly to the conserved stimulus-evoked
profiles in auditory cortex28). The conserved sensory response profile
offers a physiological measure to help explain why optogenetic
intervention did not disrupt the fundamental psychophysical para-
meters of time judgment, apart from perceived duration (i.e., Fig. 2,
Supplementary Figs. 2b, c, 4). Figure 3c, left, shows the population
peristimulus time histogram (PSTH) in EYFP-ChR2(H134R)-expressing
rats in the absence of photoexcitation. To allow pooling across dif-
ferent durations, the first 150ms and final 50ms are shown. After an
early peak, firing rate remained stable until offset. The right panel
shows the PSTHs of the same population under photoexcitation,
revealing amodest boost in the vibrissae-evoked response, particularly
at vibration onset and thereafter distributed evenly across the period
of tactile stimulation.

To evaluate the role of vS1 in the two behavioral tasks, we first
consider the control rats trained to compare vibration intensities.
Figure 3d illustrates the vS1 population (n = 138 neurons) mean firing
rates recorded in EYFP-ChR2(H134R)-expressing rats with light-off
(abscissa) and light-on (ordinate); colors denote vibration intensity. In
agreement with earlier work suggesting a vS1 role in the neuronal
representation of vibration intensity13,20, firing rates were higher for
greater intensity vibrations. Further analysis is given in Supplementary
Figs. 9, 10. Projection along the diagonal reveals the overall effect of
photoexcitation– a leftward shift towards a higherfiring rate (depicted
for the 64mm/s intensity, green). Thus, if firing rate is positively cor-
related with vibration intensity, the higher firing rate with photo-
excitation explains the bias towards stronger perceived
intensity (Fig. 2e).

Next, we consider the rats trained to compare vibration durations.
If firing rate functions as an explicit representation of stimulus dura-
tion within vS1 (as it does for intensity), it must vary systematically in
relation to the passage of time. Figure 3e examines the firing rate of the
entire recorded vS1 population during the final 100ms of stimulus
presentation. Points were obtained by bootstrap resampling and col-
orsdenote stimulus duration. Projection along thediagonal reveals the
overall effect of optogenetic excitation – a leftward shift towards
higher firing rate (depicted for the 334ms duration, green). However,
when the points are projected laterally and vertically, the marginal
distributions for each duration are fully overlapping. Thus, firing rate
at the end of the stimulus (like the firing rates across the entire sti-
mulus duration, see Supplementary Fig. 11), although boosted by the
optogenetic intervention, did not vary in relation to duration and
would not provide a robust code.

As an alternative, Fig. 3f examines the spike count as the possible
basis for a duration code. Following the format of the preceding panel,
we computed counts fromvibrissal-stimulus onset to offset, with light-
off (abscissa) and light-on (ordinate). The projection along the diag-
onal reveals a leftward shift towards greater spike count under pho-
toexcitation (again, depicted in green for the 334msduration; note the
scale bar of 5 spikes). Differently from the rate code, when points are
projected laterally and vertically, marginal distributions separate
according to stimulus duration. Thus, summated spike count could
provide a downstream integrator with an input that robustly maps to
duration and is consistent with the dilation of perceived time gener-
ated by optogenetic excitation.

To ascertain the neuronal signal that is available to downstream
regions, it is informative to first consider the magnitude of the opto-
genetic effect in linear terms. By plotting how much time from sti-
mulus onset must have passed in trials with light-off and light-on to
reach any selected count of spikes, Fig. 3g shows the signal available in
the linear sum of vS1 spikes. The fact that points fall below the solid
diagonal indicates that a given spike count was reached earlier when
optogenetic excitationwas applied. For instance, when 20 spikes (data

Fig. 2 |Optogeneticmanipulationof time and intensityperception. a Left: EYFP-
ChR2(H134R)-injected brain with optical fiber surrounded by electrode array.
Middle: custom-built multisite drivable optrode array. Upper right: coronal section
of EYFP-ChR2(H134R) injection site (green) counterstained with Anti-Vglut2 pri-
mary antibody (red). Lower right: traces of two vS1 single-neurons. In the EYFP-
ChR2-injected rat 465 nm illumination (blue bar, 500ms) excited the neuron while
in the eNpHR3.0-injected rat 620 nm illumination (red bar, 250ms) inhibited the
neuron.b Left andmiddle: compared to no-light condition (black), photoexcitation
(blue) and photoinhibition (red) during stimulus 2 yielded, respectively, an
increased and decreased likelihood of judging T2 > T1. Statistical significance in the
middle panels of (b–e) is evaluated by resampling (one-sided permutation test,
1000x), subtracting at each iteration the averaged percentage of choice (excluding
easy trials) between the respective condition pair (seeMethods).p-values labels are
*p <0.05; **p <0.01; ns for p >0.05. Exact values are: Chr2 vs eNpHR3.0, p <0.001,
Chr2 vs control,p =0.003, eNpHR3.0 vs control,p =0.009. Right: two signatures of

curve shift, percent of trials judged T2 > T1 irrespective of stimulus duration
(ordinate) and point of subjective equality (PSE) (abscissa), measured with boot-
strap resampling (1000×). A support vector machine classifier quantifies data
separation by classification error. c Left and middle: excitation during stimulus 2
(blue) compared to stimulus 1 (green). Green vs blue difference significant,
p =0.005. Left vibrissae were intact but are omitted in all sketches. SEM across
individual rats indicated as error bars. Statistics derived across n = 5 rats, examined
over 113 independent experiments. d Left: control condition with external LED
(465 nm) illuminated above the rat with same wavelength and timing as optoge-
netic light delivery in photoexcitation trials. Middle: light-on during stimulus 2,
compared to stimulus 1 (green) revealed no duration perceptual bias in relation to
visual cues (p =0.09). SEM across individual rats indicated as error bars. Statistics
derived across n = 6 rats, examined over 202 independent experiments. e. Same as
c, but for intensity rats (p <0.001). Statistics derived across n = 3 rats, examined
over 37 independent experiments. Source data are provided as a Source Data file.
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Fig. 3 | vS1 coding of duration. a Example vS1 recordings. Upper: spike waveforms
and spike time autocorrelogram. Middle: raster plots of randomly selected 334-ms
light-off and light-on trials. Lower: corresponding firing rates in non-overlapping
20-ms bins, light-on (blue) and light-off (black) trials. Single-and multi-units (right,
left examples, respectively) pooled for analysis. b Normalized response of neurons
(n = 250) on trials with stimulus 1 and 2 of 334- and 694-ms duration, respectively;
intensity 64mm/s. Above the response plots, example vibrations (plate speed
across time) are illustrated as black lines. c Average response (as PSTH; see Meth-
ods) with light-off (left) and light-on (right). Light onset/offset matched vibrissal
onset/offset. d Each dot shows population mean firing rate colored by vibration
intensity in EYFP-ChR2(H134R)-expressing intensity rats (n = 3). In the bootstrap
resampling algorithm13, the population (n = 138 neurons) is resampled to include
90% coding and 10% non-coding neurons (see Methods) such that the
photoexcitation-evoked firing rate increase resembles the psychometric effect.
Dashed diagonals in (d, f) denote equal firing for light-on and light-off. e Each dot
shows population mean firing rate (bootstrap resampling) colored by vibration
duration. Distributions shown as marginals. For 334-ms duration, points are pro-
jected parallel to the diagonal to give the green histogram. f Same as (e), but for
spike count summated across the entire stimulus presentation. g Points (obtained

by resampling) depict elapsed time to reach a given spike count (see color scale),
light-off vs light-on. h Left: light-off (black) and light-on (light blue) population
PSTH in response to 694-ms vibrations; 1ms bins with 15ms smoothing. Detected
response onset and offset given by left and right vertical lines. Right: Points
(obtained by resampling) colored by actual vibration duration (f), show stimulus
duration estimated by elapsed onset-to-offset time of evoked activity with light-off
and light-on. Diagonal denotes equal duration for light-on and light-off. Inset:
Normalized difference in estimated duration (light-on – light-off) across all dura-
tions fails to uncover any significant photoexcitation-evoked shift (p =0.147). i.
Left: same as (h), for integration hypothesis. Right: Points (obtainedby resampling),
colored by vibration duration, show spike count summated from onset to offset.
Inset: Normalized difference in onset-to-offset spike counts (light-on – light-off)
across all durations uncovers a significant photoexcitation-evoked shift
(p =0.006). h, i use the color code of (c). Statistics for (h, i) derive from 1000x
resamples from 138 neurons. Box plots (Matlab function boxchart): the central line
is the sample median, the edges of the box are the 25th and 75th percentiles,
whiskers extend to the most extreme data points not counting outliers, and the
outliers are plotted as circles. One-sided permutation test (1000×) applied for
statistical significance. Source data are provided as a Source Data file.
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point in green) have been integrated, 423ms would have passed on
trials with light-off, but just 382ms on trials with light-on. A corre-
sponding quantification of the optogenetic effect of vS1 spikes in
intensity perception is shown in Supplementary Fig. 10.

One plausible mechanism by which vS1 might contribute to the
perception of elapsed stimulus time is by providing downstream
centers with onset and offset times that could function similarly to a
stopwatch. The increase in perceived durationwith photoexcitation, in
this scenario, would result from a greater elapsed time interval
between onset and offset. This model is tested in Fig. 3h. Onset and
offset of the vibration-evoked responseswere detectedwhen thefiring
rate crossed a threshold, set as 2.2 STD of change from the baseline
firing rate (details in Methods). In the left panel, neuronal population
onset and offset times for vibrations of 694ms are shown as vertical
lines under the light-on condition (blue) and light-off (black) condi-
tions. Nearly identical temporal boundaries are recovered under the
two conditions, symbolized by the blue and gray stopwatches which
record the same elapsed time. The right panel gives the overall result
of the test for whether start-to-end elapsed time can explain perceived
time dilation in the condition of photoexcitation. For all examined
vibration durations, elapsed time under the light-off (abscissa) and
light-on (ordinate) conditions lay along the diagonal. The inset shows
the normalized difference between estimated elapsed time under the
light-on and light-off conditions. Thus, the time between the onset and
offset of vibration-evokedneuronalfiringwas not significantly affected
by optogenetic intervention (again symbolized by the blue and gray
stopwatches), indicating that this model does not offer a straightfor-
ward account for duration over-estimation in the photoexcitation
condition.

The alternative model, where perceived duration is related to the
integration of vS1 firing, is given in Fig. 3i. The plots of the left panel
illustrate the firing feature that could underlie this codingmechanism,
the total (filled) area under the PSTH. By boosting vS1 excitability, the
total number of spikes transmitted to downstream integrators, for any
given actual vibration duration, is increased under photoexcitation.
This accumulation of vS1 activity is symbolized by the hourglasses,
where the readout records a greater durationwith light-on (lower plot)
versus light-off (upper plot). In the right panel, the accumulated spikes
between response onset and offset are plotted under the light-off
(abscissa) and light-on (ordinate) conditions. Similarly to the plot in
Fig. 3f, greater accumulated spike counts between estimatedonset and
offset are seen for any given stimulus duration under the light-on
condition. As in the left panel, this accumulation of vS1 activity is
symbolized by the two hourglasses.

Model of coding mechanisms
The preceding analyses represent preliminary tests of the hypothesis
that the tactile sensory cortex contributes to the neuronal substrate
for perceived time not by an explicit firing rate code (Fig. 3e) nor by
relaying stimulus onset/offset (Fig. 3h), but through an integrative
mechanism (Fig. 3f, g, i). These initial tests treated the sensory cortex
as making a linear contribution to the final duration percept, as
vS1 spiking output is progressively accumulated. However, earlier
studies indicate that the dynamics of downstream integration
underlying the perception of stimulus duration (and stimulus
intensity, not the object of the present study) are likely to be non-
linear13,20. Therefore, we grounded the search for mechanisms in a
3-stage model encompassing non-linear integration. In stage 1,
vibrissal drive and optogenetic drive evoke currents in vS1 neurons,
leading to spiking through a linear-nonlinear Poisson (LNP) process
(Fig. 4a, left). After finding the parameters that produce simulated
spike trains mimicking the original spike trains (stimulus-depen-
dence, variability, and diversity), we recombine these currents in a
Gaussian Mixture Model29 to create a large pool of simulated vS1

neurons (Supplementary Figs. 12, 13). In stage 2, the accumulated
quantity (ϒ) in a leaky integrator (LI) downstream to vS1 is taken as
the duration percept. As the integrator summates incoming spikes,
input continuously leaks out by some proportion (ϒ/τ) (Fig. 4a, upper
right). In stage 3, the values of ϒ at the conclusion of stimuli 1 and 2
are taken as the explicit readouts of duration and their comparison
predicts the rat’s actual choice (Fig. 4a, lower right).

This model yields the neurometric curves (solid lines) of Fig. 4b,
which overlie the observed psychometric data (points), indicating that
the model offers a physiologically plausible framework for how
vibrissal drive and optogenetic excitation of sensory cortex generate
perceived duration. The scatter plots of Fig. 4b (inset) show the
optogenetic excitation-induced bias in perception, in behavioral data
and modelled neurometric output.

The model predicts that when the vS1 firing evoked by the
vibration’s duration and intensity is integrated, the two stimulus fea-
tures will be either congruent or incongruent in their contribution to
perceived duration. To test this, using the stimulus generalization
matrix given in Supplementary Fig. 1, we identified twogroups of trials,
congruent and incongruent. For duration rats, trials designated as
congruent were characterized by stimulus 2 of short duration (264ms)
and low intensity (34, 42, or 52mm/s) or else long duration (422ms)
and high intensity (78, 96, or 119mm/s); incongruent trials were
characterized by stimulus 2 of short duration and high intensity or else
long duration and low intensity (Supplementary Fig. 14). All of these
instances of stimulus 2 were judged by the rats in comparison to sti-
mulus 1, which had intermediate duration (334ms) and intermediate
intensity (64mm/s). The prediction is that performance for congruent
trials will be better than performance for incongruent trials. This is
because the congruence of intensity with duration (where intensity
causes short stimuli to feel shorter or causes long stimuli to feel
longer)will lead the perceivedduration to bemore distant from thatof
stimulus 1, and will thus make the judgment easier and more accurate.
By contrast, the incongruence of intensity with duration (where
intensity causes short stimuli to feel longer or causes long stimuli to
feel shorter) will lead the perceived duration to be closer to that of
stimulus 1, and will thus make the judgment more difficult and less
accurate. Accuracy was 74.1% (STD: +/− 1.26) for congruent trials, sig-
nificantly better (p <0.001) than the64.9% (STD: +/−0.76) accuracy for
incongruent trials. This analysis substantiates the model’s prediction
that the intensity feature canact congruently or incongruentlywith the
duration feature.

Although the present study focuses on duration perception, we
verified the analogous effect in intensity rats (Supplementary Fig. 14).
This shows that, in general, the congruence/incongruence of the irre-
levant feature acts on both percepts, supporting the framework of
multiplexed coding of distinct percepts.An additional treatment of the
duration/intensity confound in intensity rats can be found in13,20.

The distance between the black and light blue/red curves (Fig. 2b)
allows estimation of the direct perceptual effect of vS1 optogenetic
intervention (Fig. 4c). A vibrissal stimulus of actual duration 334ms,
absent any direct intervention in sensory cortex, will be perceived as
having a veridical duration of 334ms (black bar). That same stimulus,
when accompanied by vS1 photoexcitation (blue light) will be per-
ceived (on average) as having a duration of 372ms, an optogenetic-
derived perceptual dilation of 39ms. In the control condition, photo-
inhibition, that stimulus will be perceived (on average) as having a
duration of 316ms, a perceptual compression of 18ms. These per-
ceptual effects are denoted by the three hourglasses, which accumu-
late sensory inputs, and thus fill up to a level that is dependent on both
the amplitude and the duration of vS1 firing. The empirical observa-
tions, coupled with the physiological model for vS1 and downstream
integration, offer a detailed picture for how the judgment of the pas-
sage of time embodies sensory coding in the cortex.
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Discussion
Applying targeted and controlled optogenetic manipulation of vS1 in
one set of rats performing tactile duration discrimination and in
another set of rats performing tactile intensity discrimination, this

study revealsparallel generation of twopercepts,with primary sensory
cortex common to both networks.While differentmechanismsmaybe
at work in processing the empty interval between two discrete
events6,30–33, time perception accompanying an ongoing stimulus

Fig. 4 | Model of non-linear integration to generate time percept. a Left box:
stimulus-dependent input currents that follow characteristic dynamics for vibrissal
and optogenetic drive, converge on vS1 neurons, giving rise to spike trains with
Poisson statistics. Example vS1 PSTH is shown in the lower right corner; binned
neuronal activity (solid line) in response to a vibrissal stimulus (black), as well as
with photoexcitation (light blue), are simulated (dashed line with confidence
intervals) by fitting the respective input currents and feeding them to an I/F. Cur-
rent and I/Fparameters inMethods.We simulateda 5000-neuronpopulation based
on the distribution of fitting parameters of the entire population of recorded
neurons. Right box: the LI receives input spike trains from the simulated vS1
population under conditions including vibrissal (black spike train) and vibrissal
plus photoexcitation (blue spike train). The integrator’s accumulated quantity is

governed by the differential equation. Reading out the generated vS1 neuronal
population activity with this LI, we can predict the perceptual shift created by
optogenetically increasing firing rate in vS1. b Psychometric curves of the neuro-
metric model (points). Inset: comparison of the perceptual shifts between beha-
vioral data and generated neurometric curves for resampled (100×) neuronal and
behavioral data. Bias quantified as the difference in percent of choices T2 >T1
averaged across all data points, excluding ΔT’s of 0.35 and −0.35 (for details, see
Methods). c vS1 role in compressing or dilating perceived time by its sensory drive;
optogenetic manipulation slows or speeds the accumulation of drive in the per-
ceptual hourglass. The selected changes in perceived time derived from the shift in
the point of subjective equality (PSE) in the averaged behavioral data. Source data
are provided as a Source Data file.
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stream appears to arise within the sensory representation of touch,
where it is multiplexed with the neuronal coding of tactile features.
The contribution of the coding of stimulus features to sense of time
distances our findings from dedicated pacemaker-accumulator
operation models9,11,12, where the accumulator receives onset/offset
triggers but is insensitive to the neuronal coding of the stimulus34. In
existing models where the time percept is constructed from sensory
drive13,18,35,36, no causal link between sensory cortex and the final per-
cept has yet been established. The link established here by means of
optogenetic stimulation and multi-channel neuronal recording was
not based on degradation of performance as a consequence of inter-
ference with neuronal activity37, as is common in the literature22,38,39;
indeed, rats performed the task equally as well, as measured by psy-
chometric curve slope, on trials with and without optogenetic inter-
vention (Supplementary Fig. 2b, c). Rather, the evidence of causality is
a statistically significant shift - either towards greater perceived dura-
tion (consequent to photoexcitation) or lesser perceived duration
(photoinhibition) - while the altered percept remained reliable (see
also psychometric curve fitting parameters, Supplementary Fig. 4). An
explanation for this modulation of the otherwise normal percept
derives directly from the computational model, which shows how the
measured optogenetically-evoked change in firing would be expected
to lead to precisely the observed change in percept.

Embodied within a network extending to the sensory cortex, time
perception now becomes amenable to the tools previously restricted
to quantifying the representation of stimulus features – tools such as
spike counts, firing rates and temporal patterns19–21,23–25. In short, the
door is now open to unraveling time with the toolbox of sensory
coding. One immediate insight from this treatment is that processing
likely involves integration of sensory cortical input with long integra-
tion time constants, as are found in frontal cortical regions20.

In our hands, photoexcitation-evoked changes in the vS1 response
to vibrissal vibration were seen in the peak of the initial response and,
to a lesser extent, in the steady-state response (Fig. 3c). This suggests
that photoexcitation acts most prominently at response onset, when
stimulus-evoked responses are believed to propagate through local
cortical circuits before strong feedforward inhibition clamps down on
the excitability of sensory-coding neurons40. The early response of
sensory cortex appears to comprise part of the stream that is accu-
mulated at successive stages of processing.

Stimulus 1 had a less prominent effect on choice than did stimulus
2. The order-dependent effects parallel the relative psychometric
weights that subjects, humans and rats, typically give to the first and
second stimulus26,41–44. The lower stimulus 1weightmaybe anoutcome
of the formation of a less acute percept due to lower attention, of
contraction of the remembered percept towards a long-term prior, of
the attribution of stimulus 1 to a prior which acts as the criterion to
which stimulus 2 is compared, or some combination of all of the
above41,42,45.

A crucial component of the present model, the accumulation of
sensory drive by a downstream integrator, appears to apply to
humans13,17,36,46.The generality of the model raises the prospect that
anomalous sensory coding mechanisms may be one contributing
factor in the time misperception at the core of multiple psychiatric
disorders47–49.

Methods
Rat subjects
All protocols conformed to international norms andwere approved by
the Ethics Committee of SISSA and by the Italian Health Ministry
(license numbers 569/2015-PR and 570/2015-PR). For the working
memory behavior, 20maleWistar rats (Harlan Laboratories, San Pietro
AlNatisone)were caged in pairs andmaintained on a 14/10-h light/dark
cycle. They were trained and handled on a daily basis and provided
with daily environmental and social enrichment. To promote

motivation in the behavioral task, rats were water-restricted for
approximately 20 h prior to training or testing sessions; access to food
in the cagewas continuous. Theywere tested eachweekday in sessions
of about 1 h. Part of the data that was analyzed and presented here (rat
psychophysical results; Fig. 1b–d, 3 duration and 11 intensity rats)
overlaps data used in a previously published paper13. Figures 1, 2
overlap in 3 duration rats. The control condition presented in Fig. 2d,
was applied in all duration rats following the optogeneticmanipulation
sessions (Fig. 2b-c), apart from one rat that died before controls were
concluded. Neurons presented in Figs. 3a–c, e–i, 4 were recorded from
all duration rats with vS1 photoexcitation (n = 5); all intensity rats with
vS1 photoexcitation (n = 3) were included in Fig. 2e and all such rats
contributed neurons to Fig. 3d and Supplementary Figs. 8–10.

For the referencememory task, 4 additional rats were trained and
tested, following a regime parallel to that described above.

Behavioral tasks
In the workingmemory task, to initiate a trial, the rat entered the nose
poke, placing its whiskers in contactwith a plate connected to a shaker
motor (type 4808; Brüel & Kjær26). After a pre-stimulus delay of
500ms, it then received vibrissal stimulus 1 and stimulus 2, separated
by a delay of 2000ms. Then, following a variable post-stimulus 2 delay
of 500–750ms, the auditory “go” cue sounded and the rat had to
withdraw and select the left or right spout; reward location depended
on either the relationship between the two vibration durations or the
two vibration intensities (see below). If the relevant feature was equal
for the two stimuli, the choice was randomly rewarded at the left or
right spout. The association between stimulus relationship and reward
location was randomly assigned to each rat. Early withdrawals aborted
the trial and no reward was released. Incorrect choices were followed
by a time-out delay of 1–3 s.

Stimuli were noisy vibrations, constructed by stringing together
over time a sequence of plate velocity values (motion along the axis of
the rod connecting the plate to the motor). Velocities were sampled
(1 kHz) from a Gaussian distribution with 0 mean and standard devia-
tion ranging from 25 to 148mm/s. The speed distribution (absolute
values of velocity) was a half-normal (folded) distribution whosemean
was equivalent to the standard deviation of the underlying Gaussian
multiplied by

ffiffiffiffiffiffiffiffiffiffi
ð2=π

p
. We refer tomean speed as intensity (I). A total of

50 unique stimulus traces, “seeds”were created by resampling a given
Gaussian; such stimuli differ in local features but are characterized
globally by nearly equivalent I (see20). When neuronal data are sorted
according to I, such data are collected from multiple seeds.

Vibration duration was denoted T. Durations varied from 112 to
1000ms (see Supplementary Fig. 1). The differences between the two
stimuli making up one trial are expressed by two indices, normalized
intensity difference (ΔI) and normalized time difference (ΔT):

ΔI =
I2� I1
I2+ I1

ð1Þ

ΔT =
T2� T1
T2+T1

ð2Þ

where I1 and I2 are the intensities, and T1 and T2 are the durations of
stimuli 1 and 2, respectively. The values of intensities and durations
applied are spaced logarithmically and are presented in Supplemen-
tary Fig. 1.

Duration rats were trained and tested using a rule where reward
location, left or right spout, was determined by the sign of ΔT, with ΔI
irrelevant. Intensity rats were trained and tested using a rule where
reward location was determined by the sign of ΔI, with ΔT irrelevant.

In test sessions, each stimulus combination assumed T and I
values from the stimulus generalizationmatrix (Supplementary Fig. 1).
Thus, rats received a random combination of 10 intensity pairs (I1, I2) x
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10 duration pairs (T1, T2) during each training session. Moreover, in
each trial, the relevant and irrelevant features could be congruent
(I2> I1,T2 > T1or I1> I2,T1 > T2) or incongruent (I2 < I1,T2 > T1or I1 < I2,
T1 > T2). This randomness in congruence required the rat to act upon
only the relevant feature in order to perform above chance. To obtain
psychometric curves for duration, T1 took afixed value of 334mswhile
T2 spanned seven possible durations, giving a range of ΔT from −0.35
to 0.35. The same design was used to obtain psychometric curves for
intensity, with I1 fixed at 65mm/s, while I2 spanned seven possible
values; ΔI ranged from −0.3 to 0.3.

In the reference memory task, like in the working memory task,
the rat initiated a trial by entering the nose poke. After a pre-stimulus
delay of 500ms, vibrissal vibration was initiated, with I = 63mm/s.
Seven possible stimulus durations (T) were applied; three belonged to
the short category (200, 300, 400ms) and three to the long (600, 700,
800ms). Following a variable post-stimulus delay of 500–750ms, the
auditory “go” cue sounded and the rat had to withdraw and select the
left or right spout; reward location depended on stimulus duration
category; the intermediate stimulus duration (500ms) was randomly
rewarded either as short or long. Two of the rats were assigned to the
long stimulus/turn right rule, the other half long/left. Earlywithdrawals
aborted the trial and no reward was released. Incorrect choices were
followed by a time-out delay of 1–3 s.

Targeted virus injections in vS1
After rats reached stable behavioral performance in their designated
task, they were anesthetized with 2–2.5% Isoflurane in 100% oxygen
delivered through a customized plastic snout mask. Target regions
were accessed by craniotomy, using standard stereotaxic technique.
The vasculature visible on the brain surfacewas used as a reference for
cortical maps50. Photos of the brain surface of vS1 weremade with a 5×
Zeiss microscope connected to a webcam and further used to docu-
ment electrode insertion and injection sites. Single tungsten electro-
des (100–500 kΩ impedance; FHC) were inserted to a depth of
~750 µm and the whisker constituting the neuronal population’s
strongest input was assessed by stimulation with a hand-held probe.
Neuronal populations with receptive fields on whisker rows C-D and
columns 4–6 were targeted. AAV5-CaMKIIa-hChR2(H134R)-EYFP or
AAV5-CaMKIIa-eNpHR3.0-EYFP (UNC vector core) was prepared by
standardprocedures51. Referencememory rats receivedonly theAAV5-
CaMKIIa-hChR2(H134R)-EYFP treatment. A 10 µl Hamilton syringe was
filled with 4–6 µl of virus solution (stained with Fast Green FCF).
Injections of 0.5 µl of virus solution were made at depths of 800 and
1600 µm in 3–4 barrel-columns with identified receptive fields. The
skull opening was conserved with custom-made cylindrical implanted
cranial windows. Four to six screws were fixed in the skull as support
for dental cement. Two screws served as reference and ground and
were connected via a silver wire to a 2-pin connector that was
embedded in dental cement. At the conclusion of the operation, rats
were treated with antibiotic (Baytril; 5mg/kg; i.p.), analgesic (Rimadyl;
2.5mg/kg, i.m.), atropine (ATI; 2mg/kg, s.c.) and with sterile saline to
rehydrate (5ml, s.c.). A local antibiotic ointment was applied around
the cutaneous wound to improve the healing. Tissue was washed
regularly and treated with antibiotics in the weeks after surgery
through the cylindrical implanted cranial windows. During the recov-
ery period, rats had unlimited access to water and food.

Implantation of opto-electric microdrive
In a second operation 3–4weeks after virus injection, the opto-electric
microdrive was implanted through the cranial window. Injection sites
were identified by vasculature landmarks and mapping from the pre-
vious surgery. For chronic electrophysiological recording concomitant
with optogenetic stimulation, we collaborated with CyNexo to design
an opto-electric microdrive (aoDrive, https://www.cynexo.com/
portfolio/neural-drives/, see also Fig. 2a, middle). Each drive

incorporates up to 15 single FHC tungsten electrodes and anopticfiber
(Ø: 230 µm, NA: 0.67, Plexon). Electrodes and fiber can be indepen-
dently moved in depth with a total range of 4.5mm. Electrodes were
lowered until neuronal responses to light delivery (PlexBright LED,
Blue: 465 nm, or Orange: 620 nm for inhibition, Plexon) were
observed. Subsequently, microdrives and TDT connectors were
embedded in dental cement. The opto-electric microdrive provided
signals for 3–6 months after the surgery. Electrophysiological
recording and optogenetic intervention in the behaving animal began
7–10 days following the second implantation surgery. Rats, whether in
the working memory or reference memory task, performed light-on
trialswith no signs of surprise or disorientation from the veryfirst trials
of the first session in which light-inputs were applied.

vS1 recordings and optogenetic behavioral experiments
Extracellular activity was pre-amplified, filtered and digitized using the
digital TDT recording system (Tucker David Technologies) along with
task-relevant data, such as position sensors and light/motor stimula-
tion signals to synchronize external events with physiological record-
ings. Recording depths varied between 700–1500 µm, to cover layers
IV and V. Signals were sorted into single and multi-unit neuronal clus-
ters, as verified through standard indices using UltraMegaSort200052

and both single and multi-unit clusters were used for all further ana-
lysis. The headstage and optic fiber patch cables (custom made, Ø:
230 µm, NA: 0.67) were connected to the implant and the cables were
held by a rubber band to limit weight on the implant. Light output
intensity (10–12mW) from the tip of the patch cable was measured
(Thorlabs) weekly to ensure stable optogenetic excitation/inhibition
effect. Light delivery (465 nm) for the optogenetic excitation and
external light experiment was synchronized with the onset of vibrissal
stimulation. Offset time of light delivery and vibrissal stimulation was
identical. Light delivery (620 nm) for the optogenetic inhibition
experimentwas slightly adapted inorder to account for the biophysical
mechanisms of eNpHR3.053: (1) light was initiated 50ms preceding
onset of vibrissal stimulation to reach an effective hyperpolarization,
accounting for the slower time constants of eNpHR3.0 as compared to
Chr2(H1340). (2) Light was dimmed with an offset ramp, starting
200ms before and ending at 0ms with respect to termination of
vibrissal stimulation; this protocol minimized rebound activation.

In the referencememory task, rats establish their internal decision
criterion within each experimental session based on a weighted aver-
age of the perceived stimuli in the preceding trials45. Therefore,
recording sessions were started with a criterion-setting period of 100
trials without optogenetic stimulation. In the subsequent optogenetic
stimulation portion of the session, 50% of trials (designated randomly)
consisted of photoexcitation during vibration, while the remaining
50% of trials were control trials with vibration only. In the photo-
excitation trials, blue light (460 nm) was delivered to the left vS1
(injected with Chr2(H1340)), starting 25ms after vibration onset and
terminating 25msbefore vibration offset. To verify that effects did not
depend on a continuous light source, stochastic light amplitude was
applied. Stochastic light signals were constructed by stringing toge-
ther over time at a rate of 40,000 samples/s, a sequence of voltage
values sampled from a Gaussian distribution with 2.5 V mean and 2 V
standard deviation. The voltage values were fed as analog input to the
LED (aoLED, Cynexo: https://www.cynexo.com/portfolio/aoled-
optogenetics/), whose output was 12–13mW when measured with a
constant drive of 5 V. To avoid retinal activation during optogenetic
light delivery, external stochastic light (460nm) was delivered in the
otherwise dark experimental box throughout the entire recording
sessions.

Histological examination
At the conclusion of the study, electrolytic lesions were made around
the tips of the electrodes to mark the recording sites. To identify
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Opsin-expressing neurons, we counterstained with blue-fluorescent
Nissl stain (NeuroTrace 435/455, ThermoFisher) to visualize cortical
layers, and performed antibody staining (Primary antibody: Anti-
VGLUT2, Synaptic Systems, 1:750 dilution; Secondary antibody: Alexa
Fluor™ 594, Thermo Fisher Scientific, 1:500 dilution) to discern the
barrels in layer IV. Whole coronal slice (50 µm thickness) images were
taken with confocal microscope (4x, Nikon).

Analysis of behavioral data
To generate duration psychometric curves, we used trials in which T1
was 334ms while T2 ranged from 161ms to 694ms. For intensity
psychometric curves, we used trials in which I1 was 64mm/s while I2
ranged from 34mm/s to 119mm/s (Supplementary Fig. 1). The rat’s
choice (proportion of trials in which the stimulus 2was judged asmore
intense or longer in duration than stimulus 1) for each stimulus pair
was then plotted. A four-parameter logistic function was fit to the
psychometric data using the nonlinear least-squares fit in MATLAB
(MathWorks, Natick, MA), as follows. The psychometric curve for
duration was given by

PðT2>T1Þ= γ + 1� λ� γð Þ 1
1 + exp �ðΔT � uT Þ

� �
=vÞ ð3Þ

and for intensity the curve was given by

PðI2 > I1Þ= γ + 1� λ� γð Þ 1
1 + exp �ðΔI � uI Þ

� �
=vÞ ð4Þ

whereΔΤ andΔΙ are the normalized stimulus differences, γ is the lower
asymptote, λ is the upper asymptote, 1/ ν is the maximum slope of the
curve and uT and uI areΔT and ΔI at the curve’s inflection point, for the
duration and intensity curves, respectively. Since observed experi-
mental data are expressed as choice (%), the proportion of trials in Eqs.
(3–4) was multiplied by 100 for purposes of illustration.

The rawdata (choices for each value ofΔΤ andΔI) as well as the fit
parameters were then used as measures of acuity and bias. Bias in
perceived duration was measured by sorting the trials according to I
and then, with the T values pooled, averaging the percent judged
T2 > T1 for each value of ΔI. This isolates the effect of ΔI on perceived
duration. For illustration (Fig. 1d), the above bias measure was nor-
malized by subtracting the choice data for ΔI = 0 (where I does not
exert a bias). The bias in perceived duration caused by changes in the
irrelevant feature (ΔI) was negligible when the relevant feature differ-
ence (ΔT) was 0.35 or −0.35 because even the presence of an intensity
bias did not cause a shift in choice; such “easy” trials were excluded
from the bias analysis. Likewise, the change in the percent of trials
judged I2> I1 causedby changes inΔTwasnegligiblewhen the relevant
feature difference (ΔI) was 0.3 or −0.3.

Resampling and bias statistics
To quantify the effect of optogenetic manipulation of vS1 on duration
and intensity perception, we resampled the original data set to create
1,000 sets of statistically comparable data, with the same trial size as
the original data, allowing for replacement. Each set of resampled
responses was parametrized by fitting the logistic function of Eq. (3). A
support vector machine (SVM) classifier (MATLAB, fitcsvm function)
quantified the linear separation between data points (PSE, acquired
from the fitted curve versus averaged percentage of choice of the
resampled data, not including fitting) with and without optogenetic
intervention, making use of 10-fold cross validation to measure the
classification error. Specifically, the data were partitioned into 10
random sets. Then, 9 of these were used to train an SVM classifier and
the remaining set served as a test. This procedure was repeated 10
times and the statistics for each repetition were combined, giving the
rightmost plots of Fig. 2b–d. Statistical significance of the bias in

duration and intensity judgements between the different condition
pairs (Fig. 2b-e, middle, Supplementary Fig. 2a, 5) was tested by sub-
tracting at each resampling iteration the averaged percentage of
choice (excluding easy trials) between the respective condition pair
[biasit =mean(% choicestim2>stim1 condition 1) −mean(% choicestim2>stim1

condition 2)].p-valuewas estimatedby (#of iterationswithbias >= 0) /
1000. To uncover optogenetic effects when not overridden by strong
sensory evidence, statistical significance in Supplementary Fig. 2a
(middle panel) was tested on the stimulus pairs where ΔT =0 (for
duration rats).

Neuronal data
Spike trains were aligned to the stimulus onset or else offset,
depending on the aim of the analysis. In Fig. 3b, individual neurons’
response was generated by plotting the average firing rate over trials,
shifting in 1ms steps. To reduce the effect of noisy fluctuations, a
centered 40ms sliding window was used. Firing rate was then z
score–transformed by subtracting each neuron’s spontaneous activity
rate (measured from 800ms before stimulus onset up to the stimulus
onset) from response rate per time bin during stimulus presentation.
The outcome was divided by spontaneous activity variance.

Population PSTHs (Fig. 3c)were generatedby plotting the average
population response shifting in 1ms steps for each stimulus duration.
To avoid forward leakage across stimulus onset/offset boundaries the
PSTH values were derived by convolution of the averaged data with a
half-Gaussian (σ = 25ms). The half-gaussianwas “flipped”on either side
of a boundary and in the middle of the PSTH inasmuch as the first
portion of the PSTH was formed with the half-gaussian tail oriented
forward while the second portion was formed with the tail oriented
backward.

Intensity coding was tested from vS1 neurons (n = 138), recorded
in EYFP-ChR2(H134R)-expressing rats (n = 3) performing the intensity
task. The criterion to classify individual neurons as coding (n = 39) or
non-coding (n = 99) was a significant difference in the linear correla-
tion between firing rate and stimulus intensity. The observed correla-
tion coefficient was then compared to the distribution of linear
correlation between thefiring rate and the shuffled stimulus intensities
labels (iterated 1000× trials, resampling method, p < 0.05). For quan-
tifying intensity coding of the vS1 neuronal population and the effects
of optogenetic excitation to intensity coding (Fig. 3d and Supple-
mentary Fig. 10), data resampling was performed as suggested earlier13

on a subset of neurons (90% coding, 10% non-coding).
Response onset and offset times (Figs. 3h, i) were registeredwhen

the population mean firing rate underwent an upwards and down-
wards (respectively) crossing of the threshold set at 2.2× STD of the
smoothed firing rate obtained 480 to 20ms before stimulus onset.
Outliers, defined as onset/offset times exceeding 25ms from stimulus
onset/offset, were removed.

Model for vS1 activity
The analysis was built on the spiking activity of 240 vS1 units recorded
in 5 rats over the full range of vibrissal stimulation and optogenetic
excitation conditions. To permit more robust neurometric measures,
we modeled a larger data set replicating the properties of actual
recordings by means of a Gaussian Mixture Model (GMM)29. The key
observations justifying this form of model are that functional prop-
erties are diverse across neurons and the responses of single neurons
are variable across trials. The methodology is presented in two steps:
(1) constructing a parametric model for single neuron variability and
fitting it to each recorded unit, and (2) Gaussian mixture model to
reproduce vS1 population diversity.
(1) The parametric model for neuron variability is based on the fol-

lowing observations: (i) the response of a neuron varied across
trials notwithstanding constant stimulus conditions, (ii) in the
absence of stimulation, vS1 neurons showed ongoing activity, (iii)
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when the vibrissal stimulus was presented, many vS1 neurons
rapidly increased their firing rate and then adapted to steady
state, (iv) simultaneous optogenetic and vibrissal stimulation
commonly led to a higher firing rate but didnot alter the temporal
profile of response. However, firing rate sometimes dropped after
the light was turned off a phenomenon sometimes referred to as
post-stimulation suppression54.
Given the recorded units’ observed spike variability, we assume
that the activity of the ith unit, k(i), in time bin t, follows a Poisson
distribution.

P tð Þ= f ið Þ
r ðtÞki e�f ið Þ

r ðtÞ

k!
ð5Þ

where fr(i) (t) is the unit’s firing rate. We write a parametric model for the
underlying rateof thePoissondistribution and infer its parameter values
based on the measured PSTH of each recorded unit. This spike gen-
eration model assumes that the ith unit receives a constant background
current I0(i). We assume that when the vibrissal stimulus is turned on, it
elicits a mechanoreceptor-derived current of the following form

I ið Þ
M tð Þ= IðiÞ1 + IðiÞ1p � IðiÞ1

� �
e
�

t�tðiÞ
0M

τ
ðiÞ
M

2
4

3
5W t,T , tðiÞ0M

� �
ð6Þ

where I1p(i) is the peak input current that follows immediately after
stimulus onset, I1(i) is the steady state current, t0M(i) is the onset of the
mechanoreceptor-elicited current, and τM

(i) is the decay time constant
from I1p(i) to I1

(i).W(t,T, t0M(i)) is awindow function that determineswhen
the stimulus evokes a current that is non-zero:

W t,T , tðiÞ0M
� �

= expit t � t ið Þ
0M

� �
expit � t � T � tðiÞ0M

� �� �
ð7Þ

where

expit xð Þ= 1
1 + exp �xð Þð Þ :

When the optogenetic excitation is turned on, it elicits a current
of the following form:

IðiÞO tð Þ= IðiÞ2 + IðiÞ2p � IðiÞ2
� �

e
�

t�tðiÞ
0o

τ
ðiÞ
O

2
4

3
5W t,T ,tðiÞ0o

� �

+ IðiÞ3pe
�

t�T�tðiÞ
0o

τ
ðiÞ
I expit t � T � tðiÞ0o

� �
ð8Þ

where IðiÞ2p is the peak input current that follows immediately after light

onset, IðiÞ2 is the steady state current, tðiÞ0o is the time of onset of the

current, τðiÞI is the decay time constant from IðiÞ2p to IðiÞ2 , and IðiÞ3p is the

activation current that follows light offset. W ðt,T ,tðiÞ0oÞ is the same
windowing function as in the mechanically elicited current.

The total input current received by the ith unit is

IðiÞ tð Þ= IðiÞ0 + IðiÞM tð Þ+ IðiÞO tð Þ ð9Þ
Input current to output firing rate curve (I/F curve) is modeled as
a generalized sigmoid55:

f ðiÞr tð Þ= λðiÞ 1� 1

1 + exp 10IðiÞ tð Þ
� �

0
@

1
A

1
υðiÞ

2
64

3
75+ 10�4 ð10Þ

where λðiÞ denotes the maximum firing rate and υðiÞ represents the
non-linear scale of the generalized sigmoid curve. The current IðiÞ tð Þ is
multiplied by a constant scaling factor 10, to improve the fit stability
due to the different scales of the many parameters involved. The
added 10−4 constant helps to stabilize the fit in very low-firing
neurons.

We used the pymc3 package56 to infer the 12 parameters
given the observed PSTH of the neurons in 10 ms wide time
bins. The model output accurately fitted the mean firing rate
and the variability in the spike trains for the 240
recorded units.

(2) The Gaussian mixture model exploits the diverse properties of
individual vS1 neurons to make estimates of large populations on
the basis of limited quantities of recordings. The reasoning is that
a recorded neuron, unit i, is a randomly sampled member of a
broader group of vS1 neurons with similar properties (i.e., similar
parameters according to the single neuron variability model
described above). We label this group gi. Unit i emits spikes with a
Poisson probability distribution (Eq. (10)).

In detail, we first assume that vS1 is made up by a mixture of G
qualitatively different classes of neurons, where classes are defined by
the parameter values of the single neuron model. Each class can be
represented as a Multivariate Gaussian in a subspace A of the model’s
parameter space, where A is determined by I0, I1, I1p, I2, I2p, I3p, λ and ν.
The parameters, τM, τO and τI showed only minimal variations among
neurons, making it likely that they are population-specific and not
neuron-specific; thus we chose to fix their values to the median of the
fit for all neurons: τM = 48ms, τO = 49ms and τI = 28ms. The para-
meters t0M and t0o are defined by the experimenter and therefore kept
constant.

Class membership is derived from a Dirichlet process57. The full
generative process underlying real neuronal data can be written as

N μ!
gi ,Σgi

� �
∼DP N,αð Þ

a!
i ∼N μ!

gi ,Σgi

� �
P a!

i , t
� �

∼Poisson f r a!
i ,t

� �� �
ð11Þ

where the i subindex corresponds to the recordedunit, the gi subindex
represents the group to which the ith unit belongs to, a!

i 2 A is the
vector of parameters IðiÞ0 , IðiÞ1 , IðiÞ1p, I

ðiÞ
2 , IðiÞ2p, I

ðiÞ
3p, λ

ðiÞ and υðiÞ,DP is a Dirichlet
process, α is the concentration parameter, and μ!

gi and Σgi are,
respectively the gith class mean and covariance.

We infer the mixture weights, μ!
g and Σg by using the expected

values of the independently inferred parameters from the single neu-
ronvariabilitymodel as theobserveda!

i vectors for eachunit.We then
used scikit-learn58 built-in BayesianMixtureModel class to infer the
suitable class proportions, and each class’s μ!

g and Σg . We set the α
concentration hyperprior to 10−6 to favor assigning significant weight
to a larger number of classes, but also set G = 5 to prevent excessive
granularity.

This generative process and the Bayesian Mixture Model allow us
to model a 5000-unit vS1 population. The resulting spike trains are
statistically consistent with observed single neuron variability and
diversity in vibrissal stimulation and optogenetic excitation response.
We take the full set of modeled neurons to be the drive fvS1 (t) for any
given stimulation condition, as

f vS1ðtÞ=
X
j

kðjÞjt ð12Þ
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Model for perceived stimulus duration
The perceived stimulus duration, ϒ, is modeled by the leaky integrator
differential equation

dϒ
dt

= � ϒ

τ
+ f ðtÞ ð13Þ

where τ is the leaky integrator time constant and f(t) is the external
drive. The drive is written as

f tð Þ= f vS1ðtÞ+ ξðtÞ ð14Þ

where fvS1(t) is neuronal activity in vS1, including vibrissal- or optoge-
netic -stimulation evoked responses and ξ(t) is ongoing firing unre-
lated to vibrissal or optogenetic stimulation. We approximate ξ as a
Gaussian stochastic variable with mean µb and variance σ2

b.

Leaky integration is not specified as a unique physiological pro-
cess; rather, it represents the dynamics governing the percept (ϒ) in a
manner that quantitatively accounts for the rat’s judgments as a
function of combined vibrissal stimulation and optogenetic excitation
evoked responses.

Model for choice
Given the leaky integrator dynamics of ϒ tð Þ, the model for f tð Þ, and
the approximation of the Poisson variability in f vS1 tð Þ, we can solve
the stochastic differential Eq. (13) as shown previously13,59. ϒ tð Þ fol-
lows a Gaussian distribution and its expected value and variance are
equal to

E ϒ tð Þ½ �= E ϒ 0ð Þ½ �e�t
τ +μb 1� e�

t
τ

� �
+
Z t

0
e�

t�t0
τ f vS1ðtÞdt0 ð15Þ

Var ϒ tð Þ½ �=Var ϒ 0ð Þ½ �e�2t
τ + σ2

b 1� e�
2t
τ

� �
+
Z t

0
e�

2 t�t0ð Þ
τ f vS1 tð Þdt0 ð16Þ

During stimulus delivery, the rat’s percept of elapsed time evolves
through Eq. (13). The percept of total stimulus duration is given by ϒ at
the time of stimulus offset (ϒ Tð Þ). We then compute the probability
distribution for each stimulus duration,ϒ T1ð Þ andϒ T2ð Þ, in thedelayed
comparison task. This gives the probability that ϒ T2ð Þ is greater than
ϒ T1ð Þ as

P ϒ T2ð Þ>ϒ T1ð Þð Þ= 1
2
+
1
2
erf d0ð Þ ð17Þ

where

d0 =
E ϒ T2ð Þ½ � � E ϒ T1ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 Var ϒ T2ð Þ½ �+Var ϒ T1ð Þ½ �ð Þ
p ð18Þ

We can assume two types of trials60 – those in which the rat
encoded ϒ T2ð Þ>ϒ T1ð Þ and used the two representations to make a
choice (“attended” trials) and those in which choice was unrelated to
the evoked sensory representations (“lapse” trials). We assume that in
attended trials the rat judged T2 > T1 whenever ϒ T2ð Þ>ϒ T1ð Þ; in lapse
trials, the rat chose at random according to some choice bias prob-
ability bL.

The probability that the rat judged T2 > T1 is then

P T2 >T1ð Þ=pLbL + 1� pL

� � 1
2
+
1
2
erf d0ð Þ

� �
ð19Þ

where pL is the probability of a lapse trial.

Fit of the behavioral psychometric data
We constructed 100 independent population proxies for vS1 firing,
eachmade up of 5,000 neurons using the model described in (10). We
then fit a common τ, µb, σ2

b, pL and bL across all 100 populations using a
maximum likelihood estimate based on Eq. (19) with L2 parameter
regularization for τ. The weight of the regularization was set to 0.01
and its center was placed at 600ms. The resulting parameter values
are listed in table (Supplementary Table 1).

Using the resulting parameters for the neuronal population
proxies, we computed the model’s predicted psychometric curves
(Fig. 4b), and the behavioral bias (overall predicted probability of
choosing T2 > T1, Fig. 4b inset).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are deposited to
Zenodo and can be accessed through: https://doi.org/10.5281/zenodo.
1054878861. The data sets include rat behavioral data, neuronal data
recorded in vS1 of rats that perform vibration intensity and duration
discrimination task, as well during optogenetic manipulation. Any
additional information will be available from the authors upon
request. Source data are provided with this paper.

Code availability
The code for the different analyses in this study, aswell as code used to
generate themainplots is deposited toGitHub and can be accessed via
https://github.com/arashfassihi/Direct-contribution-of-the-sensory-
cortex-to-the-judgment-of-stimulus-duration. Any additional informa-
tion will be available from the authors upon reasonable request.
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