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Abstract

Some classical and fundamental results in analysis and geometry fail to hold in spaces of infinite dimen-
sion, leading to striking phenomena that require new investigations. We address two distinct questions
of this type. To each of them is dedicated a part of the thesis: the first part contains the main work of my
Ph.D. studies, while the second one is a complementary work that I did during the same years. Here we
give a brief summary, in order to give a flavour of the topics. Each part contains a detailed introduction.

Part I

Sard properties for polynomial maps in infinite dimension and applications to
sub-Riemannian geometry.

It is well-known that the classical Morse-Sard theorem is false for smooth maps from an infinite
dimensional Hilbert space to R, even under the assumption that the map is “polynomial”, and a general
theory is still missing. In this part we address this issue, providing sharp quantitative criteria for the
validity of Sard-type theorems for polynomial maps from an infinite dimensional Hilbert space to Rm.
As an application, we present new advances on the sub-Riemannian Sard conjecture in Carnot groups.

The research presented in this part appears in the following preprints:
• A. Lerario, L. Rizzi, D. Tiberio, Sard properties for polynomial maps in infinite dimension,

arxiv:2407.02296

• A. Lerario, L. Rizzi, D. Tiberio, Quantitative approximate definable choices, arxiv:2409.14869

Part II

Vanishing geodesic distances and the Michor-Mumford conjecture in
Hilbertian H-type groups.

It is well-known that for weak Riemannian metrics on infinite dimensional manifolds the geodesic
distance may not be a genuine distance, indeed it can be zero on distinct points. In their 2005 paper,
Michor and Mumford conjectured that the degeneracy of the geodesic distance is related to the local
unboundedness of the sectional curvature. In this part of the thesis, we introduce Heisenberg-type Lie
groups modelled on Hilbert spaces, and we show that in this setting the degeneracy of the geodesic
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distance and the local unboundedness of the sectional curvature coexist for a large class of weak Rie-
mannian metrics.

The research presented in this part appears in the following preprints and publications:
• V. Magnani, D. Tiberio, On the Michor-Mumford phenomenon in the infinite dimensional Heisen-

berg group, Revista Matematica Complutense

• V. Magnani, D. Tiberio, The Michor-Mumford conjecture in Hilbertian H-type groups,
arxiv:2404.04583
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infinite dimension and applications to
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Introduction

i Motivations: the Morse-Sard problem in infinite dimension and the
Sard conjecture

The Morse-Sard theorem [77, 84] states that the set of critical values of a smooth map f : N → M,
where N and M are finite dimensional manifolds, has measure zero in M. Smale [88] proved a version
of the Morse-Sard theorem in the case both M and N are infinite dimensional Banach manifolds and
the map f is Fredholm: in this case the conclusion is that the set of regular values of f is residual in
N. However, when N is infinite-dimensional and M is finite dimensional, f cannot be Fredholm and
Smale’s result cannot be applied. In fact, there are smooth surjective maps without regular points from
any infinite-dimensional Banach space to R2, see [15]. Even under the hypothesis that f is a polynomial
map, the set of its critical values can be of positive measure: Kupka [58] constructed an example of a
smooth map f : ℓ2 → R, whose restriction to each finite dimensional space is a polynomial of degree 3,
and with the property that the set of its critical values is the segment [0, 1]. However, Yomdin proved that
if a map f : ℓ2 → R can be approximated well-enough with finite dimensional polynomials, then the set
of its critical values has measure zero, see [95]. (Kupka’s map does not have this property.) Following
this approach, Yomdin constructed a family of polynomials on ℓ2 with the Sard property, that is, the
set of their critical values has measure zero (here by polynomial on ℓ2 we mean that the restriction to
any finite dimensional linear subspace is a polynomial of some fixed degree). To sum up, already for
polynomials on ℓ2 the situation in subtle: on the one hand Kupka’s counterexample shows that the Sard
property does not hold in general for these maps, on the other hand Yomdin proved that it holds under the
further assumption that the map is well-approximated with finite-dimensional polynomials. A general
theory in this framework is still missing. Furthermore, in Yomdin’s proof, the fact that the codomain is
one-dimensional is essential and new technical difficulties arise for maps with values in Rm, m > 1.

An interesting class of polynomial maps from a Hilbert space to Rm comes from sub-Riemannian
geometry. They are the endpoint maps of Carnot groups (the model spaces of sub-Riemannian geome-
try), and they play a fundamental role in the study of non-holonomic geometries. One of the main open
questions in sub-Riemannian geometry is the Sard conjecture: it claims that the endpoint maps have the
Sard property, that is, that their sets of critical values have measure zero. This question is still wide open
in Carnot groups and motivates a better investigation of the Sard problem in the context of polynomial
maps from a Hilbert space to Rm, m > 1. This is the main scope of this thesis.

In this thesis we provide Sard-type theorems for polynomial maps from a Hilbert space to Rm, for
general m ≥ 1. We present a comprehensive framework that encompasses Kupka’s counterexample, the
maps contructed by Yomdin, the endpoint maps of Carnot groups, and other examples discussed in this
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thesis. As an application, we present new results on the Sard conjecture in Carnot groups. These results
have been obtained in [62], using also as a key tool a result in semialgebraic geometry obtained in [61].

ii Overview of main contributions and chapters

In Chapter 2 we recall the classical versions of the Morse-Sard theorem both in finite and infinite dimen-
sion, we sketch Yomdin’s approach in both cases, and we discuss the Morse-Sard problem in infinite
dimension.

In the subsequent chapters of the thesis we present the research contributions. We give here a quick
glance in order to describe the structure of the chapters.

Sard-type theorems in infinite dimension and for the endpoint maps of Carnot groups

In Chapter 3 we present Sard-type theorems for polynomial maps f from a Hilbert space H to Rm,
obtained in [62]. The main theorems are stated in terms of the Kolmogorv n-width, that we introduce
in this context. We prove that on any infinite dimensional subspace V ⊂ H satisfying a quantitative
assumption on its Kolmogorov n-width, the restriction f |V as the Sard property, i.e the set of critical
values has measure zero. We prove various quantitative versions of this result, allowing to study the
Sard property also for the case V = H. We prove the sharpness of our n-width assumption constructing
suitable counterexamples. A detailed presentation of these results is given in Section iii.1.

In Chapter 4 we apply our results to sub-Riemannian geometry: we prove the Sard conjecture for
the restriction of the endpoint maps of Carnot groups to the set of piece–wise real–analytic controls with
large enough radius of convergence. A detailed presentation of these results is given in Section iii.3.

Quantitative approximate definable choices in semialgebraic geometry

The Sard-type theorems in Chapter 3 and Chapter 4 rest on a key result in semialgebraic geometry, that
we prove in Chapter 5, and that now we describe.

A definable choice is a semialgebraic selection of one point in every fiber of the projection of a
semialgebraic set. Definable choices exist by semialgebraic triviality, but their complexity depends
exponentially on the number of variables. By allowing the selection to be approximate (in the Hausdorff
sense), we quantitatively improve this result in Chapter 5. More precisely, we construct an approximate
selection with degree that is linear in the complexity of the original set, and independent on the number of
variables. To prove these results, we develop a general quantitative theory for Hausdorff approximations
in semialgebraic geometry. See Section iii.4 for a detailed presentation of the results.

iii Statement of the results

iii.1 Sard properties for polynomial maps in infinite dimension

In this section we introduce the content of Chapter 3, where we investigate the Sard property for poly-
nomial maps defined on Hilbert spaces and with values in Rm, for general m ≥ 1.
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III. STATEMENT OF THE RESULTS

Definition 1. Given a Hilbert space H and d,m ∈ N, we define the class of maps

Pm
d (H) :=

{
f : H → Rm

∣∣∣∣∣ dim(E) < ∞ =⇒ f |E is a polynomial map of degree d
}
,

where by polynomial map we mean that each component of f |E is a polynomial of degree d. We require
that each element of Pm

d (H) is of class C1 (in the Fréchet sense), and that its differential D f : H →
L(H,Rm) is weakly continuous and locally Lipschitz.

The map constructed by Kupka belongs to this family, as well as the Endpoint maps for horizontal
path spaces on Carnot groups (see Section iii.3).

We need to introduce a notion of quantitative compactness for subsets of Hilbert spaces. More
precisely, given K ⊂ H and n ∈ N, we denote by Ωn(K,H) its Kolmogorov n–width:

Ωn(K,H) := inf
dim(E)=n

sup
u∈K

inf
v∈E
∥v − u∥, (1)

where ∥ · ∥ denotes the norm of the Hilbert space H, and the infimum ranges over all vector subspaces
E ⊂ H of dimension n (see Definition 3.18). A set K ⊂ H is compact if and only if it is bounded and its
n–width goes to zero as n goes to infinity. For a compact set K ⊂ H we also define the quantity:

ω(K,H) := lim sup
n→∞

Ωn(K,H)1/n ∈ [0, 1]. (2)

Roughly speaking, smaller ω(K,H) means that K is “more compact” in H, and better approximated by
finite-dimensional subspaces.

Our results are stated in terms of entropy dimension of the set of ν-critical values of a map f : H →
Rm, namely f (Critν( f )), where Critν( f ) is the set of points where D f has rank at most ν ≤ m − 1. The
classical set of critical values corresponds to setting ν = m − 1, and it is denoted by f (Crit( f )), where
Crit( f ) is the set of critical points. We refer to Definition 3.16 of entropy dimension, noting that it is
larger than the Hausdorff one so that in the forthcoming estimates one can replace the former with the
latter for simplicity.

Our first theorem is a sufficient condition for the validity of the Sard property (see Theorem 3.23).
We denote by µ the Lebesgue measure on Rm.

Theorem A (Sard under n–width assumptions). Let d,m ∈ N. There exists β0 = β0(d,m) > 0 such that
the following holds. Let H be a Hilbert space, f ∈Pm

d (H) and K ⊂ H be a compact set such that

ω(K,H) = lim sup
n→∞

Ωn(K,H)1/n ≤ q−1 ∈ (0, 1).

Then, for every ν = 1, . . . ,m − 1 we have

dime

(
f
(

Critν( f ) ∩ K
))
≤ ν +

ln β0

ln q
.

In particular, if q > β0, then the Sard property holds on K:

µ
(

f
(

Crit( f ) ∩ K
))
= 0.
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Remark 2. The constant β0(d,m) of Theorem A comes from semialgebraic geometry, and its origin is
discussed in Section iii.2. For this reason, we sometimes call it the semialgebraic constant.

By building upon Kupka’s counterexamples [58], we prove that the quantitative assumption q > β0
in Theorem A cannot be dispensed of. The following result corresponds to Theorem 3.27. We denote
by BX(r) the closed ball of radius r in a Banach space X.

Theorem B (Counterexamples to Sard). Let d,m ∈ N, with d ≥ 3, and set q := (d − 1)1/d. There exist a
Hilbert space H, and f ∈Pm

d (H) such that K = Crit( f ) ∩ BH(r) is compact for all r > 0, with

ω(K,H) = lim sup
n→∞

Ωn(K,H)1/n ≤ q−1,

and f : H → Rm does not verify the Sard property, namely µ( f (Crit( f ) ∩ K)) > 0. Therefore, the
semialgebraic constant β0(d,m) of Theorem A satisfies

β0(d,m) ≥ (d − 1)1/d, ∀m ∈ N, d ≥ 3.

Remark 3. The case d = 2, which is left out from Theorem B, is special. This is related to the fact that
the complexity of semialgebraic sets defined by quadratic equations has a different behaviour compared
to the case d ≥ 3. In this case we currently expect that any f ∈ Pm

2 (H) satisfies the Sard property
globally on H. This will be the subject of a future work.

As a consequence of Theorems A and B, we see that there is a quantitative threshold on the n–width
of compact sets for the validity of the Sard property. Indeed, we can define ω0(d,m) as the supremum of
the set of ω ∈ [0, 1] such that for every f ∈Pm

d (H) and for every compact set K ⊂ H with ω(K,H) = ω
it holds µ ( f (Crit( f ) ∩ K)) = 0. We obtain the following statement (see Theorem 3.29).

Theorem C (Sard threshold on compacts). For all d,m ∈ N, there exists ω0(d,m) ∈ (0, 1] such that

(i) for every f ∈Pm
d (H) and for every compact set K ⊂ H with ω(K,H) < ω0(d,m),

µ
(

f (crit( f ) ∩ K)
)
= 0;

(ii) for every ω > ω0(d,m), with ω ∈ (0, 1], there exist f ∈ Pm
d (H) and a compact set K ⊂ H with

ω(K,H) = ω and such that

µ
(

f (crit( f ) ∩ K)
)
> 0.

Remark 4. By construction, and Theorem A, ω0 ≥ β−1
0 . Furthermore, if d ≥ 3, Theorem B yields

ω0 < 1, so that Item (ii) is non-vacuous in these cases.
We can strengthen the conclusions from Item (i) of Theorem C as follows (see Theorem 3.30).

Theorem D (Sard threshold on linear subspaces). Let f ∈ Pm
d (H) and K ⊂ H be a compact set such

that ω(K,H) < ω0(d,m). Consider the linear subspace

V := span(K).

Then the restriction f |V : V → Rm satisfies the Sard property:

µ
(

f
(
Crit( f |V )

))
= 0.

In particular, µ( f (Crit( f ) ∩ V)) = 0.
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III. STATEMENT OF THE RESULTS

Remark 5. Since V ⊂ H is a (possibly non-closed) linear subspace, the restriction f |V : V → Rm is a C1

map in the Fréchet sense from the normed vector space (V, ∥ · ∥) to Rm, with Du( f |V ) = (Du f )|V for all
u ∈ V .

Example 6. Let η ∈ (1,∞) with η > ω0(d,m)−1, where ω0(d,m) is the number in Theorems C and D, for
d,m ∈ N. Let H = ℓ2 with the usual norm. Consider the subset K ⊂ BH(1) given by

K =

u ∈ ℓ2

∣∣∣∣∣∣∣∣
∞∑
j=1

|u j|
2η2 j ≤ 1

 .
One can easily verify that K is compact. Furthermore, the linear space V = span(K) is dense in H. We
can estimate the n–width of K as follows. For n ∈ N consider the n-dimensional subspaces En = {x ∈
ℓ2 | x j = 0, ∀ j ≥ n + 1} ⊂ H. From (1), we obtain

Ωn(K,H)2 ≤ sup
u∈K

inf
v∈En
∥u − v∥2

= sup
u∈K

∞∑
j=n+1

|u j|
2

≤ η−2(n+1) sup
u∈K

∞∑
j=1

|u j|
2η2 j ≤ η−2(n+1).

Hence ω(K,H) = lim supnΩn(K,H)1/n ≤ η−1 < ω0(d,m). Hence, by Theorem D it holds

µ
(

f
(
Crit( f |V )

))
= µ

(
f
(
Crit( f ) ∩ V

))
= 0, ∀ f ∈Pm

d (H).

Note that even if V ⊂ H is dense, the unrestricted map f : H → Rm may not have the Sard property (see
e.g. the Kupka counterexamples in Section 3.2.3).

Theorems A, C and D are deduced from a more general result for maps that are “well-approximated”
by polynomials. This can be regarded as our main result concerning the Sard property, and does not make
use of the concept of n–width. We report here the statement (see Theorem 3.17).

Theorem E (Sard criterion for well-approximated maps). Let d,m ∈ N. There exists a constant β0 =

β0(d,m) > 0 such that the following holds. Let H be a Hilbert space, and let f : H → Rm be a C1

map such that its differential D f : H → L(H,Rm) is weakly continuous. Let K ⊂ H be a bounded set
with this approximation property: there exist a sequence En ⊂ H of linear subspaces, dim(En) = n, and
polynomial maps fn : En → R

m with uniformly bounded degree:

sup
n∈N

deg fn ≤ d < ∞,

such that for some q > 1, c ≥ 0, and all large enough n it holds

sup
x∈K

(
∥ f (x) − fn ◦ πEn(x)∥ + ∥ (Dx f ) |En − DπEn (x) fn∥op

)
≤ cq−n. (3)
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Then
dime

(
f
(

Critν( f ) ∩ K
))
≤ ν +

ln β0

ln q
, ∀ ν = 1, . . . ,m − 1.

In particular, if q > β0, then f satisfies the Sard property on K:

µ
(

f (Crit( f ) ∩ K)
)
= 0.

Remark 7. The constant β0(d,m) of Theorem E is the same appearing in Theorem A, and comes from
semialgebraic geometry, see Section iii.2.

By means of the general Theorem E we single out a class of maps satisfying the Sard property on the
whole domain of definition. This is the content of Theorem 3.34, that we report here. The case m = 1
corresponds to [96, Thm. 10.12].

Theorem F (Global Sard for special maps). Let H be a separable Hilbert space. For all k ∈ N, let
pk : Ek → R

m be polynomial maps with supk∈N deg pk ≤ d for some d ∈ N, and such that

sup
x∈BEk (1)

∥pk(x)∥ ≤ q−k, ∀ k ∈ N,

for some q > 1. Then the map f : H → Rm defined by

f (x) :=
∞∑

k=1

pk(x1, . . . , xk), ∀ x ∈ H,

is well–defined, f ∈Pm
d (H) (see Definition 1), and for all ν = 1, . . . ,m − 1 and r > 0 it holds

dime

(
f (Critν( f ) ∩ BH(r))

)
≤ ν +

ln β0

ln q
,

where β0 = β0(d,m) is the same constant given by Theorem E. In particular, if q > β0, then f satisfies
the Sard property globally on H:

µ
(

f
(

Crit( f )
))
= 0.

iii.2 The role of quantitative semialgebraic geometry

The proof of Theorem E needs some fine properties of semialgebraic sets. The strategy of the proof
is conceptually similar to Yomdin’s [95], and uses the theory of variations, introduced by Vitushkin
[91, 92] and developed in [96].

Let us denote with Vi(S ) the i-th variation of a semialgebraic set, which is a sort of i-dimensional vol-
ume, (see Definition 3.6). Furthermore, recall that for a C1 map F : Rn → Rm, and Λ = (Λ1, . . . ,Λm) ∈
Rm
+ the set of almost-critical values of F is defined by

CΛ(F) :=
{
x ∈ Rn

∣∣∣∣∣σi(DxF) ≤ Λi, ∀ i = 1, . . . ,m
}
,

where σ1(DxF) ≥ · · · ≥ σm(DxF) are the singular values of DxF, see Definition 3.8 (here we assume
n ≥ m). In [96, Cor. 7.4] a quantitative estimate on the variations of the almost-critical values of
polynomial maps has been obtained. In that estimate the dimensional parameter n does not appear
explicitly. We obtain Theorem G below, which makes this dependence explicit (see Theorem 3.15).
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III. STATEMENT OF THE RESULTS

Theorem G (Quantitative variations estimates). Let n ≥ m, and p : Rn → Rm be a polynomial map with
components of degree at most d. For i = 0, . . . ,m, Λ = (Λ1, . . . ,Λm) ∈ Rm

+ and r > 0, we have

Vi(p(CΛ(p) ∩ BRn(r))) ≤ cst(m, r)nmβn
0Λ0 · · ·Λi,

where β0 = β0(d,m) depends only on d and m, cst(m, r) depends only on m, r, and we set Λ0 = 1.

A key technical step in the proof of Theorem G is a quantitative substitute for the definable choice
theorem in semialgebraic geometry from [61], see Theorem 3.5. The latter is proved in Chapter 5, indeed
it follows from Theorem M and Remark 10.

iii.3 Applications to the Endpoint maps of Carnot groups

We discuss now the implications of Theorem C and Theorem D in the context of sub-Riemannian ge-
ometry. These results are proved in Chapter 4.

Recall that an m-dimensional Carnot group of step s ∈ N is a connected and simply connected Lie
group (G, ·) of dimension m, whose Lie algebra g admits a stratification of step s, that is

g = g1 ⊕ · · · ⊕ gs,

where gi , {0}, gi+1 = [g1, gi] for all i = 1, . . . , s − 1 and [g1, gs] = {0}. The group exponential map
yields an identification G ≃ Rm, and the first stratum g1 of the Lie algebra defines a smooth, totally
non-holonomic distribution ∆ ⊆ TRm of rank k := dim g1.

Fix a global trivialization of ∆:
∆ = span{X1, . . . , Xk},

where each Xi is a left-invariant vector field. Let I := [0, 1] be the unit interval and H := L2(I,Rk).
We say that a curve γ : I → G is horizontal if it is absolutely continuous and there exist u ∈ H, called
control such that for a.e. t ∈ I it holds

γ̇(t) =
k∑

i=1

ui(t)Xi(γ(t)), (4)

Furthermore, for any given u ∈ H there exists a unique γu : I → G satisfying (4) and such that γu(0) = e
(the identity e ∈ G, identified with 0 ∈ Rm). Note that the class of horizontal curves does not depend on
the choice of the global trivialization of ∆.

The Endpoint map is the map that sends a control u to the the corresponding final point γu(1):

E : L2(I,Rk)→ G.

The Sard conjecture is the conjecture that Endpoint map has the Sard property:

Sard conjecture: the set E(Crit(E)) has zero measure.

The conjecture was introduced by Zhitomirskii and Montgomery, see [76, Sec. 10.2] for general sub-
Riemannian structures, where the Endpoint map can be defined in a similar way, on a suitable domain of
horizontal paths, which has the structure of a Hilbert manifold. For the specific case of Carnot groups,
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it is known to be true for step ≤ 2, see [7, 60]. Furthermore, the conjecture has been verified in [29] for
filiform Carnot groups, in [30] for Carnot groups of rank 2 and step 4, and rank 3 and step 3, and for a
handful of other specific examples described in [60].

Assume that ∆ is also endowed with a left-invariant norm. This choice induces a length structure
on the space of horizontal curves, and correspondingly, a distance, which gives G the structure of sub-
Finsler Carnot group (or sub-Riemannian Carnot group if the norm is induced by a scalar product). In
this case, within the set critical points of E (also called singular horizontal paths), the energy-minimizing
ones play a significant role. At the corresponding critical values, the distance loses regularity: it is never
smooth and it can even lose local semiconcavity [11, Sec. 4.2]. For this reason, the understanding of
the “abundance” of such critical values is crucial. Denoting with Hmin ⊆ L2(I,Rk) the set of minimizing
horizontal paths starting from the identity, the minimizing Sard conjecture can be formulated as follows:

Minimizing Sard conjecture: the set E(Crit(E) ∩ Hmin) has zero measure.

The most general result to date is that the above set is a closed nowhere dense set [3, 83], which of
course does not imply the minimizing Sard conjecture. The above conjecture is one of the main open
problems in sub-Riemannian geometry [4, Prob. 3], [83, Conj. 1]. In general, the problem is settled in
the following cases:

- Thanks to the work of Agrachev-Sarychev [9] and Agrachev-Lee [8], in absence of so-called
Goh singular minimizing paths, all sub-Riemannian minimizing paths (resp. sub-Finsler, under
suitable smoothness assumptions on the norm) are solution of a finite-dimensional Hamiltonian
flow so that the corresponding set of critical values has zero measure by the finite-dimensional
Sard theorem. Recently, Rifford proved that, more in general, the minimizing Sard conjecture
holds for structures where all non-trivial Goh paths have Goh-rank ≤ 1 almost everywhere, see
[82]. For Carnot groups, these results can be applied for example when the distribution is pre-
medium fat, see [82, (1.2)]. In passing, we remark that for generic (so, typically not Carnot)
sub-Riemannian structures with distribution of rank ≥ 3, there are no non-trivial singular Goh
minimizing paths, see [34, Cor. 2.5] and [6, Thm. 8]. As a consequence the minimizing Sard
conjecture holds true. Thanks to [82, Cor. 1.4], the latter result extends the case of rank ≥ 2.

- The minimizing Sard conjecture is true also for Carnot groups of step ≤ 3, see [60]. In this case,
the problem is reduced (in a non-trivial way) to a finite-dimensional one. First, by noting that
singular minimizing curves are non-singular in some proper subgroup, and then exploiting the
fact that Carnot subgroups are parametrized by a finite-dimension manifold.

Finally, we refer to [97, 26, 23, 25, 24, 80, 83] for further details and discussions of various forms
of the Sard conjecture on general sub-Riemannian structures.

The following result (Theorem 4.3) connects this framework to the previous sections.

Theorem H (Polynomial properties of the Endpoint map). Let G be a Carnot group of topological
dimension m, step s, and rank k. Then the Endpoint map E ∈Pm

s (H), for H = L2(I,Rk)

As a consequence, we can apply Theorem D to the study of Endpoint maps of Carnot groups. We
record here a first immediate corollary (see Theorem 4.4).
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III. STATEMENT OF THE RESULTS

Theorem I (Sard criterion for Endpoint maps). Let G be a Carnot group of topological dimension m,
step s, and rank k. Let K ⊂ L2(I,Rk) be a compact subset with

ω(K, L2(I,Rk)) < ω0(m, s).

Then, letting V := span(K), the restriction E|V : V → G has the Sard property, namely

µ
(
E
(
Crit(E|V )

))
= 0.

In particular µ(E(Crit(E) ∩ V)) = 0.

We can apply Theorem I to find large sets on which the Sard property holds for the Endpoint map of
Carnot groups. This is a more functional-analytic approach to the Sard conjecture that, unlike previous
ones, does not resort to reduction to finite-dimensional cases.

An interesting case in which the assumptions of Theorem I can be effectively checked is given by sets
of controls that are “sufficiently regular”. We introduce the notation to state our result, see Section 4.3
for additional details. Given r > 0, and a closed interval I ⊂ R, consider the set:

Cω(I,Rk; r) :=
{
u : I → Rk

∣∣∣∣∣ u is real-analytic with radius of convergence > r
}
,

endowed with the sup norm over the r-neighbourhood of I in C. More in general, let Cω(I,Rk; r, ℓ) be
the set of piecewise analytic controls:

Cω(I,Rk; r, ℓ) =
{
u : I → Rk

∣∣∣∣∣ u|I j ∈ C
ω(I j,R

k; r), for all j = 1, . . . , ℓ
}
,

where I j = inf I+
[ ( j−1)|I|

ℓ ,
j|I|
ℓ

]
, for all j = 1, . . . , ℓ, which we equip with a suitable norm (see Section 4.3).

In Theorem 4.5 we prove that the unit ball K of Cω(I,Rk; r, ℓ), with I = [0, 1], is compact in H and its
n–width satisfies:

Ωn(K,H) ≤
(kℓ)1/2

ln r

(
1
r

)⌊ n
kℓ ⌋

, ∀ n ∈ N, r > 1.

By applying Theorem I we can therefore deduce the following result (see Theorem 4.6).

Theorem J (Sard property on piecewise real-analytic controls). Let G be a Carnot group of topological
dimension m, step s, and rank k. Given ℓ ∈ N, there exists r = r(m, s, k, ℓ) > 0 such that, letting
V = Cω(I,Rk; r, ℓ), with I = [0, 1], it holds

E(V) = G and µ
(
E(Crit(E|V )

)
= µ

(
E(Crit(E) ∩ V)

)
= 0.

Namely, the Sard property holds on the space of piecewise real-analytic controls with radius of conver-
gence > r and with ℓ pieces.

Remark 8 (Regularity and Sard). Sussmann established that for real-analytic sub-Riemannian structures
(such as Carnot groups), minimizing horizontal paths are real-analytic on an open and dense set of their
interval of definition [89]. In light of that result, Theorem J hints at a unexpected link between the
regularity problem of sub-Riemannian geodesics and the minimizing Sard conjecture.
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Remark 9 (Surjectivity of the Endpoint map). Of course a subset of controls V ⊂ L2(I,Rk) must satisfy
E(V) = G to be relevant for the theory. By the Rashevskii-Chow theorem, E : L2(I,Rk) → Rm is
surjective. We observe that E is surjective also on Cω(I,Rk; r, ℓ) if ℓ ≥ 4m, since from the proof of the
Rashevskii-Chow theorem any pair of points can be joined by a concatenation of 4m horizontal paths
with constant controls, see [5, Sec. 3.2]. Actually, the Endpoint map is surjective when restricted on any
set that is dense in L2(I,Rk), see e.g. [22, Sec. 2.5]. It follows that E is surjective on Cω(I,Rk; r), since
the latter contains all (restrictions on I of) polynomial controls.

Finally, we prove in Theorem 4.10 that the Endpoint map on Carnot groups is surjective already
when restricted to polynomial controls of large enough degree (depending on G). This is a particular
case of the following more general result (see Theorem 4.11).

Theorem K (Quantitative surjectivity). LetG be a Carnot group with topological dimension m and rank
k. Let S ⊂ L2(I,Rk) be a dense set. Then there exist u0, u1, . . . , um ∈ S such that

E(span{u0, u1, . . . , um}) = G.

In other words, one can find an (m + 1)-dimensional vector subspace E ⊂ L2(I,Rk) of controls
(depending on G) such that the restriction of the Endpoint map to E is surjective. Furthermore, E can
be assumed to have generators in any prescribed dense set S ⊂ L2(I,Rk). Theorem K can be seen as
a more refined version (for Carnot groups) of the well–known fact that the Endpoint map is surjective
when restricted on any set of controls that is dense in L2(I,Rk), see e.g. [22, Sec. 2.5].

Closing thoughts on the Sard conjecture

We do not venture in a guess in favor of Sard conjecture on the whole H = L2(I,Rk), instead we propose
a direction of future investigation that can be approached with our techniques. Recall that Hmin ⊂ H
is the set of energy-minimizing controls. It is known that Hmin is boundedly compact in H i.e., the
intersection Hmin ∩ BH(r) is compact for all r > 0, see [5, Thm. 8.66], [2]. In fact, from the very recent
result by Lokutsievskiy and Zelikin [63, Cor. 1 (G)], one can deduce the following estimate for the
n–width on Carnot groups

Ω2n+1(Hmin ∩ BH(1),H) ≤ Cn−
1
2s , ∀ n ∈ N, (5)

for some C > 0 depending on G. Estimate (5) can be understood as a quantitative compactness property
for Hmin. Unfortunately, the polynomial decay (w.r.t. n) of (5) is too weak to apply Theorem A, since
the latter requires an exponential one.

If one could prove that, for some q−1 < ω0(s,m), it holds

Ωn(Hmin ∩ BH(1),H) ≤ q−n, as n→ ∞, (6)

then Theorem C would settle the minimizing Sard conjecture on Carnot groups.
We also note that it would be sufficient to prove (6) for the set of the so-called strictly abnormal

energy-minimizing controls Hstr.abn
min ⊊ Hmin. Unfortunately, we were not able to produce a direct estimate

of the n–width of (bounded subsets of) Hmin or Hstr.abn
min , so that we have no further evidence to support

this idea towards a proof of the minimizing Sard conjecture.
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III. STATEMENT OF THE RESULTS

In the opposite direction, and to conclude, our results can be used to identify spaces where the
(general) Sard conjecture can be violated. If, for a given Carnot group G, there is a linear subset of
controls V ⊂ H such that µ(E(Crit(E) ∩ V)) > 0, then the following necessary condition must hold:

lim sup
n→∞

Ωn(V ∩ BH(r),H)1/n ≥ ω0(s,m).

iii.4 Definable choices in semialgebraic geometry

In this section we introduce the content of Chapter 5, where we prove a quantitative approximate version
of the definable choice theorem, [96, Thm. 4.10]. Before stating our main results, let us explain the name
and the context of results of this type.

Let S ⊂ Rn be a compact semialgebraic set, presented as

S =
a⋃

i=1

bi⋂
j=1

{
x ∈ Rn | sign(pi j(x)) = σi j

}
, (7)

where σi j ∈ {0,+1,−1}, the pi j are polynomials of degree at most d. We condense this information into
the diagram D(S ) := (n, c, d) of the representation (7), where c = a max bi.

We denote by
π : Rn → Rℓ

the linear projection onto the last ℓ coordinates. It follows from Tarski–Seidenberg that the set π(S )
is semialgebraic and a natural problem is to choose, for every element y ∈ π(S ), an element x(y) ∈
π−1(y)∩ S so that the resulting set A := {x(y)}y∈π(S ) is semialgebraic and of dimension at most ℓ. The set
A is called a definable choice over π(S ).

The fact that this can be done follows from a result in semialgebraic geometry called semialgebraic
triviality (see Corollary 5.8). However, as a result of this process there is no good control on the geometry
of A in terms of the data defining S (see Remark 5.9).

For many geometric applications one does not really need that A is a choice over π(S ), but it
is enough that it is close to it. More precisely, given ϵ > 0, denote by Uϵ(S ) the Euclidean ϵ–
neighbourhood of S . Then one can relax the requirements for the definable choice and ask, given
ϵ > 0, for a set Aϵ ⊆ Uϵ(S ), with π(Aϵ) “close” to π(S ) (in the Hausdorff metric, denoted by distH), and
possibly with a control on the diagram of Aϵ .

In this direction we prove two related results. The first one deals specifically with the problem that
we have just discussed (see Theorem 5.42).

Theorem L (Quantitative approximate definable choice, first version). For every c ∈ N there exist κ ∈ N
such that the following holds. Let n, ℓ, d ∈ ℓ, with 1 ≤ ℓ ≤ n. Let π : Rn → Rℓ be the projection onto the
last ℓ coordinates and let S ⊂ Rn be a bounded closed semialgebraic set with

D(S ) = (n, c, d).

Then, for every ϵ > 0 there exists a closed semialgebraic set Aϵ ⊂ Rn such that:

(i) dim(Aϵ) ≤ ℓ;
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(ii) Aϵ ⊆ Uϵ(S );

(iii) distH(π(Aϵ), π(S )) ≤ ϵ;

(iv) D(Aϵ) = (n, κ, κd).

The set Aϵ from the statement is therefore an approximate (in the Hausdorffmetric) definable choice
over π(S ), with a quantitative control on its diagram.

In view of applications, it is also useful to have the following alternative version of the previous
result (Theorem 5.43), which essentially follows from Theorem L applied to the case of the graph of a
semialgebraic map.

Theorem M (Quantitative approximate definable choice, second version). For every c, d, ℓ ∈ N there
exists β > 1 satisfying the following statement. Let n ∈ N and let K ⊂ Rn be a closed semialgebraic set
contained in the ball BRn(ρ) and let F : Rn → Rℓ be a locally Lipschitz semialgebraic map such that

D(graph(F|K)) = (n + ℓ, c, d).

Then for every ϵ ∈ (0, ρ) there exists a closed semialgebraic set Cϵ ⊂ R
n such that:

(i) dim(Cϵ) ≤ ℓ;

(ii) Cϵ ⊆ Uϵ(K);

(iii) distH(F(Cϵ), F(K)) ≤ L(F, ρ) · ϵ, where L(F, ρ) := 2 + Lip(F, BRn(2ρ));

(iv) for every e = 1, . . . , n and every affine space Re ≃ E ⊆ Rn, the number of connected components
of E ∩Cϵ is bounded by

b0(E ∩Cϵ) ≤ βe. (8)

Remark 10 (The case of polynomial maps). Theorem 5.43 can be applied to any polynomial map F :
Rn → Rℓ with components of degree bounded by d, assuming that the diagram of the original set satisfies
D(K) = (n, c, d). In fact, in this case

graph(F|K) =
{
(x, y) ∈ Rn × Rℓ | x ∈ K, y = F(x)

}
is a bounded and closed semialgebraic set with D(graph(F|K)) = (n + ℓ, c + 1, d).

Theorem M corresponds to [96, Thm. 4.10 and Ex. 4.11], where it is proved the existence of a
semialgebraic set Cϵ as in Theorem M, except for (8), which for them has the shape

b0(E ∩Cϵ) ≤ f (n, ℓ, c, d, e),

for some (non–explicit) function f : N5 → N. The most notable conclusion from Theorem M is
therefore the explicit dependence of the bound on the dimension of the affine space of Item (iv), which
says that we can take f (n, ℓ, c, d, e) = β(c, d, ℓ)e.

Similarly, the difficult part from Theorem L is proving that the diagram of Aϵ has the explicit shape
D(Aϵ) = (m, κ, κd) with κ depending only on the combinatorial data c of the diagram of the original set
(and not on the number of variables, for instance).

Obtaining this explicit dependence is non–trivial. Compared to [96, Thm. 4.11], a conceptual novelty
is the use of ideas from [12], which in turn involves the study of approximation of semialgebraic sets in
the Hausdorff metric. A large part of the chapter is devoted to expanding and developing these ideas,
see Section 5.1.3.
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III. STATEMENT OF THE RESULTS

Hausdorff approximations

Section 5.1.3 contains new ideas that have their own interest and that are based on the observation
that the Hausdorff distance between semialgebraic sets in Rn can be studied within the framework of
semialgebraic geometry. In particular, this notion can be defined also on a real closed extension R of the
real numbers (see Section 5.1.1), leading to a notion of “Hausdorff distance” between semialgebraic sets
in Rn. The main result from Section 5.1.3 is then a technique to produce Hausdorff approximations of
semialgebraic sets using infinitesimals, i.e. working in the real closed field of algebraic Puiseux series
(see Definition 5.2). We allow multiple infinitesimals, which makes the technique handful and practical,
but which requires nontrivial extensions of the ideas from [12]. What is important for us is that this
technique allows to keep control on the combinatorial part and the degrees of the approximating set:
for example, in Proposition 5.36, we show how to approximate a closed semialgebraic set with a closed
basic semialgebraic set (see Definition 5.4) whose combinatorial data and degree are controlled in terms
of the diagram of the original set (see the beginning of Section 5.1.4 to appreciate the subtlety of this
statement).
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Chapter 1

Table of notations

Rm
+ . . . . . . . . . . . . . . m-tuples of positive real numbers

BX(x, r) . . . . . . . . . . closed ball of radius r > 0 centered at x of a Banach space X
BX(r) . . . . . . . . . . . . closed ball of radius r > 0 centered at 0 of a Banach space X
BX . . . . . . . . . . . . . . closed unit ball centered at 0 of a Banach space X
L(X,Y) . . . . . . . . . . linear continuous maps between banach spaces X, Y
∥ · ∥op . . . . . . . . . . . . operator norm on L(X,Y), see (3.19)
∥ · ∥X . . . . . . . . . . . . norm for a Banach space X (the X is omitted when there is no confusion)
B(X,Y) . . . . . . . . . . continuous bounded maps between Banach spaces X, Y
Cω(I,Rk; r, ℓ) . . . . . piece-wise real-analytic functions, Section 4.3
µ . . . . . . . . . . . . . . . . Lebesgue measure
Ωn(K,H) . . . . . . . . Kolmogorov n–width of K ⊂ H, Definition 3.18
ω(K,H) . . . . . . . . . asymptotic Kolmogorov width of K ⊂ H, Eq. (2)
Pm

d (H) . . . . . . . . . . . set of well-approximable maps, Definition 1
β0(d,m) . . . . . . . . . semialgebraic constant, Remark 2
ω(d,m) . . . . . . . . . . threshold constant, Theorem C
H i(A) . . . . . . . . . . . i-dimensional Hausdorff measure of a rectifiable Borel set A
Vi(A) . . . . . . . . . . . . Vitushkin variation of a bounded semialgebraic set A, Definition 3.6
b0(S ) . . . . . . . . . . . . number of connected components of a set S
σk(L) . . . . . . . . . . . . k-th singular value of a linear map L : H → Rm on a Hilbert space, ordered in

decreasing order σ1(M) ≥ · · · ≥ σm, Definition 3.8
Crit( f ) . . . . . . . . . . critical points of a map, Eq. (3.18)
Critν( f ) . . . . . . . . . . ν-critical points of a map, Eq. (3.18)
CΛ( f ) . . . . . . . . . . . Λ-critical (or almost-critical) points of a map, Definition 3.11
M(ϵ, S ) . . . . . . . . . . ϵ-entropy of a set S ⊂ Rm, Definition 3.16
dime(S ) . . . . . . . . . entropy dimension of a set S ⊂ Rm, Definition 3.16
Uε(S ) . . . . . . . . . . . ϵ-neighbourhood of a subset S ⊂ Rn

distH . . . . . . . . . . . . Hausdorff distance
βtm . . . . . . . . . . . . . . Thom-Milnor bound constant, Theorem 3.4
βdc . . . . . . . . . . . . . . definable choice constant, Theorem 3.5
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βyc . . . . . . . . . . . . . . Yomdin-Comte constant, Theorem 3.10
D(S ) . . . . . . . . . . . . diagram of a semialgebraic set S , Definition 3.2
G . . . . . . . . . . . . . . . Carnot group (of step s, rank k, dimension m), Section 4.1
E . . . . . . . . . . . . . . . Endpoint map, Definition 4.2
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Chapter 2

Overview on the Morse-Sard problem in
infinite dimension

The aim of this chapter is to present the state of the art on the Morse-Sard problem in infinite dimension,
focusing on Yomdin’s contributions. We start presenting Yomdin’s quantitative version of the Morse-
Sard theorem in finite dimension, in Section 2.1. Then, we discuss in Section 2.2 the infinite dimensional
case, showing how the quantitative Yomdin’s approach in finite dimension is suitable to obtain Sard
theorems in infinite dimension.

We start recalling the classical Morse-Sard theorem. It was proved in [77, 84], and it is nowadays a
fundamental tool in geometry and analysis.

Theorem 2.1 (Morse-Sard). Let f : N → M be a Ck map between smooth, finite-dimensional manifolds.
If k ≥ max{dim N − dim M + 1, 1}, then the set f (Crit( f )) has measure zero in M.

A finer version of this theorem was proved in [40, Theorem 3.4.3], obtaining a bound on the Haus-
dorff dimension of sets of critical values (see also [85, 86]). To state the result, given U an open subset
of Rn and f : U → Rm a C1 map, for any ν = 0, . . . , n − 1 we set

Critν( f ) = {x ∈ U | rank(Dx f ) ≤ ν}.

Theorem 2.2. Let U be an open subset of Rn and f : U → Rm be a Ck map. Then, for every ν =
0, . . . , n − 1 we have

dimH ( f (Critν( f ))) ≤ ν +
n − ν

k
.

The sharpness of such estimate is discussed in [40, Section 3.4.4].

2.1 Yomdin’s quantitative version of the Morse-Sard theorem in finite
dimension

In this section we present the quantitative version of the classical Morse-Sard theorem in finite dimen-
sion, proved by Yomdin. We first sketch the proof of the real-valued case in order to illustrate the
philosophy of Yomdin’s approach in the simplest case. Then we sketch the proof of the vector-valued
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CHAPTER 2. OVERVIEW ON THE MORSE-SARD PROBLEM IN INFINITE DIMENSION

case, which follows the same approach of the real-valued case, but it requires additional tools. To state
these results we need the following definition.

Given a relatively compact S ⊂ Rm, for any ϵ > 0 we denote with M(ϵ, S ) the ϵ-entropy of S , which
is the minimum number of closed balls of radius ϵ that we need to cover S .

Definition 2.3 (Entropy dimension). The entropy dimension of S is defined as

dime(S ) = lim sup
ϵ→0+

ln M(ϵ, S )
ln( 1

ϵ )
.

We refer to [96, Ch. 2] for a more detailed treatment of the properties of the entropy dimension. For
instance, it is proved that

dimH (S ) ≤ dime(S ). (2.1)

We point out that the inequality can be strict, since there are sequences of real numbers with positive
entropy dimension. Indeed, by [96, Theorem 2.9], given a > 0 we have

dime

{ 1
ja

}
j∈N

 = 1
a + 1

. (2.2)

2.1.1 One-dimensional codomain

In this section we present Yomdin’s theorem for real-valued functions defined on a closed ball of Rn.
The main result of this section is Theorem 2.7.

Definition 2.4. Let f : Rn → R be a C1 map. Given λ ∈ R+, the set of almost-critical points of f is
defined as

Cλ( f ) :=
{
x ∈ Rn

∣∣∣∣∣ ∥∇x f ∥ ≤ λ
}
.

We denote by BRn(x0, ρ) the closed ball of Rn centered at x0 and of radius ρ > 0; when x0 is the
origin we denote it as BRn(ρ).

The first key step of Yomdin’s approach is to prove a finer version of the Morse-Sard theorem in the
case of polynomials, providing quantitative estimates for their almost-critical points.

Theorem 2.5 (Quantitative Morse-Sard theorem for polynomials). Let p : Rn → R be a polynomial of
degree d. Then, for any λ ≥ 0 the set p(Cλ(p)∩ BRn(r)) can be covered by N(n, d) intervals of length λr,
where N(n, d) depends only on n and d.

The proof of this result is based on semialgebraic geometry and is given in [96, Theorem 1.8]. We
stress that the fact that N(d, n) depends only on n and d comes from semialgebraic geometry, and it is
important for the rest of the proof.

The next step in Yomdin’s approach is to estimate the number of intervals that we need to cover the
critical values of a Ck-function g : BRn(x0, ρ)→ R, which corresponds to [96, Theorem 1.9]. In order to
state it here, we introduce the following notation. For x ∈ BRn(x0, ρ) we denote by Dk

xg the differential
of order k of g at x. For any r > 0, we set

Rk(g, x0, r) := rk 1
k!

max
x∈BRn (x0,r)

∥∥∥Dk
xg

∥∥∥ .
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When x0 is the origin we simply write Rk(g, r). This quantity bounds the remainders in the Taylor
approximations of g over a ball of radius r.

Proposition 2.6. Let g : BRn(x0, ρ) → R be Ck. Then the set g(Crit(g)) can be covered with N2(n, k)
intervals of length Rk(g, ρ, x0), with N2(n, k) = 3 · k · N(n, k − 1).

Proof. The idea of the proof is to apply Theorem 2.5 to the Taylor polynomial of g, observing that the
property is stable under C1 perturbations. Let P be the Taylor polynomial of degree k − 1 centered at x0.
We have the following estimates

max
x∈BRn (x0,ρ)

|g(x) − P(x)| ≤ Rk(g, x0, ρ), (2.3)

max
x∈BRn (x0,ρ)

∥∇xg − ∇xP∥ ≤ Rk(g, x0, ρ)
k
ρ
. (2.4)

We set λ := Rk(g, x0, ρ) k
ρ . By (2.4) we get

Crit(g) ⊂ Cλ(P) ∩ BRn(x0, ρ).

By (2.3) the set g(Cλ(P) ∩ BRn(x0, ρ)) is contained in a Rk(g, x0, ρ)-neighborhood of

P(Cλ(P) ∩ BRn(x0, ρ)).

Hence, g(Crit(g)) is contained in the Rk(g, x0, ρ)-neighborhood of

P(Cλ(P) ∩ BRn(x0, ρ)).

The rest of the proof consists in estimating the number of intervals of length Rk(g, x0, ρ) covering the
latter. By Theorem 2.5 the set P(Cλ(P) ∩ BRn(x0, ρ)) is covered by N(n, k − 1) intervals of length

λρ = kRk(g, x0, ρ).

Hence it is covered by kN(n, k − 1) intervals of length Rk(g, x0, ρ). Hence, its Rk(g, x0, ρ)-neighborhood
is covered by 3kN(n, k − 1) intervals of length Rk(g, ρ). Setting N2(n, k) := 3kN(n, k − 1) we conclude
the proof. □

We can now state and prove Yomdin’s version of the Morse-Sard theorem for real-valued functions
[96, Corollary 1.11].

Theorem 2.7 (Yomdin). Let f : BRn(r)→ R be a Ck function, then

dime( f (Crit( f ))) ≤
n
k
.

In particular, if k > n, then f (Crit( f )) has measure zero.

We recall that by (2.1) this theorem implies the estimate on the Hausdorff dimension given in Theo-
rem 2.2 on balls.
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Proof. The proof consists in estimating M(ϵ, f (Crit( f ))) for any ϵ > 0. For fixed ϵ > 0 we apply the
previous proposition on small enough balls. The radii are chosen in such a way the Taylor remainder is
less than ϵ, hence we can estimate the number of intervals of radius ϵ that cover the critical values on
such small balls. Then, we globalize the result to the whole domain. We choose ρϵ > 0 such that on
every ball BRn(y, ρϵ) ⊂ BRn(r) we have Rk(g, y, ρϵ) ≤ 2ϵ. To find a suitable expression for ρϵ , we observe
that on every ball BRn(y, ρ) ⊂ BRn(r) we have

Rk(g, y, ρ) =
1
k!

max
x∈BRn (y,ρ)

∥∥∥Dk
xg

∥∥∥ ρk ≤
1
k!

max
x∈BRn (r)

∥∥∥Dk
xg

∥∥∥ rk ρ
k

rk = Rk(g, r)
(
ρ

r

)k
.

Hence, we take ρϵ such that Rk(g, r)
(
ρϵ
r

)k
= 2ϵ, more precisely we set

ρϵ := r
(

2ϵ
Rk(g, r)

) 1
k

.

By Proposition 2.6 for every such ball BRn(y, ρϵ) ⊂ BRn(r), we cover f (Crit( f )∩ BRn(y, ρϵ)) with at most
N2(n, k) intervals of length Rk(g, y, ρϵ) ≤ 2ϵ, in particular with at most N2(n, k) intervals of length 2ϵ.
Now we estimate the number of intervals of length 2ϵ needed to cover the whole set of critical values of
f on BRn(r). We cover BRn(r) with balls of radius ρϵ . The number of such balls that we need is at least

c(n)
(

r
ρϵ

)n

= c(n)
(
Rk(g, r)

2ϵ

)n/k

.

Therefore, we can cover f (Crit( f )) with N2(n, k) · c(n)
(

Rk(g,r)
2ϵ

)n/k
intervals of length 2ϵ (hence with the

same number of balls of radius ϵ). Hence, setting N3(n, k) = N2(n, k) · c(n), we have proved that

M(ϵ, f (Crit( f ))) ≤ N3(n, k)
(
Rk(g, r)

2ϵ

)n/k

.

We conclude the proof observing that

dime( f (Crit( f ))) ≤ lim sup
ϵ→0

ln(N3(n, k)) + n
k ln

(
Rk(g,r)

2ϵ

)
ln

(
1
ϵ

) =
n
k
.

□

Combining Theorem 2.7 and (2.2) we obtain the following result.

Corollary 2.8 (Yomdin). Fix a > 0. The sequence {1/ ja} j∈N cannot be the set of critical values of a
function f : BRn(r)→ R which is Ck with k > n(a + 1).

We point out that from Theorem 2.2 it would not be possible to exclude that a sequence of real
numbers is the set of critical values of a smooth real-valued function on a ball. This is a new aspect of
Yomdin theorem compared to previous versions of the Morse-Sard theorem.
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2.1.2 Higher-dimensional codomains

In this section we present Yomdin theorem for higher-dimensional codomains proved in [94], and we
outline the main steps of the proof. The main result of this section is Theorem 2.13.

The first ingredient that we need is a notion of almost-critical points for C1 maps from Rn to Rm,
which is stable under C1 perturbations. We need the following definition.

Given a linear map L : Rn → Rm we consider its singular values, see [96, Chapter 6] and [90].
Geometrically they correspond to the semiaxes of the ellipsoid L(BRn), labeled in decreasing order:
σ1(L) ≥ · · · ≥ σmin{n,m}(L) ≥ 0.

Definition 2.9. Let f : Rn → Rm be C1 and set q := min{n,m}. Given Λ = (Λ1, . . . ,Λq) ∈ Rq
+, the set of

almost-critical points of f is defined as

CΛ( f ) :=
{
x ∈ Rn

∣∣∣∣∣σi(Dx f ) ≤ Λi, ∀ i = 1, . . . , q
}
.

Yomdin’s approach to the Morse-Sard theorem for higher-dimensional codomains follows the same
philosophy of the real-valued case: the first key step is to prove a quantitative version of the Morse-
Sard theorem for almost-critical points of polynomial maps (in the real-valued case it corresponds to
Theorem 2.5). For higher-dimensional codomains, we estimate the ϵ-entropy of images of almost-
critical points of polynomial maps in a different way, introducing in this setting new tools. Indeed, the
ϵ-entropy of a bounded set A ⊂ Rn is controlled in terms of its Vitushkin variations, denoted by Vi(A) for
every i = 0, . . . , n. They represent a sort of i-dimensional volume, defined through an integral-geometric
approach (see Definition 3.6). From [96, Theorem 3.5] we have the following estimate for any ϵ > 0,

M(ϵ, A) ≤ cst(n)
n∑

i=0

1
ϵi Vi(A), (2.5)

where cst(n) is a constant depending only on n.
In order to estimate the ϵ-entropy, we provide quantitative estimates on the Vitushkin variations

of images of almost-critical points of polynomial maps. This is the content of the next result, which
corresponds to [96, Corollary 7.4]. The proof strongly relies on semialgebraic geometry, and a self
contained presentation is given in [96].

Theorem 2.10 (Yomdin’s variations estimates). Let p : Rn → Rm be a polynomial map with components
of degree at most d, and let q := min{n,m}. For r > 0, x0 ∈ R

n, i = 0, . . . , q and Λ = (Λ1, . . . ,Λq) ∈ Rq
+

we have
Vi(p(CΛ(p) ∩ BRn(x0, r))) ≤ cst(m, d, n)Λ0 · · ·Λiri,

where cst(m, d, n) depends only on d,m, n, and we set Λ0 = 1.

From (2.5) and Theorem 2.10 we immediately obtain the first key result of Yomdin’s approach to
the Morse-Sard theorem for higher-dimensional codomains, it corresponds to [96, Theorem 7.5].

Theorem 2.11 (Quantitative Morse-Sard theorem for polynomial maps). Let p : Rn → Rm be a polyno-
mial map with components of degree at most d, and let q := min{n,m}. For r > 0, x0 ∈ R

n, i = 0, . . . , q
and Λ = (Λ1, . . . ,Λq) ∈ Rq

+ we have

M(ϵ, p(CΛ(p) ∩ BRn(x0, r))) ≤ cst(m, d, n)
q∑

i=0

ri

ϵiΛ0 · · ·Λi,
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where cst(m, d, n) depends only on d,m, n, and we set Λ0 = 1.

Form this theorem we obtain Yomdin’s quantitative version of the Morse-Sard theorem for higher-
dimensional codomains, proved in [94]. The new feature of this result, compared with the classical
Morse-Sard theorems, is that it provides estimates for almost-critical points, and they are quantitative.

Theorem 2.12 (Yomdin’s quantitative version of the Morse-Sard theorem). Let f : BRn(r) → Rm be a
Ck map and set q := min{n,m}. Then, for any Λ = (Λ1, . . . ,Λq) ∈ Rq

+, and for any 0 < ϵ ≤ Rk( f , r) we
have

M(ϵ, f (CΛ( f ))) ≤ cst(n,m, k)
q∑

i=0

Λ0 · · ·Λi
ri

ϵi

(
Rk( f , r)

ϵ

) n−i
k

,

where cst(n,m, k) is a constant depending only on n, m and k.

The proof follows the same philosophy of the real-valued case: we apply Theorem 2.11 to the Taylor
polynomials on small balls, then we globalize the estimate on the whole domain. For the detailed proof
see [96, Theorem 9.2].

From Yomdin’s quantitative Morse-Sard theorem, we obtain in particular the following finer version
of the classical Morse-Sard theorem, see [96, Theorem 9.3].

Theorem 2.13 (Yomdin). Let f : BRn(r)→ Rm a Ck map. Then, for any ν = 0, . . . ,m − 1 we have

dime( f (Critν( f ))) ≤ ν +
n − ν

k
.

We recall that dimH ( f (Critν( f ))) ≤ dime( f (Critν( f ))), hence, in particular, Yomdin theorem pro-
vides the estimate on the Hausdorff dimension obtained in Theorem 2.2.

2.2 Morse-Sard theorems in infinite dimension

A version of the Morse-Sard theorem for maps between infinite-dimensional smooth Banach manifolds
was proved by Smale in [88]. In order to state it here, we recall that a Fredholm operator between
Banach spaces is a linear and continuous map whose kernel is finite dimensional, the range is closed,
and the cokernel is finite dimensional. A Fredholm map between smooth Banach manifolds is a smooth
map whose differential at any point is a Fredholm operator.

We can now state Smale theorem for C∞ Fredholm maps, the statement for Ck functions can be
found in [88, Theorem 1.3].

Theorem 2.14 (Smale). Let N,M be smooth Banach manifolds. Let f : N → M be a smooth Fredholm
map. Then, the set of regular values of f is residual in M.

We point out that when N is infinite dimensional and M is finite dimensional is not possible to
apply Smale theorem, since there are no Fredholm maps in this case (the kernel of the differential is
necessarily infinite dimensional). In fact, there are smooth surjective maps without regular points from
any infinite-dimensional Banach space to R2, see [15]. Hence, for maps from an infinite dimensional
space to a finite dimensional one smoothness is not sufficient for the validity of the Sard property. Even
if the map is “polynomial" the Sard property may fail to hold, as proved by Kupka in [58] (see also [96,
Section 10.2.3]), more precisely we have the following result.
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Theorem 2.15 (Kupka). There exists a smooth function f : ℓ2 → R such that the set of its critical
values is the whole interval [0, 1]. Furthermore, f has the following polynomial property: for any linear
subspace E with dim E < ∞ the restriction f |E is a polynomial of degree 3.

From these results the question whether there are Morse-Sard type theorems for maps from infinite
dimensional spaces to finite dimensional spaces is left open: the classical result by Smale cannot be
applied, furthermore, regularity assumptions as smoothness and even polynomiality do not guarantee
that the set of critical values is negligible. Hence, the Morse-Sard problem in infinite dimension can be
stated as the problem of finding sufficient conditions under which maps from infinite dimensional spaces
to finite dimensional ones have the Morse-Sard property, that is, the set of critical values is negligible.

2.2.1 Yomdin theorem for polynomials from infinite-dimensional spaces to R

The first contribution to the Morse-Sard problem in infinite dimension was given by Yomdin for real-
valued maps. It was proved in [95], see also [96, Section 10.2]. We state it here, and we sketch the proof.
The main result of this section is Theorem 2.18.

As discussed at the beginning of the previous section, for functions from infinite dimensional spaces
to R, the validity of the Sard property is not guaranteed under smoothness assumptions, nor under the
condition of being a "polynomial". However, Yomdin found a sufficient condition which implies the
Sard property in this setting (we state it in Theorem 2.18) and he provided an explicit class of maps from
ℓ2 to R with such property (see Corollary 2.21).

Yomdin’s assumption is that the map is well approximated in C1 norm by a sequence of polynomials
depending on an increasing (and finite) number of coordinates.

The strategy of the proof is to provide a refined version of the quantitative Morse-Sard theorem for
polynomials (Theorem 2.5), where the dependence of the estimate on the number of variables n is ex-
plicit, see Theorem 2.16. Then, we can pass to the limit as n goes to∞ thanks to the good approximation
hypothesis, obtaining the Sard property for the original function, see Theorem 2.18.

Now we state the first key step of the proof, which was proved in [95, Theorem 1.5], see also the
discussion in [96, page 21].

Theorem 2.16 (Yomdin). Let p : Rn → R be a polynomial of degree d. Then, for any λ ≥ 0 the set
f (Cλ( f ) ∩ BRn(r)) can be covered with N(n, d) = (2d)n intervals of length λr.

As a consequence of Theorem 2.16, we obtain the following estimate on the ϵ-entropy of almost-
critical points of finite dimensional polynomials, proved in [95, Proposition 4.1].

Proposition 2.17. Let X be a Banach space. Given p : Rn → R a polynomial of degree d and given
L : X → Rn a linear, continuous and surjective map, setting p̃ : X → R as p̃ = p ◦ Ln, we have for any
ϵ > 0

M(ϵ, p̃(Cϵ( p̃) ∩ BX)) ≤ n(2d)n.

We can now state and prove the main result of this section. In the work of Yomdin this statement
does not appear explicitly, however it follows from his construction in [95] (see also [96, Section 10.2]).

Given a Banach space X and a C1 function g : BX → R bounded and with bounded differential
Dg : BX → X∗, we consider its C1 norm

∥g∥C1
BX
= sup

x∈BX

|g(x)| + sup
x∈BX

∥Dxg∥op ,
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where ∥Dxg∥op denotes the operator norm of the differential of g at x.

Theorem 2.18 (Yomdin). Let X be a Banach space and f : BX → R be a C1 map. Suppose that given
d ∈ N there exist q > 1, c > 0, a sequence Ln : X → Rn of linear, continuous and surjective maps, and a
sequence of polynomials pn : Rn → R of degree d such that for any n ∈ N we have

∥ f − pn ◦ Ln∥C1
BX
≤ cq−n. (2.6)

Then
dime( f (Crit( f ))) ≤

ln(2d)
ln q

.

In particular, if q > 2d, then the set of critical values of f has measure zero.

Proof. We observe that if x ∈ Crit( f ), then ∥Dx(pn ◦ Ln)∥ ≤ cq−n for any n ∈ N. Hence, setting
λn := cq−n we have

Crit( f ) ⊂ Cλn(pn ◦ Ln) ∩ BX . (2.7)

For any ϵ > 0 we take

nϵ :=
⌈
logq

c
ϵ

⌉
.

Hence, λnϵ ≤ ϵ. We get the following estimates

M(2ϵ, f (Crit( f ))) ≤ M(2ϵ,Uϵ(pnϵ ◦ Lnϵ (Crit( f )))) by (2.6)

≤ M(ϵ, pnϵ ◦ Lnϵ (Crit( f ))) by definition

≤ M(ϵ, pnϵ ◦ Lnϵ (C
λnϵ (pnϵ ◦ Lnϵ ) ∩ BX)) by (2.7).

By Proposition 2.17 we get

M(2ϵ, f (Crit( f ))) ≤ M(ϵ, pnϵ ◦ Lnϵ (C
ϵ(pnϵ ◦ Lnϵ ) ∩ BX)) ≤ nϵ(2d)nϵ .

Hence, by definition of entropy dimension we have

dime f (Crit( f )) ≤ lim sup
ϵ→0

ln nϵ + nϵ ln(2d)
ln 1

2ϵ

=
ln(2d)

ln q
.

□

Motivated by Kupka counterexample and Theorem 2.18, we introduce a class of polynomials on
Hilbert spaces.

Definition 2.19. Let H be a Hilbert space, and let U be an open subset of H. We say that a function
f : U → R is a polynomial of degree d on U if it is C1 and for any linear subspace E with dim E < ∞

the restriction f |E is a polynomial of degree d.

The validity of the Morse-Sard property in this class of maps is subtle. Indeed, the map constructed
by Kupka is a polynomial of degree 3 on ℓ2. Hence, the Morse-Sard property does not hold in this class
of maps. However, Yomdin found a sufficient condition for the validity of the Morse-Sard property for
polynomial maps on ℓ2, indeed we have the following corollary of Theorem 2.18, proved in [95].
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Corollary 2.20. Let f : Bℓ2 → R be a polynomial of degree d. Suppose that there exist q > 1, c > 0
and a sequence of linear subspaces En ≃ R

n such that, denoting by πn : ℓ2 → En the projection, for any
n ∈ N we have

∥ f ◦ πn − f ∥C1
B
ℓ2
≤ cq−n.

Then,

dime( f (Crit( f ))) ≤
ln(2d)

ln q

In particular, if q > 2d, then the set of critical values of f has measure zero.

We also have the following corollary of Theorem 2.18, which provides an explicit class of poly-
nomial maps on ℓ2 with the Morse-Sard property, it was proved in [95]. (The fact that these maps are
polynomials on ℓ2 can be proved as in Proposition 3.33.)

Corollary 2.21 (Yomdin). Let us consider a sequence of polynomials pi : Ri → R of degrees at most d
and such that

max
y∈BRi
|pi(y)| ≤ 1. (2.8)

Then, given q > 1, the function f : Bℓ2 → R defined as

f (x) =
∞∑

i=1

1
qi pi(x1, . . . , xi)

is C1, and we have

dime( f (Crit( f ))) ≤
ln(2d)

ln q
.

In particular, if q > 2d, then f has the Morse-Sard property: the set of its critical values has meaure
zero.

Proof. First we observe that the funtion f is well-defined, thanks to the hypothesis (2.8). Furthermore, f
is C1, indeed, by Markov inequality (see [52, Thm. VI]) we have maxy∈BRi

∥∥∥Dy pi
∥∥∥ ≤ d2. To conclude, we

prove that f satisfies the assumption (2.6) of Theorem 2.18. We consider for any y ∈ Rn the polynomial
fn(y) :=

∑n
i=1

1
qi pi(y1, . . . , yi), which has degree at most d. For any n ∈ N we denote by πn : ℓ2 → Rn the

projection on the first n entries of sequences in ℓ2. We have

∥ f − fn ◦ πn∥C1
B
ℓ2
≤ (1 + d2)

∞∑
i=n+1

1
qi ≤ c(d, q)q−n,

where c(d, q) is a constant depending only on d and q. Hence we conclude by Theorem 2.18, setting
pn := fn and Ln := πn. □
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2.2.2 Contributions for higher-dimensional codomains

In Yomdin’s version of the Morse-Sard theorem in infinite dimension, the fact that the codomain is one-
dimensional is fundamental. A key aspect of the proof is that in Theorem 2.16 the dependence of all the
quantities on n is explicit. This allows us to pass to the limit in the estimates as n goes to∞.

In [62] we prove Morse-Sard theorems for polynomial maps from an infinite-dimensional Hilbert
space to Rm. The new aspect is that the dimension of the codomain is arbitrary. Following Yomdin’s
approach for the real-valued case, our results for higher-dimensional codomains are based on a refined
version of Theorem 2.11. Indeed, we prove a version of the latter where the dependence on the di-
mensional parameter n is explicit, see Theorem G. This result has been obtained using new tools from
semialgebraic geometry from [61], see Theorem M.

Using this key result, in [62] we give a criterion for the validity of the Morse-Sard poperty for
polynomial maps from an infinite dimensional Hilbert space to Rm, under the assumption that they are
well-approximated by finite dimensional polynomial maps, see Theorem E. Starting from this result, we
prove various quantitative Morse-Sard type theorems for polynomial maps from a Hilbert space to Rm,
presented in Section iii.1. In particular, we also prove Morse-Sard type theorems for polynomial maps
without any approximation hypothesis: in this case, the Morse-Sard property holds on linear subspaces
with small enough Kolmogorov width (but still infinite dimensional), see Theorem D.
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Chapter 3

Sard properties for polynomial maps in
infinite dimension

3.1 Quantitative variations estimates

3.1.1 Semialgebraic sets and maps

The goal of this section is to prove Theorem G. We begin by recalling some basic notions from semial-
gebraic geometry.

Definition 3.1 (Semialgebraic sets and maps). We say that a set S ⊂ Rn is semialgebraic if

S =
a⋃

i=1

bi⋂
j=1

{
x ∈ Rn | sign(pi j(x)) = σi j

}
, (3.1)

for some finite set of polynomials pi j ∈ R[x1, . . . , xn] and σi j ∈ {0,+1,−1}, where

sign(r) :=


+1 r > 0,
−1 r < 0,
0 r = 0.

We call the description (3.1) a representation of S .
A map f : A→ B between semialgebraic sets A ⊂ Rn, B ⊂ Rℓ is said to be semialgebraic if its graph

is a semialgebraic set in Rn × Rℓ.

The representation of a semialgebraic set S as in (3.1) is not unique. However, a representation is
useful to quantify the complexity of S , using the following notion.

Definition 3.2 (Diagram of a semialgebraic set). Let S ⊂ Rn be a semialgebraic set represented as in
(3.1). We will say that the triple (

n, a ·max
i
{bi},max

i, j
{deg(pi j)}

)
∈ N3
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is a diagram for S . Below, the equation “D(S ) = (m, c, d)” will mean that there exists a representation
of S as in (3.1) with n ≤ m, a ·maxi{bi} ≤ c and maxi, j{deg(pi j)} ≤ d.

Remark 3.3. There are several ways of quantifying the complexity of a semialgebraic set, depending on
the way it is presented. Essentially, these notions should contain three pieces of information: the number
of variables, the “combinatorics” of the presentation, and the degrees of the defining polynomials. For
instance, every semialgebraic set S ⊂ Rn can be presented as

S =
a⋃

i=1

bi⋂
j=1

Ei j,

where each Ei j has the form {x ∈ Rn | pi j(x) ≤ 0} or {x ∈ Rn | pi j(x) < 0}, where pi j is a polynomial
with deg(pi j) ≤ d for all i, j. Given a presentation of this type, it is immediate to see that S also admits
a diagram D(S ) = (n, c, d) (i.e. it can be presented as in (3.1) with c = c(a, b1, . . . , ba).

Dimension and stratifications

Every semialgebraic subset of Rn can be written as a finite union of semialgebraic sets, each of them
semialgebraically homeomorphic to an open cube (0, 1)m ⊂ Rm, for some m ≤ n ([31, Thm. 2.3.6]).
This allows to define the dimension of a semialgebraic set as the maximum of the dimensions m of
these cubes. Every semialgebraic set can be written as a finite union of smooth, semialgebraic disjoint
manifolds called strata ([31, Prop. 9.1.8]).

Notice that the dimension of a semialgebraic set is preserved by semialgebraic homeomorphisms
and behaves naturally under product structures:

dim(A × B) = dim(A) + dim(B).

Moreover, if f : A→ B is a continuous semialgebraic map, then

dim( f (A)) ≤ dim(A). (3.2)

Semialgebraic triviality

Continuous semialgebraic maps f : A → B are “piecewise” trivial fibrations: there exists a partition of
B into finitely many semialgebraic sets

B =
b⊔

j=1

B j

and, for every j = 1, . . . , b there exist fibers F j := f −1(b j), with b j ∈ B j and a semialgebraic homeomor-
phism ψ j : f −1(B j)→ B j × F j that make the following diagram commutative:

B j × F j f −1(B j)

B j

ψ j

p1 f

This result is called semialgebraic triviality, see [13, Thm. 5.46].
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Projections

The image of a semialgebraic set S ⊂ Rn×Rℓ under the projection map π : Rn×Rℓ → Rn is semialgebraic
([31, Thm. 2.2.1]). Moreover, it follows from [13, Thm. 14.16, Notation 8.2]1 that there exists C1 > 0
such that if (n + ℓ, c, d) is a diagram for S , we can write

π(S ) =
⋃
i∈I

⋂
j∈Ji

⋃
k∈Ni j

{
x ∈ Rn | sign(pi jk(x)) = σi jk

}
,

with
#I ≤ c(n+1)(ℓ+1)dC1ℓn, #Ji ≤ cℓ+1dC1ℓ, #Ni j ≤ dC1ℓ,

and with
deg(pi jk) ≤ dC1ℓ.

In particular, there exists C2 > 0 such π(S ) admits a diagram with:

D(π(S )) =
(
n, (cd)C2ℓn(dC2ℓ)(cd)C2ℓ

, dC2ℓ
)
.

In particular, the diagram of the projection of a semialgebraic set is controlled explicitly by the diagram
of the original set.

Thom-Milnor bound

We will need the following qualitative bound on the number of connected components of a semialgebraic
set, that follows from [13, Thm. 7.50].

Theorem 3.4 (Thom-Milnor). Let c, d ∈ N. There exists a constant βtm = βtm(c, d) > 1, such that for
any semialgebraic set S ⊂ Rn with diagram D(S ) = (n, c, d) it holds

b0(S ) ≤ βn
tm, (3.3)

where b0(S ) denotes the number of connected components of S .

3.1.2 Definable choice

We recall from [61] the following quantitative approximate definable choice result, which will be a key
tool in the proof of Theorem G. We state it here in the form we need in this chapter, which follows from
Theorem M and Remark 10. We will prove it in Chapter 5 (see Theorem 5.43).

Theorem 3.5 (Quantitative approximate definable choice [61]). For every c, d, ℓ ∈ N there exists βdc > 1
satisfying the following statement. Let n ∈ N and let A ⊂ Rn be a closed semialgebraic set contained in
the ball BRn(r) with diagram

D(A) = (n, c, d).

Let also F = (F1, . . . , Fℓ) : Rn → Rℓ be a polynomial map with components of degree bounded by d.
Then for every ϵ ∈ (0, r) there exists a closed semialgebraic set Cϵ ⊂ R

n such that
1Note that the role of k and ℓ for us is swapped with respect to [13, Thm. 14.16]: we eliminate ℓ variables from a list of

n + ℓ, they eliminate k variables from a list of k + ℓ.
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(i) dim(Cϵ) ≤ ℓ;

(ii) Cϵ ⊂ Uϵ(A);

(iii) distH(F(Cϵ), F(A)) ≤ L(F, r) · ϵ, where L(F, r) := 3 + Lip(F, BRn(2r));

(iv) for every e = 1, . . . , n and every affine space Re ≃ E ⊂ Rn, the number of connected components
of E ∩Cϵ is bounded by

b0(E ∩Cϵ) ≤ βe
dc.

3.1.3 Variations and their behaviour under polynomial maps

We recall the definition of variations, introduced by Vitushkin [91, 92] and developed in the semialge-
braic context by Comte and Yomdin [96]. The variations encode the size of a set, through an integral-
geometric approach. Given a polynomial map p : Rn → Rm and a semialgebraic set A ⊂ Rn, it is
possible to estimate the variations of the set p(A), in a quantitative way, see [96, Thm. 7.2]. However,
these estimates are not quantitative with respect to the dimensional parameter n. The main result of this
section is Theorem 3.10, where we prove a version of [96, Thm. 7.2], where the dependence on n is
explicit, thanks to the use of Theorem 3.5.

For i ≤ n, we denote by Gi(Rn) the Grassmannian of all i-dimensional linear subspaces of Rn. We
endow it with the standard probability measure γi,n defined through the action of the orthogonal group
of Rn. For any Z ∈ Gi(Rn) we the denote the orthogonal projection on Z by

πZ : Rn → Z.

Definition 3.6 (Vitushkin variations). Let A ⊂ Rn be a bounded semialgebraic set. We define the 0–th
variation of A as

V0(A) := b0(A),

where b0(A) denotes the number of connected components of A. For i = 1, . . . , n we define the i–th
variation of A as

Vi(A) := c(n, i)
∫

Gi(Rn)

(∫
Z

b0(A ∩ π−1
Z (x))H i(dx)

)
γi,n(dZ), (3.4)

whereH i denotes the i-dimensional Hausdorff measure.

c(n, i) :=
Γ( 1

2 )Γ( n+1
2 )

Γ( i+1
2 )Γ( n−i+1

2 )
. (3.5)

We note that the integrand in (3.4) is measurable, see [96, Sec. 3].

A list of properties of variations is given in [96, page 35]. Here we prove the following one.

Lemma 3.7. If A ⊂ Rn is a bounded semialgebraic set of dimension ℓ, then the ℓ-variation coincides
with the ℓ-dimensional Hausdorff volume:

Vℓ(A) = Hℓ(A).

We also have Vi(A) = 0 for all i > ℓ.
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Proof. We recall a classical result in Integral Geometry, called Cauchy–Crofton formula [39, Thm.
5.14]: if A is a i-rectifiable and Borel subset of Rn, for i ≤ n, then it holds

H i(A) = c(n, i)
∫

Gi(Rn)

(∫
Z

#(A ∩ π−1
Z (x))H i(dx)

)
γi,n(dZ). (3.6)

If A ⊂ Rn is semialgebraic, the set A can be written as a finite union of smooth, semialgebraic disjoint
manifolds called strata (see Section 3.1.1). We can relabel the strata so that

A =
ℓ⊔

j=0

A j,

where each A j is a finite union of smooth j-dimensional manifolds. For any fixed Z ∈ Gℓ(RN) and for
almost every x ∈ Z the set π−1

Z (x) does not intersect2 A j for j < ℓ. Hence, V0(A∩π−1
Z (x)) = V0(Aℓ∩π−1

Z (x))
for almost every x ∈ Z. Furthermore, for almost every x ∈ Z the intersection Aℓ ∩ π−1

Z (x) is transverse,
and dim A+ dim π−1

Z (x) = n, so that Aℓ ∩ π−1
Z (x) has dimension zero. Thus, its cardinality coincides with

its number of connected components. We conclude by (3.6). □

Let M be a real m × m symmetric and positive semidefinite matrix. We denote by

λ1(M) ≥ · · · ≥ λm(M) ≥ 0,

its eigenvalues, ordered in decreasing order.

Definition 3.8 (Singular values). Let H be a Hilbert space with dim H ≥ m, and let L : H → Rm be a
linear and continuous map. For any k = 1, . . . ,m the k-th singular value of L is

σk(L) = λk(LL⊤)
1
2 .

In finite dimension, the following Weyl inequality holds for the singular values of the difference of
two matrices (see [90, Ex. 1.3.22 (iv)]): for n ≥ m and linear maps L1, L2 : Rn → Rm we have

|σk(L1) − σk(L2)| ≤ ∥L1 − L2∥op, ∀ k = 1, . . . ,m.

The Weyl inequality generalizes to infinite-dimensional spaces. Since we are not able to find a reference,
we provide below a self-contained statement and its proof in the form that we will need later.

Lemma 3.9. If L1, L2 ∈ L(H,Rm), then |σk(L1) − σk(L2)| ≤ ∥L1 − L2∥op for all k = 1, . . . ,m.

Proof. Let L : H → Rm be linear and continuous. Let W ⊂ H a finite dimensional subspace such that
(ker L)⊥ ⊆ W, and denote by LW : W → Rm the restriction of L to W. More precisely, LW = L ◦ iW
where iW : W ↪→ H is the inclusion. We now prove that for all k ≤ m

σk(L) = σk(LW). (3.7)

2We note that in this step of the proof it is enough to use the Semialgebraic Sard’s theorem [31, Thm. 9.6.2], which is
logically independent from the result in the smooth category.
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Indeed, since the adjoint i⊤W coincides with the orthogonal projection πW : H → W ⊂ H, we have

λk(LW ◦ L⊤W) = λk(L ◦ iW ◦ i⊤W ◦ L⊤) = λk(L ◦ πW ◦ L⊤) = λk(L ◦ L⊤).

In the last equality, we used the fact that L ◦ πW = L, indeed L(v) = L(πWv + πW⊥v) = L(πWv) since
W⊥ ⊆ ker L. Now given L1, L2 ∈ L(H,Rm) let W := (ker L1)⊥ + (ker L2)⊥, which is a finite dimensional
linear subspace of H. By (3.7) and the finite dimensional Weyl inequality, we have

|σk(L1) − σk(L2)| = |σk((L1)W) − σk((L2)W)| ≤ ∥(L1)W − (L2)W∥op ≤ ∥L1 − L2∥op,

concluding the proof. □

In the next result, given a semialgebraic set A ⊂ Rn and a polynomial map p : Rn → Rm, we bound
the i-th variation Vi(p(A)) in terms of the singular values of p and the diagram of A. Its proof follows
the blueprint of [96, Thm. 7.2]. The main novelty (which is key for our work) is that the dependence on
the dimension n is explicit.

Theorem 3.10. For every c, d,m ∈ N there exists βyc = βyc(c, d,m) > 1 with the following property.
For n ≥ m, let A ⊂ Rn be a closed and bounded semialgebraic set with A ⊂ BRn(r) and diagram
D(A) = (n, c, d). Let p : Rn → Rm be a polynomial map with components of degrees at most d. For all
i = 1, . . . ,m set

σi := sup
x∈A

(
σ1(Dx p) · · ·σi(Dx p)

)
, σ0 := 1. (3.8)

Then, for all i = 0, . . . ,m it holds

Vi(p(A)) ≤ cst(m, r)nmβn
ycσi

where cst(m, r) > 0 is a constant that depends only on m, r.

Remark 1 (Origin of βyc). An inspection of the proof shows that it holds βyc = β2
tmβdc where βtm =

βtm(c(m+1), d) is the constant from the Thom-Milnor-type bound of Theorem 3.4, and βdc = maxi≤m βdc(c, d, i)
is the definable choice constant from Theorem 3.5.

Remark 2. In the course of the proof, see (3.14), we obtain the following estimate, reminiscent of an area
formula for variations, which is an improved version of [96, Thm. 7.2], with the explicit dependence of
the constants on n: there exist a constant βyc = βyc(c, d,m), such that

Vi(p(A)) ≤ c(m, i)βn
ycσiVi(A), i = 1, . . . ,m,

where c(m, i) is the constant in (3.5).

Proof. By Definition 3.6, for i = 1, . . . ,m, we have

Vi(p(A)) = c(m, i)
∫

Gi(Rm)

(∫
Z

b0(p(A) ∩ π−1
Z (x))H i(dx)

)
γi,m (dZ) .

For any x ∈ Z, the set A ∩ (πZ ◦ p)−1(x) is semialgebraic with controlled diagram (more precisely,
D(A ∩ (πZ ◦ p)−1(x)) = (n, c(1 + m), d). Using Theorem 3.4 we obtain

b0(p(A) ∩ π−1
Z (x)) ≤ b0(A ∩ (πZ ◦ p)−1(x))) ≤ βn

tm, (3.9)
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where βtm = βtm(c(1+m), d) depends only on c, d,m. Note that, since by definition V0 = b0, (3.9) yields
the thesis of the theorem for the case i = 0. We continue then assuming i = 1, . . . ,m. Denoting by 1S

the characteristic function of a set S , we get

Vi(p(A)) ≤ c(m, i)βn
tm

∫
Gi(Rm)

(∫
Z
1πZ◦p(A)(x)H i(dx)

)
γi,m(dZ)

= c(m, i)βn
tm

∫
Gi(Rm)

H i(πZ ◦ p(A)) γi,m(dZ). (3.10)

We would like to estimateH i(πZ ◦ p(A)) applying area formula to the map

pZ := πZ ◦ p : Rn → Ri.

However, exactly as in [96, Thm. 7.2], we cannot apply directly the area formula to A, since the dimen-
sion of A can be larger than i. In [96, Thm. 7.2] this problem is solved using [96, Ex. 4.11]. Here we
overcome the obstacle using Theorem 3.5, replacing the set A with a suitable approximation.

For sufficiently small ϵ > 0 let Cϵ the semialgebraic set obtained by applying Theorem 3.5 to the
set A and the polynomial map F = pZ : Rn → Ri. We then proceed using the area formula to estimate
H i(πZ ◦ p(Cϵ)). (We will see at the end of the proof how H i(πZ ◦ p(Cϵ)) → H i(πZ ◦ p(A)) as ϵ → 0).
By Item (i) of Theorem 3.5, dim(Cϵ) ≤ i. We can assume without loss of generality that Cϵ ⊂ R

n is a
smooth embedded submanifold with dimension equal to i, since the other strata give zero contribution
toH i. Denoting with p̄Z : Cϵ → R

i the restriction, we obtain

H i(pZ(Cϵ)) ≤
∫

Cϵ

| det(Dx p̄Z)|H i(dx) by the area formula

≤

∫
Cϵ

σ1(Dx p̄Z) · · ·σi(Dx p̄Z)H i(dx). by definition of singular values

Note that, denoting with j : Cϵ ↪→ R
n the inclusion, we have

Dx p̄Z : TxCϵ
Dx j
−−−→ Rn Dx p

−−−→ Rm Dp(x)πZ
−−−−−→ Ri.

Thus, since Dp(x)πZ is an orthogonal projection and Dx j is a linear inclusion, we have

⟨z, (Dx p̄Z)(Dx p̄Z)⊤z⟩ ≤ ⟨z, (Dx p)(Dx p)⊤z⟩, ∀z ∈ Z = Ri.

It follows that σk(Dx p̄Z) ≤ σk(Dx p) for all k = 1, . . . , i. Continuing the above inequalities we obtain

H i(pZ(Cϵ)) ≤
∫

Cϵ

σ1(Dx p) · · ·σi(Dx p)H i(dx)

≤ sup
x∈Uϵ (A)

σ1(Dx p) · · ·σi(Dx p)H i(Cϵ) by Item (ii) of Theorem 3.5

≤ (σi + η(ϵ))H i(Cϵ), by continuity of singular values
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where σi is defined in (3.8), and η(ϵ) → 0 as ϵ → 0. Since Cϵ is a bounded semialgebraic set of
dimension i, thenH i(Cϵ) = Vi(Cϵ) by Lemma 3.7. Hence

H i(Cϵ) = c(n, i)
∫

Gi(Rn)

(∫
Z

b0(Cϵ ∩ π
−1
Z (x))H i(dx)

)
γi,n (dZ)

≤ c(n, i)βn−i
dc

∫
Gi(Rn)

(∫
Z
1πZ (Cϵ )(x)H i(dx)

)
γi,n (dZ) by Item (iv) of Theorem 3.5

≤ c(n, i)βn−i
dc

∫
Gi(Rn)

(∫
Z
1πZ (Uϵ (A))(x)H i(dx)

)
γi,n (dZ) by Item (ii) of Theorem 3.5

≤ c(n, i)βn−i
dc

∫
Gi(Rn)

(∫
Z

b0(Uϵ(A) ∩ π−1
Z (x))H i(dx)

)
γi,n (dZ)

= βn−i
dc Vi(Uϵ(A)),

where βdc = βdc(c, d, i) > 1 is the constant from Theorem 3.5, which (up to taking the maximum for
i ≤ m) depends only on c, d,m. Summing up, we have proved that for all i = 1, . . . ,m it holds

H i(pZ(Cϵ)) ≤ (σi + η(ϵ))βn
dcVi(Uϵ(A)). (3.11)

In order to take the limit in (3.11), we recall two properties of semialgebraic sets. The first one is the
continuity of the Lebesgue measure in the Hausdorff topology in the semialgebraic category (see [96,
Thm. 5.10]): if {S ϵ}ϵ≥0 ⊂ R

i is a one-parameter family of bounded semialgebraic sets then

lim
ϵ→0

distH(S ϵ , S 0) = 0 =⇒ lim
ϵ→0
H i(S ϵ) = H i(S 0). (3.12)

The second property is the behaviour of variations for ϵ-neighbourhoods (see [96, Thm. 5.11]): if A ⊂ Rn

is a bounded semialgebraic set, then for all i = 1, . . . , n it holds

lim
ϵ→0

Vi(Uϵ(A)) ≤ Vi(A). (3.13)

Therefore, using (3.12) (and recalling that by Item (iii) of Theorem 3.5 it holds pZ(Cϵ) → pZ(A) in the
Hausdorff topology) and (3.13) we can pass to the limit in (3.11) and obtain

H i(pZ(A)) ≤ σiβ
n
dcVi(A).

Hence from (3.10) we get for all i = 1, . . . ,m

Vi(p(A)) ≤ c(m, i)βn
tmβ

n
dcσiVi(A). (3.14)

To conclude, we estimate Vi(A). Similarly as in (3.10), and recalling that A ⊂ BRn(r) we have

Vi(A) ≤ c(n, i)βn
tm

∫
Gi(Rn)

H i(πZ(A))γi,n(dZ) ≤ c(n, i)βn
tmH

i(BRi(r)) = c(n, i)βn
tm

πi/2

Γ
(

i
2 + 1

)ri. (3.15)

Putting together (3.14) and (3.15), we obtain

Vi(p(A)) ≤

c(m, i)c(n, i)
πi/2

Γ
(

i
2 + 1

)  (β2
tmβdc)nσiri.
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Set βyc = β2
tmβdc. Using the form of the constants c(m, i), c(n, i) in (3.5) and elementary estimates we

obtain that for all i = 0, . . . ,m there exists a constant cst(i) > 0 such that

Vi(p(A)) ≤ cst(i)niβn
ycσiri.

Taking the maximum over i = 1, . . . ,m we obtain the result with cst(m, r) = max
i=0,...,m

cst(i)ri. □

3.1.4 Variations of almost-critical values of polynomial maps

In this section we recall the notion of almost-critical points CΛ(p) of a polynomial map p : Rn → Rm.
The set p(CΛ(p)) is the set of its almost-critical values. The main result of this section is Theorem 3.15,
which provides a version of [96, Cor. 7.4] where the dependence of the parameters with respect to n is
explicit. This result is based on Theorem 3.10 and on the specific semialgebraic structure of almost-
critical points of polynomial maps, that we prove in Proposition 3.14.

Definition 3.11. Let f : Rn → Rm be a C1 map with n ≥ m. Given Λ = (Λ1, . . . ,Λm) ∈ Rm
+ , the set of

almost-critical points of f is defined as

CΛ( f ) :=
{
x ∈ Rn

∣∣∣∣∣σi(Dx f ) ≤ Λi, ∀ i = 1, . . . ,m
}
.

The following lemma is fundamental to study the semialgebraic structure of the set of almost-critical
points of a polynomial map.

Lemma 3.12. Let A ⊂ Rs be a semialgebraic set and let f : A→ R be a semialgebraic function. Then,
for any t ∈ R, the sublevel set {x ∈ A | f (x) ≤ t} admits a semialgebraic description whose diagram does
not depend on t.

Proof. The graph of f is semialgebraic, hence we can write it as

graph( f ) =
a⋃

i=1

bi⋂
j=1

Ei j,

where Ei j is of the form {pi j < 0} or {pi j ≤ 0} and pi j : Rs × R → R is a polynomial. Denoting by
π1 : Rs × R→ Rs the projection, we have

{x ∈ A | f (x) ≤ t} = π1
(

graph( f ) ∩ {(x, y) ∈ Rs × R | y − t ≤ 0}
)
. (3.16)

The set graph( f ) ∩ {(x, y) ∈ Rs × R | y − t ≤ 0} is semialgebraic, with a description given by

graph( f ) ∩ {(x, y) | y − t ≤ 0} =
a⋃

i=1

bi+1⋂
j=1

Ei, j,

where Ei,bi+1 = {(x, y) ∈ Rs ×R | y − t ≤ 0}. In particular, this set admits a diagram that does not depend
on t, since the degree of the polynomial y − t is equal to 1. As explained in Section 3.1.1, the projection
of a semialgebraic set is semialgebraic and its diagram is controlled explicitly by the diagram of the
original set only. In particular, the diagram of the projection (3.16) admits a description with a diagram
(s, I, J), that does not depend on t. □

37



CHAPTER 3. SARD PROPERTIES FOR POLYNOMIAL MAPS IN INFINITE DIMENSION

Let Sym+m denote the set of positive semidefinite matrices of size m. This is clearly a semialgebraic
subset of all m × m real matrices. The following lemma is elementary and we omit its proof.

Lemma 3.13. The functions λi : Sym+m → R and are continuous and semialgebraic.

In the following proposition we provide an estimate on the diagram of a description of the (semial-
gebraic) set of almost-critical points of polynomial maps.

Proposition 3.14. Let d,m ∈ N. Then there are c′ = c′(d,m) and d′ = d′(d,m) such that for all
n ≥ m and any polynomial map p : Rn → Rm with components of degrees at most d, and all Λ =
(Λ1, . . . ,Λm) ∈ Rm

+ , the set CΛ(p) is closed, semialgebraic, with

D(CΛ(p)) = (n, c′, d′).

(In particular, the diagram does not depend on Λ and it depends on n only in the number of variables.)

Proof. By Lemma 3.13, for every k = 1, . . . ,m, the function λk : Sym+m → R is semialgebraic, hence
from Lemma 3.12 applied to A = Sym+m and the semialgebraic functions λk : A → R, we deduce the
following fact: for any t ∈ R we can write

{M ∈ Sym+m | λk(M) ≤ t2} =

a⋃
i=1

bi⋂
j=1

{M ∈ Rm×m | Pk,i, j,t(M) ≤ 0}

for some polynomials Pk,i, j,t : Rm×m → R, a, b1, . . . , ba ∈ N, and with a maxi bi and maxi, j deg(Pk,i, j,t)
depending only on m and on k (and not on t). We can assume that a does not depend on k, and all the
bi’s do not depend on a, k, simply by adding empty or trivial sets.

Now, for any k = 1, . . . ,m

{N ∈ Rm×n | σk(N) ≤ t} = {N ∈ Rm×n | λk(NN⊤) ≤ t2},

therefore we can write

{x ∈ Rn | σk(Dx p) ≤ t} =
a⋃

i=1

bi⋂
j=1

{x ∈ Rn | Pk,i, j,t(Dx pDx p⊤) ≤ 0}.

Observe that N → NN⊤ is polynomial with components of degree 2. Therefore, the map q : Rn → Rm×m,

given by q(x) := Dx pDx p⊤ is polynomial, with components of degree at most 2d. Hence, the polynomial

Pk,i, j,t ◦ q : Rn → R

has degree at most 2d maxi, j deg Pk,i, j,t, and in particular its degree has a bound that depends on only
d,m, k (and not on t). The set of almost-critical points of p can be described as

CΛ(p) =
m⋂

k=1

{x ∈ Rn | σk(Dx p) ≤ Λk} =

m⋂
k=1

a⋃
i=1

bi⋃
j=1

{x | Pk,i, j,Λk (Dx pDx p⊤) ≤ 0}.

It is clear that CΛ(p) is closed. Note that d′ := maxk,i, j deg(Pk,i, j,Λk ◦ q) depends only on d,m. Using
the distributivity of intersection, we can rewrite CΛ(p) in the form (3.1), where the number of unions
and intersections depends only on m, and the maximum degree of the polynomials is c′ = c′(d,m),
concluding the proof. □
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Now we state and prove the main result of this section (Theorem G in the Introduction).

Theorem 3.15. Let n ≥ m, and p : Rn → Rm be a polynomial map with components of degree at most
d. For i = 0, . . . ,m, Λ = (Λ1, . . . ,Λm) ∈ Rm

+ and r > 0, we have

Vi(p(CΛ(p) ∩ BRn(r))) ≤ cst(m, r)nmβn
0Λ0 · · ·Λi, (3.17)

where β0 = β0(d,m) depends only on d and m, cst(m, r) depends only on m, r, and we set Λ0 = 1.

Proof. By Proposition 3.14 the set A = CΛ(p)∩BRn(r) is a closed and bounded semialgebraic set whose
diagram is D(A) = (n, c′, d′) where c′ = c′(d,m), d′ = d′(d,m) (which in particular do not depend on n,
Λ). Furthermore, for the polynomial map p : Rn → Rm it holds, by construction

σi := sup
x∈A

(
σ1(Dx p) · · ·σi(Dx p)

)
≤ Λ0 · · ·Λi.

We can then apply Theorem 3.10, yielding (3.17) with β0 = βyc(c′,max{d, d′},m). □

3.2 Sard properties for infinite-dimensional maps

Let H be a Hilbert space. We consider a map f : U → Rm where U is an open subset of H. If f is C1

we denote by Crit( f ) the set of its critical points. For a fixed ν ∈ N, we also consider the set

Critν( f ) = {x ∈ U | rank(Dx f ) ≤ ν}. (3.18)

Given a relatively compact S ⊂ Rm, for any ϵ > 0 we denote with M(ϵ, S ) the ϵ-entropy of S , which
is the minimum number of closed balls of radius ϵ that we need to cover S .

Definition 3.16 (Entropy dimension). The entropy dimension of S is defined as

dime(S ) = lim sup
ϵ→0+

ln M(ϵ, S )
ln( 1

ϵ )
.

In [96, Ch. 2], it is proved that
dimH (S ) ≤ dime(S ).

The inequality can be strict, since there are sequences of real numbers with positive entropy dimension.
For Banach spaces X, Y and linear continuous maps L ∈ L(X,Y), we denote by

∥L∥op := sup
∥x∥X≤1

∥Lx∥Y (3.19)

the operator norm. With some abuse of notation the same symbol ∥L∥op is used for different X and Y ,
but there should be no confusion as the domain and codomain of L are clear from the context. We also
use without risk of confusion the symbol ∥ · ∥ to denote the usual Euclidean norm of Rm.
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3.2.1 Sard-type theorem for well approximated maps

The purpose of this section is to prove the following theorem, which is our main Sard-type result (The-
orem E in the Introduction).

Theorem 3.17. Let d,m ∈ N. There exists a constant β0 = β0(d,m) > 0 such that the following holds.
Let H be a Hilbert space, and let f : H → Rm be a C1 map such that its differential D f : H → L(H,Rm)
is weakly continuous. Let K ⊂ H be a bounded set with this approximation property: there exist a
sequence En ⊂ H of linear subspaces, dim(En) = n, and polynomial maps fn : En → R

m with uniformly
bounded degree:

sup
n∈N

deg fn ≤ d < ∞,

such that for some q > 1, c ≥ 0, and all large enough n it holds

sup
x∈K

(
∥ f (x) − fn ◦ πEn(x)∥ + ∥ (Dx f ) |En − DπEn (x) fn∥op

)
≤ cq−n. (3.20)

Then
dime

(
f
(

Critν( f ) ∩ K
))
≤ ν +

ln β0

ln q
, ∀ ν = 1, . . . ,m − 1.

In particular, if q > β0, then f satisfies the Sard property on K:

µ
(

f (Crit( f ) ∩ K)
)
= 0.

Remark 3. As it will be clear from the proof, the upper bound cq−n in the r.h.s. of (3.20) can be replaced
by any Cn ≥ 0, such that lim supn→∞C1/n

n = q−1, yielding the same results.

For the benefit of the reader we provide a general outline of the strategy of the proof. Our goal is to
estimate the “size” of the set f (Critν( f )∩K). More precisely, we bound the ϵ-entropy of f (Critν( f )∩K)
for any ϵ > 0, and then pass to the limit ϵ → 0.

We observe that the ϵ-entropy of f (Critν( f ) ∩ K) is controlled with the one of the set of almost-
critical values f (CΛ( f ) ∩ K), see Definition 3.8. In turn, this is controlled by the ϵ-entropy of suitable
almost-critical values of the approximating maps fn, namely f (CΛϵ ( fn) ∩ K), see (3.25).

To proceed, we use the relation between the ϵ-entropy of sets in Rm and their Vitushkin variations
(Definition 3.6), provided by [96, Thm. 3.5].

Finally, we estimate the Vitushkin variations of fn(CΛϵ ( fn) ∩ K) applying Theorem G, exploiting
the hypothesis that the maps fn are polynomial. This is the connection with quantitative semialgebraic
geometry from Section 3.1. The crucial point of Theorem G is that the bound is quantitative with
respect to parameters Λ = Λϵ and n. This allows to chose a large enough n = nϵ , see (3.31), to ensure
convergence when passing to the limit ϵ → 0.

Proof. We divide the proof in steps.
Step 1. In the first step we show that for any ν = 1, . . . ,m − 1 the set Critν( f ) ∩ K is contained in a

suitable set of almost-critical points of f . By assumption, K is weakly pre-compact. Since D f : H →
L(H,Rm) is weakly continuous, and by Lemma 3.9 the function σi : L(H,Rm) → R is continuous for
every i = 1, . . . ,m. Therefore we have

Σi := sup
K
σi(Dx f ) < ∞.
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Hence, defining Λ := (Σ1, . . . ,Σν, 0 . . . , 0) ∈ Rm, we get

Critν( f ) ∩ K ⊂ CΛ( f ) ∩ K. (3.21)

Step 2. We now relate critical points of f to almost-critical points of the approximating polynomials
fn. Fix ϵ > 0. Recall that, by Lemma 3.9, the singular values are 1-Lipschitz with respect to the operator
norm. Then for any sufficiently large n ∈ N such that cq−n ≤ ϵ and for all x ∈ K we have

|σi
(
Dx f |En

)
− σi(DπEn (x) fn)| ≤ ∥ (Dx f ) |En − DπEn (x) fn∥op ≤ ϵ.

Hence, for all x ∈ K ∩CΛ( f ) we have the following estimate for all i = 1, . . . ,m

σi
(
DπEn (x) fn

)
≤ ϵ + sup

y∈CΛ( f )∩K
σi

(
Dy f |En

)
≤ ϵ + sup

y∈CΛ( f )∩K
σi

(
Dy f

)
≤ ϵ + Λi, (3.22)

where, in the second inequality, we used that singular values are monotone with respect to restriction to
subspaces. Hence, defining

Λϵ := (Σ1 + ϵ, . . . ,Σν + ϵ, ϵ, . . . , ϵ),

by (3.22) we get
πEn

(
CΛ( f ) ∩ K

)
⊂ CΛ

ϵ

( fn) ∩ πEn(K) ⊂ CΛ
ϵ

( fn) ∩ BEn(r), (3.23)

where r > 0 is such that K ⊆ BH(r), and thus BEn(r) = BH(r) ∩ En denotes the ball in En defined by the
restriction of the Hilbert norm.

Step 3. Now we use the inclusion (3.23) to estimate the entropy dimension of f (Critν( f ) ∩ K) with
the one of almost-critical values of fn. By (3.20), for sufficiently large n, we have

sup
x∈K
∥ f (x) − fn ◦ πEn(x)∥ ≤ ϵ. (3.24)

Finally, we get

M(2ϵ, f (Critν( f ) ∩ K) ≤ M(2ϵ, f (CΛ( f ) ∩ K)) by (3.21)

≤ M
(
2ϵ,Uϵ

(
fn ◦ πEn

(
CΛ( f ) ∩ K

)))
by (3.24)

≤ M
(
ϵ, fn ◦ πEn

(
CΛ( f ) ∩ K

))
by definition ofUϵ

≤ M(ϵ, fn(CΛ
ϵ

( fn) ∩ BEn(r))), by (3.23) (3.25)

where we recall that M(ε, A) is the minimal number of closed balls of Rm of radius ϵ needed to cover
A ⊂ Rm, andUϵ(A) denotes the ϵ neighbourhood of A. This concludes the proof of step 3.

The rest of the proof consists in estimating (3.25). We will use the results from Section 3.1.4, for
this reason in the next step we discuss how to bring the problem to the Euclidean space Rn.

Step 4. We fix a basis for En which is orthonormal with respect to the inner product of H. This yields
a linear isometry of Hilbert spaces ℓn : Rn → En. In particular, for the transpose, it holds ℓ⊤n = ℓ−1

n .
Consider then the polynomial map f̃n : Rn → Rm defined by f̃n := fn ◦ ℓn, n ≥ m. We have

σi(Dv f̃n) = λi(Dℓn(v) fn ◦ ℓn ◦ ℓ
⊤
n ◦ Dℓn(v) f⊤n )1/2 = σi(Dℓn(v) fn), ∀ v ∈ Rn.
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It follows that, for sufficiently large n,

ℓn(CΛ
ϵ

( f̃n)) = CΛ
ϵ

( fn).

Hence, we have

fn(CΛ
ϵ

( fn) ∩ BEn(r)) = fn(ℓn(CΛ
ϵ

( f̃n)) ∩ BEn(r)) = f̃n(CΛ
ϵ

( f̃n) ∩ BRn(r)). (3.26)

By [96, Thm. 3.5] we have

M(ϵ, f̃n(CΛ
ϵ

( f̃n) ∩ BRn(r))) ≤ C(m)
m∑

i=0

1
ϵi Vi

(
f̃n(CΛ

ϵ

( f̃n) ∩ BRn(r))
)
, (3.27)

where C(m) > 0 is a constant that depends only on m. We now apply the results from Section 3.1.4 in
order to estimate the right-hand side of the last inequality.

Step 5. Take n sufficiently large so that it also satisfies n ≥ m. Then, by Theorem G, for every
i = 0, . . . ,m we have

Vi

(
f̃n(CΛ

ϵ

( f̃n) ∩ BRn(r))
)
≤ cst(m, r)nmβn

0Λ
ϵ
0 · · ·Λ

ϵ
i , (3.28)

where we recall β0 = β0(d,m) and Λϵ0 = 1 by definition. Now, we have for all i = 1, . . . ,m

Λϵ1 · · ·Λ
ϵ
i = (Λ1 + ϵ) · · · (Λi + ϵ)

=

i∑
h=0

ϵi−h
∑

0= j0< j1<···< jh≤i

Λ j0 · · ·Λ jh

≤

i∑
h=0

ϵi−h
∑

0= j0< j1<···< jh≤i

Λ0 · · ·Λh

=

(
i
h

) i∑
h=0

ϵi−hΛ0 · · ·Λh

≤ i!
i∑

h=0

ϵi−hΛ0 · · ·Λh. (3.29)

Therefore, by (3.27), (3.28) and (3.29), for large n we have

M(ϵ, f̃n(CΛ
ϵ

( f̃n) ∩ BRn(r))) ≤ cst(m, r)C(m)nmβn
0

m∑
i=0

i!
ϵi

i∑
h=0

ϵi−hΛ0 · · ·Λh

≤ c̃st(m, r)nmβn
0

ν∑
h=0

Λ0 · · ·Λh

ϵh ,

where we note that, by definition, Λh = 0 for all h > ν, and c̃st(m, r) denotes a constant that depends
only on m, r. From this we deduce that

ln M(ϵ, f̃n(CΛ
ϵ

( f̃n) ∩ BRn(r))) ≤ ln(c̃st(m, r)) + n ln β0 + m ln n + ln

 ν∑
h=0

Λ0 · · ·Λh

ϵh

 , (3.30)
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for all ϵ > 0 and n ∈ N such that cq−n ≤ ϵ and n ≥ m.
Step 6. We now show how to use (3.30) in order to get the estimate on dime( f (Critν( f ) ∩ K)). For

ϵ > 0 we choose n = nϵ where

nϵ :=
⌈
logq

c
ϵ

⌉
, (3.31)

in such a way that (3.25), (3.26) and (3.30) hold when ϵ → 0. By (3.25) and (3.26) we have

dime f (Critν( f ) ∩ K) ≤ lim sup
ϵ→0

ln M(ϵ, f̃nϵ (C
Λϵ ( f̃nϵ ) ∩ BRnϵ (r)))

ln 1
2ϵ

.

Hence now we estimate the right-hand side through (3.30). As ϵ goes to zero we have

lim sup
ϵ→0

nϵ ln β0

ln 1
2ϵ

= lim
ϵ→0

⌈
logq

c
ϵ

⌉
ln β0

ln 1
2ϵ

=
ln β0

ln q
.

We also have, taking into account (3.31), that

lim
ϵ→0

m ln nϵ
ln( 1

2ϵ )
= 0.

Furthermore

lim
ϵ→0

1
ln( 1

2ϵ )
ln

 ν∑
h=0

Λ0 · · ·Λh

ϵh

 = ν.
Therefore,

dime f (Critν( f ) ∩ K) ≤ ν +
ln β0

ln q
,

concluding the proof. □

3.2.2 Sard-type theorems and Kolmogorov n-width

In this section, we recall the definition of Kolmogorov n–width, and we show its role in Sard-type
theorems.

Definition 3.18 (Kolmogorov n–width). Let X be a normed space and S ⊂ X be a subset. For n ∈ N, the
Kolmogorov n–width of S in X is

Ωn(S , X) = inf
dim E=n

sup
u∈S

inf
y∈E
∥u − y∥,

where the infimum is taken over all n-dimensional linear subspaces E of X.

The asymptotics of n–width measures in a quantitative way the compactness of a set, in fact the
following holds (see [81, Prop. 1.2]).

Proposition 3.19. S is compact if and only if S is bounded and limn→∞Ωn(S ) = 0.
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For various properties of the n–width we refer the reader to [81]; we recall here those that we will
need in the sequel, see [81, Thm. 1.1].

Theorem 3.20. Let X be a normed space and S ⊂ X. Then for all n ∈ N:

(i) Ωn(S , X) = Ωn(S̄ , X), where S̄ is the closure of S ;

(ii) For every α ∈ R
Ωn(αS , X) = |α|Ωn(S , X);

(iii) Let co(S ) be the convex hull of S . Then

Ωn(co(S ), X) = Ωn(S , X);

(iv) Let b(S ) = {αx | x ∈ S , |α| ≤ 1} be the balanced hull of S . Then

Ωn(b(S ), X) = Ωn(S , X).

Remark 3.21. As a consequence, in all our results, up to enlarging S , one can assume without loss of
generality that S is convex and centrally symmetric, without changing its n–width.

We establish now a connection between n–width of compact sets and locally Lipschitz functions.

Lemma 3.22. Let H be a Hilbert space, (Y, ∥ · ∥Y ) a Banach space, and let f : H → Y be locally
Lipschitz. Let K ⊂ H be a compact subset. Then there exists n0 ∈ N such that for all n ≥ n0 there exist a
linear subspace En ⊂ H of dimension n such that

sup
x∈K
∥ f (x) − f (πEn(x))∥Y ≤ c( f ,K)Ωn(K,H).

Proof. Let {BH(xi, r/2)}i∈I a finite cover of K by balls, with centers xi ∈ K and radii r/2 > 0. We can
assume that f is L-Lipschitz on each BH(xi, r), for some L > 0. Since K is compact Ωn(K,H) → 0 as
n → ∞, hence there exists n0 ∈ N such that for all n ≥ n0 we have Ωn(K,H) < r/4. By definition of
n–width, for all n ≥ n0 there exists a n-dimensional subspace En ⊂ H such that

sup
x∈K
∥x − πEn(x)∥ < 2Ωn(K,H) <

r
2
. (3.32)

Let x ∈ K. Then by construction x ∈ BH(xi, r/2) for some i ∈ I. By (3.32) we have πEn(x) ∈ BH(xi, r).
Since f is L-Lipschitz on every BH(xi, r) we have

sup
x∈K
∥ f (x) − f (πEn(x))∥Y ≤ L sup

x∈K
∥x − πEn(x)∥ ≤ 2LΩn(K,H),

where we used again (3.32). This proves the result, with c( f ,K) = 2L. □

We can now prove the following Sard-type theorem, corresponding to Theorem A in the Introduc-
tion.
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Theorem 3.23. Let d,m ∈ N. There exists β0 = β0(d,m) > 0 such that the following holds. Let H be a
Hilbert space, f ∈Pm

d (H) and K ⊂ H be a compact set such that

ω(K,H) = lim sup
n→∞

Ωn(K,H)1/n ≤ q−1 ∈ (0, 1).

Then, for every ν = 1, . . . ,m − 1 we have

dime

(
f
(

Critν( f ) ∩ K
))
≤ ν +

ln β0

ln q
.

In particular, if q > β0, then the Sard property holds on K:

µ
(

f
(

Crit( f ) ∩ K
))
= 0.

Proof. Let qϵ ∈ (0, q). By assumption, Ωn(K,H) ≤ q−n
ϵ for sufficiently large n. We prove that f satisfies

the hypothesis of Theorem E. Since f ∈Pm
d (H) (see Definition 1), the map

( f ,D f ) : H → Rm × L(H,Rm)

is locally Lipschitz. The codomain Y = Rm × L(H,Rm) is a Banach space equipped with the norm
∥(v, A)∥Y = ∥v∥ + ∥A∥op for v ∈ Rm and A ∈ L(H,Rm). Hence we can apply Lemma 3.22 to get n0 ∈ N

such that for all n ≥ n0 there exists a n-dimensional linear subspace En ⊂ H such that

sup
x∈K
∥ f (x) − f (πEn(x))∥ + ∥Dx f − DπEn(x) f ∥op ≤ c( f ,K)q−n

ϵ ,

where πEn : H → En denotes the orthogonal projection. Let fn : En → R
m defined by the restriction

fn := f |En , which are polynomial maps with degree uniformly bounded above by d. It holds

∥(Dx f )|En − DπEn (x) fn∥op = ∥(Dx f )|En − (DπEn (x) f )|En∥op ≤ ∥Dx f − DπEn (x) f ∥op.

As a consequence of the above two estimates, assumption (3) of Theorem E holds, yielding

dime

(
f
(

Critν( f ) ∩ K
))
≤ ν +

ln β0

ln qϵ
.

Letting qϵ ↑ q we obtain the thesis. □

3.2.3 Counterexamples to the Sard theorem in infinite dimension

In this section we provide examples of maps f ∈ Pm
d (H) as in Theorem A for which there exists a

compact set K ⊂ H such that the set f (Crit( f ) ∩ K) has not measure zero, however it holds Ωn(K,H) ≤
cq−n. This shows the necessity of the quantitative assumption q > β0(m, d). As a consequence, we get
lower bounds on the semialgebraic constant β0.

We start with the following example, which is a minor modification of Kupka’s one [58].
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Example 3.24 (Kupka revisited). Let q > 1. Let f : ℓ2 → R defined by

f (x) =
∞∑

k=1

1
2k ϕ(qk−1xk),

where ϕ is the Kupka polynomial as in [96, Sec. 10.2.3]. Namely ϕ has degree 3, with ϕ(0) = ϕ′(0) =
ϕ(1) − 1 = ϕ′(1) = 0. If we assume q3/2 < 1 then f is C∞. All critical points have the form

Crit( f ) =
{(

x1,
x2

q
, . . . ,

xk

qk−1 , . . .

) ∣∣∣∣∣∣ xi ∈ {0, 1}
}
,

and the set of critical values is [0, 1]. Furthermore, given y =
(
x1,

x2
q , . . . ,

xk
qk−1 , . . .

)
∈ Crit( f ), we consider

its projection yn on span{e1, . . . , en}, that is

yn =

(
x1,

x2

q
, . . . ,

xn

qn−1 , 0, 0, 0, . . .
)
.

We have

∥y − yn∥
2
ℓ2 ≤

∞∑
k=n+1

1
q2(k−1) ≤

∫ ∞

n

1
q2t =

q−2n

2 ln q
.

Hence,

Ωn(Crit( f ), ℓ2) ≤ sup
y∈Crit( f )

∥y − yn∥ℓ2 ≤
q−n√
2 ln q

=⇒ ω(Crit( f ), ℓ2) ≤ q−1.

Since f and Crit( f ) satisfy all the hypothesis of Theorem A (provided that q3/2 < 1), we get a conse-
quence that

β0(1, 3) ≥ 21/3.

We now get the lower bound on β0(1, d) for d ≥ 3 by improving on the above construction.

Example 3.25 (Kupka revisited, degree d ≥ 3). We need the following classical fact, which follows from
[57]: for any d ≥ 2 there exists a polynomial ψ : R→ R of degree d such that

ψ(Crit(ψ)) = {0, . . . , d − 2}. (3.33)

(See also [56, Thm. 1] which gives a version of this result taking into account also possible multiplici-
ties.) We fix d ≥ 3 and we consider a polynomial ψ of degree d such that (3.33) holds. For q > 1 we
consider the map fd : ℓ2 → R

fd(x) :=
∞∑

k=1

1
(d − 1)kψ(qk−1xk).

If q ∈ (1, (d − 1)1/d), then the map fd is C∞. The set of critical points of fd is

Crit( fd) =
{(

y1,
y2

q
, . . . ,

yk

qk−1 , . . .

)
∈ ℓ2

∣∣∣∣∣∣ψ′(yk) = 0, ∀ k ∈ N
}
.
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Hence we have

fd(Crit( fd)) =

 ∞∑
k=1

1
(d − 1)k ck

∣∣∣∣∣∣∣ ck ∈ {0, . . . , d − 2}

 = [0, 1].

Let ζ = max{|z| | ψ′(z) = 0}. Exactly as in Example 3.24 we get for every n ∈ N

Ωn(Crit( fd), ℓ2) ≤
ζ√

2 ln q
q−n =⇒ ω(Crit( fd), ℓ2) ≤ q−1.

For any q ∈ (1, (d−1)1/d) the function fd and the set K = Crit( fd) satisfy the hypothesis of Theorem 3.23,
but fd(Crit( fd)) = [0, 1]. It follows that

β0(1, d) ≥ (d − 1)1/d, ∀ d ≥ 3.

In the next example we extend the construction to arbitrary dimension of the codomain.

Example 3.26 (Kupka revisited, d ≥ 3, arbitrary codomain). Let fd be as in Example 3.25, and consider
gd : Rm−1 × ℓ2 → Rm defined as

gd(x, y) := (x, fd(y)).

We have
Crit(gd) = Rm−1 × Crit( fd).

Taking En+m−1 = span{(ei, 0), (0, e j) | i = 1, . . . ,m − 1, j = 1, . . . , n} ⊂ Rm−1 × ℓ2, for all n ∈ N, we can
estimate the n–width of Crit(gd) as

Ωn+m−1(Crit(gd),Rm−1 × ℓ2) ≤
ζ√

2 ln q
q−n =⇒ ω(Crit(gd),Rm−1 × ℓ2) ≤ q−1.

We observe, provided that q ∈ (1, (d−1)1/d), the function gd satisfies all the hypothesis of Theorem 3.23,
but the set gd(Crit(gd)) = Rm−1 × [0, 1] has not measure zero. Hence

β0(d,m) ≥ (d − 1)1/d, ∀m ∈ N, d ≥ 3.

We collect the content of Examples 3.24 to 3.26 in a unified statement (see Theorem B).

Theorem 3.27. Let d,m ∈ N, with d ≥ 3, and set q := (d − 1)1/d. There exist a Hilbert space H, and
f ∈Pm

d (H) such that K = Crit( f ) ∩ BH(r) is compact for all r > 0, with

ω(K,H) = lim sup
n→∞

Ωn(K,H)1/n ≤ q−1,

and f : H → Rm does not verify the Sard property, namely µ( f (Crit( f ) ∩ K)) > 0. Therefore, the
semialgebraic constant β0(d,m) of Theorem E satisfies

β0(d,m) ≥ (d − 1)1/d, ∀m ∈ N, d ≥ 3.

In all the examples above we have taken K to be set of all critical points of a given function in a ball.
We now show a different construction, where the set K is strictly contained in the set of critical points,
more precisely is the set of points where the differential has rank zero.
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Example 3.28 (Rank zero counterexample to Sard). We consider fd : ℓ2 → R as in Example 3.25, and
m ∈ N. We define h : (ℓ2)m → Rm as

h(x1, . . . , xm) := ( fd(x1), . . . , fd(xm)).

For any x = (x1, . . . , xm) ∈ (ℓ2)m we have

im(Dxh) = im(Dx1 fd) × · · · × im(Dxm fd).

Hence x ∈ Critν(h) (the set of points where the rank of the differential is ≤ ν) if and only if at least m− ν
components of x are critical points of fd. In particular, we consider the compact set K of all critical
points of h of rank zero, namely

K := Crit0(h) = Crit( fd)m.

We have K ⊊ Crit(h), and
h(Crit(h) ∩ K) = h(Crit0(h)) = [0, 1]m.

As in the previous examples, K is compact with exponential n–width. By taking finite-dimensional
spaces Enm = span{(0, . . . , ei, . . . , 0)︸              ︷︷              ︸

j-th component

∈ (ℓ2)m | i = 1, . . . , n, j = 1, . . . ,m}, for n ∈ N we have

Ωnm(K, (ℓ2)m) ≤ mΩn(Crit( fd), ℓ2) ≤
mζ√
2 ln q

q−n =⇒ ω(K, (ℓ2)m) ≤ q−1/m,

where ζ is the same constant appearing in Example 3.25.

3.2.4 Sard threshold theorems

We can now prove Theorem C, of which we recall the statement.

Theorem 3.29. For every d,m ∈ N, there exists ω0(d,m) ∈ (0, 1] such that

(i) for every f ∈Pm
d (H) and for every compact set K ⊂ H with ω(K,H) < ω0(d,m),

µ
(

f (crit( f ) ∩ K)
)
= 0;

(ii) for every ω > ω0(d,m), with ω ∈ (0, 1], there exist f ∈ Pm
d (H) and a compact set K ⊂ H with

ω(K,H) = ω and such that

µ
(

f (crit( f ) ∩ K)
)
> 0.

Proof. By definition, for any compact set K, it holds ω(K,H) ∈ [0, 1], see (2). We define ω0(d,m) as
the supremum of the set of ω ∈ [0, 1] such that for every f ∈Pm

d (H) and for every compact set K ⊂ H
with ω(K,H) = ω it holds:

µ
(

f (Crit( f ) ∩ K)
)
= 0.

By Theorem A this set is non-empty and ω0(d,m) ≥ β0(d,m)−1. Hence ω0(d,m) ∈ (0, 1]. Both items
of Theorem 3.29 follow. Note that by Theorem B (more specifically, the construction of Example 3.26),
provided that d ≥ 3, one must have ω0(d,m) ≤ (d − 1)−1/d < 1, so that Item (ii) is non-vacuous. □
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Next, we prove Theorem D, of which we recall the statement.

Theorem 3.30. Let f ∈ Pm
d (H) and K ⊂ H be a compact set such that ω(K,H) < ω0(d,m). Consider

the linear subspace
V := span(K).

Then the restriction f |V : V → Rm satisfies the Sard property:

µ
(

f
(
Crit( f |V )

))
= 0.

In particular, µ( f (Crit( f ) ∩ V)) = 0.

Proof. Let H̃ denote the closure of V in H. Observe first that

Ωn(K,H) = Ωn(K, H̃).

The inequalityΩn(K,H) ≤ Ωn(K, H̃) is clear since every n-dimensional subspace of H̃ is also a subspace
of H. For the other inequality, since H̃ is closed in H, we can write H = H̃⊕H̃⊥ and denote by π : H → H̃
the orthogonal projection. Then, using that K ⊂ V ⊂ H̃, we obtain

Ωn(K,H) = inf
Y⊂H

dim Y=n

sup
u∈K

inf
y∈Y
∥u − y∥ ≥ inf

Y⊂H
dim Y=n

sup
u∈K

inf
y∈Y
∥u − π(y)∥

= inf
Y⊂H

dim Y=n

sup
u∈K

inf
z∈π(Y)

∥u − z∥

= inf
Z⊂H̃

dim Z≤n

sup
u∈K

inf
z∈Z
∥u − z∥

= inf
Z⊂H̃

dim Z=n

sup
u∈K

inf
z∈Z
∥u − z∥ = Ωn(K, H̃).

We can apply Item (i) of Theorem C to the map f̃ ∈ Pm
d (H̃), defined by f̃ := f |H̃ , with f ∈ Pm

d (H),
and the compact set K ⊂ H̃, which satisfies ω(K, H̃) < ω0(d,m), obtaining

µ
(

f̃ (Crit( f̃ ) ∩ K)
)
= 0.

Observe now that if u is a critical point for g := f |V , then u is also critical for f̃ = f |H̃ . In fact,
Dug = (Du f )|V for all u ∈ V . Thus we have λ ∈ (Rm)∗ \ {0} such that 0 ≡ λ ◦ Dug = (λ ◦ Du f̃ )|V and,
since V is dense in H̃, it follows that λ ◦ Du f̃ ≡ 0. This means that

Crit(g) ∩ K ⊆ Crit( f̃ ) ∩ K.

In particular, since on K ⊂ V we have f̃ = g by definition, this implies that

0 = µ
(

f̃ (Crit( f̃ ) ∩ K)
)
= µ

(
g(Crit(g) ∩ K)

)
. (3.34)

Let K′ be the balanced and convex hull of K. It holds:

V = span(K) = span(K′) =
∞⋃
j=1

jK′.
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By Theorem 3.20 the n–width of the compact, convex, centrally symmetric sets jK′ satisfy

Ωn( jK′,H) = jΩn(K′,H) = jΩn(K,H).

Thus ω( jK′,H) = ω(K,H) for all j ∈ N. Then, (3.34) holds also for jK′ in place of K. Therefore,

µ
(
g(Crit(g))

)
≤

∑
j≥1

µ
(

f̃
(
Crit( f̃ ) ∩ jK′

) )
= 0.

Finally, since Crit( f ) ∩ V ⊂ Crit(g), and g = f |V , it also holds µ( f (Crit( f ) ∩ V)) = 0. □

3.2.5 A class of maps with the global Sard property

Using Theorem E, we study a class of maps from a Hilbert space to Rm for which the Sard property
holds true. The case m = 1 is not new, and it was proved in [95], see also [96]. We need the following
preliminary facts.

Lemma 3.31 (Markov inequality). Let p : Rn → Rm be a polynomial map with components of degree
at most d. Then for every r > 0 it holds

sup
x∈BRn (r)

∥Dx p∥op ≤

√
md2

r
sup

x∈BRn (r)
∥p(x)∥.

Proof. From [52, Thm. VI] we get the thesis for r = 1. Then, we conclude considering the rescaled
polynomial x→ p(rx). □

Lemma 3.32 (Estimates on balls at different radii). Let p : Rn → Rm be a polynomial map with
components of degree at most d. Then for all r > 0 it holds

sup
x∈BRn (r)

∥p(x)∥ ≤ α(d,m)nd(1 + r)d sup
x∈BRn (1)

∥p(x)∥,

where α(d,m) = md/2d2d(d + 1) is a constant depending only on d and m.

Proof. We can write the polynomial map as

p(x) =
∑
|α|≤d

cαxα,

where cα ∈ Rm, and the sum is over the multi-indices α ∈ Nn with |α| =
∑

i αi ≤ d. Since |α|!cα =
∂xα p|x=0, we can iterate Markov inequality (for r = 1, see Lemma 3.31) and obtain

∥cα∥ ≤
1
|α|!

m|α|/2d2|α| sup
x∈BRn (1)

∥p(x)∥ ≤ m|α|/2d2|α| sup
x∈BRn (1)

∥p(x)∥.
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Therefore, for r > 1, we have

sup
x∈BRn (r)

∥p(x)∥ = sup
x∈BRn (1)

∥p(rx)∥

= sup
x∈BRn (1)

∥∥∥∥∥∥∥∥
d∑

i=1

ri

∑
|α|=i

cαxα

∥∥∥∥∥∥∥∥

≤ (1 + r)d

∑
|α|≤d

m|α|/2d2|α|

 sup
x∈BRn (1)

∥p(x)∥

≤ (1 + r)dmd/2d2d(d + 1)nd sup
x∈BRn (1)

∥p(x)∥,

where we used the fact that the number of multi-indices α ∈ Nn with |α| ≤ d is equal to (1 + n + n2 +

· · · + nd) ≤ (d + 1)nd □

For the rest of this section, we assume that the Hilbert space H is separable, and we fix a Hilbert basis
{ei}i∈N ⊂ H. For k ∈ N, we set Ek := span{e1, . . . , ek} and we denote by πk : H → Ek the corresponding
orthogonal projection, that is if x =

∑
i xiei, then πk(x) = (x1, . . . , xk). We now define a special class of

maps in this setting.

Proposition 3.33 (Construction of special maps). Let H be a separable Hilbert space. For all k ∈ N, let
pk : Ek → R

m be polynomial maps with supk∈N deg pk ≤ d for some d ∈ N, and such that

∞∑
k=1

sup
x∈BEk (r)

∥pk(x)∥ < ∞, ∀ r > 0. (3.35)

Then the map f : H → Rm given by

f (x) :=
∞∑

k=1

pk(x1, . . . , xk), ∀ x ∈ H, (3.36)

is well–defined, f ∈Pm
d (H) (see Definition 1) and its differential is given by

Dx f =
∞∑

k=1

Dx(pk ◦ πk). (3.37)

Proof. For a Banach spaces (X, ∥ · ∥X), (Y, ∥ · ∥Y ), and a closed set U ⊆ X, we denote by B(U,Y) the space
of all continuous and bounded functions f : U → Y . It is a Banach space when endowed with the norm
supx∈U ∥ f (x)∥Y .

We first note that the assumption (3.35) implies that the sequence of maps fn : H → Rm given by
fn :=

∑n
k=1 pk ◦ πk is Cauchy in B(BH(r),Rm) for all r > 0. In particular the right hand side of (3.36)

converges locally uniformly. For any n ∈ N we have

Dx fn =
n∑

k=1

Dx(pk ◦ πk). (3.38)
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Furthermore, x 7→ Dx fn ∈ B(BH(r);L(H,Rm)) for all n ∈ N, r > 0. We now prove that it is a Cauchy
sequence. Indeed, using Lemma 3.31, for any n2 ≥ n1

sup
x∈BH(r)

∥∥∥Dx fn2 − Dx fn1

∥∥∥
op ≤

√
md2

r

∑
k>n1

sup
x∈BEk (r)

∥pk(x)∥ → 0,

as n2, n1 → ∞. Therefore, {D fn}n∈N has a limit in B(BH(r),L(H,Rm)), for all r > 0. It follows that f is
C1 and (3.37) holds, see e.g. [59, Thm. 9.1].

Thanks to (3.37), we prove that D f : H → L(H,Rm) is weakly continuous. Let us consider a
sequence {x j} j∈N weakly convergent to x ∈ BH(r); we prove that Dx j f → Dx f as j→ ∞. Indeed, given
ϵ > 0 we fix Nϵ ∈ N such that

∑
k>Nϵ

supBEk (r) ∥pk∥ ≤ ϵ and, by Lemma 3.31, we get

∥∥∥Dx j f − Dx f
∥∥∥

op ≤

∞∑
k=1

∥∥∥Dx j(pk ◦ πk) − Dx(pk ◦ πk)
∥∥∥

op

=

∞∑
k=1

∥∥∥(Dπk(x j) pk) ◦ πk − (Dπk(x) pk) ◦ πk
∥∥∥

op

=

∞∑
k=1

∥∥∥Dπk(x j) pk − Dπk(x) pk
∥∥∥

op

≤

Nϵ∑
k=1

∥∥∥Dπk(x j) pk − Dπk(x) pk
∥∥∥

op +
∑
k>Nϵ

∥∥∥Dπk(x j) pk
∥∥∥

op +
∑
k>Nϵ

∥∥∥Dπk(x) pk
∥∥∥

op

≤

Nϵ∑
k=1

∥∥∥Dπk(x j) pk − Dπk(x) pk
∥∥∥

op +

√
md2

r
2ϵ,

where with some abuse of notation we denoted by the same symbol ∥ · ∥op either the norm in L(H,Rm)
or the one for the finite-dimensional subspaces L(Ek,R

m). Since πk(x j)→ πk(x) as j→ ∞ for all k ∈ N,
we conclude by the continuity of Dpk on Ek.

We prove now that D f : H → L(H,Rm) is locally Lipschitz. We will prove that the sequence
{D fn}n∈N defined by (3.38) is uniformly Lipschitz on balls. For k ∈ N, fix z,w ∈ Ek. Then it holds

Dz pk − Dw pk = Dz pk − Dz p̃k = Dz(pk − p̃k), (3.39)

where p̃k : Ek → R
m, defined by p̃k(·) := pk(· − z + w), is polynomial depending on the fixed choices of
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z,w, with degree bounded by d. Thus for all fixed z,w ∈ BEk (r), r > 0, it holds

∥Dz pk − Dw pk∥op ≤ sup
a∈BEk (r)

∥Da(pk − p̃k)∥op by (3.39)

≤

√
md2

r
sup

a∈BEk (r)
∥pk(a) − p̃k(a)∥ by Lemma 3.31

≤

√
md2

r
sup

a∈BEk (r)
∥pk(a) − pk(a − z + w)∥ by definition of p̃k

≤

 √md2

r
sup

a∈BEk (3r)
∥Da pk∥op

 ∥z − w∥ pk is Lipschitz

≤

md4

r2 sup
a∈BEk (3r)

∥pk(a)∥

 ∥z − w∥. by Lemma 3.31 (3.40)

Note that if x ∈ BH(r) then πk(x) ∈ BEk (r). Thus, for all x, y ∈ BH(r) it holds

∥Dx fn − Dy fn∥op ≤

n∑
k=1

∥Dx(pk ◦ πk) − Dy(pk ◦ πk)∥op by (3.38)

≤

n∑
k=1

∥Dπk(x) pk − Dπk(y) pk∥op by Leibniz rule

≤
md4

r2

n∑
k=1

sup
a∈BEk (3r)

∥pk(a)∥∥πk(x) − πk(y)∥ by (3.40)

≤
md4

r2 ∥x − y∥
∞∑

k=1

sup
a∈BEk (3r)

∥pk(a)∥ πk is 1-Lipschitz

≤ c(r)∥x − y∥,

where c(r) > 0 does not depend on n, and in the last inequality we used (3.35) for the convergence of
the series. Therefore the sequence {D fn}n∈N, is uniformly Lipschitz on every ball BH(r). Thus its limit
D f : H → L(H,Rm) is Lipschitz on any ball BH(r), and a fortiori locally Lipschitz.

Finally, we show that for every finite dimensional space E ⊂ H, the map f |E is a polynomial map
with components of degree bounded by d. Let n = dim(E) and fix a linear isometry L : Rn → E. The
statement is equivalent to show that f ◦ L is a polynomial map with components of degree bounded by
d. Denoting by (t1, . . . , tn) the standard coordinates in Rn, we have

f (L(t1, . . . , tn)) =
∞∑

k=1

pk(x1(t1, . . . , tn), . . . , xk(t1, . . . , tn))

=

∞∑
k=1

p̃k(t1, . . . , tn),

where each p̃k is a polynomial in (t1, . . . , tn) of degree at most d (since the xi depend linearly on the t j).
Condition (3.35) guarantees that, for each monomial tα1

1 · · · tn
αn , its coefficient in the expansion

∑
k≤s p̃k
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converges as s → ∞. Note that there are only a finite number of such coefficients, determined by the
upper bound d on the degree and the dimension n. We conclude by noting that the uniform limit of
polynomials with degree bounded by d is a polynomial with degree bounded by d. □

With the following we exhibit a special class of maps, obtained via the construction of Proposi-
tion 3.33, for which the Sard property holds true globally. This is the content of Theorem F in the
introduction, of which we recall the statement here.

Theorem 3.34. Let H be a separable Hilbert space. For all k ∈ N, let pk : Ek → R
m be polynomial

maps with supk∈N deg pk ≤ d for some d ∈ N, and such that

sup
x∈BEk (1)

∥pk(x)∥ ≤ q−k, ∀ k ∈ N, (3.41)

for some q > 1. Then the map f : H → Rm defined by

f (x) :=
∞∑

k=1

pk(x1, . . . , xk), ∀ x ∈ H,

is well–defined, f ∈Pm
d (H) (see Definition 1), and for all ν = 1, . . . ,m − 1 and r > 0 it holds

dime

(
f (Critν( f ) ∩ BH(r))

)
≤ ν +

ln β0

ln q
,

where β0 = β0(d,m) is the same constant given by Theorem E. In particular, if q > β0, then f satisfies
the Sard property globally on H:

µ
(

f
(

Crit( f )
))
= 0.

Proof. We show first that the map f is well–defined. The upper bound (3.41), together with Lemma 3.32
imply that for all r > 0

sup
x∈BEk (r)

∥pk(x)∥ ≤ α(d,m)(1 + r)d kd

qk , ∀ k ∈ N, (3.42)

with q > 1. In turn, this implies that

∞∑
k=1

sup
x∈BEk (r)

∥pk(x)∥ < ∞, ∀ r > 0.

We can then apply Proposition 3.33 obtaining that f ∈Pm
d (H).

Fix r > 0. We now prove that f satisfies the hypothesis of Theorem E with K = BH(r) and polyno-
mial approximating maps fn : En → R

m

fn(x) :=
n∑

k=1

pk(x1, . . . , xk), ∀ x ∈ H.
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Note that, by our assumptions, supn∈N deg fn ≤ d. It remains to check the validity of (3). Firstly, we
have for all n ∈ N

sup
K
∥ f (x) − fn ◦ πEn(x)∥ ≤ α(d,m)(1 + r)d

∞∑
k=n+1

kd

qk ,

where we used (3.42).
We now estimate the derivatives. We have

sup
x∈K

∥∥∥(Dx f ) |En − DπEn (x) fn
∥∥∥

op ≤ sup
x∈K

∥∥∥Dx f − Dx( fn ◦ πEn)
∥∥∥

op

≤ sup
x∈K

∞∑
k=n+1

∥Dx(pk ◦ πk)∥op by (3.37)

= sup
x∈K

∞∑
k=n+1

∥∥∥(Dπk(x) pk) ◦ πk
∥∥∥

op

≤

∞∑
k=n+1

sup
x∈BEk (r)

∥Dx pk∥op .

Note that, in the last line, the supremum is taken on a finite-dimensional Euclidean ball. To proceed, by
Lemma 3.31 and (3.42) we have

sup
x∈BEk (r)

∥Dx pk∥op ≤
d2 √m

r
α(d,m)(1 + r)d kd

qk .

Therefore, continuing the previous estimate, we obtain

sup
x∈K

∥∥∥(Dx f ) |En − DπEn (x) fn
∥∥∥

op ≤
d2 √m

r
α(d,m)(1 + r)d

∞∑
k=n+1

kd

qk .

We have therefore proved that for all n ∈ N, and r > 0 it holds

sup
x∈K

(
∥ f (x) − fn ◦ πEn(x)∥ + ∥ (Dx f ) |En − DπEn (x) fn∥op

)
≤

(
1 +

d2 √m
r

)
α(d,m)(1 + r)d

∞∑
k=n+1

kd

qk .

To conclude, note that by elementary estimates it holds(
1 +

d2 √m
r

)
α(d,m)(1 + r)d

∞∑
k=n+1

kd

qk ≤ cq−n,

for sufficiently large n, where c ≥ 1 is a constant depending only on the fixed parameters r, d,m. There-
fore, the main assumption (3) of Theorem E is satisfied, yielding

dime

(
f
(

Critν( f ) ∩ BH(r)
))
≤ ν +

ln β0

ln q
, ∀ ν = 1, . . . ,m − 1.

In particular, if q > β0 then f satisfies the Sard property on BH(r), namely

µ
(

f
(

Crit( f ) ∩ BH(r)
))
= 0.

Since r > 0 is arbitrary, we obtain that µ( f (Crit( f ))) = 0. □
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Chapter 4

Applications to the Endpoint maps of
Carnot groups

In this chapter we apply the results from the previous chapter to the study of the Sard property for
Endpoint maps for Carnot groups, proving the statements of Section iii.3.

4.1 Carnot groups

An m-dimensional Carnot group of step s ∈ N is a connected and simply connected Lie group (G, ·) of
dimension m, whose Lie algebra of left-invariant vector fields g admits a stratification of step s, that is

g = g1 ⊕ · · · ⊕ gs, (4.1)

where gi , {0}, gi+1 = [g1, gi] for all i = 1, . . . , s−1 and [g1, gs] = {0}. We set ki = dim gi, ai = k1+· · ·+ki,
and k = k1, which is called the rank of the Carnot group. As usual, we identify elements of gwith vectors
of TeG. Since g is nilpotent and G is simply connected, the group exponential map expG : g → G is a
smooth diffeomorphism.

The stratification (4.1) allows the definition of a family of automorphisms δλ : G → G, for λ > 0,
called dilations such that

δλ(expG(v)) = expG(λiv), ∀ v ∈ gi, i = 1, . . . , s.

Fix an adapted basis of g, namely a set of vectors v1, . . . , vm ∈ g such that for all i = 1, . . . , s the list
of vectors vki−1+1, . . . , vki is a basis of gi, with the convention k0 = 0. For any j = 1, . . . ,m the weight of
v j is the unique w j ∈ {1, . . . , s} such that v j ∈ gw j . We define a diffeomorphism φG : Rm → G, by

φG(x1, . . . , xm) := expG

 m∑
i=1

xivi

 .
The map φG defines global coordinates on G, called exponential coordinates (of first kind). For any
x ∈ G we denote by τx : G → G the left translation on G, that is τx(y) = x · y. We denote by
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X1, . . . , Xm the left-invariant vector fields on G corresponding to the adapted basis. They are given by
X j(x) = Deτx(v j) for any x ∈ G, where Deτx denotes the differential of τx at the unit element.

We recall the definition of (homogeneous) polynomials on Carnot groups. We say that P : G → R
is a polynomial if for some (and then any) set of exponential coordinates φG, the map P ◦ φG : Rm → R

is a polynomial. Any polynomial P : G→ R can be written as

P(φG(x1, . . . , xm)) =
∑
α∈Nm

cαxα1
1 · · · x

αm
m , ∀ x ∈ Rm,

for some cα ∈ R, which are non-zero only for a finite set of multi-indices. For α ∈ Nm, we denote by

|α|G :=
m∑

i=1

wiαi,

the weighted degree of the multi-index α. The weighted degree of a polynomial P is

degG(P) := max {|α|G | cα , 0} .

A polynomial P is homogeneous of weighted degree w if P(δλx) = λwP(x) for any x ∈ G and λ > 0.
Remark 4. In other words, P is homogeneous of weighted degree w if and only if

P(φG(x1, . . . , xm)) =
∑
α∈Nm

|α|G=w

cαxα1
1 · · · x

αm
m .

In particular any such polynomial depends only on the variables xi with wi ≤ w, namely x1, . . . , xkw .
It is easy to see that the concepts we just introduced do not depend on the choice of exponential

coordinates. For this reason, in the following, we fix such a choice, and we omit φG from the notation,
identifying G ≃ Rm. Note that e ∈ G is identified with 0 ∈ Rm.

We recall from [22, Prop. 5.18] the following result on the structure of the vector fields X j.

Proposition 4.1. In exponential coordinates (x1, . . . , xm) ∈ Rm, the vector fields X j, for j = 1, . . . , k
have the following form:

X j(x1, . . . , xm) = ∂ j +
∑
h>k

Q jh(x1, . . . , xkwh−1)∂h,

where Q jh : G ≃ Rm → R is a homogeneous polynomial of weighted degree wh − 1.

4.2 Endpoint maps

In this section we introduce the Endpoint map associated to a Carnot group. We work with the separable
Hilbert space

H := L2(I,Rk),

for some fixed interval I, say I = [0, 1], and where k is the rank ofG. For any u ∈ H with u = (u1, . . . , uk)
we consider the following Cauchy problem for a curve γ : I → G:

γ̇(t) =
k∑

j=1

u j(t)X j(γ(t)), γ(0) = e. (4.2)

It is well–known that (4.2) admits a unique absolutely continuous solution, γu : I → G, for any u ∈ H.

58



4.2. ENDPOINT MAPS

Definition 4.2. Let G be a Carnot group. The Endpoint map of G is the function

E : H → G,

given by E(u) := γu(1). We call the function u ∈ H a control. We use the same notation to denote the
Endpoint map E : H → Rm ≃ G with an identification in exponential coordinates.

Thanks to the special form of the vector fields X j given by Proposition 4.1, we can rewrite the system
(4.2) in exponential coordinates. Adopting the notation γ = (γ1, . . . , γm), we have

γi(0) = 0 i = 1, . . . ,m,
γ̇i(t) = ui(t) i = 1, . . . , k,

γ̇i(t) =
k∑

j=1

u j(t)Q ji(γ1(t), . . . , γkwi−1(t)) i = k + 1, . . . ,m,
(4.3)

for a.e. t ∈ I. Similarly, we write γu = (γu,1, . . . , γu,m) for the solution to (4.3).
The next result (Theorem H in the Introduction) connects this framework to the previous sections.

Theorem 4.3. Let G be a Carnot group of topological dimension m, step s, and rank k. Then the
Endpoint map E ∈Pm

s (H), for H = L2(I,Rk).

Proof. The fact that E is C1 (in fact smooth) and that the differential DE is locally Lipschitz follows from
[5, Prop. 8.5]. The fact that the DE is weakly continuous is proved in [28, Thm. 23]. It remains to show
that for all finite dimensional linear subspaces E of H, the restriction E|E : E → Rm is a polynomial map
of degree at most s.

We actually prove a stronger claim: for any n ∈ N, for any n-dimensional linear subspace E ⊂
L2(I,Rk), for any t ∈ I and i = 1, . . . ,m, the function on E defined by E ∋ u 7→ γu,i(t) is a polynomial
of degree wi, and its coefficients (when u is written in terms of some basis of E ≃ Rn) are continuous
functions of t ∈ I. We prove the claim by induction on w. We prove the base case, that is wi = 1. In this
case i = 1, . . . , k. For these values of i, by (4.3) we obtain

γu,i(t) =
∫ t

0
ui(s) ds,

which is clearly a polynomial function of u ∈ E, of degree 1. Moreover its coefficients (when u is written
in terms of a basis of E ≃ Rn) are continuous functions of t ∈ I. This concludes the base case.

Let then 1 ≤ θ < s. The induction assumption is that for any t ∈ I the function E ∋ u → γu,i(t) is a
polynomial of degree wi for all i such that wi ≤ θ, with coefficients that depends continuously on t.

Now we prove that the above property holds for any i such that wi = θ + 1. In particular i > k. In
this case, by (4.3), the curve γu,i : I → R is determined by

γu,i(t) =
k∑

j=1

∫ t

0
u j(s)Q ji(γu,1(s), . . . , γu,kwi−1(s)) ds. (4.4)

Recall that Q ji is a homogeneous polynomial of weighted degree wi − 1 and as already highlighted in
the notation, depends only on the functions γu,ℓ(s) with wℓ ≤ wi − 1 = θ. By the induction assumption,

59



CHAPTER 4. APPLICATIONS TO THE ENDPOINT MAPS OF CARNOT GROUPS

all the functions E ∋ u 7→ γu,ℓ(s) are polynomials of degree wℓ ≤ θ, depending continuously on s. By
using the definition of weighted degree (see Remark 4), it follows that the function

E ∋ u 7→ Q ji(γu,1(s), . . . , γu,kwi−1(s)),

is a polynomial of degree wi − 1, with coefficients depending continuously on s ∈ I. Then, the integrand
in (4.4), namely the function

E ∋ u 7→
k∑

j=1

u j(s)Q ji(γu,1(s), . . . , γu,kwi−1(s)),

is a polynomial of degree wi = θ + 1, with coefficients depending continuously on s ∈ I. We conclude
easily using (4.4). □

Thanks to Theorem H we can apply the results of Section 3.2 to Endpoint maps of Carnot groups,
obtaining the following statement (see Theorem I in the Introduction).

Theorem 4.4. LetG be a Carnot group of topological dimension m, step s, and rank k. Let K ⊂ L2(I,Rk)
be a compact subset with

ω(K, L2(I,Rk)) < ω0(m, s).

Then, letting V := span(K), the restriction E|V : V → G has the Sard property, namely

µ
(
E
(
Crit(E|V )

))
= 0.

In particular µ(E(Crit(E) ∩ V)) = 0.

Proof. Since E ∈Pd
m(H) by Theorem H, we can apply Theorem D. □

4.3 Sard property for real-analytic controls

We specialize the result in Theorem I to some concrete set of controls K, estimating its n–width.
Fix a closed interval I ⊂ R and let D(r, I) := {z ∈ C | d(z, I) ≤ r}. The radius of convergence of a

real-analytic function u : I → R is the largest r ∈ (0,∞] such that u extends to a (unique) holomorphic
function onD(r, I). For fixed r > 0 we denote by Cω(I,Rk; r) ⊂ L2(I,Rk) the set of real-analytic controls
whose components have radius of convergence strictly greater than r:

Cω(I,Rk; r) :=
{
u ∈ L2(I,Rk)

∣∣∣∣∣ u is real-analytic with radius of convergence strictly greater than r
}
,

which we endow with the supremum norm:

∥u∥Cω(I,Rk;r) := sup
z∈D(r,I)

∥u(z)∥.

Similarly, we consider finite concatenations of real-analytic controls as above. More precisely, for ℓ ∈ N
divide the interval I in equispaced sub-intervals:

I = I1 ∪ · · · ∪ Iℓ, Ia = inf I +
[
(a − 1)|I|

ℓ
,

a|I|
ℓ

]
, (4.5)
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and we let Cω(I,Rk; r, ℓ) ⊂ L2(I,Rk) be the set of piecewise analytic controls u : I → Rk that are
real-analytic on each set I1, . . . , Iℓ, with radius of convergence strictly greater than r, namely

Cω(I,Rk; r, ℓ) =
{
u ∈ L2(I,Rk)

∣∣∣∣∣ u|Ia ∈ C
ω(Ia,R

k; r) ⊂ L2(Ia,R
k), for all a = 1, . . . , ℓ

}
,

endowed with the norm
∥u∥Cω(I,Rk;r,ℓ) = max

a=1,...,ℓ
∥u∥Cω(Ia,Rk;r,ℓ). (4.6)

Theorem 4.5. Fix I = [0, 1], ℓ ∈ N and r > 1. Let V = Cω(I,Rk; r, ℓ). Then the set KV := {u ∈ V |
∥u∥V ≤ 1} is compact in L2(I,Rk), and for its n–width it holds:

Ωn(KV , L2(I,Rk)) ≤
(kℓ)1/2

ln r

(
1
r

)⌊ n
kℓ ⌋

.

Proof. We start by proving the case ℓ = 1. Fix u = (u1, . . . , uk) ∈ KV . Since r > 1, any u j for j = 1, . . . , k
has an expansion in power series on the complex unit ball centered at the origin, denoted by BC(1). In
particular, we have for any t ∈ I

u j(t) =
∞∑

h=0

u(h)
j (0)

h!
th.

For any N ≥ 1 we consider the truncated sum, given for any t ∈ I as

u j,N(t) =
N−1∑
h=0

u(h)
j (0)

h!
th.

By the Cauchy integral formula, and since r > 1, we have

u(h)
j (0) =

h!
2πi

∫
∂BC(r)

u j(z)
zh+1 dz,

where BC(r) is the complex unit ball of radius one centred at zero. Therefore,

|u(h)
j (0)| ≤

h!
rh .

Hence we have

∥u j − u j,N∥L2(I) ≤
∥∥∥u j − u j,N

∥∥∥
L∞(I) ≤

∞∑
h=N

|u(h)
j (0)|

h!
≤

∞∑
h=N

1
rh ≤

∫ ∞

N

1
rx dx =

r−N

ln r
.

It follows that for all u ∈ KV it holds

∥u − uN∥L2(I,Rk) ≤

 k∑
j=1

∥u j − u j,N∥
2
L2(I)


1/2

≤
k1/2r−N

ln r
. (4.7)
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Thanks to this result we can find an approximating subspace. Consider the standard basis e1, . . . , ek of
Rk, and for any k ∈ N we denote by fh ∈ L2(I) the function fh(t) = th. We have

uN =

N−1∑
h=0

u(h)(0)
h!

fh =
k∑

j=1

N−1∑
h=0

u(h)
j (0)

h!
fh ⊗ e j.

In particular, uN ∈ VN := span{ fh ⊗ e j | j = 1, . . . , k, h = 0, . . . ,N − 1} and dim(VN) = kN. Hence from
(4.7) it follows that for any N ∈ N

ΩkN(KV , L2(I,Rk)) ≤
k1/2

ln r

(
1
r

)N

. (4.8)

For n ∈ N we consider N =
⌊

n
k

⌋
. By Definition 3.18, the n–width is non-increasing as a function of

n ∈ N, hence by (4.8) we have

Ωn(KV , L2(I,Rk)) ≤ ΩkN(KV , L2(I,Rk)) ≤
k1/2

ln r

(
1
r

)⌊ n
k ⌋

.

This proves the estimate on the n–width per ℓ = 1.
We sketch the argument for general ℓ. In this case, for any u ∈ Cω(I,Rk; r, ℓ) we can write

u =
ℓ∑

a=1

u|Ia1Ia ,

where Ia are the intervals of the decomposition (4.5), and 1Ia are the corresponding characteristic func-
tions. By definition, each u|Ia is the restriction to Ia of a real-analytic function with radius of convergence
ra ≥ r > 1. We can expand each u|Ia in Taylor series centered at the lower bound of Ia. Then, in order
to obtain the finite-dimensional approximation, we truncate the series as in the previous case, repeating
analogous estimates for the remainder (taking into account the length of the intervals |Ia| = 1/ℓ). This
concludes the estimate on the n–width for general ℓ.

To prove the compactness assertion, observe that there is a linear immersion (given by the inclusion)
Cω(I,Rk; r, ℓ) ↪→ L2(I,Rk) and it holds ∥u∥L2(I,Rk) ≤ ∥u∥Cω(I,Rk;r,ℓ) for all u ∈ Cω(I,Rk; r, ℓ). In partic-
ular KV is bounded in L2(I,Rk) and since its n–width tends to zero as n → ∞ it is also compact by
Proposition 3.19. □

We can now prove Theorem J in the Introduction, of which we recall the statement.

Theorem 4.6. Let G be a Carnot group of topological dimension m, step s, and rank k. Given ℓ ∈ N,
there exists r = r(m, s, k, ℓ) > 0 such that, letting V = Cω(I,Rk; r, ℓ), with I = [0, 1], it holds

E(V) = G and µ
(
E(Crit(E|V )

)
= µ

(
E(Crit(E) ∩ V)

)
= 0.

Namely, the Sard property holds on the space of piecewise real-analytic controls with radius of conver-
gence > r and with ℓ pieces.
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Proof. The surjectivity of E on Cω(I,Rk; r, ℓ), for any value of r, ℓ, is discussed in Section 4.4, where
we prove in particular that E is surjective when restricted on polynomial controls (see Theorem 4.10).
To prove the Sard property, observe that E ∈Pm

s (L2(I,Rk)) by Theorem H. Let V = Cω(I,Rk; r, ℓ), and
KV be its unit ball with respect to the norm (4.6). By Theorem 4.5, for any r > 1 we have

ω(KV , L2(I,Rk)) := lim sup
n→∞

Ωn(KV , L2(I,Rk))1/n ≤ r−
1
kℓ ,

which is smaller than ω0(s,m) if r > 1 is large enough. The result follows now from Theorem D,
observing that span(KV ) = V . □

4.4 Surjectivity of the Endpoint map on finite-dimensional spaces of con-
trols

The Endpoint maps of sub-Riemannian manifolds are surjective when restricted to piecewise constant
controls: this follows from the proof of the Rashevskii-Chow theorem in [5]. In this section, we prove
that in Carnot groups the Endpoint maps are surjective also when they are restricted to the space of
controls which consists in the set of polynomial maps of some large enough fixed degree (which depends
on the Carnot group). The proof is obtained by using a quantitative version of the inverse function
theorem, as it can be found in [35]. For completeness we present and prove in our setting the statements
we need.

Given M ∈ L(Rm,Rm) we denote by σ(M) the smallest singular value of M, namely

σ(M) := inf
∥v∥=1
∥Mv∥ .

From the definition it follows that for all M1,M2 ∈ L(Rm,Rm) it holds

|σ(M1) − σ(M2)| ≤ ∥M1 − M2∥op . (4.9)

From [35, Lemma 3] we obtain the following technical lemma.

Lemma 4.7. Let M0 ∈ L(Rm,Rm) be invertible. Then, for every v ∈ Rm with ∥v∥ = 1 there exists w ∈ Rm

with ∥w∥ = 1 such that

⟨w,Mv⟩ ≥
σ(M0)

2
,

for all M such that ∥M − M0∥op ≤
σ(M0)

2 .

Proof. Given v ∈ Rm with ∥v∥ = 1, the set Cv ⊂ R
m

Cv :=
{

Mv ∈ Rm
∣∣∣∣∣ ∥M − M0∥op ≤

σ(M0)
2

}
,

is convex. We now prove that its distance from 0 is at least σ(M0)
2 . Indeed, by (4.9), for any M with

∥M − M0∥op ≤
σ(M0)

2 we obtain σ(M) > σ(M0)
2 . Therefore,

∥Mv∥ ≥ inf
∥v∥=1
∥Mv∥ = σ(M) >

σ(M0)
2

.
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Hence, we have proved that Cv is separated from the ball BRm

(
σ(M0)

2

)
. We conclude the proof thanks to

the usual separation theorem for convex sets. Indeed, it directly provides w ∈ Rm with ∥w∥ = 1 such that
for all M with ∥M − M0∥op ≤

σ(M0)
2 we have

⟨w,Mv⟩ ≥
σ(M0)

2
,

concluding the proof. □

From [35, Lemma 4] we obtain the following “quantitative injectivity” lemma.

Lemma 4.8. Let W ⊂ Rm be an open set, and f ∈ C1(W,Rm). Assume x0 ∈ W is such that Dx0 f is
invertible. Set σ f ,x0 := σ(Dx0 f ) > 0. There exists r f ,x0 > 0 such that for any g ∈ C1(W,Rm) with

sup
z∈W
∥Dz f − Dzg∥op <

σ f ,x0

4
, (4.10)

and all x, y ∈ BRm(x0, r f ,x0) it holds

∥g(x) − g(y)∥ ≥
σ f ,x0

2
∥x − y∥.

Proof. Since f is C1 there exists r = r f ,x0 > 0 such that BRm(x0, r) ⊂ W and

sup
z∈BRm (x0,r)

∥∥∥Dz f − Dx0 f
∥∥∥

op <
σ f ,x0

4
.

Let g ∈ C1(W,Rm) as in the statement. By (4.10) we get∥∥∥Dzg − Dx0 f
∥∥∥

op <
σ f ,x0

2
, (4.11)

for all z ∈ BRm(x0, r). Now we fix x , y in BRm(x0, r), and we have

g(x) − g(y) = ∥x − y∥
∫ 1

0
D(1−t)y+txg ·

x − y
∥x − y∥

dt.

We define vx,y := x−y
∥x−y∥ ∈ R

m, and we apply Lemma 4.7 to v = vx,y and M0 = Dx0 f , which is invertible
by hypothesis. We denote by wx,y ∈ R

m the provided unit vector, such that〈
wx,y,Dzg ·

x − y
∥x − y∥

〉
≥
σ f ,x0

2
,

for all z ∈ BRm(x0, r). We conclude the proof by the Cauchy-Schwarz inequality, which gives

∥g(x) − g(y)∥ ≥ ∥x − y∥
〈
wx,y,

∫ 1

0
D(1−t)y+txg ·

x − y
∥x − y∥

dt
〉
≥
σ f ,x0

2
∥x − y∥,

concluding the proof. □
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We conclude with the following inclusion, analogous to [35, Lemma 5], providing the “quantitative
surjectivity” counterpart of the previous statement. We report the proof for completeness.

Lemma 4.9. In the same setting of Lemma 4.8, the following inclusion holds

g(BRm(x0, r f ,x0)) ⊃ BRm

(
g(x0),

r f ,x0σ f ,x0

8

)
.

Proof. Set r = r f ,x0 and σ = σ f ,x0 . Let y ∈ BRm

(
g(x0), rσ

8

)
. Let x be a minimum of ∥y − g(·)∥2 on

BRn(x0, r). We claim that x ∈ intBRn(x0, r). Otherwise, using Lemma 4.8, we have

rσ
8
≥ ∥y − g(x0)∥

≥ ∥g(x) − g(x0)∥ − ∥y − g(x)∥

≥
σ

2
∥x − x0∥ − ∥y − g(x)∥

≥
σr
2
− ∥y − g(x0)∥

≥
σr
2
−
σr
8
=

3rσ
8
,

which is a contradiction. Thus x yields a local minimum for the function ∥y − g(·)∥2, and consequently
∇x∥y − g(·)∥2 = −2Dxg · (y − g(x)) = 0. Note that by (4.11) and the fact that the singular values are
1-Lipschitz (see Lemma 3.9) it follows that σ(Dxg) > σ

2 , hence Dxg is invertible. Hence y = g(x). □

We can now state and prove the surjectivity property of the Endpoint maps of Carnot groups.

Theorem 4.10. For every Carnot group G there exists dG ∈ N such that

E
(
{u ∈ L2(I,Rk) | u is a polynomial map with components of degrees at most dG}

)
= G.

Proof. The classical proof of the Rashevskii-Chow theorem provides u0 ∈ L2(I,Rk) such that Du0E is
surjective and E(u0) = 0 (see e.g. [5, Sec. 3.2]). In particular there exist w1, . . . ,wm ∈ ker(Du0E)⊥ such
that the vectors Du0E(w1), . . . ,Du0E(wm) are linearly independent. Now we consider the map f : Rm →

G ≃ Rm defined as

f (s1, . . . , sm) = E

u0 +

m∑
i=1

siwi

 .
The differential D0 f is invertible by construction, in particular f covers a neighbourhood of f (0) = 0.
The idea of the proof is to construct a perturbation g : Rm → G ≃ Rm of the form

g(s1, . . . , sm) = E

q0 +

m∑
i=1

si pi

 ,
where q0, p1, . . . , pm ∈ L2(I,Rk) are suitably chosen polynomial maps, in such a way that the image of
g stills contains a neighbourhood of 0. This will be done by applying Lemma 4.9, as we now explain.
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Given ϵ1, η1 > 0 by the density of polynomial maps in L2(I,Rk) and by the continuity of E and DE,
there exists a polynomial map q0 ∈ L2(I,Rk) such that

∥E(q0)∥ < ϵ1 and
∥∥∥Du0E − Dq0E

∥∥∥
op < η1.

Now we prove that we can find polynomial maps p1, . . . , pm and a neighbourhood W ⊂ Rm of 0 such
that, setting σ f ,0 = σ(Dx0 f ), it holds

sup
W
∥Ds f − Dsg∥op ≤

σ f ,0

4
. (4.12)

By the density of polynomial maps, given η2 > 0 we consider p1, . . . , pm such that for any i = 1, . . . ,m

∥wi − pi∥ < η2.

We get the following estimate

∥D0 f − D0g∥op ≤

m∑
i=1

∥Du0E(wi) − Dq0E(pi)∥

≤

m∑
i=1

∥Du0E(wi) − Dq0E(wi)∥ + ∥Dq0E(wi) − Dq0E(pi)∥

≤
∥∥∥Du0E − Dq0E

∥∥∥
op

m∑
i=1

∥wi∥ +
∥∥∥Dq0E

∥∥∥
op

m∑
i=1

∥wi − pi∥

≤ η1

m∑
i=1

∥wi∥ +
∥∥∥Dq0E

∥∥∥
op mη2.

Given η3 > 0, by the continuity of D f and Dg there exists a neighbourhood W ⊂ Rm of 0 such that

sup
s∈W
∥Ds f − D0 f ∥op + ∥Dsg − D0g∥op < η3.

Hence, by the triangle inequality we get the following estimate

sup
s∈W
∥Ds f − Dsg∥op ≤ η3 + η1

m∑
i=1

∥wi∥ +
∥∥∥Dq0E

∥∥∥
op mη2.

To obtain (4.12) it is enough to choose η1, η2, η3 small enough. We have thus found g in such a way
∥ f (0) − g(0)∥ < ϵ1 and g satisfies the hypothesis of Lemma 4.9. By the latter, we find r f ,0 > 0 such that

g(BRm(r f ,0)) ⊃ BRm

(
g(0),

r f ,0σ f ,0

8

)
.

Since ∥g(0)∥ < ϵ1 by construction, taking ϵ1 =
r f ,0σ f ,0

16 we also get

g(BRm(r f ,0)) ⊃ BRm

(r f ,0σ f ,0

16

)
.
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Let then dG be the maximum degree of the polynomial maps q0, . . . , pm. We have proved that

BRm

(r f ,0σ f ,0

16

)
⊂ E

(
{u ∈ L2(I,Rk) | u is a polynomial map of degree at most dG}

)
. (4.13)

In other words, the Endpoint map is surjective on a small ball when restricted to polynomial controls of
degree ≤ dG. Now recall that, for Carnot groups, dilations have the following property:

δλ(E(u)) = E(λu), ∀ λ > 0, u ∈ L2(I,Rk). (4.14)

From (4.13) and (4.14) it follows that E, when restricted to polynomial controls of degree ≤ dG is
surjective on the whole G ≃ Rm. □

With the same proof we can obtain the following statement, corresponding to Theorem K in the
Introduction, of which Theorem 4.10 is a special case.

Theorem 4.11. Let G be a Carnot group with topological dimension m and rank k. Let S ⊂ L2(I,Rk)
be a dense set. Then there exist u0, u1, . . . , um ∈ S such that

E(span{u0, u1, . . . , um}) = G.
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Chapter 5

Definable choices in semialgebraic
geometry

In this chapter we prove the results described in Section iii.4.

5.1 Hausdorff approximations in semialgebraic geometry

5.1.1 Semialgebraic sets and maps

In order to study Hausdorff approximations of semialgebraic sets in Rn, it will be convenient to work
with an extension R of the field of real numbers, where real “infinitesimals” will be themselves elements
of the field (below we will take for R the field of algebraic Puiseux series with coefficients in R). For
this reason, in this section we recall the basic notions from semialgebraic geometry over a general real
closed field and we refer the reader to the monographs [13, 31] for more details.

Remark 5.1 (On the use of the language of real closed fields). The language of real closed fields might
be unfamiliar for some readers, but it is especially useful in this context. We want to stress that using this
language is not strictly necessary and it is possible that the proofs below can be formulated only using
semialgebraic geometry in Rn. However, it has become quite standard in semialgebraic geometry since,
once it is introduced, the proofs and the statements become much shorter. Moreover, we are quoting
some technical constructions from [12, 13, 14] that are stated using this language, and translating them
to the classical semialgebraic language would make this part more technical – the precise point where
Puiseux series will be used instead of classical real algebraic geometry is Proposition 5.40. From here,
the tools of Hausdorff approximation that we develop in Section 5.1.3 will allow to get back to real sets,
keeping control of this process.

Recall that a real closed field R is an ordered field whose positive cone is the set of squares of
elements from R, and such that every polynomial in R[x] of odd degree has a root in R. The order of R
allows to define the sign of an element r ∈ R as:

sign(r) :=


+1 r > 0,
−1 r < 0,
0 r = 0.
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We denote by R+ := {r ∈ R | sign(r) ≥ 0} the cone of non-negative elements of R.
The field R is real closed. The main example of real closed field we use is the following.

Definition 5.2 (Algebraic Puiseux series). Let R be a real closed field and R(ζ) be the field of rational
functions in the variable ζ. The real closed field R⟨ζ⟩ of algebraic Puiseux series with coefficients in R
is defined by:

R⟨ζ⟩ :=

 f =
∞∑

k=k0

akζ
k
q

∣∣∣∣∣ ak ∈ R, k0 ∈ Z, m ∈ N, f is algebraic over R(ζ)

 .
In order to define a ring structure on the set R⟨ζ⟩, we insist that for r1, r2 ∈ Q it holds

ζr1ζr2 = ζr1+r2 , (ζr1)r2 = ζr1r2 , ζ0 = 1.

Therefore, two Puiseux series a =
∑

k≥k1 akζ
k/q1 and b =

∑
k≥k2 bkζ

k/q2 can be written as a formal power
series in ζ1/q, where q is the least common multiple between q1 and q2. This allows to add and multiply
Puiseux series. If a = a1ζ

r1 + a2ζ
r2 + · · · ∈ R⟨ζ⟩, with a1 , 0 and r1 < r2 < · · · , we say that a > 0 if

a1 > 0. From this definition it follows that 0 < ζ < r for every r ∈ R with r > 0, and this is why ζ is
called infinitesimal.

Remark 5.3 (Algebraic Puiseux series as germs). The field R⟨ζ⟩ is isomorphic, as a real closed field, to
the field of continuous semialgebraic functions germs f : (0, δ)→ R, where (0, δ) is an interval in R, [13,
Thm. 3.17]. Addition and multiplication translates to the usual ones. The order is defined as follows: the
germ of a semialgebraic function f : (0, δ)→ R is positive if and only if there exists 0 < δ′ < δ such that
f (ζ) > 0 for every ζ ∈ (0, δ′). Given a germ of a continuous semialgebraic function f : (0, δ) → R, in
order to get an expression like f =

∑
k≥k0 akζ

k/q, i.e. the corresponding element in the field of algebraic
Puiseux series, one uses the fact that the graph of f lies on a branch of an algebraic curve P(x, y) = 0
in the plane R2, where P is a polynomial with coefficients in R. In particular, this branch admits a
parametrization near the origin as

x(τ) = τq, y(τ) =
∑
k≥k0

akτ
k,

where q ∈ N, k0 ∈ Z and ak ∈ R, [93, Thm. 2.2]. This means that P(x(τ), y(τ)) = 0 as formal power
series, and one gets a Puiseux series for f by the substitution τ = ζ1/q in y(τ).

If R is a real closed field, then so is R⟨ζ⟩, see [13, Cor. 2.98]. Using this observation, letting K =
R⟨ζ1⟩, then also R⟨ζ1, ζ2⟩ = K⟨ζ2⟩ is a real closed field. Repeating this argument inductively, we define
the real closed field of algebraic Puiseux series with multiple infinitesimals and coefficients in R as

R⟨ζ1, . . . , ζm⟩ := R⟨ζ1⟩ · · · ⟨ζm⟩.

Let R be a real closed field. The norm of an element x = (x1, . . . , xn) ∈ Rn is defined as

∥x∥ :=
√

x2
1 + · · · + x2

n ∈ R.

For every x = (x1, . . . , xn) ∈ Rn and r ∈ R+, we denote by BRn(x, r) ⊂ Rn the set

BRn(x, r) :=
{
y ∈ Rn

∣∣∣∣∣ ∥x − y∥ ≤ r
}
,
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and call it the closed ball around x of radius r. The Euclidean topology on Rn is the topology generated
by the closed balls. These notions are inspired by their classical counterparts in the case R = R, with the
caveat that in these definitions r is not necessary real. Similarly, the order of a real closed field R can be
used to define the notion of semialgebraic sets.

Definition 5.4 (Semialgebraic sets and maps). We say that a set S ⊂ Rn is semialgebraic if

S =
a⋃

i=1

bi⋂
j=1

{
x ∈ Rn | sign(pi j(x)) = σi j

}
, (5.1)

for some finite set of polynomials pi j ∈ R[x1, . . . , xn] and σi j ∈ {0,+1,−1}. We call the description (5.1)
a representation of S .

Given two sets of polynomials P = {p1, . . . , pa1},Q = {q1, . . . , qa2} ⊂ R[x1, . . . , xn], we define the
algebraic set Z(P; R) and the closed basic semialgebraic set Bas(P,Q; R) ⊂ Rn by

Z(P; R) := {x ∈ Rn | p1(x) = · · · = pa1(x) = 0},

Bas(P,Q; R) := Z(P; R) ∩

 a2⋂
j=1

{
x ∈ Rn | q j(x) ≤ 0

} .
Finally, a map f : A → B between semialgebraic sets A ⊂ Rn, B ⊂ Rℓ is said to be semialgebraic if

its graph is a semialgebraic set in Rn × Rℓ.

The representation of a semialgebraic set S as in (5.1) is not unique, however having such a repre-
sentation quantifies the complexity of S , using the following notion.

Definition 5.5 (Diagram of a semialgebraic set). Let S ⊂ Rn be a semialgebraic set represented as in
(5.1). We say that the triple (

n, a ·max
i
{bi},max

i, j
{deg(pi j)}

)
∈ N3

is a diagram for S . Below, the equation “D(S ) = (m, c, d)” will mean that there exists a representation
of S as in (5.1) with n ≤ m, a ·maxi{bi} ≤ c and maxi, j{deg(pi j)} ≤ d.

It is often useful to use an alternative (equivalent) description of semialgebraic sets, using the notion
of first–order formulas.

Definition 5.6 (First–order formula). Let R be a real closed field. A first–order formula of the language
of ordered fields with coefficients in R is a formula written with a finite number of conjunctions, dis-
junctions, negations, and universal or existential quantifiers on variables, starting from atomic formulas
which are formulas of the kind p(x1, . . . , xn) = 0 or q(x1, . . . , xn) < 0, where p and q are polynomials
with coefficients in R. The free variables of a formula are those variables of the polynomials appearing
in the formula which are not quantified.

Semialgebraic sets are precisely those defined by first–order formulas [31, Prop. 2.2.4].
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Definition 5.7 (Set defined by a formula, see [13, Sect. 1.1]). Let ψ be a first–order formula of the
language of ordered fields, with coefficients in R, and with n free variables. The set defined by ψ in Rn

(or the realization of ψ in Rn) is the semialgebraic set

Reali(ψ; R) ⊆ Rn

defined by induction on the construction of the formula, starting from atoms:

Reali(p = 0; R) := {x ∈ Rn | p(x) = 0}, Reali(p < 0; R) := {x ∈ Rn | p(x) < 0},

(p is a polynomial with coefficients in R),

Reali(ϕ1 ∧ ϕ2; R) := Reali(ϕ1; R) ∩ Reali(ϕ2; R),

Reali(ϕ1 ∨ ϕ2; R) := Reali(ϕ1; R) ∪ Reali(ϕ2; R),

Reali(¬ϕ; R) := Rn \ Reali(ϕ; R),

Reali((∃y) ϕ; R) := {x ∈ Rn | ∃y ∈ R, (x, y) ∈ Reali(ϕ; R)},

Reali((∀y) ϕ; R) := {x ∈ Rn | ∀y ∈ R, (x, y) ∈ Reali(ϕ; R)},

where ϕ1, ϕ2, ϕ are first–order formulas with an appropriate number of free variables.

5.1.2 Some properties of semialgebraic sets

We collect here some properties of semialgebraic sets over a real closed field.

Semialgebraic triviality

Continuous semialgebraic maps f : A → B are “piecewise” trivial fibrations: there exists a partition of
B into finitely many semialgebraic sets

B =
b⊔

j=1

B j

and, for every j = 1, . . . , b there exist fibers F j := f −1(y j), for some y j ∈ B j, and a semialgebraic
homemorphism φ j : B j × F j → f −1(B j) that makes the following diagram commutative:

B j × F j f −1(B j)

B j

φ j

p1 f

This result is called semialgebraic triviality, see [31, Thm. 9.3.2].

Corollary 5.8. Definable choices exist.
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Proof. Let S ⊂ Rn be a semialgebraic set and π : Rn → Rℓ the projection. Then, by semialgebraic
triviality there exists a finite partition of π(S ) = ⊔b

j=1B j into semialgebraic sets and for every j = 1, . . . , b
there exists fibers F j = π

−1(y j) ⊂ S , with y j ∈ B j, and semialgebraic homeomorphisms φ j : B j × F j →

π−1(B j) ∩ S making the corresponding diagram commutative. For every j = 1, . . . , b choose an element
x j ∈ F j. The definable choice of S over π(S ) is the set

b⋃
j=1

φ j
(
B j × {x j}

)
,

concluding the proof. □

Remark 5.9. Note that the complexity of a set built as in the proof of Corollary 5.8 depends on the
complexity of the objects involved in the semialgebraic triviality. This uses the so–called cylindrical
algebraic decomposition and it is known to be doubly exponential in the number of variables of S (see
[36, 32]).

Dimension and stratifications

Every semialgebraic subset of Rn can be written as a finite union of semialgebraic sets, each of them
semialgebraically homeomorphic to an open cube (0, 1)m ⊂ Rm, for some m ≤ n ([31, Thm. 2.3.6]).
This allows to define the dimension of a semialgebraic set as the maximum of the dimensions m of these
cubes. In fact, it is possible to introduce the notion of smoothness also over general real closed fields,
and every semialgebraic set can be written as a finite union of smooth, semialgebraic disjoint manifolds
called strata ([31, Prop. 9.1.8]). This is called a Nash stratification. We will use this last result only in
the classical case R = R.

The dimension of a semialgebraic set is preserved by semialgebraic homeomorphisms and behaves
naturally under Cartesian product:

dim(A × B) = dim(A) + dim(B).

Moreover, if f : A→ B is a continuous semialgebraic map, then

dim( f (A)) ≤ dim(A). (5.2)

We will also need a stronger notion of dimension, introduced in [14].

Definition 5.10 (Strong dimension). Let S ⊂ Rn be a semialgebraic set and 1 ≤ ℓ ≤ n. We say that S is
strongly of dimension ≤ ℓ if, letting πℓ : Rn → Rℓ be the projection on the last ℓ coordinates, it holds

∀y ∈ Rℓ #
(
S ∩ π−1

ℓ (y)
)
< ∞. (5.3)

It follows from semialgebraic triviality (see Section 5.1.2) that if (5.3) holds, then

sup
y∈Rℓ

#
(
S ∩ π−1

ℓ (y)
)
< ∞, (5.4)

so that in Definition 5.10 one can replace (5.3) with the apparently stronger condition (5.4).
Moreover, if S is strongly of dimension ≤ ℓ, then dim(S ) ≤ ℓ. However, a semialgebraic set S of

dimension ℓ may not be strongly of dimension ≤ ℓ, as this depends on the relative position between S
and the projecting subspace Rℓ. Nevertheless we have the following result.
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Proposition 5.11 (Genericity of strong dimension). Let S ⊂ Rn be a semialgebraic set of dimension ℓ.
The set of invertible linear transformations L : Rn → Rn such that L(S ) is strongly of dimension ≤ ℓ is
semialgebraic and dense.

Proof. We first prove the case R = R. The set of such linear transformations is semialgebraic, as it
admits a semialgebraic description in the coefficients of L.

To prove density, let M ⊂ Rn be a smooth p–dimensional manifold with p ≤ ℓ. Given r ∈ N and
a Thom–Boardman manifold Σ ⊂ Jr(M,Rℓ), it follows from [70, Thm. 2] that the set of linear maps
T : Rn → Rℓ that restrict to maps T |M : M → Rℓ which are transversal to Σ is dense. In particular, the
set of linear maps T : Rn → Rℓ such that T |M is a stratified immersion is dense. The fibers of every such
map are discrete and every such map can be obtained as T = πℓ ◦ L for an appropriate L : Rn → Rn.
Therefore, for every smooth p–dimensional manifold M ⊂ Rn, with p ≤ ℓ, the set L(M) of linear maps
L : Rn → Rn such that the fibers of the map πℓ|L(M) : L(M) → Rℓ are discrete is dense. When M is
semialgebraic, the set L(M) is also semialgebraic and therefore it contains an open dense set.

Let S = ⊔a
i=1Mi be a Nash stratification of S . Applying the above argument to each stratum Mi,

we see that the set L(S ) := L(M1) ∩ · · · ∩ L(Ma) is semialgebraic and contains an open dense set. For
every L ∈ L(S ) the fibers of πℓ|L(S ) : L(S )→ Rℓ are discrete and semialgebraic, therefore they are finite.
Hence L(S ) is strongly of dimension ≤ ℓ. This concludes the proof for the case R = R.

The statement we just proved can be written as a first–order formula with coefficients in R. There-
fore, the same statement holds if R is replaced by a real closed extension R of it, by [31, Prop. 5.2.3].
(This is the so-called transfer principle from real algebraic geometry: every property that can be ex-
pressed in the first–order language of ordered fields with coefficients in R can be transferred to any real
closed extension of R.) □

Thom-Milnor bound

For every c ∈ N there exists βtm = βtm(c) > 1 such that, if S is a semialgebraic set with diagram
D(S ) = (n, c, d), then the number of connected components of S , denoted by b0(S ), can be bounded by
([13, Thm. 7.50]):

b0(S ) ≤ βtmdn. (5.5)

5.1.3 Hausdorff approximations using infinitesimals

Using Puiseux series we can produce Hausdorff approximations of semialgebraic sets in Rn as “special-
izations” of semialgebraic sets defined on an extension Rn which contains some “infinitesimals”, and
this can be done in a controlled way. Let us explain this idea.

Example 5.12. Given a set A ⊂ Rn, for r > 0 denote its r–neighbourhood in Rn by

Ur(A) :=

x ∈ Rn
∣∣∣∣∣∃a = (a1, . . . , an) ∈ A s.t.

n∑
i=1

(ai − xi)2 ≤ r2

 .
If A is semialgebraic, defined by a first order formula ϕ, thenUr(A) is defined by the first order formula

ϕr :=

∃a

ϕ(a) ∧
n∑

i=1

(ai − xi)2 ≤ r2

 .
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Instead of interpreting {ϕr(x)}r>0 as a family of first order formulas with coefficients inR, we can interpret
it as a single first order formula ψ with coefficients in R = R⟨ζ⟩

ψ :=

∃a

ϕ(a) ∧
n∑

i=1

(ai − xi)2 ≤ ζ2

 .
The set S ⊂ Rn defined by the formula ψ encodes the family of neighbourhoods of the original semial-
gebraic set S in a semialgebraic way. Note that the r–neighbourhood of S is described by the formula
obtained from S by “evaluating” the infinitesimal ζ at r.

The evaluation map and the map L0

The procedure described in Example 5.12 is a special case of a general construction of “evaluation” of a
semialgebraic set of Puiseux series. First, we provide the following definition, inspired by [41, Def. 1.7],
to formalize the concept of properties that are true for “sufficiently small” nested sequences of Puiseux
series. The intricacy of the statements for the case m > 1 is a consequence of the iterative definition of
Puiseux series R⟨ζ1, . . . , ζm⟩ for several infinitesimals.

Definition 5.13 (Predicates for sufficiently small Puiseux series). Let R be a real closed field, 1 ≤ k ≤ m,
and let P = P(tk, . . . , tm) be a property where t j ∈ R⟨ζ1, . . . , ζ j−1⟩ for k ≤ j ≤ m. We say that the
property P holds for

0 < tk ≪ · · · ≪ tm ≪ 1

if there exists δm ∈ R⟨ζ1, . . . , ζm−1⟩ with δm > 0 such that for tm ∈ R⟨ζ1, . . . , ζm−1⟩ with 0 < tm < δm there
exists δm−1 ∈ R⟨ζ1, . . . , ζm−2⟩ with δm−1 > 0 such that for all tm−1 ∈ R⟨ζ1, . . . , ζm−2⟩ with 0 < tm−1 < δm−1
there exists (...) δk ∈ R⟨ζ1, . . . , ζk−1⟩ with δk > 0 such that for all tk ∈ R⟨ζ1, . . . ζk−1⟩ with 0 < tk < δk we
have P(tk, . . . , tm).

Definition 5.14 (The evaluation map). Let R be a real closed field and let ψ be a formula with n
free variables and with coefficients in R⟨ζ1, . . . , ζm⟩. For every 1 ≤ k ≤ m and for every (tk, . . . , tm)
with t j ∈ R⟨ζ1, . . . , ζ j−1⟩ for j = k, . . . ,m, we denote by ψ|ζk=tk ,...,ζm=tm the formula with coefficients in
R⟨ζ1, . . . , ζk−1⟩ that is obtained from ψ by replacing iteratively in its coefficients each ζ j by t j, starting
from j = m. This can be done provided that, at each step, t j is sufficiently small so that the coefficients of
the formula coming from the previous step (which are finitely many and which we see as germs of con-
tinuous semialgebraic functions in ζ j) have a representative defined on a common interval containing t j,
yielding a Puiseux series in j−1 infinitesimals. If S ⊂ R⟨ζ1, . . . , ζm⟩

n is the semialgebraic set defined by
ψ, we denote by S |tk ,...,tm ⊂ R⟨ζ1, . . . , ζk−1⟩

n the semialgebraic set defined by the formula ψ|ζk=tk ,...,ζm=tm ,
i.e.

S |tk ,...,tm := Reali
(
ψ|ζk=tk ,...,ζm=tm ; R⟨ζ1, . . . , ζk−1⟩

)
⊂ R⟨ζ1, . . . , ζk−1⟩

n, (5.6)

provided that the right hand side of (5.6) is defined. In particular, this is the case for 0 < tk ≪ · · · ≪
tm ≪ 1. The set S |tk ,...,tm is called the evaluation of S (at tk, . . . , tm).

Remark 5.15. Indeed, (5.6) depends on the formula ψ defining S ; for us the formula will be clear and
this abuse of notation will create no harm.
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Remark 5.16 (Polynomial coefficients). If the coefficients of the formula ψ are polynomials in the in-
finitesimals (and not general algebraic Puiseux series), then (5.6) is defined for any (tk, . . . , tm) with
t j ∈ R[ζ1, . . . , ζ j−1] ⊂ R⟨ζ1, . . . , ζ j−1⟩. In this case, at the i–th step of the process one gets a new formula
with coefficients in R[ζ1, . . . , ζm+i−2]; therefore the process can be iterated and the concept of “suffi-
ciently small” from Definition 5.13 can be dispensed of. This is the approach followed in [12] in the case
of one infinitesimal (m = 1). Our general formulation, albeit defined only for 0 < tk ≪ · · · ≪ tm ≪ 1,
is more flexible and technically necessary. Notably, the key Lemmas 5.19 and 5.20 require evaluation at
general Puiseux series.

Remark 5.17 (Evaluations and germs). Let S = Reali(ψ; R⟨ζ⟩) ⊂ R⟨ζ⟩n be a semialgebraic set. Recall
from Remark 5.3 that the germ of continuous semialgebraic function g : (0, δ) → R can be identified as
an element of R⟨ζ⟩ (we denote this germ still by g). Then, using the notation from Definition 5.14, the
following property is true by construction:

∃δ > 0 ∀r ∈ (0, δ) g(r) ∈ S |r ⇐⇒ g ∈ S . (5.7)

Lemma 5.18 (Evaluation preserves the diagram). In the same setting of Definition 5.14, for every 1 ≤
k ≤ m it holds

D(S |tk ,...,tm) = D(S ),

for all (tk, . . . , tm) such that the evaluation is defined.

Proof. The statement follows from the fact that a representation of S |t1,...,tm is obtained from a represen-
tation of S by replacing ζ j with t j in the coefficients, in the prescribed order. □

The strong dimension condition of Definition 5.10 is not increased by small evaluations.

Lemma 5.19 (Small evaluations do not increase the strong dimension: one infinitesimal). In the same
setting of Definition 5.14, with m = 1. Let πℓ : R⟨ζ⟩n → R⟨ζ⟩ℓ be the projection on the last ℓ coordinates,
1 ≤ ℓ ≤ n. Then, there exists δ ∈ R, δ > 0 such that for all t ∈ R with 0 < t < δ it holds

sup
y∈Rℓ

#S |t ∩ π−1
ℓ (y) ≤ sup

w∈R⟨ζ⟩ℓ
#S ∩ π−1

ℓ (w).

In particular, if S ⊂ R⟨ζ⟩n is strongly of dimension ≤ ℓ, then the set S |t is also strongly of dimension ≤ ℓ.

Proof. In the proof, set π = πℓ. Let

N := sup
w∈R⟨ζ⟩ℓ

#
(
S ∩ π−1(w)

)
. (5.8)

If N = ∞ there is nothing to prove, then assume N < ∞.
Assume by contradiction that for all δ ∈ R, δ > 0, there exists t ∈ R, 0 < t < δ, and y ∈ Rℓ such that

#S |t ∩ π−1(y) > N.

Consider the semialgebraic set D ⊂ Rℓ × R+ defined by

D :=
{
(y, t) ∈ Rℓ × R+ | #S |t ∩ π−1(y) > N

}
.
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Let P2 : D → R+ be the projection on the second factor. By our assumption the image P2(D) ⊂ R+
contains a sequence accumulating to 0. By semialgebraic triviality (Section 5.1.2) there exists δ0 ∈ R+,
δ0 > 0, a point t ∈ (0, δ0) a fiber F0 = P−1

2 (t0) and a semialgebraic homomorphism Φ : (0, δ0) × F0 →

P−1
2 ((0, δ0)) such that the following diagram is commutative

(0, δ0) × F0 P−1
2 ((0, δ0))

(0, δ0)

Φ

p1 P2

Fix an element f0 ∈ F0 and consider the function y0 : (0, δ0)→ Rℓ given by

y0(t) := P1 ◦ Φ(t, f0),

where P1 : D → Rℓ denotes the projection in the first factor. The (components of the) function y0 are
semialgebraic and continuous curves on the right of the origin, thus the corresponding germs (which we
denote with the same symbol) define algebraic Puiseux series y0 ∈ R⟨ζ⟩ℓ. Furthermore, we note that by
construction (y0(t), t) ∈ D for all t ∈ (0, δ0) so that

∀t ∈ (0, δ0), #
(
S |t ∩ π−1(y0(t))

)
> N. (5.9)

Denoting by (v,w) ∈ R⟨ζ⟩n = R⟨ζ⟩n−ℓ × R⟨ζ⟩ℓ, the set π−1(y0(t)) ⊂ Rn can be seen as the evaluation at t
of the set π−1(y0) ∈ R⟨ζ⟩n, defined by the formula (w = y0) with variables (v,w) and coefficients in R⟨ζ⟩.

Thus for 0 < t ≪ 1 (which means, according to Definition 5.13, up to taking a smaller δ0, for all
0 < t < δ0), it holds (

S ∩ π−1(y0)
)∣∣∣∣

t
= Reali

(
(ψ ∩ (w = y0))|ζ=t; R

)
= Reali

(
ψ|ζ=t; R

)
∩ Reali

(
(w = y0)|ζ=t; R

)
= S |t ∩ π−1(y0(t)).

In particular from (5.9) we obtain

∀t ∈ (0, δ0) #
(
S ∩ π−1(y0)

)∣∣∣∣
t
= #

(
S |t ∩ π−1(y0(t))

)
> N. (5.10)

Consider then the semialgebraic set T ⊂ Rn × R+ defined by

T :=
{
(z, t) ∈ Rn × R+

∣∣∣∣ z ∈ (
S ∩ π−1(y0)

)∣∣∣∣
t

}
.

Denote by P : T → R+ the projection on the last factor. By semialgebraic triviality, for δ0 > 0 small
enough, we find a semialgebraic homomorphism

φ : (0, δ0) × H → P−1((0, δ0)),

where H = P−1(t̄) for some t̄ ∈ (0, δ0). By (5.10) such a fiber must have cardinality > N. Pick N + 1
distinct points h1, . . . , hN+1 ∈ H. Denote by Q : T → Rn the projection on the first factor and define for
j = 1, . . . ,N + 1 continuous semialgebraic curves g j : (0, δ0)→ Rn by

g j(t) := Q(φ(t, h j)).

77



CHAPTER 5. DEFINABLE CHOICES IN SEMIALGEBRAIC GEOMETRY

By construction, these curves satisfy

∀t ∈ (0, δ0) g j(t) ∈
(
S ∩ π−1(y0)

)∣∣∣∣
t
.

Therefore (the germ of) each g j ∈ S ∩ π−1(y0) ⊂ R⟨ζ⟩n, by (5.7). Since the elements h j are distinct, the
germs of these curves near zero represent N + 1 distinct points in S ∩ π−1(y0), contradicting (5.8).

We have proved that there exists δ > 0 such that for all t ∈ R with 0 < t < δ it holds

sup
y∈Rℓ

#S |t ∩ π−1(y) ≤ sup
w∈R⟨ζ⟩ℓ

#S ∩ π−1(w).

which is the statement. □

We will need a version of Lemma 5.19 for multiple infinitesimals (m > 1).

Lemma 5.20 (Small evaluations do not increase the strong dimension: several infinitesimals). In the
same setting of Definition 5.14, let πℓ : R⟨ζ1, . . . , ζm⟩

n → R⟨ζ1, . . . , ζm⟩
ℓ be the projection on the last ℓ

coordinates, 1 ≤ ℓ ≤ n, and let 1 ≤ k ≤ m. Then for 0 < tk ≪ · · · ≪ tm ≪ 1 it holds

sup
y∈R⟨ζ1,...,ζk−1⟩ℓ

#S |tk ,...,tm ∩ π
−1
ℓ (y) ≤ sup

w∈R⟨ζ1,...,ζm⟩ℓ
#S ∩ π−1

ℓ (w).

In particular, if S ⊂ R⟨ζ1, . . . , ζm⟩
n is strongly of dimension ≤ ℓ, then for 0 < tk ≪ · · · ≪ tm ≪ 1 the set

S |tk ,...,tm is also strongly of dimension ≤ ℓ.

Proof. Note that Lemma 5.19 corresponds to the case m = 1. To prove the case m > 1, recall that
R⟨ζ1, . . . , ζm⟩ ≃ K⟨ζ⟩, with K := R⟨ζ1, . . . , ζm−1⟩. We find δm ∈ R⟨ζ1, . . . , ζm−1⟩, δm > 0, such that for all
tm ∈ R⟨ζ1, . . . , ζm−1⟩ with 0 < tm < δm it holds

sup
y∈R⟨ζ1,...,ζm−1⟩ℓ

#S |tm ∩ π
−1(y) ≤ sup

w∈R⟨ζ1,...,ζm⟩ℓ
S ∩ π−1(w).

We can now iterate the argument k-times, with 1 ≤ k ≤ m to get the statement, using the definition of
S |tk ,...,tm . □

Definition 5.21 (Bounded elements and the limit homomorphism: one infinitesimal). Let R be a real
closed field. An element s ∈ R⟨ζ⟩ is called bounded over R if ∥s∥ ≤ r for some r ∈ R+. The subring R⟨ζ⟩b
of elements that are bounded over R consists of algebraic Puiseux series with non-negative exponents.

For all n ∈ N, we define the limit homomorphism

λζ : R⟨ζ⟩nb → Rn, (5.11)

the ring homomorphism mapping
∑∞

k≥0 akζ
k
m to a0 ∈ Rn.

Remark 5.22. Viewing R⟨ζ⟩ as the field of germs of semialgebraic functions continuous on the right of
zero, the bounded elements corresponds to those germs that have a finite limit as ζ → 0 and

λζ( f ) = lim
ζ→0

f (ζ).

From this we see that the map λζ is order preserving, in the following sense: if f1, f2 ∈ R⟨ζ⟩b with
f1 ≤ f2, then λζ( f1) ≤ λζ( f2).
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Definition 5.23 (Bounded elements: several infinitesimals). Let R be a real closed field. We say that
f = ( f1, . . . , fn) ∈ R⟨ζ1, . . . , ζm⟩

n is bounded over R if ∥ f ∥ ≤ r for some r ∈ R+.

Remark 5.24. The subring R⟨ζ1, . . . , ζm⟩
n
b of elements that are bounded over R contains algebraic Puiseux

series with non-negative exponents. However the inclusion is strict: the Puiseux series t = ζ−1
1 ζ2 ∈

R⟨ζ1, ζ2⟩ is such that ∥t∥ ≤ r for all r ∈ R+, r > 0.

Note that if R is real closed, then on the set of elements of R⟨ζ1, . . . , ζm⟩
n that are bounded over R

(i.e. with ∥ f ∥ ≤ r with r ∈ R+) the composition of maps

R⟨ζ1, . . . , ζm⟩
n
b

λζm
−→ R⟨ζ1, . . . , ζm−1⟩

n
b

λζm−1
−→ · · ·R⟨ζ1⟩

n
b

λζ1
−→ Rn

is well–defined, since at every step we get bounded elements.

Remark 5.25. We stress that the composition above is well–defined only if taken with the order pre-
scribed by the infinitesimals. For instance, let f ∈ R⟨ζ1, ζ2⟩b be given by

f =
∑
k≥0

ak(ζ1)ζ
k
q

2 where ak(ζ1) =
∑
j≥0

bk, jζ
j

qk
1 .

(Note that each ak(ζ1) has “its own” qk.) Then

f =
∑
k≥0

∑
j≥0

bk, jζ
j

mk
1

 ζ k
m
2 ,

and λζ1(λζ2( f )) = b0,0, whereas the composition in the other order is not well–defined.

Definition 5.26 (The map L0). Let R be a real closed field and let S ⊂ R⟨ζ1, . . . , ζm⟩
n be a semialgebraic

set bounded over R. We denote by

L0(S ) := λζ1 · · · λζm(S ).

Remark 5.27. The set L0(S ) ⊂ Rn is closed. In fact, if S is defined by a formula ψ with coefficients in
R⟨ζ⟩, then it follows from [13, Prop. 12.43] that

L0(S ) =
{
(x, t) ∈ Rn+1

∣∣∣∣∣ (x ∈ S |t) ∧ (t > 0)
}
∩ Rn (5.12)

= Reali
(
ψ|ζ=t ∧ (t > 0);R

)
∩ Rn,

where we identify Rn with {u = 0}. A similar argument holds for m > 1. Notice, however, that deducing
a presentation for L0(S ) as in Definition 5.4 is more complicated and requires quantifier elimination,
which would bring us back to the problem mentioned in Remark 5.9.
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Hausdorff limits

Going back to Example 5.12, assuming that A ⊂ Rn is bounded, then also the corresponding S ⊂ R⟨ζ⟩n

is bounded. Moreover, we notice that L0(S ) = A. Then, the setUr(A) = S |r converges in the Hausdorff
metric to A = L0(S ). To state the analogue result in general, we need to recall some more preliminary
notions.

Let R be a real closed field. Given a semialgebraic set S ⊂ Rn, the distance from S is the function
defined by

δS (x) := inf s∈S ∥x − s∥, x ∈ Rn.

This is a continuous, semialgebraic function, vanishing on the closure of S and positive elsewhere, see
[31, Prop. 2.2.8]. Given S ⊂ Rn and r ∈ R, the r–neighbourhood of S in Rn is the set defined by

Ur(S ,Rn) :=
{
x ∈ Rn

∣∣∣∣∣ δS (x) ≤ r
}
.

Since distS (·) is semialgebraic, for every r > 0 the setUr(S ,Rn) is also semialgebraic.

Definition 5.28 (Semialgebraic Hausdorff distance). The Hausdorff distance between two semialgebraic
sets S 1, S 2 ⊂ Rn is defined as

distH(S 1, S 2) := inf
{
ϵ ∈ R

∣∣∣∣∣ S 1 ⊆ Uϵ(S 2), S 2 ⊆ Uϵ(S 2)
}
.

Note that, if R = R, this gives the usual Hausdorff distance. However, for general real closed fields
R, this is not a “distance” in the sense of metric geometry, since the values of this function are elements
of R. Still, given three closed semialgebraic sets S 1, S 2, S 3, we have

distH(S 1, S 3) ≤ distH(S 1, S 2) + distH(S 2, S 3). (5.13)

This is proved exactly as in the classical case R = R.
The next result outlines a useful property related to the map (5.11).

Proposition 5.29. Let S 1, S 2 ⊂ R⟨ζ⟩nb be semialgebraic sets. Then

distH(λζ(S 1), λζ(S 2)) ≤ λζ (distH(S 1, S 2)) . (5.14)

Proof. We first prove the following fact. If x, y ∈ R⟨ζ⟩nb, then

∥λζ(x) − λζ(y)∥ = λζ (∥x − y∥) . (5.15)

In fact, since λζ : R⟨ζ⟩nb → Rn is a ring homomorphism, writing u =
∑

k≥0 akζ
k
q , with ak ∈ Rn, it holds

∥λζ(u)∥ = ∥a0∥ = λζ(∥u∥).

Let us now prove (5.14). Let ϵ ∈ R⟨ζ⟩ such that distH(S 1, S 2) ≤ ϵ. This is equivalent to the following
statement: for every a1 ∈ S 1 there exists a2(a1) ∈ S 2 such that ∥a1 − a2(a1)∥ ≤ ϵ and for every b2 ∈ S 2
there exists b1(b2) ∈ S 1 such that ∥b1(b2) − b2∥ ≤ ϵ.
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Then, for every r1 = λζ(a1) ∈ λζ(S 1) the element r2 := λζ(a2(a1)) ∈ λζ(S 2) is such that, using (5.15),

∥r1 − r2∥ = ∥λζ(a1) − λζ(a2(a1))∥ = λζ(∥a1 − a2∥) ≤ λζ(ϵ).

Similarly, for every s2 ∈ λζ(S 2) there exists and element s1 ∈ λζ(S 1) such that

∥s1 − s2∥ ≤ λζ(ϵ).

This means that distH(λζ(S 1), λζ(S 2)) ≤ λζ(ϵ). □

Recall now the following result from [12].

Proposition 5.30 ([12, Prop. 2.7]). Let S = Reali(ψ;R⟨ζ⟩) ⊂ R⟨ζ⟩n be a bounded semialgebraic set.
Then, in the usual Hausdorff metric,

lim
r→0

S |r = L0(S ).

Remark 5.31. The previous result is stated in [12, Prop. 2.7] under the assumption that the formula ψ
has coefficients in R[ζ]. In fact the proof in the general case goes exactly in the same way, provided that
r is sufficiently small so that the evaluation is well–defined as explained in Definition 5.14.
Remark 5.32. Even if S |0 is well–defined, in general, this may be far, in the Hausdorff metric, from
L0(S ). For example let α =

(
x2 − ζ2 < 0

)
and A = Reali(α; R⟨ζ⟩). Then A0 = ∅ and L0(A) = {0},

so that A|0 ⊊ L0(A). On the other hand, if β = (ζx = 0), and B = Reali(β; R⟨ζ⟩), then B|0 = R and
L0(B) = {0}, so that B|0 ⊋ L0(B).

We extend Proposition 5.30 to any real closed field using the transfer principle.

Proposition 5.33. Let F be a real closed extension of R. Let S = Reali(ψ; F⟨ζ⟩) ⊂ F⟨ζ⟩n be a bounded
semialgebraic set. Then,

∀ϵ > 0 ∃δ > 0 ∀0 < t < δ distH(Reali(ψ|ζ=t; F), λζ(S )) < ϵ.

(Here all the variables ϵ, δ, t are in F, and distH denotes the semialgebraic Hausdorff distance.)

Proof. Given a semialgebraic set S as in the statement of Proposition 5.30, we can rephrase the content
of its conclusion by saying that,

∀ϵ > 0 ∃δ > 0 ∀0 < t < δ distH(Reali(ψ|ζ=t;R), λζ(S )) < ϵ.

All variables in this formula are in R and distH is the usual Hausdorff distance, which is written as a
first order formula with coefficients in R. Therefore, the same conclusion holds if R is replaced by a real
closed extension F of it, by [31, Prop. 5.2.3]. □

We now generalize Proposition 5.33 to the case of multiple infinitesimals.

Theorem 5.34. Let R be a real closed extension of R. Let S = Reali(ψ; R⟨ζ1, . . . , ζm⟩) ⊂ R⟨ζ1, . . . , ζm⟩
n

be a semialgebraic set, bounded over R. Then, for every 1 ≤ k ≤ m it holds

“ lim
tk→0
· · · lim

tm→0
S |tk ,...,tm = λζk · · · λζm(S )”, (5.16)

where (5.16) means: for all ϵ ∈ R⟨ζ1, . . . , ζk−1⟩, ϵ > 0, for 0 < tk ≪ · · · ≪ tm ≪ 1 it holds

distH
(
S |tk ,...,tm , λζk · · · λζm(S )

)
< ϵ,

where distH is the semialgebraic Hausdorff distance (see Definition 5.28).
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Proof. When k = m, the statement is given by Proposition 5.33 applied to the case F = R⟨ζ1, . . . , ζm−1⟩,
so that F⟨ζ⟩ ≃ R⟨ζ1, . . . , ζm−1, ζ⟩, where ζ = ζm.

Assume that the statement is true for k = j ≤ m. We prove it for k = j − 1. By our working
assumption, for every ϵ ∈ R⟨ζ1, . . . , ζ j−1⟩, ϵ > 0, for 0 < t j ≪ t j+1 ≪ · · · ≪ tm ≪ 1 the following
property holds:

distH
(
S |t j,...,tm , λζ j · · · λζm(S )

)
<
ϵ

2
.

Recall that here ti ∈ R⟨ζ1, . . . , ζi−1⟩ for every j ≤ i ≤ m. A fortiori we can take ϵ ∈ R⟨ζ1, . . . , ζ j−2⟩.
Denote by A := S |t j,...,tm ⊂ R⟨ζ1, . . . , ζ j−1⟩

n and by B := λζ j · · · λζm(S ) ⊂ R⟨ζ1, . . . , ζ j−1⟩
n, which are

both bounded over R. Given ϵ ∈ R⟨ζ1, . . . , ζ j−2⟩, ϵ > 0 let δ j−1 ∈ R⟨ζ1, . . . , ζ j−2⟩, δ j−1 > 0 be given
by Proposition 5.33 such that for all t j−1 ∈ R⟨ζ1, . . . , ζ j−2⟩ with 0 < t j−1 < δ j−1 the following property
holds:

distH
(
A|t j−1 , λζ j−1(A)

)
<
ϵ

2
. (5.17)

Then, for 0 < t j−1 ≪ t j ≪ · · · ≪ tm ≪ 1 it holds

distH(S |t j−1,...,tm , λζ j−1 · · · λζm(S ))
(5.13)
≤ distH(A|t j−1 , λζ j−1(A)) + distH(λζ j−1(A), λζ j−1(B)),

(5.17)
<

ϵ

2
+ λζ j−1 (distH(A, B)) ,

(5.14)
≤

ϵ

2
+ λζ j−1

(
ϵ

2

)
= ϵ,

where in the last inequality we used the fact that ϵ was chosen in R⟨ζ1, . . . , ζ j−2⟩. □

5.1.4 Hausdorff approximations of closed and bounded sets

Recall that every closed (in the Euclidean topology) semialgebraic set S ⊆ Rn can be written as a finite
union of closed basic semialgebraic sets ([31, Thm. 2.7.2]):

S =
a⋃

i=1

bi⋂
j=1

{x ∈ Rn | pi j(x) ≤ 0}. (5.18)

In general, for a closed semialgebraic set S with diagram D(S ) = (n, c, d), passing from a representation
of the form (5.1) to one of the form (5.18), we cannot control the number of unions and intersections in
(5.18) as a function of c, nor the degrees of the polynomials in (5.18) as a function of d. (On the other
hand, in passing from (5.18) to (5.1) the process is controlled.)

However, here we use the tools from the previous section to show that, given a closed and bounded
semialgebraic set with a representation as in (5.1), we can approximate it with a closed and bounded
semialgebraic set described as in (5.18) in a controlled way (Proposition 5.36).

We start with the following elementary lemma.

Lemma 5.35. Let C ⊂ Rn be of the form

C =

⋂
j∈J=

{
x ∈ Rn

∣∣∣∣∣ p j(x) = 0
} ∩

⋂
j∈J<

{
x ∈ Rn

∣∣∣∣∣ q j(x) < 0
} ,
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where the p j and the q j are polynomials and J=, J< are finite sets. Then, denoting by (x, u) points in
Rn × R, and identifying {u = 0} with Rn, the closure of C can be described as:

C =
{
(x, u)

∣∣∣∣∣(p j(x) = 0, ∀ j ∈ J=
)
∧

(
q j(x) + u ≤ 0, ∀ j ∈ J<

)
∧

(
u > 0

)}
∩ {u = 0}. (5.19)

Proof. We prove the two inclusions separately. To prove the inclusion of the set on the left of (5.19)
into the one on the right, by the monotonicity of the closure operation, it is enough to show that for any
z ∈ C there exists a sequence {(zk, uk)}k≥1 converging to (z, 0) satisfying for every k ≥ 1(

p j(zk) = 0, ∀ j ∈ J=
)
∧

(
q j(zk) + uk ≤ 0, ∀ j ∈ J<

)
∧

(
uk > 0

)
.

Since z ∈ C, we have (
p j(z) = 0, ∀ j ∈ J=

)
∧

(
q j(z) + U ≤ 0, ∀ j ∈ J<

)
,

with U := −max{q j(z) | j ∈ J<} > 0. Hence, setting uk := U
k > 0 and zk := z, we observe that the

sequence (zk, uk) satisfies all the above conditions and converges to (z, 0).
To prove the other inclusion, we take

(z, 0) ∈
{
(x, u) ∈ Rn × R

∣∣∣∣∣(p j(x) = 0, ∀ j ∈ J=
)
∧

(
q j(x) + u ≤ 0, ∀ j ∈ J<

)
∧

(
u > 0

)}
.

Hence, there exists a sequence (zk, uk) converging to (z, 0) such that for any k(
p j(zk) = 0, ∀ j ∈ J=

)
∧

(
q j(zk) + uk ≤ 0, ∀ j ∈ J<

)
∧

(
uk > 0

)
.

In particular zk ∈ C for all k, hence z ∈ C. □

Proposition 5.36. For every ϵ > 0 and for every closed and bounded semialgebraic set S ⊂ Rn with
diagram D(S ) = (n, c, d), there exists a closed semialgebraic set S ′ ⊂ Rn satisfying

distH(S , S ′) ≤ ϵ

and such that

S ′ =
a⋃

i=1

Bas(Pi,Qi;R),

with the property that, for every i = 1, . . . , a we have #(Pi ∪ Qi) ≤ b, with ab ≤ c, and with each
polynomial in Pi ∪ Qi of degree bounded by d.

Proof. Let us write

S =
a⋃

i=1

bi⋂
j=1

{
x ∈ Rn

∣∣∣∣∣ sign(pi j(x)) = σi j

}
,

with c = a maxi{bi}. Let us examine the sets

Ci :=
bi⋂
j=1

{
x ∈ Rn

∣∣∣∣∣ sign(pi j(x)) = σi j

}
.
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By possibly relabelling the pi j and multiplying them by ±1, we can write each Ci as

Ci =

⋂
j∈J=i

{
x ∈ Rn

∣∣∣∣∣ pi j(x) = 0
} ∩

⋂
j∈J<i

{
x ∈ Rn

∣∣∣∣∣ pi j(x) < 0
} ,

where #
(
J=i ∪ J<i

)
= bi. For each i = 1, . . . , a and for every i ∈ J<i we define the polynomial p̃i j ∈

R⟨ζ⟩[x1, . . . , xn] as follows:
p̃i j(x) := pi j(x) + ζ.

For any i = 1, . . . , a we consider the semialgebraic set S̃ i ⊂ R⟨ζ⟩
n defined by the formula:

ψ̃i :=

∧
j∈J=i

pi j(x) = 0

 ∧
∧

j∈J<i

p̃i j(x) ≤ 0

 .
We claim that, if S ⊆ BRn(ρ) for ρ > 0, then S̃ i ⊆ BR⟨ζ⟩n(ρ). In fact, let g : (0, δ) → R be a

representative for an element of S̃ i. Then, for every ζ ∈ (0, δ) we have pi j(g(ζ)) = 0 for j ∈ J=i and
pi j(g(ζ)) + ζ ≤ 0 for j ∈ J<i . Since ζ < δ, the inequality pi j(g(ζ)) + ζ ≤ 0 implies pi j(g(ζ)) < 0, i.e.
g(ζ) ∈ Ci ⊆ BRn(ρ) for every ζ ∈ (0, δ). Therefore g ∈ BR⟨ζ⟩n(ρ).

In particular S̃ i is bounded and, by Proposition 5.30, for any ϵ > 0 we get r > 0 such that

distH
(
L0(S̃ i), S̃ i|r)

)
≤ ϵ. (5.20)

We have by (5.12) and Lemma 5.35

L0(S̃ i) =
{
(x, u) ∈ Rn+1

∣∣∣∣∣ (x ∈ S̃ i|u
)
∧ (u > 0)

}
∩ Rn = Ci.

Observe that S̃ i|r = Bas(Pi,Qi;R), where

Pi =
{
pi j

∣∣∣ j ∈ J=i
}

and Qi =
{
pi j + r

∣∣∣ j ∈ J<i
}
.

Note that #(Pi ∪ Qi) ≤ b := maxi bi so that ab ≤ c, and each polynomial in Pi ∪ Qi has degree bounded
by d. We now define

S ′ :=
a⋃

i=1

C′i , with C′i := Bas(Pi,Qi;R).

Since S is closed, we have S =
⋃a

i=1 Ci. From (5.20) we get directly

distH(S , S ′) ≤ max
i

distH
(
Ci,C′i

)
≤ ϵ,

concluding the proof. □
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5.2 Quantitative approximate definable choices

5.2.1 Preliminary constructions

Following a construction from [14], given a closed basic semialgebraic set

S = Bas(P,Q;R) ⊂ Rn

we construct a closed basic semialgebraic set S̃ ⊂ Rn, where R is a field of algebraic Puiseux series with
coefficients in R, such that L0(S̃ ) = S and for which a definable choice over a given projection can be
made quantitatively.

Construction 5.37. The following construction is taken from [14]. Set

R = R⟨ζ1, ζ2, ζ3⟩.

For a given closed basic and bounded semialgebraic set

S = Bas(P,Q;R) ⊂ Rn,

and for every 1 ≤ k ≤ n the construction provides new semialgebraic sets

S̃ k ⊆ S̃ ⊂ Rn.

Assume that the polynomials inP,Q have degree bounded by d. First, using a perturbation argument,
one constructs new families of polynomials P̃, Q̃ ⊂ R[x1, . . . , xn] with degrees bounded by 2d + 2. The
cardinality of Q̃ equals the one of Q, whereas (for our purposes) the cardinality of P̃ can be assumed to
be 1 (by taking the sum of the squares of its elements). In this way we get the set

S̃ := Bas(P̃, Q̃; R).

Then, one constructs S̃ k. First, set

g(x) := 1 +
n∑

j=1

jx2d+2
j ,

and for every family F = { f1, . . . , fs} ⊂ R[x1, . . . , xn] define the algebraic set:

Critk(F ; R) := {x ∈ Rn | f1(x) = · · · = fs(x) = 0, rank(J̃(x)) ≤ k}, (5.21)

where J̃(x) is the matrix of size (n− k)× (s+ 1) whose columns are the partial derivatives of f1, . . . , fs, g
with respect to xk+1, . . . , xn. The set S̃ k is then defined by

S̃ k :=
⋃
Q̃′⊂Q̃

Critk(P̃ ∪ Q̃′; R) ∩ S̃ , (5.22)

where the union runs over all subsets Q̃′ ⊂ Q̃ ⊂ R[x1, . . . , xn].

Remark 5.38 (On boundedness). Even though this is not explicitly stated in [14] (but indeed used in their
arguments), by inspecting the form of P̃ and Q̃ provided there, one can see that, if S ⊂ Rn is bounded,
then S̃ ℓ ⊆ S̃ ⊂ Rn are bounded over R.
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The next result gives a control on the diagram of S̃ k.

Lemma 5.39. For every a1 ∈ N there exist a2, a3 ∈ N such that, for a closed basic semialgebraic set
S = Bas(P,Q;R) ⊂ Rn, with #P, #Q ≤ a1 and with every polynomial in P ∪ Q of degree bounded by d,
and any 1 ≤ k ≤ n, it holds

D(S̃ k) = (n, a2, a3d),

where S̃ k ⊂ Rn is the set associated with S by Construction 5.37.

Proof. Let P̃, Q̃ ⊂ R[x1, . . . , xn] be the family of polynomials of Construction 5.37 such that S̃ =
Bas(P̃, Q̃; R). These polynomials have degree bounded by 2d + 2.

Then, for every subset Q̃′ ⊂ Q̃ (there are only finitely many such subsets, say at most a4 = a4(a1))
one considers the family F = P̃ ∪ Q̃′ = { f1, . . . , fs} (here s ≤ a4 + 1) and defines the algebraic set
Critk(F ) as in (5.21). Since R is real closed, this algebraic set is defined by a single polynomial equation
P
Q̂′

(x) = 0, where

P
Q̂′
=

s∑
i=1

f 2
i +

∑
m2

i j.

Here, the second sum runs over all the (k + 1) × (k + 1) minors of J̃(x). Remember that, J̃(x) is a
(n − k) × (s + 1) matrix, hence if k > s there are no such minors, so we can assume that k ≤ s. Therefore
the polynomial P

Q̂′
has degree

deg
(
P
Q̂′

)
≤ (k + 1)(4d + 4) ≤ (s + 1)(4d + 4) ≤ a5d,

where a5 = a5(a1).
The set S̃ ℓ from Construction 5.37 can therefore be written as:

S̃ ℓ =
⋃
Q̃′⊂Q̃

Critk(P̃ ∪ Q̃′; R) ∩ S̃ = S̃ ∩
⋃
Q̂′⊂Q̂

Z(P
Q̂′

; R) = S̃ ∩ Z(F̃; R)

= Z(P̃; R)
⋂
q̃∈Q̃

{q̃ ≤ 0} ∩ Z(F̃; R), (5.23)

where P̃, Q̃ are the families defining the basic set S̃ , and

F̃ :=
∏
Q̃′⊂Q̃

P
Q̃′
,

which is a polynomial of degree bounded by a4a5d = a3d, with a3 depending only on a1. To obtain a
presentation as in (5.1) note that if {p1, . . . , pL} is a family of polynomials, then

L⋂
i=1

{pi ≤ 0} =
L⋂

i=1

(
{pi < 0} ∪ {pi = 0}

)
=

⋃
σ

L⋂
i=1

{sign(pi) = σi}, (5.24)

whereσ runs over all possible choices in {0,−1}L. We can apply identity (5.24) to (5.23). Since #P̃, #Q̃ ≤
a1, we get that S̃ ℓ admits a representation as in (5.1) with a = 2L, bi = L, for L = 2a1+1. In other words
D(S̃ ℓ) = (n, a2, a3d), for a2 = (2a1 + 1)22a1+1. □
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The sets from Construction 5.37 enjoy the following properties. For 1 ≤ k ≤ n let

πk : Rn → Rk

be the projection onto the last k coordinates. Since R ⊂ R = R⟨ζ1, ζ2, ζ3⟩, the same symbol πk : Rn → Rk

is used to denote the restriction to Rn, without risk of confusion.

Proposition 5.40. Let S = Bas(P,Q;R) ⊂ Rn be a closed basic and bounded semialgebraic set such
that, for some 1 ≤ k ≤ n it holds

∀y ∈ Rk #
(
Z(P;R) ∩ π−1

k (y)
)
< ∞, (5.25)

i.e. Z(P;R) is strongly of dimension ≤ k. Then for any ℓ < k, the sets S̃ ℓ ⊆ S̃ ⊂ R⟨ζ1, ζ2, ζ3⟩
n from

Construction 5.37 are closed and bounded over R. Moreover they satisfy the following properties. For
every w ∈ R⟨ζ1, ζ2, ζ3⟩

ℓ

(i) the set S̃ ℓ ∩ π−1
ℓ (w) is finite, i.e. S̃ ℓ is strongly of dimension ≤ ℓ;

(ii) if S̃ ∩ π−1
ℓ (w) , ∅, the set S̃ ℓ ∩ π−1

ℓ (w) intersects every connected component of S̃ ∩ π−1
ℓ (w);

(iii) it holds L0(S̃ ) = S .

Furthermore, for every ϵ ∈ R, ϵ > 0, for 0 < t1 ≪ · · · ≪ tm ≪ 1 the evaluation S |t1,...,tm is defined and
the following properties hold:

(iv) distH(S̃ |t1,...,tm , S ) < ϵ;

(v) distH
(
πℓ(S̃ |t1,...,tm), πℓ(S )

)
< ϵ.

Proof. The fact that S̃ ℓ ⊆ S̃ ⊂ R⟨ζ1, ζ2, ζ3⟩
n are closed, and bounded follows directly by their con-

struction. Items (i) to (iii) are proved in [14, Prop. 5.5 and Prop. 5.17], while Item (iv) follows from
Item (iii) and Theorem 5.34. To conclude, observe that πℓ : Rn → Rℓ is 1-Lipschitz with respect to
distH , therefore Item (v) follows from Item (iv). □

5.2.2 Approximate definable choice: the case of a projection

The purpose of this section is to prove Theorem L. We begin with the following preliminary version of
the latter, for the case of closed basic sets.

Proposition 5.41. Let π : Rn → Rℓ, with 1 ≤ ℓ ≤ n be the projection onto the last ℓ coordinates. For
every a1 ∈ N there exist a2, a3 ∈ N such that the following holds. For every closed basic and bounded
semialgebraic set

S = Bas(P,Q;R) ⊂ Rn,

with #P, #Q ≤ a1 and with every polynomial in P ∪ Q of degree bounded by d, and for all ϵ > 0 there
exists a semialgebraic set Aϵ ⊂ Rn satisfying the following properties:

(i) dim(Aϵ) ≤ ℓ;
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(ii) Aϵ ⊆ Uϵ(S );

(iii) distH(π(Aϵ), π(S )) ≤ ϵ;

(iv) D(Aϵ) = (n, a2, a3d).

Proof. If dim(S ) ≤ ℓ and one can simply take Aϵ = S .
Assume then that k = dim(S ) > ℓ. Let S̃ ℓ ⊆ S̃ ⊂ Rn, where R = R⟨ζ1, ζ2, ζ3⟩ be the set defined by

Construction 5.37. The strategy is to define

Aϵ := S̃ ℓ|t1,t2,t3 (5.26)

for an appropriate choice of “sufficiently small” (t1, t2, t3) and to use Proposition 5.40. However, in
order to use it we need first to ensure that the condition (5.25) is satisfied. In order to do it, using
Proposition 5.11, we can first perform a small linear change of variables L : Rn → Rn (i.e. we choose
L sufficiently close to the identity) in the defining polynomials and get new families P′,Q′ with the
property that: #P′ = #P, #Q′ = #Q; the degrees of all elements of P′,Q′ are bounded by d; the
Hausdorff distance between Bas(P,Q;R) and Bas(P′,Q′;R)= L(Bas(P,Q;R)) is arbitrarily small; and
condition (5.25) is satisfied.

It is elementary to verify that a set A′ϵ ⊂ R
n satisfying the properties of the statement for the semi-

algebraic set Bas(P′,Q′;R) will also satisfy the same properties for the original set Bas(P,Q;R), up to
adjusting ϵ. Therefore, without loss of generality, we assume that (5.25) is verified for the set S .

Set Aϵ as in (5.26). We show how to chose (t1, t2, t3) so that the desired properties hold.

(i) By Item (i) of Proposition 5.40, the set S̃ ℓ is strongly of dimension ≤ ℓ. By Lemma 5.20 for
0 < t1 ≪ t2 ≪ t3 ≪ 1 also S̃ ℓ|t1,t2,t3 is strongly of dimension ≤ ℓ.

(ii) By Item (iv) of Proposition 5.40, for 0 < t1 ≪ t2 ≪ t3 ≪ 1 we have

distH(S̃ |t1,t2,t3 , S ) < ϵ.

Since S̃ ℓ ⊆ S̃ (in fact the formula defining S̃ ℓ contains the formula defining S̃ as a conjunction,
by definition (5.22)), for such (t1, t2, t3) we also have S̃ ℓ|t1,t2,t3 ⊆ Uϵ(S ).

(iii) By Item (v) of Proposition 5.40, for 0 < t1 ≪ t2 ≪ t3 ≪ 1 we have

distH(π(S̃ |t1,t2,t3), π(S )) < ϵ.

(iv) By Lemma 5.18 and Lemma 5.39, for 0 < t1 ≪ t2 ≪ t3 ≪ 1 we have

D(S̃ ℓ|t1,t2,t3) = D(S̃ ℓ) = (n, a2, a3d),

where a2, a3 ∈ N depend only on a1.

Since we are requiring only a finite number of properties, given ϵ > 0, the quantifier 0 < t1 ≪ t2 ≪ t3 ≪
1 can be commonly chosen (see Definition 5.13) so that the set (5.26) satisfies simultaneously Items (i)
to (iv). □
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Extending the previous result to general (non-basic) semialgebraic sets, we obtain the following
statement, that corresponds to Theorem L.

Theorem 5.42. For every c ∈ N there exist κ ∈ N such that the following holds. Let n, ℓ, d ∈ ℓ, with
1 ≤ ℓ ≤ n. Let π : Rn → Rℓ be the projection onto the last ℓ coordinates and let S ⊂ Rn be a bounded
closed semialgebraic set with

D(S ) = (n, c, d).

Then, for every ϵ > 0 there exists a closed semialgebraic set Aϵ ⊂ Rn such that:

(i) dim(Aϵ) ≤ ℓ;

(ii) Aϵ ⊆ Uϵ(S );

(iii) distH(π(Aϵ), π(S )) ≤ ϵ;

(iv) D(Aϵ) = (n, κ, κd).

Proof. Applying Proposition 5.36 we find a closed semialgebraic set S ′ ⊂ Rn satisfying

distH(S , S ′) ≤
ϵ

2
, (5.27)

(in particular, S ′ is also bounded) and such that

S ′ =
a⋃

i=1

Bas(Pi,Qi;R),

with the property that, for every i = 1, . . . , a we have #(Pi ∪ Qi) ≤ b, with ab ≤ c, and with each
polynomial in Pi ∪ Qi of degree bounded by d. For every i = 1, . . . , a, denote by S ′i := Bas(Pi,Qi;R)
and apply Proposition 5.41 to each S ′i to get sets Ai,ϵ satisfying the conclusions of Proposition 5.41 (with
ε/2 in place of ε). Define

Aϵ :=
a⋃

i=1

Ai,ϵ . (5.28)

(i) Since for every i = 1, . . . , a we have dim(Ai,ϵ) ≤ ℓ, Item (i) follows.

(ii) As for Item (ii), this follows from the fact that Aϵ ⊆ U ϵ
2
(S ′) and from (5.27).

(iii) Similarly, for Item (iii), we have

distH(π(Aϵ), π(S )) ≤ distH(π(Aϵ), π(S ′)) + distH(π(S ′), π(S )) ≤
ϵ

2
+
ϵ

2
≤ ϵ.

(iv) By Item (iv) from Proposition 5.41, D(Ai,ϵ) = (n, a2(b), a3(b)d). Therefore D(Aϵ) = (n, κ′, κ′d) for
some κ′ = κ′(a2(b), a3(b), a) ≤ κ(c). This proves Item (iv).

The set Aϵ defined by (5.28) satisfies Items (i) to (iv). □
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5.2.3 Approximate definable choice: the case of a semialgebraic map

In this section we prove Theorem M, which we restate here.

Theorem 5.43. For every c, d, ℓ ∈ N there exists β > 1 satisfying the following statement. Let n ∈ N and
let K ⊂ Rn be a closed semialgebraic set contained in the ball BRn(ρ) and let F : Rn → Rℓ be a locally
Lipschitz semialgebraic map such that

D(graph(F|K)) = (n + ℓ, c, d).

Then for every ϵ ∈ (0, ρ) there exists a closed semialgebraic set Cϵ ⊂ R
n such that:

(i) dim(Cϵ) ≤ ℓ;

(ii) Cϵ ⊆ Uϵ(K);

(iii) distH(F(Cϵ), F(K)) ≤ L(F, ρ) · ϵ, where L(F, ρ) := 2 + Lip(F, BRn(2ρ));

(iv) for every e = 1, . . . , n and every affine space Re ≃ E ⊆ Rn, the number of connected components
of E ∩Cϵ is bounded by

b0(E ∩Cϵ) ≤ βe.

Proof. Let Rn+ℓ = Rn × Rℓ and denote by π1 : Rn+ℓ → Rn and π2 : Rn+ℓ → Rℓ the projections on the
two factors.

Given ϵ > 0, let Aϵ ⊂ Rn+ℓ be the semialgebraic set obtained by applying Theorem 5.42 to S =
graph(F|K) ⊂ Rn+ℓ, nothing that by assumption the latter is a bounded and closed semialgebraic set with
D(S ) = (n + ℓ, c, d). We define

Cϵ := π1(Aϵ).

This set is semialgebraic and closed (it is a continuous image of a compact semialgebraic set).
We verify that the set Cϵ has the desired properties.

(i) By Item (i) of Theorem 5.42, dim(Aϵ) ≤ ℓ. Therefore, by (5.2), dim(Cϵ) ≤ ℓ.

(ii) Let x ∈ Cϵ . Then, by Item (ii) of Theorem 5.42, there exists y such that x = π1(x, y) with
(x, y) ∈ Aϵ ⊆ Uϵ(S ). Therefore there exists (x′, y′) ∈ S such that

∥x − x′∥ + ∥y − y′∥ ≤ ϵ.

This implies that ∥x − x′∥ ≤ ϵ and, since x′ = π1(x′, y′) ∈ π1(S ) = K, we get x ∈ Uϵ(K). Since
this is true for all x ∈ Cϵ , then Cϵ ⊆ Uϵ(K).

(iii) Recall that we have set L(F, ρ) = 2 + Lip(F, BRn(2ρ)) =: L. We need to prove the two inclusions
F(Cϵ) ⊆ ULϵ(F(K)) and F(K) ⊆ ULϵ(F(Cϵ)).

We first prove that F(Cϵ) ⊆ ULϵ(F(K)). Pick c ∈ Cϵ , then there exists s ∈ Aϵ such that c = π1(s).
Since Aϵ ⊆ Uϵ(S ) (by Item (ii) of Theorem 5.42), there exists z ∈ S such that ∥z − s∥ ≤ ϵ. Now,
π1(z) ∈ K and we have ∥c − π1(z)∥ = ∥π1(s) − π1(z)∥ ≤ ∥s − z∥ ≤ ϵ. Hence, for ϵ ∈ (0, ρ) we have

∥F(c) − F(π1(z))∥ ≤ Lip(F, BRn(2ρ)) ∥c − π1(z)∥

≤ Lip(F, BRn(2ρ))ϵ ≤ L(F, ρ)ϵ.
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This proves that F(Cϵ) ⊆ ULϵ(F(K)).

To prove the other inclusion we fix v ∈ K. By Item (iii) of Theorem 5.42 we have

distH(π2(Aϵ), F(K)) ≤ ϵ.

Hence, there exists (x, y) ∈ Aϵ such that ∥F(v) − π2((x, y))∥ = ∥F(v) − y∥ ≤ ϵ. We observe that for
ϵ ∈ (0, ρ) we have x ∈ Cϵ ⊆ Uϵ(K) ⊆ BRn(2ρ). To conclude the proof we estimate ∥F(v) − F(x)∥.
Since Aϵ ⊆ Uϵ(S ), we find (w, F(w)) ∈ S such that ∥(x, y) − (w, F(w))∥ ≤ ϵ, and in particular this
implies ∥y − F(w)∥ ≤ ϵ and ∥x − w∥ ≤ ϵ. Hence for ϵ ∈ (0, ρ) we have

∥F(v) − F(x)∥ ≤ ∥F(v) − y∥ + ∥y − F(w)∥ + ∥F(w) − F(x)∥

≤ (2 + Lip(F, BRn(2ρ)))ϵ = L(F, ρ)ϵ.

This proves that F(K) ⊆ ULϵ(F(Cϵ)).

(iv) Let now e ∈ N with e ≤ n and E ≃ Re ⊆ Rn. Observe first that E ∩Cϵ is the projection on E ≃ Re

of (E × Rℓ) ∩ Aϵ .

Note that D((E × Rℓ) ∩ Aϵ) = (e + ℓ, κ, κd), where κ = κ(c) is the constant of Item (iv) from
Theorem 5.42. Therefore, the Thom–Milnor bound (5.5) yields

b0(E ∩Cϵ) ≤ b0((E × Rℓ) ∩ Aϵ) ≤ βtm(2κ)(κd)e+ℓ ≤ β(c, d, ℓ)e,

for suitable β = β(c, d, ℓ) > 1.

The proof is concluded. □
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Part II

Vanishing geodesic distances and the
Michor-Mumford conjecture in

Hilbertian H-type groups
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Introduction

iii Motivation

It is a well known fact that in a connected and finite dimensional Riemannian manifold taking the infi-
mum among all lengths of curves connecting two points yields a distance, called geodesic distance. Fol-
lowing the same procedure, geodesic distances may be defined also on infinite dimensional manifolds.
A recent introduction to infinite dimensional geometry and analysis can be found in the monograph [87]
and the lecture notes [33, 69]. Some foundational works are [44, 55], and more specific information on
infinite dimensional Lie groups can be found for instance in [79, 53] and in the surveys [75, 78, 42].

A new aspect in infinite dimensional geometry is that the geodesic distance may not define a genuine
distance on the manifold, since it can be zero on distinct points. We call them degenerate geodesic
distances. In general, the degeneracy of the geodesic distance may occur for certain Riemannian metrics,
where no special conditions are assumed, namely for weak Riemannian metrics, [1, Definition 5.2.12].
These metrics are important, since they are the only possible metrics when the manifold is not modelled
on a Hilbert space. Vanishing geodesic distances in Fréchet manifolds were first found in [38], [71],
[72] and further examples were studied in [16], [17], [18], [46], [47] and [21]. A simple example of
vanishing geodesic distance can be also constructed in a Hilbert manifold, [65].

Despite many known examples of this phenomenon, the geometrical reasons allowing the degener-
acy of geodesic distances are still not well understood. In this direction, P. Michor and D. Mumford
conjectured a relationship between the vanishing of the geodesic distance and the local unboundedness
of the sectional curvature, see [71]. They proposed a fascinating interpretation behind this phenomenon:
some parts of the infinite dimensional manifold “wrap up on theirselves” allowing to find curves con-
necting two distinct points and having shorter and shorter length, up to reaching vanishing infimum,
see [71] and [21, Section 1.2]. In Mathematical terms, we may rephrase this phenomenon as follows:
whenever a weak Riemannian metric admits a vanishing geodesic distance, then the sectional curvature
must be unbounded on some special sequences of planes that stay in a neighborhood of some point. For
infinite dimensional Lie groups, the homogeneity by translations allows this point to be the unit element.

In this part of the thesis we provide new degenerate geodesic distances for left-invariant weak Rie-
mannian metrics in Heisenberg-type Lie groups modelled on Hilbert spaces, and we confirm the validity
of the Michor-Mumford conjecture in this setting. We give here a quick overview of chapters and main
results, a more detailed presentation is given in the next sections of this introduction.

In Chapter 6 we construct a left invariant weak Riemannian metric in the infinite dimensional
Heisenberg group, with a degenerate geodesic distance (the same construction yields a degenerate sub-
Riemannian distance). Then, we show how the standard notion of sectional curvature adapts to this
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framework, but it cannot be defined everywhere. We prove that the sectional curvature is unbounded
on suitable sequences of planes, along which the vanishing of the distance precisely occurs. Hence, the
degenerate Riemannian distance for this Riemannian metric appears in connection with an unbounded
sectional curvature, confirming the phenomenon predicted by Michor and Mumford. These results have
been obtained in [66], a more detailed introdution is given in Section iv.

In Chapter 7 we introduce Hilbertian H-type groups equipped with weak, graded, left invariant Rie-
mannian metrics. In particular, this class contains the infinite dimensional Heisenberg group introduced
in Chapter 6. For these Lie groups, we prove that degenerate geodesic distances appear for a large
class of weak, left invariant Riemannian metrics. Their vanishing is rather surprisingly related to the
infinite dimensional sub-Riemannian structure of Hilbertian H-type groups. We show that the vanishing
of the geodesic distance and the local unboundedness of the sectional curvature coexist, as conjectured
by Michor and Mumford. We also prove that the same class of weak Riemannian metrics yields the
nonexistence of the Levi-Civita covariant derivative. These results have been obtained in [67], a more
detailed introduction is given in Section v.

iv On the Michor-Mumford phenomenon in the infinite dimensional
Heisenberg group

In order to introduce the content of Chapter 6, we observe that despite many examples of vanishing
geodesic distances are known, one may still wonder whether replacing a weak Riemannian metric with
a left invariant weak Riemannian metric with respect to a Hilbert Lie group structure might give a
condition to have positive geodesic distance on distinct points. The answer to this question does not seem
intuitively clear. For instance, we observe that connected, simply connected and commutative Banach
Lie groups, equipped with a bi-invariant weak Riemannian metric have positive geodesic distance on
distinct points. In short, their geodesic distance is actually a distance. The proof of this fact essentially
follows from [78, Proposition IV.2.7], observing that the exponential mapping is a local Riemannian
isometry.

Thus, the question is whether considering a left invariant weak Riemannian metric on a noncom-
mutative, connected and simply connected Banach Lie group may prevent the vanishing of the geodesic
distance. Our first result answers this question in the negative.

Theorem N. There exists a left invariant weak Riemannian metric on the infinite dimensional Heisen-
berg group �, whose Riemannian distance is not positive on all couples of distinct points.

In analogy with the finite dimensional case, the infinite dimensional Heisenberg group � can be
defined starting from the Heisenberg Lie algebra, due to the Baker–Campbell–Hausdorff formula. We
use ℓ2 × ℓ2 × R to model � as a Hilbert manifold, where ℓ2 denotes the standard linear space of real
square-summable sequences. The Lie product associated to � is defined in (6.1). More information on
the Lie group � is provided in Section 6.1.1.

Sub-Riemannian distances naturally appears also in infinite dimensional manifolds. We mention for
instance [37, Theorem C.2], where strong sub-Riemannian metrics were considered in connection with
Wiener spaces, lower bounds on the Ricci curvature and logarithmic Sobolev inequalities. In this case,
the space of admissible velocities is strictily contained in the tangent space and we have an a priori
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smaller family of connecting curves. The possible vanishing of a sub-Riemannian distance between
some distinct points of an in infinite dimensional manifold was explicitly mentioned in [43, Remark 2].
The following theorem seemingly provides a first example of such vanishing phenomenon for an infinite
dimensional sub-Riemannian manifold.

Theorem O. There exists a left invariant weak sub-Riemannian metric on the infinite dimensional
Heisenberg group � such that its associated sub-Riemannian distance is not positive on all couples
of distinct points.

The sub-Riemannian metric and the sub-Riemannian distance that we consider on � are described
in Section 6.1.3. Both Theorem N and Theorem O are contained in Theorem 6.3 and their proof rather
surprisingly relies on the same sequence of length-minimizing curves. The proof of these results shows
that both the Riemannian and sub-Riemannian distance are vanishing between points that have the same
projection on the subspace ℓ2 × ℓ2 × {0}. Remark 6.2 completes the picture, showing that when the
projections of two points on ℓ2 × ℓ2 × {0} are different, then both their Riemannian and sub-Riemannian
distance are positive. In sum, all distinct points with vanishing geodesic distance are characterized.

From another perspective, dealing with a left invariant weak Riemannian metric has the advantage
to find the sectional curvature by more manageable formulas. Motivated by the Michor-Mumford con-
jecture, in Theorem P below we prove that the sectional curvature of the left invariant weak Riemannian
metric σ defined in (6.9) is unbounded.

From the standard formula for the sectional curvature of Lie groups, see for instance [10] and [20],
the sectional curvature of�with respect toσ can be defined on “many planes” of the Lie algebra Lie(�).
We wish to point out that for general weak Riemannian metrics the existence of the Levi–Civita (and then
of the sectional curvature) is not guaranteed a priori. An example of this fact can be found in [19], where
more information on the problem is available. We also observe that the “finite dimensional formula” for
the sectional curvature through the structure coefficients of Lie(�), [74, Lemma 1.1], converges on the
previous planes to the same sectional curvature obtained by [10, Theorem 5]. Broadly speaking, we
may think of the convergence of the sectional curvature in Milnor’s paper [74] as a computation of
the sectional curvature of � through a finite dimensional approximation by an orthonormal basis. On
the other side, we also observe that this convergence does not hold on all 2-dimensional subspaces of
Lie(�), as shown in Remark 6.4.

The next theorem shows that the sectional curvature with respect to the weak Riemannian metric σ
is unbounded on a certain sequence of planes.

Theorem P. Let � be the infinite dimensional Heisenberg group equipped with the left invariant weak
Riemannian metric σ. Then there exists two sequences of orthonormal vectors a1 j, a2 j ∈ Lie(�) and
b ∈ Lie(�) with j ≥ 1 such that Kσ(a1 j, b) = Kσ(a2 j, b),

lim
j→∞

Kσ(a1 j, a2 j) = −∞ and lim
j→∞

Kσ(a1 j, b) = +∞.

The numbers Kσ(a1 j, a2 j) and Kσ(a1 j, b) are the sectional curvatures of the planes of Lie(�) spanned
by the orthonormal bases (a1 j, a2 j) and (a1 j, b).

The proof of this theorem is provided in Section 6.3, where also more information on the vectors
a1 j, a2 j and b can be found. Inspecting the proofs of Theorem 6.3 and Theorem P another interesting
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phenomenon appears. The curves whose lengths converge to zero and that connect two distinct points are
precisely contained in the span of the planes where the sectional curvature blows-up. We finally mention
Proposition 6.5, where we prove that the sectional curvature is unbounded also on some sequences of
converging planes.

v The Michor-Mumford conjecture in Hilbertian H-type groups

In order to introduce the content of Chapter 7, we begin by highlightening Riemannian Hilbert mani-
folds, that constitute a class of infinite dimensional manifolds modeled on a Hilbert space. Their Rie-
mannian metrics induce the manifold topology on tangent spaces, hence they are called strong Rieman-
nian metrics and their geodesic distance is a distance function, that separates points. While the local
geometry of Riemannian Hilbert manifolds shares some analogies with the finite dimensional case, for
instance the Levi-Civita connection always exists, certain global properties fail to hold. For more infor-
mation, we refer the reader to the interesting survey [27] and the references therein. Only for infinite
dimensional manifolds, the so-called weak Riemannian metrics may induce on tangent spaces weaker
topologies than the manifold topology, [1, 33, 69, 87]. If the manifold is not modeled on a Hilbert space,
then the Riemannian metric must be weak. We focus our attention on Lie groups modeled on a Hilbert
space, where both weak and strong Riemannian metrics can be defined. Therefore, we use the termi-
nology “strictly weak Riemannian metric” to emphasize the cases where the weak Riemannian metric is
not strong.

As we discussed above, for strictly weak Riemannian metrics, a striking phenomenon can occur,
resulting in the vanishing of the geodesic distance between distinct points. In Chapter 6 we have proved
that when a specific choice of strictly weak Riemannian metric on the infinite dimensional Heisenberg
group is considered, then the following phenomenon conjectured by Michor and Mumford appears: the
blow-up of the sectional curvature occurs along some planes that are related to the shrinking curves
which connect the distinct points, where the geodesic distance vanishes, [66].

Taking into account the above comments and the subsequent Theorem Q, then we may interpret the
Michor–Mumford conjecture in infinite dimensional Lie groups as follows. Considering an infinite di-
mensional Lie group, equipped with a weak, left invariant Riemannian metric and a degenerate geodesic
distance, then we expect that the sectional curvature at the unit element is positively unbounded.

In this chapter, we introduce Hilbertian H-type groups, whose geometry validates the previous ver-
sion of the conjecture, with respect to a large class of strictly weak, left invariant Riemannian metrics.
Hilbertian H-type groups include the infinite dimensional Heisenberg group of [66] and in the finite
dimensional case they exactly coincide with the well known H-type groups, that were discovered by A.
Kaplan, [48, 49, 50], see also [51]. We notice that Kaplan’s definition perfectly works also through the
infinite dimensional interpretation. On the other hand, the effective existence of infinite dimensional H-
type groups needs to be verified. In Section 7.1, we provide an infinite dimensional construction, from
which one may notice that there are infinitely many infinite dimensional Hilbertian H-type Lie groups,
see Remark 7.3.

We focus our attention on the “natural” weak Riemannian metrics on Hilbertian H-type groups,
that are left invariant and make the subspaces V andW orthogonal. Borrowing the terminology from the
finite dimensional case, we say that such metrics are graded. For instance, the Cameron-Martin subgroup
of [37] is a two step, infinite dimensional Lie group equipped with a strong and graded Riemannian
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metric. Thus, the next statement validates our interpretation of the Michor–Mumford conjecture in
Hilbertian H-type groups.

Theorem Q. Let σ be a weak, graded Riemannian metric on a Hilbertian H-type group. If the metric
σ yields a degenerate geodesic distance, then the sectional curvature at the unit element exists on a
sequence of planes and it is positively unbounded.

The starting point of the proof is that the degenerate geodesic distance forces the graded Riemannian
metric to be strictly weak. Then we prove that for strictly weak, graded Riemannian metrics the blow-
up of the sectional curvature always occurs. Extending Theorem Q to more general classes of infinite
dimensional Lie groups seems an interesting open question.

It is also important to understand whether, and in which cases, the geodesic distance in a Hilber-
tian H-type group is actually degenerate. Here a rather striking fact appears, since infinite dimensional
sub-Riemannian (sub-Finsler) Geometry enters the proof of Theorem Q. More generally, for any strictly
weak, left invariant sub-Finsler metric on a Hilbertian H-type group, the sub-Finsler distance is degen-
erate, see Theorem 7.10. The idea behind the proof of this theorem is to use a sequence of vectors,
where the weak and the strong topology differ. Then we use the map J associated with the structure of
H-type group, which allows for the same “shrinking-space effect” that was first observed in [66]. As a
consequence, we have the following result, corresponding to Theorem 7.13.

Theorem R (Characterization of points with vanishing distance). Let F be a strictly weak, left invariant
Finsler metric on a Hilbertian H-type group M = V ⊕W and let us fix x, y ∈ V, z1, z2 ∈ W. Then we
have

dF(x + z1, y + z2) = 0 if and only if x = y,

where dF is the Finsler distance associated with F.

The subclass of strictly weak, graded Riemannian metrics on a Hilbertian H-type group gives rise to
another singular phenomenon, i.e. the lack of the Levi-Civita covariant derivative.

Theorem S. If σ is a strictly weak, graded Riemannian metric on a Hilbertian H-type group, then it
does not admit the Levi-Civita covariant derivative.

The proof of the previous theorem is given in Section 7.4. An example of nonexistence of the Levi-
Civita connection was provided in [19]. We also notice that in [69, Example 2.26] the model of [65] is
extended to a family of weak Riemannian metrics which do not possess Christoffel symbols, hence their
associated Levi-Civita covariant derivative cannot exist.

Despite Theorem S, we observe that through the classical Arnold’s formula [10] it is still possible
to compute the sectional curvature of some planes in a Hilbertian H-type group. However, we cannot
claim that the formula works for all planes. In fact, there are also planes for which the Arnold’s formula
does not apply, as it is shown for instance in [66, Remark 4.1].

The next theorem proves that in a Hilbertian H-type group equipped with a strictly weak, graded
Riemannian metric, we can always find sequences of planes in T0M where the sectional curvature is
well defined, and also unbounded.

Theorem T (Unboundedness of the sectional curvature). LetM be a Hilbertian H-type group. If σ is a
strictly weak, graded Riemannian metric onM, then there exist two sequences of planes {Pn}n∈N, {Qn}n∈N ⊂
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T0M whose sectional curvatures Kσ(Pn) and Kσ(Qn) are well defined through the Arnold’s formula and
we have

lim
n→∞

Kσ(Pn) = −∞ and lim
n→∞

Kσ(Qn) = +∞.

This theorem is a version of Theorem 7.24, where we provide an explicit form for the planes:

Pn = span
{
wn, Jzwn

}
and Qn = span

{
z, JAzwn

}
.

We believe that there is a connection between these planes and the sequence of curves that progressively
decrease their length, while connecting the fixed distinct points. In fact, we point out that the projection
on V of these horizontal curves has the form

γn
1(t) = tc

√
n wn +

t2c
2

1
√

n
Jz(wn)

for c ∈ R, see the proof of Theorem 7.24. In this sense, we surmise that the planes Pn and Qn should
be somehow related to the parts of the space where the curves γn "move", when their length reduces
up to converging to zero. However, the precise relationship between the planes of the blow-up and the
shrinking curves remains unclear to us.

We observe that Theorem T immediately gives Theorem Q, since the vanishing of the geodesic dis-
tance implies that the graded Riemannian metric is strictly weak. We hopefully expect that our remarks
in Hilbertian H-type groups provide more insights to understand the Michor–Mumford phenomenon in
other classes of infinite dimensional manifolds.
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Chapter 6

On the Michor-Mumford phenomenon in
the infinite dimensional Heisenberg group

6.1 Preliminary notions

In this section, we present an infinite dimensional version of the classical Heisenberg group equipped
with either a Riemannian or a sub-Riemannian structure. The construction is well known and it has
connections with different areas of Mathematics.

6.1.1 A short introduction to the infinite dimensional Heisenberg group

We denote by ℓ2 the linear space of all real and square summable sequences. Its scalar product ⟨·, ·⟩ has
the associated norm ∥x∥ =

√∑∞
j=1 x2

j for any element x =
∑∞

j=1 x je j. The set of unit vectors {e j : j ≥ 1}

denotes the canonical orthonormal basis of ℓ2. For each integer n ≥ 1, the element en of ℓ2 has n-th entry
equal to 1 and all the others are zero.

We consider ℓ2 × ℓ2 × R endowed with its standard structure of product of Hilbert spaces and we
introduce the continuous and skew-symmetric function

β((h1, h2), (h′1, h
′
2)) = ⟨h1, h′2⟩ − ⟨h2, h′1⟩.

defined on (ℓ2 × ℓ2) × (ℓ2 × ℓ2). Then we introduce a continuous Lie product on ℓ2 × ℓ2 × R:

[(h1, h2, τ), (h′1, h
′
2, τ
′)] = 2 β((h1, h2), (h′1, h

′
2)) (0, 0, 1) ∈ ℓ2 × ℓ2 × R, (6.1)

that makes ℓ2 × ℓ2 × R an infinite dimensional Lie algebra. Due to the Baker–Campbell–Hausdorff
formula (in short BCH), we equip ℓ2 × ℓ2 ×R with a noncommutative and analytic Lie group operation:

(h1, h2, τ)(h′1, h
′
2, τ
′) =

(
h1 + h′1, h2 + h′2, τ + τ

′ + β((h1, h2), (h′1, h
′
2))

)
(6.2)

for all elements (h1, h2, τ), (h′1, h
′
2, τ
′) ∈ ℓ2 × ℓ2 × R. We denote by � the Hilbert Lie group arising from

the previous group operation, that is the infinite dimensional Heisenberg group modelled on the Hilbert
space ℓ2 × ℓ2 × R.
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From the viewpoint of Mathematical Physics, the group � naturally appears in the theory of rep-
resentations of infinite dimensional Lie algebras, see [45] and the references therein. In the theory of
infinite dimensional Lie groups, � can be seen as a special instance of more general BCH-Lie groups.
They are infinite dimensional Lie groups with a local exponential mapping that is also a bianalytic dif-
feomorphism around the origin, [78], [42]. For infinite dimensional nilpotent Lie algebras, the BCH
formula defines a global group operation, [79]. This viewpoint was followed in [64] to define infinite
dimensional Banach homogeneous groups as suitable direct sums of Banach spaces, equipped with an
analytic structure and an everywhere converging BCH formula. In the same work, several examples
of Banach homogeneous groups were provided. We mention infinite producs of Engel groups using
either ℓp or Lp spaces, an infinite product of Heisenberg groups modelled on ℓ2× ℓ1 and other analogous
analytic constructions.

In relation to the understanding of hypoellipticity in infinite dimensions [68], infinite dimensional
Heisenberg-like groups based on a Wiener space, along with their Brownian motion were introduced
and studied in [37]. In this connection, also some Ricci curvature lower bounds are obtained, using a
left invariant Riemannian metric.

6.1.2 Weak Riemannian metrics on �

For each p ∈ �, we denote by Lp : � → � the left multiplication by p, defined as Lp(r) = p · r for all
r ∈ �. The group operation (6.2) gives a simple formula for the differential of Lp at a point q, namely

(dLp)q(v) = lim
t→0

Lp(q + tv) − Lp(q)
t

= (v1, v2, v3 + ⟨p1, v2⟩ − ⟨p2, v1⟩)

for every v = (v1, v2, v3) ∈ Tq�, with p = (p1, p2, τ). Notice that we have identified Tq� with �, using
the Hilbert space structure�. We also notice that our formula for the differential (dLp)q does not depend
on the point q. We consider a scalar product

σ0 : T0� × T0�→ R

on the tangent space T0� of � at the origin, which is continuous with respect to the product topology
of T0� × T0�.

Then for every p ∈ � and v,w ∈ Tp� the following scalar product

σp(v,w) = σ0
(
(dLp−1)pv, (dLp−1)pw

)
= σ0

(
(dL−p)pv, (dL−p)pw

)
(6.3)

defines a left invariant weak Riemannian metric σ on �. The associated Riemannian norm is denoted
by ∥ · ∥σ.

If for any piecewise smooth curve γ : [0, 1]→ � we define its Riemannian length as

ℓσ(γ) =
∫ 1

0
∥γ̇(t)∥σ dt,

then the associated geodesic distance d : � ×�→ [0,+∞) between p, q ∈ � is

d(p, q) = inf{ℓσ(γ) : γ is a piecewise smooth curve with γ(0) = p, γ(1) = q}. (6.4)

Clearly d is left invariant, symmetric and it satisfies the triangle inequality.

102



6.2. DEGENERATE GEODESIC DISTANCES IN THE INFINITE DIMENSIONAL HEISENBERG GROUP

6.1.3 Weak sub-Riemannian metrics on �

Identifying � with T0�, the set ℓ2 × ℓ2 × {0} can be seen as a closed subspace of T0�, that we denote
by H0�. We may obtain a left invariant horizontal subbundle, denoted by H�, introducing the fibers

Hp� = (dLp)0(H0�) ⊂ Tp�

for every p = (p1, p2, τ) ∈ �. We note that v = (v1, v2, v3) ∈ Hp� if and only if

(dL−p)p(v) = (v1, v2, v3 − ⟨p1, v2⟩ + ⟨p2, v1⟩) ∈ H0� (6.5)

and the previous condition corresponds to the equality

v3 − ⟨p1, v2⟩ + ⟨p2, v1⟩ = 0.

We have a precise formula to define the horizontal curves associated to H�. They are continuous and
piecewise smooth curves γ : [0, 1] → � of the form γ = (γ1, γ2, γ3) ∈ �, such that for almost every
t ∈ [0, 1] we have

γ̇3(t) − ⟨γ1(t), γ̇2(t)⟩ + ⟨γ2(t), γ̇1(t)⟩ = 0.

The previous differential constraint means that γ̇(t) ∈ Hγ(t)�.
On the horizontal fibers Hp� of H� we can fix a scalar product. A left invariant weak sub-

Riemannian metric g on H� is defined by a continuous inner product

g0 : H0� × H0�→ R,

so that for all p ∈ � and v,w ∈ Hp� we have

gp(v,w) = g0
(
(dLp−1)pv, (dLp−1)pw

)
= g0

(
(dL−p)pv, (dL−p)pw

)
. (6.6)

The associated sub-Riemannian norm is denoted by ∥·∥g and the length of a horizontal curve γ : [0, 1]→
� is defined by

ℓg(γ) =
∫ 1

0
∥γ̇(t)∥g dt.

For any couple of points in �, it is easy to construct a piecewise smooth horizontal curve that connects
them, hence the following sub-Riemannian distance

ρ(p, q) = inf{ℓg(γ) : γ is a horizontal curve with γ(0) = p, γ(1) = q} (6.7)

is finite for every couple of points p, q ∈ �, hence we have ρ : � × � → [0,+∞). One immediately
notices that ρ is left invariant, symmetric and it satisfies the triangle inequality.

6.2 Degenerate geodesic distances in the infinite dimensional Heisenberg
group

This section is devoted to the construction of special left invariant weak Riemannian and sub-Riemannian
metrics that yield degenerate geodesic distances.
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We introduce the linear and continuous operator A : ℓ2 → ℓ2, which associates to each x ∈ ℓ2 of
components (xk)k≥1 the element Ax ∈ ℓ2, whose k-th component is (Ax)k = xk/k. Then we define the
scalar product η : ℓ2 × ℓ2 → R as

η(v,w) = ⟨Av,w⟩

for all v,w ∈ ℓ2 and its associated norm

∥v∥η =
√
η(v, v) =

√
⟨Av, v⟩. (6.8)

We use η to define the new scalar product

g0((v1, v2), (w1,w2)) = η(v1,w1) + η(v2,w2)

for every (v1, v2), (w1,w2) ∈ ℓ2 × ℓ2. By our identification, g0 can be seen as a scalar product on H0�, so
that using (6.6) we obtain a left invariant weak sub-Riemannian metric g on �. We follow the notation
of the previous section, denoting by ρ the special sub-Riemannian distance associated to this choice of
g through formula (6.7).

To obtain a left invariant weak Riemannian metric σ on �, we extend g0 as follows

σ0((v1, v2, v3), (w1,w2,w3) = g0((v1, v2), (w1,w2)) + v3w3 (6.9)

for every (v1, v2, v3), (w1,w2,w3) ∈ T0�, where σ0 : T0� × T0� → R. From (6.3), the scalar product
in (6.9) immediately defines a left invariant weak Riemannian metric σ on�. The Riemannian distance
associated to σ through (6.4) will be denoted by d.

Remark 6.1. Let us consider the sub-Riemannian metric g, the Riemannian metric σ and their associated
geodesic distances d and ρ defined above (the Riemannian distance and the sub-Riemannian distance,
respectively). The family of piecewise smooth curves connecting two points also contains the horizontal
curves connecting the same points. Since the restriction of σ to the horizontal subbundle H� coincides
with g, the infimum defining d is taken over a larger family, hence d ≤ ρ.

Remark 6.2. It is easy to notice that both d and ρ are not everywhere vanishing on �. We consider
(p1, p2, τ), (q1, q2, s) ∈ � with (p1, p2) , (q1, q2) and we choose any piecewise smooth curve γ =
(γ1, γ2, γ3) : [0, 1] → � with γ(0) = (p1, p2, τ) and γ(1) = (q1, q2, s). Let i0 ∈ {1, 2} be such that
pi0 , qi0 and let k0 ≥ 1 such that pi0k0 , qi0k0 , where

pi0 =

∞∑
j=1

pi0 je j and qi0 =

∞∑
j=1

qi0 je j.

We consider the component γi0 =
∑∞

j=1 γi0 je j and the following inequalities

ℓσ(γ) ≥
∫ 1

0

√
∥γ̇1∥

2
η + ∥γ̇2∥

2
ηdt

≥

∫ 1

0

∥∥∥γ̇i0

∥∥∥
η

dt ≥
∫ 1

0

|γ̇i0k0 |
√

k0
dt ≥

|pi0k0 − qi0k0 |
√

k0
> 0.
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In particular, we have shown that

0 <
|pi0k0 − qi0k0 |
√

k0
≤ d((p1, p2, τ), (q1, q2, s)) ≤ ρ((p1, p2, τ), (q1, q2, s)).

The previous computation also shows that both d and ρ are actually distances, if restricted to any hyper-
plane ℓ2 × ℓ2 × {κ} with κ ∈ R.

We are now in a position to prove the following theorem.

Theorem 6.3. There exist a left invariant weak sub-Riemannian metric and a left invariant weak Rie-
mannian metric on � such that their associated geodesic distances are not positive on all couples of
distinct points.

Proof. For each p ∈ �, we denote the norm of a horizontal vector

v = (v1, v2, v3) ∈ Hp�

with respect to g as follows
∥v∥g =

∥∥∥(dL−p)pv
∥∥∥

g = ∥(v1, v2, 0)∥g ,

where the last equality is due to (6.5) and (v1, v2, 0) is identified with a vector of H0�.
Since the subspaces ℓ2 × {0} × {0} and {0} × ℓ2 × {0} of H0� are orthogonal with respect to g0, the

previous equalities give
∥v∥2g = ∥v1∥

2
η + ∥v2∥

2
η ,

where ∥ · ∥η is defined in (6.8). Thus, the length of a horizontal curve γ : [0, 1] → � with respect to g
satisfies the formula

ℓg(γ) =
∫ 1

0

√
∥γ̇1∥

2
η + ∥γ̇2∥

2
ηdt, (6.10)

where γ(t) = (γ1(t), γ2(t), γ3(t)).
Next, we wish to show that whenever (p1, p2, s1), (p1, p2, s2) ∈ �, then

ρ((p1, p2, s1), (p1, p2, s2)) = 0. (6.11)

To do this, the main point is to prove that for all s > 0, we have ρ((0, 0, 0), (0, 0, s)) = 0. We will
construct a sequence of horizontal curves connecting (0, 0, 0) to (0, 0, s), whose length converges to zero.
Such sequence is obtained by gluing different sequences of horizontal curves. We fix c > 0 and consider
γn : [0, 1]→ � defined by

γn(t) = (γn
1(t), γn

2(t), γn
3(t)) =

( t2

2
cen,−tenc,

t3

6
c2

)
,

where the unit vector en is the n-th vector of the fixed orthonormal basis {e j : j ≥ 1} of ℓ2. By definition
(6.8), we get ∥∥∥γ̇n

1(t)
∥∥∥2
η
=

t2c2

n
and

∥∥∥γ̇n
2(t)

∥∥∥2
η
=

c2

n
. (6.12)
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From the form of γn, it is immediate to check that the differential constraint

γ̇n
3 − ⟨γ

n
1, γ̇

n
2⟩ + ⟨γ

n
2, γ̇

n
1⟩ = 0

is satisfied for all t ∈ [0, 1], hence γn is horizontal. Thus, formula (6.10) holds and the expressions of
(6.12) immediately prove that ℓg(γn)→ 0 as n→ +∞.

Now we define the sequence of curves αn : [0, 1]→ � as

αn(t) = (αn
1(t), αn

2(t), αn
3(t)) =

(
c
(1
2
−

t2

2

)
en, c(t − 1)en, c2

(1
6
+

t3

6
−

t2

2
+

t
2

))
.

We immediately obtain ∥∥∥α̇n
1(t)

∥∥∥2
η
=

t2c2

n
and

∥∥∥α̇n
2(t)

∥∥∥2
η
=

c2

n
(6.13)

and the differential constraint
α̇n

3 − ⟨α
n
1, α̇

n
2⟩ + ⟨α

n
2, α̇

n
1⟩ = 0

is satisfied for all t ∈ [0, 1]. All curves αn are horizontal, hence combining (6.10) and (6.13), we conclude
that ℓg(αn)→ 0 as n→ +∞. We note that

αn(0) =
(

c
2

en,−cen,
c2

6

)
= γn(1)

for all n ∈ N, hence we can consider the gluing αn ∗ γn : [0, 1] → � of αn and γn, that is a piecewise
smooth curve. Clearly αn ∗ γn is a horizontal curve and for all n ∈ N we have

αn ∗ γn(0) = γn(0) = (0, 0, 0) and αn ∗ γn(1) = αn(1) =
(
0, 0,

c2

3

)
and ℓg(αn ∗ γn) = ℓg(αn) + ℓg(γn)→ 0 as n→ ∞. We have proved that

ρ
((

0, 0, 0
)
,
(
0, 0,

c2

3

))
= 0,

hence ρ((0, 0, 0), (0, 0, s)) = 0 for all s > 0. By the left invariance of ρ, we have

ρ((0, 0, 0), (0, 0,−s)) = ρ((0, 0, s), (0, 0, 0)) = 0,

therefore ρ((0, 0, 0), (0, 0, t)) = 0 for every t ∈ R. We conclude that

ρ((p1, p2, s1), (p1, p2, s2)) = ρ((p1, p2, 0)(0, 0, s1), (p1, p2, 0)(0, 0, s2))

= ρ((0, 0, s1), (0, 0, s2))

= ρ((0, 0, 0), (0, 0, s2 − s1)) = 0,

that proves (6.11). According to Remark 6.1, the inequality d ≤ ρ implies that for all (p1, p2, s1), (p1, p2, s2) ∈
�, we have

d((p1, p2, s1), (p1, p2, s2)) = 0.

This concludes the proof. □
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6.3 On the sectional curvature of a weak Riemannian Heisenberg group

In this section, we study the sectional curvature of � equipped with a specific left invariant weak Rie-
mannian metric. Following Section 6.2, we define the unique left invariant weak Riemannian metric σ,
such that

σ0((v1, v2, v3), (w1,w2,w3)) = g0((v1, v2), (w1,w2)) + v3w3

for (v1, v2, v3), (w1,w2,w3) ∈ T0�, according to (6.9). We recall the formula

g0((v1, v2), (w1,w2)) = η(v1,w1) + η(v2,w2) = ⟨Av1,w1⟩ + ⟨Av2,w2⟩

and Ax =
∑∞

k=1 xk/k, x =
∑∞

k=1 xkek ∈ ℓ
2. For every positive integer j, we use the notation

e1
j = (e j, 0, 0), e2

j = (0, e j, 0) and e3 = (0, 0, 1),

to indicate the standard orthonormal basis of � seen as the Hilbert space ℓ2 × ℓ2 × R.
One easily realizes that the natural linear isomorphism between Lie(�) and� is also an isomorphism

of Lie algebras, where we equip � with the Lie product (6.1). Thus, by slight abuse of notation, the left
invariant vector fields of Lie(�) isomorphically associated with the basis e1

j , e
2
j , e

3 are denoted by the
same symbols. It follows that for all i, j ≥ 1 and l = 1, 2 we have

[e1
i , e

2
j] = 2δi je3 and [el

i, e
l
j] = 0,

where e1
i , e

1
j , e

3 are now understood as left invariant vector fields of Lie(�).
Now we consider a left invariant weak Riemannian metric υ on�. The associated scalar product on

Lie(�) is denoted by ⟨·, ·⟩υ. We consider two orthonomal vectors X,Y ∈ Lie(�) with respect to ⟨·, ·⟩υ.
By virtue of [10, Theorem 5], the sectional curvature Kυ(X,Y) of the plane in Lie(�) spanned by X and
Y can be obtained by the adjoint operator ad(Y)⊤(X), that we now introduce. We define ad(Y)(Z) = [Y,Z]
and consider (in case it exists) the unique vector ad(Y)⊤(X) ∈ Lie(�) that satisfies the equalities

⟨[Y,Z], X⟩υ = ⟨ad(Y)(Z), X⟩υ =
〈
Z, ad(Y)⊤(X)

〉
υ

for every Z ∈ Lie(�). Then we define

Bυ(X,Y) = ad(Y)⊤(X) ∈ Lie(�).

In the case υ is a strong Riemannian metric, [1, Definition 5.2.12], the existence of Bυ(X,Y) is always
ensured, but not for any weak Riemannian metric. For instance, in Remark 6.4 below, we show the
nonexistence of Bσ(X,Y) for a specific choice of X and Y , where σ is the weak Riemannian metric
introduced at the beginning of this section.

From formula (53) of [10], we have

Kυ(X,Y) = ⟨δ, δ⟩υ + 2 ⟨α, β⟩υ − 3 ⟨α, α⟩υ − 4 ⟨BX , BY⟩υ , (6.14)

where we define

δ =
1
2

(Bυ(X,Y) + Bυ(Y, X)) , β =
1
2

(Bυ(X,Y) − Bυ(Y, X)) , α =
1
2

[X,Y] (6.15)

BX =
1
2

Bυ(X, X) and BY =
1
2

Bυ(Y,Y). (6.16)
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The proof of Theorem P follows from the application of (6.14) with respect to σ on suitable choices
of planes. We denote by ⟨·, ·⟩σ the scalar product in Lie(�) induced by the left invariant weak Rieman-
nian metric σ. The associated norm on Lie(�) is denoted by ∥ · ∥σ. We assume that for X,Y ∈ Lie(�)
the adjoint

Bσ(X,Y) = ad(Y)⊤(X)

with respect to σ exists. In this case, its scalar product with a vector Z ∈ Lie(�) is assigned by the
following formula 〈

ad(Y)⊤(X),Z
〉
σ
= ⟨[Y,Z], X⟩σ = 2β(π(Y), π(Z))x3, (6.17)

as a consequence of (6.1), where π : �→ ℓ2 × ℓ2 is the canonical projection defined by

X = (π(X), x3) = (π(X), 0) + x3e3.

We use the fixed orthonormal basis e1
j , e

2
j , e

3 of � with respect to the standard Hilbert product of ℓ2 ×

ℓ2 × R, getting

ad(Y)⊤(X) =
∞∑
j=1

[ad(Y)⊤(X)]1
je

1
j +

∞∑
j=1

[ad(Y)⊤(X)]2
je

2
j + [ad(Y)⊤(X)]3e3.

Formula (6.17) yields
∞∑
j=1

1
j
[ad(Y)⊤(X)]1

jZ
1
j +

∞∑
j=1

1
j
[ad(Y)⊤(X)]2

jZ
2
j + [ad(Y)⊤(X)]3Z3 = 2β(π(Y), π(Z))x3 (6.18)

for arbitrary Z = Z3e3 +
∑∞

j=1 Z1
j e

1
j + Z2

j e
2
j . In the case X = π(X), formula (6.18) shows the existence of

ad(Y)⊤(π(X)) and yields
Bσ(π(X),Y) = ad(Y)⊤(π(X)) = 0. (6.19)

In the case X = e3, again (6.18) for Z = e1
j and Z = e2

j respectively, gives

[ad(Y)⊤(e3)]1
j = 2 jβ(π(Y), e1

j) and [ad(Y)⊤(e3)]2
j = 2 jβ(π(Y), e2

j).

For Z = e3, applying (6.18) we get
[ad(Y)⊤(e3)]3 = 0.

Assuming the existence of ad(Y)⊤(e3), we have shown that

Bσ(e3,Y) = ad(Y)⊤(e3) = 2
∞∑
j=1

jβ(π(Y), e1
j)e

1
j + 2

∞∑
j=1

jβ(π(Y), e2
j)e

2
j .

Writing Y = Y3e3 +
∑∞

j=1(Y1
j e1

j + Y2
j e2

j), we finally get

Bσ(e3,Y) = 2
∞∑
j=1

j(Y1
j e2

j − Y2
j e1

j). (6.20)

Then the assumption about the existence of Bσ(e3,Y) corresponds to the convergence of its series. The
next remark shows a choice of Y for which the series (6.20) does not converge.
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Remark 6.4. If we consider the vector

W =
∞∑
j=1

e1
j

j
∈ Lie(�),

then it is easy to check that the series (6.20) representing Bσ(e3,W) does not converge. As a conse-
quence, the adjoint ad(W)⊤(e3) cannot be defined. In addition, Arnold’s formula (6.14) for the sectional
curvature of the plane span

{
W, e3

}
does not apply.

Proposition 6.5. We consider the orthonormal elements Wk, e3 ∈ Lie(�) with k ≥ 1 and

Wk =

 k∑
j=1

j−3


−1/2 k∑

j=1

e1
j

j
∈ Lie(�).

As the subspace span
{
Wk, e3

}
converges to span{W∞, e3} for k → ∞, with

W∞ =

 ∞∑
j=1

j−3


−1/2

∞∑
j=1

e1
j

j
∈ Lie(�),

it follows that
Kσ(Wk, e3)→ +∞.

The convergence of span
{
Wk, e3

}
to span{W∞, e3} is considered in the Grassmannian of the 2-dimensional

planes contained in Lie(�).

Proof. First of all, the pointwise convergence of Wk to W∞ implies the convergence of span
{
Wk, e3

}
to

span{W∞, e3}. To compute Kσ(Wk, e3), we first apply (6.19), getting

Bσ(Wk, e3) = ad(e3)⊤(Wk) = 0

for all k ≥ 1. From (6.20), it follows that Bσ(e3, e1
j) = 2 je2

j , hence

Bσ

e3,
e1

j

j

 = 2e2
j .

The bilinearity of Bσ(·, ·) yields

Bσ(e3,Wk) = 2

 k∑
j=1

j−3


−1/2 k∑

j=1

e2
j

From (6.15), taking δ =
(
Bσ(Wk, e3) + Bσ(e3,Wk)

)
/2, we obtain

⟨δ, δ⟩σ =
1
4
∥Bσ(e3,Wk)∥2σ =

 ∞∑
j=1

j−3


−1 ∥∥∥∥ k∑

j=1

e2
j

∥∥∥∥2

σ
=

 ∞∑
j=1

j−3


−1 k∑

j=1

j−1
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From (6.15), (6.16), (6.19) and (6.20), we find

α =
1
2

Bσ(Wk,Wk) =
1
2

Bσ(e3, e3) = 0.

Finally, by formula (6.14), we have proved that

Kσ(Wk, e3) = ⟨δ, δ⟩σ =

 ∞∑
j=1

j−3


−1 k∑

j=1

j−1 → +∞

as k → ∞. This concludes the proof. □

Proof of Theorem P. Following the notation of the present section, we define

a1 j =
√

je1
j and a2 j =

√
je2

j

of Lie(�), that are orthonormal with respect to ⟨·, ·⟩σ and do not commute. To apply (6.14) for finding
Kσ(a1 j, a2 j), we use (6.15) and (6.16). Due to (6.19), we get

Bσ(a1 j, a2 j) = Bσ(a2 j, a1 j) = 0.

As a result, we have

Kσ(a1 j, a2 j) = −3 ⟨α, α⟩σ = −
3
4
∥[a1 j, a2 j]∥2σ = −3 j2.

Now we wish to compute Kσ(a1 j, e3) and Kσ(a2 j, e3). We first apply (6.19) and (6.20), getting

Bσ(el
j, e

3) = ad(e3)⊤(el
j) = 0, Bσ(e3, e1

j) = 2 je2
j and Bσ(e3, e2

j) = −2 je1
j

for all l = 1, 2 and k ≥ 1. From (6.15), taking δ =
(
Bσ(a1 j, e3) + Bσ(e3, a1 j)

)
/2, we obtain

⟨δ, δ⟩σ =
1
4
∥Bσ(a1 j, e3) + Bσ(e3, a1 j)∥2σ =

1
4
∥
√

jBσ(e3, e1
j)∥

2
σ =

j
4
∥2 je2

j∥
2
σ

= j3
〈
e2

j , e
2
j

〉
σ
= j3

〈
Ae2

j , e
2
j

〉
= j2.

From (6.15), (6.16), (6.19) and (6.20), we find

α =
1
2

Bσ(e1
j , e

1
j) =

1
2

Bσ(e3, e3) = 0.

Due to the formula for the sectional curvature (6.14), we have established that

Kσ(a1 j, e3) = ⟨δ, δ⟩σ = j2. (6.21)

In analogous setting δ =
(
Bσ(a2 j, e3) + Bσ(e3, a2 j)

)
/2, we obtain

⟨δ, δ⟩σ =
1
4
∥Bσ(e3, a2 j)∥2σ =

j
4
∥Bσ(e3, e2

j)∥
2
σ =

j
4
∥2 je1

j∥
2
σ = j3∥e1

j∥
2
σ = j2.
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Again (6.15), (6.16), (6.19) and (6.20) imply that

α =
1
2

Bσ(e2
j , e

2
j) =

1
2

Bσ(e3, e3) = 0.

Due to (6.14), we have also proved that

Kσ(a2 j, e3) = ⟨δ, δ⟩σ = j2. (6.22)

Taking into account (6.21) and (6.22), setting b = e3, we have completed the proof. □

Remark 6.6. A direct verification shows that the computations of sectional curvature, to prove Theo-
rem P, could be also carried out extending the finite dimensional formula of [74, Lemma 1.1] for the
countable structure coefficients of Lie(�). These coefficients are obtained from the orthonormal vectors
√

je1
j ,
√

je2
j , e

3 of Lie(�) with respect to ⟨·, ·⟩σ.

Following the notation of the this section, the sequence of curves whose length converges to zero in
the proof of Theorem 6.3 can be written as

γ j(t) =
ct2

2
e1

j − cte2
j +

c2t3

6
e3 ∈ � and

α j(t) = c
(1
2
−

t2

2

)
e1

j + c(t − 1)e2
j + c2

(1
6
+

t3

6
−

t2

2
+

t
2

)
e3 ∈ �.

It is interesting to notice that all such curves are contained in the span of the planes

span{e1
j , e

2
j}, span{e1

j , e
3} and span{e2

j , e
3}.

When these planes are seen in the Lie algebra, Theorem P shows that their sectional curvature blows-up,
as the length of the curves converges to zero.
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Chapter 7

The Michor-Mumford conjecture in
Hilbertian H-type groups

7.1 Infinite dimensional H-type groups

The approach of [64] can be used to construct specific classes of infinite dimensional Banach nilpotent
Lie groups, starting from an infinite dimensional nilpotent Lie algebra. Indeed, the group operation
is immediately provided by the Baker–Campbell–Hausdorff formula, which we abbreviate as “BCH
formula”. We will see that this simple viewpoint allows us to get the notion of a possibly infinite
dimensional H-type group.

We fix some notions that we will use throughout the chapter. Let M be a Hilbert space, consider
a continuous Lie product [·, ·] : M ×M → M and two orthogonal and nontrivial closed subspaces V
and W such that M = V ⊕W, with dim(W) < +∞. We denote the scalar product on M by ⟨·, ·⟩ and
the associated norm by | · |. The space of all linear continuous endomorphisms of a Banach space X is
denoted by E(X).

We say that M is a Hilbertian H-type group, or simply an H-type group, if the following conditions
hold.

(I) [M,M] ⊂W and [M,W] = {0},

(II) the unique linear and continuous operator J : W → E(V) defined by the formula

⟨Jzx, y⟩ = ⟨z, [x, y]⟩ (7.1)

for z ∈W, x, y ∈ V, satisfies the additional condition

J2
z = −|z|

2 IdV, (7.2)

where IdV : V → V is the identity mapping.

Notice that the existence of the linear and continuous operator J is a consequence of both the Riesz repre-
sentation theorem applied on V and the continuity of the bilinear mapping [·, ·]. Thus, (7.1) immediately
follows.
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The group operation is automatically obtained by the BCH formula:

x · y = x + y +
1
2

[x, y]. (7.3)

From the defining formula (7.1), we immediately notice that the adjoint operator J∗z satisfies

J∗z = −Jz.

As a consequence, using also (7.2), we may write

|Jzx|2 = −⟨x, J2
z x⟩ = |z|2|x|2,

that gives
|Jzx| = |z||x|. (7.4)

Therefore, using also the defining formula (7.1), we have

|z|2|x|2 = |Jzx|2 = ⟨z, [x, Jzx]⟩. (7.5)

For every w ∈W, we also notice that (7.4) implies

|⟨w, [x, y]⟩| = |⟨Jwx, y⟩| ≤ |w| |x| |y|,

therefore in any H-type group we have
|[x, y]| ≤ |x| |y|. (7.6)

For x, z , 0, it follows that ∣∣∣∣ [x, Jzx]
|x|2|z|

∣∣∣∣ ≤ 1

and in addition (7.5) gives 〈
z
|z|
,

[x, Jzx]
|x|2|z|

〉
= 1. (7.7)

Combining (7.6) and (7.7), we have proved that

[x, Jzx] = |x|2z. (7.8)

Notice that [M,W] = {0} implies that W is contained in the center of M, where we regard M as a Lie
algebra. However, it is easy to notice that condition (7.8) shows thatW exactly coincides with the center
ofM.

Remark 7.1. Notice that in the case dim(V) < +∞, the Hilbertian H-type group coincides with the well
known (finite dimensional) H-type group, [48], hence motivating our terminology.

Next, we construct examples of (infinite dimensional) Hilbertian H-type groups. We fix an H-type
group n = υ ⊕ ζ, where υ and ζ are finite dimensional orthogonal subpaces of the Hilbert space n. We
denote by ⟨·, ·⟩n the scalar product of n and by | · |n its associated norm.
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The endomorphism Jn : ζ → E(υ) defines the H-type structure on n. We denote by N+ the set of
positive integers and consider the space of square-summable sequences

Pυ =

(xk)k : xk ∈ υ, k ∈ N+,
∞∑

k=1

|xk|
2
n < +∞

 .
We set M = Pυ × ζ and identifying Pυ and ζ with Pυ × {0} and {0} × ζ, respectively, we can also

write
M = Pυ ⊕ ζ.

For (x, z), (x′, z′) ∈M, we define the scalar product

⟨(x, z), (x′, z′)⟩ = ⟨((xk)k, z), ((x′k)k, z′)⟩ =
〈
z, z′

〉
n +

∞∑
k=1

⟨xk, x′k⟩n (7.9)

that makes M a Hilbert space, where Pυ and ζ are orthogonal closed subspaces. We denote by | · | the
associated norm onM. For x = (xk)k ∈ Pυ and z ∈ ζ, we define

Jz(x) = (Jnz xk)k. (7.10)

Thus, observing that
∞∑

k=1

|Jnz xk|
2
n = |z|

2
n

∞∑
k=1

|xk|
2
n < +∞,

the mapping Jz : Pυ → Pυ is well defined and

J2
z = −|z|

2
n IdPυ ,

since (Jnz )2 = −|z|2n Idυ. The Lie product of ξ + η, ξ′ + η′ ∈ n = υ ⊕ ζ is given by a skew-symmetric
continuous bilinear mapping

β : υ × υ→ ζ

such that
[ξ + η, ξ′ + η′] = β(ξ, ξ′).

By the property (7.6) for H-type groups, we get

|β(ξ, ξ′)| = |[ξ, ξ′]| ≤ |ξ|n |ξ′|n

for all ξ, ξ′ ∈ υ, therefore the Lie product

[(x, z), (x′, z′)] =

0, +∞∑
k=1

β(xk, x′k)

 , (7.11)

is well defined for all (x, z), (x′, z′) ∈M. Cauchy–Schwarz inequality yields

|[(x, z), (x′, z′)]| ≤
+∞∑
k=1

|β(xk, x′k)| ≤
∞∑

k=1

|xk|n |x′k|n ≤ |x| |x
′|,
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hence the Lie product [·, ·] is continuous on M. Finally, from definition (7.10) of Jz : Pυ → Pυ, we
obtain

⟨Jzx, y⟩ =
∞∑

k=1

⟨Jnz xk, yk⟩n =

∞∑
k=1

⟨z, [xk, yk]⟩n =
∞∑

k=1

⟨z, β(xk, yk)⟩n = ⟨z, [x, y]⟩

for all x, y ∈ Pυ and z ∈ ζ. We have proved the following result.

Theorem 7.2. The linear spaceM = Pυ ⊕ ζ equipped with scalar product (7.9), Lie product (7.11) and
linear operator (7.10) is an infinite dimensional H-type group.

Remark 7.3. By [48, Corollary 1], there exist infinitely many finite dimensional H-type groups, where
there are no isomorphic couples. Indeed, these groups can be chosen to have centers of different dimen-
sions. As a result, Theorem 7.2 also shows that there are infinitely many infinite dimensional H-type
groups.
Remark 7.4. We point out that, when the finite dimensional H-type group n coincides with the 3-
dimensional Heisenberg group, in the construction of M, then Theorem 7.2 yields the infinite dimen-
sional Heisenberg group studied in [66].

7.2 Weak metrics on Hilbertian H-type groups

In the sequel, M = V ⊕W always denotes a Hilbertian H-type group, equipped with a scalar product
⟨·, ·⟩ and its Hilbertian norm | · |. This section presents various notions of weak metrics on M. They
include weak Finsler metrics and weak Riemannian metrics. Indeed, both of these metrics may induce
a topology which is strictly weaker than the manifold topology. We will also follow the convention of
identifying the tangent space TqM with the group itselfM, q ∈M, due to the linear structure ofM.

For every p ∈M, the left multiplication by p is denoted by Lp : M→M, with

Lp(q) = p · q = p + q +
1
2

[p, q]

for all q ∈M. We define the skew-symmetric bilinear function β : V × V →W such that

[x, y] = β(x, y)

for every x, y ∈ V. By definition ofM, we have two canonical projections π1 : M→ V and π2 : M→W

such that every p ∈M can be written in a unique way as

p = π1(p) + π2(p)

where π1(p) and π2(p) are also orthogonal. We obviously have the isometric isomorphism

M→ V ×W, p→ (π1(p), π2(p))

with respect to the Hilbert structure of M. We use the simplified notation pi = πi(p) for p ∈ M, so that
we can write p = p1 + p2 with p1 ∈ V and p2 ∈ W. Then the group operation (7.3) gives a simple
formula for the differential of Lp at a point q ∈M along v = v1 + v2 ∈M:

(dLp)q(v) =
d
dt

Lp(q + tv)
∣∣∣∣
t=0
= v +

1
2

[p, v] = v1 + v2 +
β(p1, v1)

2
. (7.12)

Indeed, the linear structure ofM allows us to identify TqM withM.
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Weak Finsler metrics and Finsler distances

We fix a norm F0 : M → [0,+∞) with respect to the linear structure of M, which also yields a Finsler
metric on TM. We always assume that F0 is continuous, namely F0(v) ≤ c1|v| for some c1 > 0 and for
all v ∈M, where | · | is the fixed scalar product onM. It is also natural to assume that the decomposition
V ⊕W is compatible with the Finsler norm, namely π1 : M→ V and π2 : M→W are continuous with
respect to F0. In other words, there exists C > 0 such that

F0(π1(x)) ≤ CF0(x) and F0(π2(x)) ≤ CF0(x).

Thus, for each p ∈M, we set
Fp(v) = F0((dL−p)p(v))

for every v ∈ TpM. We say that the map F on TM arising from the norms Fp is a weak, left invariant
Finsler metric on TM. We say that F is a strong, left invariant Finsler metric if the topology induced by
F0 on M coincides with the already given Hilbert topology of M. In different terms, there exist c̃1 > 0
such that F0(v) ≥ c̃1|v| for all v ∈ M. If a weak, left invariant Finsler metric F on M is not strong, then
we say that F is a strictly weak, left invariant Finsler metric onM.

Example 7.5. Let us consider the infinite dimensional Heisenberg group H = ℓ2 × ℓ2 × R equipped
with the product of the associated Hilbert structure and the group operation as defined in [66]. We have
H = V⊕W, where V = ℓ2×ℓ2×{0} andW = {0}×{0}×R. We fix p > 2 and for an element (h, k, t) ∈M,
we define the norm

F0(h, k, t) = ∥h∥p + ∥k∥p + |t|,

where ∥x∥p = (
∑∞

k=1 |x j|
p)1/p ≤ ∥x∥2 < +∞ for every x ∈ ℓ2. Clearly F0 gives an example of strictly

weak, left invariant Finsler metric. Indeed, it is also obvious that the projections π1 and π2 on V and W
are F0-continuous, respectively.

The length of a continuous, piecewise smooth curve γ : [0, 1]→M is defined by the integral

ℓF(γ) =
∫ 1

0
Fγ(t)(γ̇(t))dt =

∫ 1

0
F0

(
(dL−γ(t))γ(t)γ̇(t)

)
dt. (7.13)

Then we can immediately define the associated Finsler distance

dF(p, q) = inf{ℓF(γ) : γ is continuous, piecewise smooth, γ(0) = p and γ(1) = q}

for every p, q ∈ M, hence dF : M ×M → [0,+∞). Clearly dF is left invariant, symmetric and satisfies
the triangle inequality.

Remark 7.6. Let us consider a weak, left invariant Finsler metric F on M, and let dF be the associated
geodesic distance. We will prove that for p, q ∈ M with π1(p) = x , y = π1(q), we have C dF(p, q) ≥
F0(x − y) > 0. Indeed, for every continuous, piecewise smooth curve γ : [0, 1] → M joining p to q, we
get

ℓF(γ) =
∫ 1

0
F0

(
(dL−γ(t))γ(t)(γ̇(t))

)
dt ≥

1
C

∫ 1

0
F0(γ̇1(t)) dt

in view of (7.15) and taking into account the F-continuity of the projections. Thus, if we consider the
projected curve γ1 : [0, 1] → V, we can piecewise integrate γ̇1 on the intervals where it is continuous.
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Then we apply [44, Theorem 2.1.1 (ii)] and [44, Theorem 2.2.2] and the triangle inequality on a partition
t0 = 0 < t1 < · · · < tk = 1. It follows that

ℓF(γ) ≥
1
C

∫ 1

0
F0(γ̇1(t)) dt ≥

1
C

k−1∑
j=0

F0

∫ t j+1

t j

γ̇1(t)
 = 1

C

k−1∑
j=0

F0
(
γ1(t j+1) − γ1(t j)

)
,

hence

ℓF(γ) ≥
F0(x − y)

C
> 0.

Weak sub-Finsler metrics

Identifying V ⊕W with T0(V ⊕W), the subspace V can be seen as a closed subspace of T0M, that we
denote by H0M and we may introduce the left invariant horizontal subbundle, denoted by HM, with
fibers

HpM = (dLp)0(H0M) ⊂ TpM

for every p ∈ M. For each p ∈ M, on the horizontal fiber HpM of HM we can fix a norm, which turns
out to be continuous and left invariant. Precisely, a weak, left invariant sub-Finsler metric S on HM is
defined by a norm

S 0 : V → [0,+∞) (7.14)

satisfying for some c0 > 0 and for all x ∈ V the inequality

S 0(x) ≤ c0|x|.

The previous condition immediately yields the continuity of S 0 with respect to the fixed Hilbert topol-
ogy on M. Notice that the closed subspace V inherits a Hilbert structure from M. With the previous
identifications, for every p ∈M and v ∈ HpM, we introduce the norm

S p(v) = S 0
(
(dL−p)p(v)

)
on the fiber HpM. If the topology defined by the norm S 0 on V coincides with the Hilbert one of V,
we say that S 0 defines a strong, left invariant sub-Finsler metric. This is equivalent to the existence of a
constant c̃ > 0 such that c̃|x| ≤ S 0(x) for all x ∈ V. If this is not the case, we say that S 0 defines a strictly
weak, left invariant sub-Finsler metric.

Example 7.7. Let us consider the infinite dimensional Heisenberg group H = ℓ2 × ℓ2 × R equipped
with the product of the associated Hilbert structure and the group operation as defined in [66]. We have
H = V⊕W, where V = ℓ2×ℓ2×{0} andW = {0}×{0}×R. We fix p > 2 and for an element (h, k, 0) ∈ V,
we define the norm

S 0(h, k) = ∥h∥p + ∥k∥p,

where ∥x∥p = (
∑∞

k=1 |x j|
p)1/p ≤ ∥x∥2 < +∞ for every x ∈ ℓ2. Clearly S 0 gives an example of strictly

weak, left invariant sub-Finsler metric.
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Horizontal curves and sub-Finsler distances

We notice that the expression of the differential of translations (7.12) proves that v ∈ HpM if and only if

(dL−p)p(v) = v −
1
2

[p, v] = v1 + v2 −
β(p1, v1)

2
∈ H0M (7.15)

and the previous condition corresponds to the equality

v2 =
β(p1, v1)

2
. (7.16)

Thus, we have a precise formula to define the horizontal curves associated with H�. They are contin-
uous and piecewise smooth curves γ : [0, 1] → M of the form γ = γ1 + γ2 ∈ M, such that for almost
every t ∈ [0, 1] we have

γ̇2(t) =
β(γ1(t), γ̇1(t))

2
.

The previous differential constraint means that γ̇(t) ∈ Hγ(t)M. The length of a horizontal curve γ :
[0, 1]→M is defined by ℓS (γ) =

∫ 1
0 S γ(t)(γ̇(t))dt, therefore

ℓS (γ) =
∫ 1

0
S 0

(
(dL−γ(t))γ(t)γ̇(t)

)
dt =

∫ 1

0
S 0(γ̇1(t)) dt.

It is not difficult to observe that all couple of points in M can be connected by horizontal curves. As a
result, the sub-Finsler distance

ρS (p, q) = inf{ℓS (γ) : γ is a horizontal curve with γ(0) = p, γ(1) = q}

is finite for every p, q ∈ M, hence ρF : M ×M → [0,+∞). The fact that ρF is left invariant, symmetric
and satisfies the triangle inequality is straightforward.

Remark 7.8. Let us consider a weak, left invariant sub-Finsler metric S onM, and a weak, left invariant
Finsler metric F on M such that F0|V = S 0. We define ρS and dF to be the associated sub-Finsler
distance and Finsler distance, respectively. Taking into account (7.13), (7.15) and (7.16) we observe that
ℓF(γ) = ℓS (γ) for every horizontal curve. Then we immediately get

ρS (p, q) ≥ dF(p, q)

for every p, q ∈ M. Taking into account Remark 7.6 we also have ρS (p, q) ≥ dF(p, q) > 0 whenever
π1(p) , π1(q). Notice that for any fixed weak sub-Finsler metric S 0 on M, we can always find a weak
Finsler metric F0 such that F0|V = S 0. It suffices to choose any Hilbert norm | · | onW, defining

F0(x + z) = S 0(x) + |z|

for every x ∈ V and z ∈W.
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Weak Riemannian metrics and Riemannian distances

Following Section 7.1, we consider a Hilbertian H-type group M = V ⊕W equipped with a Hilbert
product ⟨·, ·⟩ and the mapping Jz, z ∈W. We fix a continuous scalar product σ0 onM, namely

∥v∥σ0 ≤ c0|v| (7.17)

for some c0 > 0 and every v ∈ M, where ∥ · ∥σ0 is the norm arising from σ0. We also require that the
canonical projections π1 : M→ V and π2 : M→W are σ0-continuous, that is

∥π1(v)∥σ0 ≤ C∥v∥σ0 and ∥π2(v)∥σ0 ≤ C∥v∥σ0

for all v ∈M and some C > 0. Thus, σ0 gives a scalar product

σp(v,w) = σ0
(
(dLp−1)pv, (dLp−1)pw

)
= σ0

(
(dL−p)pv, (dL−p)pw

)
for each p ∈ M and v,w ∈ TpM. The corresponding Riemannian metric σ on TM is called weak, left
invariant Riemannian metric. Notice that the Riemannian norm ∥ · ∥σ0 onM is also Finsler metric.

Let us consider the topology defined by σ0 on M. When it coincides with the topology determined
by the Hilbert structure of M, we say that σ is a strong, left invariant Riemannian metric. We say that
σ is a strictly weak, left invariant Riemannian metric if it is not strong. Finally, a (strictly) weak, left
invariant Riemannian metric σ on M such that V and W are σ0-orthogonal is called (strictly) weak,
graded Riemannian metric.

For a fixed weak, left invariant Riemannian metric σ on M, we consider the linear and continuous
operator A : M → M such that for all v,w ∈ M we have σ0(v,w) = ⟨v, Aw⟩, where ⟨·, ·⟩ denotes the
Hilbert product on M. The operator A exists by the classical Riesz representation theorem and it is
automatically self-adjoint and positive.

We denote by AV its restriction to V and by AW its restriction to W. When σ0 is graded, it is easy
to notice that AV(V) ⊂ V and AW(W) ⊂ W. Then we can consider the linear and continuous operators
AV : V → V and AW : W →W.

The following proposition is also standard.

Proposition 7.9. If σ is a weak, left invariant Riemannian metric on M, then the subspace A(M) is
dense inM. Furthermore, σ is strong if and only if A is surjective.

For any continuous and piecewise smooth curve γ : [0, 1] → M its Riemannian length with respect
to the weak Riemannian metric σ is defined as

ℓσ(γ) =
∫ 1

0
∥γ̇(t)∥σ dt.

The geodesic distance associated with σ is the function dσ : M ×M→ [0,+∞) defined as

dσ(p, q) = inf{ℓσ(γ) : γ is a continuous and piecewise smooth curve with γ(0) = p, γ(1) = q}.

Clearly dσ is left invariant, symmetric and it satisfies the triangle inequality.
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7.3 Degenerate geodesic distances

The next theorem proves the existence of degenerate sub-Finsler distaces in any Hilbertian H-type group
equipped with a strictly weak, left invariant sub-Finsler metric.

Theorem 7.10 (Vanishinig of sub-Finsler distances). LetM = V ⊕W be an infinite dimensional H-type
group equipped with the canonical projections π1 : M → V and π2 : M → W. Let ρS be the sub-
Finsler distance arising from any strictly weak, left invariant sub-Finsler metric S onM. Then for every
p, q ∈M with π1(p) = π1(q), we have ρS (p, q) = 0.

Proof. It suffices to prove that for all c ∈ R and all z ∈W with |z| = 1, we have

ρS

(
0,

c2

3
z
)
= 0. (7.18)

Since the norm S 0 of (7.14) does not define the Hilbert topology of V, there exists a sequence {wn}n in
V such that |wn| = 1 and S 0(wn) ≤ 1

n for all n ∈ N+. We choose z ∈W with |z| = 1, and for each n ∈ N,
define

γn
1(t) = tc

√
nwn +

t2c
2

1
√

n
Jz(wn).

Consider now the curve γn = (γn
1, γ

n
2), where

γn
2(t) =

1
2

∫ t

0
β(γn

1(s), γ̇n
1(s)) ds ∈W.

By construction, the curve γn is horizontal, therefore ℓS (γn) =
∫ 1

0 S 0(γ̇n
1(t)) dt. Let us consider the

following estimates

ℓS (γn) =
∫ 1

0
S 0(γ̇n

1(t)) dt =
∫ 1

0
S 0

(
c
√

nwn +
ct
√

n
Jz(wn)

)
dt

≤c
√

n S 0(wn) +
c
√

n
S 0(Jz(wn)) ≤

c
√

n
+

cc0
√

n
|Jz(wn)| =

c
√

n
+

cc0
√

n
· |z|.

It follows that
lim
n→∞

ℓS (γn) = 0.

For each n, the endpoint of γn is

γn(1) = c
√

nwn +
c
2

1
√

n
Jz(wn) +

c2

12
z.

Now, we define the curve αn
1 : [0, 1]→ V as

αn
1(t) = c

√
n(1 − t)wn +

c
2

(1 − t2)
√

n
Jz(wn)
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and consider the lifting αn = αn
1 + α

n
2, where

αn
2(t) = γn

2(1) +
1
2

∫ t

0
β(αn

1(s), α̇n
1(s)) ds ∈W

By construction, αn is also horizontal and αn(0) = γn(1), therefore the curve αn ⋆γn obtained by joining
γn and αn is also horizontal. For each n ∈ N, the curve αn ⋆ γn connects the origin 0 ∈ M to the point
c2z
6 ∈W. We finally observe that

ℓS (αn) =
∫ 1

0
S 0(α̇n

1(t)) dt =
∫ 1

0
S 0

(
c
√

nwn +
ct
√

n
Jz(wn)

)
dt = ℓS (γn)→ 0.

Therefore, ℓS (αn ⋆ γn) = ℓS (γn) + ℓS (αn) → 0. We have proved that (7.18) holds for every c ∈ R and
z ∈ W. To conclude the proof, we consider z1, z2 ∈ W, z1 , z2 and x ∈ V. We notice that the left
invariance of the sub-Finsler distance function yields

ρS (x + z1, x + z2) = ρS (xz1, xz2) = ρS (z1, z2) = ρS (0, z2 − z1).

Clearly, we can find c , 0 and z ∈W \ {0} such that z2 − z1 = c2z/6, hence

ρS (x + z1, x + z2) = ρS (0, c2z/6) = 0,

concluding the proof. □

Corollary 7.11. Let us fix a strictly weak, left invariant sub-Finsler metric S on a Hilbertian H-type
groupM = V ⊕W. Then for x, y ∈ V and z1, z2 ∈W, we have

ρS (x + z1, y + z2) = 0 if and only if x = y,

where ρS is the sub-Finsler distance associated with S .

The main implication of this corollary follows by Theorem 7.10. The full characterization of the two
conditions is obtained by showing that points with different projections on V must have positive Finsler
distances. This is a consequence of combining Remark 7.6 and Remark 7.8.

Lemma 7.12. If F be a strictly weak, left invariant Finsler metric F on a Hilbertian H-type group
M = V ⊕W. Then there exists a sequence {hn}n∈N ⊂ V such that F0(hn)→ 0 and |hn| = 1 for all n ∈ N.

Proof. The topology defined by F0 on M is not the Hilbert one, therefore there exists a sequence un in
M such that |un| = 1 for all n and F0(un)→ 0. We can write

un = vn + wn = π1(un) + π2(un),

where vn ∈ V and wn ∈W. By the continuity of the projections, CF0(un) ≥ F0(wn) therefore F0(wn)→
0. Since W is finite dimensional, we also have |wn| → 0, therefore |vn| → 1. Again the continuity of the
projections yields F0(vn)→ 0. To conclude the proof, we consider a subsequence vn of nonzero vectors,
and we observe that the renormalized sequence hn =

vn
|vn |

satisfies our claim. □
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Theorem 7.13. Let F be a strictly weak, left invariant Finsler metric on a Hilbertian H-type group
M = V ⊕W. Then for every x, y ∈ V and z1, z2 ∈W, we have dF((x, z1), (y, z2)) = 0 if and only if x = y.

Proof. The restriction of F0 to V defines a weak sub-Finsler metric S 0 : V → [0,+∞). By Lemma 7.12,
the corresponding left invariant sub-Finsler metric S is strictly weak. In view of Remark 7.8, we have
ρS ≥ dF , so we can apply Theorem 7.10, obtaining that dF(p, q) = 0, whenever π1(p) = π1(q). By
Remark 7.6, the proof is complete. □

Corollary 7.14. Let σ be a strictly weak, left invariant Riemannian metric on a Hilbertian H-type group
M = V ⊕W. Then for every x, y ∈ V and z1, z2 ∈W, we have dσ((x, z1), (y, z2)) = 0 if and only if x = y.

The previous corollary follows by observing that a sitrictly weak, left invariant Riemannian metric
also yields a strictly weak, left invariant Finsler metric.

7.4 Non-existence of the Levi-Civita covariant derivative

In this section, we fix a Hilbertian H-type groupMwith its Lie product [·, ·]. We consider the Lie algebra
LieM of left invariant vector fields on M. The associated Lie product is the skew-symmetric bilinear
mapping [·, ·] : LieM × LieM→ LieM its Lie product. In our setting, the linear structure of M allows
us also consider the "identification" I : M→ LieM, where I(v) = Xv is the unique left invariant vector
field of Lie(M) such that Xv(0) = v. In fact, there is the already mentioned identification between T0M

and M. Throughout the section, the continuous linear and self-adjoint operator A : M → M is defined
by the weak metric σ0(v,w) = ⟨v, Aw⟩ for v,w ∈M.

The first result of this section is to prove that the Lie algebra Lie(M) is actually isomorphic to the
starting Lie algebraM, and the isomorphism is given by the map I.

Proposition 7.15. LetM be an H-type group. Then the map I is a Lie algebra isomorphism, that is, for
every x, y ∈M we have I[x,y] = [Ix,Iy].

The proof of the previous proposition can be obtained by standard arguments, taking into account
that the group operation inM is given by the BCH formula and the Lie product onM. Actually, it holds
in general Banach nilpotent Lie groups, [64, Proposition 2.1].

Theorem 7.16. Let σ be a weak, graded Riemannian metric on a Hilbertian H-type groupM = V⊕W.
If σ admits the Levi-Civita covariant derivative ∇, then for every x = x1 + x2 ∈ M with x1 ∈ V and
x2 ∈W we have

JAx2 x1 ∈ im A and ∇IxIx(0) = −A−1 (
JAx2 x1

)
.

Proof. Suppose that ∇ is the Levi-Civita covariant derivative. Since ∇ is torsion-free, we have [Ix,Iy] =
∇IxIy−∇IyIx for x, y ∈M. By the left invariance of Ix and Iy, the functionM ∋ p→ σp(Ix(p),Iy(p))
is constantly equal to σ0(x, y), by the identification ofM with T0M. The key property of the Levi-Civita
covariant derivative yields

0 = Zσ(Ix,Iy) = σ(∇ZIx,Iy) + σ(Ix,∇ZIy) (7.19)

for every Z vector field onM. Notice that the previous equations for x = y yield

σ(Ix,∇ZIx) = 0.

123



CHAPTER 7. THE MICHOR-MUMFORD CONJECTURE IN HILBERTIAN H-TYPE GROUPS

As a consequence, using again (7.19), we get

σ([Ix,Iy],Ix) = σ(∇IxIy,Ix) − σ(∇IyIx,Ix) = σ(∇IxIy,Ix)

= −σ(Iy,∇IxIx) = −σ0(y,∇IxIx(0)).

By Proposition 7.15, it follows that

σ([Ix,Iy],Ix) = σ(I[x,y],Ix) = σ0(I[x,y](0),Ix(0)) = σ0([x, y], x).

Therefore, we have proved that

σ0(y,∇IxIx(0)) = −σ0([x, y], x),

which immediately leads us to the following equalities

⟨y, A∇IxIx(0)⟩ = −⟨[x, y], Ax⟩ = −⟨[x1, y1], Ax2⟩ = −⟨y1, JAx2 x1⟩. (7.20)

In particular, formula (7.20) holds true for all y ∈ W, hence A∇IxIx(0) ∈ V. Now, taking y ∈ V in
formula (7.20) we get

A∇IxIx(0) = −JAx2 x1,

which proves our claim. □

Theorem 7.17. Let σ be a weak, graded Riemannian metric on an H-type group M. If σ is strictly
weak, then it does not admit the Levi-Civita covariant derivative.

Proof. If σ is strictly weak, then its associated operator A is not surjective, by Proposition 7.9. SinceW
is finite dimensional and AW is injective, then AW is also surjective. As a consequence, AV cannot be
surjective, hence we have can choose v ∈ V such that v < AV(V). We consider x2 ∈ W, x2 , 0 and we
define x = JAx2v + x2, x1 = JAx2v. By (7.2) we have

JAx2 x1 = JAx2(JAx2v) = −|Ax2|
2v < im A.

Hence, by Theorem 7.16 we get a contradiction, therefore the Levi-Civita covariant derivative does not
exists for σ. □

Since strong Riemannian metrics always admit the Levi-Civita covariant derivative, the next corol-
lary is straightforward.

Corollary 7.18. Let σ be a weak, graded Riemannian metric on an H-type group M. Then, σ admits
the Levi-Civita covariant derivative if and only if it is a strong Riemannian metric.

7.5 Blow-up of the sectional curvature

We consider a Hilbertian H-type group M = V ⊕W, endowed with a weak, graded Riemannian metric
σ. If σ is strong, then the sectional curvature can be computed using the Riemann tensor and the Levi-
Civita covariant derivative, [54]. This approach in general does not apply when σ is strictly weak, as
a consequence of Theorem 7.17. We will also show how the Arnold’s formula allows us to compute
the sectional curvature for a special family of planes. Finally, we find a sequence of planes where the
sectional curvatures blow-up.
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7.5.1 The B-adjoint vector

We consider the adjoint representation ad : M → E(M), where the endomorphism adx(y) = [x, y] is
defined by the Lie product of M. For a fixed couple of vectors x, y ∈ M, we consider (in case it exists)
the unique vector Bσ0(y, x) ∈M which satisfies the formula〈

z, Bσ0(y, x)
〉
σ0
= ⟨[x, z], y⟩σ0

for every z ∈ M. We say that Bσ0(y, x) is the B-adjoint vector of (y, x) with respect to σ0. When this
vector exists, it automatically satisfies

Bσ0(ty, sx) = ts Bσ0(y, x)

for every t, s ∈ R. And also Bσ0(ty, sx) exists for some t, s , 0 if and only if Bσ0(y, x) exists. If σ0 is
a strong metric, then the classical Riesz representation theorem yields the existence of Bσ(y, x) for all
x, y ∈M. Precisely, in this case,

Bσ0(y, x) = ad⊤x (y),

where ad⊤x : M → M is the adjoint operator of adx with respect to σ0. For a strictly weak Riemannian
metric, the existence of Bσ(y, x) ∈ M for fixed x, y ∈ M does not necessarily hold. A simple example
can be found for instance in [66].

7.5.2 Arnold’s formula

To compute the sectional curvature of planes in a Hilbertian H-type group M, we use the Arnold’s
formula [10, Theorem 5], see also [73], [20] and [19].

Let us consider two σ0-orthonormal vectors x, y ∈M, such that the B-adjoint vectors

Bσ0(y, x), Bσ0(x, y), Bσ0(x, x), Bσ0(y, y) ∈M

all exist. We introduce the notation Πx,y to denote the vector subspace spanned by x and y. The sectional
curvature of Πx,y can be obtained by

Kσ(Πx,y) = ⟨δ, δ⟩σ0 + 2 ⟨α, β⟩σ0
− 3 ⟨α, α⟩σ0 − 4

〈
Bx, By

〉
σ0
. (7.21)

In the previous formula we have defined

δ =
1
2

(
Bσ0(x, y) + Bσ0(y, x)

)
, β =

1
2

(
Bσ0(x, y) − Bσ0(y, x)

)
, α =

1
2

[x, y]

Bx =
1
2

Bσ0(x, x) and By =
1
2

Bσ0(y, y).

It is a simple computation to verify that the sectional curvature of a plane defined through this formula
does not depend on the choice of the σ0-orthonormal basis for that plane.

First of all, we provide a condition for which the vector Bσ(y, x) exists with x, y ∈ M fixed, see the
following proposition.
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Proposition 7.19 (Existence of the B-adjoint vector). Let σ0 be a weak, graded Riemannian metric on
a Hilbertian H-type group M = V ⊕W and let x = x1 + x2, y = y1 + y2 ∈ M, with x1, y1 ∈ V and
x2, y2 ∈W. It follows that

there exists Bσ0(y, x) ∈M if and only if JAy2 x1 ∈ AV(V). (7.22)

If one of the previous conditions holds, then

Bσ0(y, x) = A−1(JAy2 x1). (7.23)

Proof. Assume that JAy2 x1 ∈ AV(V). Thus, for all z ∈M we have〈
z, A−1(JAy2 x1)

〉
σ0
= ⟨z, JAy2 x1⟩ = ⟨[x, z], Ay2⟩ = ⟨[x, z], y⟩σ0

,

hence there exists Bσ0(y, x) = A−1(JAy2 x1). If Bσ0(y, x) ∈M exists, then for all z ∈M we have

⟨z, A(Bσ0(y, x))⟩ =
〈
z, Bσ0(y, x)

〉
σ0
= ⟨[x, z], y⟩σ0

= ⟨[x1, z], Ay2⟩ = ⟨JAy2 x1, z⟩.

Therefore, A(Bσ0(y, x)) = JAy2 x1, concluding the proof. □

From (7.22) and (7.23) we get directly (1). From (7.22), (7.23) and (7.2) we get directly (2).

Remark 7.20. As a consequence of Proposition 7.19, precisely of (7.22), (7.23), for all

(y, x) ∈ (V ×M) ∪ (M ×W)

we have JAy2 x1 = 0, hence the B-adjoint vector Bσ0(y, x) exists and it vanishes.

Remark 7.21. For all z ∈W and x ∈ V, we notice that

JAz
(
JAz(Ax)

)
= −|Az|2Ax ∈ AV(V),

hence (7.22) yields the existence of the B-adjoint vector Bσ0(z, JAz(Ax)) and (7.23) gives

Bσ0(z, JAz(Ax)) = −|Az|2x. (7.24)

We use Proposition 7.19 and the previous remarks to compute the sectional curvatures of specific
planes, according to the following lemma.

Lemma 7.22. Let σ be a weak graded Riemannian metric onM.

1. If x, y ∈ V are σ0-orthonormal, then the sectional curvature Kσ(Πx,y) exists and

Kσ(Πx,y) = −
3
4
∥[x, y]∥2σ0

.

2. For all z ∈W \ {0} and x ∈ V \ {0}, the vectors JAz(Ax) and z are orthogonal and

Kσ(ΠJAz(Ax),z) =
1
4

|Az|4

∥JAz(Ax)∥2σ0
∥z∥2σ0

∥x∥2σ0
.
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Proof. Due to Remark 7.20, Bσ(x, x), Bσ(y, y), Bσ(y, x), Bσ(x, y) all exist and are null. Thus, (7.21)
immediately gives the claim (1). The term α iof (7.21) obviously vanishes, and again Remark 7.20
gives the existence and the vanishing of BJAz(Ax), Bz, and Bσ0(JAz(Ax), z) in the corresponding Arnold’s
formula for the sectional curvature. From the property of the mapping JZ , Z ∈W, of a Hilbertian H-type
group, it is easy to notice that z and JAz(Ax) are σ0-orthogonal.

Thus, by (7.21) applied to the σ0-orthonormal basis z/∥z∥σ0 and JAy(Ax)/∥JAy(Ax)∥σ0 , we get

Kσ(ΠJAz(Ax),z) = ∥δ∥2σ0
=

1
4

∥∥∥∥∥∥Bσ0

(
z
∥z∥σ0

,
JAz(Ax)
∥JAz(Ax)∥σ0

)∥∥∥∥∥∥2

σ0

=
1

4∥z∥2σ0∥JAz(Ax)∥2σ0

∥∥∥Bσ0(z, JAz(Ax))
∥∥∥2
σ0

=
1

4∥z∥2σ0∥JAz(Ax)∥2σ0

∥∥∥|Az|2x
∥∥∥2
σ0
,

where the last equality also relied on (7.24) and immediately gives the claim (2). □

Lemma 7.23. Let σ be a strictly weak graded Riemannian metric on a Hilbertian H-type group M =
V ⊕W. Then there exists wn ∈ AV(V) such that |wn| = 1 and ∥wn∥σ0 → 0 as n→ +∞.

Proof. We consider the sequence hn given by Lemma 7.12, hence ∥hn∥σ0 → 0 and |hn| = 1. The image
AV(V) is dense in V, as a consequence of Proposition 7.9. Therefore, for each n ∈ N \ {0} we may
choose vn ∈ AV(V) such that |vn − hn| ≤

1
2n , and therefore |vn| → 1. We define the unit vectors wn =

vn
|vn |

and consider

∥vn∥σ0 ≤ ∥hn∥σ0 + ∥hn − vn∥σ0 ≤ ∥hn∥σ0 + c0|vn − hn| ≤ ∥hn∥σ0 +
c0

2n
→ 0,

concluding the proof. □

Theorem 7.24. Let σ be a strictly weak, graded Riemannian metric on a Hilbertian H-type group
M = V ⊕W. Then there exists a sequence wn ∈ V such that for every z ∈ W \ {0} the following limits
hold

lim
n→∞

Kσ(Πwn,Jzwn) = −∞ and lim
n→∞

Kσ(Πz,JAzwn) = +∞. (7.25)

Proof. We consider the sequence wn ∈ AV(V) ⊂ V of Lemma 7.23 and define the vector

ξn = Jzwn −
wn

∥wn∥σ0

〈
Jzwn,

wn

∥wn∥σ0

〉
σ0

∈ V.

By construction of ξn, the vectors wn/ ∥wn∥σ0 and ξn/ ∥ξn∥σ0
areσ0-orthonormal and span the 2-dimensional

subspace Πwn,Jzwn . By Lemma 7.22 and (7.8), we have

Kσ(Πwn,Jzwn) = −
3
4

∥∥∥∥∥∥
[

wn

∥wn∥σ0

,
ξn

∥ξn∥σ0

]∥∥∥∥∥∥2

σ0

= −
3
4

∥z∥2σ0

∥wn∥
2
σ0

∥∥∥∥∥Jzwn −
wn

∥wn∥
2
σ0

⟨Jzwn,wn⟩σ0

∥∥∥∥∥2

σ0

.
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We consider the estimates∥∥∥∥∥∥∥Jzwn −
wn

∥wn∥
2
σ0

⟨Jzwn,wn⟩σ0

∥∥∥∥∥∥∥
2

σ0

≤ 2

∥Jzwn∥
2
σ0
+
⟨Jzwn,wn⟩

2
σ0

∥wn∥
2
σ0


≤ 4 ∥Jzwn∥

2
σ0
≤ 4c2

0|Jzwn|
2

≤ 4c2
0|z|

2,

where we have applied both (7.17) and (7.4). It follows that∥∥∥∥∥∥
[

wn

∥wn∥σ0

,
ξn

∥ξn∥σ0

]∥∥∥∥∥∥2

σ0

≥
1

4c2
0|z|

2

∥z∥2σ0

∥wn∥
2
σ0

→ +∞,

proving the first limit of (7.25) To establish the second limit of (7.25), we consider the same previous
sequence wn ∈ AV(V), along with vn ∈ V such that Avn = wn. By Lemma 7.22 we have

Kσ(Πz,JAz(Avn)) =
1
4

|Az|4

∥JAz(Avn)∥2σ0
∥z∥2σ0

∥vn∥
2
σ0
.

Again (7.17) and (7.4) give the inequalities

1
∥JAz(Avn)∥σ0

≥
1

c0|JAz(Avn)|
=

1
c0|Az||Avn|

=
1

c0|Az|
> 0,

where we have also use the condition |wn| = |Avn| = 1. By Cauchy-Schwarz inequality, we get

∥vn∥σ0 ≥

〈
vn,

wn

∥wn∥σ0

〉
σ0

= ⟨Avn,wn⟩
1

∥wn∥σ0

=
1

∥wn∥σ0

→ +∞,

that immediately yields Kσ(Πz,JAzwn)→ +∞, concluding the proof. □
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[25] A. Belotto da Silva, A. Parusiński, and L. Rifford. Abnormal singular foliations and the sard
conjecture for generic co-rank one distributions. arXiv preprint, 2023.

[26] A. Belotto da Silva and L. Rifford. The Sard conjecture on Martinet surfaces. Duke Math. J.,
167(8):1433–1471, 2018.

[27] L. Biliotti and F. Mercuri. Riemannian Hilbert manifolds. In Hermitian-Grassmannian submani-
folds, volume 203 of Springer Proc. Math. Stat., pages 261–271. Springer, Singapore, 2017.

130



BIBLIOGRAPHY

[28] F. Boarotto and A. Lerario. Homotopy properties of horizontal path spaces and a theorem of Serre
in subriemannian geometry. Comm. Anal. Geom., 25(2):269–301, 2017.

[29] F. Boarotto, L. Nalon, and D. Vittone. The Sard problem in step 2 and in filiform Carnot groups.
ESAIM Control Optim. Calc. Var., 28:Paper No. 75, 20, 2022.

[30] F. Boarotto and D. Vittone. A dynamical approach to the Sard problem in Carnot groups. J.
Differential Equations, 269(6):4998–5033, 2020.

[31] J. Bochnak, M. Coste, and M.-F. Roy. Géométrie algébrique réelle (Second edition in english:
Real Algebraic Geometry), volume 12 (36) of Ergebnisse der Mathematik und ihrer Grenzgebiete
[Results in Mathematics and Related Areas]. Springer-Verlag, Berlin, 1987 (1998).

[32] C. W. Brown and J. H. Davenport. The complexity of quantifier elimination and cylindrical alge-
braic decomposition. In ISSAC 2007, pages 54–60. ACM, New York, 2007.

[33] M. Bruveris. Riemannian geometry on manifolds of maps. Notes for a short course held at the
summer school Mathematics of Shapes at the IMS in Singapore, July 2016.

[34] Y. Chitour, F. Jean, and E. Trélat. Genericity results for singular curves. J. Differential Geom.,
73(1):45–73, 2006.

[35] F. H. Clarke. On the inverse function theorem. Pacific J. Math., 64(1):97–102, 1976.

[36] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. J. Symbolic
Comput., 5(1-2):29–35, 1988.

[37] B. K. Driver and M. Gordina. Heat kernel analysis on infinite-dimensional Heisenberg groups. J.
Funct. Anal., 255(9):2395–2461, 2008.

[38] Y. Eliashberg and L. Polterovich. Bi-invariant metrics on the group of Hamiltonian diffeomor-
phisms. Internat. J. Math., 4(5):727–738, 1993.

[39] H. Federer. The (φ, k) rectifiable subsets of n-space. Trans. Amer. Math. Soc., 62:114–192, 1947.

[40] H. Federer. Geometric Measure Theory. Springer, 1969.

[41] A. Gabrielov and N. Vorobjov. Approximation of definable sets by compact families, and upper
bounds on homotopy and homology. J. Lond. Math. Soc. (2), 80(1):35–54, 2009.

[42] H. Glöckner. Fundamental problems in the theory of infinite-dimensional Lie groups. J. Geom.
Symmetry Phys., 5:24–35, 2006.

[43] E. Grong, I. Markina, and A. Vasil’ev. Sub-Riemannian geometry on infinite-dimensional mani-
folds. J. Geom. Anal., 25(4):2474–2515, 2015.

[44] R. S. Hamilton. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.),
7(1):65–222, 1982.

131



BIBLIOGRAPHY

[45] G. Hörmann. Representations of the Infinite Dimensional Heisenberg Group. PhD thesis, Univer-
sity of Vienna, 1993.

[46] R. L. Jerrard and C. Maor. Geodesic distance for right-invariant metrics on diffeomorphism groups:
critical Sobolev exponents. Ann. Global Anal. Geom., 56(2):351–360, 2019.

[47] R. L. Jerrard and C. Maor. Vanishing geodesic distance for right-invariant Sobolev metrics on
diffeomorphism groups. Ann. Global Anal. Geom., 55(4):631–656, 2019.

[48] A. Kaplan. Fundamental solutions for a class of hypoelliptic PDE generated by composition of
quadratic forms. Trans. Amer. Math. Soc., 258(1):147–153, 1980.

[49] A. Kaplan. Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata, 11(2):127–
136, 1981.

[50] A. Kaplan. On the geometry of groups of Heisenberg type. Bull. London Math. Soc., 15(1):35–42,
1983.

[51] A. Kaplan and F. Ricci. Harmonic analysis on groups of Heisenberg type. In Harmonic analysis
(Cortona, 1982), volume 992 of Lecture Notes in Math., pages 416–435. Springer, Berlin, 1983.

[52] O. D. Kellogg. On bounded polynomials in several variables. Math. Z., 27(1):55–64, 1928.

[53] B. Khesin and R. Wendt. The geometry of infinite-dimensional groups, volume 51 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Re-
sults in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer-Verlag, Berlin, 2009.

[54] W. P. A. Klingenberg. Riemannian geometry, volume 1 of De Gruyter Studies in Mathematics.
Walter de Gruyter & Co., Berlin, second edition, 1995.

[55] A. Kriegl and P. W. Michor. The convenient setting of global analysis. Mathematical Surveys and
Monographs 053. AMS, 1997.

[56] G. K. Kristiansen. Characterization of polynomials by means of their stationary values. Arch.
Math. (Basel), 43(1):44–48, 1984.

[57] H. Kuhn. Interpolation vorgeschriebener Extremwerte. J. Reine Angew. Math., 238:24–31, 1969.

[58] I. Kupka. Counterexample to the Morse-Sard theorem in the case of infinite-dimensional mani-
folds. Proc. Amer. Math. Soc., 16:954–957, 1965.

[59] S. Lang. Real and functional analysis, volume 142 of Graduate Texts in Mathematics. Springer-
Verlag, New York, third edition, 1993.

[60] E. Le Donne, R. Montgomery, A. Ottazzi, P. Pansu, and D. Vittone. Sard property for the endpoint
map on some Carnot groups. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33(6):1639–1666, 2016.

[61] A. Lerario, L. Rizzi, and D. Tiberio. Quantitative approximate definable choices. arXiv preprint,
2024.

132



BIBLIOGRAPHY

[62] A. Lerario, L. Rizzi, and D. Tiberio. Sard properties for polynomial maps in infinite dimension.
arXiv preprint, 2024.

[63] L. Lokutsievskiy and M. Zelikin. Derivatives of sub-Riemannian geodesics are Lp-Hölder contin-
uous. ESAIM Control Optim. Calc. Var., 29:Paper No. 70, 30, 2023.

[64] V. Magnani and T. Rajala. Radon-Nikodym property and area formula for Banach homogeneous
group targets. Int. Math. Res. Not. IMRN, (23):6399–6430, 2014.

[65] V. Magnani and D. Tiberio. A remark on vanishing geodesic distances in infinite dimensions. Proc.
Amer. Math. Soc., 148(8):3653–3656, 2020.

[66] V. Magnani and D. Tiberio. On the Michor-Mumford phenomenon in the infinite dimensional
Heisenberg group. Rev. Mat. Complut., 36(3):973–989, 2023.

[67] V. Magnani and D. Tiberio. The Michor-Mumford conjecture in Hilbertian H-type groups. arXiv
preprint, 2024.

[68] P. Malliavin. Hypoellipticity in infinite dimensions. In Diffusion processes and related problems
in analysis, Vol. I (Evanston, IL, 1989), volume 22 of Progr. Probab., pages 17–31. Birkhäuser
Boston, Boston, MA, 1990.

[69] C. Maor. Riemannian Geometry of Diffeomorphism Groups – Lecture notes. Notes from a course
held at the Hebrew University, January 2022.

[70] J. N. Mather. Generic projections. Ann. of Math. (2), 98:226–245, 1973.

[71] P. W. Michor and D. Mumford. Vanishing geodesic distance on spaces of submanifolds and dif-
feomorphisms. Doc. Math., 10:217–245, 2005.

[72] P. W. Michor and D. Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math.
Soc. (JEMS), 8(1):1–48, 2006.

[73] P. W. Michor and T. S. Ratiu. On the geometry of the Virasoro-Bott group. J. Lie Theory, 8(2):293–
309, 1998.

[74] J. Milnor. Curvatures of left invariant metrics on Lie groups. Advances in Math., 21(3):293–329,
1976.

[75] J. Milnor. Remarks on infinite dimensional Lie groups. In Relativity, groups and topology: Pro-
ceedings, 40th Summer School of Theoretical Physics - Session 40: Les Houches, France, June 27
- August 4, 1983, vol. 2, pages 1007–1057, 1984.

[76] R. Montgomery. A tour of subriemannian geometries, their geodesics and applications, volume 91
of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.

[77] A. P. Morse. The behavior of a function on its critical set. Ann. of Math. (2), 40(1):62–70, 1939.

[78] K.-H. Neeb. Towards a Lie theory of locally convex groups. Jpn. J. Math., 1(2):291–468, 2006.

133



BIBLIOGRAPHY

[79] H. Omori. Infinite-dimensional Lie groups, volume 158 of Translations of Mathematical Mono-
graphs. American Mathematical Society, Providence, RI, 1997. Translated from the 1979 Japanese
original and revised by the author.

[80] A. Ottazzi and D. Vittone. On the codimension of the abnormal set in step two Carnot groups.
ESAIM Control Optim. Calc. Var., 25:Paper No. 18, 17, 2019.

[81] A. Pinkus. n-widths in approximation theory, volume 7 of Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1985.

[82] L. Rifford. Subdifferentials and minimizing Sard conjecture in sub-Riemannian geometry. J. Éc.
polytech. Math., 10:1195–1244, 2023.

[83] L. Rifford and E. Trélat. Morse-Sard type results in sub-Riemannian geometry. Math. Ann.,
332(1):145–159, 2005.

[84] A. Sard. The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc., 48:883–
890, 1942.

[85] A. Sard. Images of critical sets. Annals of Mathematics, 68(2):247–259, 1958.

[86] A. Sard. Hausdorff measure of critical images on banach manifolds. American Journal of Mathe-
matics, 87(1):158–174, 1965.

[87] A. Schmeding. An introduction to infinite-dimensional differential geometry, volume 202 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2023.

[88] S. Smale. An infinite dimensional version of Sard’s theorem. Amer. J. Math., 87:861–866, 1965.

[89] H. J. Sussmann. A regularity theorem for minimizers of real-analytic subriemannian metrics. In
53rd IEEE Conference on Decision and Control, pages 4801–4806. 2014.

[90] T. Tao. Topics in random matrix theory, volume 132 of Graduate Studies in Mathematics. Ameri-
can Mathematical Society, Providence, RI, 2012.

[91] A. G. Vituškin. O mnogomernyh variaciyah. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1955.

[92] A. G. Vituškin. Theory of the transmission and processing of information. Pergamon Press, New
York-Oxford-London-Paris, 1961. Translated from the Russian by Ruth Feinstein; translation
editor A. D. Booth.

[93] R. J. Walker. Algebraic curves. Springer-Verlag, New York-Heidelberg, 1978. Reprint of the 1950
edition.

[94] Y. Yomdin. The geometry of critical and near-critical values of differentiable mappings. Math.
Ann., 264(4):495–515, 1983.

[95] Y. Yomdin. Approximational complexity of functions. In Geometric aspects of functional analysis
(1986/87), volume 1317 of Lecture Notes in Math., pages 21–43. Springer, Berlin, 1988.

134



BIBLIOGRAPHY

[96] Y. Yomdin and G. Comte. Tame geometry with application in smooth analysis, volume 1834 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.

[97] I. Zelenko and M. Zhitomirskiı̆. Rigid paths of generic 2-distributions on 3-manifolds. Duke Math.
J., 79(2):281–307, 1995.

135



BIBLIOGRAPHY

136



Acknowledgements

Thinking about the conclusion of this journey, the first people I want to thank are my thesis advisors,
Professor Antonio Lerario and Professor Luca Rizzi. First of all, I thank them for introducing me to
sub-Riemannian and semialgebraic geometry, and for believing in me and our project at every moment.
I thank them for all the time, passion, and dedication they have invested in my education, and especially
for being constant points of reference throughout the entire journey. I thank them for showing me how
to conduct research. I am certain that what Luca and Antonio have imparted to me over these years will
forever influence my work. Even after the end of my PhD, they will always remain models to follow.

I thank my master’s thesis advisor, Professor Valentino Magnani, for always encouraging me over
these years, for imparting his great passion and dedication for Mathematics to me, and above all, for
continuing our collaboration even during the years of my PhD, continuing to contribute to my education.

A special thanks goes to Antonio, Ariel, Dario, Davide, Fabrizio, Harschit, Irene, Lorenzo, Maria
Teresa, Michele, Roberto, Thomas. It has been a pleasure to share the office and most of the days at
SISSA with you. Your presence has enriched this journey daily.

I thank the research groups of my supervisors. Feeling part of such passionate, close-knit, and mo-
tivated groups was fundamental during my PhD. In particular, I thank Giorgio and Samuel for involving
me in a new sub-Riemannian research line, and for being excellent group mates and collaborators.

I thank the entire SISSA for the stimulating environment it represents for students.

I thank the European Research Council (ERC) for partially funding my research activities through
the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 945655).

Ringrazio Adriano, Emanuele, Matteo e Michele per essere stati sempre presenti anche se distanti.
Ringrazio Alessandro, Edoardo e Luca, e tutti coloro con cui ho condiviso questi anni a Trieste.

E soprattutto, ringrazio la mia famiglia per il supporto costante e per i valori che mi hanno trasmesso,
i quali sono stati gli ingredienti principali di tutto il mio percorso.

137


	I Sard properties for polynomial maps in infinite dimension and applications to sub-Riemannian geometry
	Introduction
	Motivations: the Morse-Sard problem in infinite dimension and the Sard conjecture
	Overview of main contributions and chapters
	Statement of the results
	Sard properties for polynomial maps in infinite dimension
	The role of quantitative semialgebraic geometry
	Applications to the Endpoint maps of Carnot groups
	Definable choices in semialgebraic geometry


	Table of notations
	Overview on the Morse-Sard problem in infinite dimension
	Yomdin's quantitative version of the Morse-Sard theorem in finite dimension
	One-dimensional codomain
	Higher-dimensional codomains

	Morse-Sard theorems in infinite dimension
	Yomdin theorem for polynomials from infinite-dimensional spaces to R
	Contributions for higher-dimensional codomains


	Sard properties for polynomial maps in infinite dimension
	Quantitative variations estimates
	Semialgebraic sets and maps
	Definable choice
	Variations and their behaviour under polynomial maps
	Variations of almost-critical values of polynomial maps

	Sard properties for infinite-dimensional maps
	Sard-type theorem for well approximated maps
	Sard-type theorems and Kolmogorov n-width
	Counterexamples to the Sard theorem in infinite dimension
	Sard threshold theorems
	A class of maps with the global Sard property


	Applications to the Endpoint maps of Carnot groups
	Carnot groups
	Endpoint maps
	Sard property for real-analytic controls
	Surjectivity of the Endpoint map on finite-dimensional spaces of controls

	Definable choices in semialgebraic geometry
	Hausdorff approximations in semialgebraic geometry
	Semialgebraic sets and maps
	Some properties of semialgebraic sets
	Hausdorff approximations using infinitesimals
	Hausdorff approximations of closed and bounded sets

	Quantitative approximate definable choices
	Preliminary constructions
	Approximate definable choice: the case of a projection
	Approximate definable choice: the case of a semialgebraic map



	II Vanishing geodesic distances and the Michor-Mumford conjecture in  Hilbertian H-type groups
	Introduction
	Motivation
	The Michor-Mumford phenomenon in the infinite dimensional Heisenberg group
	The Michor-Mumford conjecture in Hilbertian H-type groups

	The Michor-Mumford phenomenon in the infinite dimensional Heisenberg group
	Preliminary notions
	A short introduction to the infinite dimensional Heisenberg group
	Weak Riemannian metrics on 
	Weak sub-Riemannian metrics on 

	Degenerate geodesic distances in the infinite dimensional Heisenberg group
	On the sectional curvature of a weak Riemannian Heisenberg group

	The Michor-Mumford conjecture in Hilbertian H-type groups
	Infinite dimensional H-type groups
	Weak metrics on Hilbertian H-type groups
	Degenerate geodesic distances
	Non-existence of the Levi-Civita covariant derivative
	Blow-up of the sectional curvature
	The B-adjoint vector
	Arnold's formula



	Bibliography
	Acknowledgements


