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We constrain the chameleon screening mechanism in galaxy clusters, essentially obtaining limits on the
coupling strength β and the asymptotic value of the field ϕ∞. For this purpose, we utilized a collection of
the nine relaxed galaxy clusters within the X-COP compilation in the redshift range of z ≤ 0.1. We
implement the formalism assuming a Navarro-Frenk-White mass profile for the dark matter density and
study the degeneracy present between the mass M500 and the chameleon coupling with a high degree of
improvement in the constraints for excluded parameter space. We recast our constrain to an upper limit on
the scalaron field in fðRÞ subclass of models of jfR0j ≤ 9.2 × 10−6, using all the nine clusters and jfR0j ≤
1.2 × 10−5 using only five clusters with Weak lensing priors taken into account, at a 95% confidence level.
These bounds are consistent with existing limits in the literature and tighter than the constraints obtained
with the same method by previous studies.
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I. INTRODUCTION

Most cosmological observations [1,2] can be explained,
to a high degree of precision, within the framework of
general relativity (GR). In particular, adding a phenomeno-
logical cosmological constant (Λ) [3,4] to the Einstein field
equations can account for the late-time acceleration of the
Universe [5]. Despite its success in reproducing a wide
range of datasets (e.g., [6]), the concordance Λ cold dark
matter (ΛCDM) model is not still able to provide a
physically acceptable motivation for the nature of the
cosmological constant. For this reason, in the last decades,
alternative viewpoints have been proposed by allowing
additional degrees of freedom that could elucidate the dark
energy as a dynamic field (for instance quintessence [7]), or
modify GR [8–11] so that it can account for the dark energy
effects [8].
One of the most popular wide class of modified gravity

(MG) models is represented by the framework of scalar-
tensor theories [12–15], where a scalar degree of freedom is
added to the gravitational field. The presence of such a

scalar field provides an additional contribution to the
gravitational force [16,17], leaving (in principle) detectable
imprints on the formation and evolution of cosmic struc-
tures [18–21]. This new interaction should be suppressed at
small scales and high-density regions in order to match the
tight constraints of GR. Depending on the implementation
of this screening mechanism, the effect of the new (fifth)
force on matter density perturbations can be significantly
different.
A particularly interesting subset of scalar-tensor models

is the chameleon field theory [22–24], where the additional
scalar field couples nonminimally to the matter and
introduces a fifth force [25]. The screening is achieved
by working on the potential associated with the field,
making the effective mass very large in high-density
regions such that the force is suppressed. The modification
of the gravitational interaction becomes important at a large
distance from the center of a matter distribution [25,26].
When the fifth force is active, it affects the motion of
nonrelativistic objects such as galaxies and hot diffuse gas
in galaxy clusters. In particular, the presence of the
chameleon field changes the relation between pressure
and gravitational potential of the hot intracluster medium
(ICM) of a cluster [27–30].
Two main parameters construct the chameleon field

model in a galaxy cluster: the first one is β, which is the
coupling constant between the chameleon field and matter
density, and the latter, ϕ∞, which is the intensity of the field
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at a larger distance away from the cluster. Under reasonable
assumptions (e.g., [27]) these two parameters describe the
modification of gravity completely. Also, the case of β ¼ffiffiffiffiffiffiffiffi
1=6

p
within the chameleon field scenario describes an

fðRÞ theory [31,32].
We consider that the total mass distribution of a galaxy

cluster can be parametrized by a Navarro-Frenk-White
(NFW) density model [33–38]; under the assumption of
hydrostatic equilibrium, the total gravitational potential of
the cluster will affect the pressure of the hot gas [27]. In this
paper, we implement the formalism presented in [27,39] to
the XMM-Newton Cluster Outskirts Project X-COP data
products [40–43], which consists of 12 clusters with well-
observed x-ray emission and high signal to noise ratio in the
Planck Sunyaev-Zel’dovich (SZ) survey [44], essentially
providing both ICM temperature and pressure data over the
large radial range of 0.2 Mpc ≤ r ≤ 2 Mpc. While in the
current analysis, we probe individual galaxy clusters
through hydrostatic equilibrium, a robust and complemen-
tary approach relies on the analysis of cosmological
simulations [45–48] to assess average or distribution sta-
tistics as a function of cosmic time. For instance, the authors
in [45] study scaling relations in chameleon type fðRÞ
models from simulations of galaxy clusters, and [49] study
variations to the halo mass function.
The paper is organized as follows: in Sec. II we construct

our model for the chameleon field and show the solution
of this field as applied to galaxy cluster with the assumption
of the NFW profile, and at the end of the section we discuss
the effect of the modification induced by the presence of the
chameleon field on the hydrostatic pressure. In Sec. III we
present briefly the X-COP data and then construct the
likelihood that we will use with the Monte Carlo Markov
chain (MCMC) analysis to generate the chains that con-
strain our parameter space. In Sec. IV we present our results
and discuss them in detail while comparing our constraints
with the ones obtained by other galaxy clusters’ analyses
(e.g., [27,50]). Finally, we further derive our main con-
clusions in Sec. V.

II. MODELING

In this section, we briefly review the framework of the
chameleon screening mechanism, highlighting the main
features relevant to our analysis.

A. Screening mechanism

The Lagrangian of the theory includes the usual
Einstein-Hilbert Lagrangian plus the scalar field, in addi-
tion to the Standard Model fields coupled minimally to
gravity [25,51–54],

L ¼ M2
Pl

2
Rþ Lmðg̃μν;ψÞ þ Lϕ; ð1Þ

where Lϕ ¼ − 1
2
ð∂ϕÞ2 − VðϕÞ and MPl ¼ 1ffiffiffiffiffiffi

8πG
p ; the

Standard Model fields are represented by ψ and
g̃μν ¼ A2ðϕÞgμν. In the quasistatic approximation, the equa-
tion of motion for the field ϕ can be written as [55]

∇2ϕ ¼ V 0ðϕÞ − A0ðϕÞ
AðϕÞ T: ð2Þ

Here the 0 represents the derivative with respect to ϕ and T is
the trace of the stress-energy tensor of the Standard Model
field ψ . One can notice that the chameleon field dynamics is
sourced by the trace of the stress-energy tensor as is shown
in Eq. (2); the field values depend on the matter component
and thus the field behaves in different ways for different

matter distributions. We denote A0ðϕÞ
AðϕÞ ¼ β

MPl
, which is going to

be a constant in the current formalism, and here β is the
coupling factor between the field ϕ and the stress-energy
tensor T. Finally, we consider only pressureless nonrelativ-
istic matter fields, which implies T ¼ −ρm.
Therefore we can write

∇2ϕ ¼ V 0
effðϕÞ; ð3Þ

where

VeffðϕÞ ¼ VðϕÞ þ βϕ

MPl
ρm: ð4Þ

The form of the potential VðϕÞ should guarantee that the
gravitational effect induced by this field will be sup-
pressed when we have large matter densities, i.e., the field
ϕ is screened and GR is recovered. On the other hand, at
lower densities, we want the effect of the field to become
important, which will require us to impose that the
potential VðϕÞ is a decreasing function of ϕ [25], typically
a power-law potential VðϕÞ ¼ Λ4þnϕ−n, where Λ and n
are constants.
In the region where ϕ is unscreened, an additional fifth

force is induced by the gradient of the chameleon field,

Fϕ ¼ −
β

MPl
∇ϕ; ð5Þ

providing an additional contribution to the Newtonian
potential while retaining hydrostatic equilibrium assumption
in chameleon gravity.

B. Chameleon field in the cluster of galaxies

In the following analysis, we assume that the total matter
density distribution within the galaxy cluster can be
modeled as an NFW profile [33],

ρðrÞ ¼ ρs
r=rsð1þ r=rsÞ2

; ð6Þ
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where ρs and rs are characteristic density and scale radius,
respectively. The NFW model has been shown to provide a
good description for simulated DM halos (see, e.g., [56])
and for real clusters’ data in ΛCDM (e.g., [57,58]), while
some other works have further suggested that the NFW
profile performs well also in modified gravity scenarios,
including chameleon gravity [59–62].
We are interested in finding the solution for the chame-

leon Eq. (3) in the presence of a matter density distribution
given by Eq. (6); in order to do that, we employ the
semianalytical approach followed by, e.g., [27]. The idea is
that, below some radius rc, the value of the scalar field in the
interior minimizes the effective potential VeffðϕÞ, which
represents the regime where the chameleon force does not
contribute and the solution is obtained by setting∇ϕ ¼ 0 on
the left side of Eq. (3). On the other hand, at larger distances,
the potential VðϕÞ is negligible and the second term in (4)
dominates the effective potential. The solution in this regime
is obtained by solving ∇2ϕ ¼ βϕρm=MPl. Therefore, we
obtain the complete semianalytical solution as

ϕðrÞ ¼
(
ϕs½r=rsð1þ r=rsÞ2� ¼ ϕint≃ 0 r < rc

− βρsr2s
MPl

lnð1þr=rsÞ
r=rs

− C
r=rs

þϕ∞ ¼ ϕout r > rc
: ð7Þ

In the above equation, ϕs is a constant that depends on
the characteristic density and the parameters of the potential
VðϕÞ. The integration constant C and the radius rc can be
specified by imposing the continuity of the solution and its
first derivative at r ¼ rc. Thus we have [27]

1þ rc
rs

≃
βρsr2s
MPlϕ∞

; ð8Þ

C ≃ −
βρsr2s
MPl

lnð1þ r=rsÞ þ ϕ∞r=rc: ð9Þ

The screening radius rc represents the transition below
which the chameleon field is screened, and as shown in
Eq. (8), it is completely determined by the other param-
eters of the model. In particular, the screening radius is
strongly dependent on the mass of the cluster M500 ∝ r3sρs
[see (20) and (21)]. This implies that in massive clusters
the screening mechanism tends to be very efficient, while
the fifth force is more active in lower mass halos
(e.g., [63]).
Note that the current formalism assumes coupling of the

chameleon field to both the dark matter and baryonic mass
components and that the total mass of the cluster is modeled
using a single NFW mass profile. This formalism is
equivalent to that followed in the earlier works [27,50]
and is an approximation that the contribution of the baryonic
component to the total mass is negligible in the radial ranges
explored and that a simple NFW profile is sufficient to
model the total mass accurately. Although there is a clear

possibility to introduce varied coupling for the different
mass components and the field, this is beyond the scope of
the current work. However, it is straightforward to model the
gas mass, which accounts for the largest contribution to the
baryonic mass, that does not couple with the chameleon
field, while the dark component does (see for example [64])
and perform the analysis, which we implement discuss in
Appendix A 2.
So far we have described the chameleon formalism

within the galaxy cluster sourced only by the self-screening.
However, it is important to point out that, the intercluster
environmental density distribution can generate an addi-
tional contribution to the fifth force [49,65]. This in turn is
the interplay between the external and the internal densities
distinguished by a scale. For example, [65] employs a scale
of rin=out ¼ 8 h−1Mpc (see also [66]) and averages over the
environmental effects. Taking into account the strong local
constraints, for example, (e.g., jfR0j ∼ 5 × 10−7 [67]), the
mass ranges (≥1014M⊙) of the local (z ≤ 0.1) galaxy
clusters utilized in this work, we infer the environmental
effects to be relatively small, providing only a mild
weakening of our constraints.

C. f ðRÞ analogy with chameleon field

fðRÞ gravity [68] is one of the most investigated
alternatives of GR at the cosmological level; in this class
of models, the Einstein-Hilbert action is modified by
adding a generic function of the Ricci scalar:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

16πG
½Rþ fðRÞ� þ Sm½ψ i; gμν�: ð10Þ

The functional form of fðRÞ can be chosen in such a way
that the background ΛCDM expansion history is repro-
duced as close as desired (see, e.g., [69]). The derivative of
the function fR ¼ ∂fR=∂R plays a role of a dynamical
scalar field which, under certain conditions can be con-
formally recast into a scalar-tensor model exhibiting
chameleon screening (see, e.g., [70]). This is possible in
particular if the scalar field fR ¼ ∂fR=∂R, called the
“scalaron,” has a large positive effective mass at high
curvature [71].
The field equation for fR is [69]

□fR ¼ ∂VeffðfRÞ
∂fR

; ð11Þ

which is analogous to Eq. (3) with the replacement

fR ¼ exp

�
−
2βϕ

MPl

�
; ð12Þ

and β ¼ ffiffiffiffiffiffiffiffi
1=6

p
[27,72]. The value of the scalar field for

the background today fR0 ¼ f̄Rðz ¼ 0Þ is proportional to
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the present value of the chameleon field at infinity as

fR0 ¼ −
ffiffi
2
3

q
ϕ∞
MPl

.

In the last decades, several works have placed con-
straints on fðRÞ gravity using different probes, both at
astrophysical (e.g., [62,67,73,74]) and at cosmological
(e.g., [27,49,50,75–79]) scales. Currently, the most strin-
gent bounds on the scalaron are of the order of fR0 ≲ 10−8,
for the Hu and Sawicki functional form of fðRÞ ([69]),
from galaxy morphology [80], while cosmological analy-
ses limit the background field to be fR0 ≲ 10−6 (e.g., [81]).

D. Hydrostatic equilibrium

For a spherical system that contains gas with pressure P
and density ρg, the hydrostatic equilibrium equation is
given by

1

ρg

dPðrÞ
dr

¼ −
GMð<rÞ

r2
; ð13Þ

where MðrÞ is the mass enclosed within the radius r, and
the above equation represents the balance between the force
induced by the gas pressure and the gravitational force.
However, in the current MG scenario, we have an addi-
tional force given by Eq. (5) induced by the existence of the
chameleon field, which contributes as a new term in the
hydrostatic equilibrium equation as [27]

1

ρg

dPðrÞ
dr

¼ −
GMðrÞ

r2
−

β

MPl

dϕðrÞ
dr

; ð14Þ

which upon integration provides

PðrÞ ¼P0−μmp

Z
r

0

neðrÞ
�
GMðrÞ

r2
þ β

MPl

dϕðrÞ
dr

�
dr; ð15Þ

Where μ is the mean molecular weight, P0 is an
integration constant, i.e., pressure at r ¼ 0, and neðrÞ is
the electron density at radius r. We further assume the
electron density to follow the Vikhlinin profile [82,83],

neðrÞ ¼ n0

�
r
r1

�
−αv=2

h
1þ ð rr2Þγv

i
−ϵv=2γvh

1þ ð rr1Þ2
i
3βv=2−αv=4

; ð16Þ

where we fix γv ¼ 3 as suggested in [82]. The electron
density profile above thus contains six parameters. While
the original Vikhlinin profile contains nine parameters, we
have earlier validated that the six-parameter reduced form is
sufficient for the dataset utilized here [84].

III. DATA AND LIKELIHOOD

A. X-COP clusters

We utilize nine X-COP clusters [41], following the
formalism utilized in an earlier work [84,85]. We keep the
current section brief as the utility of the datasets is
equivalent to the aforementioned application. While a
total of 12 clusters are available in the X-COP compilation,
in the current work we utilize only nine of them excluding
A644, A2255, and A2319. The three excluded clusters do
not favor the NFW mass profile, which is an integral
assumption in obtaining the semianalytical expressions for
the field in the formalism adopted here. We however
include A1644, which is reported to perform equivalently
for NFW and the best-fit Hernquist mass profile. We defer
the study of the effects of mass profile assumptions on the
constraints on the screening mechanisms to a later com-
munication. We show the final datasets of the electron
density (top), and pressure obtained using both x-ray and
SZ methods [86] (bottom) in Fig. 1.

B. Likelihood

The complete formalism introduced in Sec. II is
described by 10 parameters; two defining the chameleon
field (β and ϕ∞), two for the NFW profile (ρs and rs), the
remaining six parameters are from the expression of the
electron density given by Eq. (16). The individual like-
lihood (−2 lnL) for the pressure and electron density data
are then written as

FIG. 1. Top: radial profiles of the electron density [43]. Bottom:
pressure data obtained using the Compton effect (PSZ) and the
x-ray observations (PX) [41]. We show the data for all the nine
clusters we have utilized in the current analysis.

YACER BOUMECHTA et al. PHYS. REV. D 108, 044007 (2023)

044007-4



χ2P ¼ ðPobs
SZ − PSZÞΣ−1

P ðPobs
SZ − PSZÞT þ ln jΣpj

þ
X
i

�ðPXðriÞ − Pobs
X;i Þ2

σ2PX;i
þ σ2int

þ lnðσ2PX;i
þ σ2intÞ

�
; ð17Þ

χ2ne ¼
X
i

ðneðriÞ − nobse;i Þ2
σ2ne;i

; ð18Þ

respectively. The total χ2 function is then the summation of
individual contributions, upon which we perform the
Bayesian analysis and is given by

−2 lnLtot ≡ χ2ðΘne ;ΘNFW;ΘMGÞ ¼ χ2P þ χ2ne ; ð19Þ

whereinΘne ¼fn0;r1;r2;αv;βv;ϵvg,ΘNFW ¼ fM500; c500g,
and ΘMG ¼ fϕ∞;2; β2g. Refer to [84,85], for further details
on the likelihood and the inclusion of the intrinsic scatter
(σint) parameter.
Therefore, we perform an MCMC analysis over a 10-

dimensional parameter space ðn0; r1; r2;α; β;M500; c500;
ϕ∞;2; β2Þ, where the two parameters β2 and ϕ∞;2 are
compactified functions of β and ϕ∞, respectively, and
are given by β2 ¼ β=ð1þ βÞ and ϕ∞;2 ¼ 1 − expð−ϕ∞=
10−4MPlÞ. These new scaled parameters run in the interval
[0, 1], making the interpretation of the results straightfor-
ward. It is also convenient to use M500 and R500 instead
of ρs and rs, which are related through the following
relations [27]:

rs ¼
1

c500

�
M500

ð4π=3ÞΔcρc

�
1=3

; ð20Þ

ρs ¼
M500

4πr3s

�
lnð1þ c500Þ −

c500
c500 þ 1

�
−1
; ð21Þ

where c500 ¼ R500=rs is the concentration parameter, and
we have also Mðr < R500Þ ¼ M500 ¼ 4π

3
R3
500Δcρc, where

Δc ¼ 500 and ρc is the critical density at the cluster
redshift.
We emphasize that in our analysis we implement two

different priors on the mass parameter M500; however we
also perform the analysis without any restriction on the
mass, unlike previous work on other clusters (e.g., Coma
cluster in [27]), and therefore we anticipate testing possible
degenerate scenarios in the posterior parameter space
(allowed at some range of the virial mass), this is discussed
at length in Appendix A 1.

C. Weak lensing mass priors

Chameleon gravity belongs to a subset of scalar-tensor
theories for which the gravitational potential inferred by
lensing techniques corresponds to the Newtonian potential
(i.e., the contribution of the fifth force does not affect null
geodesics). As such, we can implement the information

provided by lensing estimation as prior on the “true” cluster
mass M500, as done in, e.g., [27,50]. We utilize the
estimates of M500 obtained using weak lensing analyses
in [87], wherein no information on the shape (c500) of the
mass profile is available. However, we find that mass
information is available only for five clusters in the sample,
A85, A1795, A2029, A2142, and ZW1215. In Table I, we
show the mean and 1σ uncertainties on M500 for these
clusters, taken from [87]. We beforehand anticipate that the
constraints on mass parameters we shall obtain using
the X-COP data will be much tighter than the uncertainty
of the weak lensing masses we use as priors.
We perform a full Bayesian analysis utilizing Eqs. (17)

and (18) to define the likelihood, through the publicly
available EMCEE

1 package [88,89], which implements an
affine-invariant ensemble sampler. To analyze the MCMC
chains we utilize either the CORNER and/or GetDist

2 [90]
packages. Also, we impose uniform flat priors on all the
parameters, specifically for the modified gravity parameters
fβ2;ϕ∞;2g ∈ ½0.001; 1.0�. As the current analysis provides
posteriors of exclusion within the parameter space, always
including the GR scenario, to the first order we refrain from
performing any model selection, which is bound to select
GR with higher preference.
Finally, we implement a simple importance sampling-

like routine to combine the constraints in the ΘMG
parameter space, obtained using the individual clusters.
Given that the parametersΘNFW andΘne are cluster specific
and are not expected to affect the joint constraints on the
ΘMG parameters which are of a global theory. Therefore,
we combine the MCMC samples of the ΘMG parameters
obtained from each of the clusters where the sample density
represents the values of the posterior (Bayesian confidence
levels). We take a subsample of thinned MCMC samples of
equal size and resample the joint posteriors. Essentially,
this approach is equivalent to marginalizing all the cluster-
specific parameters, while not being able to see the effect of
the joint analysis on them. The results of the combined
analysis are given in Sec. IV C.

TABLE I. We show the weak lensing masses utilized as mass
priors for the five clusters available from [87].a

Cluster M500½1014M⊙�
A85 5.7� 2.2
A1795 9.3� 2.2
A2029 12.1� 2.5
A2142 9.7� 2.3
ZW1215 3.5� 2.2

aWe utilize the mass estimated using the NFW mass profile
for consistency, please see the Table A2 in [87]. See also
Appendix A 1 for more comments.

1http://dfm.io/emcee/current/.
2https://getdist.readthedocs.io/.
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IV. RESULTS

We begin by presenting the constraints on the fϕ∞;2; β2g
parameter space for each of the nine clusters as shown in
Fig. 2, utilizing the internal mass prior, elaborated in the
next paragraph. The blue and light blue regions depict the
allowed parameter space at 2σ and 3σ, respectively, while
the white region consequently is excluded by the current
data at 3σ confidence level. We can already notice for all
clusters that, at low β2 (equally β), ϕ∞;2 is unconstrained: as

the coupling constant becomes negligible, the chameleon
field is decoupled from matter and can no longer be
constrained. Meanwhile, at large values of β, that is when
β2 ≃ 1, the coupling is too strong that the entirety of the
clusters will be screened, i.e., the screening radius is larger
than the size of the cluster in which case also all values of
ϕ∞;2 are allowed. We also find that at low values of β2, a
slightly larger part of the parameter space is excluded
compared to the results presented in [27,50], which in our

FIG. 2. 95%, 99% C.L. contours for all the clusters utilizing the internal mass prior. The vertical line shows the β2 ∼ 0.29,
corresponding to the fðRÞ scenario where β ¼ ffiffiffiffiffiffiffiffi

1=6
p

.
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results extends to β2 ∼ 0.2. In Fig. 2, this lower limit is what
we see as an almost vertical line in the contours that
separates the blue allowed region from the white excluded
one for lower values of β2. On the other hand, compared to
the same previous results, we find that the lowest possible
values for ϕ∞;2 are also lower, which further reduces the
allowed region providing tighter constraints in our analysis.
This is mainly due to the effect of the internal mass prior, as
we will discuss below.
We also point out that in the plots an exponential-shaped

bound appears in all of the posteriors of ðϕ∞;2; βÞ, which is
due to the fact that the formalism inherently takes into
account the assumption that the critical radius rc is a
positive quantity. From Eq. (8) it can be shown that this is
equivalent to regions below the curve of the following
equation:

ϕ∞;2 ¼ 1 − exp

�
−

β2
1 − β2

ρsr2s
10−4M2

Pl

�
: ð22Þ

As mentioned before, the contours of Fig. 2 are obtained
by adding a prior on the parameter M500. This is because
utilizing only the hydrostatic equilibrium data leads to a
strong degeneracy in the fM500; β2g parameter space,
which prevents us from placing any stringent bounds in
most of the cases. In earlier analyses this degeneracy was
broken by aiding the hydrostatic data with the mass priors
obtained from weak lensing analyses. We further elaborate
on this in Appendix A 1 (cf., Fig. 6).
To assess the constraints while excluding this degeneracy

we eliminate the lower mass regions by considering a lower
limit of β2 > 0.5 and constrain the posteriors for the
fM500; c500g, following which we construct the mass and

concentration priors, also taking into account the corre-
sponding covariance and reperform the analysis by expand-
ing the range of β2 ∈ ð0.0; 1.0Þ, as shown in Fig. 2. Hereon
we denote this prior as internal mass prior and elaborate in
Sec. IV B. We find that this degeneracy is usually present
within β2 < 0.5, corresponding to β < 1, accounting for a
decrease in the values ofM500 while the values of β increase,
following the expression of the thermal pressure in Eq. (15).
In clusters A85 and RXC1825 however, we find this
degeneracy to extend beyond β > 1. In particular, for
A85, we see that the internal mass prior is completely
unable to even reduce the degenerate region.
We then show the quantitative results of our analysis in

Table II we show the results of our analysis for the nine
X-COP clusters used in this work. We present in the first
column the 68% C.L. of the concentration parameter c500
and the mass M500 with the internal mass prior elaborated
above. We also present the 95% C.L. limits on the value of
the field ϕ∞;2 for β ¼ ffiffiffiffiffiffiffiffi

1=6
p

, which corresponds to the fðRÞ
subclass of chameleon model, presented in Sec. II. In the
subsequent columns we present the values at 95% C.L. we
obtain for the field ϕ∞;2 when imposing the weak lensing
mass prior presented in Fig. 3 and no mass prior, respec-
tively, which we added for completeness. Within parentheses
we show the conversion of ϕ∞;2 into jfR0j to get explicit
constraints on fðRÞ models. As can be seen, comparing the
internal mass prior and no prior scenario, the constraints
deteriorate substantially for all the clusters except A85 and
A3158. In the case of A85, these posteriors are dominated by
the presence of the degeneracy in fM500; β2g parameter
space. On the other hand, cluster A3158 shows the least
observed degeneracy. As for mass profile constraints, c500
andM500, presented in the first two columns of Table II, are

TABLE II. Constraints on parameters fc500;M500g and ϕ∞;2 at 68% and 95% C.L., respectively, from the analysis of each cluster in
the sample. The limits are obtained with three different methods: from columns two to four, the inclusion of an internal mass prior to
avoid the statistical degeneracy between mass and MG parameters, as discussed in Appendix A 1. Column five: Weak lensing (WL)
mass prior—which is available only for five clusters. Column six: no mass prior is taken into account. Note that the bounds onM500 and
c500 are shown only for the first case. The constraints on ϕ∞;2 are all presented for β ¼ ffiffiffiffiffiffiffiffi

1=6
p

, which corresponds to fðRÞ gravity. The
corresponding bounds on the parameter jfR0j are shown inside the parentheses.

Internal mass prior WL mass prior No mass prior

Cluster c500 M500 ½1014M⊙� ϕ∞;2ðjfR0j½10−5�Þ
A85 2.05þ0.07

−0.07 6.13þ0.18
−0.18 0.272(2.592) 0.279(2.671) 0.276(2.637)

A1644 1.13þ0.11
−0.14 2.95þ0.20

−0.20 0.226(2.092) = 0.942(23.25)
A1795 3.17þ0.14

−0.14 4.48þ0.15
−0.15 0.146(1.289) 0.319(3.137) 0.874(16.91)

A2029 3.20þ0.13
−0.13 7.70þ0.24

−0.24 0.208(1.904) 0.396(4.117) 0.942(23.25)
A2142 2.22þ0.08

−0.08 8.32þ0.19
−0.19 0.198(1.802) 0.213(1.956) 0.498(5.627)

A3158 1.98þ0.14
−0.14 3.96þ0.16

−0.16 0.216(1.987) = 0.281(2.694)
A3266 1.61þ0.11

−0.11 7.21þ0.28
−0.32 0.245(2.295) = 0.804(13.30)

RXC1825 2.54þ0.20
−0.24 3.90þ0.17

−0.15 0.146(1.289) = 0.358(3.619)
ZW1215 1.40þ0.09

−0.09 7.43þ0.29
−0.29 0.342(3.417) 0.892(18.17) 0.567(6.834)

Joint � � � � � � 0.106 (0.915) 0.130 (1.139) � � �
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the same as the GR values up to a 1σ confidence level [84],
they are very much in agreement with those estimated for
DHOST gravity as presented therein.
One can also notice that in the case where we consider an

internal mass prior the constraints get considerably tighter,
for instance, the A1795 field value is eight times tighter than
the one with no mass prior and three times than the one with
the weak lensing prior (which is yet a good constraint
compared to the one with no mass prior). Also, we point out
that the two-dimensional posteriors are visually much tighter
than those previously presented for Coma cluster [27] and
XMM clusters in [50]. We later perform a more qualitative
comparison for the jfR0j, in the fðRÞ scenario.

A. Constraints using weak lensing mass prior

In this section, we present the constraints obtained on the
five clusters for which the weak lensing mass priors are
included from the results of [87], namely A1795, A2029,
A2142, A85, and ZW1215. While aiding in the analysis
as an independent prior on the mass of the cluster, this
also reduces the aforementioned degeneracy between the

fβ2;M500g parameters. The constraints on the modified
gravity parameters are shown in Fig. 3. Note that for the
cluster ZW1215 alone the inclusion of the WL prior does
not aid the constraint and on the other hand, slightly
deteriorates the upper limits. This is clearly the case, as
the prior itself is an estimated lower value aiding the
degeneracy region, with a mass of order 3.5½1014M⊙�.3
However, this does not hinder our ability to constrain
the modified gravity parameters in the joint analysis, as
discussed in Sec. IV C. And it is apparent that the
degeneracy that remains in the A85 cluster does not affect
the joint constraint being guided by the other cluster.
As expected, we notice that the WL mass prior is capable

of reducing the degeneracy elaborated earlier and making
the posteriors in the fϕ∞;2; β2g slightly more constrained.
Note however that the WL mass estimates do present a
mass bias (b = MWL

500=M
HS
500), which is slightly larger than

unity (b ∼ 1.18� 0.12) [41] at R500. However, in terms of

FIG. 3. 95% and 99% C.L. contours for weak lensing priors for five of the clusters. In the lower right panel, we present the joint
constraint obtained by combining all five clusters. The dashed vertical line represents the β ¼ ffiffiffiffiffiffiffiffi

1=6
p

, corresponding to the fðRÞ
scenario.

3Note that [87] also present the weak lensing mass for the
ZW1215 cluster, including others using varied methods, which is
higher ∼7 × 1014½M⊙�.
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the constraints, even the inclusion of the WL mass prior
is not able to remove the degeneracy completely, which
can be seen as a mild bump in the posteriors presented in
Fig. 3. This is clearly due to the larger uncertainties on
the WL masses in comparison to the constraints on
M500 obtained from the hydrostatic equilibrium. Our
formalism here validates that having a well-constrained
independent mass estimate from the WL method, where
the weak lensing potential is unaffected by the chameleon
gravity and can be very beneficial for constraining the
parameters.

B. Parameter degeneracy

Alongside obtaining the constraints on fϕ∞;2; β2g
parameters, we also comment on the degeneracy(s) that
we notice between the cluster mass profile parameters and
the modified gravity parameters. As can be seen in Fig. 6,
an increase in β2 or ϕ∞;2 is compensated by lower values of
M500. This is not surprising, given the structure of the
modified Newtonian potential in Eq. (15). This degeneracy
is also visible in the marginalized posterior distribution of
ϕ∞;2 and β2 as a bump, highlighting the necessity of a mass
prior to hydrostatic equilibrium data. In fact, we can notice
that the degeneracy reduces as soon as we add additional
information on M500, and the tighter this mass prior, the
lesser the degeneracy we have. Earlier hydrostatic equilib-
rium analysis which always considered the WL counterpart
did not find such a degeneracy, for instance using COMA
cluster in [27] and XMM cluster in [50].
We can also see this quantitatively from the condition we

impose in our model to estimate the screening radius, which
gives a direct relation between M500 and β. In particular,
replacing Eqs. (20) and (21) into (8) one can write

1þ rc
rs

∼
1

M−5=2
500

β

ϕ∞
fðc500Þ: ð23Þ

Here fðc500Þ is a function that only depends on the shape of
the profile (c500). At this stage, if we impose the condition
that maps all negative rc to rc ∼ 0 we get from above
β
ϕ∞

∼M−5=2
500 , this means that when the coupling constant β is

low, the mass gets higher, which creates a region where the
higher the mass, the lower the coupling and vice versa, as
can be seen in Fig. 6. Also within the hydrostatic equilib-
rium equation, the contribution of the gravitational force and
the fifth force, are scaled by M500 and β, respectively. The
summation of these two forces provides the derivative of the
pressure and not knowing the integration constant Pðr ¼ 0Þ
beforehand allows only the shape to be constrained and
hence the degeneracy between these two forces is propa-
gated to the corresponding parameters.
One can also notice in the fϕ∞;2;M500g plot of Fig. 6

that the same degeneracy holds: lower values of the mass
correspond to slightly higher ϕ∞;2 (equally ϕ∞). This
region appears only for low mass values and coupling
constant β2 < 0.5 (i.e., β < 1.0). As for the higher masses
limit, this degeneracy disappears with the coupling strength
approaching β2 → 0. Therefore to avoid such a statistical
degeneracy we construct an internal mass prior based on
the mass values we get for β2 > 0.5 and then run the
MCMC chain again to get the new posteriors, and this will
erase the degeneracy issue as shown in Fig. 2. Alternatively,
adding the WL mass prior will remarkably reduce the
degeneracy region as shown in Fig. 6 and the posteriors are
shown in Fig. 3.

C. Joint analysis

Considering that the clusters utilized in the analysis are
independent datasets, we explore the possibility to obtain
joint constraints on the modified gravity parameters
fϕ∞;2; β2g. In principle, the background field should
evolve in cosmic time. However, given the small redshift
range (0.04 ≤ z ≤ 0.09) spanned by the sample, we can
safely neglect any redshift dependence and assume
ϕ∞ðzÞ ∼ ϕ∞ðz ¼ 0Þ, essentially constraining the local
value of the field. In Fig. 4 and the lower right panel of
the Fig. 3, we show the joint constraints using nine clusters
and five clusters with the WL mass priors, respectively.
First, the overall posterior parameter space in Fig. 4 is
greatly reduced when the 9 clusters are combined display-
ing the ability of the current hydrostatic data to constrain
the chameleon screening model, improving the constraints
from the earlier analysis in [27,50]. Note that the internal
mass prior plays a very important role in allowing such
tight constraints. The joint constraints using the five
clusters using the WL mass prior as well is a tighter
constraint with a mild residual of the degenerate region.

FIG. 4. 95% and 99% C.L. contours for joint constraint
utilizing the internal mass priors for nine of the clusters. The
dashed vertical line represents the β ¼ ffiffiffiffiffiffiffiffi

1=6
p

, corresponding to
the fðRÞ scenario.
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D. Joint constraints on f ðRÞ gravity
In the following we use the results of our joint analysis of

the chameleon parameter space to place constraints on the
background scalaron field fR0, neglecting the redshift
dependence. Starting from the joint posteriors of Figs. 4
and 3, we consider the slice of parameter space ðβ2;ϕ∞;2Þ
for a constant value of β2 ∼ 0.29 (i.e., β ¼ 1=

ffiffiffi
6

p
). We then

derive the corresponding posterior Pðϕ∞jβ ¼ 1=
ffiffiffi
6

p Þ,
which is further related to fR0 as a particular case of the
chameleon coupling, discussed at the end of Sec. II. In

Fig. 5 we plot the distributions PðfR0Þ for the nine-clusters
joint case, assuming internal mass priors (top), and for the
combination of five clusters with weak lensing priors on
M500 (bottom). The colored areas in gray indicate the
regions corresponding to the 95% C.L. As already men-
tioned, the mass priors play a fundamental role in breaking
the degeneracy among the model’s parameters. In the case
of weak lensing information, the priors are not sufficient to
remove all the degeneracy, resulting in a bump in the
scalaron distribution of individual clusters. Although the
individual clusters in the case of WL priors show a bimodal
distribution (except for A85), the joint analysis however is
capable to providing a tighter constrain owing to the fact
that the second mode in the posterior distribution is spread
across the values of the ϕ∞;2 and consequently in fR0. As
our final constraints, we quote

jfR0j < 9.1 × 10−6;

at 95% C.L. for the nine-clusters combined analysis, and
similarly

jfR0j < 1.1 × 10−5;

for the five-cluster weak lensing case.
Within the posteriors of the ϕ∞;2 shown in the bottom

panel of the Fig. 5, one could distinguish three distinct
contributions (except for A85). The first peak which mainly
contributes to joint constraint is marginalized for the M500

that does not include the degeneracy, with either of
fϕ∞;2; β2g. While the second peak is an outcome of slightly
lower masses, and larger values of the c500 parameter,
essentially implying a modification to the shape of the mass
profile. Finally, the extended tail of the distribution seen for
ϕ∞;2 > 0.5 is due to the mild degeneracy between
fϕ∞;2;M500g, for even lower values of M500. However,
in the joint analyses, the latter two features do not amplify
being varied nonoverlapping distributions.
Earlier in [27], a constraint of jfR0j < 6 × 10−5 was set

using the hydrostatic and weak lensing observables of the
Coma cluster at z ¼ 0.02, which is even more local in
comparison of the redshift range z ∈ f0.04; 0.09g of
current X-COP clusters. In this context all the individual
clusters in the current analysis provide a tighter constraint
(see column 4 of Table II) and almost an order tighter joint
constraint when combining all the data. Our constraint here
is also tighter with respect to to the 58 stacked cluster
analysis in [50], which considers XMM cluster survey and
CHFTLenS weak lensing observations in a large redshift
range of z ∈ f0.1; 1.2g. In principle, such a joint analysis
considers no cosmological evolution in the field. Other
works that used galaxy clusters estimated jfR0j < 10−5

(e.g. [76,77]); moreover, [63] forecasted a value of jfR0j <
10−6 from the combination of lensing and kinematics mass
profile reconstructions of a reasonable sample (∼10) of

FIG. 5. Probability distributions for ϕ∞;2 (fR0 depicted on the
top axis) obtained for the specific case of β ¼ 1=

ffiffiffi
6

p
for all the

clusters within the compilation and the consequent 95% C.L.
regions for the joint analysis (shaded in gray). Top: nine clusters
with an internal mass prior. Bottom: five clusters for which a WL
mass prior was available. Please note the difference in the limits
of axes in the two figures.

YACER BOUMECHTA et al. PHYS. REV. D 108, 044007 (2023)

044007-10



clusters. Our analysis confirms that constraints of the same
order of magnitude can be reached with a combination of
high-quality x-ray cluster data with physically motivated
priors in the cluster masses. It is also worth noticing that the
bounds derived here are model independent, i.e., no
particular functional form for fðRÞ has been assumed.

V. CONCLUSIONS

In this paper, we have implemented a formalism,
following what done in previous works [27,50], to test
the chameleon screening in galaxy cluster utilizing the
hydrostatic equilibrium data. We have constrained the two
parameters describing the chameleon field, the coupling
constant β and the value of the field at infinity ϕ∞ by
analyzing the dynamics of nine galaxy clusters in the X-
COP sample. The chameleon field manifests as a fifth force
beyond a certain critical screening radius within a cluster
that adds up to the gravitational potential. By performing a
full Bayesian analysis of the x-ray-emitting gas pressure
and the SZ pressure, along with the electron density, we
obtain limits on the aforementioned parameters, essentially
excluding a part of the parameter space for this modified
gravity scenario. We summarize the results as follows:
(1) We find that adding a physically motivated mass

prior to our analysis will give a remarkably tight
constraint, breaking the degeneracy among model
parameters (see also Appendix A 1). For instance, as
the main result we present Fig. 2, where we construct
an internal mass prior by eliminating the low mass
degenerate regions and use the posterior as a prior in
the new MCMC chains, obtaining very tight con-
straints on fβ;ϕ∞g compared to previous analysis of
Coma cluster [27] and stacked analysis of XMM
clusters [50].

(2) We have then included additional information on
M500 from weak lensing analysis in [87] (see Fig. 3).
While the results are comparable to what we
obtained with the internal mass prior, the weak
lensing data are not tight enough to remove the
degeneracy completely.

(3) We present our final results in Table II where we
show all the constraints obtained using different
mass priors and report a joint constraint eventually
on the fðRÞ class of models presented in Sec. II.

(4) We note that marginalizing or fixing the electron
density profile shows no effect on the constraints
obtained for the chameleon parameters (see Fig. 7).
And briefly discuss the change in constraints when
gas mass is included in the analysis without being
coupled to the chameleon field.

It is worth pointing out that we have considered only
clusters for which the total mass profile (in GR) is well
described by the NFW model. Although this choice is
physically well motivated, it is important to explore the
effect of different mass parametrizations that may better

describe the total matter distribution within galaxy clusters
in theories of gravity alternative to GR. Indeed the NFW
model, despite its wide range of applicability over different
scales, might not be the best profile to reproduce the mass
distribution of halos in a modified gravity scenario (see,
e.g., [91] and references therein). In particular, the effi-
ciency of the screening mechanism in chameleon gravity is
strictly dependent on the mass model, as one can see from
Eq. (4). Finally, in Appendix A 4 we make a validation of
our constraints with the concentration-mass scaling relation
present in the literature.
Moreover, as shown in [63], the inclusion of kinematics

of the member galaxies in clusters to constrain the
chameleon parameters can help in reducing the degeneracy
even further: both galaxy and ICM move at nonrelativistic
velocities, following the same gravitational potential.
However, the underlying physics is different, leading to
distinct degeneracy among model parameters. We will
investigate these aspects in an upcoming work.
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APPENDIX

1. Effects of mass prior

In this section, we briefly comment on the different
priors choices and systematics due to the electron density
data modeling, considering cluster A2142 as an exemplar.
In Fig. 6, we compare the posteriors obtained, with and
without the inclusion of the mass priors. The strong
degeneracy between the mass of the cluster (M500) and
the chameleon parameters, can be clearly noticed in the
contours shown in blue, deforming the two-dimensional
Gaussian expectation in the M500 parameter space. When
the WL mass prior is added (shown in red), the degeneracy
region shrinks providing more exclusion region in the
chameleon parameters. This is completely independent of
any analysis choices made and only due to the WL mass
prior which is an independent observable, therefore aiding
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to the constraints. In blue, we show the posteriors when the
internal mass prior is considered. As elaborated in Sec. IV,
this prior is taken from the posterior, when the MCMC
analysis is performed with a β2 > 0.5 limit. And as
expected the mass degeneracy is completely eliminated
finding much tighter constraints in the exclusion region.
Note that both the mass priors do not modify the constraints
of the chameleon parameters for β2 > 0.5.

2. Effects of gas mass and fixing density (ne) profiles

In Fig. 7, we show as an example the comparison of the
contours showing the constraints when the electron density
parameters are allowed to vary in MCMC analysis against
the case when they are fixed to the mean values obtained
from the former case. We find that the uncertainty in the
electron density parameters does not add to the overall
uncertainty in the chameleon parameter space. This can be
understood straightaway as there is no expected coupling to
the gas density and the mass profile of the dark matter is
modeled via the NFW profile and is assumed to be
equivalent to the total mass of the cluster. Noting this as
an advantage, we first perform the analysis marginalizing
the electron density parameters and later fixing them to
obtain our final results presented in Sec. IV. This essentially
helps to span the fϕ∞;2; β2g parameter space effectively in
comparison to the case when all the 10 parameters are
allowed to vary, where the posteriors might be affected by
the sampling methods.

As discussed earlier in Sec. II, we test for the possibility
to model the gas mass and the dark matter components
separately assuming that only the dark matter couples with
the chameleon field. We show the results of the same in
Fig. 8, which can be contrasted against Fig. 6 for the same

FIG. 7. We show the 95% and 99% C.L. contours for
A2142 cluster, wherein the blue contours represent analysis
where electron density parameters are fixed. The green contours
show the case where the electron density parameters are mar-
ginalized upon.

FIG. 8. We show the 95% and 99% C.L. contours for A2142
cluster, wherein the blue contours represent analysis where the
gas mass is neglected. The green contours show the case where
the gas mass is taken into account in the total pressure.

FIG. 6. We show the 95% and 99% C.L. contours for A2142
cluster, where the orange contours represent the ones with no
mass prior is taken into account, the red ones with the weak
lensing mass prior and the blue ones correspond to the internal
mass prior case. We notice that the degeneracy region gets
reduced when we have an additional mass prior.

YACER BOUMECHTA et al. PHYS. REV. D 108, 044007 (2023)

044007-12



cluster assuming one mass profile that models both the gas
and dark matter components coupled to the field. We verify
that this scenario, which is capable of mildly addressing the
degeneracy between the M500 and the β2 parameter,
eventually does not affect the final constraints on the
chameleon parameters. Also reflecting as a change in the
vertical cutoff for the lower values of β2, which is partially
due to the reduction in degeneracy. Also implying that
when the coupling between the baryons (gas) and chame-
leon is not accounted for correctly, considering a single
mass profile as a proxy for both dark and baryonic
components is a more conservative approach.

3. Alternative weak lensing mass priors

As noted earlier in Secs. III and IV, [87] provide weak
lensing mass estimates using both the NFW density profile
assumption (MNFW

500 ) and an alternative method, fitting the
mean convergence within an aperture radius (Map

500), which
is independent of the mass profile assumptions. First, we
notice that the two masses presented therein are mostly in
agreement, and utilizing either of them does not change
our final constraints, except for the cluster ZW1215 with
Map

500 ∼ 2 ×MNFW
500 . We validate that replacing the ZW1215

prior in Table I with the higher Map
500, considerably

improves the exclusion region, however, the joint con-
straint remains unaltered. Therefore, we remain to present
our final results with the WL mass priors as the values of
M500 found assuming the NFW mass profile.

4. cðMÞ relationships as priors
Since two of the main parameters in our study are c500

and M500, we can straight away compare our constraints
with the well-established scaling relationships between the
concentration c200 and the corresponding mass M200 in
galaxy clusters [94,95]. These relations can be extended to
the case of modified gravity namely in the case of Hu-
Sawicki fðRÞ model used above, see [96,97]. As elaborated
in [96] the current relation [95] holds also for all but low
masses at low redshifts and within the fðRÞ case consid-
ering small values of jfR0j. Both these conditions are met
for the nine clusters used in our analysis (see Table II). Since
we have this well-known relation between the concentration
and the mass validated against the independent analyses of

the clusters, one could utilize it as a prior when assessing the
modified gravity parameters, perhaps eliminating some
degeneracy in the posteriors. However, note that the
dispersion of the scaling relation is larger by an order
≳2 for at least six of the clusters which are well within the
1σ region, and for three other clusters the constraints are in
agreement at ∼2σ. We show a comparison of our constraints
and the scaling relation taken from [94] in Fig. 9. for the
case without any mass prior and with the internal mass prior,
in open and filled markers, respectively. We see from the
plot that the internal mass prior shifts the masses towards
higher values and makes the mass tighter (see Sec. IV B), as
expected. However, this also validates that adding the
scaling relation as a prior would have a mild to no effect
on the position of these clusters in the cðMÞ space. Note, for
example, that cluster A1644, which is the most discrepant
with respect to the scaling relation, also prefers a mass
model other than NFW [41]. Therefore, we defer the
analysis utilizing the scaling relation as prior to future
work, assessing also the effects of assumed mass models on
mass and modified gravity parameters, simultaneously.
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