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ABSTRACT
In this paper, a compressible viscous-dispersive Euler system in one space dimension in the context of quantum hydrodynamics is considered.
The purpose of this study is twofold. First, it is shown that the system is locally well-posed. For that purpose, the existence of classical
solutions which are perturbation of constant states is established. Second, it is proved that in the particular case of subsonic equilibrium states,
sufficiently small perturbations decay globally in time. In order to prove this stability property, the linearized system around the subsonic
state is examined. Using an appropriately constructed compensating matrix symbol in the Fourier space, it is proved that solutions to the
linear system decay globally in time, underlying a dissipative mechanism of regularity gain type. These linear decay estimates, together with
the local existence result, imply the global existence and the decay of perturbations to constant subsonic equilibrium states as solutions to the
full nonlinear system.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0172774

I. INTRODUCTION
Consider the following quantum hydrodynamics (QHD) system with linear viscosity,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρt +mx = 0,

mt + (
m2

ρ
+ p(ρ))

x
= μmxx + k2ρ((

√ρ)xx√ρ
)

x

,
(1.1)

where ρ > 0 is the density, m = ρu denotes the momentum (u is the velocity), p(ρ) = ργ with γ > 1 is the pressure function and μ > 0, and k > 0
are positive constants representing viscosity and dispersive coefficients, respectively. The term (√ρ)xx/√ρ is known as the (normalized)
quantum Bohm potential,6,7 providing the model with a nonlinear third order dispersive term. It can be interpreted as a quantum correc-
tion to the classical pressure (stress tensor). The viscosity term, in contrast, is of linear type. The resulting system is used, for instance, in
superfluidity,37 or in classical hydrodynamical models for semiconductor devices.20

Systems in QHD first appeared in the work by Madelung44 as an alternative formulation of the Schrödinger equation, written in terms of
hydrodynamical variables, and structurally similar to the Navier–Stokes equations of fluid dynamics. It constituted a precursor theory of the
de Broglie–Bohm causal interpretation of quantum theory.6–8 Since then, quantum fluid models have been applied to describe many physical
phenomena, such as the mathematical description of superfluidity,37,39 the modeling of quantum semiconductors,13,20 and the dynamics of
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Bose–Einstein condensates,10,24 just to mention a few. In recent years, models in QHD have attracted the attention of mathematicians and
physicists alike, thanks to their capability of describing particular physical systems, as well as their underlying mathematical challenges. Many
mathematical results pertain to the existence of weak solutions2–4,32,57 and their stability,5 relaxation limits,1 the analysis of purely dispersive
shocks,21,26,29,30,50 or the study of classical limits when the Planck constant tends to zero.22 Most of these works pertain to the purely dispersive
model with no viscous effects. The above list of references is by no means exhaustive and the reader is invited to see the references cited therein
for more information. QHD models with viscosity have been studied under the perspective of viscous (numerical) stabilization,33 the physical
description of dense plasmas,9,11,25 the existence and stability of viscous-dispersive shocks,14,15,40–43,58 the existence of global solutions,19 and
vanishing viscosity behaviors.56 More recently, the existence of standing waves was established in Ref. 58 and the Evans function computations
presented in Ref. 59 provide numerical evidence that such solutions are spectrally unstable.

In this paper, we are interested in the decay structure of QHD systems with viscosity under the framework of Humpherys’s exten-
sion31 to higher order system of the classical results by Kawashima34 and Shizuta and Kawashima36,51 for hyperbolic-parabolic type systems.
Humpherys31 extended Kawashima and Shizuta’s notions of strict dissipativity, genuine coupling and symmetrizability to viscous-dispersive
one-dimensional systems of any order, such as the viscous QHD model under consideration. First, Humpherys introduces the concept of
symbol symmetrizability, which is a generalization of the classical notion symmetrizability in the sense of Friedrichs,17 and extends the gen-
uine coupling condition for any symmetric Fourier symbol of the linearized higher-order operator around an equilibrium state. Humpherys
then shows that his notion of genuine coupling is equivalent to the strict dissipativity of the system and to the existence of a compensating
matrix symbol for the linearized system, which allows to close energy (stability) estimates.

Our analysis is divided into two parts. The first one is devoted to proving the local existence of perturbations to constant equilibrium
states of the form U∗ = (ρ∗ , m∗)with ρ∗ > 0. Since the system under consideration is structurally very similar to the Navier-Stokes-Korteweg
system27,38 we follow the classical proof by Hattori and Li27 very closely. Here we recast local well-posedness in terms of perturbations of an
equilibrium state, a formulation which is suitable for our needs. The local existence result (see Theorem 2.1 below) guarantees the existence
of classical solutions as well as the appropriate energy bounds for the perturbations which are needed for the global decay analysis. Although
the arguments are classical, we present a full proof of local existence for the sake of completeness and to fulfill the requirement of obtaining
appropriate energy bounds (see Corollary 2.3). Besides, there is no local existence result for the QHD system with the particular viscosity term
appearing in (1.1) reported in the literature, up to our knowledge.

The second part of the paper focuses on subsonic equilibrium states, satisfying the condition

p′(ρ ∗) > m2∗
ρ2∗

.

It can be proved (see Lemma 3.2 below) that supersonic states [namely, those which satisfy p′(ρ ∗) < m2∗ /ρ2∗ ] do not satisfy the strict dissipa-
tivity condition for the linearized system, justifying in this case the choice of subsonic states for our analysis. The intermediate case of sonic
states with p′(ρ ∗) = m2∗ /ρ2∗ is associated to degeneracies (such as in viscous-dispersive shock theory) and it is not clear whether symbol
symmetrization and/or genuine coupling hold in this case. Hence, we have left the analysis of sonic states for a future work. We proceed to
linearize system (1.1) around a subsonic state and to study its strict dissipativity. It is shown that the linearized QHD system is symbol sym-
metrizable but not Friedrichs symmetrizable, and that it satisfies the genuine coupling condition. Thanks to a new degree of freedom in the
choice of the symbol symmetrizer (see also the related analyses47,48 for Korteweg fluids) it is possible to construct an appropriate compensat-
ing matrix symbol for the linearized system (see Lemma 3.9), which is uniformly bounded above in the Fourier parameter and which allows
to close the energy estimates at the linear level. Such estimates underlie a decay structure of regularity-gain type, yielding optimal pointwise
decay rates of the solutions to the linear system in Fourier space (see Refs. 53 and 54 or Remark 3.1 below). The linear decay rates are then
used to prove the nonlinear decay of small perturbations of constant equilibrium states, culminating into the global existence and optimal
time-decay of perturbation solutions (see our Main Theorem 4.4 below).

The work of Tong and Xia52 warrants note as the first work (up to our knowledge) that analyzes the decay of perturbations of equilibrium
states for a QHD system with viscosity (see also Ra and Hong49 for a similar analysis in the case of the QHD system with energy exchanges).
Our work differs from the aforementioned works in the sense that their analysis consists of obtaining direct nonlinear energy estimates,
relying heavily on the intrinsic structure of the QHD model. The technique presented here examines whether the linearized system around
the constant state exhibits some abstract symmetrizability and dissipative properties which can be extrapolated to the nonlinear problem.

The paper is structured as follows: Sec. II contains the proof of local well-posedness for system (1.1). The problem is recast in terms
of perturbations or arbitrary constant equilibrium states. In Sec. III we study the linearized system around a subsonic equilibrium state. We
examine the genuine coupling condition in the sense of Humpherys31 and exhibit a family of symbol symmetrizers. The subsonicty of the
constant state plays a key role. With this information, we obtain the linear decay rates for the associated semigroup. Finally, Sec. IV contains
the global decay result for small perturbations of constant equilibrium subsonic states.

A. On notation
Transposition of vectors or matrices is denoted by the symbol A⊺. Linear operators acting on infinite-dimensional spaces are indicated

with calligraphic letters (e.g., A). We denote the real part of a complex number λ ∈ C by Re λ. Standard Sobolev spaces of complex-valued
functions on the real line will be denoted as L2(R) and Hs(R), with s ∈ R, endowed with the standard inner products and norms. The

J. Math. Phys. 65, 081508 (2024); doi: 10.1063/5.0172774 65, 081508-2

© Author(s) 2024

 17 January 2025 09:50:24

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

norm on Hs(R) will be denoted as ∥ ⋅ ∥s and the norm in L2 will be henceforth denoted by ∥ ⋅ ∥0. Any other Lp-norm will be denoted as ∥ ⋅ ∥Lp

for ∞ ≥ p ≥ 1. The L2-scalar product will be denoted by ⟨⋅, ⋅⟩0, whereas ⟨⋅, ⋅⟩ is the standard inner product in Cn. For any T > 0 we denote
by C∞0 ([0, T] ×R) the set of infinitely differentiable functions on [0, T] ×R such that ∂i

x f (t, ⋅)→ 0 as ∣x∣→∞, i ∈ N0 ∶= N ∪ {0}, that is,

functions that for fixed t have all derivatives going to zero for large ∣x∣. Let p be a vector in Rn. Its two-norm is ∣p∣ = (∑n
i=1 p2

i )
1
2 . For a matrix

A ∈ Rn×n, ∣A∣ = sup∣p∣=1∣Ap∣ denotes its two-norm. For operators A, B denote by [A, B] = AB − BA their commutator. Finally, we recall
Sobolev’s embedding theorem: if f ∈ H1(R), then ∥ f ∥L∞ ≤ C∥ f ∥1, where the constant C does not depend on f .

II. LOCAL WELL-POSEDNESS THEORY
This section is devoted to proving the local existence of solutions for (1.1). First we will derive energy estimates satisfied by the solution

of a quasi-linearized system related to (1.1). Then we will prove existence of solution for this system which satisfies these estimates. Finally,
we will use a fixed point argument to establish local existence for the nonlinear problem.

Let ρ∗ > 0 and m∗ ∈ R be constant equilibrium states for system (1.1). We are interested in proving the local existence of perturbations
to this constant equilibrium state. For that purpose, we define the following space of perturbations. For positive constants R ≥ r > 0, T > 0 and
for any s ≥ 3 we denote,

Xs((0, T); r, R) ∶={(ρ, m) : ρ ∈ C((0, T); Hs+1(R)) ∩ C1((0, T); Hs−1(R)),
m ∈ C((0, T); Hs(R)) ∩ C1((0, T); Hs−2(R)),
(ρx, mx) ∈ L2((0, T); Hs+1(R) ×Hs(R)),
and r ≤ ρ(x, t) ≤ R a.e. in (x, t) ∈ R × (0, T)}.

Henceforth, for any U = (ρ, m) ∈ Xs((0, T); r, R) we denote

Es(t) ∶= sup
τ∈[0,t]

(∥ρ(τ)∥2
s+1 + ∥m(τ)∥2

s ), (2.1)

Fs(t) ∶= ∫
t

0
(∥ρx(τ)∥2

s+1 + ∥mx(τ)∥2
s ) dτ, (2.2)

for all t ∈ [0, T].
Our main goal is to prove the following local existence result.

Theorem 2.1. Let U∗ = (ρ∗, m∗) ∈ R2 be a constant equilibrium state with ρ∗ > 0. Suppose that

ρ0 ∈ Hs+1(R), m0 ∈ Hs(R), (2.3)

for some s ≥ 3 are initial perturbations of (ρ∗ , m∗) and consider an initial condition of the form

U(0) +U ∗ = (ρ0 + ρ∗, m0 +m∗). (2.4)

Then for all a0 > 0, all R0 > r0 > 0, and all initial data such that

∥ρ0∥s+1 + ∥m0∥s < a0,

and such that r0 ≤ ρ∗ + ρ0(x) ≤ R0, a.e. in x ∈ R, there exists a positive time T1 = T1(a0, r0) > 0 such that a unique smooth solution of the form
(ρ(x, t) + ρ∗ , m(x, t) +m ∗), with perturbation belonging to the space

(ρ, m) ∈ Xs((0, T1);
1
2

r0, 2R0),

exists for the Cauchy problem of system (1.1) with initial data (2.4). Moreover, the solution satisfies the energy estimate

Es(T1) + Fs(T1) ≤ C0Es(0), (2.5)

for some constant C0 > 0 depending only on a0.

Remark 2.2. It is to be observed that the constant a0 > 0 in the statement of Theorem 2.1 is not necessarily small and that the local
well-posedness result holds also for arbitrarily large initial data. It serves as an upper bound on the energy norm of the initial data in order to
avoid vacuum in the ρ-variable and to emphasize the dependence of the local existence time T on the initial data through a0.
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Corollary 2.3 (a priori estimate). Under the assumptions of Theorem 2.1, let U = (ρ + ρ∗ , m +m∗) with (ρ, m) ∈ Xs((0, T); 1
2 r0, 2R0)

be a local solution of the initial value problem of (1.1) with initial data U(0) +U∗ = (ρ0 + ρ∗ , m0 +m∗) satisfying (2.3). Then there exists
0 < ε1 ≤ a0, sufficiently small, such that, if for any 0 < t ≤ T we have Es(t)1/2 ≤ ε1, then there holds

(Es(t) + Fs(t))1/2 ≤ C2Es(0)1/2, (2.6)

where C2 = C2(ε1) > 0 is a positive constant independent of t > 0.

Proof. Follows directly from the local existence result, Theorem 2.1 (see, e.g., the Proof of Theorem 2.2 in Ref. 28). ◻

A. The linear system
Our purpose is to formulate the well-posedness for perturbations of a given constant state. Hence, consider deviations from the given

state (ρ∗ , m ∗), which will be denoted as
ρ = ρ + ρ∗, m = m +m∗.

The system (1.1) in the new perturbation variables (ρ, m) reads

ρt +mx = 0,

mt + (
(m +m∗)2

ρ + ρ∗
+ p(ρ + ρ∗))

x
= μmxx + k2(ρ + ρ∗)(

(
√

ρ + ρ∗)xx√
ρ + ρ∗

)
x

.
(2.7)

Now we deduce a linearized system that will be useful for proving local existence of solutions. For ρ, ρ, m, m : R→ R such that ρ + ρ∗ > 0
denote w = (ρ, m)⊺,w = (ρ , m)⊺ ∈ R2. Let T > 0 and assume that

sup
x∈R, t∈[0,T]

( 1
ρ + ρ∗

+
2

∑
i=0
∣∂i

xw∣) ≤ β0, (2.8)

for some constant β0 > 0. For such w we define

α(x, t) = (m(x, t) +m∗
ρ(x, t) + ρ∗

)
2

− γ(ρ(x, t) + ρ∗)γ−1,

β(x, t) = −2(m(x, t) +m∗)
ρ(x, t) + ρ∗

,

and the matrix

A(x, t) = ( 0 −1
α(x, t) β(x, t)).

Now, let us denote

ζ = k2 ρx

ρ + ρ∗
, η = k2

2
( ρ x

ρ + ρ∗
)

2

.

Moreover, define the operators,

T 1w =
⎛
⎜
⎝

0
k2

2
ρxxx

⎞
⎟
⎠

, T 2w = (
0

μmxx
),

T 3w = (
0
−ζρxx

), T 4w = (
0

ηρx
),

and let

Lw ∶= Awx +
4

∑
i=0

T iw. (2.9)
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For any vector valued function f = ( f1, f2)⊺, we consider the following linear system

⎧⎪⎪⎨⎪⎪⎩

∂tw = Lw + f ,

w(0) = w0.
(2.10)

This system has the property that if w = w and f = 0, then w solves (2.7). Moreover, we denote

Lw = (L1w

L2w
). (2.11)

B. The zeroth order estimate
Here we derive an estimate satisfied by smooth solutions to the linear system (2.10). For that purpose, let us define the norm

∣∣∣w∣∣∣2[0,T] ∶= sup
t∈[0,T]

(∥w(t)∥2
0 + ∥∂xρ(t)∥2

0) + ∫
T

0
∥∂xm(t)∥2

0 dt,

for any arbitrary T > 0.

Lemma 2.4 (zeroth order estimate). Suppose that w satisfies the bound (2.8) and w, f ∈ C∞0 ([0, T] ×R) for some T > 0. Then the following
estimate holds for t ∈ (0, T),

∂t(
1
2
∥w∥2

0 +
k2

4
∥ρx∥2

0) + (μ − C1ε1

2
− C3ε2

2
)∥mx∥2

0

≤ 1
2
(C1

ε1
+ k2C2 + C4 + 1)∥w∥2

0

+ 1
2
(k2

2
+ C1ε1 + k2C2 +

C3

ε2
+ C4)∥ρx∥2

0

+ 1
2
∥ f ∥2

0 +
k2

4
∥ f1∥2

1,

(2.12)

for any ε1, ε2 > 0 such that

μ − C1ε1

2
− C3ε2

2
> 0,

and explicit constants Ci > 0, i = 1, . . . , 4 depending only on β0, ρ∗ , m ∗ and the physical parameters of (1.1). Moreover,

∣∣∣w∣∣∣2[0,T] ≤ C(T)(∥w0∥2
0 + ∥ρ0∥2

1 + ∫
T

0
(∥ f (s)∥2

0 + ∥ f1(s)∥2
1) ds). (2.13)

The constant C(T) in (2.13) depends only on T, β0, ρ∗ , m ∗ and the parameters of (1.1).

Proof. Taking the L2-scalar product of (2.10) with w, we get

⟨∂tw,w⟩0 = ⟨Awx,w⟩0 + ⟨
4

∑
i=0

T iw,w⟩
0

+ ⟨ f ,w⟩0. (2.14)

We also have
⟨∂tw,w⟩0 = ∫

R
(ρ∂tρ +m∂tm) dx = 1

2∫R
((ρ2)t + (m2)t) dx = 1

2
∂t(∥w∥2

0).

Moreover,
∣(Awx)(x, t)∣ ≤ ∣A(x, t)∣∣wx(x, t)∣, for all (x, t) ∈ R × [0, T].

Since supx ∈R,t ∈[0,T](ρ + ρ∗)−1(x, t) ≤ β0 we can find a positive constant C1, depending only on β0, ρ∗ and m ∗ , such that

sup
x∈R, t∈[0,T]

∣A(x, t)∣ ≤ C1. (2.15)
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Applying Young’s inequality we deduce

⟨Awx,w⟩0 = ∫
R
(Awx)⊺w dx ≤ ∫

R
∣A∣∣wx∣∣w∣ dx

≤ C1∫
R
∣wx∣∣w∣ dx

≤ C1∥wx∥0∥w∥0

≤ C1

2ε1
∥w∥2

0 +
C1ε1

2
∥wx∥2

0

= C1

2ε1
∥w∥2

0 +
C1ε1

2
∥ρx∥2

0 +
C1ε1

2
∥mx∥2

0.

(2.16)

Denote I = ⟨T 1w,w⟩0. Then, upon integration by parts, one gets

I = k2

2 ∫R
ρxxxm dx = −k2

2 ∫R
ρxxmx dx. (2.17)

The first component of (2.10) implies that −mx = ρt − f1. Substituting into (2.17) we get

I = k2

2 ∫R
(ρt − f1)ρxx dx = −k2

2 ∫R
ρtxρx dx + k2

2 ∫R
( f1)xρx dx (2.18)

We clearly have

−k2

2 ∫R
ρtxρx dx = −k2

4
∂t∫

R
(ρx)2 dx = −k2

4
∂t(∥ρx∥2

0),

and,
k2

2 ∫R
( f1)xρx dx ≤ k2

2
∥ f1∥1∥ρx∥0 ≤

k2

4
∥ f1∥2

1 +
k2

4
∥ρx∥2

0.

Substituting back into (2.18) we obtain

⟨T 1w,w⟩0 ≤ −
k2

4
∂t(∥ρx∥2

0) +
k2

4
∥ f1∥2

1 +
k2

4
∥ρx∥2

0. (2.19)

Now, integrate by parts to get
⟨T 2w,w⟩0 = μ∫

R
mmxx dx = −μ∥mx∥2

0.

We also have, after integration by parts, that

⟨T 3w,w⟩0 = −∫
R

ζρxxm dx = ∫
R

ζxmρx dx + ∫
R

ζmxρx dx.

Observe that ζx and ζ involve only derivatives up to second and first order, respectively. Hence, due to the bound (2.8), we can find
positive constants C2 and C3 depending only on β0, such that

sup
x∈R, t∈[0,T]

∣ζx∣ ≤ C2, sup
x∈R, t∈[0,T]

∣ζ∣ ≤ C3.

Henceforth, we obtain

⟨T 3w,w⟩0 ≤ C2∫
R
∣m∣∣ρx∣ dx + C3∫

R
∣mx∣∣ρx∣ dx

≤ C2∥m∥0∥ρx∥0 + C3∥mx∥0∥ρx∥0

≤ C2

2
∥m∥2

0 +
C2

2
∥ρx∥2

0 +
C3

2ε2
∥ρx∥2

0 +
C3ε2

2
∥mx∥2

0

≤ C2

2
∥w∥2

0 +
C2

2
∥ρx∥2

0 +
C3

2ε2
∥ρx∥2

0 +
C3ε2

2
∥mx∥2

0. (2.20)

Moreover, from the definition of T 4 we have
⟨T 4w,w⟩0 = ∫

R
ηρxm dx.
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Denote
C4(T) ∶= sup

x∈R, t∈[0,T]
∣η∣.

Then we have

⟨T 4w,w⟩0 ≤ C4∫
R
∣ρx∣∣m∣ dx

≤ C4

2
∥ρx∥2

0 +
C4

2
∥m∥2

0

≤ C4

2
∥ρx∥2

0 +
C4

2
∥w∥2

0. (2.21)

Finally, from ⟨ f ,w⟩0 ≤ ∥ f ∥0∥w∥0 ≤ 1
2∥ f ∥2

0 + 1
2∥w∥

2
0 and substituting (2.16) and (2.19)–(2.21) into (2.14), we arrive at estimate (2.12).

Now, for any c ∈ (0, 1), let us choose ε1 and ε2 such that

C1ε1

2
+ C3ε2

2
≤ (1 − c)μ.

We obtain
∂t(

1
2
∥w∥2

0 +
1
4

k2∥ρx∥2
0) + cμ∥mx∥2

0 ≤ C(1
2
∥w∥2

0 +
1
4

k2∥ρx∥2
0 + ∥ f ∥2

0 + ∥ f1∥2
1), (2.22)

where C depends only on β0. Then, inequality (2.22) clearly implies

∂t(
1
2
∥w∥2

0 +
1
4

k2∥ρx∥2
0) ≤ C(1

2
∥w∥2

0 +
1
4

k2∥ρx∥2
0 + ∥ f ∥2

0 + ∥ f1∥2
1). (2.23)

Apply Gronwall’s inequality to (2.23) in order to obtain

1
2
∥w(t)∥2

0 +
1
4

k2∥∂xρ(t)∥2
0 ≤ eCt(1

2
∥w0∥2

0 +
1
4

k2∥∂xρ0∥2
0)

+ C∫
T

0
eC(t−s)(∥ f (s)∥2

0 + ∥ f1(s)∥2
1) ds, (2.24)

for all t ∈ [0, T] and where C = C(T) > 0 depends only on T and β0. Substituting (2.24) into (2.22) and integrating from 0 to t̃ yields (2.13).
◻

C. Higher order estimates
For n ∈ N, consider the norm

∣∣∣w∣∣∣2n,[0,T] ∶= sup
t∈[0,T]

(∥ρ(t)∥2
n+1 + ∥m(t)∥2

n) + ∫
T

0
∥mx(t)∥2

n dt.

The following result establishes estimates of higher order on the solutions.

Lemma 2.5 (higher order estimate). Let n ∈ N, T > 0 and c ∈ (0, 1). Suppose

sup
x∈R, t∈[0,T]

( 1
ρ + ρ∗

+
2

∑
i=0
∣∂i

xw∣) + ∣∣∣w∣∣∣2n,[0,T] ≤ βn, (2.25)

where βn > 0 is a constant. Then, we have

∂t(
1
2
∥w∥2

n +
1
4

k2∥ρ∥2
n+1) + cμ∥m∥2

n+1 ≤ Cn(
1
2
∥w∥2

n +
1
4

k2∥ρ∥2
n+1 + ∥ f ∥2

n + ∥ f1∥2
n+1), (2.26)

for all t ∈ (0, T), and

∣∣∣w∣∣∣2n,[0,T] ≤ Cn(T)(∥w0∥2
n + ∥ρ0∥2

n+1) + Cn(T)∫
T

0
(∥ f (s)∥2

n + ∥ f1(s)∥2
n+1) ds, (2.27)

where Cn depends only on T, βn, ρ∗ , m ∗ and the parameters of (1.1).
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Proof. Differentiating (2.10) we obtain that the equation satisfied by ∂
j

xw is

⎧⎪⎪⎨⎪⎪⎩

(∂ j
xw)t = L∂ j

xw + [∂ j
x , L]w + ∂ j

x f ,

∂
j

xw(0) = ∂ j
xw0.

(2.28)

for j ∈ N0. Suppose j ∈ {0, . . . , n} and take the scalar product of (2.28) with ∂
j

xw. The result is

⟨(∂ j
xw)t ,∂

j
xw⟩0 = ⟨L∂ j

xw,∂ j
xw⟩0 + ⟨[∂ j

x , L]w,∂ j
xw⟩0 + ⟨∂ j

x f ,∂ j
xw⟩0.

Clearly we have

⟨(∂ j
xw)t ,∂

j
xw⟩0 =

1
2
∂t(∥∂ j

xw∥2
0).

Moreover,

L∂ j
xw = A∂ j+1

x w +
4

∑
i=1

T i(∂ j
xw).

In the sequel, C denotes a positive constant that may depend only on βn, ρ∗ , m ∗ and on the parameters of (1.1), and which may change from
line to line. We have

⟨A∂ j+1
x w,∂ j

xw⟩0 ≤ C∥∂ j+1
x w∥0∥∂ j

xw∥0

≤ Cε1∥∂ j+1
x w∥2

0 + C(ε1)∣∂ j
xw∥2

0

≤ Cε1∥∂ j+1
x ρ∥2

0 + Cε1∥∂ j+1
x m∥2

0 + C(ε1)∣∂ j
xw∥2

0. (2.29)

Now we shall estimate the contribution from the dispersive term. Integrating by parts we get

⟨T 1∂
j

xw,∂ j
xw⟩0 =

k2

2 ∫R
(∂ j

x m)(∂ j+3
x ρ) dx = −k2

2 ∫R
(∂ j+1

x m)(∂ j+2
x ρ) dx. (2.30)

The first component of (2.28) reads [see Eq. (2.11)],

(∂ j
x ρ)t = −∂ j+1

x m + [∂ j
x , L1]w + ∂ j

x f1.

Since [∂ j
x , L1]w = 0, we obtain ∂

j+1
x m = −(∂ j

x ρ)t + ∂ j
x f1. Substituting into (2.30) we get

⟨T 1∂
j

xw,∂ j
xw⟩0 = I1 + I2, (2.31)

where

I1 ∶=
k2

2 ∫R
(∂ j

x ρ)t(∂ j+2
x ρ) dx, I2 ∶= −

k2

2 ∫R
(∂ j

x f )(∂ j+2
x ρ) dx.

First, notice that

I1 = −
k2

2 ∫R
∂x((∂ j

x ρ)t)(∂ j+1
x ρ) dx = −k2

2 ∫R
∂t(∂ j+1

x ρ)(∂ j+1
x ρ) dx = −k2

4
∂t∥∂ j+1

x ρ∥2
0.

On the other hand, we can estimate I2 by

I2 = −
k2

2 ∫R
(∂ j+1

x f )(∂ j+1
x ρ) dx ≤ C∥ f1∥2

j+1 + C∥∂ j+1
x ρ∥2

0.

Substitution into (2.31) yields

⟨T 1∂
j

xw,∂ j
xw⟩0 ≤ −

1
4

k2∂t∥∂ j+1
x ρ∥2

0 + C∥ f1∥2
j+1 + C∥∂ j+1

x ρ∥2
0. (2.32)

Now, let us consider ⟨T 2∂
j

xw,∂ j
xw⟩0. Integrate by parts in order to obtain,

⟨T 2∂
j

xw,∂ j
xw⟩0 = μ∫

R
(∂ j

x m)(∂ j+2
x m)dx = −μ∫

R
(∂ j+1

x m)2 dx = −μ∥∂ j+1
x m∥2

0.

Then, we deduce
⟨T 3∂

j
xw,∂ j

xw⟩0 = −∫
R

ζ(∂ j
x m)(∂ j+2

x ρ) dx = ∫
R

ζx(∂ j
x m)(∂ j+1

x ρ) dx + ∫
R

ζ(∂ j+1
x m)(∂ j+1

x ρ) dx.
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Notice that ∥ζ∥L∞ , ∥ζx∥L∞ and ∥η∥L∞ are bounded by a constant depending only on βn and ρ∗ . Therefore,

⟨T 3∂
j

xw,∂ j
xw⟩0 ≤ ∥ζx∥L∞∫

R
∣∂ j

x m∣∣∂ j+1
x ρ∣ dx + ∥ζ∥L∞∫

R
∣∂ j+1

x m∣∣∂ j+1
x ρ∣ dx

≤ C∥∂ j
x m∥0∥∂ j+1

x ρ∥0 + C∥∂ j+1
x m∥0∥∂ j+1

x ρ∥0

≤ C∥∂ j
x m∥2

0 +
C
ε2
∥∂ j+1

x ρ∥2
0 + Cε2∥∂ j+1

x m∥2
0.

(2.33)

Now,

⟨T 4∂
j

xw,∂ j
xw⟩0 = ∫

R
η(∂ j

x m)(∂ j+1
x ρ) dx

≤ ∥η∥L∞∫
R
∣∂ j

x m∣∣∂ j+1
x ρ∣ dx

≤ C(∥∂ j
x m∥2

0 + ∥∂ j+1
x ρ∥2

0). (2.34)

Furthermore,
⟨∂ j

x f ,∂ j
xw⟩0 ≤ ∥∂ j

x f ∥0∥∂ j
xw∥0 ≤ C(∥∂ j

x f ∥2
0 + ∥∂ j

xw∥2
0).

Now, let us consider the contribution from the term involving the commutator, which reads ⟨[∂ j
x , L]w,∂ j

xw⟩0. If j = 0, we have that
[∂ j

x , L]w = 0. Therefore we will assume that j ≥ 1. Notice that we also have [∂ j
x , L1]w = 0. Let us first prove a statement that will be used later.

If i ∈ {0, . . . , j − 1}, then ∂
j−i

x α and ∂
j−i

x β contain derivatives up to order j of ρ and m. Moreover, ∂ j−i
x ζ and ∂

j−i
x η contain derivatives up to

order j + 1 or ρ. Therefore,
∥∂ j−i

x α∥0, ∥∂ j−i
x β∥0, ∥∂ j−i

x ζ∥0, ∥∂ j−i
x η∥0 ≤ C(βn, ρ∗, m∗),

for i ∈ {0, . . . , j − 1}. By the Leibnitz formula we have

∂
j

x(α∂xρ) =
j

∑
i=0
( j

i
)(∂ j−i

x α)(∂i+1
x ρ).

Let us denote a1 = ∂ j
x(α∂xρ) − α∂ j+1

x ρ. Then,

∥a1∥0 =
XXXXXXXXXXX

j−1

∑
i=0
( j

i
)(∂ j−i

x α)(∂i+1
x ρ)

XXXXXXXXXXX0

≤ C
j−1

∑
i=0
∥(∂ j−i

x α)(∂i+1
x ρ)∥0

≤ C
j−1

∑
i=0
∥∂ j−i

x α∥0∥∂i+1
x ρ∥L∞.

Also, by the Sobolev embedding theorem, we have the estimate

∥∂i+1
x ρ∥L∞ ≤ C∥ρ∥j+1, i ∈ {0, . . . , j − 1}.

Therefore, ∥a1∥0 ≤ C∥ρ∥ j+1 and
⟨∂ j

x(α∂xρ) − α∂ j+1
x ρ,∂ j

x m⟩0 ≤ C∥ρ∥j+1∥m∥j ≤ C∥ρ∥2
j+1 + C∥m∥2

j. (2.35)

Now, denote a2 = ∂ j
x(β∂xm) − β∂ j+1

x m. We clearly have the estimate

∥a2∥0 =
XXXXXXXXXXX

j−1

∑
i=0
( j

i
)(∂ j−i

x β)(∂i+1
x m)

XXXXXXXXXXX0

≤ C
j−1

∑
i=0
∥(∂ j−i

x β)(∂i+1
x m)∥0

≤ C
j−1

∑
i=0
∥∂ j−i

x β∥0∥∂i+1
x m∥L∞.

Since we have ∥∂i+1
x m∥L∞ ≤ C∥m∥ j+1 for all i ∈ {0, . . . , j − 1} then ∥a2∥0 ≤ C∥m∥ j+1 and

⟨∂ j
x(β∂xm) − β∂ j+1

x m,∂ j
x m⟩0 ≤ C∥m∥j+1∥m∥j ≤ Cε3∥m∥2

j+1 +
C
ε3
∥m∥2

j. (2.36)
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Observe that [∂ j
x , T 1] = [∂ j

x , T 2] = 0. Let us now estimate the contribution from T 3:

⟨[∂ j
x , T 3]ρ,∂ j

x m⟩0 = −∫
R
(∂ j

x(ζ∂2
x ρ) − ζ∂ j+2

x ρ)(∂ j
x m) dx

= −
j−1

∑
i=0
( j

i
)∫

R
(∂ j−i

x ζ)(∂i+2
x ρ)(∂ j

x m) dx

≤ C
j−1

∑
i=0
∥∂ j−i

x ζ∥0∥(∂i+2
x ρ)(∂ j

x m)∥0

≤ C
j−1

∑
i=0
∥(∂i+2

x ρ)(∂ j
x m)∥0

≤ C
j−1

∑
i=0
∥∂i+2

x ρ∥0∥∂ j
x m∥L∞.

We have i ∈ {0, . . . , j − 1} or, equivalently, i + 2 ∈ {2, . . . , j + 1}. Therefore ∥∂i+2
x ρ∥ ≤ ∥ρ∥ j+1. Moreover, ∥∂ j

x m∥L∞ ≤ C∥m∥ j+1. Whence we get

⟨[∂ j
x , T 3]ρ,∂ j

x m⟩0 ≤ C∥ρ∥j+1∥m∥j+1 ≤
C
ε4
∥ρ∥2

j+1 + Cε4∥m∥2
j+1. (2.37)

Finally, let us consider the contribution from T 4. We have

⟨[∂ j
x , T 4]ρ,∂ j

x m⟩0 = ∫
R
(∂ j

x(η∂xρ) − η∂ j+1
x ρ)(∂ j

x m) dx

=
j−1

∑
i=0
( j

i
)∫

R
(∂ j−i

x η)(∂i+1
x ρ)(∂ j

x m) dx

≤ C
j−1

∑
i=0
∥∂ j−i

x η∥0∥(∂i+1
x ρ)(∂ j

x m)∥0

≤ C
j−1

∑
i=0
∥(∂i+1

x ρ)(∂ j
x m)∥0

≤ C
j−1

∑
i=0
∥∂i+1

x ρ∥L∞∥∂ j
x m∥0.

Since i ∈ {0, . . . , j − 1}, we have i + 1 ∈ {1, . . . , j} and ∥∂i+1
x ρ∥L∞ ≤ ∥∂ j

x ρ∥L∞ ≤ C∥ρ∥ j+1. Moreover, there holds ∥∂ j
x m∥0 ≤ ∥m∥ j . This implies

that,
∣⟨[∂ j

x , T 4]ρ,∂ j
x m⟩0∣ ≤ C∥ρ∥j+1∥m∥j ≤ C(∥ρ∥2

j+1 + ∥m∥2
j). (2.38)

The first component of (2.10) is ρt = −mx + f1. Taking the scalar product of this equation with k2ρ/2 we infer

k2

4
∂t(∥ρ∥2

0) ≤ C(∥ρ∥2
0 + ∥ρx∥2

0 + ∥m∥2
0 + ∥ f1∥2

0). (2.39)

Let c ∈ (0, 1) be an arbitrary constant. Using estimates (2.29), and (2.32)–(2.39), summing for j ∈ {0, . . . , n}, and choosing εi > 0, i ∈
{1, . . . , 4} sufficiently small, we obtain

∂t(
1
2
∥w∥2

n +
1
4

k2∥ρ∥2
n+1) + cμ∥m∥2

n+1 ≤ C(∥w∥2
n + ∥ρ∥2

n+1 + ∥ f ∥2
n + ∥ f1∥2

n+1).

This last inequality implies (2.26). Similarly to the Proof of Lemma 2.4, applying Gronwall’s inequality to (2.26) we obtain (2.27). ◻

D. Existence of solutions to the linear system
Let ϕ, g : R→ R2, with ϕ = (ϕ1, ϕ2). The formal adjoint of operator (2.9) reads

L∗ϕ = (L
∗
1 ϕ

L∗2 ϕ
), (2.40)
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where

L∗1 ϕ = −(αϕ2)x −
k2

2
(ϕ2)xxx − (ζϕ2)xx − (ηϕ2)x,

L∗2 ϕ = (ϕ1)x − (βϕ2)x + μ(ϕ2)xx,

and the associated adjoint system is

{
−∂tϕ = L∗ϕ + g,
ϕ(T) = 0.

(2.41)

1. Energy estimate for the adjoint system
Now, we derive an estimate for the solutions to (2.41).

Lemma 2.6 (energy estimate). Suppose w, g ∈ C∞0 ([0, T] ×R) and

sup
x∈R, t∈[0,T]

1
ρ(x, t) + ρ∗

≤ C0.

Then, we have

∥ϕ(t)∥2
0 + ∥∂xϕ2(t)∥2

0 ≤ C(T)∫
T

0
∥g(s)∥2

0 ds, (2.42)

for all t ∈ [0, T], where C(T) depends on C0, ∥ρ∥4, ρ∗ , ∥m∥3, m ∗ , T and on the physical parameters of (1.1).

Proof. The second component of (2.41) reads

− ∂tϕ2 = (ϕ1)x − (βϕ2)x + μ(ϕ2)xx + g2. (2.43)

Take the L2-scalar product of (2.43) with ϕ2. The result is

−⟨∂tϕ2, ϕ2⟩0 = ⟨(ϕ1)x, ϕ2⟩0 − ⟨(βϕ2)x, ϕ2⟩0 + μ⟨(ϕ2)xx, ϕ2⟩0 + ⟨g, ϕ2⟩0,

Then,

− ⟨∂tϕ2, ϕ2⟩0 = −
1
2
∂t(∥ϕ2∥2

0). (2.44)

In what follows C denotes a constant that may depend only on w and on the parameters of (1.1) and that may change from line to line. We
have,

⟨(ϕ1)x, ϕ2⟩0 = ∫
R
(ϕ1)xϕ2 dx = −∫

R
ϕ1(ϕ2)x dx ≤ ∥ϕ1∥0∥∂xϕ2∥0

≤ C(ε1)∥ϕ1∥2
0 + Cε1∥∂xϕ1∥2

0.

Furthermore, using integration by parts one arrives at

−⟨(βϕ2)x, ϕ2⟩0 = −∫
R
(βϕ2)xϕ2 dx = ∫

R
βϕ2(ϕ2)x dx = 1

2∫R
β(ϕ2

2)x dx

= −1
2∫R

βx(ϕ2)2 dx ≤ 1
2
∥βx∥L∞∥ϕ2∥2

0 ≤ C∥ϕ2∥2
0.

Consequently, we have

μ⟨(ϕ2)xx, ϕ2⟩0 = μ∫
R
(ϕ2)xxϕ2 dx = −μ∫

R
(∂xϕ2)2 dx = −μ∥∂xϕ2∥2

0.

Likewise, there holds the estimate
⟨g, ϕ2⟩0 ≤ ∥g∥0∥ϕ2∥0 ≤ C∥g∥2

0 + C∥ϕ2∥2
0.

Combining these estimates, we obtain

−1
2
∂t(∥ϕ2∥2

0) + (μ − Cε1)∥∂xϕ2∥2
0 ≤ C(ε1)(∥ϕ∥2

0 + ∥g2∥2
0).
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Choosing ε1 > 0 sufficiently small, we deduce

− 1
2
∂t(∥ϕ2∥2

0) ≤ C(∥ϕ∥2
0 + ∥g2∥2

0). (2.45)

Now, let us take the scalar product of (2.43) with −(ϕ2)xx. This yields

⟨∂tϕ2, (ϕ2)xx⟩0 = −⟨(ϕ2)x, (ϕ2)xx⟩0 + ⟨(βϕ2)x, (ϕ2)xx⟩0 − μ⟨(ϕ2)xx, (ϕ2)xx⟩0 − ⟨g, (ϕ2)xx⟩0.

Integrate by parts in order to get

⟨∂tϕ2, (ϕ2)xx⟩0 = ∫
R
(∂tϕ2)(ϕ2)xx dx = −∫

R
(ϕ2)x∂t(ϕ2)x dx = −1

2
∂t(∥∂xϕ2∥2

0). (2.46)

Then, we infer

− ⟨(ϕ2)xx, (ϕ1)x⟩0 = −∫
R
(ϕ2)xx(ϕ1)x dx = ∫

R
ϕ1(ϕ2)xxx dx. (2.47)

Moreover, we obtain

⟨(βϕ2)x, (ϕ2)xx⟩0 = ∫
R
(βϕ2)x(ϕ2)xx dx = ∫

R
(βxϕ2 + β(ϕ2)x)(ϕ2)xx dx

= ∫
R

βxϕ2(ϕ2)xx dx + ∫
R

β(ϕ2)x(ϕ2)xx dx

= −∫
R
(βxϕ2)x(ϕ2)x dx + 1

2∫R
β((∂xϕ2)2)

x
dx

= −∫
R
(βxxϕ2 + βx(ϕ2)x)(ϕ2)x dx − 1

2∫R
βx(∂xϕ2)2 dx

= −∫
R

βxxϕ2(ϕ2)x dx − 3
2∫R

βx((∂xϕ2))2 dx

≤ ∥βxx∥L∞∥ϕ2∥0∥∂xϕ2∥0 +
3
2
∥βx∥L∞∥∂xϕ2∥2

0

≤ C(∥ϕ2∥2
0 + ∥∂xϕ2∥2

0). (2.48)

This yields,
− μ⟨(ϕ2)xx, (ϕ2)xx⟩0 = −μ∥∂2

x ϕ2∥2
0. (2.49)

In addition, one can estimate

− ⟨g2, (ϕ2)xx⟩0 = ∫
R

g2(ϕ2)xx dx ≤ ∥g2∥0∥∂2
x ϕ2∥0 ≤ C(ε2)∥g2∥2

0 + Cε2∥∂2
x ϕ2∥2

0. (2.50)

Using (2.46)–(2.50) we deduce

−1
2
∂t(∥∂xϕ2∥2

0) + (μ − Cε2)∥∂2
x ϕ2∥2

0 − ∫
R

ϕ1(ϕ2)xxx dx

≤ C(ε2)(∥ϕ2∥2
0 + ∥∂xϕ2∥2

0 + ∥g2∥2
0). (2.51)

The first component of (2.41) implies that

(ϕ2)xxx =
2
k2 ∂tϕ1 −

2
k2 (αϕ2)x −

2
k2 (ζϕ2)xx −

2
k2 (ηϕ2)x +

2
k2 g1.

Therefore, we have

−∫
R

ϕ1(ϕ2)xxx dx = ⟨− 2
k2 ∂tϕ1 +

2
k2 (αϕ2)x +

2
k2 (ζϕ2)xx +

2
k2 (ηϕ2)x −

2
k2 g1, ϕ1⟩

0
.

This yields,

− 2
k2 ⟨∂tϕ1, ϕ1⟩0 = −

1
k2 ∂t∥ϕ1∥2

0.
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Moreover,
⟨(αϕ2)x, ϕ1⟩0 = ∫

R
ϕ1(αϕ2)x dx = ∫

R
αxϕ1ϕ2 dx + ∫

R
αϕ1(ϕ2)x dx

≤ ∥α∥L∞∥ϕ1∥0∥∂xϕ2∥0 + ∥αx∥L∞∥ϕ1∥0∥ϕ2∥0

≤ C∥ϕ∥2
0 + C∥∂xϕ2∥2

0.

We also have,
⟨ 2

k2 (ζϕ2)xx, ϕ1⟩
0
= ⟨(ζϕ2)xx, ϕ1⟩0

= 2
k2 (∫R

ζxxϕ2ϕ1 dx + 2∫
R

ζx(ϕ2)xϕ1 dx + ∫
R

ζ(ϕ2)xxϕ1 dx)

≤ 2
k2 (∥ζxx∥L∞∥ϕ2∥0∥ϕ1∥0 + 2∥ζx∥L∞∥∂xϕ2∥0∥ϕ1∥0 + ∥ζ∥L∞∥∂2

x ϕ2∥0∥ϕ1∥0)

≤ C(ε3)∥ϕ∥2
0 + C∥∂xϕ2∥2

0 + Cε3∥∂2
x ϕ2∥2

0.

Therefore,
2
k2 ⟨(ηϕ2)x, ϕ1⟩0 =

2
k2 (∫R

ηxϕ2ϕ1 dx + ∫
R

η(ϕ2)xϕ1 dx)

≤ 2
k2 (∥ηx∥L∞∥ϕ1∥0∥ϕ2∥0 + ∥η∥L∞∥ϕ1∥0∥∂xϕ2∥0)

≤ C(∥ϕ∥2
0 + ∥∂xϕ2∥2

0).

Also, we clearly have

− 2
k2 ⟨g1, ϕ1⟩0 ≤

2
k2 ∥g1∥0∥ϕ1∥0 ≤ C(∥g1∥2

0 + ∥ϕ1∥2
0). (2.52)

Let c ∈ (0, 1). Thanks to estimates (2.51) and (2.52), choosing ε2, ε3 > 0 sufficiently small we obtain

−∂t(
1
k2 ∥ϕ1∥2

0 +
1
2
∥∂xϕ2∥2

0) + cμ∥∂2
x ϕ2∥2

0 ≤ C(∥ϕ∥2
0 + ∥∂xϕ2∥2

0 + ∥g∥2
0).

Since cμ∥∂2
x ϕ2∥2 ≥ 0, last inequality implies that

− ∂t(
1
k2 ∥ϕ1∥2

0 +
1
2
∥∂xϕ2∥2

0) ≤ C(∥ϕ∥2
0 + ∥∂xϕ2∥2

0 + ∥g∥2
0). (2.53)

Multiplying (2.45) by 2/k2 and adding it to (2.53) we arrive at

−∂t(
1
k2 ∥ϕ∥

2
0 +

1
2
∥∂xϕ2∥2

0) ≤ C( 1
k2 ∥ϕ∥

2
0 +

1
2
∥∂xϕ2∥2

0 + ∥g∥2
0).

Let us change the variable τ = T − t, ϕ(t) = ϕ̃(τ). Then, the initial condition of (2.41) implies that ϕ̃(0) = 0. Applying Gronwall inequality to
the resulting relation we obtain (2.42). The lemma is now proved. ◻

2. Negative norm estimates
First, let us introduce some definitions. We denote the Fourier transform operator by F and û(ξ) = (Fu)(ξ). For ξ ∈ R, we introduce

the notation ⟨ξ⟩ =
√

1 + ξ2. Let u : R→ R. For s ∈ R we define the operator Λsu = F −1(⟨ξ⟩s Fu). For n ∈ N0 we have ∂n
x Λsu = Λs∂n

x u. Denote
by S the space of Schwartz functions on R. For a function v : R→ R2 we set Λsv = (Λsv1, Λsv2)⊺. Let us define the space

X ∶= ⋂
n∈N0

Hn(R).

For any s ∈ R we have
∥u∥2

s+1 = ∥u∥2
s + ∥∂xΛsu∥2

0. (2.54)

The following lemma will be used to estimate contributions coming from commutators:

Lemma 2.7. Let s ∈ R and u ∈ H∣s−1∣+2(R). Then, there exists a constant C = Cs, such that

∥[Λs, u] f ∥0 ≤ C∥u∥∣s−1∣+2∥ f ∥s−1,

for f ∈ X.
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Proof. The proof follows from Lemma 6.16, p. 202 in Ref. 16 by a density argument. ◻
Suppose c ∈ R is a constant and f , u : R→ R. Then,

[Λs, u + c] f = [Λs, u] f . (2.55)

We have the following result.

Lemma 2.8. Suppose w, g ∈ C∞0 ([0, T] ×R) and

sup
x∈R, t∈[0,T]

1
ρ(x, t) + ρ∗

≤ C0.

Then,

∂n
x
⎛
⎝

α −
⎛
⎝
(m∗

ρ∗
)

2

+ p′(ρ∗)
⎞
⎠
⎞
⎠

, ∂n
x(β + 2m∗

ρ∗
), ∂n

x ζ, ∂n
x η ∈ L2(R), ∀ n ∈ N0.

Proof. We clearly have

(m +m∗
ρ + ρ∗

)
2

− (m∗
ρ∗
) = (ρ∗)

2m 2 − (m∗)2ρ 2 + 2ρ∗m∗(ρ∗m −m∗ρ)
(ρ∗)2(ρ + ρ∗)2 ∈ L2(R).

Let a = min{ρ∗ , 1/C0}, b = ∥ρ∥L∞ + ρ∗, and

G(z) = ∫
1

0
p′′(tz + ρ∗)dt, z > −ρ∗.

Then, there holds
p′(ρ(x) + ρ∗) − p′(ρ∗) = G(ρ(x))ρ(x), x ∈ R.

Moreover,
∥G(ρ(⋅))∥L∞ ≤ sup

z∈[a,b]
∣p′′(z)∣.

Therefore,
∥p′(ρ(⋅) + ρ∗) − p′(ρ∗)∥0 = ∥G(ρ(x))ρ(x)∥0 ≤ ∥G(ρ(⋅))∥L∞∥ρ∥0 ≤ sup

z∈[a,b]
∣p′′(z)∣∥ρ∥0.

Hence p′(ρ(⋅) + ρ∗) − p′(ρ∗) ∈ L2(R), and consequently

α −
⎛
⎝
(m∗

ρ∗
)

2

+ p′(ρ∗)
⎞
⎠
∈ L2(R).

Similarly,

−2(m +m∗)
ρ + ρ∗

+ 2m∗
ρ∗
= 2

m∗ρ − ρ∗m
ρ∗(ρ + ρ∗)

.

Therefore,

β + 2m∗
ρ∗
∈ L2(R).

In addition, we have ∂n
x α, ∂n

x β ∈ L2(R), n ∈ N. Since ζ and η are a product of a coefficient and ρx, we have

∂n
x ζ, ∂n

x η ∈ L2(R), n ∈ N0,

and the proof is complete. ◻

Lemma 2.9. Suppose s ∈ R, w, g ∈ C∞0 ([0, T] ×R) and

sup
x∈R, t∈[0,T]

1
ρ(x, t) + ρ∗

≤ C0.
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Then,

∥Λsϕ(t)∥2
0 + ∥∂xΛsϕ2(t)∥2

0 ≤ C(T)∫
T

0
∥Λsg(τ)∥2

0dτ, (2.56)

for all t ∈ [0, T], where C(T) depends only on w, T, ρ∗ , m ∗ and the parameters of (1.1).

Proof. Let s ∈ R. Applying the operator Λs to (2.41) we obtain that the equation satisfied by Λsϕ is

− ∂tΛsϕ = L∗Λsϕ + [Λs, L∗]ϕ −Λsg. (2.57)

Take the scalar product of the second component of (2.57) with Λsϕ2. The result is

−⟨∂tΛsϕ2, Λsϕ2⟩0 = ⟨L∗2 Λsϕ, Λsϕ2⟩0 + ⟨[Λs, L∗2 ]ϕ, Λsϕ2⟩0 − ⟨Λsg2, Λsϕ2⟩0.

Then, we have,

− ⟨∂tΛsϕ2, Λsϕ2⟩0 = −∫
R
(∂tΛsϕ2)(Λsϕ2) dx = −1

2
∂t(∥ϕ2∥2

s ). (2.58)

Moreover,
⟨L∗2 Λsϕ, Λsϕi⟩0 = ⟨∂xΛsϕ1 − ∂x(βΛsϕ2) + μ∂2

x Λsϕ2, Λsϕ2⟩0.

Then, after integration by parts and by (2.54), we arrive at

⟨∂xΛsϕ1, Λsϕ2⟩0 = ∫
R
(∂xΛsϕ1)(Λsϕ2) dx = −∫

R
(Λsϕ1)(∂xΛsϕ2) dx

≤ ∥Λsϕ1∥0∥∂xΛsϕ2∥0

≤ ∥ϕ1∥s∥ϕ2∥s+1

≤ C(ε1)∥ϕ1∥2
s + Cε1∥ϕ2∥2

s+1

= C(ε1)∥ϕ1∥2
s + Cε1∥ϕ2∥2

s + Cε1∥∂xΛsϕ2∥2
0.

In the same fashion, we estimate
−⟨∂x(βΛsϕ2), Λsϕ2⟩0 = −∫

R
∂x(βΛsϕ2)(Λsϕ2) dx

= ∫
R

β(Λsϕ2)(∂xΛsϕ2) dx

≤ ∥β∥L∞∥Λsϕ2∥0∥∂xΛsϕ2∥0

≤ C∥ϕ2∥s∥ϕ2∥s+1

≤ C(ε2)∥ϕ2∥2
s + Cε2∥ϕ2∥2

s+1

≤ C(ε2)∥ϕ2∥2
s + Cε2∥ϕ2∥2

s + Cε2∥∂xΛsϕ2∥2
0.

Furthermore,
⟨μ∂2

x Λsϕ2, Λsϕ2⟩0 = μ∫
R
(∂2

x Λsϕ2)(Λsϕ2) dx = −μ∫
R
(∂xΛsϕ2)2 dx = −μ∥∂xΛsϕ2∥2

0.

Then,
− ⟨Λsg2, Λsϕ2⟩0 ≤ ∥Λsg2∥0∥Λsϕ2∥0 = ∥g2∥s∥ϕ2∥s ≤ C(∥g2∥2

s + ∥ϕ2∥2
s ). (2.59)

Now, let us estimate the contribution coming from the commutator. We have

[Λs, L∗2 ]ϕ = a1 + a2,

where
a1 = −[Λs, β]∂xϕ2, a2 = −[Λs, βx]ϕ2.

Then, in view of (2.55), we obtain

a1 = −[Λs, β + 2m∗
ρ∗
]∂xϕ2.
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Hence, using Lemmata 2.7 and 2.8, we infer

∥[Λs, L∗2 ]ϕ∥0 ≤ ∥a1∥0 + ∥a2∥0

= ∥[Λs, β + 2m∗
ρ∗
]∂xϕ2∥

0
+ ∥[Λs, βx]ϕ2∥0

≤ C∥β + 2m∗
ρ∗
∥
∣s−1∣+2

∥∂xϕ2∥s−1 + C∥βx∥∣s−1∣+2∥ϕ2∥s−1

≤ C(∥ϕ2∥s + ∥ϕ2∥s−1)
≤ C∥ϕ2∥s. (2.60)

Henceforth,
⟨[Λs, L∗2 ]ϕ, Λsϕ2⟩0 ≤ ∥[Λs, L∗2 ]ϕ∥0∥Λsϕ2∥0 ≤ C∥ϕ2∥2

s . (2.61)

Using estimates (2.58), (2.59), and (2.61) and choosing ε1, ε2 > 0 sufficiently small, we deduce

− 1
2
∂t(∥ϕ2∥2

s ) ≤ C(∥ϕ∥2
s + ∥g2∥2

s ). (2.62)

Now, taking the scalar product of the second component of (2.57) with −∂2
x Λsϕ2 we obtain

⟨∂tΛsϕ2,∂2
x Λsϕ2⟩0 = −⟨L∗2 Λsϕ,∂2

x Λsϕ2⟩0 − ⟨[Λs, L∗2 ]ϕ,∂2
x Λsϕ2⟩0 + ⟨Λsg2, Λs∂2

x ϕ2⟩0.

This yields,

⟨∂tΛsϕ2,∂2
x Λsϕ2⟩0 = −

1
2
∂t∥∂xΛsϕ2∥2

0. (2.63)

Moreover,
− ⟨∂xΛsϕ1,∂2

x Λsϕ2⟩0 = −∫
R
(∂xΛsϕ1)(∂2

x Λsϕ2) dx = ∫
R
(Λsϕ1)(∂3

x Λsϕ2) dx. (2.64)

Furthermore,
⟨∂x(βΛsϕ2),∂2

x Λsϕ2⟩0 = ∫
R
∂x(βΛsϕ2)∂2

x Λsϕ2 dx

= ∫
R
(βxΛsϕ2)(∂2

x Λsϕ2) dx + ∫
R

β(∂xΛsϕ2)(∂2
x Λsϕ2) dx

= −∫
R
∂x(βxΛsϕ2)(∂xΛsϕ2) dx + 1

2∫R
β∂x((∂xΛsϕ2)2) dx

= −∫
R

βxx(Λsϕ2)∂xΛsϕ2 dx − ∫
R

βx(∂xΛsϕ2)2 dx − 1
2∫R

βx(∂xΛsϕ2)2 dx

≤ ∥βxx∥L∞∥Λsϕ2∥0∥∂xΛsϕ2∥0 +
3
2
∥βx∥L∞∥∂xΛsϕ2∥2

0

≤ C∥ϕ2∥2
s+1.

Moreover,
⟨Λsg2,∂2

x Λsϕ2⟩0 ≤ ∥Λsg2∥0∥∂2
x Λsϕ2∥0 ≤ C(ε3)∥g2∥2

s + Cε3∥∂2
x Λsϕ2∥2

0.

Using (2.60) we obtain

−⟨[Λs, L∗2 ]ϕ,∂2
x Λsϕ2⟩0 ≤ ∥[Λs, L∗2 ]ϕ∥0∥∂2

x Λsϕ2∥0

≤ C∥ϕ2∥s∥∂2
x Λsϕ2∥0

≤ C(ε4)∥ϕ2∥2
s + Cε4∥∂2

x Λsϕ2∥2
0. (2.65)

Let c ∈ (0, 1). Using estimates (2.63)–(2.65) and choosing ε3, ε4 > 0 sufficiently small we deduce

− 1
2
∂t∥∂xΛsϕ2∥2

0 − ∫
R
(Λsϕ1)(∂3

x Λsϕ2) dx + cμ∥∂2
x Λsϕ2∥2

0 ≤ C(∥ϕ2∥2
s+1 + ∥g2∥2

s ). (2.66)

The first component of (2.57) is
− ∂tΛsϕ1 = L∗1 Λsϕ + [Λs, L∗1 ]ϕ −Λsg1, (2.67)
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where

L∗1 Λsϕ = −∂x(αΛsϕ2) −
k2

2
∂3

x Λsϕ2 − ∂2
x(ζΛsϕ2) − ∂x(ηΛsϕ2).

Let us express Λsϕ2 from (2.67). The result is

∂3
x Λsϕ2 =

2
k2 ∂tΛsϕ1 −

2
k2 ∂x(αΛsϕ2) −

2
k2 ∂

2
x(ζΛsϕ2) −

2
k2 ∂x(ηΛsϕ2)

+ 2
k2 [Λ

s, L∗1 ]ϕ −
2
k2 Λsg1.

Let us substitute last equation into the second term of (2.66). This yields

− 2
k2∫R

(Λsϕ1)(∂tΛsϕ1) dx = − 1
k2 ∂t(∥Λsϕ1∥2

0). (2.68)

Then,
2
k2∫R

(Λsϕ1)(αΛsϕ2)x dx = 2
k2∫R

(Λsϕ1)(αxΛsϕ2) dx + 2
k2∫R

(Λsϕ1)(α∂xΛsϕ2) dx

≤ 2
k2 ∥αx∥L∞∥Λsϕ1∥0∥Λsϕ2∥0 +

2
k2 ∥α∥L∞∥Λsϕ1∥0∥∂xΛsϕ2∥0

≤ C(∥ϕ1∥2
s + ∥ϕ2∥2

s+1).

Furthermore,
2
k2∫R

(Λsϕ1)∂2
x(ζΛsϕ2) dx = 2

k2∫R
(Λsϕ1)(ζxxΛsϕ1 + 2ζx∂xΛsϕ2 + ζ∂2

x Λsϕ2) dx

≤ 2
k2 (∥ζxx∥L∞∥Λsϕ1∥0∥Λsϕ2∥0 + 2∥ζx∥L∞∥Λsϕ1∥0∥∂xΛsϕ2∥0

+ ∥ζ∥L∞∥Λsϕ1∥0∥∂2
x Λsϕ2∥0)

≤ C(∥ϕ1∥s∥ϕ2∥s + ∥ϕ1∥s∥ϕ2∥s+1 + ∥ϕ1∥s∥∂2
x Λsϕ2∥0)

≤ C(ε5)∥ϕ1∥2
s + C∥ϕ2∥2

s+1 + Cε5∥∂2
x Λsϕ2∥2

0.

Now, let us estimate
2
k2∫R

(Λsϕ1)∂x(ηΛsϕ2) dx = 2
k2∫R

(Λsϕ1)(ηxΛsϕ2 + η∂xΛsϕ2) dx

≤ 2
k2 ∥ηx∥L∞∥Λsϕ1∥0∥Λsϕ2∥0 +

2
k2 ∥η∥L∞∥Λsϕ1∥0∥∂xΛsϕ2∥0

≤ C(∥ϕ∥2
s + ∥ϕ2∥2

s+1).

Moreover,
2
k2∫R

(Λsϕ1)(Λsg1) dx ≤ 2
k2 ∥Λ

sϕ1∥0∥Λsg1∥0 ≤ C(∥ϕ1∥2
s + ∥g1∥2

s ).

Now, let us estimate the contribution coming from the commutator. Similarly to (2.60), using Lemmata 2.7 and (2.55), we obtain

∥[Λs, L∗1 ]ϕ∥ ≤ ∥[Λs, αx]ϕ2∥0 +
XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣
Λs, α −

⎛
⎝
(m∗

ρ∗
)

2

+ p′(ρ∗)
⎞
⎠

⎤⎥⎥⎥⎥⎦
∂xϕ2

XXXXXXXXXXXX0

+ ∥[Λs, ζxx]ϕ2∥0 + 2∥[Λs, ζx]∂xϕ2∥0

+ ∥[Λs, ζ]∂2
x ϕ2∥0 + ∥[Λs, ηx]ϕ2∥0 + ∥[Λs, η]∂xϕ2∥0

≤ C∥ϕ2∥s+1. (2.69)

Using estimates (2.68) and (2.69), and choosing ε5 > 0 sufficiently small, we arrive at

−∂t(
1
k2 ∥Λ

sϕ1∥2
0 +

1
2
∥∂xΛsϕ2∥2

0) ≤ C(∥ϕ1∥2
s + ∥ϕ2∥2

s+1 + ∥g∥2
s ).
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Multiplying (2.62) by 2/k2 and adding it to the last inequality we infer

− ∂t(
1
k2 ∥Λ

sϕ∥2
0 +

1
2
∥∂xΛsϕ2∥2

0) ≤ C( 1
k2 ∥Λ

sϕ∥2
0 +

1
2
∥∂xΛsϕ2∥2

0 + ∥Λsg∥2
0) (2.70)

Applying Gronwall’s inequality to (2.70) similarly as in the Proof of Lemma 2.4, we obtain (2.56). This yields the result. ◻
Now, we are going to show that the linear system (2.10) has a unique solution. Let us define the operator including the time derivative

L̃ ∶= ∂t − L. (2.71)

Its formal adjoint is given by L̃ ∗ = −∂t − L∗ and satisfies ⟨ L̃w, ϕ⟩0 = ⟨w, L̃ ∗ϕ⟩0.

Lemma 2.10 (existence of solution to linear system). Suppose n ≥ 3 and let

f ∈ L2([0, T], Hn(R)), f1 ∈ L2([0, T], Hn+1(R)),
ρ0 ∈ Hn+1(R), m0 ∈ Hn(R).

Then the initial value problem (2.10) has a unique solution which satisfies the estimate (2.27).

Proof. Let ϕ ∈ C∞0 ([0, T] ×R). We then have

∣∫
T

0
⟨ f , ϕ⟩0dt∣ = ∣∫

T

0
⟨Λn f , Λ−nϕ⟩0 dt∣ ≤ ∫

T

0
∥Λn f ∥0∥Λ−nϕ∥0 dt.

From the inequality (2.56) with s = −n we deduce

∣∫
T

0
⟨ f , ϕ⟩0dt∣ ≤ C(T)∫

T

0
∥Λn f ∥0(∫

T

0
∥Λ−n L̃ ∗ϕ∥2

0 dτ)
1/2

dt

≤ C(T)(∫
T

0
∥Λn f ∥2

0 dt)
2

(∫
T

0
∥Λ−n L̃ ∗ϕ∥2

0 dt)
1/2

.

Hence,

∫
T

0
⟨ f , ϕ⟩0 dt

defines a bounded linear functional of L̃ ∗ϕ in L2([0, T], H−n(R)). Applying the Hanh-Banach extension theorem and Riesz representation
theorem we obtain that there exists a unique weak solution w ∈ L2([0, T], Hn(R)) such that

∫
T

0
⟨ f , ϕ⟩0 dt = ∫

T

0
⟨w, L̃ ∗ϕ⟩0 dt,

for all ϕ ∈ C∞0 ([0, T] ×R). Therefore,

∫
R

f φ dx = ∫
R
( L̃w)φ dx, φ ∈ C∞0 (R),

for all t ∈ [0, T] a.e. Since n ≥ 3 the Sobolev embedding theorem implies that the solution is classical. ◻

E. Proof of Theorem 2.1
Now, let us consider the initial value problem for system (1.1), with

ρ(0) = ρ0, m(0) = m0. (2.72)

First we shall prove the following lemma about local existence of solutions.

Lemma 2.11. Suppose s ∈ N, s ≥ 3. For any initial condition (ρ0, m0) such that ρ0(x) ≥ δ > 0 and

ρ0 − ρ∗ ∈ Hs+1(R), m0 −m∗ ∈ Hs(R),

where ρ∗ > 0 and m∗ ∈ R are constants, there exists T > 0 such that the initial value problem (1.1), (2.72) has a unique solution

ρ − ρ∗ ∈ L∞([0, T], Hs+1(R)), m −m∗ ∈ L∞([0, T], Hs(R)).
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Moreover, w = (ρ − ρ∗ , m −m ∗) satisfies the estimate

∣∣∣w∣∣∣2s,[0,T] ≤ Cn(T)(∥w0∥2
s + ∥ρ0 − ρ∗∥2

s+1),

with w0 = (ρ0 − ρ∗ , m0 −m ∗), and where the positive constant Cn(T) depends only on ρ∗ , m ∗ , the parameters of (1.1) and T.

Proof. The nonlinear problem can be written as
⎧⎪⎪⎨⎪⎪⎩

L̃(w)w = 0,

w(0) = w0.
(2.73)

In order to recast the system so that we have homogeneous initial data, let w̃i be the classical solutions to the heat equation,

∂tw̃i = ∂2
x w̃i,

w̃i(0) = wi,0, i = 1, 2,

given by

w̃i(x, t) = ∫
R

K(x − y, t)wi,0(y)dy, x ∈ R, t > 0, i = 1, 2,

where

K(x, t) = 1√
4πt

exp(−x2

4t
),

is the heat kernel. From standard theory we clearly have the estimates

∥w̃1(t)∥s+1 ≤ ∥ρ0 − ρ∗∥s+1,

∫
T

0
∥∂tw̃1∥2

s dt + ∫
T

0
∥w̃1∥2

s+2 dt ≤ C∥ρ0 − ρ∗∥2
s+1,

∥w̃2(t)∥s ≤ ∥m0 −m∗∥s,

∫
T

0
∥∂tw̃2∥2

s−1 dt + ∫
T

0
∥w̃2∥2

s+1 dt ≤ C∥m0 −m∗∥2
s .

Now, let us introduce the new variable ŵ = w − w̃, where ŵ = (ρ̂ , m̂)⊺, and let us define the operator

M(ŵ)ŵ ∶= L̃(w̃ + ŵ)ŵ + ( L̃(w̃ + ŵ) − L̃(w̃))w̃.

Then, the system (2.73) becomes

{
M(ŵ)ŵ = f (ŵ),

ŵ(0) = 0,
(2.74)

where f = − L̃(w̃)w̃. We will solve (2.74) by iteration. Set

{
M(ŵj)ŵj+1 = f ,

ŵj+1(0) = 0,
(2.75)

for j ∈ N0 and with ŵ0 = 0. Note that the operator M in (2.75) has the same structure as L̃ defined in (2.71) and Theorem 2.10 applies to the
system (2.75). We show how to treat three of the terms in the proof of (2.13) for Eq. (2.75). Indeed, we have

∫
R
(w̃2)tm dx ≤ ∥(w̃2)t∥−1∥m∥1 ≤

1
2ε1
∥(w̃2)t∥2

−1 +
ε1

2
∥m∥2

0 +
ε1

2
∥mx∥2

0.

Moreover,

∫
R
(w̃2)xxm dx = ∫

R
(w̃2)tm dx,

and, furthermore,
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∫
R
(w̃1)xxxm dx = ∫

R
∂t(w̃1)xm dx

≤ ∥∂t(w̃1)x∥−1∥m∥1

≤ 1
2ε2
∥∂t(w̃1)x∥2

−1 +
ε2

2
∥m∥2

0 +
ε2

2
∥mx∥2

0.

The other terms are treated similarly.
Let i ∈ N0. Thanks to the Sobolev embedding theorem if T, δ > 0 are sufficiently small and ∣∣∣ŵ∣∣∣2s,[0,T] ≤ δ then ρ + w̃1(x, t) + ρ̂(x, t) > 0

for x ∈ R and 0 ≤ t ≤ T. Therefore, it suffices to show that there exist sufficiently small T > 0 and some δ > 0 such that the successive iterations
satisfy

∣∣∣ŵi∣∣∣2s,[0,T] ≤ δ ≤ βs, i ∈ N0, (2.76)

∣∣∣ŵi − ŵi−1∣∣∣s−2,[0,T] ≤
1
2
∣∣∣ŵi−1 − ŵi−2∣∣∣s−2,[0,T], i ≥ 2, (2.77)

Suppose that (2.76) and (2.77) are satisfied for i ≤ j. The inequality (2.27) with n = s implies that

∣∣∣ŵ j+1∣∣∣2s,[0,T] ≤ Cn(T)∫
T

0
(∥ f ∥2

s + ∥ f1∥2
s+1)dt.

Therefore we can choose T = T(δ) > 0 small enough such that ∣∣∣ŵ j+1∣∣∣2s,[0,T] ≤ δ ≤ βs.
Now, for i ∈ N0 define vi ∶= ŵi+1 − ŵi. Then, vi satisfies

{
M(ŵi)vi = (M(ŵi−1) −M(ŵi))ŵi,

vi(0) = 0.

Moreover, since Hn(R) is a Banach algebra for n ≥ 1, we have

∥(M(ŵ j−1) −M(ŵ j))ŵ j∥2
s−2 ≤ Cs−2δ∥ρ̂j − ρ̂j−1∥2

s−1 + Cs−2δ∥m̂j − m̂j−1∥2
s−2.

Applying (2.27) with n = s − 2 we obtain

∣∣∣ŵj+1 − ŵj ∣∣∣s−2,[0,T] ≤ C̃s−2(T)
√

δ∣∣∣ŵj − ŵj−1∣∣∣s−2,[0,T].

Choosing δ > 0 such that C̃s−2(T)
√

δ ≤ 1/2 concludes the proof of (2.76) and (2.77). ◻

Thanks to the Sobolev embedding we infer Theorem 2.1 from Lemma 2.11. This concludes the Proof of Theorem 2.1.

III. LINEAR DECAY RATES
In this section, we establish the decay of solutions to the linearization of system (1.1) around an arbitrary constant equilibrium state U ∗

= (ρ ∗ , m ∗) ∈ R2, with ρ∗ > 0, and satisfying the subsonicity assumption

p′(ρ ∗) > m2∗
ρ2∗

. (3.1)

In contrast to the estimates from Sec. II, here we focus on stability estimates. To that end, we examine the decay structure of the system in
the sense of Humpherys’ analysis for linear higher order systems in the Fourier space (cf. Ref. 31). Symbol symmetrizability and the existence
of an appropriate compensating matrix symbol are key ingredients to establish the optimal decay of the semigroup.

A. Linearization and symbol symmetrizability
We start by observing that system (1.1) can be recast in conservation form. Indeed, following Lattanzio et al.41 let us write the Bohm

potential as

ρ((
√ρ)xx√ρ

)
x

= 1
2
(ρ(ln ρ)xx)x

.

Therefore, system (1.1) in conservation form reads

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρt +mx = 0,

mt + (
m2

ρ
+ p(ρ))

x
= μmxx +

1
2

k2(ρ(ln ρ)xx)x
.

(3.2)
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The conservative form of the equations will play an important role in the establishment of the energy estimates with the appropriate regularity
for the density variable.

Consider an arbitrary constant equilibrium state U ∗ = (ρ ∗ , m ∗) ∈ R2 satisfying ρ∗ > 0 and (3.1), and let (ρ + ρ∗ , m +m ∗) be a solu-
tion to (3.2) where ρ and m represent perturbations. Substituting into (3.2) and after some elementary algebra, one arrives at a nonlinear
perturbation system of the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρt +mx = 0,

mt + (p′(ρ ∗) − m2∗
ρ2∗
)ρx + (

2m ∗
ρ ∗ )mx = μmxx +

1
2

k2ρxxx + ∂xN2,
(3.3)

where N2 contains the nonlinear terms and is of the form

N2 = O(ρ2 +m2 + ρ2
x + ∣ρ∥ρxx∣), (3.4)

as the reader may easily verify. In other words, the system (1.1) can be rewritten as a system of the form

Ut = AU + ∂x(
0

N2
), (3.5)

in terms of the (perturbed) state variables U = (ρ, m)⊺ and where A is a differential operator with constant coefficients. Notice that the
nonlinear terms are expressed in conservative form.

Let us consider the linear part of system (3.3), which reads

Ut + A ∗ Ux = B ∗ Uxx + C ∗ Uxxx, (3.6)

where

U = ( ρ
m
), A ∗ = ( 0 1

p′(ρ ∗) −m2∗ /ρ2∗ 2m ∗ /ρ ∗ ),

B ∗ = (0 0
0 μ
), C ∗ =

⎛
⎜
⎝

0 0
1
2

k2 0

⎞
⎟
⎠

,

(3.7)

or, equivalently,
Ut = AU ∶= (−A ∗ ∂x + B ∗ ∂2

x + C ∗ ∂3
x)U. (3.8)

Take the Fourier transform of (3.6). This yields
Û t + (iξA ∗ + ξ2B ∗ + iξ3C ∗)Û = 0, (3.9)

where Û = Û(ξ, t) denotes the Fourier transform of U. The evolution of the solutions to (3.9) reduces to solving the spectral equation

(λI + iξA ∗ + ξ2B ∗ + iξ3C ∗)Û = 0, (3.10)

for λ ∈ C and ξ ∈ R denoting time frequencies and (Fourier) wave number, respectively. It is said that the linear operator A is strictly
dissipative if for each ξ ≠ 0 then all solutions to the spectral equation (3.10) satisfy Re λ(ξ) < 0 (cf. Humpherys;31 see also Refs. 36 and 51).

Remark 3.1. Ueda et al.53,54 further classify strictly dissipative systems as follows. The linear system is called strictly dissipative of type
(p, q), with p, q ∈ Z, p, q ≥ 0, provided that the solutions of the spectral problem (3.10) satisfy

Re λ(ξ) ≤ − C∣ξ∣2p

(1 + ∣ξ∣2)q , ∀ξ ≠ 0,

for some uniform constant C > 0. The system is said to be of standard type when p = q,53 and of regularity-loss type when p < q.54 Notice that
the heat equation is a system with dissipativity of type (1,0). Hence, the third case when p > q is called dissipativity of regularity-gain type.35

The type of dissipativity will be reflected in the decay rate of the solutions to the linearized system. Notice that strict dissipativity is equivalent
to the stability of the essential spectrum of the linearized operator A when computed, for example, with respect to the space L2(R) of finite
energy perturbations.
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The following result justifies the subsonicity assumption (3.1) in the study of strict dissipativity.

Lemma 3.2. Suppose that a constant equilibrium state (ρ ∗ , m ∗) ∈ R2 with ρ∗ > 0 is supersonic, that is,

p′(ρ ∗) < m2∗
ρ2∗

. (3.11)

Then the operator A defined in (3.8) violates the strict dissipativity condition. More precisely, there exist certain values of ξ ∈ R for which the
solutions to the spectral equation (3.10) satisfy Re λ(ξ) > 0.

Proof. See the Appendix. ◻
Now, we follow Humpherys31 and split the symbol into even and odd terms. Let us define the symbols,

A(ξ) ∶= A ∗ + ξ2C ∗ =
⎛
⎜
⎝

0 1

p′(ρ ∗) −m2∗ /ρ2∗ + 1
2

k2ξ2 2m ∗ /ρ ∗
⎞
⎟
⎠

, (odd),

B(ξ) ∶= ξ2B ∗ = ξ2(0 0
0 μ
), (even)

so that the evolution equation (3.9) is recast as
Û t + (iξA(ξ) + B(ξ))Û = 0. (3.12)

Notice that in the matrix symbol A(ξ)we have gathered the transport and dispersive terms together (the odd part of the symbol), whereas
the only dissipation term due to viscosity (the even part of the symbol) is encoded into the matrix B(ξ). In this fashion, Humpherys mimics
the algebraic structure of second order (purely viscous) systems of Kawashima and Shizuta36,51 at the Fourier level. Humpherys thereby
introduces the following fundamental concept of symbol symmetrization, which generalizes the standard notion of symmetrizability of Lax
and Friedrichs17,18 (see also Godunov23).

Definition 3.3 (Humpherys31). The operator A is symbol symmetrizable if there exists a smooth, symmetric matrix-valued function, S
= S(ξ) > 0, positive-definitive, such that S(ξ)A(ξ) and S(ξ)B(ξ) are symmetric, with S(ξ)B(ξ) ≥ 0 (positive semi-definite) for all ξ ∈ R.

Remark 3.4. Let us recall that a generic (quasilinear) system of equations of the form Ut = ∑ j A j(U)∂ j
x U is said to be symmetrizable

in the classical sense of Friedrichs if, for any constant state U∗ , there exists a symmetric, positive definite matrix S = S(U∗) > 0 such that
S(U∗)Aj(U∗) are all simultaneously symmetric. Clearly, every symmetrizable system in the sense of Friedrichs is symbol symmetrizable, but
the converse is not true.

Lemma 3.5. Assume the subsonicity (3.1) of the equilibrium state U∗ = (ρ∗ , m∗) with ρ∗ > 0. Then the linearized QHD system (3.6) is
symbol symmetrizable, but not symmetrizable in the sense of Friedrichs. One symbol symmetrizer is of the form

S(ξ) = (α(ξ) 0
0 1

) ∈ C∞(R;R2×2), (3.13)

where

α(ξ) ∶= p′(ρ ∗) − m2∗
ρ2∗
+ 1

2
k2ξ2 > 0, ξ ∈ R. (3.14)

Proof. It is easy to verify that the symbol S(ξ) defined in (3.13) is smooth, symmetric and positive definite because of the condition (3.1).
By inspection, one thereby obtains

S(ξ)A(ξ) = (α(ξ) 0
0 1

)( 0 1
α(ξ) 2m ∗ /ρ ∗ ) = (

0 α(ξ)
α(ξ) 2m ∗ /ρ ∗ ),

and S(ξ)B(ξ) = B(ξ), which are symmetric matrices with S(ξ)B(ξ) ≥ 0. This easily shows that the operator A is symbol symmetrizable. To
prove that the system is not Friedrichs symmetrizable, suppose there exists a positive-definite symmetrizer of the form

S = (s1 s2

s2 s3
).
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Then the condition on SA ∗ and SC ∗ to be simultaneously symmetric matrices implies that S cannot be positive definite, as the reader may
easily verify. The lemma is proved. ◻

Remark 3.6. Up to our knowledge, the QHD system (1.1) is only the third example of a symbol symmetrizable system which is not
Friedrichs symmetrizable, apart from the isothermal Navier-Stokes-Korteweg model (cf. Refs. 31 and 47) and its non isothermal version
(the so called Navier-Stokes-Fourier-Korteweg system48). The existence of these simple and physically relevant counterexamples exhibit the
importance of Definition 3.3.

Henceforth, multiply Eq. (3.12) on the left by the symmetrizer S = S(ξ) defined in (3.13) to rewrite it in symmetric form,

S(ξ)Û t + (iξÃ(ξ) + B̃(ξ))Û = 0, (3.15)

where

Ã(ξ) ∶= S(ξ)A(ξ) = ( 0 α(ξ)
α(ξ) 2m ∗ /ρ ∗ ), B̃(ξ) ∶= S(ξ)B(ξ) = ξ2(0 0

0 μ
).

Once the system in Fourier space is put into symmetric form, we can recall the following fundamental notions (cf. Refs. 31, 36, and 51).
Let S, Ã, B̃ ∈ C∞(R;R2×2) be smooth, real matrix-valued functions of the variable ξ ∈ R. Assume that S, Ã, B̃ are symmetric for all ξ ∈ R,
S > 0 is positive definite and B̃ ≥ 0 is positive semi-definite. The triplet (S, Ã, B̃) is said to be genuinely coupled if for all ξ ≠ 0 every vector
V ∈ ker B̃(ξ), with V ≠ 0, satisfies the condition (𝜚S(ξ) + Ã(ξ))V ≠ 0 for any 𝜚 ∈ R. In that case we say that the operator A satisfies the
genuine coupling condition.

Likewise, under the same assumptions of symmetry, smoothness and positive semidefiniteness, if a smooth, real matrix valued function,
K ∈ C∞(R;R3×3), satisfies

(a) K(ξ)S(ξ) is skew-symmetric for all ξ ∈ R; and,
(b) [K(ξ)Ã(ξ)]s + B̃(ξ) ≥ θ(ξ)I > 0 for all ξ ∈ R, ξ ≠ 0, and some θ = θ(ξ) > 0,

then K is said to be a compensating matrix symbol for the triplet (S, Ã, B̃). Here [M]s ∶= 1
2(M +M⊺) denotes the symmetric part of any real

matrix M.
The concepts of strict dissipativity, genuine coupling and the existence of a compensating matrix function are equivalent to each other

(see Theorems 3.3 and 6.3 by Humpherys31), as it is stated in the following equivalence theorem, under the extra constant multiplicity
assumption.

Theorem 3.7 (equivalence theorem31). Suppose that a symbol symmetrizer, S = S(ξ), S ∈ C∞(R;R3×3), exists for the operator A in the
sense of Definition 3.3, and that Ã(ξ) = S(ξ)A(ξ) is of constant multiplicity in ξ, that is, all its eigenvalues are semi-simple and with constant
multiplicity for all ξ ∈ R. Then the following conditions are equivalent:

(a) A is strictly dissipative.
(b) A is genuinely coupled.
(c) There exists a compensating matrix function for the triplet (S, SA, SB).

Our first observation is that the linearized QHD system (3.12) satisfies the genuine coupling and constant multiplicity conditions.

Lemma 3.8. The triplet (S, Ã, B̃) is genuinely coupled. Moreover, the matrix symbol Ã(ξ) is of constant multiplicity in ξ ∈ R.

Proof. Clearly, for each ξ ≠ 0 we have ker B̃(ξ) = {(a, 0)⊺ : a ∈ R} ⊂ R2. Hence, for any 0 ≠ V = (a, 0)⊺ ∈ ker B̃(ξ), with ξ ≠ 0, and any
𝜚 ∈ R, there holds

(𝜚S(ξ) + Ã(ξ))V = (𝜚α(ξ) α(ξ)
α(ξ) 𝜚 + 2m ∗ /ρ ∗ )(

a
0
) = (a𝜚α(ξ)

aα(ξ) ) ≠ 0,

because a ≠ 0 and α(ξ) > 0 for all ξ. Therefore, the triplet (S, Ã, B̃) is genuinely coupled. Upon an explicit computation of the eigenvalues of
Ã(ξ), we obtain that det (νI − Ã(ξ)) = 0 if and only if

ν = ν±(ξ) =
m ∗
ρ ∗ ±

¿
ÁÁÀm2∗

ρ2∗
+ α(ξ)2,

yielding two real and simple eigenvalues, ν−(ξ) < 0 < ν+(ξ), which never coalesce inasmuch as α(ξ) > 0 for all ξ. Hence, the constant
multiplicity assumption is also fulfilled. ◻
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B. The compensating matrix symbol
By virtue of the equivalence Theorem 3.7 and Lemma 3.8, we deduce the existence of a compensating matrix symbol for the triplet

(S, Ã, B̃) associated to the linear symmetric QHD system (3.15). In applications, however, it is more convenient to construct the symbol
directly. For that purpose, let us go back to the (unsymmetrized) original system (3.12) and introduce the following rescaling of variables,

V̂ ∶= S(ξ)1/2Û, (3.16)

where S(ξ) > 0 is the symmetrizer from Lemma 3.5. Hence, system (3.12) transforms into

V̂ t + (iξÂ(ξ) + B̂(ξ))V̂ = 0, (3.17)

where
Â(ξ) ∶= S(ξ)1/2A(ξ)S(ξ)−1/2, B̂(ξ) ∶= S(ξ)1/2B(ξ)S(ξ)−1/2.

Thus, direct computations yield

Â(ξ) =
⎛
⎝

0 α(ξ)1/2

α(ξ)1/2 2m ∗ /ρ ∗
⎞
⎠

, B̂(ξ) = ξ2(0 0
0 μ
) = ξ2B ∗ .

Notice that Â and B̂ are both smooth and symmetric, with B̂ ≥ 0. In some sense, we have just symmetrized the original system with S(ξ)1/2

instead. The following lemma appropriately chooses the compensating matrix function and provides more information than the equivalence
theorem.

Lemma 3.9. There exists a smooth compensating matrix symbol, K̂ ∈ C∞(R;R2×2), K̂ = K̂(ξ), for the triplet (I, Â(ξ), B ∗). In other words,
K̂ is skew-symmetric and

[K̂ (ξ)Â(ξ)]s + B ∗ ≥ θI > 0, (3.18)

for some uniform constant θ > 0 independent of ξ ∈ R. In addition, the following estimates hold,

∣ξK̂(ξ)∣, ∣K̂(ξ)∣ ≤ C, (3.19)

for all ξ ∈ R and some uniform constant C > 0.

Proof. Let us proceed by inspection. Consider a compensating matrix symbol of the form

K̂(ξ) = ϵq(ξ)( 0 1
−1 0

),

with ϵ > 0 constant and q(ξ) > 0 real and smooth, both to be chosen later. Clearly, K̂ is skew-symmetric. Let us compute

K̂(ξ)Â(ξ) = ϵq(ξ)( 0 1
−1 0

)
⎛
⎝

0 α(ξ)1/2

α(ξ)1/2 2m ∗ /ρ ∗
⎞
⎠
= ϵq(ξ)

⎛
⎝

α(ξ)1/2 2m ∗ /ρ ∗
0 −α(ξ)1/2

⎞
⎠

.

The symmetric part of this matrix is

[K̂ (ξ)Â(ξ)]s = ϵq(ξ)
⎛
⎝

α(ξ)1/2 m ∗ /ρ ∗
m ∗ /ρ ∗ −α(ξ)1/2

⎞
⎠

.

Hence, let us choose q(ξ) ≡ α(ξ)−1/2, real smooth and positive, to obtain for every y = (y1, y2) ∈ R2 and all ξ ∈ R the quadratic form

Q(y, ξ) = (y1

y2
)
⊺
([K̂ (ξ)Â(ξ)]s + B ∗)(y1

y2
)

= (y1

y2
)
⊺⎛
⎝

ϵ ϵα(ξ)−1/2m ∗ /ρ ∗
ϵα(ξ)−1/2m ∗ /ρ ∗ μ − ϵ

⎞
⎠
(y1

y2
)

= a1y2
1 + b12y1y2 + a2y2

2,

with
a1 = ϵ > 0, a2 = μ − ϵ, b12 =

2ϵm ∗
α(ξ)1/2ρ ∗

.
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If we choose 0 < ϵ≪ 1 sufficiently small such that

a2 > 0, a2 −
b2

12

2a1
> 0,

then clearly,

Q(y, ξ) = 1
2

a1y2
1 +

1
2

a1(y1 +
b12

a2
y2)

2

+ (a2 −
b2

12

2a1
)y2

2

≥ 1
2

a1y2
1 + (a2 −

b2
12

2a1
)y2

2

≥ θ∣y∣2,

with θ = min{ 1
2 a1, a2 − b2

12/(2a1)} > 0. That is, the quadratic form is positive. Hence, we need to choose 0 < ϵ≪ 1 such that μ > ϵ and

a2 −
b2

12

2a1
= μ − (1 + 2m2∗

ρ2∗ α(ξ)
)ϵ > 0.

Notice, however, that α(ξ) ≥ α ∗ > 0 for all ξ ∈ R with

α ∗ ∶= p′(ρ ∗) − m2∗
ρ2∗
> 0,

which is a positive constant because of the subsonicity condition (3.1). Therefore,

a2 −
b2

12

2a1
≥ μ − (1 + 2m2∗

ρ2∗ α ∗ )ϵ > 0,

for all ξ and it suffices to choose

ϵ = ϵ ∗ ∶= 1
2

μα ∗ ρ2∗
α ∗ ρ2∗ + 2m2∗

> 0,

in order to obtain Q(y, ξ) ≥ θ∣y∣2 for all ξ ∈ R and all y ∈ R2 with a constant

θ = min{1
2

ϵ ∗ , μ − ϵ ∗ (1 + 2m2∗
α ∗ ρ ∗ )} > 0,

independent of ξ. This shows (3.18). Therefore,

K̂(ξ) = ϵ ∗
α(ξ)1/2 (

0 1
−1 0

),

is the compensating symbol we look for. Clearly, K̂ is smooth in ξ. Finally, since 0 < α(ξ)−1/2 ≤ α−1/2∗ and since ∣ξ∣α(ξ)−1/2 is uniformly
bounded for all ξ ∈ R, we conclude that there exists a uniform constant C > 0 such that (3.19) holds. The lemma is proved. ◻

Remark 3.10. A few comments are in order. Notice that we demand K̂ to be a compensating matrix symbol for the triplet (I, Â, B ∗)
and not for (I, Â, B̂). This feature will be useful in the establishment of the energy estimate. In addition, we have constructed K̂ such that the
constant θ > 0 in (3.18) can be chosen uniformly in ξ ∈ R and that both ∣K̂(ξ)∣ and ∣ξK̂(ξ)∣ are uniformly bounded above. These are properties
that cannot be deduced from the equivalence theorem.

C. Linear decay of the associated semigroup

Lemma 3.11 (basic pointwise estimate). The solutions V̂ = V̂(ξ, t) to the linear system (3.17) satisfy the pointwise estimate

∣V̂(ξ, t)∣ ≤ C exp (−ω0ξ2t)∣V̂(ξ, 0)∣, (3.20)

for all ξ ∈ R, t ≥ 0 and some uniform constants C, ω0 > 0.
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Proof. The proof follows that of Lemma 5.2 in Ref. 47 almost word by word and therefore we gloss over some of the details. The important
points in the present case are the following. By taking the standard product in C2 and for any δ > 0 sufficiently small, the skew-symmetry of
the matrix K̂ allows us to define an energy of the form

E = ∣V̂ ∣2 − δξ⟨V̂ , iK̂(ξ)V̂⟩,

which is real, positive and equivalent to ∣V̂ ∣2, that is, C−1
1 ∣V̂ ∣2 ≤ E ≤ C1∣V̂ ∣2 for some uniform C1 > 0. Since B̂(ξ) = ξ2B ∗ , the inner product in

C2 of V̂ with Eq. (3.17) yields
1
2
∂t ∣V̂ ∣2 + ξ2⟨V̂ , B ∗ V̂⟩ = 0, (3.21)

where we have used the fact that Â and B ∗ are symmetric. Likewise, multiplying the equation by by −iξK̂(ξ) one arrives at the estimate

− 1
2

ξ∂t⟨V̂ , iK̂(ξ)V̂⟩ + ξ2⟨V̂ , [K̂ (ξ)Â(ξ)]sV̂⟩ ≤ εξ2∣V̂ ∣2 + Cεξ2⟨V̂ , B ∗ V̂⟩, (3.22)

for any ε > 0 and some uniform Cε > 0. Multiply inequality (3.22) by δ > 0 and add it to Eq. (3.21), yielding

1
2
∂t(∣V̂ ∣2 − δξ⟨V̂ , iK̂(ξ)V̂⟩) + ξ2(δ⟨V̂ , [K̂ (ξ)Â(ξ)]sV̂⟩ + (1 − δCε)⟨V̂ , B ∗ V̂⟩)

≤ εδξ2∣V̂ ∣2.
(3.23)

If we choose ε = 1
2 θ where θ > 0 is the uniform constant in (3.18) then the constant Cε > 0 is therefore fixed and for 0 < δ≪ 1 sufficiently

small one obtains
δ⟨V̂ , [K̂ (ξ)Â(ξ)]sV̂⟩ + (1 − δCε)⟨V̂ , B̃V̂⟩ ≥ δ⟨V̂ , ([K̂ (ξ)Â(ξ)]s + B ∗)V̂⟩ ≥ δθ∣V̂ ∣2,

where we have used the main property of the compensating matrix symbol [estimate (3.18)]. Substitution into (3.23) yields

∂t E + ω0ξ2 E ≤ 0,

where ω0 ∶= δθ/C1 > 0. This implies estimate (3.20). Details are left to the reader. ◻

Remark 3.12. It is to be noticed that (3.20) implies that the eigenvalues in Fourier space of system (3.10) satisfy λ(ξ) ≤ −ω0ξ2, with
ω0 > 0, yielding a dissipative structure of regularity-gain type.

The pointwise estimate of Lemma 3.11 implies the following estimate for the solutions to (3.12).

Corollary 3.13. The solutions Û(ξ, t) = (Û1, Û2)(ξ, t) to the linear system (3.12) satisfy the estimate

(1 + ξ2)∣Û1(ξ, t)∣2 + ∣Û2(ξ, t)∣2 ≤ C exp (−2ω0ξ2t)((1 + ξ2)∣Û1(ξ, 0)∣2 + ∣Û2(ξ, 0)∣2), (3.24)

for all t ≥ 0, ξ ∈ R and some uniform constant C > 0.

Proof. Suppose Û = Û(ξ, t) is a solution to system (3.12). Then from transformation (3.16) we know that V̂ = S(ξ)1/2Û satisfies (3.17)
and, therefore, Lemma 3.11 applies. Hence, from estimate (3.20) we obtain

∣V̂ ∣2 = ∣S(ξ)1/2Û∣2 =
RRRRRRRRRRR

⎛
⎝

α(ξ)1/2 0
0 1

⎞
⎠
(Û1

Û2
)
RRRRRRRRRRR

2

= α(ξ)∣Û1∣2 + ∣Û2∣2

≤ C exp (−2ω0ξ2t)∣V̂(ξ, 0)∣2

= C exp (−2ω0ξ2t)(α(ξ)∣Û1(ξ, 0)∣2 + ∣Û2(ξ, 0)∣2).

From the definition of α(ξ) [see (3.14)] we clearly deduce that there exist constants Cj > 0 such that C2(1 + ξ2) ≤ α(ξ) ≤ C1(1 + ξ2) for all
ξ ∈ R. Upon substitution we obtain estimate (3.24). ◻

The decay estimates (3.24) of the solutions to the evolution equation in Fourier space (3.12) readily imply the decay of the semigroup
associated to the linear evolution system (3.6). Notice the higher regularity on the density variable (here U1 = ρ) that appears in (3.24).
Consider the abstract Cauchy problem for the linear system (3.6),

⎧⎪⎪⎨⎪⎪⎩

Ut = AU,

U(0) = f ,
(3.25)
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where A ∶= −A ∗ ∂x + B ∗ ∂2
x + C ∗ ∂3

x is a differential operator with constant coefficients. We densely define the operator on the space Z ∶=
L2(R) × L2(R) with domain D(A) = Hs+1(R) ×Hs(R) for some s ≥ 3.

Lemma 3.14. The differential operator A : D(A) ⊂ Z → Z is the infinitesimal generator of a C0-semigroup, {et A}t≥0, in Z = L2(R) ×
L2(R). Moreover, for any f ∈ (Hs+1(R) ×Hs(R)) ∩ (L1(R) × L1(R)), s ≥ 2, and all 0 ≤ ℓ ≤ s, t > 0, there holds the estimate

(∥∂ℓ
x (et A f )1(t)∥2

1 + ∥∂ℓ
x (et A f )2(t)∥2

0)
1/2
≤ Ce−c1t(∥∂ℓ

x f1∥2
1 + ∥∂ℓ

x f2∥2
0)

1/2

+ C(1 + t)−(ℓ/2+1/4)∥ f ∥L1 ,
(3.26)

for some uniform constants C, c1 > 0.

Proof. The infinitesimal semigroup generated by A is necessarily associated to the solutions to the linear problem (3.25), which can be
expressed in terms of the inverse Fourier transform of the solutions to (3.12). Indeed, suppose that Û = Û(ξ, t) is the solution to (3.12) with
initial condition Û(ξ, 0) = f̂ (ξ). Then U(x, t) = (et A f )(x) is the solution to (3.25) with U(0) = f = ( f1, f2)⊺, where

(et A f )(x) ∶= 1√
2π∫R

eixξetR(iξ) f̂ (ξ) dξ, (3.27)

and

R(z) ∶= −
⎛
⎜
⎝

0 z

z(p′(ρ ∗) −m2∗ /ρ2∗ − 1
2

k2z2) 2zm ∗ /ρ ∗ + z2μ

⎞
⎟
⎠

, z ∈ C,

R(iξ) = −(iξA(ξ) + B(ξ)), ξ ∈ R.

That {et A}t≥0 is a C0-semigroup, where A is the constant coefficient differential operator defined above, follows from standard Fourier
estimates and semigroup theory (cf. Refs. 12 and 46); we omit the details. Now, since Û satisfies (3.12), then by Corollary 3.13 estimate (3.24)
holds. Fix ℓ ∈ [0, s], multiply (3.24) by ξ2ℓ and integrate in ξ ∈ R. This yields

∫
R
[ξ2ℓ(1 + ξ2)∣Û1(ξ, t)∣2 + ξ2ℓ∣Û2(ξ, t)∣2] dξ ≤ CJ1(t) + CJ2(t),

where,

J1(t) ∶= ∫
1

−1
[ξ2ℓ(1 + ξ2)∣Û1(ξ, 0)∣2 + ξ2ℓ∣Û2(ξ, 0)∣2] exp (−2ω0ξ2t) dξ,

J2(t) ∶= ∫∣ξ∣≥1
[ξ2ℓ(1 + ξ2)∣Û1(ξ, 0)∣2 + ξ2ℓ∣Û2(ξ, 0)∣2] exp (−2ω0ξ2t) dξ.

Noticing that, clearly, exp(−2ω0ξ2t) ≤ exp(−ω0ξ2t), we deduce

J1(t) ≤ 2∫
1

−1
ξ2ℓ∣Û(ξ, 0)∣2e−ω0tξ2

dξ ≤ 2sup
ξ∈R
∣Û(ξ, 0)∣2∫

1

−1
ξ2ℓe−ω0tξ2

dξ.

But since for any fixed ℓ ∈ [0, s] and any constant ω0 > 0, the integral

H0(t) ∶= (1 + t)ℓ+1/2∫
1

−1
ξ2ℓe−ω0tξ2

dξ ≤ C,

is uniformly bounded for all t > 0 with some constant C > 0 (see Lemma A.1 in Ref. 47), we arrive at

J1(t) ≤ C(1 + t)−(ℓ+1/2)∥U(x, 0)∥2
L1. (3.28)

Now, if ∣ξ∣ ≥ 1 then exp(−2ω0tξ2) ≤ exp(−ω0t). Hence, Plancherel’s theorem implies that

J2(t) ≤ e−ω0t∫∣ξ∣≥1
ξ2ℓ(1 + ξ2)∣Û1(ξ, 0)∣2 + ξ2ℓ∣Û2(ξ, 0)∣2 dξ

= e−ω0t∫∣ξ∣≥1
(ξ2ℓ + ξ2(ℓ+1))∣Û1(ξ, 0)∣2 + ξ2ℓ∣Û2(ξ, 0)∣2 dξ

≤ e−ω0t∫
R
(ξ2ℓ + ξ2(ℓ+1))∣Û1(ξ, 0)∣2 + ξ2ℓ∣Û2(ξ, 0)∣2 dξ

= e−ω0t(∥∂ℓ
x U1(0)∥2

1 + ∥∂ℓ
x U2(0)∥2

0),

for all t > 0. Combining both estimates we obtain the result with c1 = ω0/2 > 0, as claimed. ◻
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IV. GLOBAL EXISTENCE AND DECAY OF PERTURBATIONS OF EQUILIBRIUM STATES
In this section we focus on the nonlinear problem. We prove the global existence and the decay of small perturbations to subsonic

equilibrium states.

A. Nonlinear energy estimates
We start by establishing a priori energy estimates for solutions to the full nonlinear problem (1.1). Let U ∗ = (ρ ∗ , m ∗) ∈ R2 be a sub-

sonic equilibrium state with ρ∗ > 0. Then if (ρ + ρ∗ , m +m∗) solves (1.1) with U = (ρ, m) being a perturbation, then the latter satisfies the
equivalent nonlinear system (3.5) where A is the linearized operator around U∗ defined in (3.8). Let us denote the initial perturbation as
(ρ0, m0) and suppose that

ρ0 ∈ Hs+1(R) ∩ L1(R), m0 ∈ Hs(R) ∩ L1(R),

for some s ≥ 3. From the local existence theorem 2.1 we know that if Es(0)1/2 = (∥ρ0∥2
s+1 + ∥m0∥2

s )1/2 < a0 then there exists a local solution to
system (3.5) in the perturbation variables, namely, U = (ρ, m) ∈ Xs((0, T); r, R), for some R ≥ r > 0, T > 0, and with initial condition U(0)
= U0 ∶= (ρ0, m0), such that U +U∗ = (ρ + ρ∗ , m +m∗) solves the original system (1.1) with initial condition U(0) +U∗ = (ρ0 + ρ∗ , m0 +
m∗). This local solution can be written in terms of the associated semigroup and the variations of constants formula,

U(x, t) = et AU0 + ∫
t

0
e(t−τ)A∂x(

0
N2
)(τ) dτ. (4.1)

Therefore, for any fixed 0 ≤ ℓ ≤ s − 1 we apply the decay estimates for the semigroup [see Lemma 3.14 and estimate (3.26)] to obtain

(∥∂ℓ
x ρ(t)∥2

1 + ∥∂ℓ
x m(t)∥2

0)
1/2
≤ Ce−c1t(∥∂ℓ

x ρ0∥2
1 + ∥∂ℓ

x m0∥2
0)

1/2

+ C(1 + t)−(1/4+ℓ/2)(∥ρ0∥L1 + ∥m0∥L1)

+ C∫
t

0
∥∂ℓ

x (e(t−τ)A∂xN2(τ))∥0 dτ.

(4.2)

From the representation of the semigroup in (3.27), which leads to the expression Û = e−tR(iξ)Û(0) for any solution to the linear problem,
it is easy to verify the following identity,

∂ℓ
x (et A∂x f ) = ∂ℓ+1

x (et A f ),

for any f ∈ Hs(R), 0 ≤ ℓ ≤ s − 1 and t ≥ 0; details are left to the reader. Therefore, we may apply estimate (3.26) once again, but now with
ℓ + 1 ≤ s replacing ℓ, in order to arrive at

∫
t

0
∥∂ℓ

x(e(t−τ)A ∂xN2(τ)∥0 dτ ≤ C∫
t

0
e−c1(t−τ)∥∂ℓ+1

x N2(τ)∥0 dτ

+ C∫
t

0
(1 + t − τ)ℓ/2+3/4∥N2(τ)∥L1 dτ.

(4.3)

Notice that the particular (conservative) form of the nonlinear term, namely ∂x(0, N2)⊺, is crucial to obtain the algebraic time decay inside
that last integral. Upon substitution we obtain

(∥∂ℓ
x ρ(t)∥2

1 + ∥∂ℓ
x m(t)∥2

0)
1/2
≤ Ce−c1t(∥∂ℓ

x ρ0∥2
1 + ∥∂ℓ

x m0∥2
0)

1/2

+ C(1 + t)−(1/4+ℓ/2)(∥ρ0∥L1 + ∥m0∥L1)

+ C∫
t

0
e−c1(t−τ)∥∂ℓ+1

x N2(τ)∥0 dτ

+ C∫
t

0
(1 + t − τ)ℓ/2+3/4∥N2(τ)∥L1 dτ,

(4.4)
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for all 0 ≤ ℓ ≤ s − 1. Summing up estimates (4.4) for ℓ = 0, 1, . . . , s − 1 yields

∥ρ(t)∥s + ∥m(t)∥s−1 ≤ Ce−c1t(∥ρ0∥s + ∥m0∥s−1) + C(1 + t)−1/4(∥ρ0∥L1 + ∥m0∥L1)

+ C∫
t

0
e−c1(t−τ)∥N2(τ)∥s dτ

+ C∫
t

0
(1 + t − τ)−3/4∥N2(τ)∥L1 dτ.

Since, clearly, there exists a uniform constant C > 0 such that e−c1t ≤ C(1 + t)−1/4 for all t ≥ 0, we simplify last estimate as

∥ρ(t)∥s + ∥m(t)∥s−1 ≤ C(1 + t)−1/4(∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1)

+ C∫
t

0
e−c1(t−τ)∥N2(τ)∥s dτ (4.5)

+ C∫
t

0
(1 + t − τ)−3/4∥N2(τ)∥L1 dτ.

Now, we proceed with the estimation of the nonlinear terms. For that purpose we first recall some classical results.

Lemma 4.1.

(a) Let u, v ∈ Hs(Rn) ∩ L∞(Rn), for any s ∈ R, n ∈ N. Then

∥uv∥s ≤ C(∥u∥s∥v∥∞ + ∥u∥∞∥v∥s),

for some uniform constant C > 0.
(b) Let s ≥ 0 and k ≥ 0 be such that s + k ≥ [ n

2 ] + 1. Assume that u ∈ Hs(Rn), v ∈ Hk(Rn). Then for ℓ = min{s, k, s + k − [ n
2 ] − 1} we have

uv ∈ Hℓ(Rn) and there exists a uniform Cs,k > 0 such that

∥uv∥ℓ ≤ Cs,k∥u∥s∥v∥k.

In particular, if s ≥ [ n
2 ] + 1, 0 ≤ ℓ ≤ s and u ∈ Hs(Rn), v ∈ Hℓ(Rn), then

∥uv∥ℓ ≤ Cs∥u∥s∥v∥ℓ,

for some uniform Cs > 0.

Proof. For the proof of (a) see Lemma 3.2 in Ref. 28. The proof of (b) is a corollary of the interpolation inequalities obtained by
Nirenberg45 (see also Corollary 2.2 and Lemmata 2.1 and 2.3 in Ref. 34). ◻

Corollary 4.2. For any s > n/2, n ∈ N, the space Hs(Rn) is a Banach algebra. Moreover, there exists a constant Cs > 0 such that

∥uv∥s ≤ Cs∥u∥s∥v∥s,

for all u, v ∈ Hs(Rn).

Proof. Follows immediately from Lemma 4.1 (b). ◻

We also need some estimates on composite functions.

Lemma 4.3. Let s ≥ 1 and suppose that Y = (Y1, . . . , Ym), m ∈ N, Yi ∈ Hs(Rn) ∩ L∞(Rn), for all 1 ≤ i ≤ m. Let Λ = Λ(Y), Λ : Rm → Rm,
be a C∞ function. Then for each 1 ≤ j ≤ s there hold ∂xΛ(Y) ∈ H j−1(Rn) and

∥∂xΛ(Y)∥j−1 ≤ CM(1 + ∥Y∥∞)j−1∥∂xY∥j−1,

where C > 0 is a uniform constant and

M =
j

∑
k=1

sup
V∈Rm

∣V∣≤∥Y∥∞

∣Dk
Y Λ(Y)∣ > 0.

Proof. See Vol′pert and Hudjaev55 (see also Lemma 2.4 in Ref. 34). ◻
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With this information at hand we proceed to estimate the terms ∥N2∥L1 and ∥N2∥s inside the integrals in (4.5). First, from (3.4) we know
that

N2 = O(ρ2 +m2 + ρ2
x + ∣ρ∥ρxx∣),

where ρ and m are the perturbation variables. First, we estimate the term ρ2
x. From Lemma 4.1 and by Sobolev imbedding theorem, we get

∥ρ2
x(τ)∥s ≤ 2C∥ρx(τ)∥s∥ρx(τ)∥L∞ ≤ C∥ρx(τ)∥s+1∥ρ(τ)∥2,

for any τ ∈ [0, t] and because s ≥ 3. Applying the Sobolev calculus inequalities from Lemma 4.3, we arrive at

∥N2(τ)∥s ≤ C(∥ρ(τ)∥2
s + ∥ρ(τ)∥s∥ρxx(τ)∥s + ∥ρ(τ)∥2∥ρx(τ)∥s+1)

≤ C(∥ρ(τ)∥2
s + ∥ρ(τ)∥s∥ρx(τ)∥s+1),

(4.6)

and
∥N2(τ)∥L1 ≤ C(∥ρ(τ)∥2

2 + ∥m(τ)∥2
1) ≤ C(∥ρ(τ)∥2

s + ∥m(τ)∥2
s−1), (4.7)

for all τ ∈ [0, t] because s ≥ 3, where C > 0 is a uniform constant. Combine estimates (4.5)–(4.7) in order to get

∥ρ(t)∥s + ∥m(t)∥s−1 ≤ C(1 + t)−1/4(∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1)

+ C sup
0≤τ≤t
∥ρ(τ)∥s∫

t

0
e−c1(t−z)∥ρ(τ)∥s dτ

+ C(∫
t

0
∥mx(τ)∥2

s dτ)
1/2
(∫

t

0
e−2c1(t−τ)∥ρ(τ)∥2

s dτ)
1/2

+ C(∫
t

0
∥ρx(τ)∥2

s+1 dτ)
1/2
(∫

t

0
e−2c1(t−τ)∥ρ(τ)∥2

s dτ)
1/2

+ C∫
t

0
(1 + t − τ)−3/4(∥ρ(τ)∥2

s + ∥m(τ)∥2
s−1) dτ. (4.8)

If we denote
Gs(t) ∶= sup

0≤τ≤t
(1 + τ)1/4(∥ρ(τ)∥s + ∥m(τ)∥s−1),

Qs(t) ∶= sup
0≤τ≤t
(∥ρ(τ)∥2

s+1 + ∥m(τ)∥2
s ) + ∫

t

0
(∥ρx(τ)∥2

s+1 + ∥mx(t)∥2
s ) dt,

= Es(t) + Fs(t),

where Es(t) and Fs(t) are defined in (2.1) and (2.2), respectively, then we can recast estimate (4.8) in a simplified form, namely as

Gs(t) ≤ C(∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1) + CH1(t)Qs(t)1/2Gs(t)
+ CH2(t)Gs(t)2,

(4.9)

where
H1(t) ∶= sup

0≤τ≤t
(1 + τ)1/4∫

τ

0
e−c1(τ−z)(1 + z)−1/4 dz

+ sup
0≤τ≤t
(1 + τ)1/4[∫

τ

0
e−2c1(τ−z)(1 + z)−1/2 dz]

1/2
,

(4.10)

H2(t) ∶= sup
0≤τ≤t
(1 + τ)1/4∫

τ

0
(1 + τ − z)−3/4(1 + z)−1/2 dz. (4.11)

Since both integrals, H1(t) and H2(t), are uniformly bounded in t ≥ 0 (see Lemma A.1 in Ref. 47), we readily obtain the estimate

Gs(t) ≤ C(∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1) + CQs(t)1/2Gs(t) + CGs(t)2. (4.12)

Last estimate will be used in a key way to obtain the global decay of perturbations to constant equilibrium states.
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B. Global existence and decay of solutions
After all these preparations we are ready to prove our main result.

Theorem 4.4 (global decay of perturbations of subsonic equilibrium states). Let (ρ ∗ , m ∗) ∈ R2, with ρ∗ > 0, be a constant equilibrium
state of system (1.1) which satisfies the subsonicity assumption

p′(ρ ∗) = γργ−1∗ > m2∗
ρ2∗

.

Suppose that ρ0 ∈ Hs+1(R) ∩ L1(R), m0 ∈ Hs(R) ∩ L1(R), for some s ≥ 3. Then there exists a positive constant ε2 ≤ a0 (with a0 as in Theorem
2.1) such that if

∥ρ0∥s+1 + ∥m0∥s + ∥ρ0∥L1 + ∥m0∥L1 < ε2, (4.13)

then the Cauchy problem for the QHD system (1.1) with initial condition (ρ∗ + ρ0, m∗ +m0)(x), x ∈ R, has a unique solution of the form
(ρ∗ + ρ, m∗ +m)(x, t) satisfying

ρ ∈ C((0,∞); Hs+1(R)) ∩ C1((0,∞); Hs−1(R)),
m ∈ C((0,∞); Hs(R)) ∩ C1((0,∞); Hs−2(R))
(ρx, mx) ∈ L2((0,∞); Hs+1(R) ×Hs(R)).

(4.14)

Moreover, the following estimates hold,

∥ρ(t)∥s + ∥m(t)∥s−1 ≤ C1(1 + t)−1/4(∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1), (4.15)

and
Qs(t)1/2 ≤ C2(∥ρ0∥s + ∥m0∥s−1), (4.16)

for every t ∈ [0,∞) and some uniform Cj > 0, where

Qs(t) = sup
0≤τ≤t
(∥ρ(τ)∥2

s+1 + ∥m(τ)∥2
s ) + ∫

t

0
(∥ρx(τ)∥2

s+1 + ∥mx(t)∥2
s ) dt.

Proof. By virtue of estimate (4.12), we can select ε1 ≤ a0, ε1 small enough as in Corollary 2.3, and δ1 = δ1(ε1) such that for Qs(T1) ≤ ε1
and

∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1 < δ1, (4.17)

there holds
∥ρ(t)∥s + ∥m(t)∥s−1 ≤ C1(1 + t)−1/4(∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1), (4.18)

for all t ∈ [0, T1] and some constant C1 = C1(ε1, δ1) > 1. Recall that the local solution to the initial value problem, belonging to
Xs(0, T1; m0/2, 2M0), for some T1 = T1(a0), exists for all t ∈ [0, T1] thanks to Theorem 2.1. Next, we define

ε2 ∶=min
⎧⎪⎪⎨⎪⎪⎩

ε1,
ε1

C0
,

ε1

C2(1 + C2
0)

1/2 , δ1

⎫⎪⎪⎬⎪⎪⎭
> 0.

Let us suppose that condition (4.13) holds for this selected value of ε2. Whence, the local existence theorem 2.1 implies that

Qs(T1) = Es(T1) + Fs(T1) ≤ C1Es(0) = C0(∥ρ0∥s+1 + ∥m0∥s) < C0ε2 ≤ ε1.

This bound, together with
∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1 < ε2 ≤ δ1,

readily implies estimate (4.18) for t ∈ [0, T1]. In addition, we have

Es(T1) ≤ Qs(T1) ≤ ε1.

Hence, we have verified condition (2.6) from Corollary 2.3. Upon application of Corollary 2.3 we obtain

Qs(T1)1/2 ≤ C2Es(0)1/2 = C2(∥ρ0∥s+1 + ∥m0∥s).
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By virtue of
∥ρ(T1)∥s+1 + ∥m(T1)∥s ≤ Qs(T1)1/2 ≤ ε1,

we can consider the Cauchy problem with initial condition at t = T1 in order to find a local solution in [T1, 2T1] satisfying

sup
T1≤τ≤2T1

(∥ρ(τ)∥2
s+1 + ∥m(τ)∥2

s ) + ∫
2T1

T1

(∥ρx(τ)∥2
s+1 + ∥mx(t)∥2

s ) dt

≤ C2
0(∥ρ(T1)∥s+1 + ∥m(T1)∥s)2

≤ C2
0Qs(T1)2.

Therefore, we obtain

Qs(2T1)1/2 = [Qs(T1) + sup
T1≤τ≤2T1

(∥ρ(τ)∥2
s+1 + ∥m(τ)∥2

s ) + ∫
2T1

T1

(∥ρx(τ)∥2
s+1 + ∥mx(t)∥2

s ) dt]
1/2

≤ (1 + C2
0)1/2Qs(T1)1/2

≤ C2(1 + C2
0)1/2(∥ρ0∥s+1 + ∥m0∥s)

≤ C2(1 + C2
0)1/2(∥ρ0∥s+1 + ∥m0∥s + ∥ρ0∥L1 + ∥m0∥L1)

< C2(1 + C2
0)1/2ε2

≤ ε1.

This yields,
Es(2T1)1/2 ≤ Qs(2T1)1/2 < ε1.

This estimate, together with the already verified condition (4.17) allows us to obtain estimate (4.16) and the condition (2.6) from Corollary 2.3,
but now on the time interval t ∈ [0, 2T1]. Consequently,

∥ρ(t)∥s + ∥m(t)∥s−1 ≤ C1(1 + t)−1/4(∥ρ0∥s + ∥m0∥s−1 + ∥ρ0∥L1 + ∥m0∥L1),

holds for all t ∈ [0, 2T1] and
Qs(2T1)1/2 ≤ C2(∥ρ0∥s+1 + ∥m0∥s).

We can proceed by iteration in order to obtain estimates (4.16) and (4.15) for the time intervals [0, 3T1], [0, 4T1], and so on. Thus, the
estimates hold globally in time. The theorem is now proved. ◻
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APPENDIX: PROOF OF LEMMA 3.2

Under the supersonicity assumption (3.11), let us define the positive constant

β ∗ ∶= m2∗
ρ2∗
− p′(ρ ∗) > 0.

Assume Û = Û(ξ) is a non-trivial solution to (3.10). Therefore Û ∈ ker D(λ, ξ), where

D(λ, ξ) = λI + iξA ∗ + ξ2B ∗ + iξ3C ∗ =
⎛
⎜
⎝

λ iξ

−iξβ ∗ + 1
2

iξ3k2 λ + i2ξm ∗ /ρ ∗ + μξ2

⎞
⎟
⎠

.

This yields the dispersion relation

det D(λ, ξ) = λ2 + (μξ2 + i
2ξm ∗

ρ ∗ )λ + ξ2(1
2

ξ2k2 − β ∗) = 0. (A1)

The discriminant of the second order polynomial in λ on the left hand side of (A1) is Δ(ξ) ∶= a(ξ) + ib(ξ), where

a(ξ) ∶= ξ2(ξ2(μ2 − 2k2) − 4p′(ρ ∗)), b(ξ) ∶= 4μξ3 m ∗
ρ ∗ .

Therefore, the roots of (A1) are λ±(ξ) ∶= − 1
2 μξ2 − iξm ∗ /ρ ∗ ± 1

2 Δ(ξ)1/2. Let us examine

Re λ+(ξ) = −
1
2

μξ2 + 1
2

Re Δ(ξ)1/2.

We now show that Re λ+(ξ) > 0 for 0 < ∣ξ∣≪ 1, sufficiently small. This is equivalent to prove that

Re Δ(ξ)1/2 > μξ2, for 0 < ∣ξ∣≪ 1. (A2)

Recalling that

Re Δ(ξ)1/2 = 1√
2

√
a(ξ) +

√
a(ξ)2 + b(ξ)2,

we observe that (A2) is equivalent to

a(ξ) +
√

a(ξ)2 + b(ξ)2 > 2μ2ξ4,

for ∣ξ∣ ≈ 0+. Since,
2μ2ξ4 − a(ξ) = 2μ2ξ4 − ξ2(ξ2(μ2 − 2k2) − 4p′(ρ ∗))

= ξ2((μ2 + 2k2)ξ2 + 4p′(ρ ∗)) > 0,

then (A2) holds if and only if
b(ξ)2 > 4μ4ξ8 − 4a(ξ)μ2ξ4.

Upon substitution of the expressions for a(ξ) and b(ξ) we reckon that (A2) is satisfied if and only if

ξ2(2
m2∗
ρ2∗
− 2p′(ρ ∗) − k2ξ2) = ξ2(2β ∗ +O(ξ2)) > 0,

as ∣ξ∣→ 0. But this is true because of the supersonicity condition (β ∗ > 0). We conclude that Re λ+(ξ) > 0 for sufficiently small values of ∣ξ∣.
The lemma is proved. ◻
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