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A B S T R A C T 

Recent years have witnessed rapid progress in observations of the epoch of reionization (EoR). These have enabled high- 
dimensional inference of galaxy and intergalactic medium (IGM) properties during the first billion years of our Universe. 
Ho we ver, e ven using efficient, seminumerical simulations, traditional inference approaches that compute 3D lightcones on-the- 
fly can take 10 

5 core hours. Here we present 21CMEMU : an emulator of several summary observables from the popular 21CMFAST 

simulation code. 21CMEMU takes as input nine parameters characterizing EoR galaxies, and outputs the following summary 

statistics: (i) the IGM mean neutral fraction; (ii) the 21-cm power spectrum; (iii) the mean 21-cm spin temperature; (iv) the 
sk y-av eraged (global) 21-cm signal; (vi) the ultraviolet (UV) luminosity functions (LFs); and (vii) the Thomson scattering optical 
depth to the cosmic microwave background (CMB). All observables are predicted with sub- per cent median accuracy, with a 
reduction of the computational cost by a factor of o v er 10 

4 . After validating inference results, we showcase a few applications, 
including: (i) quantifying the relative constraining power of different observational data sets; (ii) seeing how recent claims of a 
late EoR impact previous inferences; and (iii) forecasting upcoming constraints from the sixth observing season of the Hydro g en 

Epoch of Reionization Array ( HERA ) telescope. 21CMEMU is publicly available, and is included as an alternative simulator in 

the public 21CMMC sampler. 

Key words: cosmology: theory – dark ages, reionization, first stars – methods: statistical – methods: data analysis. 
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 I N T RO D U C T I O N  

he cosmic dawn (CD) of the first luminous objects and eventual 
eionization of the Universe remain among the greatest mysteries 
n modern cosmology. Recent years have seen a dramatic increase 
n observations of the CD and epoch of reionization (EoR). These 
nclude: (i) the Ly α forest (e.g. Fan et al. 2006 ; Becker, Rauch &
argent 2007 ; Becker et al. 2015 ; Bosman et al. 2018 ; D’Odorico
t al. 2023 ); (ii) damping wings in quasar spectra (e.g. Bolton et al.
011 ; Mortlock et al. 2011 ; Ba ̃ nados et al. 2018 ; Wang et al. 2020 ;
ang et al. 2020 ); (iii) Ly α emission from galaxies (e.g. Ouchi et al.
010 ; Cl ́ement et al. 2012 ; Konno et al. 2014 ; Drake et al. 2017 ;
oag et al. 2019 ; Shibuya et al. 2019 ); (iv) large-scale polarization of

he cosmic microwave background (CMB; e.g. Planck Collaboration 
020 ; de Belsunce et al. 2021 ; Heinrich & Hu 2021 ); (v) secondary
inetic Sunaev–Zeldovich (kSZ) CMB anisotropies (e.g. Das et al. 
014 ; George et al. 2015 ; Reichardt et al. 2021 ); (vi) upper limits
n the cosmic 21-cm power spectrum (PS; e.g. Mertens et al. 2020 ;
 E-mail: daniela.breitman@sns.it 
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rott et al. 2020 ; The HERA Collaboration 2022a , b ). This is set to
ulminate with a 3D map of H I during the first billion years, expected
ith the upcoming Square Kilometer Array (SKA; e.g. Mellema et al. 
013 ; Koopmans et al. 2015 ; Mesinger 2019 ). 
In step with these observational advances, Bayesian inference 

echniques have been developed that allow us to forward model 
he observations and constrain the parameters of reionization as 
ell as the galaxies responsible (e.g. Choudhury & Ferrara 2005 ;
reig & Mesinger 2015 ; Mesinger et al. 2015 ; Mason et al. 2018 ;
reig, Mesinger & Ba ̃ nados 2019 ; Ghara et al. 2020 ; Mondal et al.
020 ; Choudhury, Paranjape & Bosman 2021 ; Qin et al. 2021 ;
bdurashidova et al. 2022 ; Maity & Choudhury 2022 ; Nikoli ́c et al.
023 ). These rely on efficient simulators, so-called seminumerical 
imulations (e.g. Mesinger & Furlanetto 2007 ; Thomas et al. 2009 ;
antos et al. 2010 ; Mesinger, Furlanetto & Cen 2011 ; Visbal et al.
012 ; Ghara, Choudhury & Datta 2015 ; Murray et al. 2020 ; Maity &
houdhury 2022 ; Schneider et al. 2022 ; Trac et al. 2022 ), that

ypically approximate computationally e xpensiv e radiativ e transfer 
ith approaches based on cheap fast fourier transforms. Ho we ver, in-

erence can be computationally e xpensiv e ev en with semi-numerical
imulations. As an example, the recent, state-of-the-art inference 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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sing nine galaxy parameters in Abdurashidova et al. ( 2022 ; hereafter
ERA22 ) took ∼ 10 5 core hours on an HPC center: roughly 10 5 

ikelihood e v aluations each taking ∼ 1 core hour to simulate the
orresponding observables. 

A popular alternative approach is to use emulators (e.g. Kern et al.
017 ; Schmit & Pritchard 2017 ; Shimabukuro & Semelin 2017 ;
ennings et al. 2019 ; Ghara et al. 2020 ; Mondal et al. 2022 ; Bye,
ortillo & Fialkov 2022 ; Lazare, Sarkar & Kovetz 2023 ). Once

rained on a set of simulation outputs, an emulator can replace
he e xpensiv e, on-the-fly simulation step in Bayesian inference: a
ingle likelihood e v aluation taking ∼ 0.1 s instead of ∼ 1 h. As
uch, the computational cost is amortized , requiring only the initial
ata base of simulations in order to perform subsequent, ine xpensiv e
nferences. 1 Of course, such amortized inference is restricted to the
heoretical model that is used to train the emulator. Moreo v er, there
s also the additional emulator error to account for, which can be
on-negligible for high precision measurements and in corners of
arameter space that are poorly sampled (e.g. Kern et al. 2017 ;
ppendix B of HERA22 ). Nevertheless, emulators allow us to rapidly
erform many inferences of the same model, testing the impact on
he posterior of different likelihood choices, priors, and new data.

oreo v er, the emulator error is sub-dominant compared with current,
elati vely lo w signal-to-noise ratio (S/N) observ ations, such as the
1-cm power spectrum upper limits. 
Here we present 21CMEMU 

2 – a public emulator of several
ummary outputs from the seminumerical code 21CMFAST . 3 These
nclude (i) the v olume-a veraged hydrogen neutral fraction; (ii) the
1-cm power spectrum; (iii) the global 21cm brightness temperature;
iv) the neutral intergalactic medium (IGM) spin temperature; (v)
he ultraviolet (UV) luminosity functions (LFs); (vi) the Thomson
cattering optical depth of CMB photons. Our emulator was trained
n summary observables from the withHERA inference in HERA22 ,
hich sampled nine astrophysical parameters that characterize
alaxy properties. As a result, our work presents a few important
mpro v ements o v er previous emulators. The unprecedented number
f summary outputs allows us to include complementary multiwave-
ength probes of high- z galaxies and the EoR when computing the
ikelihood. Moreo v er, our physically moti v ated galaxy parametriza-
ion (Park et al. 2019 ) allows us to easily moti v ate dif ferent choices
f priors. We will periodically update 21CMEMU to include new
ummary outputs and astrophysical models. 

We showcase our emulator by re-analysing the HERA power
pectrum upper limits published in HERA22 . We also perform
nferences including various combinations of the data, illustrating
he constraining power of each probe on the posterior. One call of
1CMEMU takes ∼0.1 s (compared to ∼1 h for 21CMFAST ), with a
ypical inference finishing in a few hours. 

This paper is organized as follows. In Section 2 , we introduce the
ata used to train the emulator. In Section 3 , we introduce the network
nd discuss its architecture, training procedure, and performance. In
ection 4 , we showcase applications of the emulator to EoR/CD in-
NRAS 527, 9833–9852 (2024) 

 Another form of amortized inference is to train neural density estimators 
o fit the likelihood or likelihood/evidence ratio using simulated data (e.g. 
lsing, Wandelt & Feeney 2018 ; Papamakarios, Sterratt & Murray 2018 ; 
ole et al. 2022 ). This is referred to as simulation-based inference (SBI), and 
as the additional benefit of not having to specify an explicit functional form 

or the likelihood. SBI has recently been applied to mock 21cm observations 
Zhao et al. 2022a ; Zhao, Mao & Wandelt 2022b ; Prelogovi ́c & Mesinger 
023 ; Saxena et al. 2023 ), with very promising results. 
 https:// github.com/ 21cmfast/ 21cmEMU 

 https:// github.com/ 21cmfast/ 21cmFAST 
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erence problems. We conclude in Section 5 . We assume a flat � CDM
osmology, with ( �� 

, �m 

, �b , h, σ8 , n s ) = (0.69, 0.31, 0.049, 0.68,
.82, 0.97), consistent with results from (Planck Collaboration 2020 ).
nless stated otherwise, all lengths are in comoving units. 

 SIMULA  TED  DA  TA  SET  

ur data sets for training and testing are taken from the withHERA
nference from HERA22 , using an increased number of livepoints
18k). This inference used the Multinest (Feroz, Hobson &
ridges 2009 ) sampler in 21CMMC 

4 (Greig & Mesinger 2015 , 2017 ,
018 ) with a flat prior on all astrophysical parameters within the
anges shown in all of the corner plots (e.g. Fig. 6 ). The likelihood
as determined by current observations of the EoR history, galaxy
Fs and 21cm upper limits (discussed in detail in Section 4.1 ). 
We use all of the MULTINEST outputs, including both accepted and

ejected samples, resulting in 1.8M parameter samples. Of these, we
andomly select 1.28M for training, 183k for validation and 330k for
esting. The data base is standardized (subtract the mean and divide
y the standard deviation of each summary statistic) before being
assed into the network for training. 
Our data sets are generated with the public 21CMFAST v3 code

Mesinger & Furlanetto 2007 ; Mesinger, Furlanetto & Cen 2011 ;
urray et al. 2020 ). 21CMFAST is a seminumerical simulation code

hat operates under the assumption that dark matter halos host galax-
es which source inhomogeneous large-scale cosmic radiation fields.

atter density and velocity fields are generated using second-order
agrangian perturbation theory (e.g. Scoccimarro 1998 ). Galaxy
roperties are assigned to dark matter halo fields using empirical
caling relations, following the parametrization in Park et al. ( 2019 ).
he ionizing, X-ray, and soft UV cosmic radiation fields sourced
y these galaxies are computed with a combination of excursion set
nd direct integration along the lightcone. The ionization and thermal
tate of the IGM gas are then tracked with a set of coupled differential
quations, allowing us to compute the various observables discussed
elow. The HERA22 runs that form our data base assumed a simula-
ion box length of 250 cMpc, with a 128 3 grid. For further details on
he simulation code, the interested reader is directed to (Mesinger &
urlanetto 2007 ; Mesinger, Furlanetto & Cen 2011 ; Murray et al.
020 ). Below we summarize the astrophysical parameters used
s input to 21CMEMU , and the summary observables that are the
orresponding output. 

.1 Galaxy model and astrophysical parameters 

he input consists of nine parameters that characterize bulk galaxy
roperties. Two parameters ( f ∗, 10 , α∗) describe the stellar–to–halo
ass relation (SHMR), which is a power law for the faint galaxies

hosted by M h � 10 12 M � halos) that dominate the cosmic radiation
elds at z > 5 (e.g. Kuhlen & Faucher-Gigu ̀ere 2012 ; Dayal et al.
014 ; Behroozi & Silk 2015 ; Mutch et al. 2016 ; Sun & Furlanetto
016 ; Yue, Ferrara & Xu 2016 ), 

M ∗
M h 

( M h ) = f ∗, 10 

(
M h 

M 10 

)α∗ (
�b 

�m 

)
. (1) 

ere �b is the universal baryon energy density (as a fraction of the
ritical energy density), �m 

is the total matter (i.e. cold dark matter

nd baryon) energy density, and f ∗ ≡ f ∗, 10 

(
M h 

M 10 

)α∗ ∈ [0 , 1] is the

tellar fraction, with f ∗, 10 corresponding to the fraction of galactic
 https:// github.com/ 21cmfast/ 21CMMC 

https://github.com/21cmfast/21cmEMU
https://github.com/21cmfast/21cmFAST
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as in stars normalized to the amount in a halo of mass M 10 ≡ 10 10 

 �, and α∗ the power-law index. 
Star formation is assumed to occur on a time-scale that goes with

he Hubble time, H 

−1 ( z) (or analogously the dynamical time, which
lso scales with the Hubble time during matter domination), 

˙
 ∗ = 

M ∗
t ∗H 

−1 ( z) 
. (2) 

he characteristic star formation time-scale, t ∗ ∈ [0, 1], is another 
ree parameter. 

The typical ionizing escape fraction, f esc ( M h ) ∈ [0, 1] is similarly
escribed by a power law (e.g. Paardek ooper, Khochf ar & Dalla
ecchia 2015 ; Kimm et al. 2017 ; Lewis et al. 2020 ), 

 esc ( M h ) = f esc , 10 

(
M h 

M 10 

)αesc 

, (3) 

ith two free parameters: the normalization, f esc, 10 , and the power- 
a w inde x, αesc . 

Star formation is suppressed in small mass halos due to inefficient 
as cooling and/or feedback (e.g. Hui & Gnedin 1997 ; Springel &
ernquist 2003 ; Okamoto, Gao & Theuns 2008 ; Sobacchi & 

esinger 2013 ; Xu et al. 2016 ; Ma et al. 2020 ; Ocvirk et al.
020 ). We account for this suppression by assuming only a fraction
xp ( −M turn / M h ) of halos host active star forming galaxies. The
haracteristic halo mass scale below which the abundance of galaxies 
s exponentially suppressed, M turn , is another free parameter. 

The specific X-ray luminosity escaping the galaxies is also taken 
o be a power law in energy (e.g. Das et al. 2017 ), L X ∝ E 

−αX , with
he index αX left as a free parameter. The luminosity is normalized 
ia the soft band X-ray luminosity per unit star formation rate (SFR),
nother free parameter, 

 X< 2 keV / SFR = 

∫ 2 keV 

E 0 

dE L X / SFR , (4) 

here E 0 , the last input parameter, is the minimum energy of X-ray
hotons capable of escaping their host galaxy. 
In summary, the nine input parameters are: 

(i) f ∗, 10 : normalization of the SHMR, defined at M h = M 10 . 
(ii) α∗: power-law index of the SHMR. 
(iii) f esc , 10 : normalization of the ionizing escape fraction to halo 
ass relation, defined at M h = M 10 . 
(iv) αesc : power-la w inde x of the ionizing UV escape fraction to

alo mass relation. 
(v) t ∗: characteristic star formation time-scale, defined as a frac- 

ion of the Hubble time. 
(vi) M turn / M �: characteristic mass below which halos become 

xponentially less likely to host an active star forming galaxy. 
(vii) L X < 2keV / SFR 

erg s −1 M 

−1 � yr 
: soft-band X-ray luminosity per unit SFR es- 

aping the galaxies. 
(viii) E 0 / keV : minimum X-ray energy that can escape the galax- 

es. 
(ix) αX : power-la w inde x of the X-ray spectral energy distribution.

This simple parametrization is easy to interpret physically and is 
onsistent with observations of the UV LFs as well as the scaling
elations found in galaxy simulations and semi-analytic models. 

.2 Obser v ational summaries 

or a given set of cosmological and astrophysical parameters, 
1CMFAST calculates the corresponding 3D lightcones of IGM prop- 
rties. When performing inference, these lightcones are generally 
ompressed into summary statistics that are compared directly with 
bservations. Here we do not attempt to directly emulate the 3D
ightcones of the various cosmological quantities, and instead only 
mulate the following summary observables (motivated by existing 
oR/CD observations discussed in Section 4.1 ): 

(i) x HI ( z) – the v olume-a veraged neutral fraction of hydrogen and 
elium as a function of redshift (also commonly referred to as the
oR history). 
(ii) T b ( z) – the v olume-a veraged (global) 21-cm brightness tem- 

erature (e.g. Madau, Meiksin & Rees 1997 ; Furlanetto 2006 ;
ritchard & Loeb 2012 ): 

 b ( x , z) = 

T S − T R 

1 + z 
(1 − e τ21 ) 

≈ 27 x HI (1 + δb ) 

(
�b h 

2 

0 . 023 

) (
0 . 15 

�m 

h 

2 

1 + z 

10 

)1 / 2 

mK 

×
(

T S − T R 

T S 

)[
∂ r v r 

(1 + z ) H ( z ) 

]
, (5) 

here τ 21 is the 21cm optical depth of the intervening gas, 
b ≡ ρ/ ̄ρ − 1 is the baryon o v erdensity, with ρ being the baryon
ensity, and T S and T R are the spin and background temperatures,
espectively. We assume throughout that the radio background is 
rovided by the CMB, T R = T CMB is the temperature of the CMB.
e note that 21CMFAST computes the brightness temperature at each 

ell location, x , using the e xact e xpression in the first line of the
quation abo v e; the second line is a Taylor e xpansion in the limit of
21 	 1 that provides physical intuition. 
(iii) T S ( z) – the mean spin temperature of the neutral IGM as 

 function of redshift. The IGM spin temperature is only defined
or neutral hydrogen that is outside of the cosmic H II regions that
urround galaxies. Specifically, the v olume a verage is performed 
 v er those cells in the simulation box with x HI ≥ 95 per cent. 
(iv) � 

2 
21 ( k, z) – spherically averaged 21-cm PS: 

 

2 
21 ( k, z) 

[
mK 

2 
] ≡ k 3 / (2 π2 ) 〈 ̃  T b ̃  T ∗b 〉 , where k = | k | , and ˜ T b ( k , z) is

he Fourier dual of the brightness temperature from equation ( 5 ). 
(v) φ( M 1500 , z) – the non-ionizing UV LF, defined as the num- 

er density of galaxies per UV magnitude, M 1500 , as a func-
ion of redshift. The ∼1500 Å rest frame luminosity is calcu- 
ated from the SFR: Ṁ ∗( M h , z) = K UV × L UV , where K UV = 1 . 15 ·
0 −28 M �yr −1 Hz s erg −1 assumes a Salpeter initial mass function 
e.g. Madau & Dickinson 2014 ; Sun & Furlanetto 2016 ). The UV
uminosity is related to the AB magnitude using (Oke & Gunn 1983 ):

og 
(

L UV 
erg s −1 Hz −1 

)
= 0 . 4 × (51 . 63 − M UV ) . 

(vi) τe – the Thompson optical depth to the last scattering surface: 
e = σT 

∫ z LSS 
0 dz cdt 

dz 
n e , where σ T is the Thompson scattering cross 

ection and n e is the electron number density calculated assuming 
ydrogen and helium are singly ionized at a fraction (1 − x H I ) and
hat helium is doubly ionized at z < 3. 

Although the last two quantities are computed analytically by 
1CMFAST and are therefore reasonably fast, we still emulate them 

or two reasons. The first is to provide users of 21CMEMU with a
tandalone package. The second is that the analytic calculation is 
till slower than the emulator prediction time: emulation reduces the 
untime from ∼1 s to � 50 ms for a single parameter combination ( �
 ms per parameter set if in a large ( � 100) batch), with a relatively
ow emulation error (see Section 3 ). 

We use 84 redshift bins in the range z ∼ 5–35 for all summaries
xcept the 21-cm PS. For the 21-cm PS we exclude high redshift
ins that generally have a very weak signal, keeping 60 redshift bins
panning z ∼ 6–21, and 12 k bins spanning k ∼ 0.04–1 Mpc −1 . We
MNRAS 527, 9833–9852 (2024) 



9836 D. Breitman et al. 

M

Figure 1. Schematic of the 21CMEMU architecture. Astrophysical parameters ( top ; c.f. Section 2.1 are inputted through a large block of fully connected layers. 
The output from this shared block is then passed on into five blocks (much smaller than the shared block). The first four fully-connected branches, from left 
to right, output the Thomson scattering optical depth, UV LFs, mean hydrogen neutral fraction, spin temperature, and global signal, respectively. The output 
from the shared block is also reshaped into an image and is passed into a 2D convolutional neutral network which outputs the 21-cm power spectrum (rightmost 
branch). The convolutions gradually build the PS image. The window size varies among the layers. The number of filters (stacked squares) decreases toward the 
end of the convolutional neural network. 
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5 We also test slightly changing the brightness temperature branch itself: 
adding an additional layer and increasing the number of nodes increases 
the median fractional error (see below for specific definition) by about 50 
per cent, while increasing the number of layer nodes slightly and adding one 
additional layer increases it by about 20 per cent. 
6 We did not perform this test for all of the other summaries. We did perform 

it for the 21-cm power spectrum and found that the performance of the final 
network is a few per cent better than that of the CNN branch alone. 
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lso floor the PS values to 0.1 mK 

2 , in order to reduce the dynamic
ange of the data and impro v e training. We note that the value of
he floor is an order of magnitude smaller than the accuracy of the
1CMFAST simulator itself (e.g. Mesinger, Furlanetto & Cen 2011 ;
ahn et al. 2011 ), and thus has no ef fecti ve impact on the accuracy
f our emulator. 

 E M U L ATO R  A R C H I T E C T U R E  A N D  

E R F O R M A N C E  

1CMEMU is implemented using Tensorflow (Abadi et al. 2015 ),
ith an architecture consisting of (see diagram in Fig. 1 ): 

(i) one large block (eight layers with 1k nodes each) of fully
onnected (dense) layers whose output is fed into all of the branches.

(ii) one branch per summary observable. 

Since the 21-cm power spectrum is a smooth function of wave-
ode and redshift (e.g. Fig. 3 ), it can be interpreted as a 2D image.
herefore we use a convolutional neural network (CNN) in the 21-
m PS branch and fully connected layers in the other branches. Note
hat the branches are not connected with one another. The only nodes
he y hav e in common are those from the main block which each
ranch receives as input. 
The network trains on all of the summaries at once (i.e. multitask

earning), using a weighted sum of root mean squared error (RMSE)
osses with one loss term per branch, where each branch loss has a
ifferent weight. We assign the largest weight to the 21-cm PS branch
s it is higher dimensional with the largest dynamic range, and thus
ore difficult to learn. The final set of weights chosen is obtained
NRAS 527, 9833–9852 (2024) 
rom a trial of about 50 different weight combinations with the goal
f choosing the best weights such that the 21-cm power spectrum,
rightness temperature, and neutral fraction are learned best. The
erformance of the other summaries is not significantly affected by
he choice of weights. These trials are done ad hoc since the training
s computationally e xpensiv e. 

We perform a few tests to motivate the importance of the block
f fully connected layers. First, we train a network equi v alent to
he brightness temperature branch alone i.e. whose input is the
strophysical parameters that are straight away passed into the
rightness temperature branch of fully connected layers. We find that
he median brightness temperature fractional error o v er the test set in
his network is ∼ 45 per cent larger than the one in the final network. 5 

his means that, on average, 6 our final architecture performs better
han just having individual networks for each summary. The final
rchitecture can contribute to improving the performance in two
ays: (i) combining the losses of the summaries allows the network

o learn from the correlations between the summaries; and (ii) simply
aking the network larger and deeper. To test the relative importance

f (i) and (ii), we train a network without the shared block but with



21CMEMU 9837 

Figure 2. Training loss (black line) and validation loss (orange line) as a 
function of training epoch. The learning rate curve is also shown with the 
dashed grey line and the corresponding right axis. 
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Table 1. Performance of the 21CMEMU network when trained on the 
full data base, half of the data base and 1 per cent of the data base. 

Training size Summary 
Median FE 

(per cent) 
68 per cent CL 

(per cent) 

1.3M log 
 

2 
21 0.55 2.4 

Full T b 0.34 1.2 
log T S 0.032 0.13 
x HI 0.0073 0.10 
τ e 0.11 0.26 

log φ 0.50 2.1 

640k log 
 

2 
21 0.71 3.0 

Random T b 0.43 1.51 
log T S 0.047 0.17 
x HI 0.0086 0.12 
τ e 0.15 0.35 

log φ 0.57 2.5 

13k log 
 

2 
21 3.2 13.0 

Random T b 4.8 16.6 
log T S 0.40 1.2 
x HI 0.035 0.57 
τ e 0.45 1.0 

log φ 2.5 10.0 
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7 For the 21-cm power spectrum for example, the expected mean noise level 
from thermal noise and sample variance for a 1000hr observation with the 
SKA1-low instrument is � 0.1 mK 

2 (e.g. see Fig. 2 , bottom left panel in 
Kaur, Gillet & Mesinger 2020 ). Similarly, global signal experiments have 
measurement noise that is orders of magnitude larger than the floor value we 
chose (e.g. Murray et al. 2022 ; Singh et al. 2022 ), and are instead limited 
mostly by foregrounds and instrument systematics. For the mean neutral 
fraction, estimates have typical uncertainties of order 0.1 (see e.g. Greig et al. 
2022 and references therein), orders of magnitude larger than the floor value 
we use. 
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he rest of the architecture the same. This significantly reduces the 
umber of trainable parameters in the network (by about 50 per cent),
ut still allows different summaries to influence each other through 
he shared loss. We do see an increase of up to a few per cent in
he median and 68 per cent CL of the fractional error for the smaller
etwork as expected. Most notably, for the brightness temperature 
e see an increase of ∼ 1 per cent, ∼13 per cent, and ∼27 per cent

or the median, 68 per cent CL, and 95 per cent CL of the fractional
rror, respectively. We conclude that combining the losses of all the 
ummaries is the main cause of performance impro v ement, while 
he large shared block is needed to get the best performance for the

ost challenging summaries: the brightness temperature and 21-cm 

ower spectrum. 
In Fig. 2 , we show the total training and validation losses as a

unction of epoch in black and orange, respectively. We also show the
earning rate schedule used during training with a dashed grey line. 

e see a smooth decline of the validation loss up to ∼100 epochs.
ur final network is taken at the minimum of the validation loss, at

poch 150. The training takes about eleven GPU hours ( ∼3.5 min
er epoch) with the full data base (1.8M samples). 

Below, we discuss the branch architecture and performance for 
ach summary observable in turn, summarizing the results in Table 1 .
hroughout, we illustrate the emulator performance using examples 

rom the test set, as well as the distributions of absolute differences
Abs Diff) and fractional errors (FE) o v er the entire test set. The
atter two are defined for each observational summary, y , as 

bs Diff ≡ | y true − y pred | (6) 

E(%) ≡ Abs Diff 

max ( | y true | , y floor ) 
, (7) 

here y true refers to the 21CMFAST direct simulation output and y pred 

s the corresponding 21CMEMU prediction. We compute the abo v e 
v eraged o v er different bins in y and/or different models in the test
et, as described below. One drawback of the FE metric is that it can
iverge to infinity as the denominator goes to zero. To a v oid this,
e use floors for the values of the denominator: log ( 
 

2 
21 , floor ) = 0 . 1;

¯
 b, floor = 5 mK, and x̄ HI , floor = 10 −4 . The specific values of these
oors was chosen relati vely arbitrarily; ho we v er, the y are lower than
he e xpected accurac y achie v able by any near term experiment. 7 The
ther summaries, τe , T S , and UV LFs do not have a floor value. 

.1 The 21-cm power spectrum 

he power spectrum branch consists of 13 2D convolution layers 
ith wide (up to seven redshift bins × 3k bins) kernels and two
psampling layers that gradually build the ( k , z) PS image based on
he output of the shared block, as seen in Fig. 1 . We use a pixel-
ased RMSE loss, weighted by the inverse of the estimated thermal
oise corresponding to a 1000h SKA1-lo w observ ation (taken from
relogovi ́c et al. 2022 ; for more details see section 2.2.1 in that
ork). Weighting by the inverse of the noise forces the CNN to be
ore accurate in ( k , z) bins that are easier to observe: generally

orresponding to lower redshifts and larger scales. 
In Fig. 3 , we compare the emulator prediction for the 21-cm power

pectrum with its corresponding target from 21CMFAST . We show a
ingle sample from the test set, with the 21CMEMU prediction on the
eft and the 21CMFAST target in the middle panel. This sample was
hosen as it has the closest median fractional error to that of the
ntire test set; thus it can be considered representative of the typical
mulator performance. It is difficult to see a difference between the
wo PS with the naked eye. We the FE of this single sample in the
ightmost panel. The FE is generally sub-per cent, rising to ∼ per cent
n regions of low power. 

In these 2D images we clearly see the well-known trend of three
eaks in the redshift evolution of the large-scale 21-cm PS and two
MNRAS 527, 9833–9852 (2024) 
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M

Figure 3. The spherically averaged 21-cm power spectrum as a function of wavemode and redshift for a sample in the test set. The 21CMEMU prediction is 
shown on the left while the 21CMFAST result is on the right. This sample has a 21-cm PS fractional errors (FE) that is roughly comparable to the median value 
of the whole the test set, and can thus be considered representative of the emulator performance. The rightmost panel shows the fractional error for this single 
sample. 
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eaks in the small-scale evolution (e.g. Pritchard & Furlanetto 2007 ).
n general, the features evolve smoothly over ( k , z), showcasing why
e use a CNN in the 21-cm PS branch of 21CMEMU . 
We quantify the 21-cm PS prediction error in the top left panel

f Fig. 4 . In the top sub-panel, we plot the redshift evolution of
he PS amplitude at k = 0.1 Mpc −1 , with 21CMEMU predictions
hown via dash–dotted lines and the corresponding 21CMFAST targets
hown with solid lines. We chose to plot k = 0.1 Mpc −1 because
he strongest constraints by current interferometers are around these
cales; smaller scales are dominated by thermal noise and larger
cales by foregrounds (e.g. Mertens et al. 2020 ; Trott et al. 2020 ;
he HERA Collaboration 2022a , b ). The 10 models plotted here
ere chosen at random from the test set. We again see that the
ifferences between the emulator and ‘truth’ are difficult to spot with
he naked eye. 

In the bottom sub-panel we show the Abs Diff between each
air of curves in the top sub-panel, as well as the median Abs
iff (dashed black line) and the 68 per cent/ | 95 per cent confidence

imits (CL; dark/light grey) computed over the entire test set. We
ee that the median (68 per cent) 21CMEMU absolute error at k ∼
.1 Mpc −1 is log 

(

 

2 
21 , true / mK 

2 
)

- log 
(

 

2 
21 , pred / mK 

2 
)

≤ 0.01 ( ∼
.02). This translates to a median (68 per cent) fractional error of
.70 per cent (1.0 per cent) 8 at this wavemode and 0.55 per cent
2.4 per cent) when averaged over all wavemodes. This is far below
bservational uncertainties in the near-term, thus justifying the use
f an emulator. The error rises slightly at lower redshifts, owing to
he broader distributions of possible PS, including very small values
ost reionization. In Appendix A , we show the evolution of the 21-
m power spectrum fractional error as a function of the input 9D
strophysical parameters. 

.2 The 21-cm global signal 

he 21-cm global signal branch consists of seven fully connected
ayers with 600–1000 nodes each. We quantify the performance of
1CMEMU on the global signal in the top right panel of Fig. 4 . We
how the redshift evolution of the global signal ( top ) and Abs Diff
 bottom ) for the same 10 random samples from the test set. 
NRAS 527, 9833–9852 (2024) 

 Note that these errors are calculated on the emulator PS output which is in 
og space. Computing the corresponding error distributions in linear space, 
e obtain a median (68 per cent) FE of 1.53 per cent (1.94 per cent) at k ∼
.1 Mpc −1 , and 1.39 per cent (3.76 per cent) o v er the entire test set. Note that 
ince we return to linear space, we do not need to apply a floor on the power 
pectrum in this FE calculation. 

9

r
H
a
c
a
p

As for the 21-cm power spectra, the difference between the
1CMFAST calculation and 21CMEMU prediction is difficult to see
ith the naked eye and is generally � 1 mK. We see from the bottom

ub-panel that the 95 per cent CL of the errors in the test set is also �
 mK. This translates to a median (68 per cent) FE of 0.34 per cent
1.2 per cent). 

We see from both the global signal and the PS that our training
et spans a wide range of heating and ionization histories. This is
ue to the fact that we include both accepted and rejected livepoints
f the HERA22 inference in the training set, in order to have the
argest data set possible. Extending beyond the ranges of the most
ikely models allows 21CMEMU to generalize beyond the HERA22
osterior distribution, accurately predicting even unlikely models
hat, e.g. have not reionized by z = 5. 

.3 The 21-cm spin temperature in the neutral IGM 

he T S branch consists of five fully connected layers with 400 nodes
ach. We quantify the network performance on the mean 21-cm spin
emperature in the right panel of the middle row of Fig. 4 . In the top
ub-panel, we show 10 examples of the emulated spin temperature
urve (dash–dotted line) and the corresponding true curves from the
est set (solid line). In the bottom sub-panel of the plot, we show the
bsolute error for each of the 10 examples, the median for the entire
est set with the black dashed line, and the 68 per cent/95 per cent CL
egions in shaded in dark/pale grey as a function of redshift. We can
ee that the Abs Diff is log 

(
T S , true / K 

) − log 
(
T S , pred / K 

)
< 0.01 at

5 per cent CL o v er most of the redshift range. The FE of the log of
he mean spin temperature o v er the entire test set is 0.032 per cent
nd the 68 per cent CL is 0.13 per cent. 

We recall that the spin temperature is calculated by taking the
lobal av erage o v er all cells in the simulation box that have x HI ≥
5 per cent . When there are no cells satisfying this condition, the spin
emperature becomes undefined. We account for this by having the
mulator predict the redshift at which the spin temperature becomes
ndefined. 9 The emulator correctly predicts the exact redshift bin
elow which T S becomes undefined for 95.1 per cent of the models
 In principle, one could use the EoR history emulator prediction to find the 
edshift at which the volume averaged neutral fraction drops below 0.05. 
o we ver, this is not identical to our definition for T S , since our simulations 

ccount for partially neutral and self-shielded clumps inside the reionized 
ells. Therefore we include a separate output for the redshift at which there 
re no cells with x HI ≥ 95 per cent . We note that 21CMFAST also includes 
artially ionized cells, both by UV and X-rays. Partial ionization by UV 

ber 2024
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Figure 4. A subset of summary outputs from 21CMEMU for 10 random samples from the test set. Panels show: Redshift evolution of the k = 0.1 Mpc −1 21-cm 

PS amplitude, redshift evolution of the mean 21-cm brightness temperature, redshift evolution of the mean spin temperature in the neutral IGM, the CMB optical 
depth, UV LFs at z = 6, the EoR history ( clockwise from upper left ). Colours denote the astrophysical parameter sample with solid (dashed) lines corresponding 
to outputs from 21CMFAST ( 21CMEMU ). In the bottom sub-panels, we show the absolute differences (Abs Diff) between the predicted and true quantities shown 
in the top sub-panels. Abs Diff of the 10 random samples are shown with the corresponding colours, while the median Abs Diff (FE in the case of τ e ) computed 
o v er the entire test set are shown with dashed black curves. Dark (light) shaded regions enclose 68 per cent (95 per cent) CL. 
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n our test set, and is only one bin off ( 
z ∼ 0.1) for 4.89 per cent of
he models. 

.4 The global history of reionization 

he EoR history branch, like the spin temperature branch, consists
f five fully connected hidden layers with 500 nodes each. In the
eft panel of the middle row in Fig. 4 , we show the EoR histories
f our 10 parameter samples ( top sub-panel ), and the corresponding
rediction error ( bottom sub-panel ). We see that the Abs Diff are
 0.005 for 95 per cent of the models in the test set. The FE is 0.0075

er cent for the median and 0.095 per cent at the 68 per cent CL. 

.5 The CMB Thomson scattering optical depth 

he Thomson scattering optical depth branch consists of three layers
f 30 nodes each as it outputs only one number. We show the FE of
he τ e prediction in the lower right panel of Fig. 4 . The 10 parameter
amples are denoted with different colour dots. Over the entire test
et, we see a median fractional error of 0.1 per cent and a 0.25 per cent
E at 68 per cent CL. There is a notable increase in the prediction
rror as well as its bin-to-bin variance toward higher values of τ e .
his is due to a small number of samples in this unlikely corner of
arameter space: fewer than 1 per cent of the models in the test set
ave τ e > 0.11. 

.6 Galaxy UV LFs 

he LFs branch consists of five layers of 400 nodes each. The network
utputs the LFs at four redshifts (z = 6 , 7 , 8 , 10) and magnitude bins
anging from −20 to −10. In the lower left panel of Fig. 4 , we show
he emulated and simulated LFs at z = 6 (the performance at the
ther redshifts is comparable). The hatched region denotes the range
panned by LF observations used in the inference in the following
ection. 

We can see that the emulator is very accurate in the flat range
panned by the existing observations, while it is less accurate around
he faint-end turno v er. At all of the redshift bins, we have that
he Abs Diff log 

(
φtrue / Mpc −3 

) − log 
(
φpred / Mpc −3 

)
< 0 . 1 o v er the

ajority of the magnitude range. 
We provide an alternative setting in 21CMEMU that allows the

ser to skip the emulation and directly calculate the CMB optical
epth and UV LFs using 21CMFAST . This impro v ed accurac y ho we ver
omes at the cost of a slower runtime: ∼ 700 ms per call compared
ith � 50 ms using emulation. 

.7 Summary of 21CMEMU performance and context with other
mulators 

n Table 1 , we summarize the performance of 21CMEMU for each
ummary in the first row, using the fiducial training set of 1.3M
amples. In general, the median (68 per cent) emulation fractional
rror is at the level of � 0.5 per cent (1 per cent). The most accurate
rediction is achieved with the EoR history, most likely due to the
act that it is a monotonic and smooth function, making it easier
o learn. The least accurate summary is the power spectrum, which
s understandable as it is two dimensional with the largest dynamic
ange. 
NRAS 527, 9833–9852 (2024) 

s assumed to correspond to unresolved H II regions surrounding nascent 
alaxies (see the discussion in Zahn et al. 2011 ). 

s  

E  

B  

i

It is difficult to directly compare the performance of 21CMEMU

ith other emulators of EoR/CD observables, due to their different
strophysical parametrizations and training set sizes. Nevertheless,
t face value 21CMEMU ’s accuracy is better than achie v able with
tate-of-the-art emulators (e.g. Mondal et al. 2020 ; Bevins et al.
021 ; Bye, Portillo & Fialkov 2022 ; Yoshiura, Minoda & Takahashi
023 ). F or e xample, comparing with the recent, bespoke 21-cm
lobal signal emulator 21CMVAE (Bye, Portillo & Fialkov 2022 ),
e obtain a factor of 2.2 (1.5) lower median (95th percentile) RMS

rror (see their equation 1). Our median 21-cm PS FE is a factor
f ∼10–100 lower than that of the bespoke PS emulators in Kern
t al. ( 2017 ) and Ghara et al. ( 2020 ), when compared o v er the same
edshift/wavemode ranges. 

This impro v ement in 21CMEMU o v er previous works could be
ttributed to several factors. First, we have a training set of unprece-
ented size: 1.3M samples. This is orders of magnitude larger than
sed in previous works (generally ranging from thousands to tens of
housands). We quantify how 21CMEMU ’s accuracy changes with the
raining set size in the following section. 

Secondly, the impro v ement in power spectrum emulation could be
ttributed in part to our no v el CNN architecture. Previous 21-cm PS
mulators used only fully connected layers which are not as efficient
n processing 2D images such as the PS. 

Finally, the fact that 21CMEMU emulates many different observ-
bles allows the prediction of any one of these to be helped by the
thers. Indeed, we v erified e xplicitly that the 21-cm PS emulation
s impro v ed when the other summary outputs are included in the
oss (i.e. when all branches are trained together). In addition to
mproving performance, including multiple EoR/CD observables is
xtremely important in the current era where 21-cm observations are
ot strongly constraining. As we show in Section 4.2 , complementary
alaxy and EoR observations are needed to obtain a likelihood-
ominated (as opposed to prior-dominated) posterior (see also
ERA22 ). 

.8 Varying the size of the training set 

ince 21CMEMU was trained on an uncharacteristically large training
et, it is useful to see how it performs with smaller training sets. To
o so, we remo v e some models at random, retrain 21CMEMU on the
educed training set, and test its performance on the same test set. 

In Fig. 5 , we plot the median FE in each summary as a function of
he training set size. We normalize the FE so that unity corresponds to
he fiducial, 1.3 M training set. We also explicitly list the performance
sing half of the data base (640k samples), and 1 per cent of the data
ase (13k samples) in the middle and bottom rows of Table 1 . 
We see that there is a sharp increase in emulator accuracy with

raining set size, up to a size of ∼ 100k. Doubling the size of the
raining set roughly doubles the emulator accuracy. This relationship
attens beyond sizes of � 100k, such that a ten-fold increase in the

raining set from ∼100k → 1.3 M only impro v es the FE by a factor
f ∼two. 

 APPLI CATI ON  TO  I N F E R E N C E  

n this section, we apply 21CMEMU to inference problems. We
se the 21CMMC driver (Greig & Mesinger 2015 ), which now
ncludes the option to use either 21CMFAST or 21CMEMU as the
imulator. 21CMMC incorporates three highly parallel samplers:
MCEE (F oreman-Macke y et al. 2013 ), Multinest (Feroz, Hobson &
ridges 2009 ), and Ultranest (Buchner 2016 , 2019 ; Buchner 2021 );

n this work we use the latter two as discussed further below. 
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Figure 5. Median fractional error of each summary as a function of the 
training set size. The FE is normalized so that unity corresponds to the 
fiducial, 1.3 M training set. 
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First, we run the same inference as was previously run in HERA22
sing 21CMFAST in order to see how emulator error affects the poste-
ior. After this validation, we showcase the potential of 21CMEMU by 
erforming several new inferences demonstrating: (i) how different 
bservations are complimentary; (ii) the approximate impact of new, 
ate-ending EoR constraints; (iii) the potential impact of upcoming 
6C HERA observations. Each 21CMEMU inference took roughly a 
ay on a GPU, compared with a few weeks on a cluster had we used
1CMFAST directly. 

.1 Comparison with direct simulation 

e run the same inference as in HERA22 (10k livepoints) with 
1CMEMU . Doing this allows us to directly compare the inference 
esults between the two methods. 

The likelihood in HERA22 incorporates four data sets: 

(i) Thomson scattering CMB optical depth – this term compares 
he Thomson scattering CMB optical depth from the proposed model 
ith the one from the analysis of Planck Collaboration ( 2020 ) by
in et al. ( 2020 ), whose posterior is characterized by median and
8 per cent credible interval (CI): τe = 0 . 0569 + 0 . 0081 

−0 . 0086 . The likelihood
unction is a two-sided Gaussian. 

(ii) The Lyman forest dark fraction – this term compares the mean 
eutral fraction at z = 5.9 with the upper limit of x H I < 0 . 06 ±
 . 05 at 68 per cent CI obtained from QSO dark fraction (McGreer,
esinger & D’Odorico 2015 ). The likelihood function is unity at 

 H I ( z = 5 . 9) < 0 . 06, decreasing as a one-sided Gaussian for higher
eutral fraction values. 
(iii) UV LFs – this term compares the model with z = 6, 7, 8, 10

V LFs observed with Hubble (Bouwens et al. 2015 , 2016 ; Oesch
t al. 2018 ) in the magnitude range M UV ∈ [ − 20, −10]. This
ikelihood term is also a two-sided Gaussian. 

(iv) 21-cm power spectrum upper limits – this term accounts for 
ERA H1C 94 night observations at z = 8 and z = 10, presented in
he HERA Collaboration ( 2022b ). The likelihood is the upper limit

ikelihood discussed in HERA22 . 

These individual likelihood terms are multiplied to obtain the total 
ikelihood. When using 21CMEMU for inference, we add the median 
mulator error in quadrature to the measurement uncertainties for 
ach corresponding likelihood term. 

In Figs 6 and 7 , we compare posteriors obtained using 21CMFAST

 cyan ) to that using 21CMEMU ( orange ). Both were run using the
ultiNest sampler with the same number of livepoints (10k, 
ielding ∼60k posterior samples). In the lower left of Fig. 6 we plot
he 1D and 2D marginal PDFs for our astrophysical parameters, while
n the top right we plot 95 per cent CI of some of the summary obser-
ations (see caption for details). In Fig. 7 we plot the corresponding
pin temperature PDFs in the two HERA bands, which was one of the
ain results of the HERA22 paper. We note that the 21CMFAST and

1CMEMU posteriors are nearly identical, testifying that the emulation 
rror is fairly negligible when performing inference using current 
ata sets. The only notable difference is in the t ∗ PDF, which is
lightly broader when 21CMEMU is used as a simulator compared 
ith 21CMFAST . We find no notable trends of the emulator error
ith this parameter, concluding the small difference could be due to

tochasticity in sampling and/or a higher dimensional covariance of 
he emulator error. 

In Fig. 6 we also include a run using 21CMEMU and the same
ERA22 likelihood, but with the UltraNest sampler ( purple 

urves ; 5k livepoints, yielding ∼70k posterior samples). The re- 
ulting posterior is consistent with the previous two. Interestingly, 
he choice of sampler (purple versus orange) results in a larger
ifference than the choice of simulator (orange versus cyan) for 
ome marginal PDFs. In particular, the UltraNest posterior 
s more accurate towards the edges of the prior range, resulting
n flatter posteriors at the edges: this behavior is also reco v ered
sing the EMCEE sampler as shown in Lazare, Sarkar & Ko v etz
 2023 ). Moreo v er, UltraNest ’s v ectorization makes it ∼10 ×
aster when using an efficient simulator like 21CMEMU . Therefore, 
n subsequent sections we only show posteriors generated with 
ltraNest . 
We remind the reader that the emulator was trained on the HERA22

ested sampling output. This inference took ∼400k core hours. 
nce trained ho we ver, the emulator performs amortized posterior 

stimation in only 225 core hours using Multinest or in 30 core
ours using Ultranest . 

.2 Impact of different obser v ations on the posterior 

aving tested the emulator in the previous section, we now use it
o perform multiple inferences that would be too costly with direct
imulation. We begin by quantifying how the individual terms from 

he HERA22 likelihood discussed in the previous section affect 
he posterior. We do this by removing the terms one by one, and
omparing the resulting posteriors in Fig. 8 . 

In orange we show the full HERA22 posterior from the previous
ection, including all likelihood terms. In green, we remo v e the
ERA power spectrum upper limit constraint. We see that the only

onsequence is that the L X /SFR parameter becomes unconstrained. 
n the panel on the right, we can also see the 95 per cent CI of the
ower spectrum and 21-cm global signal becoming wider around z 
6–10. As discussed in HERA22 , the 21-cm power spectrum limits

s the only measurement sensitive to the IGM temperature during the
D. 
Next, if we remove constraints on the EoR history (here corre-

ponding to the dark fraction and τ e likelihood terms), using only the
V LFs in the likelihood, we obtain the posterior shown in blue. We

ee that EoR history measurements allow us to set (lose) constraints
n the ionizing escape fraction (here parametrized via f esc, 10 and αesc ),
hich disappear completely when their corresponding terms are not 
MNRAS 527, 9833–9852 (2024) 
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Figure 6. Comparison of posteriors obtained using 21CMFAST and 21CMEMU after performing an inference with the same HERA22 likelihood. The darker/thick 
dashed regions represent 68 per cent credible intervals (CIs), while pale/thin dashed regions represent 95 per cent CIs. The orange and purple posterior 
distributions are obtained using the MultiNest sampler (10k livepoints, ∼60k posterior samples), while the cyan posterior distribution is obtained using the 
UltraNest sampler (5k livepoints, ∼ 70k posterior samples). The median value and the 68 per cent CIs of the 1D marginal PDFs are written abo v e each 
column of the corner plot. In the panels on the top right, all highlighted regions correspond to 95 per cent CIs. In the top middle panel, we plot the LFs for 
redshifts 6, 7, and 8. For the LF likelihood, we use the data shown in black squares (Bouwens et al. 2015 , 2016 ; Oesch et al. 2018 ). In the top right, we show a 
panel with three summary statistics, namely the redshift evolution of the 21-cm power spectrum at k = 0.13 cMpc −1 , the 21-cm global signal and mean neutral 
fraction, from top to bottom. The black squares in the power spectrum plot correspond to the two deepest limits for each HERA redshift band ( k = 0.13 cMpc −1 

at z ∼8 and k = 0.17 cMpc −1 at z ∼10). In the bottom plot, the black square denotes the upper limit on the average neutral hydrogen fraction obtained from 

the QSO dark fraction (McGreer, Mesinger & D’Odorico 2015 ). In the bottom right, we show the PDFs of the Thomson optical depth together with the Planck 
result used in the likelihood. The astrophysical parameter ranges shown in the corner plot correspond to the extent of the flat priors assumed for the inferences. 
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ncluded in the likelihood. Including only the UV LFs does disfa v or
ery early reionization, z > 11, because the redshift evolution of the
FR density implied by UV LF observations is too steep to allow
rbitrarily early EoR, even with escape fractions close to unity. 
NRAS 527, 9833–9852 (2024) 
Finally we show the prior distribution in the space of UF LFs,
1-cm PS, 21-cm global signal, and EoR history in grey. We see that
ll of the posteriors in these spaces are significantly broader than the
riors, and are thus likelihood dominated (i.e. are not sensitive to the
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Figure 7. Comparison of the mean spin temperature distribution from 21CMFAST and 21CMEMU for each of the two HERA bands after performing an inference 
with the exact same likelihood. The CIs have been calculated using the highest posterior density method. The dark (light) cyan shaded region shows the 68 
per cent (95 per cent) CI. The solid cyan line shows the distribution for 21CMFAST with 10k livepoints using MultiNest . The dashed orange line shows the 
same but for 21CMEMU . The dashed purple line shows the distribution for 21CMEMU but using the UltraNest sampler with 5k livepoints. 
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rior choices). Moreo v er, each likelihood term adds complimentary 
nformation, highlighting the importance of combining observational 
ata sets when interpreting the high-redshift Universe. 

.3 Impact of late reionization 

ecent observations of the large-scale opacity fluctuations in the 
y α forest (e.g. Becker et al. 2015 ; Bosman et al. 2018 , 2022 )

mply a late end to reionization z < 5.6 (Choudhury, Paranjape &
osman 2021 ; Qin et al. 2021 ). In this section, we explore how such
ew EoR history constraints would impact the previously shown 
osterior. Unfortunately, the current version of 21CMEMU does not 
mulate the Ly α forest, and so we cannot compute a likelihood 
irectly in the observed space of Ly α opacity fluctuations. Instead 
e take a more approximate approach, computing the likelihood in 

he space of EoR histories, i.e. x H I ( z). To construct a likelihood
n this space, we use the EoR history posterior from Qin et al.
 2021 ), who did in fact compute a likelihood from forward-modeled
y α opacities in addition to the dark fraction and τ e observations. 
pecifically, we compute a new Late EoR posterior by replacing the 
ark fraction and τ e likelihood terms with a Gaussian likelihood 
 v aluated at three redshifts, x H I (z = 6) = 0 . 25 ± 0 . 07, x H I (z = 7) =
 . 58 ± 0 . 1, and x H I (z = 8) = 0 . 79 ± 0 . 09, ignoring any covariance
etween redshifts. Although this is obviously an approximation to 
omputing the likelihood directly in the space of the observations, 
t suffices to qualitatively show the impact of new EoR history
onstraints. 

In Fig. 9 , we show the previous ( Fiducial ) posterior in purple (71k
amples) together with the new ( Late EoR ) posterior in orange (18k
amples). Understandably, the corresponding reco v ered EoR history 
n orange is narrowly centered around the three points at z = 6,
, 8 used to define the likelihood. As a consequence, the posterior
f the Thomson optical depth also becomes more narrow, shifting 
o ward lo wer v alues while still being within the range allowed by
lanck observations. The resulting PDF of f esc, 10 for Late EoR is also
arrower, and shifted towards smaller values. Even the power-law 

caling of the escape fraction with halo mass, αesc , is constrained to
ithin ± 0.3 (68 per cent C.I.) for Late EoR , whereas the Fiducial
osterior only sets a lower limit for this parameter. The remaining
arameters are unaffected by the change to the Late EoR likelihood.
We also see that the reco v ered 21-cm large-scale PS for Late EoR

s narrower at z < 8. The large-scale 21-cm PS during the EoR peaks
round its midpoint (e.g. Lidz et al. 2007 ; Pritchard & Furlanetto
007 ), which occurs at z ∼7–8. The HERA22 upper limits disfa v or
igher values of the 21-cm PS at z ∼ 8, but the tail towards small PS
alues seen in the Fiducial posterior (corresponding to small x H I ), 
hrinks when moving to the Late EoR posterior. 

.4 F orecasts f or HERA Phase II sixth-season obser v ations 

e now forecast parameter constraints that could be achie v able 
ith the sixth season of HERA observations, taken in 2022–2023 

Berkhout et al., in preparation). This season of observing used Phase
I of the HERA instrument, spanning 50–230 MHz (omitting the FM
and, 90–110 MHz), e xpanding co v erage to CD and late reionization
ith respect to Phase I (which was used for HERA22 ). While analysis
f this season’s data is ongoing, its broad characteristics are known
Dillon & Murray 2021 ): approximately 1300 h of unflagged data
 v er ∼150 nights, with an average of ∼148 un-flagged antennas
er night. Although further flagging will certainly occur during 
rocessing, this data set will be HERA’s most sensitive data release
o date, by a significant factor. 

We create a mock observation corresponding to this upcoming 
ata set. For the ‘true’ cosmic signal, we use the Evolution of
tructure (EOS) 2021 release (Mu ̃ noz et al. 2022 ). EOS2021 is a

arge simulation (1.5 cGpc per side with 1000 3 cells) made with
1CMFAST , with the goal of being our current ‘best guess’ for the true
osmic signal. Although it used the same parametrization for galaxy 
caling relations as is used here (see Section 2.1 ), the physical model
f EOS2021 has a few notable differences. Instead of leaving M turn 

s a free parameter, EOS2021 explicitly calculated a local M turn ( x , z)
ased on feedback from the local ionizing and photo-disassociating 
ackgrounds, as well as the relative velocities of baryons and dark
atter. Furthermore, EOS2021 explicitly accounted for putative 
opIII star formation in the first, H 2 -cooled galaxies (e.g. Tegmark
t al. 1997 ; Abel, Bryan & Norman 2002 ; Bromm & Larson 2004 ;
MNRAS 527, 9833–9852 (2024) 
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Figure 8. Contribution of various likelihood terms to the total posterior. The corner plot on the left shows the 95 per cent CI of three inferences, all run with 
21CMEMU and UltraNest . The full posterior with all four probes is plotted in purple (exactly the same as the purple in Fig. 6 ). In green, we show the posterior 
without the HERA power spectrum upper limits term. In blue, we additionally remo v e the neutral fraction and Thomson optical depth terms, leaving only the 
UV LFs terms. On the top right half of the plot, we show the 95 per cent CI of the same three posteriors but in the space of summary statistics: first the UV LFs, 
and then a panel with the 21-cm power spectrum, 21-cm global signal, and EoR history, top to bottom, and finally a panel with the Thomson optical depth. In 
grey, we plot the summary statistic 95 per cent CI assuming a flat distribution across all nine astrophysical parameters which is what was used for the prior for 
the 21CMFAST inference. 
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aiman & Bryan 2006 ), which dominated the background radiation
elds at z > 16, for their fiducial parameter choices. As a result of the
odels being different, 21CMEMU could result in a biased reco v ery

f the EOS2021 signal; we quantify this below. 
We use 21CMSENSE 10 (Pober et al. 2013 , 2014 ) to obtain thermal

nd sample variance estimates of the HERA sixth season data, and
NRAS 527, 9833–9852 (2024) 

0 https://github.com/rasg-affiliates/21cmSense 

m
 

o  
escribe our methodology and assumptions in Appendix B . We
onsider our sensitivity estimate to be realistic, with a few important
av eats, for e xample the potential o v er-estimation of sensitivity
hen treating ‘similar’ baselines as identical (Zhang, Liu & Parsons
018 ). The largest unpredictable caveat is of course the presence
f instrumental systematics, for which we describe our approach in
ore detail below. 
Radio telescopes, including HERA, impose their own signature on

bservations – dependent on the primary beam attenuation, antenna
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Figure 9. Same as Fig. 6 , but comparing the fiducial posterior ( solid purple ) with one obtained by replacing the QSO dark fraction and τ e likelihood terms 
with a ‘Late EoR’ likelihood denoted by the three points with error bars in the middle right panel ( dashed orange ). The ‘Late EoR’ likelihood is based on the 
inference results in Qin et al. 2021 , which included recent measurements of opacity fluctuations in the Ly α forest. In the top right sub-panels, we show both the 
68 per cent (darker) and 95 per cent (paler) C.I. 
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ayout, channelization and other instrumental characteristics. The 
ffect of this instrumental signature on the observed power spectrum 

s such that neighbouring Fourier modes are linearly’mixed’ via a 
window function’ matrix (e.g. Liu & Tegmark 2011 ; Gorce et al.
023 ). We calculated this window function using the hera pspec 11 

ackage. We did not use the exact HERA beam as in Gorce et al.
 2023 ). Instead, we used the Gaussian beam approximation which 
e deemed sufficient for this forecast (see fig. 7 in Gorce et al. 2023

or a comparison). Once we obtain the HERA window function, we 
1 https:// github.com/ HERA-Team/ hera pspec 

s  

d  
atrix multiply it with the emulated model to properly compare with
he forecast. 

We perform inference using the EOS2021 cosmological signal 
ith the sensitivity estimates from 21CMSENSE as the mock observa- 

ion (see Fig. B2 in Appendix B ). This inference takes about 30 GPU h
o run to convergence with UltraNest. In Fig. 10 we show the resulting
osterior (HERA sixth season in orange) together with the previous 
esult ( Fiducial in purple). In the top right panel we show the mock
S at k ∼ 0.16 Mpc −1 as orange points with associated error bars. We
ee that based purely on the available S/N, the HERA sixth season
ata have the potential to detect the cosmic PS during the EoR (6 < z
MNRAS 527, 9833–9852 (2024) 

https://github.com/HERA-Team/hera_pspec
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Figure 10. Forecasted constraints from mock HERA Phase II season six observations (see text for details) are shown orange (dashed). The mock PS amplitudes 
at k ∼ 0.16 Mpc −1 are shown as red squares with error bars in the top right panel, together with current upper limits from HERA22 as black squares. The 
parameters of the cosmological simulation used for the mock observation, EOS2021, are denoted with blue lines and squares in the corner plot. We caution that 
the theoretical model used in EOS2021 and that used in 21CMEMU are somewhat different, as discussed in the text. As M turn in EOS2021 evolves with redshift 
(see fig. 5 in Mu ̃ noz et al. 2022 ), here we demarcate its range during the EoR (i.e. 6 < z < 8 where the mock observations imply a detection). For more details 
about the panels, see the legend in Fig. 6 . 
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 8). The 95 per cent CI of the inferred PS (orange) go tightly around
he data points. This unbiased reco v ery is reassuring, given the abo v e-

entioned differences in the theoretical models used for the mock
nd forward-modeled data. Indeed, most of the ‘true’ astrophysical
arameters from EOS2021 (denoted with blue lines in the corner
lot) are consistent with the reco v ered orange posteriors. Parameters
o v erning X-ray heating, L X < 2keV /SFR and E 0 , are reco v ered with
he lowest accuracy, with the true values residing outside of the 68
er cent CI of their 2D PDF. This is understandable, because the
NRAS 527, 9833–9852 (2024) 
1CMEMU forward models do not include the additional radiation
rom H 2 -cooling galaxies, which dominate the X-ray heating at z >
6. 
Comparing to current constraints ( Fiducial posterior in purple), we

ee that that HERA sixth season data have the potential to drastically
mpro v e our knowledge of the EoR. The HERA sixth season EoR
istory x H I ( z) is constrained to within ±0.06 (95 per cent C.I.): a
actor of � 7 impro v ement o v er current limits. As a result, we can
lace strong constraints on the characteristic ionizing escape fraction,
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 esc, 10 , and its dependence on galaxy mass, αesc , which are almost
ompletely unknown currently. 

It is important to note that these two posteriors use a different
orm for the likelihood. For the HERA sixth season forecast, we 
ssume that there are no residual systematics after processing of the 
ERA data. This is in contrast to the previous likelihoods, which 

ssume that each k -mode has a positive systematic whose prior
mplitude is uniform and unbounded (cf. The HERA Collaboration 
022b ). In practice, assuming no residual systematics results in 
 two-sided Gaussian likelihood, corresponding to a ‘detection’, 
hereas the traditional likelihood has been a one-sided error-function 

orresponding to an ‘upper-limit’. We make this choice as it is
ot straightforward to sample from the unbounded uniform prior 
or systematics when creating the mock data for the forecast. The 
esulting tighter parameter posteriors for the new data are therefore 
he result of an admixture of the new more sensitive data and the
ef fecti vely) more constrained priors on systematics. 

 C O N C L U S I O N  

ere we introduced 21CMEMU : a publicly available emulator of sev-
ral summary observables from 21CMFAST . We trained the emulator 
n 1.3M pseudo-posterior samples from the inference in HERA22 . 
he input consists of a nine parameter model characterizing the UV 

nd X-ray outputs of high redshift galaxies. The output consists of: (i)
he 21-cm power spectrum as a function of redshift and wavemode; 
ii) the IGM mean neutral fraction as a function of redshift; (iii)
he UV LF at four redshifts 6, 7, 8, and 10; (iv) the Thompson
cattering optical depth to the CMB; (v) the mean spin temperature 
s a function of redshift; and (vi) the 21-cm global signal as a function
f redshift. The emulator predicts all of these quantities with under 

2 . 4 per cent error at 68 per cent CL, and a computational cost that
s lower by a factor of ∼10 000 compared to 21CMFAST . 

We varied the size of the training set, finding only a modest
ecrease in performance (a factor of ∼2 decrease in the FE) as the
umber of samples was reduced from 1.3M to ∼100k. Below ∼100k 
amples, we saw a sharp drop in performance, with the fractional 
rror increasing roughly as the inverse of the size of the training set.

We validated the emulator’s performance in inference by compar- 
ng the posteriors obtained with 21CMEMU versus 21CMFAST using 
he same likelihood (taken from HERA22 ). We found a very modest
ifference between these two posteriors, further illustrating that the 
mulator error is negligible when performing inference using current 
ata. 
Next, we profited from the speed of our trained emulator to perform 

ultiple inferences that would otherwise be very costly using direct 
imulation. First, we studied the constraining power of each term in 
ur fiducial likelihood. We found that current observations are very 
omplementary, with UV LFs constraining the SHMRs, EoR history 
robes constraining the ionizing escape fraction, and the addition 
f 21-cm PS upper limits constraining the X-ray luminosity to SFR
elation. 

We also explored the impact of ne w EoR history constraints, dri ven
y opacity fluctuations in the Ly α forest. These recent observations 
mply much tighter constraints on the EoR history, finishing at z <
.6 (e.g. Choudhury, Paranjape & Bosman 2021 ; Qin et al. 2021 ).
he inclusion of these new limits tightened the reco v ered constraints
n the ionizing escape fraction and its scaling with halo mass. The
mpact on other parameters was modest. 

Finally, we presented forecasts of parameter constraints achie v able 
ith ongoing sixth season phase II observations with the HERA 

elescope. Optimistically, we could expect a detection of the 21- 
m PS at z ∼6–7. This would result in a dramatic impro v ement
n the reco v ered timing of the EoR, allowing us to infer x H I ( z) to
ithin ± 0.06 (95 per cent C.I.): a factor of � 7 impro v ement o v er

urrent limits. As a result, we could place strong constraints on
he characteristic ionizing escape fraction and its dependence on 
alaxy mass, which are almost completely unknown currently. We 
autioned ho we ver that this forecast is optimistic, mainly because it
ssumed there are no residual systematics in the processed data (see
ppendix B for more details). 
21CMEMU was trained on a data base of summary observables 

here only one seed i.e. random set of initial conditions is available
er combination of astrophysical parameters. In the future, we hope 
rain the emulator on a data base that samples many different seeds
n order to emulate a full likelihood function rather than only
pproximate the mean as we do right now. This is important since
relogovi ́c & Mesinger ( 2023 ) showed that using a single random
eed when forward modeling can bias the inference results. 

We make 21CMEMU publicly available at https://github.com/ 
1cmfast/21cmEMU , and include it as an alternative simulator in 
he public 21CMMC 

12 sampler. We will periodically release updated 
ersions, trained on the latest galaxy models and expanding the 
hoice of summary outputs. 
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PPENDI X  A :  PARAMETER  SPAC E  

E P E N D E N C E  O F  T H E  2 1 - C M  PS  E M U L ATI O N  

R RO R  

n Appendix A , we look at how the emulation error is distributed o v er
he 9D input parameter space. In Fig. A1 , we show the 21-cm power
pectrum test set fractional error as a 2D histogram as a function of
ach pair of input astrophysical parameters. On the diagonal, we show 

he histogram (probability density) of each astrophysical parameter 
n the test set. 

As expected, the emulation error peaks at the edges of parameter
pace where the density of samples is the lowest [see also fig. 9 in
ern et al. ( 2017 ) and top plot in fig. 18 in Abdurashidova et al.
 2022 )]. Ho we ver, the inclusion of the rejected livepoints in the
MNRAS 527, 9833–9852 (2024) 

 colour of each bin in the 2D histogram is a weighted mean of the fractional 
tribution of each astrophysical parameter in the test set. Note that the range 
e flat prior of the inference used to generate the data base. 

icle/527/4/9833/7472102 by SISSA - Scuola Internazionale Superiore di Studi Avanzati user on 11 D
ecem

ber 2024

http://dx.doi.org/10.3847/1538-4357/aaf64b
http://dx.doi.org/10.1093/mnras/stx734
http://dx.doi.org/10.1038/s41550-022-01610-5
http://dx.doi.org/10.1093/mnrasl/slt035
http://dx.doi.org/10.1046/j.1365-8711.2003.06207.x
http://dx.doi.org/10.1093/mnras/stw980
http://dx.doi.org/10.1086/303434
http://dx.doi.org/10.48550/ARXIV.2210.04912
http://dx.doi.org/10.3847/1538-4357/ac1c78
http://dx.doi.org/10.1111/j.1365-2966.2008.14206.x
http://dx.doi.org/10.3847/1538-4357/ac5116
http://dx.doi.org/10.1093/mnras/stw1310
http://dx.doi.org/10.1093/mnras/staa414
http://dx.doi.org/10.1038/nature11177
http://dx.doi.org/10.3847/1538-4357/ab8c45
http://dx.doi.org/10.3847/1538-4357/833/1/84
http://dx.doi.org/10.3847/2041-8213/ab9c26
http://arxiv.org/abs/2305.11441
http://dx.doi.org/10.1093/mnras/stw2145
http://dx.doi.org/10.1111/j.1365-2966.2011.18439.x
http://dx.doi.org/10.3847/1538-4357/aaa029
http://dx.doi.org/10.3847/1538-4357/ac457d
http://dx.doi.org/10.3847/1538-4357/ac778e


9850 D. Breitman et al. 

M

t  

t  

(

A
E

T  

H
t  

e  

t  

i  

a  

a

P

w

T


  

3  

u  

t  

r
 

a  

(  

2  

w  

F  

t  

o  

a  

s  

b  

f  

s  

o  

i  

o  

n  

o  

t  

u  

L  

d  

n  

1

1

1
1

t
o
n
w
1

w
e

Figure B1. The number of times each 300-s LST bin was observed and un- 
flagged in HERA’s sixth season, used for sensitivity estimates. Note that this 
accounts only for flags arising from strong effects that affect large swathes 
of the observed antennas and/or channels (e.g. lightning storms, correlator 
outages), and further flags are applied in the downstream analysis. 
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 � 2 per cent) throughout the prior volume. 

PPENDIX  B:  21CMSENSE  SENSITIVITY  

STIMATES  F O R  H E R A ’ S  SIXTH  SEASON  

o obtain mock error estimates for the forecasted sixth season of
ERA observations, we used the updated open-source 21CMSENSE 13 

ool. The general algorithm of 21CMSENSE can be found in Pober
t al. ( 2014 ) and in the e xtensiv e documentation and tutorials of
he updated codebase 14 (see also Liu & Shaw ( 2020 ) for a re vie w
ncluding a similar argument). A brief outline of the calculations is
s follows: 21CMSENSE estimates thermal noise on any 3D 

� k -mode
s 

 N ( � k ⊥ 

, k || ) ∝ 

T 2 sys 

N k ⊥ 
ντint 
ξ ( � k ⊥ 

, k || ) , (B1) 

here T sys is frequency-dependent system temperature 

 sys = T sky ( ν) + T rcv ( ν) , (B2) 

ν = 122.07 kHz is the channel width of the observation and τ int =
00 s is the coherently averaged local sidereal time (LST)-bin size
sed in the analysis. 15 Furthermore, ξ is a ‘flag’ function that takes
he value 0 or 1 depending on the location of the 3D mode with
espect to the foreground wedge (see below). 

In this equation, N k ⊥ represents the number of samples of this
ngular scale observed coherently throughout the observing season
i.e. observations that are averaged together as visibilities). In
1CMSENSE , this is estimated by creating a grid on the � k ⊥ 

plane,
hose cells are the size of the primary beam of the instrument in
ourier-space (for HERA, this is 7 λ at 150 MHz), and binning the

he baseline coordinates into this grid. 16 In addition to the number
f samples in a bin coming from different (redundant) baselines, we
lso have samples from the same baseline at different times . Here,
amples at the same LST on different nights are averaged coherently,
ut samples at different LSTs are averaged incoherently (i.e. after
orming power spectra). Currently, 21CMSENSE only has support for
pecifying the number of nights observed and the number of hours
bserved each night (thereby specifying the number of LST bins
n conjunction with the LST bin duration). Ho we ver, in realistic
bservational programmes, the same LST bins are not observed each
ight (whether due to the evolution of the sky throughout the season,
r through flagging/data quality concerns). To partially account for
his, we define a function n obs (LST) which counts the number of
nflagged days observed over the season for any given 300-s-long
ST bin (note that this accounts for flags of the entire observation,
ue to things like poor weather or correlator malfunctions, but
ot antenna- or channel-specific flags). To map this non-constant
NRAS 527, 9833–9852 (2024) 

3 https:// github.com/rasg-affiliates/ 21cmSense . 
4 e.g. https:// 21cmsense.readthedocs.io/en/ latest/tutor ials/under standing 2 
cmsense.html 
5 In general, 21CMSENSE uses the more fundamental snapshot integration 
ime of the instrument, and re-phases observations o v er a longer ‘coherent 
bserv ation duration’, ho we ver HERA is a drift-scan telescope that performs 
o re-phasing, and all observations within an LST bin are considered coherent 
ithout re-phasing. 

6 This is probably the greatest departure from the actual HERA analysis, 
hich coherently averages only redundant baselines, i.e. those that are 

qui v alent to within several centimeters. 
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unction of LST bin onto the schema available in 21CMSENSE , which
ssumes the same LST bins are observed each night, we set 

 days , eff = 

√ ∑ n LST 
LST n 

2 
obs ( LST ) 

n LST 
(B3) 

nd t day = n LST × 300 s. This achieves the same resulting thermal
oise level, under the assumption that the sky temperature is constant
 v er the LST bins. We use actual sixth-season HERA measurements
or n obs , as shown in Fig. B1 . We calculate n days, eff = 67.4 for coherent
veraging and t day = 21 h for incoherent averaging (i.e. the thermal
oise from our observing pattern is equi v alent to observing 253 300-s
ST bins each for 67.4 d). Finally, we apply a further factor of ε =
.9 to n days, eff to broadly account for finer-scale flags applied during
nalysis that are unaccounted in the LST-bin observing pattern of
ig. B1 . In summary, we have 

 k ⊥ = εN bl ,k ⊥ N days , eff 
√ 

n LST . (B4) 

The line-of-sight modes observed depend on the channel width,
s already defined, and also the bandwidth of the observation. While
ERA Phase II observes 200 MHz of bandwidth from 50–250 MHz,
ower spectra are estimated in smaller ‘spectral windows’ whose
ize is determined by a number of factors. Chiefly, the windows are
s wide as possible, so as to include the largest scales where the
ignal is strongest, but are constrained by lightcone evolution (Datta
t al. 2012 ; Trott 2016 ; Greig & Mesinger 2018 ) to be ef fecti vely
maller than ∼ 10 MHz. In practice, spectral windows are chosen to
ie between strongly flagged channels (e.g. FM band and Orbcomm),
hich means their width is not constant. Here, we use constant
0 MHz spectral windows, where we assume a Blackman tapering
unction is applied to each window to reduce the effective bandwidth
o ∼ 10 MHz (and an appropriate scaling factor of 1.737 is applied
o the final noise level). We calculate noise estimates for all spectral
indows between 50 and 250 MHz, excluding the FM band between
0 and 110 MHz. 
We use a model for T sky that is a power law in frequency,

ith amplitude and spectral-index obtained from simulated auto-
orrelations of the diffuse sky, using the GSM (de Oliveira-Costa
t al. 2008 ) and the HERA Phase II primary beam (Fagnoni et al.

https://github.com/rasg-affiliates/21cmSense
https://21cmsense.readthedocs.io/en/latest/tutorials/understanding_21cmsense.html
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Figure B2. HERA phase II sixth season sensitivity forecast obtained using 21CMSENSE with the parameters specified in Table B1 . Note that in practice, HERA 

decimates the k -bins to a v oid requiring non-diagonal covariance (e.g. Abdurashidova et al. 2022 ). Here we have approximated this practice by using only half 
of the abo v e k -bins (those highlighted in black) when computing the likelihood for our inference. 
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M

Table B1. Parameters used within 21CMSENSE to obtain sensitivity estimates for the sixth season of HERA observations. 

Parameter Description Value 

N ants Number of antennas within the 209 available actually observed. 75, 100, 120, 148, 209 
T sky Sky temperature model 150K( ν/150 MHz) −2.5 

T rcv Receiver Temperature Empirical, 600 K at 50 MHz, 60 K abo v e 200 MHz 

ν Channel width 122.07 kHz 
τ int Coherent integration time (LST bin width) 300 sec 

 u UV-grid size for coherent baseline averaging 7 λ
N days, eff Ef fecti ve number of days observed coherently 67.4 † 

t day Ef fecti v e observ ed hours per day 21 h (253 LST bins) 
ε Efficiency factor for frequency-dependent flags 0.9 
B Spectral window bandwidth 20 MHz 
B eff Ef fecti ve spectral window bandwidth after Blackman taper 11.51 MHz 
FG wedge level Line-of-sight scale below which modes are filtered 0.15 h/Mpc + horizon 
Theory model Cosmological power spectrum from which to calculate cosmic variance Mu ̃ noz et al. 2022 

See Appendix B for details on the algorithm. † Note that N days, eff and t int are ef fecti vely equi v alent to the actual LST footprint of the season in terms of thermal 
noise, under the assumption that the sky temperature is constant with LST. 
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021 ) at LST = 7 h, 

 sky = 150 K ×
( ν

150 MHz 

)−2 . 5 
. (B5) 

urrently, 21CMSENSE is not able to use different sky models for
ifferent LST-bins, so this choice represents the temperature for the
ost-observ ed LST bin. F or T rcv , we use a frequenc y-dependent
odel based on electromagnetic simulations performed in Fagnoni

t al. ( 2021 ), interpolated by a cubic spline. This model is close to
 power law at low frequencies, with an amplitude of ∼600 K at 50
Hz and asymptoting to a const ∼ 60 K by 200 MHz. 
We construct several estimates of the noise based on different

f fecti ve observing arrays. The sixth season of HERA data observed
ith a maximum of 209 antennas simultaneously in any given night

of the total 350 antennas available). The bulk of these antennas
bserved consistently throughout the season, though a fraction of
hem were swapped in and out. In our estimates here, we assume
hat the same antennas observe consistently throughout the season,
hich is a reasonable approximation. Nevertheless, in practice, even

hough 209 antennas are being correlated at any given moment, some
raction of them are flagged o v er all channels (e.g. due to swapped
olarizations, non-redundancies from physical effects such as feed
isplacement, or X-engine failures that affect a subset of antennas,
tc.). The average number of antennas actually observing per-night
hroughout the season is as-yet unknown, though initial estimates
lace it at ∼150 antennas (Dillon & Murray 2021 ). Here we use
 ants = 148, where the antennas are drawn randomly from the set
f 209 antennas that actually observed throughout the season. In all
ases, we use only baselines whose East-West length is greater than
5 m (i.e. we exclude North–South baselines, as their systematics are
ore difficult to filter out), and also only include baselines shorter

han 150 m, similar to analyses of previous HERA seasons. 
After obtaining the 3D sensitivity grid, we incoherently average

nto 1D spherical | k | -shells with bins of width 
 k || . In this process, we
ag out ( | k ⊥ 

| , k || )-bins within the foreground ‘wedge’ (Liu, Parsons &
rott 2014a , b ), defined by 

 

wedge 
|| = 0 . 15 h Mpc −1 + 

d k || 
d η

( ν) 
| b| 
c 

, (B6) 

ith | b | the baseline length (in meters) corresponding to a given
 , and dk / d η a redshift-dependent cosmological factor converting
NRAS 527, 9833–9852 (2024) 

⊥ || 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
andwidth into cosmic distance. This corresponds to the ‘horizon’
imit of foregrounds in delay-space, plus a conserv ati ve buf fer of
.1 h /Mpc (corresponding to the buffer used in first-season HERA
nalyses). 

In addition to the thermal variance, cosmic- (or sample-) variance
s added, proportional to a fiducial cosmological power spectrum,
 

2 
theory divided by the number of LST bins and k ⊥ 

-modes in a spherical
hell. We note that using the number of LST-bins is inspired by the
dea that LST-bins should capture the entire duration of ‘coherence’,
qual to roughly the beam-crossing time for an antenna. Ho we ver,
ERA is conserv ati ve in using shorter coherence times, resulting

n many more LST-bins. This reduces the thermal sensitivity, but
rtificially reduces the cosmic variance estimated by 21CMSENSE .
e vertheless, since cosmic v ariance is generally a sub-dominant

ontribution to the total variance, this should not have a large effect
n the results presented here. For the fiducial theoretical model, we
ere use the model from Mu ̃ noz et al. ( 2022 ). 
We summarize the parameters used in Table B1 and show the full

ERA phase II sixth season sensitivity forecast in Fig. B2 . 
There are a few caveats to these estimates. Most importantly,

aselines found within 7 λ UV-bins together are considered redun-
ant, while in the HERA analysis only baselines within 10 cm
re considered redundant. This will artificially increase thermal
ensitivity estimates. Secondly, the sky temperature is considered
onstant o v er the LST bins. To minimize the effect of this limitation,
e use a sky model that is based at the most-observed LST (7 h).
hirdly, cosmic variance is reduced as the square root of the number
f LST bins, instead of the number of independent ‘fields’ observed.
his artificially increases the sensitivity from cosmic variance,

hough this should not have a large effect since this is the sub-
ominant contribution on most scales and redshifts. Finally, in this
orecast we did not decimate the k -bins as was done in previous
nalyses. This results in some unaccounted covariance between k -
ins that would tend to o v er-estimate the sensitivity. We do not expect
his to significantly affect the qualitative conclusions derived from
he forecast. 
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