
Selecta Mathematica           (2024) 30:64 
https://doi.org/10.1007/s00029-024-00955-1

SelectaMathematica
New Series

Special representatives of complexified Kähler classes

Carlo Scarpa1 · Jacopo Stoppa2,3

Accepted: 13 April 2024
© The Author(s) 2024

Abstract
Motivated by constructions appearing in mirror symmetry, we study special rep-
resentatives of complexified Kähler classes, which extend the notions of constant
scalar curvature and extremal representatives for usual Kähler classes. In particular,
we provide a moment map interpretation, discuss a possible correspondence with
compactified Landau–Ginzburg models, and prove existence results for such special
complexified Kähler forms and their large volume limits in certain toric cases.

Mathematics Subject Classification 32Q15 · 32Q26 · 53C55

1 Motivation and results

Let X be a Kähler manifold of dimension n. We will always assume that X is compact.
Following the conventions of [45], we define a complexified Kähler form on X as

ωC = iω + B ∈ A1,1(X ,C),

where ω is a Kähler form and B (the B-field) is a real closed form. The corresponding
class

[ωC] = [iω + B] ∈ H1,1(X ,C)

is called a complexified Kähler class.
In this paper we introduce and study a complex partial differential equation which

attempts to fix a special representative for a complexified Kähler class [ωC].
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Definition 1.1 The constant scalar curvature Kähler (cscK) equation with B-field is
the complex PDE

s(ω)+ γ (ω
C)n

ωn
= c, (1.1)

where s(ω) = �ω Ric(ω) denotes the scalar curvature, γ ∈ C is the complex coupling
constant, and c ∈ R is a real topological constant, uniquely determined by [ωC] and
γ .

More generally, let h0(ω) denote the Lie algebra of real functions ξ which are
holomorphy potentials with respect to ω, i.e. such that ∇1,0

ω ξ is a holomorphic vector
field. Then, the extremal scalar curvature equation with B-field is the complex PDE

s(ω)+ γ (ω
C)n

ωn
= ξ ∈ h0(ω). (1.2)

These notionsmake sense for anyKählermanifoldwith a complexified polarisation,
i.e. a pair (X , [ωC]), and reduce to the cscK and Kähler extremal scalar curvature
equations when the B-field vanishes. In this Section we motivate and discuss these
equations in detail and state our main results (see 1.6), as well as several other useful
properties.

1.1 Mirror symmetry

Pairs (X , [ωC]) appear in the theory of mirror symmetry. When X is Calabi-Yau,
the open string A-model of X is defined as (a suitable enhancement of the derived
category of) the Fukaya A∞ category Fuk(X , ωC). The B-field enters crucially in
the definition of Fuk(X , ωC): for example, objects are Lagrangians L ⊂ X , with
respect to ω, endowed with a unitary connection, with curvature id⊗B|L . Similarly,
morphisms are defined in terms of holomorphic discs and the monodromy of the
unitary connections, twisted by the B-field (see [45, Section 4.2.4]).

The resulting A∞ category Fuk(X , ωC) is independent of the choice of representa-
tive of [ωC], up to A∞-equivalence.But, bydefinition, in order to have a concretemodel
of the Fukaya category, and to distinguish objects with special geometric properties,
for example stationary Lagrangians, onemust fix a representative of the (complexified)
Kähler class [ωC] (see [43, 47]; see also [6] for results on stationary Lagrangians in
cscK manifolds). In the compact Calabi-Yau case, this is usually done by the Calabi-
Yau theorem, solving the equations

Ric(ω) = 0, �ωB = 0. (1.3)

Beyond the compact Calabi-Yau case, one can formulate mirror symmetry similarly
for Fanos (see e.g. [34]), varieties of general type (see [29]), or for open Calabi-Yaus.

In the Fano case, the analogue of (1.3) is given by the equations

Ric(ω) = ω, �ωB = 0, (1.4)
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which, as is well known, are obstructed by K -stability. Even more importantly, these
equations only make sense for the anticanonical polarisation. But according to [34]
(see also [28, Section 0.5.3] for the case of del Pezzo surfaces), the Fukaya category
Fuk(X , ωC) of a compact Fano X endowed with an arbitrary complexified Kähler
form ωC appears naturally in mirror symmetry, as equivalent to the category of matrix
factorisations of a Landau-Ginzburg model (Y , w) (a pair of a complex manifold
Y with a nonconstant holomorphic function w). The choice of complexified Kähler
class is mirror to the choice of complex structure on (Y , w), including the potential
w. We are thus led to considering the problem of fixing special representatives for
arbitrary complexified Kähler classes on a Fano (not just for the real, anticanonical
polarisation).

Let us also look at the open case, for log Calabi-Yaus belonging to the important
class of (interiors of) Looijenga pairs, appearing in the Gross-Siebert programme. We
consider the two-dimensional case, for simplicity, see [28] (and see e.g. [28, Section
0.4] for higher dimensions). Then, (Y , D) is a pair given by a (necessarily rational)
smooth projective surface Y , and singular, nodal, anticanonical curve D ⊂ Y . The
complementU = Y\D is noncompactCalabi-Yau: it is endowedwith the holomorphic
symplectic form� = s−1D , where sD is a defining section of D. Note that the simplest
example is given by the case when Y is toric, with a fixed toric structure, with toric
boundary D.

According to [28, Conjecture 0.9], the relevant Fukaya category, in the case when
U is affine, is the wrapped Fukaya category Fukwr(U , ωC|U ), where ωC|U is the
restriction to U of a complexified Kähler form ωC defined on the compactification Y .
Thus, in order to fix a representative of the A∞-equivalence class of Fukwr(U , ωC|U ),
we are led to considering special representatives ωC on the compactification Y . The
B-field should be part of the definition of such special representatives in a crucial
way. (This is different of course from the important and difficult problem of finding
complete Ricci flat metrics on the complement U = Y\D). Note that the choice of
a complexified Kähler class [ωC] corresponds to the choice of complex structure on
the mirror affine log Calabi-Yau Ǔ , through an especially simple mirror map (this is
a case when mirror symmetry holds globally, even far away from the large volume
limit). A similar picture should hold in the higher dimensional case, at least when D
supports an ample divisor, see e.g. [28, Conjecture 0.8].

We will offer additional motivation for considering (1.1) as a way to fix a special
representative of the complexified Kähler class [ωC]. We show that (1.3) and (1.4)
can be recovered as a (suitably normalised) large volume limit of (1.1); we discuss
possible connections to Landau-Ginzburg models in 1.7.1, and describe objects in
Fukaya categories associated with solutions in 2.2.

In particular, in 1.7.1 below, we point out the general question of “uniformising"
mirror pairs in the Fano case,

(X , [ωC

X ], sX ∈ H0(K−1X )) | ((Y , w), [ωC

Y ],�Y ∈ H0(KY )),

i.e. of the relation between (the existence of) special representatives for the com-
plexified Kähler classes [ωC

X ] and [ωC

Z ], where f : Z → P
1 is a suitable (tame)

compactification of the Landau-Ginzurg model w : Y → C, with [ωC

Z ]|Y = [ωC

Y ].
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For example, from a differential geometric perspective, we ask if the solvability of the
Dervan-Ross equation (see [20]),

s(ωZ )−�ωZ f ∗η = cZ ,

in a real Kähler class [ωZ ] on the compactified Landau-Ginzurg model Z (for a fixed
Kähler form η on P

1), is related to the solvability of our equation

s(ωX )+ γ (ω
C

X )
n

(ωX )n
= cX

on the mirror Fano manifold (X , [ωC

X ]), at least nearby certain limit points in the space
of complex structures on X .

Similarly, from an algebro-geometric perspective, in 1.7.2 we ask for a charac-
terisation of those Landau-Ginzburg models ((Y , w), [ωC

Y ],�Y ) which are mirror to
K -stable Fanos (X , [ωC

X ], DX = div(sX )), after a suitable extension of K -stability to
complexified Kähler classes.

1.2 Deformed Hermitian Yang-Mills connections

Let us write (1.1) in the form

s(ω)+ (− i)n γ̄
(ω + i B)n

ωn
= c ∈ R.

Setting

(− i)n γ̄ = −|γ |e− i θ̂ ,

the angle θ̂ is uniquely determined, modulo 2π , by the necessary reality condition

∫
X
(ω + i B)n ∈ ei θ̂R>0. (1.5)

So, the single complex Eq. (1.1) is equivalent to the system

⎧⎪⎨
⎪⎩
Im e− i θ̂ (ω + i B)n = 0

s(ω)− |γ |Re e− i θ̂ (ω + i B)n

ωn
= c,

(1.6)

to be solved for the (1, 1) forms ω, B within their fixed cohomology classes. This is
the system studied by Schlitzer and the second author in [41].

We see that the imaginary part of our complex PDE (1.1) is the well-studied
deformed Hermitian Yang-Mills (dHYM) equation appearing in the theory of mir-
ror symmetry, see e.g. [12, 33, 36]. This equation, when solvable (see [7, 10, 16, 38]),
gives a unique way, compatible with mirror symmetry and expressing a vanishing
moment map condition, to fix the B-field, for each choice of Kähler form ω.
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More generally, fixing a holomorphic line bundle L → X , we can follow ideas of
Collins and Yau on the dHYM equation with a B-field (see [13, p. 82]) and consider
the analogue of (1.1) given by

s(ω)+ γ (iω + Bω + FL)
n

ωn
= c, (1.7)

where FL = i F(AhL ) denotes the real curvature of aHermitianmetric hL on the fibres
of L , and Bω is the ω-harmonic representative of the class [B]. Note that this reduces
to (1.1) in the special case L ∼= OX . In the general case, we may regard Bω+FL as the
special representative of the B-field class [B+c1(L)], and ωC = iω+ Bω+ FL as the
corresponding special representative of the complexifiedKähler class [iω+B+c1(L)].
Recall that adding to B a closed, integral (1, 1)-form changes the Fukaya category
by an equivalence of A∞ categories (see [45, Remark 4.11]), so (1.7) is still trying
to fix a special complexified Kähler form yielding the same Fukaya category, up to
equivalence.

Remark 1.2 The natural automorphism group for (1.6) is the group Aut(X , [ωC]) of
holomorphic automorphisms of X fixing the cohomology classes [ω] and [B]. This
is very different from the case of the twisted cscK equation (see e.g. [46]), where the
twisting form α is fixed, and the automorphism group automatically vanishes as soon
as α is positive.

1.3 Momentmaps and Futaki invariant

Our equation (1.1) (or (1.7)) can also be motivated from moment map geometry.

Lemma 1.3 Suppose that the class of the B-field is Hodge. Then, the cscK equation
with B-field (1.7) corresponds to the vanishing moment map condition for a (formally
complexified) Hamiltonian group action, with respect to a Kähler form determined by
|γ | > 0.

Proof Indeed, suppose that class of the B-field is Hodge, [B] ∈ H1,1(X ,Q). Then, we
have m[B] = c1(N ) for some holomorphic line bundle N and some minimal m ∈ N,
and we observe

s(ω)+ γ (iω + Bω + FL)
n

ωn
= c ⇐⇒ s(mω)+ γ

m

(imω + FN⊗Lm )n

(mω)n
= c

m
. (1.8)

In the latter equation the metric on the fibres of N ⊗ Lm is given by hN ⊗ h⊗mL , where
FhN = mBω. According to [41, Corollary 3], the right hand side of (1.8) is precisely
the vanishingmomentmap condition for a (formally complexified)Hamiltonian action
of the extended gauge group G̃ on the product space J int ×A of (mω0)-compatible,
integrable almost complex structures J int and connections A on N ⊗ Lm , endowed
with a suitable Kähler structure, determined by |γ |. �


Wewill prove an analogue of this result also in the case of arbitrary B-field classes.
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Theorem 1.4 The cscK equation with B-field (1.1), when [B] ∈ H1,1(X ,R) is not
necessarily Hodge, corresponds to the vanishing moment map condition for a (com-
plexified) infinitesimal Hamiltonian action (i.e., a Hamiltonian Lie algebra action),
with respect to a Kähler form determined by |γ | > 0.

The proof is rather more technical and is given in Sect. 6. Although the infinitesimal
Hamiltonian action is not a group action in general, we show in Sect. 6 that the (com-
plexified) infinitesimal action can be integrated; in other words, there is a meaningful
notion of orbits for this infinitesimal action.

Fix any representative ω, and let B = B(ω) denote the corresponding dHYM
representative for [B] with respect to ω, that is, the unique solution B(ω) to

Im e− i θ̂ (ω + i B)n = 0

(assuming one exists; according to [7, 10, 16], this does not depend on the choice of
representative for [ω]). Let h0 denote the Lie algebra of ω-Hamiltonian holomorphic
vector fields on X , i.e. vector fields V admitting a holomorphy potential ϕ(V , ω)with
respect to ω (as well known, h0 does not depend on the choice of Kähler metric).

Definition 1.5 The Futaki invariant for (1.1) is the linear function on h0 given by

F[ωC](V ) =
∫
X
ϕ(V , ω)

⎛
⎝s(ω)− |γ |

Re
(
e− i ϑ̂ (ω + i B(ω))n

)

ωn
− c

⎞
⎠ωn .

Note that F[ωC] ∈ h∨0 is also a function of the real coupling |γ |; we write F[ωC],|γ |
when we need to emphasise this. Note that we have, by definition,

F[ωC] = F[ω] + |γ |F ′[ωC]

where F[ω] is the classical Futaki character and the linear map F ′[ωC] ∈ h∨0 does not
depend on |γ |.

Standard moment map arguments, using Theorem 1.4, show that F[ωC] ∈ h∨0 (and
so F ′[ωC]) does not depend on the choice of representative for [ω] (see Sect. 6.2). So
we have the usual consequences,

Lemma 1.6 If the cscK equation with B-field (1.1) is solvable in [ωC], thenF[ωC] ≡ 0.
More generally, suppose ωC solves the extremal equation with B-field (1.2), namely,

s(ω)+ γ (ω
C)n

ωn
= ξ ∈ h0(ω),

whereh0(ω) is the spaceof smooth real functionswhichareholomorphypotentialswith
respect to ω. Then, for any fixed choice of a maximal compact subgroup K ⊂ Aut(X),
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there exists a unique V ∈ Lie(K ) (the extremal field), identified with the Futaki
invariant F[ωC] ∈ h∨0 under the Futaki-Mabuchi inner product, such that

∇1,0
ω ξ = V .

Thus, as usual, the possible extremal fields for our extremal equation (1.2) are
determined a priori, up to conjugation, by the Futaki invariant F[ωC].

1.4 Large volume limit and Kähler-Yang-Mills metrics

A crucial notion in mirror symmetry is that of large volume limit (see e.g. [45, Section
4]). For us, it means that we should analyse the formal behaviour of our equation under
the scaling

ω �→ kω, k →∞, for [ωC] = [iω + B] fixed.
Since s(kω) = k−1s(ω), our Eq. (1.1) for

ωC

k = B + i kω

is equivalent to

s(ω)− k|γk |e− i θ̂k (ω + i k−1B)n

ωn
= kck .

Here, γk is a complex coupling constant, possibly depending on k, and ck is the
corresponding real topological constant. Let us set

z = n
[ω]n−1 ∪ [B]

[ω]n . (1.9)

According to [41, Proposition 7], there are expansions

Im e− i θ̂k (ω + i k−1B)n

ωn
= k−1(�ωB − z)+ O(k−3),

Re e− i θ̂k (ω + i k−1B)n

ωn
= 1− k−2

(
�2
ω(B ∧ B)− z�ωB + 1

2
z2

)
+ O(k−4).

(1.10)

So our sequence solves equations of the form

{−|γk |(�ωB − z)+ O(k−2|γk |) = 0

s(ω)+ (k−1|γk |)(�2
ω(B ∧ B)− z�ωB)+ O(k−3|γk |) = ĉk .

(1.11)

At a purely formal level, the limiting behaviour depends on

lim
k→∞ k−1|γk | = γ̂ ∈ R≥0 ∪ {∞}.
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The limiting equations become a special case of the Kähler-Yang-Mills system intro-
duced by Álvarez-Cónsul, Garcia-Fernandez and García-Prada [1],

{
�ωB = z

s(ω)+ γ̂ (�2
ω(B ∧ B)− z�ωB) = ĉ.

(1.12)

Note that when γ̂ = 0, for example if the coupling γk = γ is held constant, the limit
decouples to {

�ωB = z ⇐⇒ �ωB = 0

s(ω) = ŝ,
(1.13)

(where the stated equivalence follows at once from the Kähler identity [�ω, ∂̄] = i ∂̄∗
since B is closed), and so in particular, in the Calabi-Yau case, the large volume limit
of our equations becomes {

�ωB = 0

Ric(ω) = 0,

which are usually taken as the uniformising equations for Calabi-Yaus both in mathe-
matics and physics references (where the parameter k−1 appears as the “string length
constant" �2s = k−1, see e.g. [4, p. 4]).

The extremal case (1.2) is entirely analogous, and the large volume limit is given
by the extremal Kähler-Yang-Mills equations of [1, Section 4.5],

{
�ωB = z

s(ω)+ γ̂ (�2
ω(B ∧ B)− z�ωB) = ξ̂ ∈ h0(ω).

(1.14)

1.5 Calabi-Volume functional

Recall the complexifed volume functional, introduced by Jacob and Yau [33], given
by

Vω(B) =
∫
X
rω(B)ω

n,

where the radius function is defined as

rω(B) =
∣∣∣∣∣
(ωC)n

ωn

∣∣∣∣∣ .

According to [33], solutions B of the dHYM equation are minimisers of Vω, attaining
the minimum

0 < Vω(B) =
∣∣∣∣
∫
X
(ω + i B)n

∣∣∣∣ .
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Definition 1.7 We introduce a Calabi-Volume functional given by

CVol(ωC) =
∫
X
(s(ω)− |γ |rω(B))2 ωn + |γ |Vω(B).

Lemma 1.8 Solutions of the cscK equation with B-field (1.1), such that c < 1
2 , min-

imise the Calabi-Volume functional.

Proof By a straightforward computation, we have

CVol(ωC) =
∫
X
(s(ω)− |γ |rω(B)− c)2 ωn + |γ |Vω(B)

+ 2c
∫
X
(s(ω)− |γ |rω(B)) ωn − c2

∫
X
ωn

=
∫
X
(s(ω)− |γ |rω(B)− c)2 ωn + (1− 2c)|γ |Vω(B)+ c(2ŝ − c)[ω]n .

Recall that (1.1) is equivalent to (1.6). The claim then follows from the fact that dHYM
solutions are minimisers for Vω(B), and that, at a dHYM solution, we have

rω(B) = Re e− i θ̂ (ω + i B)n

ωn
.

�

Remark 1.9 Suppose that B = B(ω) is a dHYM solution corresponding to ω. Then,
by (1.10), there is a large volume limit expansion

CVol(iω + k−1B) = CYM(ω, B)+ O(k−1),

where the Calabi-Yang-Mills functional was defined (in much greater generality) in
[27, Section 2.4] as

CYM(ω, B) =
∫
X

(
s(ω)− γ̂ |B|2ω

)
ωn + γ̂

∫
X
|B|2ω ωn .

Remark 1.10 The variational interpretation can be used more generally, by the trick of
multiplying (1.1) by a suitably small real constant, see [27, Remark 2.4.2].

1.6 Existence results

We can now state our existence results, which bear on the case when X is toric.
The toric case is relevant for mirror symmetry for Fano and log Calabi-Yau man-

ifolds, see Sect. 1.1. In 1.7.1 we discuss a possible interpretation of these results, in
particular of the coupling constant |γ |, in terms of compactified Landau-Ginzburg
models. Note that in the toric Fano case the mirror Landau-Ginzburg model can be
described very explicitly, see e.g. [28, Example 1.15].



   64 Page 10 of 45 C. Scarpa, J. Stoppa

Theorem 1.11 Let (X , [ω]) be a polarised Kähler toric manifold, with dim(X) ≤ 3,
which is uniformly K -stablewith constantλ. Then, for all sufficiently small ε > 0, there
is an open set of positive (i.e. Kähler) B-field classes Bε ⊂ H1,1(X ,R), containing
a ball of radius κεδ around κε[ω] for some fixed constants κ, δ > 0 (in the metric
induced by ω), such that, for [B] ∈ Bε and all coupling constants in the range

0 ≤ |γ | < ŝ λ

2(1− λ)ε
−1,

the extremal scalar curvature equationwith B-field (1.2) is solvable in the complexified
Kähler class [ωC] = [iω + B].

The main point is that we obtain quantitative control on the coupling constant |γ |.
The limitation to surfaces and threefolds is due to special properties of the dHYM
equation.

Corollary 1.12 Fix 0 < γ ′ < 1. For all sufficiently large k > 0, choose [Bk] ∈ Bk−1
and let ωC

k = iωk + Bk denote the solution of (1.1) with real coupling constant

|γk | = ŝ λ

2(1− λ)γ
′k,

provided by Theorem 1.11. Then, the rescaled complexified form ωk+ i kBk converges
smoothly, in the large volume limit k →∞, to a solution of the extremal Kähler-Yang-
Mills system (1.14), with coupling constant

γ̂ = ŝ λ

2(1− λ)γ
′.

Theorem 1.11 and Corollary 1.12 are proved in Sect. 2 (for surfaces) and Sect. 3 (for
threefolds), relying on estimates established in Sect. 4, based on the theory developed
by Chen and Cheng [8]. These results provide basic examples of extremal metrics
with B-field, and of their large volume behaviour, on cscK toric manifolds. We note
that, in particular, Corollary 1.12 gives new examples of extremal Kähler-Yang-Mills
metrics (cf. [1, Theorem 4.17]).

Remark 1.13 Note that uniform K -stability implies the existence of a cscKmetricω0 ∈
[ω] (see Sect. 4). In particular, in the situation of Theorem 1.11, we have F[ω](0) =
0. Among the extremal metrics with B-field (i.e. solutions of (1.2)) constructed in
Theorem 1.11, standard arguments show that the locus of cscK metrics with B-field
(solutions of (1.1)) is given by

Bε ∩ {F[ωC],|γ | = 0} = Bε ∩ {F ′[ωC] = 0}.

However, at present, we do not have an effective characterisation of the locus {F ′[ωC] =
0}. The same problem, in the large volume limit, appears in [1, Section 4.5]. For
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example, in the case when X is a surface, one can show that, for a fixed class [ω], the
point [B] = [ω] is a critical point of the function

H1,1(X ,R) � B �→ F ′[iω+B] ∈ h∨0 ,

and that the Hessian at this critical point can be identified with the bilinear form on
the space of ω-harmonic formsH1,1

ω (X ,R) given by

D2(F ′[iω+B])|[B]=[ω][η1, η2](V ) =
∫
X
f (V , ω) η1 ∧ η2.

For arbitrary dimension, we only have a much weaker result than Theorem 1.11.

Proposition 1.14 The statement of Theorem 1.11 remains valid, with X toric of arbi-
trary dimension, for some |γ | > 0.

This follows at once from the openness result discussed in Sect. 5.
We also show, in Sect. 3.2, that the cscK equation with a B-field may be solvable

in a K -unstable Kähler class on a toric, Kähler-Einstein Fano (for which a cscK
representative does not exist).

Theorem 1.15 Consider the toric Fano Kähler-Einstein threefold

X = P(O ⊕O(1,−1))→ P
1 × P

1.

Then, for all |γ | > 0, there exist K -unstable Kähler classes [ω] and B-field classes
B[ω],|γ | ⊂ H1,1(X ,R), such the the cscK equation with B-field (1.1) is solvable for
[ωC] = [iω + B], [B] ∈ B[ω],|γ |.

Remark 1.16 The solutions of (1.2) on toric surfaces and threefolds given by Theorem
1.11 are torus-invariant. The question of the uniqueness of these solutions (in their
classes) is still open. In a recent preprint [40] the first-named author shows that, on toric
manifolds of arbitrary dimension, the uniqueness of torus-invariant solutions of (1.1)
holds under a supercritical phase condition, but the classes we consider in Theorem
1.11 do not satisfy this hypothesis for dim X = 3. In the two-dimensional case instead
the results of [40] apply directly. Hence, on a K -stable surface for which F ′[ωC] = 0,
the solutions given by Theorem 1.11 are unique in their classes, up to the action of the
reduced automorphism group of X .

1.7 Conjectures

1.7.1 Mirror pairs and K -stability

Our main speculation here concerns the question of whether mirror symmetry for
Fano pairs, after suitable compactification, can be made compatible with versions of
K -stability and the corresponding partial differential equations, in particular the cscK
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equation with B-field (1.1). As will be clear from the discussion, it is indeed necessary
to allow a nontrivial B-field in general.

Let
(X , [ωC

X ], sX ∈ H0(K−1X )) | ((Y , w), [ωC

Y ],�Y ∈ H0(KY )) (1.15)

be a mirror Fano pair as in 1.1 above (see [34, Section 2.1] for full details). Following
[34, Section 2.1], we consider a tame compactification f : Z → P

1 of the map
w : Y → C, where Z is a smooth projective variety containing Y as the complement of
a suitable divisor (see [34, Definition 2.4]). Such compactifications have been studied
in depth. For example, if X is a smooth Fano threefold, a Calabi-Yau compactified
Landau-Ginzburg model exists [39], i.e., for suitable Kähler parameters on X , we
can choose f : Z → P

1 to be a Calabi-Yau fibration, with −KZ ∼ f −1(∞). This
compactification is only unique up to birational equivalence.

Assume that the complexified Kähler class on Y is in fact a real Kähler class [ωY ].
Question 1 Characterise mirror pairs (1.15), for which the Landau-Ginzburg model
((Y , w), [ωY ],�Y ) has the following stability property: a tame compactification
(Z , f ) exists, together with a Kähler class [ωZ ] restricting to [ωY ], such that the
polarised fibration

f : (Z , [ωZ ])→ (P1, [η])
is (uniformly) K -stable (or log K -stable, with respect to the compactification divisor
DZ ⊂ Z ), for some Kähler class [η] (see [20]).

Note that K -stability is invariant under overall scaling, i.e. f : (Z , [ωZ ]) →
(P1, [η]) is K -stable iff f : (Z , k[ωZ ]) → (P1, [η]) is, for all k > 0. On the other
hand, the mirror correspondence is not scale invariant, and

(Xk, [ωC

Xk
], sXk ) | ((Y , w), k[ωY ],�Y ), k →∞

gives a sequence of mirror pairs with (Xk, sXk ) approaching a limit point in the space
of complex structures.

Note also that geometric characterisations of (uniform, log) K -stability for Calabi-
Yau fibrations are known, at least in the adiabatic limit when the volume of the
fibres, with respect to [ωZ ], is sufficiently small [30]; these would apply to suitable
polarisations on (Z , f ).

Question 2 Let
(X , [ωC

X ], sX ) | ((Y , w), [ωY ],�Y )

be amirrorFanopair, such that the polarisationonY is real. Suppose ((Y , w), [ωY ],�Y )

is stable (or log stable) in the sense of Question 1. Is it possible to solve the cscK (more
generally, extremal) equation with B-field (1.1) on (X , [ωC

X ]) (respectively, with suit-
able cone angle along DX = div(sX )), for some range of the coupling constant |γ |? Is
this true at least in more restrictive situations: for example, for Calabi-Yau compacti-
fications, and for (Xk, [ωC

Xk
], sXk ), with k sufficiently large?

Recall that, according to [20, Conjecture 1.6], the (uniform) K -stability of the
fibration f : (Z , [ωZ ]) → (P1, [η]) is conjecturally equivalent to the solvability of
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the equation
s(ωZ )−�ωZ f ∗η = cZ . (1.16)

So, from the differential-geometric viewpoint, we are asking for a possible relation
between solutions of (1.16) and of the equation

s(ωX )+ γ (ω
C

X )
n

(ωX )n
= cX .

Example 1.17 Let (X , [ωC

X = iωX+BX ], sX ) be a smooth del Pezzo surface endowed
with a complexified Kähler class and an anticanonical section sX such that DX =
div(sX ) is smooth. Then, under some assumptions, there exists a smooth rational
elliptic surface f : Z → P

1, with a Kähler class [ωZ ], such that the mirror Landau-
Ginzburg model is given by

(
Y = Z \ f −1(∞), [ωZ ]|Y ,�Y = s−1

f −1(∞)
)
,

see [28, Sections 0.5.2, 0.5.3]; [11] proves a large part of the Strominger-Yau-Zaslow
conjecture in this case. Suppose we choose a sequence (Xk, [ωC

Xk
], sXk ) so that the

corresponding polarisation k[ωZ ,k], on the fixed elliptic fibration f : Z → P
1, is real

and approaches the rescaled adiabatic limit, in which the volume of the fibres is fixed,
while the volume of the base blows up.

By [28, Sections 0.5.2], we have a relation

S′ � jk = exp
(− 2πk[ωZ ,k]

)
,

where S′ is a partially compactified versal family of X\DX . As k → ∞, the limit
converges to a point of S′ corresponding to a singular del Pezzo, with Gorenstein SLC
singularities.

On the other hand, according to [30, Corollary H], the K -stability of the polarised
elliptic fibration f : (Z , [ωZ ,k]) → P

1, nearby the adiabatic limit, is determined by
the singularities of the fibres. In particular if all fibres are reduced then the fibration
is K -stable for all sufficiently large k.

So, if some correspondence as in Question 2 holds, then we would obtain cscK
metrics, in general with nonvanishing B-field, on the del Pezzo surfaces (Xk, [ωC

Xk
]),

for all large k, i.e. as (Xk, [ωC

Xk
]) acquires certain Gorenstein SLC singularities.

Example 1.18 Consider (X , [ωC

X = iωX + BX ], sX ) with X a smooth toric Fano
threefold. Let ((Z , f ), [ωZ ]) be aCalabi-Yau compactification of its Landau-Ginzburg
model ((Y , w), [ωY ],�Y ) (itself a partial compactification of Givental’s map w :
(C∗)3 → C, depending on sX , see [34, Section 2.1]). Note that, since X is rigid,
varying the Kähler class [ωZ ] corresponds to varying the section sX . Let us choose
[ωZ ] sufficiently close to the adiabatic limit. It seems reasonable that some analogue
of the results of [30] for rational elliptic surfaces holds in this case, so that if the
singularities of f : Z → P

1 are sufficiently generic then it is K -stable with respect to
[ωZ ].
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Through some correspondence as in Question 2, this predicts results such as The-
orem 1.15: even if (X , [ωX ]) is K -unstable, so the fibres of f : Z → P

1 are too
singular, allowing a sufficiently large B-field class, with respect to a fixed |γ | > 0,
corresponds to a large deformation of f , which will have sufficiently regular fibres.

Note that [42, Theorem 3, Corollary 9] provide an analogue of Theorem 1.15 for
complexified Kähler classes on the toric del Pezzo surface F1 ∼= PP1(O ⊕ O(1))
(which is K -unstable with respect to all [ω]). The solutions of (1.1) constructed in
that case have conical singularities along (components of) the toric boundary DF1 .

In particular, [42, Theorem 3, Corollary 9] shows that, for all [ω], the cscK equation
with B-field (1.1) is solvable on (F1, [ωC = iω + B]), for some sufficiently large
|γ |[B], with a maximal cone angle along DF1 which only depends (explicitly) on [ω],
not on [B]. This seems compatible with the statement that the compactified elliptic
fibration f : Z → P

1, mirror to (F1, [ω], DF1) is log K -unstable, with respect to
some maximal angle depending on [ω], but becomes stable for this same angle after
a sufficiently large deformation of complex structure.

Theorem 1.11 andCorollary 1.12would have similar interpretations on the Landau-
Ginzburg side: they are consistent with the fact that a uniformly K -stable fibration
f : Z → P

1 remains stable, even as we approach a large complex structure limit
point, under sufficiently small deformations of complex structure, parametrised by
|γ |Bε and so depending on the uniform stability constant λ.

Remark 1.19 The above examples suggest that the range of the coupling constant |γ |
should be related to the width of an annulus parametrising mirror deformation of
complex structures with respect to suitable normalised canonical coordinates on the
complex Landau-Ginzburg moduli space (see [34, Section 3.3]).

1.7.2 Solutions and K -stability

It is also natural to expect that a version of the Yau-Tian-Donaldson conjecture can be
formulated for the cscK equation with B-field. In fact, we show in Sect. 2 that, when
X is a complex surface, after a suitable change of variables, our Eq. (1.1), at least for
a special value of the coupling, is equivalent to the coupled Kähler-Einstein equations
[32], or the coupled cscK equations [15] for a pair of Kähler metrics, for which a
Yau-Tian-Donaldson correspondence has already been proposed.

Conjecture 1.20 Let X be a Kähler surface, with discrete automorphisms. The cscK
equation with B-field (1.1) is solvable in the complexified Kähler class [ωC] = [iω+
B], with coupling constant |γ | = sin(θ̂), iff the pair ([ω], [χ := sin(θ̂)B+ cos(θ̂)ω])
is uniformly K -stable in the sense discussed in [32, Section 1] and [15, Section 3.1].

Here, ei θ̂ is the topological angle, defined in (1.5), and we are assuming, without
loss of generality, that we have sin(θ̂) > 0, and that [χ ] is a Kähler class (the condition
that ±[χ ] is a Kähler class is necessary for (1.1) to be solvable, as it is equivalent to
the solvability of the dHYM equation on a surface, see Sect. 2 for more details).

In this context, we can complement Question 1 by asking, roughly speaking, what
condition corresponds to K -stability under mirror symmetry.
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Question 3 Is there an algebro-geometric characterisation for Landau-Ginzburg mod-
els ((Y , w), [ωC

Y ],�Y ) which are mirror to a del Pezzo surface (X , [ωC

X ], sX ) with
a K -stable complexified polarisation [ωC

X ] (i.e., such that the pair ([ωX ], [χ :=
sin(θ̂)BX + cos(θ̂)ωX ]) is (uniformly, log) K -stable in the sense of [32, Section 1]
and [15, Section 3.1])?

1.7.3 Moduli spaces

By analogy with the classical works [25, 44] and the more recent results [19], we
expect that our Eq. (1.1) can be used in order to construct moduli spaces of Kähler
manifolds endowed with a complexified polarisation, i.e. pairs (X , [ωC]).
Conjecture 1.21 There exists a Hausdorff complex space Mγ (X , [ωC]) which is a
moduli space of Kähler manifolds with a complexified polarisation (in the same sense
as [19, 25]), such that the cscK equation with B-field (1.1) is solvable in the class
[ωC]. Moreover,Mγ (X , [ωC]) admits a natural Weil-Petersson type Kähler metric η.

It should be possible to prove this using the approach of [19] at least in the special
case when Aut(X , [ω]C) is discrete, while the general case seems much harder. Note
that by Theorem 1.15 the moduli space of solutions of (1.1) could be nonempty even
when the cscK moduli space is empty.

Example 1.22 Following Sect. 1.4, we consider themoduli spaceMγ (X , [iω+k−1B])
for fixed γ and iω + B, nearby the large volume limit k →∞.

Suppose X is Calabi-Yau. Then, for all sufficiently large k, we should have

Mγ (X , [iω + k−1B]) ∼=MB(X , [ω]) ⊂M(X , [ω]),

the fixed subspace of the moduli space of polarised Calabi-YausM(X , [ω])where [B]
is of type (1, 1). This is because the Eq. (1.11), for fixed γk = γ , should be uniquely
solvable for all large k, by analogy with the results of [1, Sect. 4]. Then, the Kähler
metrics ηk on this fixed subspace MB(X , [ω]), induced from Mγ (X , [iω + k−1B]),
provide natural deformations of the (restriction of) the classical Weil-Petersson metric
on the Calabi-Yau moduli space, parametrised by the “string length” parameter �2s =
k−1.

1.8 Generalisations

1.8.1 Critical connections and critical metrics

Dervan, McCarthy and Sektnan [18] studied generalisations of the dHYM equation,
for arbitrary rank, associated with a polynomial central charge in the sense of Bayer
[5]. Our Eq. (1.1) admits a straightforward generalisation to this context, namely

s(ω)+ γ Z̃([B])
ωn

= c ∈ R, (1.17)
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where
Z̃([B]) = Z̃([B], L) = Z̃ω,k,Bω(L)

denotes the (n, n)-form corresponding to a choice of polynomial central charge Z,
evaluated on the Hermitian line bundle (L, hL), with respect to the representatives
ω, Bω, the latter denoting the unique solution to �ωBω = b ∈ R, i.e., the unique ω-
harmonic representative. Then, the special representative of [ωC], modulo H1,1(X ,Z),
corresponding to a solution of (1.17) is given by

ωC = iω + Bω + FL ,

where FL = FhL = i F(AhL ) is the curvature of the metric hL on the fibres of L .
Thus, our model Eq. (1.1) corresponds to

s(ω)+ γ Z̃dHYM(OX )

ωn
= c,

for the central charge

ZdHYM(E) = −
∫
X
e− iω−B ch(E).

Another relevant choice is the PDE

s(ω)+ γ Z̃Todd(OX )

ωn
= c,

corresponding to the central charge

ZTodd(E) = −
∫
X
e− iω−B ch(E)

√
Td(X).

In this case, when taking the representative (n, n)-form Z̃, one uses a fixed represen-
tative of

√
Td(X).

One can show that the moment map interpretation, Lemma 1.3, extends to (1.17),
at least when the B-field class is Hodge.

Dervan [17] also studies a notion of critical Kähler metrics ω which deforms the
scalar curvature s(ω) (nearby the large volume limit) with a suitable notion of central
charge Z̃(ω). Accordingly, one may consider extending this to complexified Kähler
classes by the equation

Z̃(ωC) := Z̃(ω)+ γ Z̃([B]) = ζ ∈ C
∗.

1.8.2 Anticanonical divisors

Asdiscussed above, according to [34], to describeFanomirror pairswe should consider
triples (X , [ωC

X = iω+ B], sX ), where sX ∈ H0(K−1X ) is an anticanonical section (so
�X = s−1X is a meromorphic volume form, with simple poles along DX = div(sX )).
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Under some assumptions, it is possible to write an analogue of (1.7) for the full data
(X , [ωC

X ], sX ). As in the proof of Lemma 1.3, fix line bundles N , L on X such that
m[B] = c1(N ), for some m ∈ Z, and moreover N ⊗ Lm ∼= K−1X . Then, we consider
the equation

s(ω)+ γ (iω + Bω + FL)
n

ωn
+ η

(
�ω − i

2

)
|sX |2h = c + i τ, (1.18)

to be solved for a Kähler form ω, a metric h on the fibres of K−1X given by hN ⊗ h⊗mL ,
where FhN = mBω, and real constants η, c, τ . Extending the argument of Lemma 1.3
by the moment map picture in [2] shows that (1.18) is also a vanishing moment map
condition for aHamiltonian group action. The complexifiedKähler class representative
associated with a solution is ωC = iω+ Bω+ FL . The large volume limit is the given
by the Kähler-Yang-Mills-Higgs system studied in [2].

2 Surfaces

In this Section we discuss our equations on a Kähler surface. We explain a connection
to coupled Kähler-Einstein and cscK metrics, introduce certain objects in the Fukaya
category associated with solutions, and prove Theorem 1.11 in the case of surfaces.

2.1 The equations on a surface; coupled KE and cscKmetrics

Let us consider the complex Eq. (1.2) on a (compact, Kähler) surface X . This is
equivalent to ⎧⎪⎨

⎪⎩
Im e− i θ̂ (ω + i B)2 = 0

s(ω)− |γ |Re e− i θ̂ (ω + i B)2

ω2 = ξω,
(2.1)

where ξω satisfies
∇1,0
ω ξω = V ,

for a fixed extremal field V (independent of ω). By a simple computation, the topo-

logical angle ei θ̂ is given by

cos(θ̂) =
∫
ω2 − ∫

B2

(( ∫
ω2 − ∫

B2
)2 + 4

( ∫
ω ∧ B

)2)1/2 ,

sin(θ̂) = 2
∫
ω ∧ B(( ∫

ω2 − ∫
B2

)2 + 4
( ∫
ω ∧ B

)2)1/2 . (2.2)

Using the identity

cos(θ̂) Im e− i θ̂ (ω + i B)2

ω2 + sin(θ̂)Re e− i θ̂ (ω + i B)2

ω2 = �ωB, (2.3)
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together with the first equation in (2.1), we can reduce the scalar curvature equation
to

s(ω)− |γ |
sin(θ̂)

�ωB = ξω

sin(θ̂)
. (2.4)

On the other hand, setting

χ = sin(θ̂)B + cos(θ̂)ω, (2.5)

we have an identity

Im e− i θ̂ (ω + i B)2 = χ
2 − ω2

sin(θ̂)
.

Thus, we can write (2.1), using the variables ω, χ , as

⎧⎪⎨
⎪⎩
χ2 = ω2

s(ω)− |γ |
sin(θ̂)

�ωχ = ξω

sin(θ̂)
.

(2.6)

Note that the reduction of the dHYM equation on a surface to a complex Monge-
Ampère was first noticed in [33].

Suppose that the Futaki invariant vanishes, so ξω is a constant, and that we have
χ > 0. For the special choice of real coupling

|γ | = sin(θ̂),

the Eq. (2.6) are the coupled cscK equations studied by Datar and Pingali [15], in the
special case of two coupled metrics (ω0 = ω,ω1 = χ). In particular, if X is del Pezzo
and we have

[ω] + [χ ] = (1+ cos(θ̂))[ω] + sin(θ̂)[B] = c1(X),

then by a standard argument the Eq. (2.6) reduce to the coupled Kähler-Einstein (KE)
equations of Hultgren and Witt Nyström [32], namely

{
Ric(χ) = Ric(ω),

Ric(ω) = χ + ω. (2.7)

In this way the coupled KE equations for the pair ([ω], [χ ]) can be interpreted as fixing
a canonical representative of the complexified Kähler class

ωC = i[ω] + (sin(θ̂))−1([χ ] − cos(θ̂)[ω]),

up to the action of Aut(X , [ωC]).
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As a different example, not related to coupled KE or cscK metrics, let us consider
our general equations on a surface (2.1) with the special ansatz

B = σω + τ Ric(ω), τ �= 0.

Then, by (2.4), the scalar curvature equation is automatically satisfied, for any ω, for

|γ | = sin(θ̂)

τ
,

so for these choices (2.1) is equivalent to the single equation

Im e− i θ̂ (ω + i(σω + τ Ric(ω)))2 = 0. (2.8)

By standard arguments, this can be solved for all sufficiently small τ , provided [ω]
admits a cscK representative ω0, and (X , [ω]) has discrete automorphisms (this seems
closely related to special cases of the deformed cscK equation studied in [17]). Note
that the corresponding large volume limit equations, in the sense of (1.13), are trivially
solvable, by {

�ω0(σω0 + τ Ric(ω0)) = 2σ + τ ŝ
s(ω0) = ŝ.

2.2 Mean curvature and objects in Fuk(X,!C)

Let � ⊂ (X , ω) be a Lagrangian surface. Following [43, Section 1], we define a
1-form σH on � as

σH = ιHω,
where H denotes the mean curvature vector, a section of the normal bundle N�|X .
Then, by [43, Appendix A] we have

dσH = Ric(ω)|�. (2.9)

Remark 2.1 This classical computation holds for general Kähler manifolds and shows
that in the Kähler-Einstein case the mean curvature flow preserves the Lagrangian
condition.

Suppose that (ω, χ) is a coupled KE pair on X , i.e., a solution of (2.7), underlying
a cscK metric with B-field ωC = iω + B (so χ , given by (2.5), is a Kähler form by
assumption). In particular, X is a del Pezzo surface. Then, using (2.9), we compute

dσH = Ric(ω)|� = (ω + χ)|� = sin(θ̂)B|�.
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This shows that the B-field is exact along ω-Lagrangians, and that we have a distin-
guished object of the Fukaya category

(
�, d + σH

sin(θ̂)

)
∈ Fuk(X , iω + B).

associated with the mean curvature vector of a Lagrangian.
Similarly, if �̃ ⊂ (X , χ) is a Lagrangian surface, with mean curvature H̃ , we

compute

dσH̃ = Ric(χ)|�̃ = (ω + χ)|�̃ =
(
χ − sin(θ̂)B

cos(θ̂)
+ χ

)
|�̃ = − tan(θ̂)B|�,

so again B is exact along χ -Lagrangians, and we have a natural object

(�̃, d − cot(θ̂)σH̃ ) ∈ Fuk(X , iχ + B).

Finally, suppose that ωC = iω + B, B = σω + τ Ric(ω) is a cscK metric with
B-field corresponding to a solution of (2.8). Let� ⊂ (X , ω) be a Lagrangian surface.
Then, we have

dσH = Ric(ω)|� = τ−1B|�,
so we find an object

(�, d + τσH ) ∈ Fuk(X , iω + B).

2.3 Continuity method

Expanding the dHYM equation as

sin(θ̂)B2 + 2 cos(θ̂)B ∧ ω = sin(θ̂)ω2

we note (as in [41, Lemma 18]) that under the (semi)positivity assumptions

sin(θ̂), cos(θ̂) > 0; B ≥ 0

we obtain the elementary a priori bound

0 ≤ �ωB < tan(θ̂). (2.10)

Suppose that the classical Futaki character F[ω] = F[ωC],0 vanishes. With these
assumptions, let us consider the continuity path

⎧⎪⎨
⎪⎩
(sin(θ̂)Bt + cos(θ̂)ωt )

2 = ω2
t

s(ωt )− t |γ |
sin(θ̂)

�ωt Bt = ŝ − t |γ |
sin(θ̂)

ξt , t ∈ [0, 1], (2.11)
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for ωt ∈ [ω], Bt ∈ [B]. The real holomorphy potential ξt satisfies

∇1,0
ωt
ξt = V ,

where the extremal field V is identified with the Futaki invariant

F[ωC],1(W ) =
∫
X
ϕ(W , ω)

(
Re

(
e−iϑ (ω + i B(ω))n

)
ωn

− r̂

)
ωn,

with respect to the Futaki-Mabuchi inner product, which only depends on [ωC], where
the constant r̂ is such that F vanishes on constant functions.

Then, for t = 0, the equations decouple to

{
(sin(θ̂)B0 + cos(θ̂)ω0)

2 = ω2
0

s(ω0) = ŝ,

that is, they are equivalent to the cscK equation for ω0, while for t = 1 they are
equivalent to (2.1).

Suppose now (X , ω0) is a toric cscK pair. In Sect. 4 (see in particular Lemma 4.4)

we will see that, in this case, for fixed topological angle ei θ̂ , one can obtain a uniform a
priori estimate on sup |ξt |, for t ∈ [0, 1], depending only on the angle, of then uniform
estimates of all orders on ωt , Bt , ξt , for t ∈ [0, 1], as long as Bt ≥ 0 (so that the
elementary bound (2.10) holds), provided the real coupling constant satisfies

|γ | < ŝ λ

(1− λ)((cos θ̂ )−1 − (sin(θ̂))−1 inf ξt )
, (2.12)

where λ > 0 denotes Donaldson’s uniform K -stability constant for the pair (X , ω0).
Therefore, the set of solution times is closed in [0, 1] for |γ | satisfying (2.12).

On the other hand, in order to obtain openness, as well as an effective estimate for
the coupling constant, we will make the ansatz on the B-field

Bt = ε(ωt + δηt ) (2.13)

for fixed ε, δ > 0, to be determined, and suitable closed ηt ∈ A1,1(X ,R) in the
fixed cohomology class [η0]. By (2.2), this is compatible with our assumptions on the
topological angle sin(θ̂), cos(θ̂) > 0, provided ε, δ > 0 are sufficiently small. With
this ansatz, for fixed δ and to leading order in ε, our Eq. (2.11) reduce to

{
�ωtηt = 0

s(ωt ) = c,

which are solved by choosing ωt = ω0, ηt = η0, where η0 denotes the ω0-harmonic
representative of [η0]. Note that we have the uniform estimate for the trace term
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appearing in (2.11),

0 ≤ t
�ωt Bt

sin(θ̂)
<

1

cos(θ̂)
< 2

for all sufficiently small ε, δ.
Now fix ε > 0. Then, the general results of Sect. 5, combined with our uniform

estimates along the path, show that the set of solution times is also open in [0, 1], for
all sufficiently small ε, δ, provided the real coupling constant satisfies

|γ | < ŝ λ

2(1− λ)ε
−1 < ŝ λ

(1− λ)((cos θ̂ )−1 − (sin(θ̂))−1 inf ξt )
,

and the semipositivity condition Bt ≥ 0 is open. Note that, by construction, we have

ξt = ε(z + O(δ)),

uniformly in t (recall the slope z is given by (1.9)), and so by (2.2), for any fixed ε > 0
we have

(cos θ̂ )−1 − (sin(θ̂))−1 inf ξt = (cos θ̂ )−1 − ε(z + O(δ))(sin(θ̂))−1 < ε

for all sufficiently small ε, δ.
As for the condition Bt ≥ 0, we note that the equation �ωtηt = 0, together with

our uniform control on ωt (which only requires semipositivity of Bt ), yields uniform
estimates of all orders on ηt , which are independent of sufficiently small ε, δ, so
choosing δ sufficiently small the form Bt = ε(ωt + δηt ) actually remains strictly
positive for all t ∈ [0, 1].

This completes the proof of Theorem 1.11 in the case of surfaces. Corollary 1.12
follows from the discussion in Sect. 1.4 and the fact that in the argument above we
may choose δ independently of (sufficiently smal) ε.

3 Threefolds

In this Section we complete the proofs of Theorem 1.11 and Corollary 1.12 for three-
folds, and we prove Theorem 1.15.

3.1 Continuity method

Suppose (X , [ω]) is a compact, polarised Kähler threefold, which is uniformly K -
stable with constant λ. Similarly to (2.2), the topological angle is determined by

(cos(θ̂), sin(θ̂)) = v

||v|| ,
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with ⎧⎪⎪⎨
⎪⎪⎩
v1 =

∫
X
ω3 − 3B2 ∧ ω,

v2 =
∫
X
3B ∧ ω2 − B3.

(3.1)

The analogue of (2.3) is the identity

cos(θ̂) Im e− i θ̂ (ω + i B)3

ω3 + sin(θ̂)Re e− i θ̂ (ω + i B)3

ω3 = �ωB − B3

ω3 .

Therefore, we can write our complex equation (1.2) on a threefold in the form

⎧⎪⎨
⎪⎩
Im e− i θ̂ (ω + i B)3 = 0

s(ω)− |γ |
sin(θ̂)

(
�ωB − B3

ω3

)
= ξ

sin(θ̂)
.

Similarly to (2.11), we consider the continuity path

⎧⎪⎨
⎪⎩
Im e− i θ̂ (ωt + i Bt )

3 = 0

s(ωt )− t |γ |
sin(θ̂)

(
�ωt Bt − B3

t

ω3
t

)
= ŝ − t |γ |

sin(θ̂)
ξt , t ∈ [0, 1],

(3.2)

for ωt ∈ [ω], Bt ∈ [B]. For t = 0, the equations decouple to

{
Im e− i θ̂ (ω0 + i B0)

3 = 0

s(ω0) = ŝ.

We need an analogue of the elementary a priori bound (2.10). By direct computation,
we may write the dHYM equation appearing in (3.2) explicitly as

− B3

ω3 cos(θ̂)+�ωB cos(θ̂)+ 3
B2 ∧ ω
ω3 sin(θ̂) = sin(θ̂),

that is,

�ωB − B3

ω3 =
(
1− 3

B2 ∧ ω
ω3

)
tan(θ̂), (3.3)

or, in terms of the eigenvalues λi of the endomorphism ω−1B, as

∑
i

λi −
∏
i

λi =
⎛
⎝1−

∑
i< j

λiλ j

⎞
⎠ tan(θ̂).

Suppose now, as in the case of surfaces, that we have

tan(θ̂) > 0; Bt ≥ 0 ⇐⇒ λi (t) ≥ 0, t ∈ [0, 1],
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and moreover that we have ∑
i< j

λi (0)λ j (0) < 1 (3.4)

at the initial point t = 0 of the continuity path (3.2). Then, we claim the uniform
bound

0 ≤ �ωt Bt − B3
t

ω3
t
< tan(θ̂), t ∈ [0, 1] (3.5)

along the continuity path. For otherwise, by contradiction, using the dHYM equation
(3.3) and our assumptions above, we have

∑
i< j

λi (t̄)λ j (t̄) = 1

and ∑
i

λi (t̄) =
∏
i

λi (t̄)

for some t̄ ∈ (0, 1]. So necessarily λi (t̄) > 0 for all i , from which

∑
i< j λi (t̄)λ j (t̄)∏

i λi (t̄)
= 1∏

i λi (t̄)
= 1∑

i λi (t̄)
,

that is, (∑
i

λ−1i (t̄)

)−1
= 3

∑
i λi (t̄)

3
≥ 3

(∑
i λ
−1
i (t̄)

3

)−1
,

by the inequality between the arithmetic and harmonic means, a contradiction.
Arguing as in Sect. 2.3, using the results of Sect. 4, we see that, with our current

assumptions, the set of solution times for (2.11) is closed in [0, 1] for the range of the
coupling constant

|γ | < ŝ λ

(1− λ)((cos θ̂ )−1 − (sin(θ̂))−1 inf ξt )
.

To obtain openness and effective estimates on |γ |, we consider again the ansatz (2.13),
namely

Bt = ε(ωt + δηt )
for fixed ε, δ > 0, to be determined, and [ηt ] = [η0] ∈ H1,1(X ,R). In this case, by
construction, we have

ξt = ε(r̂ + O(δ)),

uniformly in t , where

r̂ =
∫
X 3B ∧ ω2 − B3∫

X ω
3

,



Special representatives of complexified… Page 25 of 45    64 

and by (3.1), for any fixed ε > 0 we have

(cos θ̂ )−1 − (sin(θ̂))−1 inf ξt = (cos θ̂ )−1 − ε(r̂ + O(δ))(sin(θ̂))−1 < ε

for all sufficiently small ε, δ.
Note that the limit δ = 0 corresponds to the trivial dHYM solution

Im e− i θ̂ε (ωt + i εωt )
3 = 0,

valid for all ε > 0. The leading term in the expansion around ε = 0, corresponding to
the large volume limit, is the Laplace equation �ωtηt = 0.

The perturbation theory for dHYM solutions around the large volume limit has
been studied in much greater generality (for all ranks) in [18]. In our particular case,
the results of [18, Section 4.1] show that, for fixed background Kähler form ωt and δ,
the equation

Im e− i θ̂ε (ωt + i ε(ωt + δηt ))3 = 0

is solvable with respect to ηt , with uniform estimates with respect to ωt , for all suf-
ficiently small ε. In particular, the initial bound (3.4) can be achieved. Then, the
estimates on ωt obtained in Sect. 4, using the scalar curvature equation

s(ωt )− t |γ |
sin(θ̂)

(
�ωt Bt − B3

t

ω3
t

)
= ξt

and the uniform bound

0 ≤ 1

sin(θ̂)

(
�ωt Bt − B3

t

ω3
t

)
<

1

cos(θ̂)
< 2, t ∈ [0, 1],

for all sufficiently small ε, δ (which follows at once from (3.1) and (3.5)), show that
the estimates on ηt are in fact uniform with respect to t . These are valid for the range
of the coupling constant

|γ | < ŝ λ

(1− λ)ε
−1 < ŝ λ

(1− λ)((cos θ̂ )−1 − (sin(θ̂))−1 inf ξt )

for fixed ε > 0 and all sufficiently small ε, δ. The argument in Sect. 2.3 then shows
that the set of solution times is open and closed in [0, 1].

3.2 An unstable polarised threefold

For Theorem 1.15, we consider the toric Fano Kähler-Einstein threefold

X = P(O ⊕O(1,−1))→ P
1 × P

1.
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The large volume limit of our Eq. (1.1), i.e., the Kähler-Yang-Mills system (1.12) on
X , was studied in detail by Keller and Tønnesen-Friedman in [35, Section 3].

They consider Calabi ansatz metrics on X with respect to the product of Fubini-
Study metrics on the base P

1 × P
1,

ω = 1

x1
ω1 + 1

x2
ω2 + i ∂∂̄ f (s), −1 < xi < 1. (3.6)

The boundary conditions on f (s) are chosen so that the cohomology class of ω is
given by

[ω] = 1

x1
[ω1] + 1

x2
[ω2] + [E0 + E∞],

where E0, E∞ denote the zero and infinity sections of the ruling. The Calabi ansatz
provides an explicit traceless form α, with respect to ω, and one looks for Kähler-
Yang-Mills pairs of the form (ω, γa,b), where

γa,b = aω + bα,

i.e. solutions of
s(ω)+ γ̂ �2

ω(γa,b ∧ γa,b) = c̃. (3.7)

Note that the cohomology class of γa,b can be computed explicitly as

[γa,b] =
(

a

x1
+ b(1+ x1x2)(

1− x21
) (
1− x22

)
)
ω1 +

(
a

x2
+ b (1+ x1x2)(

1− x21
) (
1− x22

)
)
ω2

+
(
a − b (1+ x1x2)(

1− x21
) (
1− x22

)
)
[E0 + E∞].

Here the unknown is of course themetricω and so the convex function f (s), satisfying
the Calabi boundary conditions. By standard theory, the scalar curvature equation for
f (s) can be transformed into a second order, linear ODE for the momentum profile
φ(τ), as a positive real function defined on (−1, 1), with overdetermined boundary
conditions.

Keller and Tønnesen-Friedman prove, in amore general context, that the the bound-
ary conditions can be expressed as a (nonhomogeneous) linear system in the variables

κ1 = 12a2γ̂ − c̃, κ2 = 4b2γ̂ ,

with coefficients and datum given by explicit rational functions of x1, x2. They observe
that, for x1 �= −x2, this linear system admits a unique solution (κ1, κ2), given by
rational functions of x1, x2, and prove that for the specific choice

x1 = 1

2
, x2 = −3

4
,
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we have
κ2 > 0⇒ γ̂ > 0, φ(τ ) > 0 on (−1, 1).

Moreover, all Kähler class with x1 = 1
2 , x2 ∈ (−1, 1)\{− 1

2 } do not admit cscK
metrics.

Following [42, Sections 3, 4], this analysis can be generalised from (3.7) to the Eq.
(1.1). However, we will only do this here nearby the large volume limit (as in [42,
Section 7]). Namely, we consider the Calabi ansatz

Bε = ε
(
γa,b + i ∂∂̄g(s)

)
.

The dHYM equation for B becomes a second order linear ODE for the function g(s),
vanishing at s = 0, s = ∞. This is uniquely solvable for all sufficiently small ε, and
the scalar curvature equation for the Calabi ansatz Kähler metric (3.6),

s(ω)− |γ |Re e− i θ̂ (ω + i Bε)n

ωn
= c

becomes a second order linear ODE for the momentum profile φε(τ ) as a positive real
function on (−1, 1), such that

φε(τ ) = φ(τ)+ εψε(τ )

satisfying overdetermined boundary conditions,whereψε(τ) is continuous on [−1, 1].
Thus, for all sufficiently small ε, we find a positive solutionψε(τ), with Kähler param-
eters

x1 = 1

2
, x2 = −3

4
+ O(ε).

In particular, the corresponding Kähler class does not admit a cscK metric.

4 Toric estimates

In this Section, we focus on obtaining a priori estimates for solutions ωC = iω + B
of (1.2), under the assumption that ω and B are invariant under the action of an n-
dimensional torus (C∗)n ⊂ Aut(X). These estimates were a crucial ingredient in our
proofs of Theorem 1.11 and Corollary 1.12, but may be useful in a more general
context.

We fix a background symplectic form ω0 ∈ [ω] such that the action of the compact
torus T

n
� (X , ω0) is Hamiltonian. The image of the moment map is a convex

polytope P ⊂ R
n , and any torus-invariant tensor on X can be described in terms

of functions on P . For example, the metric tensor defined by any torus-invariant
ω ∈ α corresponds to the Hessian of a convex function u ∈ C∞(P◦) ∩ C(P̄) with
prescribed boundary behaviour. This convex function is the symplectic potential of ω:
it is determined via Legendre duality from a (normalized) local Kähler potential for
ω on the open set U ⊂ X where the T

n-action is free. We denote by S(P) the set of
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all symplectic potentials on P , each of which corresponds to a torus-invariant Kähler
metric on X .

Denoting by y = (y1, . . . , yn) the usual real coordinates on P , we can rewrite the
real scalar curvature equation appearing in (1.2) on the momentum polytope P as

−ui j,i j ( y) = A0 + α
(
rω(B)− Ã

)
( y)

where we set
A0 = 4ŝ, α = 4|γ |,

u ∈ C(P) is the symplectic potential of ω, the radius function is given by

rω(B) =
∣∣∣∣∣
(ωC)n

ωn

∣∣∣∣∣ ,

with (topological) average r̂ , and Ã denotes a fixed affine linear function on P , depend-
ing only the cohomology classes [ω], [B], given by the dual of the linear function
F[ωC],|γ |.

As we are assuming that the classical Futaki character of (X , [ω]) vanishes, we
have

A0 = vol(P, dμ)/vol(∂P, dσ),

see Definition 4.1 and Remark 4.2. In what follows, it will be convenient to set

A(ω)( y) := A0 + α
(
rω(B(ω))− Ã

)
( y)

and to write the scalar curvature equation in the form

− ui j,i j = A(ω). (4.1)

Notice that A(ω) ∈ L∞(P), as rω(B(ω)) is a continuous function on X .
The crucial tool for the study of prescribed curvature equations on P is uniform

(toric) K -stability. Its definition uses a measure dσ on ∂P , given explicitly in [22],
which is a constant multiple of the Lebesgue measure dμ on each facet of P .

Definition 4.1 For a chosen point p0 ∈ P◦, we let C∞(P) be the set of normalized
convex functions, that is convex functions f ∈ C(P) ∩ C∞(P◦) such that f (p0) =
d f (p0) = 0. For a function A ∈ L∞(P), consider the functional

LA( f ) :=
∫
∂P

f dσ −
∫
P
A f dμ.

The pair (P, A) is uniformly K -stable if there exists a positive constant λ such that

LA( f ) > λ
∫
∂P

f dσ (4.2)
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for all f ∈ C∞(P), and LA( f ) = 0 for affine-linear functions. The polytope P is
called uniformly K -stable if (P, A0) is, for A0 = vol(P, dμ)/vol(∂P, dσ).

Remark 4.2 The functional LA0 is closely related to the Futaki character of the Kähler
class [ω]: an affine linear function f on the polytope corresponds to the holomorphy
potential for a torus-invariant holomorphic vector field V f on X , and F�(V f ) =
LA0( f ).

It is known that uniform K -stability implies the existence of solutions to the cscK
equation on the toric manifold. For the case of surfaces this was explained in a series
of papers by Donaldson, culminating in [24], while the general case is a consequence
of [9, 31], see also [3] for a detailed account of this result. Moreover, it is known
that (P, A)-uniform stability implies a priori estimates for solutions of the prescribed
scalar curvature equation (also called Abreu’s equation)

−ui j,i j = A.

The main technical tool to establish these estimates is [8, Theorem 1.2], where it
is shown that the norm of any solution to the prescribed scalar curvature equation
on a compact Kähler manifold can be estimated in terms of the entropy func-
tional

∫
log ω

n

ωn0
ωn and a C0-bound on the target function. In the toric setting, it is

possible to obtain bounds on the entropy from uniform K -stability, see [37, Theo-
rem 4.3]. In our case the situation is slightly complicated from the fact that in (4.1)
both sides of the equation dependonω. Under some simplifying assumptions, however,
the proof of [37, Theorem 4.3] gives the required result also in our case. We reproduce
the proof for the reader’s convenience and in order to emphasise the dependence on
sup|A(ω)|.
Proposition 4.3 (Li-Lian-Sheng [37]) Assume that ω ∈ [ω0] is a torus-invariant solu-
tion of (4.1), and that (P, A(ω)) is λ-uniformly K -stable, with λ possibly depending
on ω. Then the entropy ∫

M
log
ωn

ωn
0
ωn

can be estimated in terms of λ, sup|A(ω)|, and ω0.
Proof Recall that the K -energy functional can be decomposed as

M(ω) =
∫
M
log

(
ωn

ωn
0

)
ωn

n! + J−Ric(ω0)(ω).

On a toric manifold, it was shown in [22] that the K -energy on torus-invariant metrics
can be written in terms of the corresponding symplectic potential on P as follows:
define for every A ∈ L∞(P), f ∈ C∞(P) and symplectic potential v

FA0(v) = −
∫
P
log det(D2v) dμ+ LA0(u).
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Then, the K -energy is
M(ω) = (2π)nFA0(u)

where u is the symplectic potential on P corresponding to ω. These identities show
that we can bound the entropy if we have estimates forJ−Ric(ω0)(ω) andFA0(u). To do
so, we will first give an estimate forFA(ω)(u). We will then relateFA0(u) toFA(ω)(u).
The inequalities involved will also allow us to give an estimate for J−Ric(ω0)(ω).

Let u0 be the (normalized) symplectic potential corresponding to ω0. As u solves
Eq. (4.1), u is a minimizer of FA(ω) on the set on normalized potentials by [22,
Proposition 3.3.4], and uniform K -stability of (P, A(ω)) gives

FA(ω)(u) ≤ FA(ω)(u0) ≤ C(ω0, λ).

The proof of [22, Proposition 5.1.2] shows that FA(ω) can also be bounded below in
terms of λ, sup|A(ω)− A0| and ω0.

From the bound
∣∣FA(ω)(u)

∣∣ < C(ω0, λ, sup|A(ω)|) we can obtain a similar esti-
mate forFA0(u), butwefirst need somepreliminary inequalities.By [22,Lemma5.1.3]
there is a constant C such that, for any normalized symplectic potential v,

∫
P
v dμ ≤ C

∫
∂P
v dσ. (4.3)

As u satisfies Abreu’s Eq. (4.1), [23, Corollary 2] shows

∫
∂P

u dσ ≤ n

λ
. (4.4)

Then we can estimate FA0(u) combining (4.3) and (4.4)

∣∣FA0(u)
∣∣ =∣∣FA0(u)− FA(ω)(u)+ FA(ω)(u)

∣∣ ≤ ∣∣LA0(u)− LA(ω)(u)
∣∣+ ∣∣FA(ω)(u)

∣∣
≤ sup|A(ω)− A0|

∫
P
u dμ+ ∣∣FA(ω)(u)

∣∣ ≤ C(ω0, λ, sup|A(ω)|).

It remains to show that J−Ric(ω0)(ω) can also be bounded by ω0, λ, and sup|A(ω)|.
The J -functional can be estimated in terms of the d1-distance on Kähler potentials,
see for example [9, Lemma 4.4]. Letting ω = ω0 + i∂∂̄ϕ for a potential ϕ then we
can write ∣∣J−Ric(ω0)(ω)

∣∣ ≤ C(ω0) d1(0, ϕ)

for a constant depending only on the background metric. On the other hand, the d1-
distance has a particularly simple expression in the toric setting, as geodesics in the
space of torus-invariant Kähler potentials on X correspond to line segments in S(P)
under the Legendre transform. Recall that symplectic potentials corresponding to ω0
and ω are u0 and u, respectively. Then we have

d1(0, ϕ) =
(π
2

)n ∫
P
|u0 − u|dμ
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so we can estimate J by

∣∣J−Ric(ω0)(ω)
∣∣ ≤ C(ω0)

∫
P
|u0 − u|dμ ≤ C(ω0, λ)

using (4.3) and (4.4). Together with the estimate onFA0(u), this shows that the entropy
functional is bounded in terms of sup|A(ω)|, λ, and the background metric. �

Lemma 4.4 Assume that P is λ-uniformly K -stable, and that there exists a constant
R > 0 such that, for every ω ∈ [ω0] and a solution B(ω) of the dHYM equation, we
have

rω(B(ω)) < R. (4.5)

If α satisfies

α <
A0 λ

4(1− λ)(R − inf Ã)

then (P, A(ω)) is λ′-uniformly K -stable, where λ′ depends only on λ, α and R.

Remark 4.5 If we allowed α < 0, the same conclusion would hold without assuming
the bound (4.5) on the radius.

Proof of Lemma 4.4 Let f be a normalized convex function on the polytope. As P
is λ-uniformly K -stable, we have

∫
∂P

f dσ −
∫
P
A(ω) f dμ =

∫
∂P

f dσ −
∫
P
A0 f dμ

− 4α
∫
P

(
rω(B(ω))− Ã

)
f dμ >

> λ

∫
∂P

f dσ − 4α
∫
P

(
rω(B(ω))− Ã

)
f dμ.

Notice that λ < 1, as A0 > 0 and any normalized function is nonnegative. Using
(4.5), α > 0, this implies

∫
∂P

f dσ −
∫
P
A(ω) f dμ >λ

∫
∂P

f dσ − 4
α(R − inf Ã)

A0

∫
P
A0 f dμ.

We can use again the λ-uniform K -stability of P to finally obtain

∫
∂P

f dσ −
∫
P
A(ω) f dμ >λ

∫
∂P

f dσ + 4
α(R − inf Ã)

A0
(λ− 1)

∫
∂P

f dσ

so that to deduce (P, A(ω))-uniform K -stability it will be sufficient that

λ′ = λ+ 4
α(R − inf Ã)

A0
(λ− 1) > 0.

�
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5 Openness

This Section proves the openness result for the cscK equationwith B-field (1.1), which
is used in the proofs of Theorem 1.11 and Corollary 1.12.

We need to consider the linearisation of (1.2), in the toric case, assuming that
the classical Futaki character Fω vanishes. Let us denote by � the set of Kähler
forms in the fixed cohomology class [ω]. It will be useful to introduce the operator
Q : �→ A2n(X) given by

Q(ω) = (s(ω)− ξ) ωn − |γ | Re
(
e−iϑ̂ (ω + iB(ω))n

)

where as usual B(ω) is the unique solution of the dHYM equation, which is well
defined in our case, so that the real part of (1.2) is equivalent to Q(ω) = 0. The
constant ϑ̂ and function ξ are such that Q(ω) integrates to zero on X ; we denote by
A2n

0 (X) the set of such top-degree forms. Note that ϑ̂ and c depend only on the classes
[B] and [ω], and on the coupling constant |γ |.

For ε > 0, we consider the rescaled system of equations, to be solved for B and ω
in fixed cohomology classes,

⎧⎪⎨
⎪⎩
1

ε
Im

(
e−iϑ̂ε (ω + i εB)n

)
= 0

(s(ω)− ξε) ωn − |γ | Re
(
e−iϑ̂ε (ω + i εB)n

)
= 0.

(5.1)

For our applications, we are interested in the behaviour of (5.1) for ε � 1. By [41,
Section 2.7], we can write (5.1) in the form

{
(�ωB − z) ωn + O(ε) = 0(
s(ω)− ŝ

)
ωn + O(ε) = 0.

(5.2)

If we let Bε(ω) be the solution to the rescaled dHYMequation Im
(
e−iϑ̂ε (ω + i εB)n

)
= 0 then Bε(ω) converges, for ε→ 0, to the solution of�ωB = z. So, if we consider
the operator

Qε(ω) = (s(ω)− ξε) ωn − |γ |Re
(
e−iϑ̂ (ω + i εBε(ω))

n
)

the asymptotic expansion gives Qε(ω)− Q0(ω) = O(ε), for

Q0(ω) =
(
s(ω)− ŝ

)
ωn .

Let us specialise to the toric case. By a slight abuse of notation, we still denote by Qε,
Q0 the functionals defined on S(P) by u �→ Qε(ω(u)). Consider in particular the
differential of Q0,

(DQ0)u : TuS(P) = C∞(P)→ A2n
0 (X).
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Any u ∈ S(P) defines a Kähler form ω(u), we can use u to normalize functions on X ,
thus identifying A2n

0 (X) with C∞0 (X). Notice that this normalization is equivalent to
identifying A2n

0 (X) with the space C∞0 (P) of smooth functions on P with vanishing
integral with respect to the Lebesgue measure.

We recall a simple feature of the linearization of Abreu’s equation, a consequence
of the integration by parts formula in [22, Lemma 3.3.5].

Lemma 5.1 Assume that the Futaki invariant of P vanishes. Then the linearization of
Q0 around any u ∈ S(P) is surjective on the space Aff(P)⊥ of smooth functions on
P that are L2-orthogonal to affine-linear functions.

As being surjective is an open property for bounded operators on Banach spaces,
we can deduce openness along the continuity paths (2.11), (3.2).

Proposition 5.2 Consider the family of operators Qε,t : S(P)→ C∞(P) correspond-
ing to the continuity paths (2.3), (3.2). Then, for ε � 1, the set of t ∈ [0, 1] for which
there exists solutions of the equation Qε,t (u) = 0 is open.

Proof Fix t̄ ∈ [0, 1] for which Qε,t̄ (u) = 0 is solvable. We claim that for sufficiently
small ε, uniformly in t̄ , the map

(
DQε,t̄

)
ωt̄
: C∞(P)→ Aff(P)⊥

is surjective. The following version of the Implicit Function Theorem (IFT) will then
guarantee that, for t close enough to t̄ , the equation Qε,t = 0 is solvable.

Theorem 5.3 (Implicit Function Theorem) Let F : X × Y → Z be a smooth map
between Banach spaces. Let (x, y) ∈ X × Y be a point such that F(x, y) = 0 and
DY Fx,y : TY → T Z is surjective. Then there are neighbourhoods U of x and V of
y such that for every x ′ ∈ U there exists y′ ∈ V such that F(x ′, y′) = 0.

This can be obtained from the usual Inverse Function Theorem for Banach space
surjections applied to the operator F̂(x, y) := (x, F(x, y)). To apply the IFT we
should first extend the domain of Qε,t to a Banach space; we can assume that our
operators are defined for 2-forms B and symplectic potentials u with Ck,α regularity,
for some k ≥ 2, 0 < α < 1. The IFT will just guarantee the existence of solutions
with Ck,α regularity, but the regularity theory for elliptic equations tells us that a
Ck,α-solution will actually be smooth.

As for the claim, recall we have

Qε,t = −ui j,i j − ŝ + O(ε), DQε,t = DQ0,t + O(ε).

Lemma 5.1 tells us that the differential of Q0,t at the point u0 ∈ S(P) is surjective
on Aff(P)⊥. In particular, DQ0,t has a right inverse, and so DQε,t will also have a
right inverse, if

∥∥DQε,t − DQ0,t
∥∥ is small enough, depending on the norm of a right

inverse for DQ0,t . As DQε,t − DQ0,t = O(ε), the operator DQε,t will have a right
inverse for small enough ε. Finally, by our estimates in Sects. 2, 3, ε can be chosen
uniformly with respect to t̄ . �
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6 Amomentmap for general B-field classes

In this Section we explain and prove our moment map interpretation for (1.1) in the
case of non-Hodge B-field classes, Theorem 1.4.While the general setup is close to [1,
14, 41], the details in this general case are rather technical.

We start by recalling the interpretation of the dHYM equation as a moment map
form [14]. We slightly generalize the construction, in order to avoid assuming that [β]
is a Hodge class.

Consider the space A := A1(X ,R), and for a fixed 2-form β define a map F :
A→ [β] by F(y) = β + dy. We can define a (closed) 2-form on A by

�y(α1, α2) = −n
∫
X
α1 ∧ α2 ∧ Re

(
e− i ϑ̂ (ω + i F(y))n−1

)
.

At least formally, in a neighbourhood of a solution y0 ∈ A of dHYM the 2-form � is
nondegenerate (see [14, 18]).

Lemma 6.1 The (commutative) Lie algebra g := C∞(X ,R) acts on A by

ϕ̂y := dϕ ∈ TyA

and the action is Hamiltonian, with equivariant moment map

μ(y) = Im
(
e− i ϑ̂ (ω + i F(y))n

)

where we are using the natural pairing between C∞(X ,R) and 2n-forms to identify
the moment map with a top-degree form.

The proof is essentially the same as in [14, Section 2.1].

6.1 Extending themomentmap

Let now h ⊂ �(X , T X) be the Lie algebra of Hamiltonian vector fields on X , with
respect to the background symplectic form ω. We consider the Lie algebra extension

0 g g̃ := g× h h 0ι p
(6.1)

where on g̃ we consider the bracket

[
( f1, V1), ( f2, V2)

]
:=

(
V1( f2)− V2( f1)− β(V1, V2), [V1, V2]

)
. (6.2)

Lemma 6.2 Equation (6.2) defines a Lie bracket on g̃.
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Proof The only nontrivial property to check is the Jacobi identity. Let ζi = ( fi , Vi ) ∈
g̃, for i = 1, 2, 3. As the bracket in the second component of g̃ is just the bracket on
vector fields, it will be enough to prove that

π1
([
ζ1, [ζ2, ζ3]

]+ [
ζ2, [ζ3, ζ1]

]+ [
ζ3, [ζ1, ζ2]

]) = 0

where π1 : g̃→ g is the projection on the first component. The first term is

π1
([
ζ1, [ζ2, ζ3]

]) = V1 (V2( f3))− V1 (V3( f2))− V1 (β(V2, V3))− [V2, V3]( f1)
− β(V1, [V2, V3]).

Performing cyclic permutations and using the six-terms formula for the derivative of
a 2-form, one finds

π1
([
ζ1, [ζ2, ζ3]

]+ [
ζ2, [ζ3, ζ1]

]+ [
ζ3, [ζ1, ζ2]

]) = −dβ(V1, V2, V3) = 0

as β is closed by assumption. �

For each y ∈ A we define a splitting of (6.1) (as a sequence of vector spaces) ϑy :

g̃→ g, by setting ϑy( f , V ) := f + y(V ). We define an infinitesimal action of g̃ onA
as

ζ̂y := ϑ̂y(ζ )y + p(ζ )�F(y). (6.3)

Lemma 6.3 The correspondence (6.3) defines a Lie algebra action on A.

Proof We need to check that for ζ1, ζ2 ∈ g̃ and y ∈ A we have [̂ζ1, ζ2] = −[ζ̂1, ζ̂2].
Letting ζ1 = ( f1, V1) and ζ2 = ( f2, V2), we find

[̂ζ1, ζ2]y = d
(
V1( f2)− V2( f1)− β(V1, V2)

)+ [V1, V2]�β + L[V1,V2]y. (6.4)

On the other hand, for i = 1, 2

ζ̂i y = d fi + d(y(Vi ))+ Vi�(β + dy) = d fi + Vi�β + LVi y.

So we can compute the commutator as

[
ζ̂1, ζ̂2

]
y
= d (V2( f1)− V1( f2))+ L[V2,V1]y + LV2 (V1�β)− LV1 (V2�β) . (6.5)

Using Cartan’s formula, as the Lie derivative commutes with contraction we obtain

LV2 (V1�β)− LV1 (V2�β) = V2�d (V1�β)+ d (V2�V1�β)− LV1 (V2�β)
= d (β(V1, V2))− [V1, V2]�β. (6.6)

Putting (6.5) and (6.6) together, we obtain precisely the opposite of (6.4). �
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The general results of [1] give a sufficient condition for the action defined by (6.3)
to be Hamiltonian, with respect to the symplectic form �. To state the condition, for
any y ∈ A define ϑ⊥y : h→ g̃ by the equation

1g̃ = ι ◦ ϑy + ϑ⊥y ◦ p.

Proposition 6.4 (cf.[1], Proposition 1.3) The action of g̃ on A is Hamiltonian if and
only if there is a map σ : A→ h∗ such that for all V ∈ h

ϑ̂⊥V �� = 〈μ, (dϑ) (V )〉 + d〈σ, V 〉. (6.7)

In this case, a moment map is given by 〈μ̃, �〉 = 〈μ, ϑ(�)〉 + 〈σ, p(�)〉.
We can use this result to produce a moment map for the action of g̃.

Proposition 6.5 In our situation, the map σ defined by

〈σ(y), Xωϕ 〉 :=
∫
X
ϕ Re

(
e− i ϑ̂ (ω + i F(y))n

)

satisfies (6.7). The corresponding moment map is g̃-equivariant, i.e. for any ζ1, ζ2 ∈ g̃

〈μ̃, [ζ1, ζ2]〉 = �(ζ̂1, ζ̂2). (6.8)

Checking that σ satisfies (6.7) is completely analogous to the proof of Theorem 2
in [41]. It is necessary instead to check the equivariance claim.

Proof The expression on the left hand side of (6.8) is

〈μ̃, [ζ1, ζ2]〉 = 〈μ, ϑ([ζ1, ζ2])〉 + 〈σ, p([ζ1, ζ2])〉.

Writing ζi = ( fi , Vi ), for y ∈ A we have

ϑ([ζ1, ζ2]) = V1( f2)− V2( f1)− β(V1, V2)+ y([V1, V2]),
p([ζ1, ζ2]) = [V1, V2].

Recall that the Hamiltonian potential of [V1, V2] is ω(V2, V1). Then,

〈μ(y), ϑ([ζ1, ζ2])〉 =
∫
(V1( f2)− V2( f1)− β(V1, V2)+ y([V1, V2]))

Im
(
e− i ϑ̂ (ω + i F(y))n

)
,

〈σ, p([ζ1, ζ2])〉 =
∫
ω(V2, V1)Re

(
e− i ϑ̂ (ω + i F(y))n

)
. (6.9)
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For �(ζ̂1, ζ̂2) instead we have, since Re
(
e− i ϑ̂ (ω + i F(y))n−1

)
is closed,

�(ζ̂1, ζ̂2) =− n
∫

d ( f1 + y(V1)) ∧ (V2�F(y)) ∧ Re
(
e− i ϑ̂ (ω + i F(y))n−1

)

− n
∫
(V1�F(y)) ∧ d ( f2 + y(V2)) ∧ Re

(
e− i ϑ̂ (ω + i F(y))n−1

)

− n
∫
(V1�F(y)) ∧ (V2�F(y)) ∧ Re

(
e− i ϑ̂ (ω + i F(y))n−1

)
.

(6.10)

Now, d ( f1 + y(V1))∧ Im
(
e− i ϑ̂ (ω + i F(y))n

)
= 0. Contracting with V2 and inte-

grating we obtain

−
∫

V2 ( f1 + y(V1)) Im
(
e− i ϑ̂ (ω + i F(y))n

)

= −n
∫

d ( f1 + y(V1)) ∧ (V2�F(y)) ∧ Re
(
e− i ϑ̂ (ω + i F(y))n−1

)
.

So that (6.10) can be rewritten as

�(ζ̂1, ζ̂2) =
∫ (

V1( f2)− V2( f1)+ V1(y(V2))

− V2(y(V1))
)
Im

(
e− i ϑ̂ (ω + i F(y))n

)

− n
∫
(V1�F(y)) ∧ (V2�F(y)) ∧ $

(
e− i ϑ̂ (ω + i F(y))n−1

)
.

Compare this with (6.9) to obtain

〈μ(y), ϑ([ζ1, ζ2])〉 −�(ζ̂1, ζ̂2) = −
∫

F(y)(V1, V2) Im
(
e− i ϑ̂ (ω + i F(y))n

)
+

+ n
∫
(V1�F(y)) ∧ (V2�F(y))

∧ Re
(
e− i ϑ̂ (ω + i F(y))n−1

)
.

Contracting with V2 the form (V1�F(y)) ∧ Im
(
e− i ϑ̂ (ω + i F(y))n

)
= 0, we find

F(y)(V1, V2) Im
(
e− i ϑ̂ (ω + i F(y))n

)
− n(V1�F(y)) ∧ (V2�ω)

∧ Im
(
e− i ϑ̂ (ω + i F(y))n−1

)
− n(V1�F(y)) ∧ (V2�F(y))

∧ Re
(
e− i ϑ̂ (ω + i F(y))n−1

)
= 0.
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Similarly, we have

ω(V2, V1) Re
(
e− i ϑ̂ (ω + i F(y))n

)
− n(V2�ω) ∧ (V1�ω)

∧ $
(
e− i ϑ̂ (ω + i F(y))n−1

)

+ n(V2�ω) ∧ (V1�F(y)) ∧ Im
(
e− i ϑ̂ (ω + i F(y))n−1

)
= 0

from which we finally obtain

〈μ(y), ϑ([ζ1, ζ2])〉 −�(ζ̂1, ζ̂2) =−
∫
ω(V2, V1) Re

(
e− i ϑ̂ (ω + i F(y))n

)

which is the same as 〈μ(y), ϑ([ζ1, ζ2])〉 −�(ζ̂1, ζ̂2) = −〈σ, p([ζ1, ζ2])〉. �

We can couple μ̃ to a second Hamiltonian action, as in [41]. The algebra h acts

in a Hamiltonian fashion on the space J of complex structures compatible with ω,
so we can consider the induced diagonal action of g̃ on A × J , obtaining a moment
map µ : A×J → g̃∗. Corresponding to the decomposition of g̃ as a sum of g and h,
the equation µ(y, J ) = 0 decomposes as

⎧⎪⎨
⎪⎩
Im

(
e− i ϑ̂ (ω + i(β + dy))n

)
= 0

s(ω, J ) ωn − λ Re
(
e− i ϑ̂ (ω + i(β + dy))n

)
= cωn

(6.11)

where λ is an arbitrary coupling constant, coming from the definition of symplectic
form onA×J . The variables in (6.11) are the complex structure J and the 1-form y.

6.1.1 Integrability

We have shown that it is possible to interpret the system (1.6) as a moment map
equation for the (infinitesimal) action of the Lie algebra g̃ onA. This is quite different
from the theory of symplectic reductions, where one usually considers actions of Lie
groups. However, as the bracket of g̃ is “twisted” by β, it is not clear how (6.3) could
be realized as the action of a group of diffeomorphisms of X .

Still, it is possible to define what the orbits of the action of this group should be,
as the distribution D ⊂ TA defined by Dy :=

{
ψ̂y

∣∣ψ ∈ g̃
}
is integrable. We have

already seen that D is formally integrable in Lemma 6.3, but as A is an infinite-
dimensional manifold this might not be sufficient to conclude that there is a foliation
ofA integratingD. We can however exhibit an explicit parametrization for the leaves
of D; these leaves then play the role of the orbits of the action.

Lemma 6.6 The distribution D is integrable.

Proof For a fixed y ∈ A, we will exhibit a parametrization of the integral leaf of D
through y. We work under the simplifying assumption that H1(X) = 0.
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Let H be the group of Hamiltonian symplectomorphisms of (X , ω), and consider

Y :=
{
( , η) ∈ H×A1(X)

∣∣∣  ∗F(y)− β = dη
}
.

We claim that the integral leaf of D through y is the image of the map Q : Y → A
defined by Q( , η) :=  ∗y + η. As Lie(H) = h, the tangent space of Y at ( , η)
consist of pairs (V , η̇) ∈ h × A1(X) such that η̇ = V � ∗F(y) + d f for some
function f . The differential of Q then is

DQ( ,η)(V , η̇) = η̇ + ∂t=0
(
 ∗V ,t ∗y

) = d f + V � ∗F(y)+ LV ( 
∗y).

By definition  ∗F(y) = β + dη, so we obtain

DQ( ,η)(V , η̇) = d f + V �β + LV η − d(η(V ))+ LV ( 
∗y)

which is the infinitesimal action at Q( , η) of ( f − η(V ), V ) ∈ g̃. By choosing
different (V , η̇) ∈ T( ,η)H, we can check that the differential of Q is surjective
on D. �


6.1.2 Complexification

Wewould like to consider (6.11) as an equation forω and β in prescribed cohomology
classes, keeping the complex structure of X fixed. Following [27] (after [21]), we can
formalize this shift in perspective by considering system (6.11) along the complexified
orbit of a point (y, J ) ∈ A×J under the action g̃. The idea is that the h-complexified
orbit of J is parametrized by the Kähler class ofω (see [21]), while the g-complexified
orbit of y ∈ A parametrizes the (1, 1)-class of F(y).

To complexify the action g̃ � A × J we should however restrict attention to the
set P ⊂ A×J of pairs (y, J ) ∈ A×J such that F(y) is of type (1, 1) with respect
to J . There is an integrable complex structure J on P (see [1, Proposition 2.2]), given
by

Jy,J (k, A) := (−k ◦ J , J A) .
It is easy to check that the diagonal action of g̃ on A× J , i.e.

(̂ f , V )(y,J ) = (d f + LV y + V �β,LV J )

preserves P , and the action is holomorphic: for every ζ ∈ g̃, L
ζ̂
J = 0. It is then

possible to define on P an infinitesimal action of g̃C := g̃⊗R C, extending the action
of g̃. For any element ζ = ( f1, V1) + i( f2, V2) ∈ g̃C, with fi ∈ C∞(X) and Vi ∈ h,
we define its action as

ζ̂(y,J ) = ̂( f1, V1)(y,J ) + J(y,J ) ̂( f2, V2)(y,J )

=
(
d( f1 + y(V1))+ dc( f2 + y(V2))+ (V1 + JV2)�F(y),LV1+JV2 J

)
.
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Similarly to the action g̃ � A, also the action g̃C � P may not be lifted to a group
action. However, it is possible to integrate the distribution D̂ := D + JD. The leaves
of D̂ can then be considered to be the orbits for the action of g̃C on P . Following
the similar discussion in [1], we will show that the moment map equation along the
complexified orbit of (y, J ) ∈ P is equivalent to the following system of equations
for two functions ϕ,ψ ∈ C∞(X)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Im
(
e− i ϑ̂ (

ω + ddcJϕ + i(F(y)+ ddcJψ)
)n) = 0

s(ω + ddcJϕ)− λ
Re

(
e− i ϑ̂

(
ω + ddcJϕ + i(F(y)+ ddcJψ)

)n)

(ω + ddcJϕ)
n

= c.

(6.12)

Notice that in (6.12), the complex structure J and the 1-form y are fixed, so that (6.12)
is in fact a system of equations for a Kähler form and a 2-form belonging to the fixed
classes [ω] and [β] = [F(y)], respectively. In other words,
Proposition 6.7 Themoment map equation (6.11), along the orbit of (y, J ) ∈ P under
the complexified action g̃C � P , is equivalent to (1.1) for B = F(y).

Remark 6.8 The 1-form y plays essentially no role in the complexification of (6.11),
as the Dolbeault cohomology class of B = F(y) does not depend on y. The moment
map equations obtained for different choices of y are all equivalent (as long as the
complex structure is fixed). In particular, if β itself is a (1, 1)-form, equation (1.1) is
equivalent to the moment map equation along the complexified orbit of (0, J ) ∈ P
(for β = B).

Proof of Proposition 6.7 We start by exhibiting a parametrization of D̂, obtained by
modifying a construction in [21]. As in the proof of Lemma 6.6, we work under the
simplifying assumption H1(X) = 0. Let K (ω) denote the Kähler class of ω defined
by J , and consider the space

Ỹ =
{
( , ω̃, η) ∈ Diff0(X)× K (ω)×A1(X)

∣∣∣  ∗ω̃ = ω and  ∗F(y)− β = dη
}
.

We claim that the integral leaf of D̂ through (y, J ) ∈ P is given by the image of

Q : C∞(X)× Ỹ → A× J
( f , , ω̃, η) �→ (

dc ∗ J f + η, ∗ J
)
.

The definition of Ỹ guarantees that the image of Q lies in P . To prove that the image
of Q is an integral leaf of D̂, we show that the differential of Q is surjective on the
“purely imaginary” part of D̂, i.e. JD. This, together with the proof of Lemma 6.6, is
sufficient to show that the tangent space to ran(Q) is D̂.

Let ωt := ω − ddcJ tϕ be a Kähler form with respect to the complex structure J ,
and consider the time-dependent vector field Vt = J Xωtϕ . If  t is the isotopy of Vt ,



Special representatives of complexified… Page 41 of 45    64 

then it is readily checked that ∗t ωt = ω. Moreover, if ηt is a path of 1-forms defined
by

η0 = y, η̇t =  ∗t (Vt�F(y))
then ( t , ωt , ηt ) ∈ Ỹ for every t . Let also { ft | t ∈ R} , {gt | t ∈ R} ⊂ C∞(X) be
arbitrary smooth paths of functions. We compute the differential of Q along the path

pt := ( ft , t , ωt , ηt + dgt ) ∈ C∞(X)× Ỹ.

It will also be convenient to set Jt :=  ∗ J and Xt :=  ∗t Xωtϕ = Xωϕ◦ t
. Then

Q (pt ) =
(
dcJt ft + ηt + dgt , Jt

)
.

We separately compute the derivatives of the single pieces. First notice that, as every Jt
is integrable, the derivative in t of  ∗t J is simply JtLXt Jt . For the first component
of Q instead we have

∂t
(
dcJt ft

) = dcJt ḟt +
(
dcJt ft

) ◦ LXt Jt

= dcJt ḟt + d (Xt ( ft ))+ (Jt Xt )�ddcJt ft + dcJt
(
Xt�dcJt ft

)

and by definition

∂t (ηt + dgt ) =  ∗t (Vt�F(y))+ dġt = (Jt Xt )�(β + dηt )+ dġt .

Putting all together, we find that Q1 := π1 ◦ Q satisfies

∂t Q1(pt ) = dcJt ḟt + d (Xt ( ft ))+ dcJt
(
Xt�dcJt ft

)+ (Jt Xt )�F(Q1(pt ))+ dġt

= d (Xt ( ft ))+ dġt + dcJt
(
ḟt − ηt (Xt )− Xt (gt )

)
+ dcJt (Xt�Q1(pt ))+ (Jt Xt )�F(Q1(pt )).

If we choose gt so that Xt ( ft )+ ġt is constant, then we see that

∂t Q(pt ) =
(
dcJt

(
ḟt − Xt�(ηt + dgt )

)+ dcJt (Xt�Q1(pt ))

+(Jt Xt )�F(Q1(pt )), JtLXt Jt
)

which is the infinitesimal action of i
(
ḟt − Xt�(ηt + dgt ), Xt

) ∈ i g̃ at the point Q(pt ).
Choosing different functions ft and ϕ, this construction can be used to produce paths
that cover all the distribution JD.

To conclude the proof, we compose the moment map µ : A × J → g̃∗ with Q.
Fix ( , ω̃, η) ∈ Ỹ and f ∈ C∞(X), and consider the equationµ◦Q( f , , ω̃, η) = 0.
Under the decomposition of g̃ as g⊕ h, it is equivalent to

s(ω, ∗ J )+ γ
(
ω + i F(dc ∗ J f + η)

)n
ωn

= c.
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By definition of η and  however, we can rewrite this as

s( ∗ω̃, ∗ J )+ γ
(
 ∗ω̃ + i

(
 ∗F(y)+ ddc ∗ J f

))n
 ∗ω̃n

= c. (6.13)

As s( ∗ω̃, ∗ J ) =  ∗s(ω̃, J ) and c is a constant, (6.13) is equivalent to

s(ω̃, J )+ γ (ω̃ + i (F(y)+ ddc f ))n

ω̃n
= c

which is just (6.12), as ω̃ = ω + ddcϕ for some ϕ ∈ C(X). �


6.2 Futaki invariant

The moment map interpretation of equation (6.12) gives a natural description of a
character of the Lie algebra of the stabilizer of a point (y, J ) ∈ P . This generalizes
the analogue of the classical Futaki character, introduced in [41, Section 2.6] in the case
when [B] = c1(L) for some line bundle L → X , to the case of general complexified
Kähler classes.

The (Lie algebra) stabilizer g̃(y,J ) of (y, J ) ∈ P under the action of g̃ is given by
pairs ( f , V ) of a real function and a Hamiltonian vector field such that

LV J = 0 and d ( f + y(V ))+ V �F(y) = 0.

In other words, V is be a real holomorphic vector field with a purely imaginary
holomorphy potential, and it also has a potential with respect to F(y). The stabilizer
g̃C(y,J ) for the complexified action (which in general properly contains g̃(y,J ) ⊗R C)
instead is

g̃C(y,J ) =
{
( f , V ) ∈ C∞(X ,C)× h0

∣∣ V �F(y) = −∂̄( f + y(V ))
}
.

Notice that for each V ∈ h0, there exists f ∈ C∞(X ,C) such that ( f , V ) ∈ g̃C(y,J ),
and it is determined uniquely up to addition of constants.

Let B = F(y), and for any holomorphic vector field V ∈ h0 let ϕ(V , ω) and
ϕ(V , B) be complex functions defined by the conditions

V �ω = ∂̄ϕ(V , ω), V �B = ∂̄ϕ(V , B),∫
X
ϕ(V , ω)ωn =

∫
X
ϕ(V , B)ωn = 0.

Then, the functional F[ω],[B] : h0 → C defined as

F[ωC](V ) =
∫
X
ϕ(V , ω)Re(γ (ω+i B)n)−ϕ(V , B) Im(γ (ω+i B)n)−ϕ(V , ω)s(ω)ωn

(6.14)
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does not depend on the choices of ω and B in the respective classes. On the one hand,
this is a consequence of our moment map picture, at the level of Lie algebras, The-
orem 1.4. Alternatively, just as for the classical Futaki character F[ω] = F[ωC]||γ |=0,
the moment map picture is not actually required to show that F[ωC] is independent
of the choice of representative for [ωC]: in fact, a slight variant of Futaki’s original
argument in [26], differentiating F[ωC] along a path between different representatives
for [ωC], is enough to show this.

Assume now that for any Kähler metric ω there is a (unique) B-field B(ω) (in the
prescribed class) that solves the dHYM equation. In this case, the character (6.14)
simplifies to the functional F[ωC] of Definition 1.5.
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