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ABSTRACT

Recent years have witnessed rapid progress in observations of the epoch of reionization (EoR). These have enabled high-
dimensional inference of galaxy and intergalactic medium (IGM) properties during the first billion years of our Universe.
However, even using efficient, seminumerical simulations, traditional inference approaches that compute 3D lightcones on-the-
fly can take 10° core hours. Here we present 21CMEMU: an emulator of several summary observables from the popular 21CMFAST
simulation code. 2ICMEMU takes as input nine parameters characterizing EoR galaxies, and outputs the following summary
statistics: (i) the IGM mean neutral fraction; (ii) the 21-cm power spectrum; (iii) the mean 21-cm spin temperature; (iv) the
sky-averaged (global) 21-cm signal; (vi) the ultraviolet (UV) luminosity functions (LFs); and (vii) the Thomson scattering optical
depth to the cosmic microwave background (CMB). All observables are predicted with sub- per cent median accuracy, with a
reduction of the computational cost by a factor of over 10*. After validating inference results, we showcase a few applications,
including: (i) quantifying the relative constraining power of different observational data sets; (ii) seeing how recent claims of a
late EoR impact previous inferences; and (iii) forecasting upcoming constraints from the sixth observing season of the Hydrogen
Epoch of Reionization Array (HERA) telescope. 21CMEMU is publicly available, and is included as an alternative simulator in

the public 21cMMC sampler.

Key words: cosmology: theory —dark ages, reionization, first stars —methods: statistical — methods: data analysis.

1 INTRODUCTION

The cosmic dawn (CD) of the first luminous objects and eventual
reionization of the Universe remain among the greatest mysteries
in modern cosmology. Recent years have seen a dramatic increase
in observations of the CD and epoch of reionization (EoR). These
include: (i) the Ly « forest (e.g. Fan et al. 2006; Becker, Rauch &
Sargent 2007; Becker et al. 2015; Bosman et al. 2018; D’Odorico
et al. 2023); (ii) damping wings in quasar spectra (e.g. Bolton et al.
2011; Mortlock et al. 2011; Bafados et al. 2018; Wang et al. 2020;
Yang et al. 2020); (iii) Ly o emission from galaxies (e.g. Ouchi et al.
2010; Clément et al. 2012; Konno et al. 2014; Drake et al. 2017,
Hoag et al. 2019; Shibuya et al. 2019); (iv) large-scale polarization of
the cosmic microwave background (CMB; e.g. Planck Collaboration
2020; de Belsunce et al. 2021; Heinrich & Hu 2021); (v) secondary
kinetic Sunaev—Zeldovich (kSZ) CMB anisotropies (e.g. Das et al.
2014; George et al. 2015; Reichardt et al. 2021); (vi) upper limits
on the cosmic 21-cm power spectrum (PS; e.g. Mertens et al. 2020;
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Trott et al. 2020; The HERA Collaboration 2022a, b). This is set to
culminate with a 3D map of H 1 during the first billion years, expected
with the upcoming Square Kilometer Array (SKA;e.g. Mellema et al.
2013; Koopmans et al. 2015; Mesinger 2019).

In step with these observational advances, Bayesian inference
techniques have been developed that allow us to forward model
the observations and constrain the parameters of reionization as
well as the galaxies responsible (e.g. Choudhury & Ferrara 2005;
Greig & Mesinger 2015; Mesinger et al. 2015; Mason et al. 2018;
Greig, Mesinger & Bafiados 2019; Ghara et al. 2020; Mondal et al.
2020; Choudhury, Paranjape & Bosman 2021; Qin et al. 2021;
Abdurashidova et al. 2022; Maity & Choudhury 2022; Nikoli¢ et al.
2023). These rely on efficient simulators, so-called seminumerical
simulations (e.g. Mesinger & Furlanetto 2007; Thomas et al. 2009;
Santos et al. 2010; Mesinger, Furlanetto & Cen 2011; Visbal et al.
2012; Ghara, Choudhury & Datta 2015; Murray et al. 2020; Maity &
Choudhury 2022; Schneider et al. 2022; Trac et al. 2022), that
typically approximate computationally expensive radiative transfer
with approaches based on cheap fast fourier transforms. However, in-
ference can be computationally expensive even with semi-numerical
simulations. As an example, the recent, state-of-the-art inference
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using nine galaxy parameters in Abdurashidova et al. (2022; hereafter
HERA?22) took ~ 103 core hours on an HPC center: roughly 103
likelihood evaluations each taking ~ 1 core hour to simulate the
corresponding observables.

A popular alternative approach is to use emulators (e.g. Kern et al.
2017; Schmit & Pritchard 2017; Shimabukuro & Semelin 2017,
Jennings et al. 2019; Ghara et al. 2020; Mondal et al. 2022; Bye,
Portillo & Fialkov 2022; Lazare, Sarkar & Kovetz 2023). Once
trained on a set of simulation outputs, an emulator can replace
the expensive, on-the-fly simulation step in Bayesian inference: a
single likelihood evaluation taking ~ 0.1 s instead of ~ 1 h. As
such, the computational cost is amortized, requiring only the initial
data base of simulations in order to perform subsequent, inexpensive
inferences.! Of course, such amortized inference is restricted to the
theoretical model that is used to train the emulator. Moreover, there
is also the additional emulator error to account for, which can be
non-negligible for high precision measurements and in corners of
parameter space that are poorly sampled (e.g. Kern et al. 2017;
appendix B of HERA22). Nevertheless, emulators allow us to rapidly
perform many inferences of the same model, testing the impact on
the posterior of different likelihood choices, priors, and new data.
Moreover, the emulator error is sub-dominant compared with current,
relatively low signal-to-noise ratio (S/N) observations, such as the
21-cm power spectrum upper limits.

Here we present 21CMEMU? — a public emulator of several
summary outputs from the seminumerical code 21CMFAST.? These
include (i) the volume-averaged hydrogen neutral fraction; (ii) the
21-cm power spectrum; (iii) the global 21cm brightness temperature;
(iv) the neutral intergalactic medium (IGM) spin temperature; (v)
the ultraviolet (UV) luminosity functions (LFs); (vi) the Thomson
scattering optical depth of CMB photons. Our emulator was trained
on summary observables from the withHERA inference in HERA22,
which sampled nine astrophysical parameters that characterize
galaxy properties. As a result, our work presents a few important
improvements over previous emulators. The unprecedented number
of summary outputs allows us to include complementary multiwave-
length probes of high-z galaxies and the EoR when computing the
likelihood. Moreover, our physically motivated galaxy parametriza-
tion (Park et al. 2019) allows us to easily motivate different choices
of priors. We will periodically update 21CMEMU to include new
summary outputs and astrophysical models.

We showcase our emulator by re-analysing the HERA power
spectrum upper limits published in HERA22. We also perform
inferences including various combinations of the data, illustrating
the constraining power of each probe on the posterior. One call of
21cMEMU takes ~0.1 s (compared to ~1 h for 21CMFAST), with a
typical inference finishing in a few hours.

This paper is organized as follows. In Section 2, we introduce the
data used to train the emulator. In Section 3, we introduce the network
and discuss its architecture, training procedure, and performance. In
Section 4, we showcase applications of the emulator to EoR/CD in-

! Another form of amortized inference is to train neural density estimators
to fit the likelihood or likelihood/evidence ratio using simulated data (e.g.
Alsing, Wandelt & Feeney 2018; Papamakarios, Sterratt & Murray 2018;
Cole et al. 2022). This is referred to as simulation-based inference (SBI), and
has the additional benefit of not having to specify an explicit functional form
for the likelihood. SBI has recently been applied to mock 21cm observations
(Zhao et al. 2022a; Zhao, Mao & Wandelt 2022b; Prelogovi¢ & Mesinger
2023; Saxena et al. 2023), with very promising results.
Zhttps://github.com/2 1cmfast/21cmEMU
3https:/github.com/21cmfast/21cmFAST
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ference problems. We conclude in Section 5. We assume a flat ACDM
cosmology, with (24, ,,, 5, h, o3, ny) =(0.69,0.31,0.049, 0.68,
0.82,0.97), consistent with results from (Planck Collaboration 2020).
Unless stated otherwise, all lengths are in comoving units.

2 SIMULATED DATA SET

Our data sets for training and testing are taken from the withHERA
inference from HERA22, using an increased number of livepoints
(18k). This inference used the Multinest (Feroz, Hobson &
Bridges 2009) sampler in 21cMMc* (Greig & Mesinger 2015, 2017,
2018) with a flat prior on all astrophysical parameters within the
ranges shown in all of the corner plots (e.g. Fig. 6). The likelihood
was determined by current observations of the EoR history, galaxy
LFs and 21cm upper limits (discussed in detail in Section 4.1).

We use all of the MULTINEST outputs, including both accepted and
rejected samples, resulting in 1.8M parameter samples. Of these, we
randomly select 1.28M for training, 183k for validation and 330k for
testing. The data base is standardized (subtract the mean and divide
by the standard deviation of each summary statistic) before being
passed into the network for training.

Our data sets are generated with the public 21CMFAST v3 code
(Mesinger & Furlanetto 2007; Mesinger, Furlanetto & Cen 2011;
Murray et al. 2020). 21CMFAST is a seminumerical simulation code
that operates under the assumption that dark matter halos host galax-
ies which source inhomogeneous large-scale cosmic radiation fields.
Matter density and velocity fields are generated using second-order
Lagrangian perturbation theory (e.g. Scoccimarro 1998). Galaxy
properties are assigned to dark matter halo fields using empirical
scaling relations, following the parametrization in Park et al. (2019).
The ionizing, X-ray, and soft UV cosmic radiation fields sourced
by these galaxies are computed with a combination of excursion set
and direct integration along the lightcone. The ionization and thermal
state of the IGM gas are then tracked with a set of coupled differential
equations, allowing us to compute the various observables discussed
below. The HERA?22 runs that form our data base assumed a simula-
tion box length of 250 cMpc, with a 1283 grid. For further details on
the simulation code, the interested reader is directed to (Mesinger &
Furlanetto 2007; Mesinger, Furlanetto & Cen 2011; Murray et al.
2020). Below we summarize the astrophysical parameters used
as input to 21CMEMU, and the summary observables that are the
corresponding output.

2.1 Galaxy model and astrophysical parameters

The input consists of nine parameters that characterize bulk galaxy
properties. Two parameters (f; 10, ¢¢,) describe the stellar—to—halo
mass relation (SHMR), which is a power law for the faint galaxies
(hosted by M), < 10'>M,, halos) that dominate the cosmic radiation
fields at z > 5 (e.g. Kuhlen & Faucher-Giguere 2012; Dayal et al.
2014; Behroozi & Silk 2015; Mutch et al. 2016; Sun & Furlanetto
2016; Yue, Ferrara & Xu 2016),

M*M _ My \* [ 1
(2 (), Y

Here €, is the universal baryon energy density (as a fraction of the
critical energy density), 2, is the total matter (i.e. cold dark matter

and baryon) energy density, and f, = fi.10 ( A’Z]’;) ’ € [0, 1] is the

stellar fraction, with f ;o corresponding to the fraction of galactic

“https://github.com/21cmfast/21CMMC
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gas in stars normalized to the amount in a halo of mass My = 1010
Mg, and o, the power-law index.

Star formation is assumed to occur on a time-scale that goes with
the Hubble time, H~!(z) (or analogously the dynamical time, which
also scales with the Hubble time during matter domination),

M M, 2

= THOG) 2
The characteristic star formation time-scale, ¢, € [0, 1], is another
free parameter.

The typical ionizing escape fraction, fe.(M}) € [0, 1] is similarly
described by a power law (e.g. Paardekooper, Khochfar & Dalla
Vecchia 2015; Kimm et al. 2017; Lewis et al. 2020),

(M) = (&)a (3)
fesc h) — fesc,lO M]() )

with two free parameters: the normalization, fes, 10, and the power-
law index, aeqc.

Star formation is suppressed in small mass halos due to inefficient
gas cooling and/or feedback (e.g. Hui & Gnedin 1997; Springel &
Hernquist 2003; Okamoto, Gao & Theuns 2008; Sobacchi &
Mesinger 2013; Xu et al. 2016; Ma et al. 2020; Ocvirk et al.
2020). We account for this suppression by assuming only a fraction
exp (—Mym/M),) of halos host active star forming galaxies. The
characteristic halo mass scale below which the abundance of galaxies
is exponentially suppressed, Mm, is another free parameter.

The specific X-ray luminosity escaping the galaxies is also taken
to be a power law in energy (e.g. Das et al. 2017), Lx o< E~*X, with
the index ay left as a free parameter. The luminosity is normalized
via the soft band X-ray luminosity per unit star formation rate (SFR),
another free parameter,

2keV

Ly orev/SFR = / dE Ly /SFR, 4)

Ey
where Ej, the last input parameter, is the minimum energy of X-ray
photons capable of escaping their host galaxy.

In summary, the nine input parameters are:

(1) f+,10: normalization of the SHMR, defined at M), = M.

(ii) a,: power-law index of the SHMR.

(iii) fesc,10: normalization of the ionizing escape fraction to halo
mass relation, defined at M), = M,,.

(1v) otese: power-law index of the ionizing UV escape fraction to
halo mass relation.

(V) t,: characteristic star formation time-scale, defined as a frac-
tion of the Hubble time.

(vi) My /Mg: characteristic mass below which halos become
exponentially less likely to host an active star forming galaxy.

(vii) %: soft-band X-ray luminosity per unit SFR es-
caping the galaxies.

(viii) E¢/keV: minimum X-ray energy that can escape the galax-
ies.

(ix) ax: power-law index of the X-ray spectral energy distribution.

This simple parametrization is easy to interpret physically and is

consistent with observations of the UV LFs as well as the scaling
relations found in galaxy simulations and semi-analytic models.

2.2 Observational summaries

For a given set of cosmological and astrophysical parameters,
21CMFAST calculates the corresponding 3D lightcones of IGM prop-
erties. When performing inference, these lightcones are generally
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compressed into summary statistics that are compared directly with
observations. Here we do not attempt to directly emulate the 3D
lightcones of the various cosmological quantities, and instead only

emulate the following summary observables (motivated by existing
EoR/CD observations discussed in Section 4.1):

(1) Xm(z) — the volume-averaged neutral fraction of hydrogen and
helium as a function of redshift (also commonly referred to as the
EoR history).

(ii) Ty(z) — the volume-averaged (global) 21-cm brightness tem-
perature (e.g. Madau, Meiksin & Rees 1997; Furlanetto 2006;
Pritchard & Loeb 2012):

Ts — Tr

Tp(x,2) = T2 (1 —e™)
Quh? 0.15 142\ "?
~ 27 xu(l + 8 K
Fa(1 + b)<0.023> (szmhz 10 ) m
Ts — Ti ar r
<(*57) [avome) ®
Ts (1+2)H(z)

where 7, is the 2lcm optical depth of the intervening gas,
8, = p/p — 1 is the baryon overdensity, with p being the baryon
density, and Ts and Ty are the spin and background temperatures,
respectively. We assume throughout that the radio background is
provided by the CMB, Tr = Tcwmsp is the temperature of the CMB.
‘We note that 21CMFAST computes the brightness temperature at each
cell location, X, using the exact expression in the first line of the
equation above; the second line is a Taylor expansion in the limit of
751 < 1 that provides physical intuition.

(iii) Ts(z) — the mean spin temperature of the neutral IGM as
a function of redshift. The IGM spin temperature is only defined
for neutral hydrogen that is outside of the cosmic H1I regions that
surround galaxies. Specifically, the volume average is performed
over those cells in the simulation box with Xy; > 95 per cent.

>iv) A%l(k, z) —  spherically averaged 2l-cm  PS:
A} (k, 2) [mK?| = k3/Q2n?)(T,T), where k = |k|, and T,(k, z) is
the Fourier dual of the brightness temperature from equation (5).

(v) ¢(Mis00, 2) — the non-ionizing UV LF, defined as the num-
ber density of galaxies per UV magnitude, Misp, as a func-
tion of redshift. The ~1500 A rest frame luminosity is calcu-
lated from the SFR: M, (M), z) = Kyv X Lyy, where Kyy = 1.15 -
1072Mgpyr~! Hz s erg™! assumes a Salpeter initial mass function
(e.g. Madau & Dickinson 2014; Sun & Furlanetto 2016). The UV
luminosity is related to the AB magnitude using (Oke & Gunn 1983):

log (%) = 0.4 x (51.63 — Myy).

(vi) 7, — the Thompson optical depth to the last scattering surface:
1, =or fo 'S dz |“ n,, where o is the Thompson scattering cross
section and n, is the electron number density calculated assuming
hydrogen and helium are singly ionized at a fraction (1 — xy;) and

that helium is doubly ionized at z < 3.

cdt
dz

Although the last two quantities are computed analytically by
21CMFAST and are therefore reasonably fast, we still emulate them
for two reasons. The first is to provide users of 21CMEMU with a
standalone package. The second is that the analytic calculation is
still slower than the emulator prediction time: emulation reduces the
runtime from ~1 s to < 50 ms for a single parameter combination (<
1 ms per parameter set if in a large (2 100) batch), with a relatively
low emulation error (see Section 3).

We use 84 redshift bins in the range z ~ 5-35 for all summaries
except the 21-cm PS. For the 21-cm PS we exclude high redshift
bins that generally have a very weak signal, keeping 60 redshift bins
spanning z ~ 6-21, and 12 k bins spanning k ~ 0.04—1 Mpc~!. We
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Figure 1. Schematic of the 21CMEMU architecture. Astrophysical parameters (fop; c.f. Section 2.1 are inputted through a large block of fully connected layers.
The output from this shared block is then passed on into five blocks (much smaller than the shared block). The first four fully-connected branches, from left
to right, output the Thomson scattering optical depth, UV LFs, mean hydrogen neutral fraction, spin temperature, and global signal, respectively. The output
from the shared block is also reshaped into an image and is passed into a 2D convolutional neutral network which outputs the 21-cm power spectrum (rightmost
branch). The convolutions gradually build the PS image. The window size varies among the layers. The number of filters (stacked squares) decreases toward the

end of the convolutional neural network.

also floor the PS values to 0.1 mK?2, in order to reduce the dynamic
range of the data and improve training. We note that the value of
the floor is an order of magnitude smaller than the accuracy of the
21CMFAST simulator itself (e.g. Mesinger, Furlanetto & Cen 2011;
Zahn et al. 2011), and thus has no effective impact on the accuracy
of our emulator.

3 EMULATOR ARCHITECTURE AND
PERFORMANCE

21CMEMU is implemented using Tensorflow (Abadi et al. 2015),
with an architecture consisting of (see diagram in Fig. 1):

(i) one large block (eight layers with 1k nodes each) of fully
connected (dense) layers whose output is fed into all of the branches.
(ii) one branch per summary observable.

Since the 21-cm power spectrum is a smooth function of wave-
mode and redshift (e.g. Fig. 3), it can be interpreted as a 2D image.
Therefore we use a convolutional neural network (CNN) in the 21-
cm PS branch and fully connected layers in the other branches. Note
that the branches are not connected with one another. The only nodes
they have in common are those from the main block which each
branch receives as input.

The network trains on all of the summaries at once (i.e. multitask
learning), using a weighted sum of root mean squared error (RMSE)
losses with one loss term per branch, where each branch loss has a
different weight. We assign the largest weight to the 21-cm PS branch
as it is higher dimensional with the largest dynamic range, and thus
more difficult to learn. The final set of weights chosen is obtained

MNRAS 527, 9833-9852 (2024)

from a trial of about 50 different weight combinations with the goal
of choosing the best weights such that the 21-cm power spectrum,
brightness temperature, and neutral fraction are learned best. The
performance of the other summaries is not significantly affected by
the choice of weights. These trials are done ad hoc since the training
is computationally expensive.

We perform a few tests to motivate the importance of the block
of fully connected layers. First, we train a network equivalent to
the brightness temperature branch alone i.e. whose input is the
astrophysical parameters that are straight away passed into the
brightness temperature branch of fully connected layers. We find that
the median brightness temperature fractional error over the test set in
this network is ~ 45 per cent larger than the one in the final network.’
This means that, on average,6 our final architecture performs better
than just having individual networks for each summary. The final
architecture can contribute to improving the performance in two
ways: (i) combining the losses of the summaries allows the network
to learn from the correlations between the summaries; and (ii) simply
making the network larger and deeper. To test the relative importance
of (i) and (ii), we train a network without the shared block but with

SWe also test slightly changing the brightness temperature branch itself:
adding an additional layer and increasing the number of nodes increases
the median fractional error (see below for specific definition) by about 50
per cent, while increasing the number of layer nodes slightly and adding one
additional layer increases it by about 20 per cent.

®We did not perform this test for all of the other summaries. We did perform
it for the 21-cm power spectrum and found that the performance of the final
network is a few per cent better than that of the CNN branch alone.
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Figure 2. Training loss (black line) and validation loss (orange line) as a
function of training epoch. The learning rate curve is also shown with the
dashed grey line and the corresponding right axis.

the rest of the architecture the same. This significantly reduces the
number of trainable parameters in the network (by about 50 per cent),
but still allows different summaries to influence each other through
the shared loss. We do see an increase of up to a few percent in
the median and 68 per cent CL of the fractional error for the smaller
network as expected. Most notably, for the brightness temperature
we see an increase of ~ 1 percent, ~13 per cent, and ~27 per cent
for the median, 68 per cent CL, and 95 per cent CL of the fractional
error, respectively. We conclude that combining the losses of all the
summaries is the main cause of performance improvement, while
the large shared block is needed to get the best performance for the
most challenging summaries: the brightness temperature and 21-cm
power spectrum.

In Fig. 2, we show the total training and validation losses as a
function of epoch in black and orange, respectively. We also show the
learning rate schedule used during training with a dashed grey line.
We see a smooth decline of the validation loss up to ~100 epochs.
Our final network is taken at the minimum of the validation loss, at
epoch 150. The training takes about eleven GPU hours (~3.5 min
per epoch) with the full data base (1.8M samples).

Below, we discuss the branch architecture and performance for
each summary observable in turn, summarizing the results in Table 1.
Throughout, we illustrate the emulator performance using examples
from the test set, as well as the distributions of absolute differences
(Abs Diff) and fractional errors (FE) over the entire test set. The
latter two are defined for each observational summary, y, as

Abs Diff = |y1rue - yPredI (6)
Abs Diff

FE(%) = —————,
max (|Yeue s Yfioor)

@)

where yin refers to the 21CMFAST direct simulation output and ypreq
is the corresponding 21CMEMU prediction. We compute the above
averaged over different bins in y and/or different models in the test
set, as described below. One drawback of the FE metric is that it can
diverge to infinity as the denominator goes to zero. To avoid this,
we use floors for the values of the denominator: log(A%Lﬁm) =0.1;
Ty fioor = 5 mK, and ¥ poor = 107*. The specific values of these
floors was chosen relatively arbitrarily; however, they are lower than
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Table 1. Performance of the 21CMEMU network when trained on the
full data base, half of the data base and 1 per cent of the data base.

Median FE 68 percent CL

Training size Summary (per cent) (per cent)
1.3M log A2, 0.55 2.4
Full Ty 0.34 1.2
logT's 0.032 0.13
XHI 0.0073 0.10
Te 0.11 0.26
log ¢ 0.50 2.1
640k log A, 0.71 3.0
Random Ty 0.43 1.51
logT's 0.047 0.17
XHI 0.0086 0.12
Te 0.15 0.35
log ¢ 0.57 2.5
13k log A, 3.2 13.0
Random Ty 4.8 16.6
logTs 0.40 1.2
XHI 0.035 0.57
Te 0.45 1.0
log ¢ 2.5 10.0

the expected accuracy achievable by any near term experiment.” The
other summaries, 7., T's, and UV LFs do not have a floor value.

3.1 The 21-cm power spectrum

The power spectrum branch consists of 13 2D convolution layers
with wide (up to seven redshift bins x 3k bins) kernels and two
upsampling layers that gradually build the (k, z) PS image based on
the output of the shared block, as seen in Fig. 1. We use a pixel-
based RMSE loss, weighted by the inverse of the estimated thermal
noise corresponding to a 1000h SKA1-low observation (taken from
Prelogovi¢ et al. 2022; for more details see section 2.2.1 in that
work). Weighting by the inverse of the noise forces the CNN to be
more accurate in (k, z) bins that are easier to observe: generally
corresponding to lower redshifts and larger scales.

In Fig. 3, we compare the emulator prediction for the 21-cm power
spectrum with its corresponding target from 21CMFAST. We show a
single sample from the test set, with the 21CMEMU prediction on the
left and the 21CMFAST target in the middle panel. This sample was
chosen as it has the closest median fractional error to that of the
entire test set; thus it can be considered representative of the typical
emulator performance. It is difficult to see a difference between the
two PS with the naked eye. We the FE of this single sample in the
rightmost panel. The FE is generally sub-per cent, rising to ~ per cent
in regions of low power.

In these 2D images we clearly see the well-known trend of three
peaks in the redshift evolution of the large-scale 21-cm PS and two

7For the 21-cm power spectrum for example, the expected mean noise level
from thermal noise and sample variance for a 1000hr observation with the
SKAl-low instrument is >0.1 mK? (e.g. see Fig. 2, bottom left panel in
Kaur, Gillet & Mesinger 2020). Similarly, global signal experiments have
measurement noise that is orders of magnitude larger than the floor value we
chose (e.g. Murray et al. 2022; Singh et al. 2022), and are instead limited
mostly by foregrounds and instrument systematics. For the mean neutral
fraction, estimates have typical uncertainties of order 0.1 (see e.g. Greig et al.
2022 and references therein), orders of magnitude larger than the floor value
we use.

MNRAS 527, 9833-9852 (2024)

$20Z Jaquiaoa( | | U0 Jasn llezueAy Ipnig Ip aioledng ajeuoizeulaju| Blonos - YSSIS Aq 201221 2/SE86/v/.2S/81oN18/SeIul/Wwoo dno-olwspeoe//:sdny woJj papeojumoq



9838

D. Breitman et al.

o
=)

|
Q
un

|
L
=}

log1o(k) [Mpc2]

|
e
u

10 15 20

Redshift

10 15

Redshift

- ... I
1

20

o~
¥ —_—
£ S
g =
0 3
2
-1

Redshift

Figure 3. The spherically averaged 21-cm power spectrum as a function of wavemode and redshift for a sample in the test set. The 21CMEMU prediction is
shown on the left while the 21CMFAST result is on the right. This sample has a 21-cm PS fractional errors (FE) that is roughly comparable to the median value
of the whole the test set, and can thus be considered representative of the emulator performance. The rightmost panel shows the fractional error for this single

sample.

peaks in the small-scale evolution (e.g. Pritchard & Furlanetto 2007).
In general, the features evolve smoothly over (k, z), showcasing why
we use a CNN in the 21-cm PS branch of 21CMEMU.

We quantify the 21-cm PS prediction error in the top left panel
of Fig. 4. In the top sub-panel, we plot the redshift evolution of
the PS amplitude at k = 0.1 Mpc~!, with 21CMEMU predictions
shown via dash—dotted lines and the corresponding 21CMFAST targets
shown with solid lines. We chose to plot k = 0.1 Mpc~! because
the strongest constraints by current interferometers are around these
scales; smaller scales are dominated by thermal noise and larger
scales by foregrounds (e.g. Mertens et al. 2020; Trott et al. 2020;
The HERA Collaboration 2022a, b). The 10 models plotted here
were chosen at random from the test set. We again see that the
differences between the emulator and ‘truth’ are difficult to spot with
the naked eye.

In the bottom sub-panel we show the Abs Diff between each
pair of curves in the top sub-panel, as well as the median Abs
Diff (dashed black line) and the 68 per cent/|95 per cent confidence
limits (CL; dark/light grey) computed over the entire test set. We
see that the median (68 percent) 21CMEMU absolute error at k ~
0.1 Mpc~" is ‘ 10g (A2 ye/mK?) - log (A%,,pred/sz)‘ <001 (~
0.02). This translates to a median (68 per cent) fractional error of
0.70 percent (1.0 percent)® at this wavemode and 0.55 per cent
(2.4 per cent) when averaged over all wavemodes. This is far below
observational uncertainties in the near-term, thus justifying the use
of an emulator. The error rises slightly at lower redshifts, owing to
the broader distributions of possible PS, including very small values
post reionization. In Appendix A, we show the evolution of the 21-
cm power spectrum fractional error as a function of the input 9D
astrophysical parameters.

3.2 The 21-cm global signal

The 21-cm global signal branch consists of seven fully connected
layers with 600—1000 nodes each. We quantify the performance of
21CMEMU on the global signal in the top right panel of Fig. 4. We
show the redshift evolution of the global signal (top) and Abs Diff
(bottom) for the same 10 random samples from the test set.

8Note that these errors are calculated on the emulator PS output which is in
log space. Computing the corresponding error distributions in linear space,
we obtain a median (68 percent) FE of 1.53 percent (1.94 per cent) at k ~
0.1 Mpc~!, and 1.39 per cent (3.76 per cent) over the entire test set. Note that
since we return to linear space, we do not need to apply a floor on the power
spectrum in this FE calculation.
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As for the 21-cm power spectra, the difference between the
21CMFAST calculation and 21CMEMU prediction is difficult to see
with the naked eye and is generally < 1 mK. We see from the bottom
sub-panel that the 95 per cent CL of the errors in the test set is also <
1 mK. This translates to a median (68 per cent) FE of 0.34 per cent
(1.2 per cent).

We see from both the global signal and the PS that our training
set spans a wide range of heating and ionization histories. This is
due to the fact that we include both accepted and rejected livepoints
of the HERA22 inference in the training set, in order to have the
largest data set possible. Extending beyond the ranges of the most
likely models allows 21CMEMU to generalize beyond the HERA22
posterior distribution, accurately predicting even unlikely models
that, e.g. have not reionized by z = 5.

3.3 The 21-cm spin temperature in the neutral IGM

The T's branch consists of five fully connected layers with 400 nodes
each. We quantify the network performance on the mean 21-cm spin
temperature in the right panel of the middle row of Fig. 4. In the top
sub-panel, we show 10 examples of the emulated spin temperature
curve (dash—dotted line) and the corresponding true curves from the
test set (solid line). In the bottom sub-panel of the plot, we show the
absolute error for each of the 10 examples, the median for the entire
test set with the black dashed line, and the 68 per cent/95 per cent CL
regions in shaded in dark/pale grey as a function of redshift. We can
see that the Abs Diff is |log (Ts,uue/K) — log (Ts prea/K)| < 0.01 at
95 per cent CL over most of the redshift range. The FE of the log of
the mean spin temperature over the entire test set is 0.032 per cent
and the 68 per cent CL is 0.13 per cent.

We recall that the spin temperature is calculated by taking the
global average over all cells in the simulation box that have xy; >
95 per cent. When there are no cells satistying this condition, the spin
temperature becomes undefined. We account for this by having the
emulator predict the redshift at which the spin temperature becomes
undefined.® The emulator correctly predicts the exact redshift bin
below which T's becomes undefined for 95.1 per cent of the models

°In principle, one could use the EoR history emulator prediction to find the
redshift at which the volume averaged neutral fraction drops below 0.05.
However, this is not identical to our definition for Ts, since our simulations
account for partially neutral and self-shielded clumps inside the reionized
cells. Therefore we include a separate output for the redshift at which there
are no cells with xgy > 95 percent. We note that 21CMFAST also includes
partially ionized cells, both by UV and X-rays. Partial ionization by UV
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Figure 4. A subset of summary outputs from 21CMEMU for 10 random samples from the test set. Panels show: Redshift evolution of the k = 0.1 Mpc~! 21-cm
PS amplitude, redshift evolution of the mean 21-cm brightness temperature, redshift evolution of the mean spin temperature in the neutral IGM, the CMB optical
depth, UV LFs at z = 6, the EoR history (clockwise from upper left). Colours denote the astrophysical parameter sample with solid (dashed) lines corresponding
to outputs from 21CMFAST (21CMEMU). In the bottom sub-panels, we show the absolute differences (Abs Diff) between the predicted and true quantities shown
in the top sub-panels. Abs Diff of the 10 random samples are shown with the corresponding colours, while the median Abs Diff (FE in the case of t,) computed
over the entire test set are shown with dashed black curves. Dark (light) shaded regions enclose 68 per cent (95 per cent) CL.
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in our test set, and is only one bin off (Az ~ 0.1) for 4.89 per cent of
the models.

3.4 The global history of reionization

The EoR history branch, like the spin temperature branch, consists
of five fully connected hidden layers with 500 nodes each. In the
left panel of the middle row in Fig. 4, we show the EoR histories
of our 10 parameter samples (fop sub-panel), and the corresponding
prediction error (bottom sub-panel). We see that the Abs Diff are
<0.005 for 95 per cent of the models in the test set. The FE is 0.0075
per cent for the median and 0.095 per cent at the 68 per cent CL.

3.5 The CMB Thomson scattering optical depth

The Thomson scattering optical depth branch consists of three layers
of 30 nodes each as it outputs only one number. We show the FE of
the 7. prediction in the lower right panel of Fig. 4. The 10 parameter
samples are denoted with different colour dots. Over the entire test
set, we see a median fractional error of 0.1 per cent and a 0.25 per cent
FE at 68 percent CL. There is a notable increase in the prediction
error as well as its bin-to-bin variance toward higher values of ..
This is due to a small number of samples in this unlikely corner of
parameter space: fewer than 1 per cent of the models in the test set
have t. > 0.11.

3.6 Galaxy UV LFs

The LFs branch consists of five layers of 400 nodes each. The network
outputs the LFs at four redshifts (z = 6, 7, 8, 10) and magnitude bins
ranging from —20 to —10. In the lower left panel of Fig. 4, we show
the emulated and simulated LFs at z = 6 (the performance at the
other redshifts is comparable). The hatched region denotes the range
spanned by LF observations used in the inference in the following
section.

We can see that the emulator is very accurate in the flat range
spanned by the existing observations, while it is less accurate around
the faint-end turnover. At all of the redshift bins, we have that
the Abs Diff|log (¢ue/Mpc ™) — log (¢prea/Mpe )| < 0.1 over the
majority of the magnitude range.

We provide an alternative setting in 21CMEMU that allows the
user to skip the emulation and directly calculate the CMB optical
depth and UV LFs using 21CMFAST. This improved accuracy however
comes at the cost of a slower runtime: ~ 700 ms per call compared
with < 50 ms using emulation.

3.7 Summary of 21CMEMU performance and context with other
emulators

In Table 1, we summarize the performance of 21CMEMU for each
summary in the first row, using the fiducial training set of 1.3M
samples. In general, the median (68 percent) emulation fractional
error is at the level of < 0.5 per cent (1 per cent). The most accurate
prediction is achieved with the EoR history, most likely due to the
fact that it is a monotonic and smooth function, making it easier
to learn. The least accurate summary is the power spectrum, which
is understandable as it is two dimensional with the largest dynamic
range.

is assumed to correspond to unresolved HII regions surrounding nascent
galaxies (see the discussion in Zahn et al. 2011).
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It is difficult to directly compare the performance of 21CMEMU
with other emulators of EoR/CD observables, due to their different
astrophysical parametrizations and training set sizes. Nevertheless,
at face value 21CMEMU’s accuracy is better than achievable with
state-of-the-art emulators (e.g. Mondal et al. 2020; Bevins et al.
2021; Bye, Portillo & Fialkov 2022; Yoshiura, Minoda & Takahashi
2023). For example, comparing with the recent, bespoke 21-cm
global signal emulator 21CMVAE (Bye, Portillo & Fialkov 2022),
we obtain a factor of 2.2 (1.5) lower median (95th percentile) RMS
error (see their equation 1). Our median 21-cm PS FE is a factor
of ~10-100 lower than that of the bespoke PS emulators in Kern
et al. (2017) and Ghara et al. (2020), when compared over the same
redshift/wavemode ranges.

This improvement in 2ICMEMU over previous works could be
attributed to several factors. First, we have a training set of unprece-
dented size: 1.3M samples. This is orders of magnitude larger than
used in previous works (generally ranging from thousands to tens of
thousands). We quantify how 21CMEMU’s accuracy changes with the
training set size in the following section.

Secondly, the improvement in power spectrum emulation could be
attributed in part to our novel CNN architecture. Previous 21-cm PS
emulators used only fully connected layers which are not as efficient
in processing 2D images such as the PS.

Finally, the fact that 21CMEMU emulates many different observ-
ables allows the prediction of any one of these to be helped by the
others. Indeed, we verified explicitly that the 21-cm PS emulation
is improved when the other summary outputs are included in the
loss (i.e. when all branches are trained together). In addition to
improving performance, including multiple EoR/CD observables is
extremely important in the current era where 21-cm observations are
not strongly constraining. As we show in Section 4.2, complementary
galaxy and EoR observations are needed to obtain a likelihood-
dominated (as opposed to prior-dominated) posterior (see also
HERA22).

3.8 Varying the size of the training set

Since 21CMEMU was trained on an uncharacteristically large training
set, it is useful to see how it performs with smaller training sets. To
do so, we remove some models at random, retrain 21CMEMU on the
reduced training set, and test its performance on the same test set.

In Fig. 5, we plot the median FE in each summary as a function of
the training set size. We normalize the FE so that unity corresponds to
the fiducial, 1.3 M training set. We also explicitly list the performance
using half of the data base (640k samples), and 1 per cent of the data
base (13k samples) in the middle and bottom rows of Table 1.

We see that there is a sharp increase in emulator accuracy with
training set size, up to a size of ~ 100k. Doubling the size of the
training set roughly doubles the emulator accuracy. This relationship
flattens beyond sizes of 2 100k, such that a ten-fold increase in the
training set from ~100k — 1.3 M only improves the FE by a factor
of ~two.

4 APPLICATION TO INFERENCE

In this section, we apply 21CMEMU to inference problems. We
use the 21cMMC driver (Greig & Mesinger 2015), which now
includes the option to use either 21CMFAST or 21CMEMU as the
simulator. 21CMMC incorporates three highly parallel samplers:
EMCEE (Foreman-Mackey et al. 2013), Multinest (Feroz, Hobson &
Bridges 2009), and Ultranest (Buchner 2016, 2019; Buchner 2021);
in this work we use the latter two as discussed further below.
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Figure 5. Median fractional error of each summary as a function of the
training set size. The FE is normalized so that unity corresponds to the
fiducial, 1.3 M training set.

First, we run the same inference as was previously run in HERA22
using 21CMFAST in order to see how emulator error affects the poste-
rior. After this validation, we showcase the potential of 21CMEMU by
performing several new inferences demonstrating: (i) how different
observations are complimentary; (ii) the approximate impact of new,
late-ending EoR constraints; (iii) the potential impact of upcoming
H6C HERA observations. Each 21CMEMU inference took roughly a
day on a GPU, compared with a few weeks on a cluster had we used
21CMFAST directly.

4.1 Comparison with direct simulation

We run the same inference as in HERA22 (10k livepoints) with
21cMEMU. Doing this allows us to directly compare the inference
results between the two methods.

The likelihood in HERA2?2 incorporates four data sets:

(i) Thomson scattering CMB optical depth — this term compares
the Thomson scattering CMB optical depth from the proposed model
with the one from the analysis of Planck Collaboration (2020) by
Qin et al. (2020), whose posterior is characterized by median and
68 per cent credible interval (CI): 7, = 0.0569700%! The likelihood
function is a two-sided Gaussian.

(ii) The Lyman forest dark fraction — this term compares the mean
neutral fraction at z = 5.9 with the upper limit of Xy, < 0.06 =
0.05 at 68 per cent CI obtained from QSO dark fraction (McGreer,
Mesinger & D’Odorico 2015). The likelihood function is unity at
Xmui(z = 5.9) < 0.06, decreasing as a one-sided Gaussian for higher
neutral fraction values.

(iii) UV LFs — this term compares the model with z = 6, 7, 8, 10
UV LFs observed with Hubble (Bouwens et al. 2015, 2016; Oesch
et al. 2018) in the magnitude range Myy € [ — 20, —10]. This
likelihood term is also a two-sided Gaussian.

(iv) 21-cm power spectrum upper limits — this term accounts for
HERA H1C 94 night observations at z = 8 and z = 10, presented in
The HERA Collaboration (2022b). The likelihood is the upper limit
likelihood discussed in HERA22.

These individual likelihood terms are multiplied to obtain the total
likelihood. When using 21CMEMU for inference, we add the median

21cMEMU 9841

emulator error in quadrature to the measurement uncertainties for
each corresponding likelihood term.

In Figs 6 and 7, we compare posteriors obtained using 21CMFAST
(cyan) to that using 21CMEMU (orange). Both were run using the
MultiNest sampler with the same number of livepoints (10k,
yielding ~60k posterior samples). In the lower left of Fig. 6 we plot
the 1D and 2D marginal PDFs for our astrophysical parameters, while
in the top right we plot 95 per cent CI of some of the summary obser-
vations (see caption for details). In Fig. 7 we plot the corresponding
spin temperature PDFs in the two HERA bands, which was one of the
main results of the HERA22 paper. We note that the 21CMFAST and
21CMEMU posteriors are nearly identical, testifying that the emulation
error is fairly negligible when performing inference using current
data sets. The only notable difference is in the 7, PDF, which is
slightly broader when 21CMEMU is used as a simulator compared
with 21CMFAST. We find no notable trends of the emulator error
with this parameter, concluding the small difference could be due to
stochasticity in sampling and/or a higher dimensional covariance of
the emulator error.

In Fig. 6 we also include a run using 21CMEMU and the same
HERAZ22 likelihood, but with the UltraNest sampler (purple
curves; Sk livepoints, yielding ~70k posterior samples). The re-
sulting posterior is consistent with the previous two. Interestingly,
the choice of sampler (purple versus orange) results in a larger
difference than the choice of simulator (orange versus cyan) for
some marginal PDFs. In particular, the UltraNest posterior
is more accurate towards the edges of the prior range, resulting
in flatter posteriors at the edges: this behavior is also recovered
using the EMCEE sampler as shown in Lazare, Sarkar & Kovetz
(2023). Moreover, UltraNest’s vectorization makes it ~10x
faster when using an efficient simulator like 21CMEMU. Therefore,
in subsequent sections we only show posteriors generated with
UltraNest.

‘We remind the reader that the emulator was trained on the HERA22
nested sampling output. This inference took ~400k core hours.
Once trained however, the emulator performs amortized posterior
estimation in only 225 core hours using Multinest or in 30 core
hours using Ultranest.

4.2 Impact of different observations on the posterior

Having tested the emulator in the previous section, we now use it
to perform multiple inferences that would be too costly with direct
simulation. We begin by quantifying how the individual terms from
the HERA22 likelihood discussed in the previous section affect
the posterior. We do this by removing the terms one by one, and
comparing the resulting posteriors in Fig. 8.

In orange we show the full HERA22 posterior from the previous
section, including all likelihood terms. In green, we remove the
HERA power spectrum upper limit constraint. We see that the only
consequence is that the Ly/SFR parameter becomes unconstrained.
In the panel on the right, we can also see the 95 per cent CI of the
power spectrum and 21-cm global signal becoming wider around z
~6-10. As discussed in HERA22, the 21-cm power spectrum limits
is the only measurement sensitive to the IGM temperature during the
CD.

Next, if we remove constraints on the EoR history (here corre-
sponding to the dark fraction and 7, likelihood terms), using only the
UV LFs in the likelihood, we obtain the posterior shown in blue. We
see that EoR history measurements allow us to set (lose) constraints
on the ionizing escape fraction (here parametrized via fesc, 10 and oesc),
which disappear completely when their corresponding terms are not
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Figure 6. Comparison of posteriors obtained using 21CMFAST and 21CMEMU after performing an inference with the same HERA?22 likelihood. The darker/thick
dashed regions represent 68 percent credible intervals (Cls), while pale/thin dashed regions represent 95 percent Cls. The orange and purple posterior
distributions are obtained using the Mult iNest sampler (10k livepoints, ~60k posterior samples), while the cyan posterior distribution is obtained using the
UltraNest sampler (5k livepoints, ~ 70k posterior samples). The median value and the 68 percent CIs of the 1D marginal PDFs are written above each
column of the corner plot. In the panels on the top right, all highlighted regions correspond to 95 per cent CIs. In the top middle panel, we plot the LFs for
redshifts 6, 7, and 8. For the LF likelihood, we use the data shown in black squares (Bouwens et al. 2015, 2016; Oesch et al. 2018). In the top right, we show a
panel with three summary statistics, namely the redshift evolution of the 21-cm power spectrum at k = 0.13 cMpc ™!, the 21-cm global signal and mean neutral
fraction, from top to bottom. The black squares in the power spectrum plot correspond to the two deepest limits for each HERA redshift band (k = 0.13 cMpc™!
at z ~8 and k = 0.17 cMpc~" at z ~10). In the bottom plot, the black square denotes the upper limit on the average neutral hydrogen fraction obtained from
the QSO dark fraction (McGreer, Mesinger & D’Odorico 2015). In the bottom right, we show the PDFs of the Thomson optical depth together with the Planck
result used in the likelihood. The astrophysical parameter ranges shown in the corner plot correspond to the extent of the flat priors assumed for the inferences.

included in the likelihood. Including only the UV LFs does disfavor Finally we show the prior distribution in the space of UF LFs,
very early reionization, z > 11, because the redshift evolution of the 21-cm PS, 21-cm global signal, and EoR history in grey. We see that
SFR density implied by UV LF observations is too steep to allow all of the posteriors in these spaces are significantly broader than the
arbitrarily early EoR, even with escape fractions close to unity. priors, and are thus likelihood dominated (i.e. are not sensitive to the
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Figure 7. Comparison of the mean spin temperature distribution from 21CMFAST and 21CMEMU for each of the two HERA bands after performing an inference
with the exact same likelihood. The CIs have been calculated using the highest posterior density method. The dark (light) cyan shaded region shows the 68
per cent (95 per cent) CI. The solid cyan line shows the distribution for 21CMFAST with 10k livepoints using Mult iNest. The dashed orange line shows the
same but for 21CMEMU. The dashed purple line shows the distribution for 21CMEMU but using the UltraNest sampler with 5k livepoints.

prior choices). Moreover, each likelihood term adds complimentary
information, highlighting the importance of combining observational
data sets when interpreting the high-redshift Universe.

4.3 Impact of late reionization

Recent observations of the large-scale opacity fluctuations in the
Ly o forest (e.g. Becker et al. 2015; Bosman et al. 2018, 2022)
imply a late end to reionization z < 5.6 (Choudhury, Paranjape &
Bosman 2021; Qin et al. 2021). In this section, we explore how such
new EoR history constraints would impact the previously shown
posterior. Unfortunately, the current version of 21CMEMU does not
emulate the Ly o forest, and so we cannot compute a likelihood
directly in the observed space of Ly o opacity fluctuations. Instead
we take a more approximate approach, computing the likelihood in
the space of EoR histories, i.e. X;(z). To construct a likelihood
in this space, we use the EoR history posterior from Qin et al.
(2021), who did in fact compute a likelihood from forward-modeled
Ly o opacities in addition to the dark fraction and 7. observations.
Specifically, we compute a new Late EoR posterior by replacing the
dark fraction and 7. likelihood terms with a Gaussian likelihood
evaluated at three redshifts, Xy, (z = 6) = 0.25 £ 0.07, x(z =7) =
0.58 £ 0.1, and Xy, (z = 8) = 0.79 £ 0.09, ignoring any covariance
between redshifts. Although this is obviously an approximation to
computing the likelihood directly in the space of the observations,
it suffices to qualitatively show the impact of new EoR history
constraints.

In Fig. 9, we show the previous (Fiducial) posterior in purple (71k
samples) together with the new (Late EoR) posterior in orange (18k
samples). Understandably, the corresponding recovered EoR history
in orange is narrowly centered around the three points at z = 6,
7, 8 used to define the likelihood. As a consequence, the posterior
of the Thomson optical depth also becomes more narrow, shifting
toward lower values while still being within the range allowed by
Planck observations. The resulting PDF of f.s. 10 for Late EoR is also
narrower, and shifted towards smaller values. Even the power-law
scaling of the escape fraction with halo mass, ¢, is constrained to
within £ 0.3 (68 percent C.I.) for Late EoR, whereas the Fiducial

posterior only sets a lower limit for this parameter. The remaining
parameters are unaffected by the change to the Late EoR likelihood.

We also see that the recovered 21-cm large-scale PS for Late EoR
is narrower at z < 8. The large-scale 21-cm PS during the EoR peaks
around its midpoint (e.g. Lidz et al. 2007; Pritchard & Furlanetto
2007), which occurs at z ~7-8. The HERA22 upper limits disfavor
higher values of the 21-cm PS at z ~ 8, but the tail towards small PS
values seen in the Fiducial posterior (corresponding to small Xyy),
shrinks when moving to the Late EoR posterior.

4.4 Forecasts for HERA Phase II sixth-season observations

We now forecast parameter constraints that could be achievable
with the sixth season of HERA observations, taken in 2022-2023
(Berkhout et al., in preparation). This season of observing used Phase
II of the HERA instrument, spanning 50-230 MHz (omitting the FM
band, 90-110 MHz), expanding coverage to CD and late reionization
with respect to Phase I (which was used for HERA?22). While analysis
of this season’s data is ongoing, its broad characteristics are known
(Dillon & Murray 2021): approximately 1300 h of unflagged data
over ~150 nights, with an average of ~148 un-flagged antennas
per night. Although further flagging will certainly occur during
processing, this data set will be HERA’s most sensitive data release
to date, by a significant factor.

We create a mock observation corresponding to this upcoming
data set. For the ‘true’ cosmic signal, we use the Evolution of
Structure (EOS) 2021 release (Muiioz et al. 2022). EOS2021 is a
large simulation (1.5 cGpc per side with 10003 cells) made with
21CMFAST, with the goal of being our current ‘best guess’ for the true
cosmic signal. Although it used the same parametrization for galaxy
scaling relations as is used here (see Section 2.1), the physical model
of EOS2021 has a few notable differences. Instead of leaving My
as a free parameter, EOS2021 explicitly calculated a local My, (X, z)
based on feedback from the local ionizing and photo-disassociating
backgrounds, as well as the relative velocities of baryons and dark
matter. Furthermore, EOS2021 explicitly accounted for putative
PopllI star formation in the first, Hy-cooled galaxies (e.g. Tegmark
et al. 1997; Abel, Bryan & Norman 2002; Bromm & Larson 2004;
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Figure 8. Contribution of various likelihood terms to the total posterior. The corner plot on the left shows the 95 per cent CI of three inferences, all run with
21CMEMU and UltraNest. The full posterior with all four probes is plotted in purple (exactly the same as the purple in Fig. 6). In green, we show the posterior
without the HERA power spectrum upper limits term. In blue, we additionally remove the neutral fraction and Thomson optical depth terms, leaving only the
UV LFs terms. On the top right half of the plot, we show the 95 per cent CI of the same three posteriors but in the space of summary statistics: first the UV LFs,
and then a panel with the 21-cm power spectrum, 21-cm global signal, and EoR history, top to bottom, and finally a panel with the Thomson optical depth. In
grey, we plot the summary statistic 95 per cent CI assuming a flat distribution across all nine astrophysical parameters which is what was used for the prior for

the 21CMFAST inference.

Haiman & Bryan 2006), which dominated the background radiation
fields at z > 16, for their fiducial parameter choices. As a result of the
models being different, 21CMEMU could result in a biased recovery
of the EOS2021 signal; we quantify this below.

We use 21CMSENSE!? (Pober et al. 2013, 2014) to obtain thermal
and sample variance estimates of the HERA sixth season data, and

10https://github.com/rasg-affiliates/2 1 cmSense
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describe our methodology and assumptions in Appendix B. We
consider our sensitivity estimate to be realistic, with a few important
caveats, for example the potential over-estimation of sensitivity
when treating ‘similar’ baselines as identical (Zhang, Liu & Parsons
2018). The largest unpredictable caveat is of course the presence
of instrumental systematics, for which we describe our approach in
more detail below.

Radio telescopes, including HERA, impose their own signature on
observations — dependent on the primary beam attenuation, antenna
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Figure 9. Same as Fig. 6, but comparing the fiducial posterior (solid purple) with one obtained by replacing the QSO dark fraction and 7, likelihood terms
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inference results in Qin et al. 2021, which included recent measurements of opacity fluctuations in the Ly « forest. In the top right sub-panels, we show both the

68 per cent (darker) and 95 per cent (paler) C.I.

layout, channelization and other instrumental characteristics. The
effect of this instrumental signature on the observed power spectrum
is such that neighbouring Fourier modes are linearly’mixed’ via a
‘window function” matrix (e.g. Liu & Tegmark 2011; Gorce et al.
2023). We calculated this window function using the hera_pspec!!
package. We did not use the exact HERA beam as in Gorce et al.
(2023). Instead, we used the Gaussian beam approximation which
we deemed sufficient for this forecast (see fig. 7 in Gorcee et al. 2023
for a comparison). Once we obtain the HERA window function, we

https://github.com/HER A-Team/hera_pspec

matrix multiply it with the emulated model to properly compare with
the forecast.

We perform inference using the EOS2021 cosmological signal
with the sensitivity estimates from 21CMSENSE as the mock observa-
tion (see Fig. B2 in Appendix B). This inference takes about 30 GPU h
to run to convergence with UltraNest. In Fig. 10 we show the resulting
posterior (HERA sixth season in orange) together with the previous
result (Fiducial in purple). In the top right panel we show the mock
PS atk ~0.16 Mpc ™' as orange points with associated error bars. We
see that based purely on the available S/N, the HERA sixth season
data have the potential to detect the cosmic PS during the EoR (6 < z
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parameters of the cosmological simulation used for the mock observation, EOS2021, are denoted with blue lines and squares in the corner plot. We caution that
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(see fig. 5 in Mufioz et al. 2022), here we demarcate its range during the EoR (i.e. 6 < z < 8 where the mock observations imply a detection). For more details

about the panels, see the legend in Fig. 6.

< 8). The 95 per cent CI of the inferred PS (orange) go tightly around
the data points. This unbiased recovery is reassuring, given the above-
mentioned differences in the theoretical models used for the mock
and forward-modeled data. Indeed, most of the ‘true’ astrophysical
parameters from EOS2021 (denoted with blue lines in the corner
plot) are consistent with the recovered orange posteriors. Parameters
governing X-ray heating, Lx - »v/SFR and Ey, are recovered with
the lowest accuracy, with the true values residing outside of the 68
percent CI of their 2D PDF. This is understandable, because the

MNRAS 527, 9833-9852 (2024)

21cMEMU forward models do not include the additional radiation
from H,-cooling galaxies, which dominate the X-ray heating at z >
16.

Comparing to current constraints (Fiducial posterior in purple), we
see that that HERA sixth season data have the potential to drastically
improve our knowledge of the EoR. The HERA sixth season EoR
history Xy,(z) is constrained to within +0.06 (95 percent C.L): a
factor of 2> 7 improvement over current limits. As a result, we can
place strong constraints on the characteristic ionizing escape fraction,
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fese, 10, and its dependence on galaxy mass, s, Which are almost
completely unknown currently.

It is important to note that these two posteriors use a different
form for the likelihood. For the HERA sixth season forecast, we
assume that there are no residual systematics after processing of the
HERA data. This is in contrast to the previous likelihoods, which
assume that each k-mode has a positive systematic whose prior
amplitude is uniform and unbounded (cf. The HERA Collaboration
2022b). In practice, assuming no residual systematics results in
a two-sided Gaussian likelihood, corresponding to a ‘detection’,
whereas the traditional likelihood has been a one-sided error-function
corresponding to an ‘upper-limit’. We make this choice as it is
not straightforward to sample from the unbounded uniform prior
for systematics when creating the mock data for the forecast. The
resulting tighter parameter posteriors for the new data are therefore
the result of an admixture of the new more sensitive data and the
(effectively) more constrained priors on systematics.

5 CONCLUSION

Here we introduced 21CMEMU: a publicly available emulator of sev-
eral summary observables from 21CMFAST. We trained the emulator
on 1.3M pseudo-posterior samples from the inference in HERA22.
The input consists of a nine parameter model characterizing the UV
and X-ray outputs of high redshift galaxies. The output consists of: (i)
the 21-cm power spectrum as a function of redshift and wavemode;
(i) the IGM mean neutral fraction as a function of redshift; (iii)
the UV LF at four redshifts 6, 7, 8, and 10; (iv) the Thompson
scattering optical depth to the CMB; (v) the mean spin temperature
as a function of redshift; and (vi) the 21-cm global signal as a function
of redshift. The emulator predicts all of these quantities with under
~ 2.4 per cent error at 68 per cent CL, and a computational cost that
is lower by a factor of ~10 000 compared to 21CMFAST.

We varied the size of the training set, finding only a modest
decrease in performance (a factor of ~2 decrease in the FE) as the
number of samples was reduced from 1.3M to ~100k. Below ~100k
samples, we saw a sharp drop in performance, with the fractional
error increasing roughly as the inverse of the size of the training set.

We validated the emulator’s performance in inference by compar-
ing the posteriors obtained with 21CMEMU versus 21CMFAST using
the same likelihood (taken from HERA22). We found a very modest
difference between these two posteriors, further illustrating that the
emulator error is negligible when performing inference using current
data.

Next, we profited from the speed of our trained emulator to perform
multiple inferences that would otherwise be very costly using direct
simulation. First, we studied the constraining power of each term in
our fiducial likelihood. We found that current observations are very
complementary, with UV LFs constraining the SHMRs, EoR history
probes constraining the ionizing escape fraction, and the addition
of 21-cm PS upper limits constraining the X-ray luminosity to SFR
relation.

We also explored the impact of new EoR history constraints, driven
by opacity fluctuations in the Ly « forest. These recent observations
imply much tighter constraints on the EoR history, finishing at z <
5.6 (e.g. Choudhury, Paranjape & Bosman 2021; Qin et al. 2021).
The inclusion of these new limits tightened the recovered constraints
on the ionizing escape fraction and its scaling with halo mass. The
impact on other parameters was modest.

Finally, we presented forecasts of parameter constraints achievable
with ongoing sixth season phase II observations with the HERA
telescope. Optimistically, we could expect a detection of the 21-
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cm PS at z ~6-7. This would result in a dramatic improvement
in the recovered timing of the EoR, allowing us to infer Xy (z) to
within & 0.06 (95 percent C.1.): a factor of 2> 7 improvement over
current limits. As a result, we could place strong constraints on
the characteristic ionizing escape fraction and its dependence on
galaxy mass, which are almost completely unknown currently. We
cautioned however that this forecast is optimistic, mainly because it
assumed there are no residual systematics in the processed data (see
Appendix B for more details).

21CMEMU was trained on a data base of summary observables
where only one seed i.e. random set of initial conditions is available
per combination of astrophysical parameters. In the future, we hope
train the emulator on a data base that samples many different seeds
in order to emulate a full likelihood function rather than only
approximate the mean as we do right now. This is important since
Prelogovi¢ & Mesinger (2023) showed that using a single random
seed when forward modeling can bias the inference results.

We make 21CMEMU publicly available at https://github.com/
21cmfast/21cmEMU, and include it as an alternative simulator in
the public 21cMMc!? sampler. We will periodically release updated
versions, trained on the latest galaxy models and expanding the
choice of summary outputs.
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APPENDIX A: PARAMETER SPACE
DEPENDENCE OF THE 21-CM PS EMULATION
ERROR

In Appendix A, we look at how the emulation error is distributed over
the 9D input parameter space. In Fig. A1, we show the 21-cm power
spectrum test set fractional error as a 2D histogram as a function of
each pair of input astrophysical parameters. On the diagonal, we show
the histogram (probability density) of each astrophysical parameter
in the test set.

As expected, the emulation error peaks at the edges of parameter
space where the density of samples is the lowest [see also fig. 9 in
Kern et al. (2017) and top plot in fig. 18 in Abdurashidova et al.
(2022)]. However, the inclusion of the rejected livepoints in the
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Figure Al. Distribution of the mean fractional error of the emulated log A%l. The colour of each bin in the 2D histogram is a weighted mean of the fractional
error of the samples therein. On the diagonal, we show the 1D marginal density distribution of each astrophysical parameter in the test set. Note that the range
of astrophysical parameters in the corner plot corresponds to the ranges taken for the flat prior of the inference used to generate the data base.
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training allowed our emulator to generalize well beyond the peak of
the posterior (c.f. Fig. 6). Importantly, the mean FE remains modest
(< 2 per cent) throughout the prior volume.

APPENDIX B: 21CMSENSE SENSITIVITY
ESTIMATES FOR HERA’S SIXTH SEASON

To obtain mock error estimates for the forecasted sixth season of
HERA observations, we used the updated open-source 21CMSENSE'?
tool. The general algorithm of 21CMSENSE can be found in Pober
et al. (2014) and in the extensive documentation and tutorials of
the updated codebase'* (see also Liu & Shaw (2020) for a review
including a similar argument). A brief outline of the calculations is
as follows: 21CMSENSE estimates thermal noise on any 3D k-mode
as
2

R Tz, o
Py(ky, k — P _£(ky, k), Bl
N kL, k) o NkLAVTimS( L k) (B1)

where Ty is frequency-dependent system temperature
Tsys = Tsky(V) + Trcv(V)y (BZ)

Av = 122.07 kHz is the channel width of the observation and 7;,, =
300 s is the coherently averaged local sidereal time (LST)-bin size
used in the analysis.'> Furthermore, £ is a ‘flag’ function that takes
the value O or 1 depending on the location of the 3D mode with
respect to the foreground wedge (see below).

In this equation, Ny, represents the number of samples of this
angular scale observed coherently throughout the observing season
(i.e. observations that are averaged together as visibilities). In
21CMSENSE, this is estimated by creating a grid on the k 1 plane,
whose cells are the size of the primary beam of the instrument in
Fourier-space (for HERA, this is 7A at 150 MHz), and binning the
the baseline coordinates into this grid.'® In addition to the number
of samples in a bin coming from different (redundant) baselines, we
also have samples from the same baseline at different fimes. Here,
samples at the same LST on different nights are averaged coherently,
but samples at different LSTs are averaged incoherently (i.e. after
forming power spectra). Currently, 21CMSENSE only has support for
specitying the number of nights observed and the number of hours
observed each night (thereby specifying the number of LST bins
in conjunction with the LST bin duration). However, in realistic
observational programmes, the same LST bins are not observed each
night (whether due to the evolution of the sky throughout the season,
or through flagging/data quality concerns). To partially account for
this, we define a function ny,s(LST) which counts the number of
unflagged days observed over the season for any given 300-s-long
LST bin (note that this accounts for flags of the entire observation,
due to things like poor weather or correlator malfunctions, but
not antenna- or channel-specific flags). To map this non-constant

Bhttps://github.com/rasg-affiliates/21cmSense.

4 g, https://21cmsense.readthedocs.io/en/latest/tutorials/understanding_2
lcmsense.html

5In general, 21CMSENSE uses the more fundamental snapshot integration
time of the instrument, and re-phases observations over a longer ‘coherent
observation duration’, however HERA is a drift-scan telescope that performs
no re-phasing, and all observations within an LST bin are considered coherent
without re-phasing.

16This is probably the greatest departure from the actual HERA analysis,
which coherently averages only redundant baselines, i.e. those that are
equivalent to within several centimeters.
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Figure B1. The number of times each 300-s LST bin was observed and un-
flagged in HERAs sixth season, used for sensitivity estimates. Note that this
accounts only for flags arising from strong effects that affect large swathes
of the observed antennas and/or channels (e.g. lightning storms, correlator
outages), and further flags are applied in the downstream analysis.

function of LST bin onto the schema available in 21CMSENSE, which
assumes the same LST bins are observed each night, we set

NLST .2
Ndays,eff = w (B3)
nLst

and fgay = nyst X 300 s. This achieves the same resulting thermal
noise level, under the assumption that the sky temperature is constant
over the LST bins. We use actual sixth-season HERA measurements
for nops, as shownin Fig. B1. We calculate ngays, off = 67.4 for coherent
averaging and #4,y = 21 h for incoherent averaging (i.e. the thermal
noise from our observing pattern is equivalent to observing 253 300-s
LST bins each for 67.4 d). Finally, we apply a further factor of € =
0.9 t0 ngays, et to broadly account for finer-scale flags applied during
analysis that are unaccounted in the LST-bin observing pattern of
Fig. B1. In summary, we have

Nk, = €Nyl i, Ndays.efiv/NLST- (B4)

The line-of-sight modes observed depend on the channel width,
as already defined, and also the bandwidth of the observation. While
HERA Phase II observes 200 MHz of bandwidth from 50-250 MHz,
power spectra are estimated in smaller ‘spectral windows’ whose
size is determined by a number of factors. Chiefly, the windows are
as wide as possible, so as to include the largest scales where the
signal is strongest, but are constrained by lightcone evolution (Datta
et al. 2012; Trott 2016; Greig & Mesinger 2018) to be effectively
smaller than ~ 10 MHz. In practice, spectral windows are chosen to
lie between strongly flagged channels (e.g. FM band and Orbcomm),
which means their width is not constant. Here, we use constant
20 MHz spectral windows, where we assume a Blackman tapering
function is applied to each window to reduce the effective bandwidth
to ~ 10 MHz (and an appropriate scaling factor of 1.737 is applied
to the final noise level). We calculate noise estimates for all spectral
windows between 50 and 250 MHz, excluding the FM band between
90 and 110 MHz.

We use a model for Ty, that is a power law in frequency,
with amplitude and spectral-index obtained from simulated auto-
correlations of the diffuse sky, using the GSM (de Oliveira-Costa
et al. 2008) and the HERA Phase II primary beam (Fagnoni et al.
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Figure B2. HERA phase II sixth season sensitivity forecast obtained using 21CMSENSE with the parameters specified in Table B1. Note that in practice, HERA
decimates the k-bins to avoid requiring non-diagonal covariance (e.g. Abdurashidova et al. 2022). Here we have approximated this practice by using only half
of the above k-bins (those highlighted in black) when computing the likelihood for our inference.
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Table B1. Parameters used within 21CMSENSE to obtain sensitivity estimates for the sixth season of HERA observations.

Parameter Description Value

Nants Number of antennas within the 209 available actually observed. 75, 100, 120, 148, 209
Teky Sky temperature model 150K(v/150 MHz) 2"
Trcv Receiver Temperature Empirical, 600 K at 50 MHz, 60 K above 200 MHz
Av Channel width 122.07 kHz

Tint Coherent integration time (LST bin width) 300 sec

Au UV-grid size for coherent baseline averaging Tr

Ndays, eft Effective number of days observed coherently 67.41

tday Effective observed hours per day 21 h (253 LST bins)
€ Efficiency factor for frequency-dependent flags 0.9

B Spectral window bandwidth 20 MHz

Bese Effective spectral window bandwidth after Blackman taper 11.51 MHz

FG wedge level Line-of-sight scale below which modes are filtered 0.15 h/Mpc + horizon
Theory model Cosmological power spectrum from which to calculate cosmic variance Muiloz et al. 2022

See Appendix B for details on the algorithm. TNote that Naays, etf and tiy are effectively equivalent to the actual LST footprint of the season in terms of thermal

noise, under the assumption that the sky temperature is constant with LST.

2021) at LST=7h,

Tay = 150K x (1o )_2'5. (BS)

150 MHz

Currently, 21CMSENSE is not able to use different sky models for
different LST-bins, so this choice represents the temperature for the
most-observed LST bin. For T,.,, we use a frequency-dependent
model based on electromagnetic simulations performed in Fagnoni
et al. (2021), interpolated by a cubic spline. This model is close to
a power law at low frequencies, with an amplitude of ~600 K at 50
MHz and asymptoting to a const ~ 60 K by 200 MHz.

We construct several estimates of the noise based on different
effective observing arrays. The sixth season of HERA data observed
with a maximum of 209 antennas simultaneously in any given night
(of the total 350 antennas available). The bulk of these antennas
observed consistently throughout the season, though a fraction of
them were swapped in and out. In our estimates here, we assume
that the same antennas observe consistently throughout the season,
which is a reasonable approximation. Nevertheless, in practice, even
though 209 antennas are being correlated at any given moment, some
fraction of them are flagged over all channels (e.g. due to swapped
polarizations, non-redundancies from physical effects such as feed
displacement, or X-engine failures that affect a subset of antennas,
etc.). The average number of antennas actually observing per-night
throughout the season is as-yet unknown, though initial estimates
place it at ~150 antennas (Dillon & Murray 2021). Here we use
Nants = 148, where the antennas are drawn randomly from the set
of 209 antennas that actually observed throughout the season. In all
cases, we use only baselines whose East-West length is greater than
15 m (i.e. we exclude North—South baselines, as their systematics are
more difficult to filter out), and also only include baselines shorter
than 150 m, similar to analyses of previous HERA seasons.

After obtaining the 3D sensitivity grid, we incoherently average
into 1D spherical |k|-shells with bins of width Ak;;. In this process, we
flag out (|k_ |, k)))-bins within the foreground ‘wedge’ (Liu, Parsons &
Trott 20144, b), defined by
L dky

d

w)—, (B6)
n

k[* = 0.15hMpc™! -

with |b| the baseline length (in meters) corresponding to a given
k1, and dk;/dn a redshift-dependent cosmological factor converting

bandwidth into cosmic distance. This corresponds to the ‘horizon’
limit of foregrounds in delay-space, plus a conservative buffer of
0.1 A/Mpc (corresponding to the buffer used in first-season HERA
analyses).

In addition to the thermal variance, cosmic- (or sample-) variance
is added, proportional to a fiducial cosmological power spectrum,
Ptﬁeory divided by the number of LST bins and k ; -modes in a spherical
shell. We note that using the number of LST-bins is inspired by the
idea that LST-bins should capture the entire duration of ‘coherence’,
equal to roughly the beam-crossing time for an antenna. However,
HERA is conservative in using shorter coherence times, resulting
in many more LST-bins. This reduces the thermal sensitivity, but
artificially reduces the cosmic variance estimated by 21CMSENSE.
Nevertheless, since cosmic variance is generally a sub-dominant
contribution to the total variance, this should not have a large effect
on the results presented here. For the fiducial theoretical model, we
here use the model from Mufioz et al. (2022).

‘We summarize the parameters used in Table B1 and show the full
HERA phase II sixth season sensitivity forecast in Fig. B2.

There are a few caveats to these estimates. Most importantly,
baselines found within 7A UV-bins together are considered redun-
dant, while in the HERA analysis only baselines within 10 cm
are considered redundant. This will artificially increase thermal
sensitivity estimates. Secondly, the sky temperature is considered
constant over the LST bins. To minimize the effect of this limitation,
we use a sky model that is based at the most-observed LST (7 h).
Thirdly, cosmic variance is reduced as the square root of the number
of LST bins, instead of the number of independent ‘fields’ observed.
This artificially increases the sensitivity from cosmic variance,
though this should not have a large effect since this is the sub-
dominant contribution on most scales and redshifts. Finally, in this
forecast we did not decimate the k-bins as was done in previous
analyses. This results in some unaccounted covariance between k-
bins that would tend to over-estimate the sensitivity. We do not expect
this to significantly affect the qualitative conclusions derived from
the forecast.

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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