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Chapter 1

Introduction and Scope

One of the most challenging issues of numerical mathematics of all times can
be formulated as follows: how can we compute a discrete approximating solu-
tion to a given continuous problem with the best accuracy and with a minimal
computational cost? When solving numerically Partial Differential Equations
(PDEs) through Finite Element (FEM) schemes, one of the most successful ways
to balance computational costs and accuracy is represented by adaptive mesh-
refining techniques. In attempt of capturing the “essence” in the various processes
during mesh-refining techniques, this thesis proposes and analyses the Smoothed-
Adaptive Finite Element Method (S-AFEM), a new algorithm for Adaptive Finite
Element Method (AFEM) which takes its inspiration by the ascending phase of
the V -cycle multigrid (MG) method.

The overarching goal is to provide rigorous algebraic error analysis, a poste-
riori error analysis and numerical validation to prove that S-AFEM drastically
improves the computational costs of the classical AFEM, by maintaining almost
the same accuracy of the final solution.

Characterized by ‘...a great geometric flexibility, practical implementation and
powerful and elegant theory’ ([73]), the Finite Element Method (FEM) represents
one of the most prominent techniques for the numerical solution of PDEs. In FEM
simulations, the domain of a PDE is discretised into a large set of small and sim-
ple subdomains (the cells or elements) depending on a size parameter h > 0.
Typical shapes that are used for the discretisation are triangles, quadrilaterals,
tetrahedrons, or hexahedrons. The solution space is constructed by gluing to-
gether simpler finite dimensional spaces, defined on a piecewise manner on each
cell, and the original problem is solved on this simpler, finite dimensional space,
transforming the original PDE into an algebraic system of equations.

Finite Element Analysis (FEA) finds its roots in 1943 in a paper by Courant
(see [48]), who used the Ritz method of numerical analysis and minimization
of variational calculus (see also the previous work [82]). Meanwhile and inde-
pendently, the concept of FEM originated during the 1940s from engineers that
studied stresses in complex airframe structures. Subsequently, the mathematical
foundation was laid down in the mid-1950s with the papers of [88], [4] and [8].
The term “Finite Element” was coined by Clough ([45, 47, 46]). Moving on in
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history, in the early 1960s engineers used the method to approximate solutions
not only of problems in stress analysis, but also in fluid flow, heat transfer, and
other areas. Most commercial FEM software packages originated in the 1970s and
the first book on FEM by Zienkiewicz and Cheung was published in 1967 ([95]),
followed by the book [86], that laid solid grounds for future development in FEM.
Since then, the field of applications has widened steadily and nowadays encom-
passes a vast diversity of problems in nonlinear solid mechanics, fluid/structure
interactions, turbulent flows in industrial or geophysical settings, multicompo-
nent reactive flows, mass transfer in porous media, viscoelastic flows in medical
sciences, electromagnetism, wave scattering problems, and option pricing ([52]).

Numerous commercial and academic codes based on the finite element method
have been developed over the years, however, in the finite element numerical
solution of practical problems of physics or engineering such as, e.g., computa-
tional fluid dynamics, elasticity, or semi-conductor device simulation, we often
encounter the difficulty that the overall accuracy of the numerical approximation
is deteriorated by local singularities arising, e.g., from re-entrant corners, interior
or boundary layers, or sharp shock-like fronts ([91]). An obvious remedy is to
refine the discretisation near the critical regions, i.e., to consider a bigger num-
ber of smaller elements where the solution is less regular. This is the core of
the Adaptive Finite Element Method (AFEM), which is a numerical scheme that
automatically and iteratively adapts the finite element space until a sufficiently
accurate approximate solution is found ([6]).

A few questions closely related to each other arise naturally in the adaptivity
context. How to identify the regions with more irregular behaviour? How to
obtain a good balance between the refined and unrefined regions such that the
overall accuracy is optimal? How to obtain reliable estimates of the accuracy of
the computed numerical solution? Can we think of any “intelligent” shortcuts that
guarantee the same accuracy of the solution, at a fraction of the computational
cost? While former questions have been widely and successfully treated in the
literature, in this thesis work we provide a novel and successful method to address
the latest.

Classical a priori error estimation theory provides little such information, be-
cause it involves the exact solution and the estimates are of asymptotic nature.
We briefly discuss the main related results in Chapter 2, Section 2.1. The missing
link is given by a posteriori error estimators, which hinge exclusively on accessible
data, i.e. they extract information from the given problem and the approximate
solution, without invoking the exact solution. These are computable quantities
that can be used to assess the approximation quality and improve it adaptively.
In the 1980s and 1990s a great deal of effort was devoted to the design of a pos-
teriori error estimators, following the pioneering work [9]. Since then, a lot of
work has been devoted to them. We refer to [90], [10] and [2] for an overview
of the state-of-the-art. We define them and introduce their basic properties in
Section 2.3 of Chapter 2. Our focus is on residual-based a posteriori estimators,
which are derived by the residual functional and provide an equivalent measure
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of the discretisation error in a suitable norm.
Let us now briefly explain the AFEM scheme.
The Adaptive Finite Element Method (AFEM) can be represented by succes-

sive loops of the steps

Solve −→ Estimate −→Mark −→ Refine (1.1)

to decrease the total discretisation error, by repeating the FEM solution process
(step Solve) on a mesh that has been refined (step Refine) on the areas where
the a posteriori error analysis has shown that the error is larger (steps Estimate
and Mark) (see, e.g., [39]). Despite their practical success, adaptive processes
have been shown to converge, and to exhibit optimal complexity, only recently.
A brief literature review of AFEM is presented in Chapter 2, Section 2.3.

The mathematical framework of our work is as follows. We consider linear
second-order elliptic boundary value problems (BVPs) whose variational formu-
lation reads: seek u ∈ V s.t.

Au = f inV, (1.2)

under suitable boundary conditions, where (V, ‖ · ‖) is a normed Hilbert space
defined over a Lipschitz bounded domain Ω, the linear operator A : V → V ? is
a second-order elliptic operator, and f ∈ V ? is a given datum. FEM transforms
the continuous problem (1.2) in a discrete model of type

Ahuh = fh inVh, (1.3)

where an example of Ah is given by the restriction of the continuous operator
Ah := A |Vh , and where Vh ⊂ V is the finite dimensional solution space, typically
made up by continuous and piecewise polynomial functions. Given N = dim(Vh),
the overall procedure leads to the resolution of a (potentially very large) linear
algebraic system of equations of type

Au = f inRN . (1.4)

When solving real-world practical applications, the main difficulty we have to
face is that exact (or even near-to-exact) solutions of the algebraic problem (1.4)
cannot be computed, we only have available an approximation uch that we obtain
in a computer. The total error is therefore written as the sum of two contributions

u− uch︸ ︷︷ ︸
total error

= (u− uh)︸ ︷︷ ︸
discretisation error

+ (uh − uch)︸ ︷︷ ︸
algebraic error

. (1.5)

The algebraic error may have a significant effect on the computed approximation,
and the solution of the algebraic problem has to be considered an indivisible part
of the overall solution process. This issue is unavoidably reflected in adaptive
mesh-refining procedures. The common practical assumption in computational
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sciences and engineering community has been that in step Solve, one obtains
the exact solution of the algebraic system (1.4), therefore to replace uh by uch
in the expression of the error estimator during the module Estimate. However,
numerical roundoff (cf., e.g., [85]) and the need for solving real world large-scale
problems conflict with this assumption and this procedure leads to the urgent
challenges that the derivation and application of the a posteriori error estimates
should resolve

1. The derivation and the construction of the a posteriori estimator should be
done on the available inexact approximation uch. The biggest problem here
is that uch does not satisfy the Galerkin property ([33]), that is the funda-
mental property under which classical residual-based a posteriori estimates
are derived.

2. The estimation of the total error (1.5) should incorporate the algebraic error
uh − uch.

The question of stopping criteria for iterative PDE solvers that account for
inexactness of the algebraic approximations is nowadays becoming a widely ad-
dressed topic [64, 6, 76]. The main focus of the existing literature concerns ways
to estimate the algebraic error and introduce stopping criteria by highlighting the
interplay between the discretisation and algebraic error (see, e.g., [6, 74, 75, 76]).

The overarching goal of this thesis work is to exploit and reveal the other
part of the coin: rough approximate solutions, with large algebraic error, may
still offer large computational savings when used in the correct way. Through
our project we successfully push the boundaries to explore this new different
direction by introducing and analysing a new algorithm that reduces the overall
computational cost of the AFEM algorithm, by providing a fast procedure for the
construction of a quasi-optimal mesh sequence which does not require the exact
solution of the algebraic problem in the intermediate cycles.

We propose the Smoothed Adaptive Finite Element algorithm (S-AFEM)
which takes its inspiration from the ascending phase of the V-cycle multigrid
method (see [61, 21]), where a sequence of prolongation and smoothing steps is
applied to what is considered an algebraically exact solution at the coarsest level.
In MG methods, the prolongation is used to transfer the low frequency informa-
tion contained in the coarse solution to a finer –nested– grid, where some steps of
a smoothing iteration are applied in order to improve the accuracy of the solution
in the high frequency range. This procedure is based on the principle that even a
small number of smoothing iterations is sufficient to eliminate the high frequency
error, while the prolongation from coarser grids guarantees the convergence in
the low frequency regime, resulting in an overall accurate solution.

The main difference between the ascending phase of the V-cycle multigrid
method and AFEM is that in AFEM the next grid in the sequence is unknown,
and requires an exact algebraic solution on the current grid to trigger the Estimate-
Mark-Refine steps. On the other hand, the exact algebraic solutions in the
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intermediate cycles are instrumental to the construction of the final grid, and
find no other use in the final computations.

Our strategy consists in

1. replacing accurate algebraic solutions in intermediate cycles of the classical
AFEM with the application of a prolongation step, followed by a fixed
number of few smoothing steps (say three or five)

2. solving exactly the linear algebraic system derived from the discrete problem
on the coarsest level and on the finest level

3. executing the Estimate and Refine steps on the approximate solutions
derived in the intermediate steps.

Solve Estimate Mark Refine

ProlongateSmooth

Solve

Even though these intermediate solutions are far from the exact algebraic solution,
we will show that their a posteriori error estimation produces a refinement pattern
that is substantially equivalent to the one that would be generated by classical
AFEM, leading to the same set of cells marked for refinement, at a considerable
fraction of the computational cost.

Let us now briefly describe the structure of the thesis and present a panoramic
view of the original contributions that we tried to give in this field.

1.1 Structure of the thesis

In Chapter 2 we briefly present the main features of the Finite Element Method
(FEM) and of the Adaptive Finite Element Method (AFEM) for the solution
of second-order elliptic boundary value problems (BVPs), encompassing their de-
sign, basic properties and classical results. The discussion in this chapter includes
the literature review of both methods. In Section 2.1 we briefly recall some basic
definitions of Sobolev spaces and follow by introducing the Ritz-Galerkin method
for the discretisation of symmetric elliptic PDEs of order 2m, with emphasis
on FEM, whose definition arises naturally as a particular class of Ritz-Galerkin
methods. A priori error estimates are presented. We will restrict ourselves to
Poisson’s equation with homogeneous Dirichlet boundary conditions as a model
problem, to which we dedicate Section 2.2. Finally, we present a posteriori error
estimators and discuss the main features of AFEM in Section 2.3.

We follow with a presentation of the Finite Element Multigrid method in
Section 3.1 and in Section 3.2 of Chapter 3. Smoothed-Multilevel Methods can
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be introduced as a natural remedy to restore and improve the performance of
basic relaxation schemes. The remainder of the chapter is dedicated to the dis-
cussion and analysis of Smoothed-Multilevel Methods. Precisely, we consider
a generic multilevel context, where a nested sequence of finite element spaces
V1 ⊂ V2 ⊂ · · · ⊂ Vk̄ is given. The repetition of the FEM procedure for any level
k = 1, 2, . . . , k̄ gives rise to the associated linear algebraic systems Akuk = fk in
RNk , where Nk = dim(Vk). For the algebraic resolution of these systems we ap-
ply successive prolongation (Prolongate) and smoothing (Smooth) steps and we
prove a series of theorems and results that rigorously estimate the algebraic error
propagation between different nested levels following [72]. In particular, for the
module Smooth, we consider Richardson smoothing iterations (see e.g., [61, 80]),
which we analyse in Subsection 3.3.1.

Chapter 4 extends the a posteriori error analysis previously presented in Sec-
tion 2.3 to the case when inexact approximations and the algebraic error are taken
into consideration. Our attention in Section 4.1 is devoted to the main issues that
a posteriori error analysis accounting for the algebraic error has to deal with. In
Section 4.2, we are going to prove a bound on the estimator for a generic function
in terms of the estimator for the Galerkin solution and the corresponding alge-
braic error. Finally, in Section 4.3 we slightly touch upon an ongoing work that
aims to quantify qualitatively different contributions of different eigenfunctions
in the expression of the error estimator.

We devote Chapter 5 to the introduction and description of S-AFEM. We
start by providing some motivation through some empirical numerical evidence
that justifies the use of S-AFEM, and then connect it to the theoretical results
on the error propagation that we proved in Section 3.4. In Section 5.3 we pro-
vide numerical validation for our method presenting two-dimensional examples
in Subsection 5.3.1 and three-dimensional examples Subsection 5.3.2. We show a
comparison of the computational cost associated to the classical AFEM and to
the smoothed AFEM for the presented examples in Subsection 5.3.3.

In Section 5.4 we present different variants of our algorithm S-AFEM, where
different smoothers are considered for the intermediate cycles, (respectively Richard-
son iteration, the CG method, and the GMRES method) and we investigate the
accuracy and of S-AFEM for high order finite element discretisations. We provide
several numerical evidences that S-AFEM turns out to be a good strategy also
for higher order finite element discretisations, and one could use directly the CG
method (or, alternatively,the GMRES method) as smoothers for the intermedi-
ate iterations. Our numerical evidences show that two smoothing iterations are
enough for the two dimensional case, and around five smoothing iterations are
enough for the three dimensional case, independently on the polynomial degree
of the finite element approximation.

In Section 5.5 we show that S-AFEM strategy (for different FEM degrees)
works well also for more complex and non symmetric problems, by providing and
example of a transport-diffusion two-dimensional problem. Finally, Section 5.6
briefly describes the main conclusions of the thesis.
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1.2 Main results and contributions

S-AFEM is an entirely novel idea that originated during this thesis project. Its
novelty and originality is given not only by its unique strategy and analysis, but
also by an approach to adaptive algorithms with an awareness that is missing in
the current literature. Our work has lead us to some fascinating conclusions and
beautiful discoveries. The key results and contributions in this dissertation are
presented in Chapter 3 through Chapter 5 and include the following.

• One of the key findings of this research program has been that the combined
application of the Estimate-Mark steps of AFEM is largely insensitive to
substantial algebraic errors in low frequencies, justifying the formalisation of
a new Smoothed Adaptive Finite Element algorithm (S-AFEM), where the
exact algebraic solution in intermediate steps is replaced by the application
of a prolongation step (Prolongate), followed by a fixed number of smooth-
ing steps (Smooth). The principal motivation is that we’ve found out that
classical a posteriori error estimators are not sensitive to low frequencies
in the solution, and that their application to very inaccurate approximate
solutions in intermediate cycles – only capturing high frequency oscillations
– would produce an equally good grid refinement pattern.

• We have introduced and analysed the Smoothed-Multilevel Methods, where,
in the context of a nested sequence of finite element spaces corresponding to
nested grids, we solve exactly on the coarsest grid (reaching convergence in
all components), and then perform a sequence of prolongations followed by a
fixed number of smoothing steps, to improve convergence in the finer grids,
under the assumptions that lower frequencies have already been taken care
of in the previous levels. This is the core idea behind S-AFEM. We prove
a series of theorems and results that rigorously estimate the algebraic error
propagation between different nested levels, which shows that the algebraic
error is made up by small contributions given by the accumulation of low
frequency terms, which have in general a smaller influence on the estimator.

• A parallel exciting challenge of our research has been to show how the alge-
braic error derived in Theorem 3.4.4 relates to the Estimate phase of AFEM.
This is found in discussion in Section 4.2 and in Theorem 4.2.2, which proves
an upper bound on the estimator for generic functions of the finite element
space in terms of the estimator for the Galerkin approximation and the
algebraic error, up to some oscillating terms of the data.

• We provide several numerical evidences for the case of Poisson’s equation
in two and three dimensions with different data realized using a custom
C++ code based on the deal.II library ([13, 3]), and on the deal2lkit
library ([81]) that show that S-AFEM algorithm is competitive in cost and
accuracy. For three dimensional problems, the speedup in the intermediate
steps is in the hundreds, and even if the final grid is not exactly identical
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to the one that would be obtained with the classical AFEM, the accuracy
of the final solutions is comparable.

• Another very interesting conclusion has been that only a few smoothing
iterations, only three, were enough for the estimator to produce the same
set of marked cells for refinement at each cycle. We discuss this theory and
provide numerical evidences in Chapter 4 and Chapter 5.

• Another key conclusion been that different smoothers (for instance Richard-
son iteration, the CG method and the GMRES method) work equally well
as smoother candidates for the intermediate levels. A particular attention
has to be paid to the Richardson iteration when used as a smoother, that
has to come along with the investigation and the subsequent choice of the
optimal relaxation parameter.

• As another relevant conclusion, we show that S-AFEM turns out to be a
good method not only for piecewise bi-linear FEM discretisations, but also
for high order FEM discretisations, for instance when we take the FEM
polynomial degree deg = 2, 3, 4, 5.

• Finally, we provide a large variety of experiments to validate numerically our
strategy, that include classical two and three dimensional problems that are
used to benchmark adaptive finite elements (for instance the peak problem
and the corner problem), but also a two dimensional non symmetric problem
of diffusion-transport type. In all results of this large variety of numerical
experiments, the accuracy of the final approximation generated by S-AFEM
is almost the same to the one that would be generated by classical AFEM,
at a fraction of the computational cost, making S-AFEM a highly valuable
algorithm for many practical and realistic applications.

• Motivated by the theoretical results and the numerical evidence, we argue
that in the intermediate AFEM cycles it is not necessary to solve exactly
the discrete system. What matters instead is to capture accurately the
highly oscillatory components of the discrete approximation with a chosen
smoother. Low frequency components may have an influence on the error
estimator, however, this is mostly a global influence, that has a small effect
on the cells that will actually be marked for refinement in theMark step.

Finally, some interesting questions for future investigations are as follows.

• Although we have evidences that this technique works well for more com-
plex second-order elliptic problems, such as non symmetric problems of
transport-diffusion type, there are theoretical results that need to be de-
veloped to validate theoretically the strategy also for these more complex
situations.
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• An ongoing and future project introduces local smoothing in the parts of
the domain in need for refinement to further improve the speedup of the
algorithm.

List of included papers:

(I) O. Mulita, S. Giani,and L. Heltai, Quasi-optimal mesh sequence construc-
tion through Smoothed Adaptive Finite Element Methods, 2019, submitted
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− Algorithm 4, Subsection 3.3.2, Section 3.4, 3.4.1, Definition 3.4.1, Theo-
rem 3.4.2, Theorem 3.4.3, Subsection 3.4.2, Assumption 3.4.1, 3.4.4, Re-
mark 3.4.1.

− Section 4.2, Theorem 4.2.1, Remark 4.2.2, Section 4.3.

− Section 5.1, Section 5.2, Algorithm 5, Numerical Evidences in Subsec-
tion 5.3.1 and in Subsection 5.3.2, Subsection 5.3.3.

− Section 5.4 and all numerical evidences included in the respective subsec-
tions.

− Section 5.5 and all numerical evidences included.
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Chapter 2

Prolegomena

For a solid understanding of the basics behind this thesis project, we dedicate this
chapter to the basics of the Finite Element Method (FEM) and of the Adaptive
Finite Element Method (AFEM) for the solution of second-order elliptic boundary
value problems (BVPs). Classical a priori error estimates described in Section 2.1
yield useful information on the asymptotic error behaviour. The price to pay for
this information is in terms of regularity conditions of the solution, which are
unfortunately not satisfied in the presence of singularities as introduced above.
These considerations highlight the need for an error estimator which can be ex-
tracted in a posteriori fashion from the computed numerical solution and the
given data of the problem. In Section 2.2 we introduce our model problem and
in Section 2.3 we discuss a posteriori error estimators, as well as mesh refining
strategies.

2.1 The Finite Element Method for Linear Elliptic
second-order Boundary Value Problems

Let Ω be a open bounded domain in Rd, where d = 1, 2, 3, with piecewise smooth
boundary Γ := ∂Ω. For a positive integerm, the Sobolev space Hm(Ω) ([1]) is the
space of square integrable functions whose weak derivative up to order m is also
integrable. Hm(Ω) is a Hilbert space equipped with the norm ‖u‖Hm(Ω) defined
by

‖u‖Hm(Ω) =

∑
|α|≤m

∥∥∥∥∂αu∂xα

∥∥∥∥2

L2(Ω)

1/2

. (2.1)

We will also consider the seminorm

|u|Hm(Ω) =

∑
|α|=m

∥∥∥∥∂αu∂xα

∥∥∥∥2

L2(Ω)

1/2

. (2.2)

Using Sobolev spaces we can represent a large class of symmetric elliptic BVPs
of order 2m in the abstract form:
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Find u ∈ V ⊂ Hm(Ω), where V is a closed subspace of Hm(Ω), such that

a(u, v) = l(v), ∀ v ∈ V, (2.3)

where l : V → R is a bounded linear functional on V and a(·, ·) is a symmetric
bilinear form that is bounded

|a(u, v)| ≤ C1
1‖u‖Hm(Ω)‖v‖Hm(Ω), ∀u, v ∈ V, (2.4)

and V -elliptic
|a(v, v)| ≥ C2‖v‖2

Hm(Ω), ∀v ∈ V. (2.5)

For symmetric problems, conditions (2.4) and (2.5) imply that the bilinear form
a(·, ·) defines an inner product on V that induces the norm ‖ · ‖a := (a(·, ·))1/2,
which is equivalent to the Sobolev norm ‖ · ‖Hm(Ω). The Riesz Representation
Theorem ([78]) and conditions (2.4) and (2.5) guarantee existence and uniqueness
of the solution of (2.3).

The Ritz-Galerkin method for the discretisation of (2.3) reads:
Given l ∈ V ?, find ũ ∈ Ṽ such that

a(ũ, ṽ) = l(ṽ), ∀ṽ ∈ Ṽ , (2.6)

where Ṽ is a finite dimensional subspace of V . The approximate solution ũ is
called a Galerkin solution.

By subtracting (2.6) from (2.3) applied to functions that lie in Ṽ , we get the
Galerkin orthogonality property

a(u− ũ, ṽ) = 0, ∀ṽ ∈ Ṽ , (2.7)

which implies that

‖u− ũ‖a = inf
ṽ∈Ṽ
‖u− ṽ‖a. (2.8)

By combining together (2.8), (2.4) and (2.5) we get Cea’s Lemma

‖u− ũ‖Hm(Ω) ≤
C1

C2

inf
ṽ∈Ṽ
‖u− ṽ‖Hm(Ω), (2.9)

that is, the error of the Galerkin solution is quasi-optimal in the Sobolev norm.
The solution of the approximation problem (2.9) depends on the regularity of the
exact solution u and the nature of the space Ṽ .

We consider the finite element spaces which are introduced and described in
Subsection 2.1.

We briefly recall the main regularity results. In particular, if the boundary ∂Ω

is smooth and the homogeneous boundary conditions are also smooth, then the

1We use C, with or without subscript, to represent a generic positive constant that takes
different values in different situations.
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solution of the elliptic boundary problem (2.3) obeys the classical Shift Theorem
([60, 34]) , which states that if the right-hand side of the equation belongs to
the Sobolev space H l(Ω), then the solution of a 2mth-order elliptic boundary
problem belongs to the Sobolev space H2m+l(Ω). This theorem does not hold for
domains with piecewise smooth boundary in general. For instance, it does not
hold true when the types of boundary condition change abruptly.

For two dimensional problems, the vertices of Ω and the points where the
boundary condition changes type are singular points. Away from these singular
points, the Shift Theorem is valid. For a 2mth order problem, the regular part of
the solution belongs to the Sobolev spaceH2m+k(Ω) if the right-hand side function
belongs to Hk(Ω), and the singular part of the solution is a linear combination of
special functions with less regularity. The situation in three dimensions is more
complicated because of the presence of edge singularities, vertex singularities and
edge-vertex singularities and it remains an active area of research ([34]).

Finite Element Methods. A successful and widely used class of Ritz-Galerkin
methods is represented by the Finite Element Methods (FEMs). In FEM, the
domain of a partial differential equation (PDE) is discretized in a large set of small
and simple domains (the cells or elements) depending on a size parameter h > 0.
Typical shapes that are used for the discretisation are triangles, quadrilaterals,
tetrahedrons, or hexahedrons. The solution space Ṽ ⊂ V is constructed by gluing
together simpler finite dimensional spaces, defined on a piecewise manner on each
cell, and the original problem is solved on this simpler, finite dimensional space,
transforming the original PDE into an algebraic system of equations, see, e.g.,
some of the numerous books dedicated to FEM [11, 43, 96, 42, 33, 52, 63, 34].

We recall the formal definition of finite element, according to [43], [33]. A
d-dimensional finite element is a triple (T,PT ,NT ), where T is a closed bounded
subset of Rd with nonempty interior and piecewise smooth boundary, PT is a
finite dimensional vector space of functions defined on T , and NT ) is a basis of
the dual space P′T . Functions in PT are called shape functions, while functionals
in NT are called nodal variables or degrees of freedom. Typically, the space PT is
taken as PkT , k > 0: the space of polynomials of order k > 0 defined over T .

In this work, we restrict to considering polyhedral domains. We introduce the
basic notions of partition and triangulation of the computational domain Ω.

A partition P of Ω is a collection of subdomains of Ω such that

(P1) Ω̄ =
⋃
T∈P T̄

(P2) each element T is a non-empty, open subset of Ω

(P3) T ∩ T ′ = ∅, if T, T ′ ∈ P and T 6= T ′

(P4) each element T is a polyhedron

The subdomains T are usually called cells or elements. We will consider a family
of triangulations Th h > 0 of Ω, which are partitions satisfying the following
condition

13
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• Admissibility : any two subdomains T, T ′ in P are either disjoint, or have
an edge/face in common or share a vertex.

The notions of partition and triangulation are different for d > 1, while for d = 1

every partition is a triangulation. We will consider triangulations consisting of
triangles or convex quadrilaterals in two dimensions and tetrahedrons or convex
hexahedrons in three dimensions. The shape regularity of the subdomains is
measured by the aspect ratio. For triangles (or tetrahedrons), the aspect ratio is
measured by the parameter γT

γT :=
hT
ρT
, (2.10)

where hT is the diameter of T and ρT is the diameter of the largest ball inscribed
into T . For convex quadrilaterals (or hexahedrons), the aspect ratio is measured
by γT defined in (2.10) and by the parameter

σT := max

{ |e1|
|e2|

: e1, e2 any two edges of T
}
. (2.11)

We will refer to the number max(γT , σT ) as the aspect ratio of the convex quadri-
lateral (hexahedron). We will consider family of triangulations that satisfy the
following condition:

• Shape regularity: there exists a positive constant γT <∞ that bounds the
aspect ratios of all subdomains.

Next, we define the finite element approximation spaces. Let T be a triangulation
of Ω, and a finite element (T̄ ,PT̄ ,NT̄ ) be associated with each subdomain T ∈ T .
We define the corresponding finite element space to be

FET = {v ∈ L2(Ω) : v |T̄∈ T ∀T ∈ T ,
and v |T and v |T ′ share the same nodal values on T̄ ∩ T̄ ′ } (2.12)

A Cr finite element space is a finite element space FET ⊂ Cr(Ω). In this
case, it is automatically a subspace of the Sobolev space Hr+1(Ω) and therefore
appropriate for elliptic boundary value problems of order 2(r + 1).

There are two types of error estimation procedures available for the discretisa-
tion error u− ũ. A priori error estimators provide information on the asymptotic
behavior of the discretisation errors but are not designed to give an actual error
estimate for a given triangulation. In contrast, a posteriori error estimators em-
ploy the finite element solution itself to derive estimates of the actual solution
errors. They are also used to steer adaptive schemes where either the mesh is
locally refined (h-version) or the polynomial degree is raised (p-method) ([58]).

Let T be a triangulation of Ω. Consider a finite element space FET and a
finite element (T̄ ,PT̄ ,NT̄ ) be associated with each subdomain T ∈ T . Assume
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that the resulting finite element space is a subspace of Cm−1(Ω̄) ⊂ Hm(Ω). By
imposing appropriate boundary conditions, we can obtain a subspace VT of FET
such that VT ⊂ V .

We will focus on second-order problems. Assume that Ω ⊂ R2 and that
the right-hand side of the elliptic boundary value is in the Sobolev space L2(Ω).
Then u ∈ H1+α(T )(T ) for each T ∈ T , where α(T ) ∈ (0, 1] and α(T ) = 1,
for T away from the singular points ([49]). Let V ⊂ H1(Ω) be defined by ho-
mogeneous Dirichlet boundary conditions on Γ ⊂ ∂Ω and assume that T is a
triangulation of Ω such that the resulting finite element space FET is a subspace
of C0(Ω) ⊂ H1(Ω) (this can be achieved, for e.g., by considering Lagrange finite
elements ([34]). We take VT = V ∩ FET . The proofs adopt the use of the nodal
interpolation operator ([34]) and corresponding estimates.

The following a priori discretisation error estimate holds true

‖u− uT ‖H1(Ω) ≤ C

(∑
T∈T

(hT )2α(T )|u|2H1+α(T )(T )

)1/2

, (2.13)

where hT is the diameter of T and C is a positive constant depending only on
the aspect ratios of the cells T .

In particular, if {Ti, i ∈ I} is a shape regular family of triangulations, and
the solution u of (2.3) belongs to the Sobolev space H1+α(Ω) for some α ∈ (0, 1],
then (2.13) implies that

‖u− uTi‖H1(Ω) ≤ Chαi |u|2H1+α(Ω), (2.14)

where hi = maxT∈Ti hT is the mesh size of Ti and C is independent of i ∈ I.
Furthermore, the following estimate in the L2(Ω)-norm holds true

‖u− uTi‖L2(Ω) ≤ Ch2α
i |u|2H1+α(Ω) (2.15)

where C is also independent of i ∈ I. The above two dimensional results also
hold true for three dimensional elements if the solution u ∈ H1+α(Ω) where
1/2 < α ≤ 1, since the nodal interpolation operator is well-defined by the Sobolev
embedding theorem [35]. A case where this is verified is when Γ = ∂Ω.

2.2 Model Problem

Let Ω ⊂ Rd (d = 1, 2, 3) be a bounded, polyhedral domain (an open and connected
set with polygonal boundary). We look for the solution u ∈ H1

0 (Ω) s.t.

−∆u = f in Ω and u = 0 on Γ := ∂Ω, (2.16)

where f ∈ L2(Ω) is a given source term. We use the standard notation for norms
and scalar products in Lebesgue and Sobolev spaces (cf. [1]) : for u ∈ H1

0 (Ω)

and ω ⊂ Ω, we write |u|1,ω := (
∫
ω
|∇u|2)1/2 and denote by (·, ·)ω the L2(ω)- scalar
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product with corresponding norm ‖ · ‖ω. For ω = Ω, we omit the corresponding
subscripts. The weak form of (2.16) is to find u ∈ H1

0 (Ω) s.t.

(∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω). (2.17)

We consider a shape regular family of triangulations {Th}h of Ω depending
on a parameter h > 0 with shape regularity parameter CTh . We will consider
triangulations consisting of triangles or convex quadrilaterals in two dimensions,
and tetrahedrons or convex hexahedrons in three dimensions.

We denote by z the nodes of Th (i.e. the vertices of the cells) and by Nh the
set of all nodes, while Nh,int := Nh \ Γ denotes the set of the free nodes. The set
of all edges/faces E of the cells is denoted by Eh and similarly, Eh,int := Eh \ Γ is
the set of internal edges/faces. Let ϕz be the nodal basis function associated to a
node z ∈ Nh with support ωz, which is equal to the patch ωz = ∪{T ∈ Th|z ∈ T}.
We use the Courant finite element space Vh := span{ϕz|z ∈ Nh,int} ⊂ H1

0 (Ω).

The Galerkin solution uh ∈ Vh is defined by the discrete system

(∇uh,∇vh) = (f, vh), ∀vh ∈ Vh. (2.18)

2.3 Local Mesh Refinement

The Adaptive Finite Element Method (AFEM) consists of successive loops of the
steps

Solve −→ Estimate −→Mark −→ Refine (2.19)

to decrease the total discretisation error, by repeating the FEM solution process
(Solve) on a mesh that has been refined (Refine) on the areas where the a-
posteriori analysis has shown that the error is larger (Estimate andMark).

FEM provides numerical solutions to the above problem in the discrete finite
dimensional space Vh ⊂ V , and transforms the continuous problem above in a
discrete model of type Ahuh = fh in Vh under suitable boundary conditions,
where Ah = A |Vh . The overall procedure leads to the resolution of a (potentially
very large) linear algebraic system of equations of type Au = f in RN , where
N = dim(Vh). The standard AFEM algorithm (following [39]) can be summarised
in the following steps:

This procedure solves for any level k = 1, 2, . . . , k̄ the following discrete prob-
lems: seek uk ∈ Vk s.t Akuk = fk in Vk under suitable boundary conditions,
where Ak : Vk → Vk

?, Ak := A |Vk . The finite element spaces are nested
V1 ⊂ V2 ⊂ · · · ⊂ Vk̄ and the inequality N1 < N2 < · · · < Nk̄ holds for the
relative dimensions of the finite element spaces.

Next, we briefly describe the modules Estimate,Mark and Refine. We start
by providing an insight into classical a posteriori error estimation theory for the
module Estimate. Our focus is on residual-based a posteriori error estimators,
which were historically defined and derived in terms of the Galerkin approxima-
tion.
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Algorithm 1: AFEM Algorithm
Input : initial mesh T1

Loop: for k = 1, 2, . . . , k̄ do steps 1.− 4.

1. Solve: Akuk = fk in RNk , where dim(Vk) = Nk, based on Tk.

2. Estimate: Compute ηT (uk) for all T ∈ Tk.

3. Mark: Choose set of cells to refineMk ⊂ Tk based on ηT (uk).

4. Refine: Generate new mesh Tk+1 by refinement of the cells inMk.

Output : nested sequence of meshes Tk, approximations uk, and local
estimators ηT (uk), for k = 1, . . . , k̄ − 1, and final problem-adapted
approximation uk̄.

The concepts of Error Estimator, Efficiency and Reliability. Classical
a posteriori error estimation theory focuses on measuring a suitable norm of
the discretisation error eh by providing upper and lower bounds in terms of a
posteriori error estimators.

By definition, “regarded as an approximation to an (unknown) suitable norm
of the discretisation error ‖eh‖, a (computable) quantity η(uh) is called a pos-
teriori error estimator if it is a function of the known domain Ω, its boundary
Γ, the right-hand side f as well as of the discrete solution uh, or the underlying
triangulation” ([34]).

There are two main requirements that an a posteriori error estimator η(uh)

should satisfy, apart from being easy and cheap to compute: it has to be reliable
in the sense of an upper bound

‖eh‖ ≤ Crelη(uh) + h.o.t.rel, (2.20)

and efficient in the sense of a lower bound

η(uh) ≤ Ceff‖eh‖+ h.o.t.eff . (2.21)

The multiplicative constants Crel and Ceff are independent on the mesh size and
h.o.t. refer to high order terms which are due to oscillations of the right-hand
side f , and which in generic cases are of magnitudes smaller than ‖eh‖.

Residual-based a Posteriori Error Estimators. Standard residual-based
a posteriori error estimators are the most widely used for adaptive techniques.
They were first introduced in the context of FEM by Babuška and Rheinboldt in
[9] and they have been thereafter widely studied in the literature; we refer, e.g.,
to the books [90] and [2].

Their derivations is based on the residual functional associated to the Galerkin
solution, which is defined as R{uh} : H1

0 (Ω) −→ R, R{uh} := (f, ·) − a(uh, ·)
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with corresponding dual norm

‖R{uh}‖? := sup
v∈H1

0 (Ω)\{0}

R{uh}(v)

|v|1
= sup

v∈H1
0 (Ω)\{0}

(f, v)− a(uh, v)

|v|1
. (2.22)

The identity |eh|1 = ‖R{uh}‖? leads to reliable and efficient residual-based a pos-
teriori bounds for the discretization error via estimation of the residual function.
The main tool exploited in the derivation is the Galerkin orthogonality (2.7). We
will come back to the a posteriori error estimation theory in Chapter 4.

The module Mark. Given a standard residual based a posteriori estimator
expressed as a sum over all elements T ∈ Tk

η =

{∑
T∈Tk

η2
T

}1/2

, (2.23)

the marking strategy is an algorithm that, for any level k selects for refinement
the subset of elements

Mk := {T ∈ Tk : ηT ≥ L}, (2.24)

where L is a treshold error. Typical examples for the computation of L are the
maximum criterion, which is defined as the largest value such that

L := Θ max{ηT : T ∈ T }, (2.25)

or the bulk criterion ([50]), where L is the largest value such that

Θ2
∑
T∈Tk

η2
T ≤

∑
T∈Mk

η2
T . (2.26)

The parameter Θ is such that 0 ≤ Θ ≤ 1, where Θ = 1 corresponds to an
almost uniform refinement, while Θ = 0 corresponds to no refinement.

“Hanging nodes”. After the refinement procedure, consistency of the finite
element functions between the refined and the coarse part of the mesh must be
ensured. We use the “hanging nodes” technique, which is particularly favorable
to deal with all-quadrilateral and all-hexahedral meshes (cf. [13]). Consistence is
ensured by adding additional algebraic constraints to the linear system. The only
restriction we require mostly for algorithmic reasons is that each face of a cell is
divided at most once (“one-irregular” mesh). This can be ensured by refining a
few additional cells in each cycle as necessary and has no significant detrimental
effects on the complexity of a mesh.
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Literature on AFEM. One of the first AFEM analysis was provided by
Babuška and Vogelius in [37] for linear symmetric elliptic problems in one di-
mension. Despite their practical success, adaptive processes have been shown to
converge, and to exhibit optimal complexity, only recently and for linear elliptic
PDE. The first multidimensional convergence result was given by Dörfler in [50],
which introduced the marking criterion and proved linear convergence of the er-
ror for some FEM for the Poisson problem up to some tolerance. [69] extended
the analysis and included data approximation to prove convergence of a practical
adaptive algorithm. The first complexity result was given by Binev, Dehmen,
and DeVore in [17], which first proved convergence with optimal rates for the
Poisson problem. [84] proved convergence with optimal rates for the adaptive al-
gorithm. [41] included standard newest vertex bisection as mesh refinement into
the mathematical analysis. Until then, only variations of FEM for the Poisson
model problem with homogeneous Dirichlet boundary conditions were analyzed
in the literature.

Independently, [56] and [57] developed the analysis for integral equations and
proved convergence with optimal rates for standard boundary element methods
(BEMs). [7] proved optimal convergence rates for FEM for the Poisson problem
with general boundary conditions. Finally, [55] concluded the theory for general
second order linear elliptic PDEs.

The work [39] collects all the mentioned seminal works in a unifying and
abstract framework. The work identifies the axioms of adaptivity and proves
optimal rates for any problem that fits in the abstract setting. The latter covers
the existing literature on rate optimality for conforming FEM (also the known
results for nonlinear problems) and BEM as well as nonconforming and mixed
FEM. With some additional (resp.relaxed) axioms, the abstract framework [39]
covers also inexact solvers and other types of error estimators.

In recent years, convergence, convergence rate, and complexity results have
been incrementally improved for AFEM applied to second-order elliptic problems
for conforming finite element methods. For a detailed description on AFEM we
refer to the books [51, 70, 58, 73, 14].
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Chapter 3

Multilevel Methods

3.1 Introduction

This chapter presents the essential ideas behind the Finite Element Multigrid
Method (cf. Section 3.2). The aim is to present the multigrid (MG) method
as a representative example of a larger family of methods, referred to by its
chief developer Achi Brandt as multilevel methods ([36]). This is also required
to understand the motivation and theory behind Smoothed-Multilevel Methods
(cf. Section 3.3) and our Smoothed-Adaptive Finite Element Method (cf. Chapter
5). Multigrid techniques exploit discretisations with different mesh sizes of a
given problem to obtain optimal convergence from relaxation techniques. For
the resolution of elliptic PDEs, the MG method turns out to be very effective in
providing accurate algebraic solutions in O(N) time, where N is the dimension
of the corresponding algebraic system.

At the foundation of these techniques is the basic and powerful principle of
divide and conquer. Though most relaxation-type iterative processes, such as
Gauss-Seidel, Richardson, etc, may converge slowly for typical problems, it can
be noticed that the components of the errors (or residuals) in the directions of
the eigenvectors of the iteration matrix corresponding to large eigenvalues are
damped very rapidly. These eigenvectors are known as the oscillatory modes
or high-frequency modes. Other components, associated with low-frequency or
smooth modes, are difficult to damp with standard relaxation. This causes the
observed slow down of all basic iterative methods. However, many of these modes
(say half) are mapped naturally into high-frequency modes on a coarser mesh.
Hence the idea of moving to a coarser mesh to eliminate the corresponding error
components. The process can obviously be repeated with the help of recursion,
using a hierarchy of meshes. Some of the modes which were smooth on the fine
grid, become oscillatory. At the same time the oscillatory modes on the fine
mesh are no longer represented on the coarse mesh. The iteration fails to make
progress on the fine grid when the only components left are those associated
with the smooth modes. Multigrid strategies do not attempt to eliminate these
components on the fine grid. Instead, they first move down to a coarser grid
where smooth modes are translated into oscillatory ones. This is done by going
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back and forth between different grids ([80]).
The review material presented in this chapter is based on several sources.

Foremost among these are the references [18, 22, 25, 80, 36] and [33]. Nowadays,
the body of multigrid literature is vast and continues to grow at an astonishing
rate. However, there are several classical text books that we recommend as
detailed volumes. In particular, we recommend [36], which provides an excellent
and easy to read introduction to the subject. This tutorial includes enough
theory to understand how multigrid methods work. Other classical books are
[68, 61, 62, 92], [36] and [87].

Early works on multigrid methods date back to the 1960s and include the
papers by [19, 53, 54, 12, 65]. However, multigrid methods have seen much of
their modern development in the 1970s and early 1980s, essentially under the
pioneering work of Brandt ([27, 28, 29]). Brandt played a key role in promoting
the use of multigrid methods by establishing their overwhelming superiority over
existing techniques for elliptic PDEs and by introducing many new concepts which
are now widely use in MG literature ([80]). Algebraic multigrid (AMG) methods
were later developed to attempt to obtain similar performance. These methods
don’t use any partial differential equation nor geometrical problem background
to construct the multilevel hierarchy. Instead, they construct their hierarchy of
operators directly from the system matrix. In classical AMG, the levels of the
hierarchy are simply subsets of unknowns without any geometric interpretation.
These methods were introduced in [31] and analyzed in a number of papers (see
e.g., [30, 79]). Today MG methods are still among the most efficient techniques
available for solving Elliptic PDEs on regularly structured problems.

The remainder of the chapter (cf. Section 3.3 and Section 3.4) is dedicated
to the discussion and analysis of Smoothed-Multilevel Methods. Inspired by the
ascending phase of the V -cycle multigrid method, the strategy of Smoothed-
Multilevel Methods is to solve exactly on a coarse grid (reaching convergence
in all components), and then perform a sequence of prolongations followed by
a fixed number of smoothing steps, to improve convergence in the finer grids,
under the assumptions that lower frequencies have already been taken care of
in the previous levels. In Section 3.3 and Section 3.4, we introduce them and
provide rigorous algebraic error analysis following [72].

22



Ornela Mulita CHAPTER 3. MULTILEVEL METHODS

3.2 The Finite Element Multigrid Method

The multigrid method provides an optimal order algorithm for solving elliptic
BVPs. The error bounds of the approximate solution obtained from the full
multigrid algorithm are comparable to the theoretical bounds of the error in the
finite element method (cf. Theorem 3.2.2), while the amount of computational
work involved is proportional only to the number of unknowns in the discretised
equations (cf. Theorem 3.2.3) ([33]).

Geometric multigrid methods use a hierarchy of mesh levels. On each level, an
approximate solver –a so called smoother– is employed, which reduces the error in
the high frequency, and then an approximation on a coarser level is used to reduce
the error in lower frequencies. This is done down to the coarsest level, where we
assume that the solution process is exact and cheap. The method has two main
features: smoothing on the current grid and error correction on a coarser grid.
The smoothing step has the effect of damping out the oscillatory part of the error.
The smooth part of the error can then be accurately corrected on the coarser grid
([33]).

Recall the classical a priori error estimate for piecewise linear finite elements
(cf. [33])

‖u− uk‖HsΩ ≤ Ch2−s
k ‖u‖H2Ω, s = 0, 1 ,∀k = 1, 2, . . . , (3.1)

where C is a generic positive constant independent of k. Let Nk = dimVk. The
goal of the multigrid method is to calculate ûk ∈ Vk in O(Nk) operations such
that

‖uk − ûk‖HsΩ ≤ Ch2−s
k ‖u‖H2Ω, s = 0, 1 ,∀k = 1, 2, . . . . (3.2)

The O(Nk) operation count means that the multigrid method is asymptotically
optimal.

The discussion in this chapter is based on the papers [22, 24] and on the books
[80] and [33]. We recommend the classical books [62], [68], and [20] and the survey
article [26], and the references therein for the general theory of multigrid methods.

3.2.1 The kth Level Iteration

Following [22, 24], we give a general framework for the development of multilevel
algorithms. We start by defining a hierarchy of spaces and the corresponding
discrete problems. We then follow by defining the multigrid method through its
ingredients and present the algorithm.

Definition 3.2.1. A hierarchy of spaces {Vk}1≤k≤k̄ is a sequence of spaces of
the form

V1 ⊂ V2 ⊂ · · · ⊂ Vk̄. (3.3)

We assume that Vk̄ is the high resolution space on which we want to solve
(2.3), but where the condition number of the matrix Ak̄ is bad. On the other
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end of the spectrum, we assume that the solution of (2.3) on V1 is easily possible.
We restrict the discussion to model problem (2.16) for simplicity. The discrete
problems associated with the hierarchy of spaces (3.3) read:

Find uk ∈ Vk such that

a(uk, vk) = (f, vk), ∀vk ∈ Vk. (3.4)

Define the operator Ak : Vk −→ Vk
? by

(Akvk, wk) = a(vk, wk), ∀vk, wk ∈ Vk. (3.5)

In terms of the operator Ak, the discretised equation (3.4) can be written as

Akuk = fk, (3.6)

where fk ∈ Vk satisfies

(fk, vk) = (f, vk), ∀vk ∈ Vk. (3.7)

Definition 3.2.2. Given a hierarchy of spaces like in (3.3), a multigrid method
consists of the following components:

1. A smoother Rk acting on the level space Vk, usually an iterative method like
Richardson, Jacobi, Gauß-Seidel or a Schwarz method.

2. A coarse grid solver solving the problem on V1 exactly.

3. Transfer operators between the levels Vk−1 and Vk.

We refer the reader to [23] for the analysis of smoothers for multigrid algo-
rithms. For standard finite element methods, the transfer operator is typically
the embedding operator. The transfer in opposite direction is achieved by the
L2-projection. We recall their definition following [33].

Definition 3.2.3 (Intergrid Transfer Operators). The coarse-to-fine in-
tergrid transfer operator

Ikk−1 : Vk−1 −→ Vk (3.8)

is taken to be the natural injection. In other words,

Ikk−1v = v, ∀ v ∈ Vk−1. (3.9)

The fine-to-coarse intergrid transfer operator

Ik−1
k : Vk −→ Vk−1 (3.10)

is defined to be the transpose of Ikk−1 with respect to the L2-inner product (·, ·). In
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other words,

(Ik−1
k w, v) = (w, Ikk−1v), ∀ v ∈ Vk−1, ∀w ∈ Vk. (3.11)

On a given level Vk, the multigrid method consists of an alternating sequence
of smoothing steps and coarse grid corrections, where the latter consist of a
projection of the residual to the space Vk−1 and then recursive application of
the same sequence. The standard multigrid algorithm is defined as a process
which produces a function MGk(w(0), fk) ∈ Vk, an improved approximation to
the solution uk = A−1

k fk of (3.6). Here, k is the grid level, w(0) ∈ Vk is a given
approximation to the solution uk , and fk ∈ Vk?. A standard presentation of this
algorithm is given below.

Algorithm 2: The kth Level Iteration of the Multigrid Algorithm.
For k = 1,MG1(w(0), f1) is the solution obtained from a direct method. In
other words,

MG1(w(0), f1) = A1
−1f1. (3.12)

For k > 1,MGk(w(0), fk) is obtained recursively in three steps.

1. Pre-smoothing step: apply µ steps of a Richardson iteration
preconditioned with the smoother Rk:

w(i+1) = w(i) +Rk(fk − Akw(i)), 0 ≤ i ≤ µ− 1. (3.13)

2. Coarse grid correction step: let q(0) ∈ Vk−1 and fk−1 ∈ Vk−1
? such that

fk−1 = Ik−1
k (fk − Akw(µ)), q(0) = 0. (3.14)

Compute
q(i) =MGk−1(q(i−1), fk−1), 1 ≤ i ≤ p. (3.15)

Then,
w(µ+1) = w(µ) + Ikk−1q

(p). (3.16)

3. Post-smoothing step: apply ν steps of a Richardson iteration
preconditioned with the smoother Rk:

w(i+1) = w(i) +Rk(fk − Akw(i)), µ+ 1 ≤ i ≤ µ+ ν. (3.17)

Then, the output of the k-th level iteration is

MGk(w(0), fk) := w(µ+ν+1). (3.18)

Remark 3.2.1. The kth level iteration of the multigrid method has three parame-
ters, the numbers of pre- and post- smoothing steps µ and ν, as well as the number
of coarse grid iterations p. The parameters are taken as positive integers and of
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the three, p has a strong impact on the structure of the iteration. It defines what
is called the cycle type. For p = 1, the method is called a V-cycle method, while
for p = 2 it is called a W-cycle method. The complexity analysis of the method
shows that higher values of p do not lead to efficient algorithms.

The kth level iteration results in a very simple error reduction process. More
precisely, we can analyse directly the relation between the initial error uk − w(0)

and the final error uk − MGk(w(0), fk) after one application of the multigrid
process on the kth subspace in terms of a linear operator Ek (cf (3.20)). The
latter is defined in terms of the following orthogonal projection operator.

Definition 3.2.4. Let Pk : V −→ Vk be the orthogonal projection with respect to
a(·, ·). In other words, for any v ∈ V , Pkv ∈ Vk and

a(v − Pkv, w) = 0, ∀w ∈ Vk. (3.19)

Definition 3.2.5. The error operator Ek : Vk −→ Vk is defined recursively by

E1 = 0

Ek = (I −RkAk)
ν [I − (I − Ek−1)Pk−1]p(I −RkAk)

µ, k ≥ 1.
(3.20)

In other words, Ek relates the final error of the kth level iteration to the initial
error by the relation

Ek(uk − w(0)) = uk −MGk(w(0), fk). (3.21)

Relation (3.21) can be proved by induction. We refer to the paper [24] for a
version of the proof.

The multigrid process is often applied repeatedly to develop an iterative
method for solving Ak̄uk̄ = fk̄. Given an initial approximation v0, subsequent
approximations are defined by

vi+1 =MG k̄(vi, f), ∀ i = 0, 1, . . . (3.22)

From the above discussion, the error u− vi is given by

u− vi = (Ek̄)
i(u− v0). (3.23)

Consequently, the multigrid iterative process corresponds to a linear iterative
procedure. This can be written equivalently as

ui+1 = ui +Bk̄(f − Ak̄ui), (3.24)

for the operator Bk̄ = (I − Ek̄)A−1
k̄
. In particular, BM

k satisfies

I −BkAk = Rk[(I − Pk−1) + (I −Bk−1Ak−1)Pk−1]Rk, (3.25)

i.e., Ek = I − BkAk, for k = 1, . . . , k̄. This is an important observation because
it allows the use of the multigrid process to define preconditioning operators
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Bk̄. For example, the operator Bk̄ can be used as a preconditioner with the
conjugate gradient method to develop more effective iteration procedures in many
applications.

This linear iterative procedure can be thought of as defining an operator
Bk̄ : Vk̄ −→ Vk̄ which approximately inverts Ak̄. The goal of the multigrid analysis
is to provide estimates for either the spectrum of Bk̄Ak̄ or an appropriate norm
of I −Bk̄Ak̄.

3.2.2 The Full Multigrid Algorithm

In the application of the kth level iteration to Equation (3.6), we take the initial
guess to be the prolongation Ikk−1vk−1, where vk−1 is the approximate solution
obtained solving Ak−1uk−1 = fk−1. Then we apply the kth level iteration r times.
The full multigrid algorithm therefore consists of the following nested iterations
(following [33]) :

Algorithm 3: The Full Multigrid Algorithm.
For k = 1, the approximate solution is obtained by applying a direct or
iterative method to A1u1 = f1.
For k ≥ 2, the approximate solutions ûk are obtained via the iteration

u
(0)
k = Ikk−1ûk−1

u
(l)
k =MGk(u(l−1)

k , fk), 1 ≤ l ≤ r,

ûk = u
(r)
k .

(3.26)

It turns out that the techniques used for the analysis of the V -cycle and
W -cycle, respectively are quite different. We recall the basic convergence and
complexity results of the symmetric V -cycle algorithm, corresponding to Algo-
rithm 2 with p = 1 and µ = ν. The following theorems show that the kth level
iteration scheme for a V -cycle method has a contraction number bounded away
from 1 for every ν. In turn, the convergence of the full multigrid method is a
simple consequence of the convergence of the kth level iteration. We recall the
following classical results by Braess and Hackbusch (cf. [18]):

Theorem 3.2.1 (Convergence of the kth Level Iteration for the V cycle). Let ν
be the number of smoothing steps. Then,

‖uk −MGk(w(0), fk)‖E ≤
C?

ν + C?
‖uk − w(0)‖E (3.27)

Hence, the kth level iteration for any ν is a contraction, with the contraction
number independent of k.

Next, follows Theorem 3.2.2, which only consideres the piecewise linear case,
since higher-order finite element equations would be preconditioned by a low-
order solver.
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Theorem 3.2.2 (Full Multigrid Convergence). If the kth level iteration is a
contraction with a contraction number independent of k and if r in Algorithm 3
is large enough, then there exists a constant C > 0 such that

‖uk − ûk‖E ≤ Chk|u|H2(Ω). (3.28)

We finally turn our attention to the work estimate and recall the following
main theorem.

Theorem 3.2.3. The work involved in the full multigrid algorithm is O(Nk),
where Nk = dim(Vk).

We refer to [33] for a version of the proof.
For the theory regarding the general case, see [83]. For a detailed theory of

the convergence analysis of the multigrid method we refer to [15, 25, 94, 24, 32].
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3.3 Smoothed-Multilevel Methods

Multilevel methods can be easily motivated by taking an in-depth look at simple
smoothing iterative schemes, such as Richardson, Gauss-Seidel, Jacobi, SOR (
cf., eg., [80]). As an example and prototype for all other iterative methods, in
this work we only use Richardson iteration as a smoothing iteration, but other
choices are possible, see, for example, the review in [93, 59, 21]. In the next
subsection, we consider the algebraic resolution of model problem (2.16) and
discuss Richardson smoothing iteration, a firm understanding of which is essential
for the development of multilevel concepts. With an appreciation of how the
conventional methods work and why they fail, Smoothed-Multilevel Methods can
be introduced as a natural remedy for restoring and improving the performance
of basic relaxation schemes. We discuss them in Section 3.3 and provide rigorous
algebraic analysis in Section 3.4.

3.3.1 Smoothing iterations

Let Nk = dim(Vk), then the discrete systems (3.4) lead to linear algebraic systems
of type

Akuk = fk in RNk , (3.29)

where Ak denotes the symmetric positive definite (SPD) stiffness matrix with
entries a(k)

ij := (∇ϕ(k)
j ,∇ϕ(k)

i ) ∀ i, j = 1, .., Nk, uk = [u1, . . . , uNk ]
T denotes the

coefficients vector in RNk of the discrete approximation uk =
∑Nk

j=1 ujϕ
(k)
j ∈ Vk

and fk = [f1, . . . , fNk ]
T is the vector with entries fj = (f, ϕ

(k)
j ), ∀j = 1, . . . , Nk.

Let
{
w

(k)
j

}Nk
j=1

denote the eigenvectors of Ak, which by the Spectral Theorem

form an orthonormal basis of RNk (cf., eg., [66]), and let

0 < λ
(k)
1 ≤ ... ≤ λ

(k)
Nk
, (3.30)

denote the corresponding eigenvalues, ordered non-decreasingly. Eigenvectors
corresponding to higher eigenvalues are increasingly oscillatory, i.e., their Ak−
norm is larger. This follows trivially from the fact that λ(k)

i = ‖w(k)
i ‖2

Ak
/‖w(k)

i ‖2
`2 =

‖w(k)
i ‖2

Ak
.

Next, we define the notions of smoothing iteration and Richardson iteration.
For simplicity of the exposure, we omit the index k, whenever we’re referring to
the linear systems (3.29), and consider the generic form

Au = f in RN . (3.31)

Definition 3.3.1. (Smoother vector) Consider two generic vectors a,b ∈ RN ,
which can be uniquely decomposed as a =

∑N
i=1 aiwi and b =

∑N
i=1 biwi. We

say that b is smoother than a if ‖b‖ ≤ ‖a‖ for a suitable norm ‖ · ‖, and its
components along the most oscillatory eigenvectors are smaller. By convention
we define as “oscillatory” the components from N/2 onwards. Then b is smoother
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than a if bi ≤ ai for i ∈ (N/2, N ].

Definition 3.3.2. (Smoothing Iteration) Given an initial guess u(0) ∈ RN ,

consider the classical linear iteration for the resolution of (3.31) of the form

u(i+1) = u(i) +R(f − Au(i)) for i = 0, 1, . . . , (3.32)

with some nonsingular matrix R. Let u denote the exact solution of (3.31), we
denote by e(i) := u − u(i) the error after i iterations. We say that (3.32) is a
smoothing iteration if (I −RA)e(i) is smoother than e(i) for any i.

The matrix I − RA is called the iteration matrix and it is generally denoted
by M := I −RA. From (3.32) it is immediate that

e(i+1) = e(i) −R(f − Au(i)) = e(i) −RAe(i) = Me(i) = · · · = M i+1e(0). (3.33)

Definition 3.3.2 and equation (3.33) imply that, for smoothing iterations, the
iteration matrix M has a “smoothing" effect on the error, by dumping the highly
oscillatory components of the error.

Definition 3.3.3. (Richardson Iteration) Given a fixed parameter ω ∈ R and
an initial guess u(0), Richardson iteration for the resolution of (3.31) takes the
form:

u(i+1) = u(i) + ω(f − Au(i)) for i = 0, 1, . . . (3.34)

Richardson iteration can also be written as

u(i+1) = (I − ωA)u(i) + ωf for i = 0, 1, . . . (3.35)

Remark 3.3.1. Richardson iteration (3.34) is of type (3.32) where the matrix R
is given by ωI. The optimal choice for the parameter ω is ω = 1/γ, where γ is a
damping parameter of the same order as the spectral radius of A

ρ(A) := max{λi|1 ≤ i ≤ N}. (3.36)

In practical situations, γ = ρ(A) or γ ≥ ρ(A) ( see, eg., [61, 80]).

Remark 3.3.2. Richardson iteration (3.34) is a smoothing iteration. Consider
the errors after respectively i, and i+ 1 Richardson iterations

e(i) =
N∑
j=1

c
(i)
j wj and e(i+1) =

N∑
j=1

c
(i+1)
j wj (3.37)

for some coefficients {c(i)
j }Nj=1 and {c(i+1)

j }Nj=1. Observe that by construction, M
and A share the same eigenvectors {wi}Ni=1, and we can easily derive from the
error propagation formula (3.33) that

c
(i+1)
j = θjc

(i)
j ∀j = 1, . . . , N, (3.38)
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Figure 3.1: Number of required iterations to bring the error for different compo-
nents below 1e-8 on a one-dimensional problem with 161 uniformly distributed
degrees of freedom.

where θj := 1 − λj/γ is the j-th eigenvalue of the iteration matrix M , and it
represents the reduction factor associated to the error component in the direction
of wj. Notice that the definition of θj is independent on the iteration step i. For
the practical choice γ = 1/ρ(A),

θ1 = 1− λ1

λN
≈ 1 and θN = 1− λN

λN
= 0. (3.39)

This implies that after a single Richardson iteration

c
(i+1)
1 = θ1c

(i+1)
1 ≈ c

(i+1)
1 and c

(i+1)
N = θNc

(i)
N = 0, (3.40)

i.e. the slowest converging component corresponds to the smallest eigenvalue λ1,
while the fastest converging component corresponds to the largest eigenvalue λN .

In general, the reduction factor for the Richardson iteration is “close to zero”
for components corresponding to large eigenvalues and close to one for compo-
nents corresponding to small eigenvalues. After a single Richardson iteration, the
high oscillatory components will have been strongly reduced.

Figure 3.1 shows in a practical example the number of required iterations
to bring the error in each component below 10−8 for a one-dimensional model
problem with 161 uniformly distributed degrees of freedom, showing how higher
frequencies require a smaller number of iterations.

This characteristic of Richardson iteration makes it a good smoother candidate
for many multilevel algorithms, where one solves exactly on a coarse grid (reaching
convergence in all components), and then performs a sequence of prolongations
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followed by a fixed number of smoothing steps, to improve convergence in the
finer grids, under the assumptions that lower frequencies have already been taken
care of in the previous levels.

This is achieved by considering the canonical embedding operator which is
represented by the coarse to fine operator (3.8). We still denote by Ik+1

k : RNk →
RNk+1 the corresponding discrete linear operator. Notice that its matrix repre-
sentation won’t be the identity matrix, since we’re using different basis functions
in Vk and in Vk+1. As an example, consider linear finite element functions. These
are uniquely determined by their values in the nodes. For nodes that exist both
in Tk and Tk+1, the value at those nodes can be determined in Tk and it remains
the same. For the nodes in Tk+1 that are not in Tk, their values are determined
by linear interpolation.

We will refer to multilevel algorithms that adopt the above procedure of res-
olution as smoothed-multilevel methods.

Algorithm 4: The Smoothed-Multilevel Algorithm.
For k = 1, û1 = A−1

1 f1.
For k ≥ 2, the approximate solutions ûk are obtained iteratively from

u
(0)
k = Ikk−1ûk−1

u
(i)
k = u

(i−1)
k + ω(k)(fk − Aku(i−1)

k ), 1 ≤ i ≤ l,

ûk = u
(l)
k .

(3.41)

In order to understand the principle behind many multilevel algorithms, and
behind our S-AFEM algorithm (cf. Chapter 5), in [72] we provide a discussion
on a simple one-dimensional example, which we present in the next subsection.

3.3.2 Smoothed-Multilevel Methods

Consider model problem (2.16) with constant function f = 1 on the right-hand
side. We solve (without preconditioner) using either the CG method or Richard-
son iterations, on a sequence of uniformly refined grids.

We set a stopping tolerance of 10−6, and fix a maximum number of iterations
to 1, 000, 000. Moving from one level to the next, the mesh is globally refined,
doubling the number of cells of the grids.

Tables 3.1 and 3.2 show a comparison between the number of iterations re-
quired to reach convergence when we apply the two iterative methods with the
initial guess set to zero, or to the prolongation of the solution from the previous
cycle.

Surprisingly, the CG method does not seem to gain any advantage from the
prolongation step. On the other hand, Richardson iteration shows a dramatic
decrease in the number of required iterations when we use the prolongation of
the previous solution as initial guess for the iterative procedure.
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After the first few levels, Richardson iteration becomes even faster than CG,
thanks to its spectral behaviour. The convergence on the coarsest levels captures
the less oscillatory part of the solution. Their prolongation allows the iterative
solver to start from an already good approximation of the solution in its low
frequency part. Intuitively, the prolongation operation substantially leaves unal-
tered the low frequencies of the previous mesh. By applying smoothing iterations,
we’re converging towards the solution in the highest frequencies.

Level DoF Iterations CG Iterations CGProl
2 41 20 20
3 81 40 40
4 161 80 80
5 321 160 160
6 641 320 320
7 1281 640 640
8 2561 1280 1280

Table 3.1: Comparison of the number of iterations between CG without prolon-
gation and CG with prolongation with stopping tolerance of 10−6 and maximum
number of iterations 1, 000, 000.

Level DoF Iterations Richardson Iterations RichardsonProl
2 41 5523 1333
3 81 20321 1072
4 161 74115 119
5 321 267713 9
6 641 955805 2
7 1281 ****** 2
8 2561 ****** 2

Table 3.2: Comparison of the number of iterations between Richardson and
Richardson with prolongation with stopping tolerance of 10−6 and maximum
number of iterations 1, 000, 000.

The CG method, on the other hand, is a projection method of Krylov sub-
space type. The main idea of the projection process in general is to find an
approximate solution of system (3.31), where the dimension N is possibly very
large, by solving at each step a system of much smaller dimensionality, which is
obtained by projecting the original system (3.31) onto a suitable subspace of RN

([67]). Specifically, the approximate solution at iterative step m is searched in
x0 +Km(r0, A), where x0 is a given initial guess and Km(r0, A) ⊂ RN is the search
space given by the Krylov subspace of dimension m� N generated by A and r0

and defined as

Km(r0, A) := span{r0, Ar0, A
2r0, . . . , A

m−1r0}, (3.42)

where r0 := f − Ax0 is the initial residual. Krylov subspaces form a nested
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sequence of subspaces.
Definition (3.42) implies that the error at step n can be written as

en = pn(A)e0, (3.43)

where pn ∈ P(0,1)
n := {p ∈ Pn, s.t. p(0) = 1}.

In particular, the optimality property of CG (cf. eg. [67]) implies that

‖en‖2
A = min

p∈P(0,1)
n

‖p(A)e0‖2
A. (3.44)

In each iteration, the conjugate gradient method improves the convergence in
all error components relying on the optimality property (3.44), instead of captur-
ing only the high oscillatory ones. A particular characteristic is that they save all
information along the way, i.e., they use at any given iteration the information
computed in all previous iterations.

On the other hand, by their nature, smoothing iterations combine aspects of
the underlying PDE and the corresponding finite element discretisation. Despite
being far less competitive as solvers for large systems in general, smoothing it-
erations turn out to be very useful in our context, similarly to what happens in
multigrid methods: they use the spectral decomposition of M and exploit the
strong relation between eigenfunctions of the iteration matrix M and the under-
lying mesh in order to take advantage of coarser meshes.

3.4 Algebraic Error Analysis for Smoothed-Multilevel
Methods

In this section we analyse the algebraic error propagation in smoothed-multilevel
methods following [72]. We first provide a one step error propagation recursive
formula, and afterwards we provide a compact error propagation formula after
introducing the Frequency-Coupling and Smoothing (FCS) Matrices. Finally, we
provide the algebraic error analysis under the assumption that the prolongation
operator preserves low frequencies from the previous level.

3.4.1 Error propagation

Theorem 3.4.1 (Error propagation ([72])). Let e(l)
k and e

(l)
k+1 denote the al-

gebraic errors after l smoothing iterations respectively at step k and k + 1, for
k = 1, . . . , k̄ − 1. Let

ak+1 := uk+1 − Ik+1
k uk ∈ RNk+1 (3.45)

denote the difference between the exact algebraic solution uk+1 at level k + 1 and
the prolongation of the exact algebraic solution uk from the previous level k to the
current level k + 1, for k = 1, . . . , k̄ − 1. Then, the following error propagation
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recursive formula holds true

e
(l)
k+1 = Mk+1

l(ak+1 + Ik+1
k e

(l)
k ), for k = 1, . . . , k̄ − 1. (3.46)

Proof. Let e1 = u1 − uc1 be the error after the first cycle k = 1, where uc1 is
the numerical computed approximation. After prolongating uc1 to the next level
k = 2, there is an initial error

e
(0)
2 = u2 − I2

1u
c
1

= u2 − I2
1u1 + I2

1e1

= a2 + I2
1e1.

(3.47)

After l smoothing iterations there is a smoothed approximation u
(l)
2 produced

and the final error is given by

e
(l)
2 = M2

le
(0)
2

= M2
la2 +M2

lI2
1e1.

(3.48)

Let now k = 2, 3, . . . , k̄−1 be generic. We prolongate the smoothed approximation
u

(l)
k = uk − e

(l)
k from step k to obtain the initial guess for step k + 1

u
(0)
k+1 = Ik+1

k u
(l)
k

= Ik+1
k uk − Ik+1

k e
(l)
k ,

(3.49)

which produces the initial error

e
(0)
k+1 = uk+1 − u

(0)
k+1

= uk+1 − Ik+1
k uk + Ik+1

k e
(l)
k

= ak+1 + Ik+1
k e

(l)
k .

(3.50)

After l smoothing iterations the final error at step k + 1 is

e
(l)
k+1 = Mk+1

le
(0)
k+1

= Mk+1
l(ak+1 + Ik+1

k e
(l)
k ),

(3.51)

which proves the recursive formula.

Observation 3.4.1. If we repetitively apply the one-step error propagation equa-
tion (3.51), we get a recursion of the type

e
(l)
k+1 = Mk+1

l(ak+1 + Ik+1
k e

(l)
k )

= Mk+1
l(ak+1 + Ik+1

k (Mk
l(ak + Ikk−1e

(l)
k−1)))

. . .

= Mk+1
l(ak+1 + Ik+1

k Mk
l(ak + Ikk−1Mk−1

l(ak−1 + . . . ))).

(3.52)
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By applying all the multiplications extensively we get the following extended
error propagation formula for Smoothed-Multilevel Methods

e
(l)
k+1 = Mk+1

lak+1 +Mk+1
lIk+1
k Mk

lak +Mk+1
lIk+1
k Mk

lIkk−1Mk−1
lak−1 + . . .

· · ·+Mk+1
lIk+1
k Mk

lIkk−1Mk−1
l · · ·M3

lI3
2M2

la2

+Mk+1
lIk+1
k Mk

lIkk−1Mk−1
l · · ·M3

lI3
2M2

lI2
1e1.

(3.53)

Observation 3.4.2. If we let

a := ak+1 + Ik+1
k Mk

lak + Ik+1
k Mk

l . . . Ikk−1Mk−1
lak−1

· · ·+ Ik+1
k Mk

lIkk−1M
l
k−1 · · ·M3

lI3
2M2

lI2
1e1,

(3.54)

then equation (3.53) becomes

e
(l)
k+1 = Mk+1

la, (3.55)

which means that the algebraic error at any step k+ 1 is the result of l smoothing
iterations applied to the vector a that defines the error accumulated from prolon-
gating the contribution of the algebraic errors coming from all previous steps.

Definition 3.4.1 (Frequency-Coupling and Smoothing (FCS) Matrices).
Define the frequency-coupling and smoothing (FCS) matrix

Bj+1,j := Ij+1
j M l

j ∈ RNj+1×Nj for j = 2, . . . , k. (3.56)

and the frequency-coupling and smoothing product (FCSP)

Bk+1,i := Bk+1,k . . . Bi+1,i ∈ RNk+1×Ni for i = 2, . . . , k. (3.57)

Theorem 3.4.2 (Error propagation formula for Smoothed-Multilevel
Methods ([72])). The algebraic error in Smoothed-Multilevel Methods satisfies
the following error propagation formula for any step k, for k = 2, . . . , k̄ − 1

e
(l)
k+1 = Mk+1

l

(
ak+1 +

k∑
j=2

Bk+1,jaj + Bk+1,2I
2
1e1

)
, (3.58)

where the vectors aj are defined by (3.45).

Proof. The proof is a trivial consequence of substituting Definition 3.4.1 in the
extended error propagation formula (3.53), which gives

e
(l)
k+1 = Mk+1

l(ak+1 +Bk+1,kak + . . .

· · ·+Bk+1,kBk,k−1 . . . B3,2a2 +Bk+1,kBk,k−1

. . . B3,2I
2
1e1)

= Mk+1
l(ak+1 + Bk+1,kak + Bk+1,k−1ak−1+

· · ·+ Bk+1,2a2 + Bk+1,2I
2
1e1).

(3.59)
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Next, we define the frequency cutoff projection operators, which are a useful
tool to analyse the structure of the FCS matrix Bj+1,j. In Theorem 3.4.3 we
provide a decomposition of the FCS matrix in the product of the prolongation
matrix Ij+1

j with the low frequency cutoff projection operator and another matrix,
which has a contraction effect on the norms of the vectors.

Definition 3.4.2 (Frequency cutoff operators). We define the projection op-
erator Lj : RNj → RNj , such that v 7→ Ljv :=

∑Nj/2
i=1 viw

(j)
i and the projection

operator Hj : RNj → RNj , such that v 7→ Hjv :=
∑Nj

i=Nj/2+1 viw
(j)
i .

In particular,

Lj ⊕Hj = IdNj and ‖v‖2 = ‖Ljv‖2 + ‖Hjv‖2 ∀v ∈ RNj . (3.60)

Theorem 3.4.3 (Structure of the FCS matrix). ([72]) Let j = 2, . . . , k be
fixed. The FCS matrix can be decomposed as

Bj+1,j = Ij+1
j Lj + Cj, (3.61)

where the matrix Cj ∈ RNj+1×Nj is defined as

Cj := Ij+1
j ((Mj

l − IdNj)Lj +Mj
lHj) (3.62)

and it is such that

‖Cjv‖ ≤ c‖v‖, ∀v ∈ RNj , where c < 1. (3.63)

Proof. We apply definition (3.56) of the FCS matrix and relation (3.60) and we
get

Bj+1,j = Ij+1
j Mj

l

= Ij+1
j Mj

lLj + Ij+1
j Mj

lHj

= Ij+1
j Lj + (Ij+1

j Mj
lLj − Ij+1

j Lj + Ij+1
j Mj

lHj)

= Ij+1
j Lj + Cj,

(3.64)

where Cj := Ij+1
j ((Mj

l − IdNj)Lj +Mj
lHj).

Next, in order to prove (3.63), consider v ∈ RNj and estimate

‖Cjv‖2 = ‖Ij+1
j ((Mj

l − IdNj)Lj +Mj
lHj)v‖2

= ‖((Mj
l − IdNj)Lj +Mj

lHj)v‖2

≤ (‖(Mj
l − IdNj)Ljv‖+ ‖Mj

lHjv‖)2

≤ 2(‖(Mj
l − IdNj)Ljv‖2 + ‖Mj

lHjv‖2),

(3.65)

where we’ve applied the triangle inequality and the discrete Cauchy-Schwarz in-
equality.
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Consider the first term in the rhs

‖(Mj
l − IdNj)Ljv‖2 =

∥∥∥∥∥∥
Nj/2∑
i=1

(
(θ

(j)
i )l − 1

)
viw

(j)
i

∥∥∥∥∥∥
2

=

Nj/2∑
i=1

(
(θ

(j)
i )l − 1

)2

v2
i

≤
(

(θ
(Nj/2)
i )l − 1

)2
Nj/2∑
i=1

v2
i

=
(

(θ
(j)
(Nj/2))

l − 1
)2

‖Ljv‖2.

(3.66)

Likewise,

‖Mj
lHjv‖2 =

∥∥∥∥∥∥
Nj∑

i=Nj/2+1

(θ
(j)
i )lviw

(j)
i

∥∥∥∥∥∥
2

=

Nj∑
i=Nj/2+1

(θ
(j)
i )2lv2

i

≤ (θ
(j)
Nj/2+1)2l

Nj∑
i=Nj/2+1

v2
i

= (θ
(j)
Nj/2+1)2l‖Hjv‖2.

(3.67)

We let c := 2 max

{(
(θ

(j)
(Nj/2))

l − 1
)2

, (θ
(j)
Nj/2+1)2l

}
< 1, we substitute it into

(3.65), and we get estimate (3.63).

3.4.2 Non-interacting Frequency Coupling Hypothesis

In order to give a qualitative interpretation to the error propagation formula, we
consider the following (reasonable) Assumption 3.4.1 :

Assumption 3.4.1 (Non-interacting Frequency Coupling Hypothesis for
Smoothed-Multilevel Methods ([72])). We assume that

LjI
j
j−1Lj−1 = Ijj−1Lj−1 ∀j = 1, . . . k, (3.68)

i.e. the prolongation operator preserves low frequencies from the previous level.

Finally, we propose the main result of the section, which is given in Theorem
3.4.4 where we derive the propagation formula for the algebraic error under hy-
pothesis (3.68). For the proof, we take advatage of decomposition (3.61) of the
FCS matrix to obtain a decompostion for the FCSP (3.57) and we substitute the
results to Theorem 3.4.2.
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Theorem 3.4.4 (Error propagation formula for smoothed-multilevel meth-
ods under the Non-interacting Frequency Coupling Assumption). The
algebraic error in smoothed-multilevel methods satisfies the following error prop-
agation formula for any step k, for k = 2, . . . , k̄ − 1

e
(l)
k+1 = Mk+1

l

(
ak+1 +

k∑
j=2

Ik+1
j Ljaj + Ik+1

2 L2I
2
1e1+

k∑
j=2

Dk+1,jaj + Dk+1,2I
2
1e1

)
, (3.69)

where the matrix Dk,m ∈ RNk×Nm is such that ‖Dk,mv‖ ≤ c‖v‖, ∀v ∈ RNm, where
c < 1, the matrix Ikm := Ikk−1 . . . I

m+1
m , ∀k > m+ 1 and the vectors aj are defined

by (3.45), i.e., aj := uj − Ijj−1uj−1.

Proof. Observing that

Bk,m = Bk,k−1Bk−1,m, ∀k > m+ 1, (3.70)

we can recursively apply the decomposition of Bk,k−1, and, using assumption 3.68,
we conclude that

Bk,m = IkmLm + Dk,m, (3.71)

where the matrix Dk,m is in RNk×Nm , and contains all the mixed products. In
particular, in every one of these products, there will always be at least one of the
matrices Cj for some j, that is,

‖Dk,mv‖ ≤ c‖v‖, ∀v ∈ RNm , (3.72)

where c < 1. We conclude by substituting decompostion (3.71) to the error
propagation formula (3.58) in Theorem 3.4.2.

Remark 3.4.1. Theorem 3.4.4 quantifies the algebraic error that is accumulated
after k+ 1 cycles in smoothed-multilevel methods, under the assumption that low
frequencies are preserved by the prolongation operator. The smoothing matrix
at cycle k + 1 is responsible for dumping the most oscillatory part of this error.
There is a contribution given by the accumulation of all low frequency-parts of the
errors of all previous cycles (c.f. second and third term in the summation in the
rhs of (3.69)), which is expected to be “small", since low frequencies of the exact
algebraic solution at a mesh are close to the low frequencies of the exact algebraic
solution at the successive mesh. Finally there is a last type of contribution, which
is given by mixed products (cf. fourth and fifth term in the summation in the rhs
of (3.69)), which is also “small" due to c < 1.

Notice that Assumption 3.4.1 is only useful to distinguish between high and
low frequency parts in the error propagation formula, but it is not essential for
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Figure 3.2: An example of grid refinement that does not satisfy Assumption 3.4.1

its proof, given in Theorem 3.4.2. The assumption is useful to identify qualita-
tively how the error propagates between successive refinement levels, and can be
interpreted as a condition on the distribution of the degrees of freedoms between
grids on different levels. In particular, it implies that all low eigenfunctions of the
space Vj−1, in particular those corresponding to the first Nj−1/2 eigenvalues, can
be represented exactly by low frequencies of Vj, i.e., they should be representable
as linear combinations of the first Nj/2 eigenfunctions of Vj.

In general, it is not trivial to verify this assumption for practical applications.
In fact, for finite element methods of elliptic equations with variable coefficients
based on general triangulations, the eigenvalue and eigenvectors of the stiffness
matrix are not easy to find out. Indeed it is even harder than solving the linear
algebraic equation (cf. eg., the many references [93], [26], [62], [21]). However,
it is safe to state that local refinement in finite element simulations introduces
more frequencies in the higher part of the spectrum, perturbing only slightly the
lowest part of the spectrum.

Assumption 3.4.1 may also be satisfied only approximately. In this case, The-
orem 3.4.4 should be modified to take this into account. The main statement
would still remain valid, but we would also have higher order error terms appear-
ing in the error propagation formula (3.69), due to the inexactness of the low
frequency prolongations.

Figure 3.2 provides an example of grid refinement that may be troublesome
for the above hypothesis: when passing from the left grid to the right one, we are
introducing some low-frequency terms (in the middle left side of the mesh), that
may invalidate the assumption. Notice that, from the practical point of view, the
assumption is verified for most refinements that do not add too many degrees of
freedom between refinement levels.

When this occurs, it may be necessary to use higher frequencies to describe
the low modes of the previous grid, but these high frequencies would be damped
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very quickly by the smoothing steps nonetheless, thanks to the presence of the
matrix M l

k+1 in front of the propagation formula (3.69).
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Chapter 4

A Posteriori Error Analysis with
algebraic error

This chapter is dedicated to a posteriori error analysis with algebraic error. The
purpose is to expand the classical theory on residual-based a posteriori error
estimators that we introduced in Section 2.3, and which are historically defined
and derived in terms of the Galerkin solution.

We dedicate Section 4.1 to discuss the need to account for inexact algebraic
approximations. Our attention is devoted to the main issues that a posteriori error
analysis accounting for the algebraic error has to deal with. More specifically, the
derivation and the construction of the a posteriori estimator should be done on
the available inexact approximation, instead of the Galerkin solution and the
algebraic error should be incorporated in the estimate.

In Section 4.2, we are going to prove a bound on the estimator for a generic
function in terms of the estimator for the Galerkin solution and the corresponding
algebraic error, following [72].

Finally, in Section 4.3 we slightly touch upon a still ongoing work in [71] that
quantifies qualitatively different contributions of different eigenfunctions in the
expression of the error estimator.

4.1 A Posteriori Error Estimates with Algebraic
Error

When solving real-world practical applications, the main difficulty one has to face
is that exact (or even near-to-exact) solutions of the algebraic problem associated
to finite element problems cannot be computed. The approximation uch that one
obtains in a computer, does not satisfy the Galerkin property (2.7). The total
error can be written as the sum of two contributions

u− uch︸ ︷︷ ︸
total error

= (u− uh)︸ ︷︷ ︸
discretisation error

+ (uh − uch)︸ ︷︷ ︸
algebraic error

. (4.1)
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The algebraic error may have a significant effect on the computed approxima-
tion, and the solution of the algebraic problem has to be considered an indivisible
part of the overall solution process ([76]).

This issue is reflected in adaptive mesh refining procedures. The common
practice in computational sciences and engineering community has been to replace
uh by uch in the expression of the error estimator η during the module Estimate.
As a result, there are some urgent challenges that the derivation and application
of the a posteriori error estimates should resolve

1. The derivation and the construction of the a posteriori estimator should be
done on the available inexact approximation uch.

2. The estimation of the total error u − uch should incorporate the algebraic
error uh − uch.

The classical reliability and efficiency bounds (2.20) and (2.21) have to be
consequently revised and extended to take into account the above points.

A vast literature proposes the use of standard residual-based a posteriori error
estimator on the discretisation error as a basic building block and extends it, using
various heuristics arguments, to incorporate the algebraic error. We refer to the
seminal and investigative paper by Papež and Strakoš [75] and the references
therein for various approaches.

Residual-based a posteriori error estimates for the total error for the model
problem have been pubblished in [16], [5] and [75].

In [75], the authors give the detailed proof of the residual-based upper bound
on the energy norm of the total error

|u− vh|21 ≤ 2C2(J2(vh) + osc2) + 2C2
intp|uh − vh|21, (4.2)

for vh ∈ Vh, with the positive multiplicative factors C and Cintp that are indepen-
dent of u, uh and h, but depend on the shape regularity of the triangulation. The
term accounting for the algebraic error is scaled by a multiplicative factor Cintp
that was introduced in [40]. It represents however a worst case scenario that can
lead to an overestimation and it is in general not easy to estimate.

As one of the main still unresolved challenges, the authors point out that a
tight upper bound of |uh − uch|1 is not available yet. The use of finite precision
arithmetic and the neglection of roundoff errors may therefore lead to inaccurate
and unrealistic estimates.

Last but not least, the authors emphasize that since a lot of methodological
difficulties are there already for a simple model problem such as the Poisson
problem, it is not clear whether the extension of the estimator to incorporate
the algebraic error for more complicated model problems could lead to further
complications.

The above discussed issues make the application of the residual-based error es-
timator for the mesh refinement adaptivity in presence of algebraic errors an open
problem, as claimed in [75]. Moreover, when considering h-adaptive algorithms,
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another difficulty is added: in the bound (4.2) the algebraic error is estimated
globally and its local contributions cannot guarantee an indication of the spa-
tial distribution of the discretisation error over the domain (cf. [67] and [74]). In
this regard, there have been recently developed flux reconstruction methodologies
that introduce robust stopping criteria and balance the algebraic and discretisa-
tion error; we refer to the work by [76] and to the references therein for a more
elaborated insight on the topic.

4.2 An upper bound on the Error Estimator ap-
plied to generic functions

We recall standard upper bounds on the discretisation error and lower bounds on
the total error (see [38] and [16]), and we prove an upper bound on the estimator
defined for a generic finite element function vh ∈ Vh, in terms of the estimator
defined for the Galerkin solution and the algebraic error. Let hT=diam(T ) for
T ∈ Th, hz=diam(ωz) for z ∈ Nh,int, and hE=diam(E) for E ∈ Eh. Consider the
mean value operator πωz : L1(Ω) −→ R, πωz(f) :=

∫
ωz
f/|ωz|.

For a given z ∈ Nh, define an oscillation term

oscz := |ωz|1/2‖f − πωzf‖ωz , osc :=

(∑
z∈Nh

osc2
z

)1/2

. (4.3)

For a given function vh ∈ Vh, define for E ∈ Eh and T ∈ Th

JE(vh) := h
1/2
E

∥∥∥∥[ ∂vh∂nE

]∥∥∥∥
E

, JT (vh) :=
∑
E∈∂T

JE(vh),

J(vh) :=

(∑
E∈Eh

JE(vh)
2

)1/2

=

(
1

2

∑
T∈Th

JT (vh)
2

)1/2

,

(4.4)

where [·] is the standard notation for denoting the jump of a piecewise con-
tinuous function across the edge/face E in normal direction nE and where we’ve
taken into consideration that when summing overall the elements each edge/face
is counted twice.

Lemma 4.2.1 recalls the classical upper bound on the discretization error,
which is stated and proved in [38].

Lemma 4.2.1 (Upper bound on the discretization error ([72]).). There
exists a constant C? > 0 which depends on the shape of the triangulation, on Ω,

on Γ, and which is independent of f and of the mesh-sizes hT such that

|u− uh|1 ≤ C?(osc2 + J2(uh))
1/2. (4.5)

The a posteriori residual-based estimator in the rhs of (4.5) is made up by an
oscillating-contribution (volume-contribution) that measures the variations of the
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rhs function f from its mean value πωz(f) on each patch ωz, and by an edge/face-
contribution that measures the jump of the gradient of the Galerkin solution
across the inner edges/faces. Notice that the global upper estimate (4.5) is made
up by local cell-wise estimations.

Remark 4.2.1. The proof of (4.5) is based on a quasi-interpolation operator
that was first introduced in [38]. It represents a modification of the classical
quasi-interpolation operator due to Clément ([44]) in the setting of a partition
of the unity, which has the effect that the volume contribution term (4.3) in the
a posteriori residual based estimate (4.5) is smaller compared to the one in the
standard estimate according to [90], [2]. The edge/face-contribution (4.4) domi-
nates the residual based standard a posteriori estimates for affine finite element
approximations ([38], [40]), and if the right-hand-side f is smooth, a Poincaré
inequality shows that the oscillating term (4.3) is of higher order ([38]).

In [16], the authors use standard bubble-function techniques of [89] to prove a
global lower bound on the |·|1-norm distance between the true solution u ∈ H1

0 (Ω)

and a generic function vh ∈ Vh.

Lemma 4.2.2 (Lower bound on the total error). There exists a constant C? > 0

which only depends on the minimum angle of the triangulation, on Ω, on Γ, and
which is independent of f, u, uh and of the mesh-sizes hT such that

J2(vh) ≤ C?(|u− vh|21 + osc2) ∀vh ∈ Vh. (4.6)

Now we can use Lemma 4.2.1 and 4.2.1 to prove our main result for this
section.

Theorem 4.2.1. There exist positive constants C1, C2, C3 that only depend on
the minimum angle of the triangulation, on Ω, on Γ, and which are independent
of f, u, uh and of the mesh-sizes hT such that

J2(vh) ≤ C1J
2(uh) + C2|uh − vh|21 + C3osc

2 ∀vh ∈ Vh. (4.7)

Proof. For a given function vh ∈ Vh, we decompose u− vh = (u− uh) + (uh− vh)
and we apply the equality |u− vh|21 = |u− uh|21 + |uh − vh|21 (see, e.g. [67]) to the
lower bound (4.6)

J2(vh) ≤ C?(|u− vh|21 + osc2)

= C?(|u− uh|21 + |uh − vh|21 + osc2)

≤ C?(C
?2(osc2 + J2(uh)) + |uh − vh|21 + osc2)

= C?C
?2J2(uh) + C?|uh − vh|21 + C?(C

?2 + 1)osc2

= C1J
2(uh) + C2|uh − vh|21 + C3osc

2,

(4.8)

where we have used the upper bound (4.5) in (4.8).
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Remark 4.2.2. Theorem 4.2.1 gives an upper bound on J2(vh) where vh is a
generic function (for instance, accounting for inexact approximations) in terms
of J2(uh), the square energy norm of the algebraic error, which is equal to |uh−vh|21
and oscillation terms which only depend on the triangulation and the data, but
are independent of uh and vh.

A related result is found in the paper [5], where the authors set the stopping
criterion for the CG method by using a residual-based error estimator in the
context of elliptic self-adjoint problems. They provide an upper bound on η(vh)

in terms of η(wh) and |vh − wh|1, where vh and wh are generic functions in Vh.
However, their proof proceeds differently, and it is based on the use of the full
a-posteriori error estimator, while here we prove that a similar result holds also
for the case where only J(vh) is used, i.e., when only face terms are considered
in the estimator.

This result, together with Theorem 3.4.4, gives us a sound theoretical basis for
a smoothed AFEM algorithm, where the algebraic error |uh− vh|21 in the interme-
diate steps is given explicitly by the error propagation formula 3.69.

More specifically, in the context of Smoothed-Multilevel Methods, let Vk+1 be
the finite element space after k + 1 cycles and let vk+1 := ulk+1 denote the finite
element function, which has discrete corresponding vector ulk+1. Then, it can be
easily proved that |uk+1 − ulk+1|21 is exactly the Ak+1-square energy norm ‖uk+1 −
ulk+1‖2

Ak+1
= ‖e(l)

k+1‖2
Ak+1

, which has been quantified rigorously in Theorem 3.4.4.

4.3 Dominating terms in the expression of the edge
contribution of the estimator

In this section we briefly comment and report some ideas that are an ongoing
work in [71]. Let us –for the reader’s sake– rewrite the expression of the edge
contribution in the expression of the residual based error estimator for a given
function vh ∈ Vh, for E ∈ Eh and T ∈ Th

JE(vh) := h
1/2
E

∥∥∥∥[ ∂vh∂nE

]∥∥∥∥
E

, JT (vh) :=
∑
E∈∂T

JE(vh),

J(vh) :=

(∑
E∈Eh

JE(vh)
2

)1/2

=

(
1

2

∑
T∈Th

JT (vh)
2

)1/2

.

(4.9)

Motivated by the numerical evidences in Chapter 5, we want to investigate
qualitatively the action of the jump operator on eigenfunctions of different fre-
quencies.

Let wi be an eigenfunction of the eigenvalue problem corresponding to Prob-
lem 2.18, i.e.

(∇wi,∇vh) = λi(wi, vh), ∀vh ∈ Vh, ∀i = 1, . . . , N. (4.10)
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• We want to investigate the action of the estimator on an eigenfunction. In
particular, we expect to obtain that

J2(wi) ≈ λ2
iw

2
i . (4.11)

This result would nicely fit with the observed numerical results in Section 5
that the error estimator is small for small eigenvalues and big for big eigen-
values.

• From the operatorial point of view, we are interested in investigating the
relationship between the ATA-norm of uh and J(uh)

2. Again, we suspect
that

‖uh‖ATA ≈ J2(uh). (4.12)

However, this is still an ongoing work and more specific details followed by
the proofs will be provided in [71].
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Chapter 5

Smoothed Adaptive Finite Element
Method (S-AFEM)

In this chapter, we introduce and describe the Smoothed AFEM algorithm (S-
AFEM). To fix the ideas, we provide a small discussion with some empirical
numerical evidence that justifies the use of S-AFEM in Section 5.1, which is
explained in detail in Section 5.2. The discussion and results in this chapter are
taken by [72].

For completeness, we report here the error propagation formula (3.69):

e
(l)
k+1 = Mk+1

l

(
ak+1 +

k∑
j=2

Ik+1
j Ljaj + Ik+1

2 L2I
2
1e1+

k∑
j=2

Dk+1,jaj + Dk+1,2I
2
1e1

)
.

We observe that the presence of M l
k+1 in front of the error expression guaran-

tees that high frequencies would be damped very quickly by the use of Richardson
smoothing. On the other hand, the largest part of the low frequency error is given
by the term

Ik+1
2 L2I

2
1e1,

and by the accumulation of the error in low frequency that is due to the difference
between the exat algebraic solutions in the different levels

k∑
j=2

Ik+1
j Ljaj.

Of all terms, the ones that contain e1 could be controlled easily (and in a
computationally inexpensive way), by ensuring that first iteration of AFEM is
solved accurately, i.e., considering e1 = 0.

In particular, it is still acceptable to have a large difference between uh and
ulh (implying a large a posteriori error estimate on the algebraic approximation
J(vh)), provided that this difference is roughly equally distributed over the grid,
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since a (almost) constant difference between ηT (uh) and ηT (vh) for all T would
result in (almost) the same cells marked for refinement.

5.1 Some Numerical Evidences

To fix the ideas, we consider the Peak Problem in two dimensions as described in
Subsection 5.3.1, and we apply ten cycles of the classical AFEM Algorithm 1.1
using non-preconditioned Richardson iterations for the algebraic resolution of the
system with initial guess given by the prolongation of the previous approxima-
tion for each cycle. We use standard residual-based a posteriori error estimators
(4.4) which are locally defined through the jump of the gradient of the discrete
approximation across the edges/faces E of the cells (cf. Section 2.3). In Fig-
ure 5.1 we plot the `2-norm of the residual r(l)

k := Ake
(l)
k and the value of the

estimator η(ulk) for all cycles as the Richardson iteration count l increases from
1 to 30. The same behaviour is present in every refinement cycle. The residual
norm shows two distinguishable speeds of convergence. The first few iterations
induce a rapid drop in the residual norm (due to convergence of the highly os-
cillatory terms in the solution), while the second part of the iterations converge
very slowly, corresponding to the convergence speed of the low frequency in the
solution. The estimator, on the other hand, stagnates after very few Richardson
iterations (around two or three). In other words, J(ulh) is almost the same as
J(uh) for l ≥ 3, empirically suggesting that the error estimator (4.4) is mainly
affected by the highly oscillatory components of the discrete algebraic solution ulh,
and that the estimate provided by Theorem 4.2.1 may be improved by exploiting
the structure of the algebraic iterative solution in Richardson iteration provided
by Theorem 3.4.4.

Although the value we plot in Figure 5.1 for the estimator is a global one, and
gives no information on the distribution of the local estimator on the grid, it is a
good hint that the overall behaviour of such distribution will not be changing too
much after the first few Richardson iterations. We show some numerical evidence
that this is actually the case in the numerical validation Section 5.3.

Motivated by these numerical evidences and by the earlier observations, we
argue that in the intermediate AFEM cycles it is not necessary to solve exactly
the discrete system. What matters instead is to capture accurately the highly
oscillatory components of the discrete approximation. Low frequency components
may have an influence on the error estimator, however, this is mostly a global
influence, that has a small effect on the cells that will actually be marked for
refinement in theMark step.

5.2 Smoothed Adaptive Finite Element Algorithm

We present the Smoothed Adaptive Finite Element algorithm (S-AFEM), where
the exact algebraic solution in intermediate steps is replaced by the application

52



Ornela Mulita CHAPTER 5. S-AFEM

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

10−4

10−3

10−2

Iteration count

R
es

id
ua

ln
or

m

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

10−2.6

10−2.4

10−2.2

10−2

10−1.8

Iteration count

E
st

im
at

or

Figure 5.1: Residual norm (top) and Estimator (bottom) for intermediate cycles
of the classical AFEM algorithm when using Richardson iteration without pre-
conditioner as a solver, with prolongation from the previous solution as starting
guess. Darker lines correspond to earlier cycles. Only the first 30 iterations are
shown.
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of a prolongation step (Prolongate), followed by a smoothing step (Smooth):

Solve Estimate Mark Refine

ProlongateSmooth

Solve

The first and last steps of the S-AFEM algorithm coincide with a classical
AFEM. In the intermediate steps, however, the solution of the algebraic problem
is replaced by a prolongation step (Prolongate) followed by a fixed number of
smoothing iterations (Smooth).

The strategy consists precisely in

1. solving exactly the linear algebraic system derived from the discrete problem
on the coarsest level k = 1 and on the finest level k = k̄;

2. applying a few smoothing iterations on the linear algebraic system in the
intermediate levels k = 2, . . . , k̄ − 1 by using the prolongation of the ap-
proximation from the previous level as an initial guess;

3. executing the Estimate and Refine steps on the approximate solutions for
k = 2, . . . , k̄ − 1.

In particular, we propose Algorithm 5.

Algorithm 5: Smoothed-adaptive mesh-refining algorithm ([72]) .
Input : initial mesh T1

Step k=1 : Solve A1u1 = f1 based on T1.
Loop: for k = 2, . . . , k̄ − 1 do steps 1− 4

1. Smooth : Compute l smoothing iterations on the discrete system
Akuk = fk, with initial guess u(0)

k := Ikk−1u
(l)
k−1, which produce u

(l)
k ∈ RNk

with corresponding ulk ∈ Vk.

2. Estimate : Compute η2
T (ulk) for all T ∈ Tk.

3. Mark : Choose set of cells to refineMk ⊂ Tk based on η2
T (ulk).

4. Refine : Generate new mesh Tk+1 by refinement of the cells inMk.

Step k = k̄: Solve the discrete system Ak̄uk̄ = fk̄.
Output : sequence of meshes Tk, smoothed approximations ulk, and
estimators η(ulk), final adapted-approximation ul

k̄
.

In step k = 1, we capture the smoothest (i.e. less oscillatory) part of the
discrete approximation by solving the discrete system exactly on the coarsest
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level. As the mesh is locally refined from one level to the other, we increase the
higher portion of the spectrum of the matrix Ak. Thanks to the structure of the
refinement in typical finite element methods, mostly high frequencies are added
to the system, while low frequencies are substantially left unaltered. This is
formalized by the Non-interacting Frequency Coupling Hypothesis for smoothed-
multilevel methods (3.68).

The advantage of S-AFEM is that, on one hand, we save a substantial amount
of computational time that would be needed for the algebraic solution in the
intermediate steps, and on the other hand we obtain roughly the same mesh-
sequence, hence the same refinement at each step, with an accuracy on the final
approximation step that is comparable to the classical AFEM algorithm, at a
fraction of the computational cost.

5.3 Numerical validation

The numerical results presented in this work were realized using a custom C++
code based on the deal.II library [13, 3], and on the deal2lkit library [81].
We consider two classical experiments used to benchmark adaptive finite element
methods. In our implementation we use the classical marking strategy following
[50], which we described in Section 2.3. In our numerical tests, unless otherwise
stated, we set Θ = 0.3. The refinement strategy that we adopt in this work is
based on the use of “hanging nodes” (see [13] for a detailed discussion on the
implementation details).

5.3.1 Two-dimensional examples

Smooth domain, peak right hand side, two dimensions. The first exam-
ple we consider consists in solving the model problem on a square domain, with
a custom forcing term that contains a peak in a specified point in the domain,
forcing the exact solution to be

u(x, y) = x(x− 1)y(y − 1)e−100
(

(x−0.5)2+(y−0.117)2
)
, (5.1)

(see Figure 5.2).

Fichera corner domain, smooth right hand side, two dimensions. In
the second two-dimensional test case, we consider a Fichera corner domain, i.e., a
square where the upper right corner is removed, and the reentrant corner coincides
with the origin. No forcing term is added to the problem, but the boundary
conditions are set so that the following exact solution is obtained (when expressed
in polar coordinates)

u(r, θ) = r2/3 sin

(
2θ + 5π

3

)
, (5.2)
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Figure 5.2: Solution to peak problem (5.1) in two dimensions.

as shown in Figure 5.3.
In all cases, we apply ten cycles of classical AFEM and of S-AFEM. For the

AFEM algorithm, we use the CG method as iterative solver, with an algebraic
multigrid preconditioner (AMG), and we iterate until the `2 norm of the residual
is below a tolerance of 10−12 for each cycle. For S-AFEM, we modify the inter-
mediate cylces and we only apply three Richardson iterations. For reference, we
report a comparison between the cells marked for refinement by AFEM and S-
AFEM after four cycles for the two-dimensional Fichera corner problem in Figure
5.4, and after nine cycles for the two-dimensional peak problem in Figure 5.7. In
both cases, the set of marked cells, although different in some areas, produces a
refined grid that is very similar between the classical AFEM and the S-AFEM,
and where the accuracy of the final solution is comparable.

In Figures 5.5 and 5.8 we compare the values of the global estimators J(uh)

and J(ulh) and of the H1 semi-norm of the total errors for each cycle for the two-
dimensional peak problem, and for the two-dimensional Fichera corner problem
when using S-AFEM. For reference, Figures 5.6 and 5.9 show the error and the
estimator in the classical AFEM algorithm for the two examples. Notice that the
first step of AFEM and of S-AFEM are the same. The last step in the S-AFEM
case shows comparable results as in the AFEM algorithm for both examples.

Notice that in S-AFEM the value of the global estimator is almost the same
of the one that would be obtained by solving using CG and AMG (J(uh) in
Figures 5.5 and 5.8), showing that in the two dimensional setting the error es-
timator (4.4) is mainly affected by the high frequencies of the discrete solution,
which are well captured with just a few Richardson iterations. On the other
hand, the total error increases in the intermediate cycles, due to the algebraic er-
ror that has been accumulated by applying smoothing iterations instead of solving
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Figure 5.3: Solution to the Fichera corner problem (5.2) in two dimensions.

Figure 5.4: Comparison between the cells marked for refinement in AFEM (on
the left) and S-AFEM (on the right) after 5 cycles.
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Figure 5.5: True error, algebraic error, and estimator for the Peak problem in
two dimensions.

the algebraic problem until convergence, as quantified by Theorem 3.4.4. This
error measures the distance between the exact algebraic solution and the smooth
non-oscillatory components of the approximate solution that are not captured by
Richardson iteration, and have little or no influence on the error estimator, and
therefore on the generated grid. After ten cycles, we solve the algebraic problem
until converge using CG and AMG, as in the first cycle, and we obtain a solution
whose error is controlled by the estimator, as expected.

5.3.2 Three-dimensional examples

Smooth domain, peak right hand side, three dimensions. The first three-
dimensional test case that we propose is a model problem on a cube domain, where
the forcing term contains a peak in a specified point that forces the exact solution
to be given by (see Figure 5.10):

u(x, y, z) = x(x− 1)y(y − 1)z(z − 1)e−100
(

(x−0.5)2+(y−0.117)2+(z−0.331)2
)
. (5.3)

Fichera Corner, smooth right hand side, three dimensions. In the sec-
ond three-dimensional example, we consider again the classic Fichera corner do-
main, i.e., a cube where the upper right corner is removed, and the reentrant
corner coincides with the origin. We set the exact solution to be

u(r, θ, φ) = r1/2, (5.4)
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Figure 5.6: Error and estimator for the Peak problem in two dimensions, using
classical AFEM.

Figure 5.7: Comparison between the cells marked for refinement in AFEM (on
the left) and Smoothed-AFEM (on the right) after 9 cicles.
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Figure 5.8: True error, algebraic error, and estimator for the Fichera corner in
two dimensions.
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Figure 5.9: Error and estimator for the Fichera corner problem in two dimensions,
using classical AFEM.
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Figure 5.10: Solution to peak problem (5.3) in 3D.
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Figure 5.11: True error, algebraic errors, and estimator for the Peak problem in
three dimensions, with three smoothing steps.
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Figure 5.12: Error and estimator for the Peak problem in three dimensions, with
classical AFEM.

and we add a forcing term that induces the above exact solution (see Figure 5.13).
In both examples, the estimator applied to the algebraic solution after three

smoothing steps (see Figures 5.11 and 5.14) seems to be more sensitive to the
low frequency content of ulh. In other words, in the three-dimensional case the
combination of Theorem 3.4.4 and Theorem 4.2.1 provides a sharper estimate.
This may also be related to the fact that the increase on the number of degrees
of freedom between successive cycles in the three-dimensional setting is much
more severe w.r.t. the two-dimensional case, maybe hindering the non-interacting
frequency coupling hypothesis. Nonetheless, the difference in accuracy at the final
step between AFEM and S-AFEM is negligible also in the three-dimensional case,
showing that the (small) differences in the refinement patterns between AFEM
and S-AFEM do not influence the final accuracy.

5.3.3 Computational costs

In the following table we show a comparison of the computational cost associated
to the classical AFEM and to the smoothed AFEM, for the four examples we
presented in the previous section.

The results were obtained on a 2.8 GHz Intel Core i7 with 4 cores and 16GB
of RAM, using MPI parallelization on all 4 cores.

Table 5.1 only shows the comparison between AFEM and S-AFEM in the solve
phase, where S-AFEM is always faster than AFEM, offering an average speedup
of a factor three. In the table we compare the computational cost of all interme-
diate cycles in S-AFEM (Intermediate solves (Richardson) in the table), with the
corresponding computational cost for standard AFEM (Intermediate solves (CG)
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Figure 5.13: Solution to corner domain problem (5.4)
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Figure 5.14: True error, algebraic errors, and estimator for the Fichera corner
problem in three dimensions, using three smoothing steps.
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Figure 5.15: Error and estimator for the Fichera corner problem in three dimen-
sions, using classical AFEM.

Peak 2d Corner 2d Peak 3d Corner 3d
First and last solve 0.0187s 0.0601s 32s 101s
Intermediate solves (CG) 0.0663s 0.219s 76.4s 185s
Intermediate solves (Richardson) 0.005s 0.00892s 0.252s 0.426s
S-AFEM intermediate speedup 13.26 24.6 303.7 434.3
S-AFEM total speedup 3.59 4.045 3.361 2.819

Table 5.1: Comparison of the computaional cost of the solution stage for ten
cycles of adaptive refinement using classical AFEM and S-AFEM
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in the table). The first and last solve are the same in the two algorithms, and are
reported to provide a scaling with respect to the total computational cost of the
solution phase in the program. Other phases (like graphical output, mesh setup,
assembling setup, and error estimation) are not shown since they are identical in
the two algorithms.

5.4 S-AFEM for high order FEM and with differ-
ent smoothers.

In this section we consider different variants of our algorithm S-AFEM, where dif-
ferent smoothers are considered for the intermediate cycles, respectively Richard-
son iteration, the CG method, and the GMRES method. Moreover, we investigate
the accuracy and of S-AFEM for high order finite element discretisations and we
test the accuracy of our algorithm S-AFEM for our numerical examples in all the
above mentioned cases. In conclusion, S-AFEM turns out to be a good strategy
also for higher order finite element discretisations, and one could use directly the
CG method (or, alternatively,the GMRES method) as smoothers for the inter-
mediate iterations. Our numerical evidences show that two smoothing iterations
are enough for the two dimensional case, and around five smoothing for the three
dimensional case, independently on the polynomial degree of the finite element
approximation.

5.4.1 Two-dimensional examples

We apply both AFEM and S-AFEM to the two-dimensional Corner Problem (5.2)
and we show a comparison for different fixed FEM degrees, as deg = 1, . . . , 5,
and for different choices of smoothers for the intermediate cycles, respectively
Richardson iteration, the CG method, and the GMRES method. For all cases,
we plot the value of the error estimator J and the value of the | · |1 seminorm of
the total error, as the number of smoothing iterations l increases from 1 to 5 in
Figures 5.16-5.46.

For bi-linear linear finite elements (cf. Figures 5.16-5.21), all considered smoothers
(Richardson, CG, and GMRES) turn out to be good smoothers for intermediate
levels. In all cases, the estimator J(ulh) as l = 1, . . . , 5 exhibits the same be-
haviour (same order of convergence) of the estimator J(uh) (see Figures 5.16, 5.18
and 5.20), showing that one or two smoothing iterations would be enough for the
intermediate cycles. When we look at the total error, the CG behaves better lead-
ing to less error accumulated at the intermediate levels as shown in Figure 5.19,
while Richardson behaves the worst (cf. Figure 5.17). Nevertheless, in all cases
the accuracy of the final approximation for the last cycle obtained by S-AFEM,
is almost the same to the one that is generated by classical AFEM.

As the polynomial degree increases, we observed that the Dörfler marking
strategy does not provide good refinement patterns for the different problems,
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unless a fine tuning is made on the marking parameter. Using the same value for
Θ used for degree one, no cells are marked for refinement in higher order finite
elements, making the choice for this parameter too much problem dependent and
polynomial degree dependent. As an alternative marking strategy, we opted for
a marking criterion where a fraction of 1/3 of the cells with the largest error
indicators are selected for refinement, leading to an increase of the number of
degrees of freedom of roughly a factor of two in each refinement cycle, independent
on the problem type.

For deg = 2, all smoothers work well exhibiting a quasi optimal convergence
order compared to classical AFEM, as shown in Figures 5.22, 5.24, and 5.26,
and the accuracy of the final approximation is almost the same, as shown in
Figures 5.23, 5.25 and 5.27. For deg = 3, 4, and 5, Richardson iteration turns
out to be a bad smoother for S-AFEM, unless further tuning of the relaxation
parameter γ is performed. Although J(u1

h) seems to exhibit the same behaviour
of J(uh), as the smoothing iteration count l increases, contrarily to what one
might expect, the value of the estimator increases with increasing DOFs (see
Figures 5.29, 5.30, 5.35, 5.36, 5.41 and 5.42), showing that our selection of γ
is not correct for these problems, and we should estimate in a better way the
spectral radius of the final matrix A, and modify γ accordingly.

On the other hand, both the CG method and the GMRES method turn out
to be good smoothers for our S-AFEM, without the need to tune any parameter,
as evidenced in Figures 5.24, 5.26, 5.31, 5.33, 5.37, 5.39, 5.43 and 5.45. In
both cases, in fact, J(ulh), for l ≥ 2, shows the same optimal convergence rate
as the J(uh) obtained by the classical AFEM, and although the total error at
the intermediate cycles is evident, the accuracy of the final approximations is
almost the same, as evidenced in Figures 5.25, 5.27, 5.32, 5.34, 5.38, 5.40, 5.44
and 5.46.

Next, we consider the two-dimensional Peak Problem (5.1) to which we ap-
ply both AFEM and S-AFEM we provide a comparison for different fixed FEM
degrees, as deg = 1, . . . , 5, and for different choices of smoothers for the interme-
diate cycles, respectively Richardson iteration, the CG method, and the GMRES
method. For all cases, we plot the value of the error estimator J and the value
of the | · |1 seminorm of the total error, as the number of smoothing iterations l
increases from 1 to 5 in Figures 5.47-5.76.

As a marking strategy, we choose a marking criterion where a fraction of 1/3

of cells with the largest error indicators are selected for refinement.
For piecewise bi-linear finite elements (cf. Figures 5.47-5.52), all considered

smoothers (Richardson, CG and GMRES) turn out to be very good smoothers
for the intermediate levels. In all cases, the estimator J(ulh) as l = 1, . . . , 5

exhibits exactly the same order of convergence of the estimator J(uh) (see Fig-
ures 5.47, 5.49 and 5.51), showing that one or two smoothing iterations would be
enough for the intermediate cycles. When we look at the total error, the CG and
the GMRES behave better leading to less error accumulated at the intermediate
levels, as shown in Figures 5.50 and 5.52, while Richardson behaves less well as
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Figure 5.16: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
Richardson iterations as a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 3 and the Dörfler parameter for the marking of the
cells is Θ = 0.3.
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Figure 5.17: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 3 and the Dörfler parameter for the marking of the
cells is Θ = 0.3.
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Figure 5.18: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 3 and the Dörfler parameter for the marking of the cells is Θ = 0.3.
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Figure 5.19: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 3 and the Dörfler parameter for the marking of the cells is Θ = 0.3.
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Figure 5.20: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The
initial global refinement is 3 and the Dörfler parameter for the marking of the cells is
Θ = 0.3.
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Figure 5.21: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The
initial global refinement is 3 and the Dörfler parameter for the marking of the cells is
Θ = 0.3.
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Figure 5.22: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.23: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.24: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.25: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.26: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.27: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.28: corner 2d, deg=3

Figure 5.29: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.30: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.31: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.32: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.33: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.34: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.35: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.36: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.37: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.38: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.39: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.40: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.41: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with
Richardson iteration ad a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.42: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.43: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.44: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with the
CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each
cycle.
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Figure 5.45: Value of the error estimator J for the corner problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.46: Value of the | · |1 of the total error for the corner problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 2 and we select a fraction of 1/3 of cells for refinement at each cycle.
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shown in Figure 5.48. Nevertheless, in all cases the accuracy of the final approx-
imation for the last cycle obtained by S-AFEM, is the same to the one that is
generated by classical AFEM.

For deg = 2, the CG and the GMRES are better smoothers exhibiting a quasi
optimal convergence order compared to classical AFEM, as shown in Figures 5.55
and 5.57, while the Richardson iteration works less well (cf. Fig. 5.53). Never-
theless, the accuracy of the final approximation is almost the same, as shown in
Figures 5.54, 5.56 and 5.58.

For deg = 3, 4, and 5, similarly to the two-dimensional Corner Problem,
Richardson iteration turns out to be a bad smoother for S-AFEM, unless fur-
ther tuning of the relaxation parameter γ is performed. Here, for all values of
smoothing iteration count l, as it increases from 1 to 5, contrarily to what one
might expect, the value of the estimator increases with increasing DOFs (see Fig-
ures 5.59, 5.60, 5.65, 5.66, 5.71 and 5.72), showing that we should estimate in a
better way the spectral radius of the final matrix A, and modify the Richardson
relaxation parameter γ accordingly.

As the polynomial degree increases, it can be observed that the presence
of the algebraic error seems to influence more the error estimator (cf. Fig-
ures 5.55, 5.57, 5.61, 5.63, 5.67, 5.69, 5.73 and 5.75), at any case this has less
influence at the final error, leading to an accuracy of the final approximation,
which is very close or almost the same to the one that would be generated by
classical AFEM (cf. Figures 5.56, 5.58, 5.62, 5.64, 5.68, 5.70, 5.74 and 5.76).

In conclusion, S-AFEM turns out to be a good strategy also for higher order
finite element discretisations, and one could use directly the CG method (or, al-
ternatively, the GMRES method) as a smoother for the intermediate iterations.
Our numerical evidences show that two smoothing iterations are enough for the
two dimensional case, independently on the polynomial degree of the finite ele-
ment approximation.

5.4.2 Three-dimensional examples

We apply both AFEM and S-AFEM to the three dimensional Corner Prob-
lem (5.4) and we show a comparison for different fixed FEM degrees, as deg =

1, . . . , 5, and for different choices of smoothers for the intermediate cycles, re-
spectively Richardson iteration, the CG method and the GMRES method. For
all cases, we plot the value of the error estimator J and the value of the | · |1
seminorm of the total error, as the number of smoothing iterations l = 2i − 1

increases for i = 1, . . . , 8.
As a marking criterion we select a fraction of 1/7 of cells with the largest error

indicator to be marked for refinement.
For piecewise bi-linear finite elements, we observe that when we consider the

CG and the GMRES as smoothers for the intermediate cycles, the accuracy of
the final approximations generated with S-AFEM is almost the same to the one
generated with classical AFEM, as evidenced in Figures 5.80 and 5.82 after the
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Figure 5.47: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg=1, when we apply 10 cycles of AFEM and S-AFEM with
Richardson iterations as a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 3 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.48: Value of the | · |1 of the total error for the peak problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
Richardson iteration as a smoother, as the smoothing iteration count l goes from 1 to 5.
The initial global refinement is 3 and we select a fraction of 1/3 of cells for refinement
at each cycle.
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Figure 5.49: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 3 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.50: Value of the | · |1 of the total error for the peak problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the CG as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 3 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.51: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The
initial global refinement is 3 and we select a fraction of 1/3 of cells for refinement at
each cycle.
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Figure 5.52: Value of the | · |1 of the total error for the peak problem in 2D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
the GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The
initial global refinement is 3 and we select a fraction of 1/3 of cells for refinement at
each cycle.
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Figure 5.53: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with the
GMRES as a smoother, as the smoothing iteration count l goes from 1 to 5. The initial
global refinement is 3 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Figure 5.54: Value of the | · |1 of the total error for the peak problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with the
Richardson as a smoother, as the smoothing iteration count l goes from 1 to 5. The
initial global refinement is 2 and we select a fraction of 1/3 of cells for refinement at
each cycle.
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Figure 5.55: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM
with the CG as a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.56: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 2, when we apply 9 cycles of AFEM and
S-AFEM with the CG as a smoother, as the smoothing iteration count l goes
from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3 of
cells for refinement at each cycle.
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Figure 5.57: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM
with the GMRES as a smoother, as the smoothing iteration count l goes from 1
to 5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.58: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 2, when we apply 9 cycles of AFEM and
S-AFEM with the GMRES as a smoother, as the smoothing iteration count l
goes from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3
of cells for refinement at each cycle.
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Figure 5.59: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM
with Richardson iteration as a smoother, as the smoothing iteration count l goes
from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3 of
cells for refinement at each cycle.
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Figure 5.60: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-
AFEM with Richardson iteration as a smoother, as the smoothing iteration count
l goes from 1 to 5. The initial global refinement is 2 and we select a fraction of
1/3 of cells for refinement at each cycle.
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Figure 5.61: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM
with the CG as a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.62: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 3, when we apply 8 cycles of AFEM and
S-AFEM with the CG as a smoother, as the smoothing iteration count l goes
from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3 of
cells for refinement at each cycle.
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Figure 5.63: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM
with the GMRES as a smoother, as the smoothing iteration count l goes from 1
to 5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.64: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 3, when we apply 8 cycles of AFEM and
S-AFEM with the GMRES as a smoother, as the smoothing iteration count l
goes from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3
of cells for refinement at each cycle.
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Figure 5.65: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM
with Richardson iteration as a smoother, as the smoothing iteration count l goes
from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3 of
cells for refinement at each cycle.
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Figure 5.66: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-
AFEM with Richardson iteration as a smoother, as the smoothing iteration count
l goes from 1 to 5. The initial global refinement is 2 and we select a fraction of
1/3 of cells for refinement at each cycle.
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Figure 5.67: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM
with the CG as a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.68: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 4, when we apply 7 cycles of AFEM and
S-AFEM with the GMRES as a smoother, as the smoothing iteration count l
goes from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3
of cells for refinement at each cycle.
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Figure 5.69: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM
with the GMRES as a smoother, as the smoothing iteration count l goes from 1
to 5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.70: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 4, when we apply 7 cycles of AFEM and
S-AFEM with the GMRES iteration as a smoother, as the smoothing iteration
count l goes from 1 to 5. The initial global refinement is 2 and we select a fraction
of 1/3 of cells for refinement at each cycle.
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Figure 5.71: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM
with Richardson iteration as a smoother, as the smoothing iteration count l goes
from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3 of
cells for refinement at each cycle.
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Figure 5.72: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-
AFEM with Richardson iteration as a smoother, as the smoothing iteration count
l goes from 1 to 5. The initial global refinement is 2 and we select a fraction of
1/3 of cells for refinement at each cycle.
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Figure 5.73: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM
with the CG as a smoother, as the smoothing iteration count l goes from 1 to
5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.74: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 5, when we apply 6 cycles of AFEM and
S-AFEM with the CG as a smoother, as the smoothing iteration count l goes
from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3 of
cells for refinement at each cycle.
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Figure 5.75: Value of the error estimator J for the peak problem in 2D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM
with the GMRES as a smoother, as the smoothing iteration count l goes from 1
to 5. The initial global refinement is 2 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Figure 5.76: Value of the | · |1 of the total error for the peak problem in 2D,
for FEM discretisation degree deg = 5, when we apply 6 cycles of AFEM and
S-AFEM with the GMRES as a smoother, as the smoothing iteration count l
goes from 1 to 5. The initial global refinement is 2 and we select a fraction of 1/3
of cells for refinement at each cycle.
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Figure 5.77: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM
with Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from
i = 1 to 8. The initial global refinement is 3 and we select a fraction of 0.15 of all cells
for refinement at each cycle

three or five smoothing steps. Also Richardson iterations shows nearly almost
the same accuracy of the final approximation, as shown in Figure 5.78. In this
case, immediately after five or seven smoothing steps, the error estimator for S-
AFEM behaves as the one for the classical AFEM when the CG and the GMRES
are used as smoothers (see 5.79 and 5.81), but it works less well in case of the
Richardson iteration, as shown in Figure 5.77.

For deg = 2, Figures 5.86 and 5.88 show that the accuracy of the final approx-
imations, for classic AFEM and S-AFEM, is almost the same immediately after
three or five smoothing iterations when we use the CG and the GMRES. These
smoothers work better than Richardson, which however shows a comparable final
accuracy of both methods in Figure 5.84, after three or five iterations.

For deg = 3, 4, 5, Figures 5.89-5.106 show that the CG and the GMRES turn
out to be better smoothers compared to Richardson iteration. We want to point
out that the performance of the Richardson iteration might be improved due to
further studies of the evaluation of the optimal relaxation parameter γ, which we
are considering as fixed γ = 0.25. All tests show that the accuracy of the final
approximations is nearly the same, and the estimator always underestimates the
total error.

Next, we apply both AFEM and S-AFEM to the three dimensional Peak Prob-
lem and we show a comparison for different fixed FEM degrees, as deg = 1, . . . , 5,
and for different choices of smoothers for the intermediate cycles, respectively the
Richardson iteration, the CG method and the GMRES method. For all cases,
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Figure 5.78: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 3 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.79: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM
with CG as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 3 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.80: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 3 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.81: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM
with GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from
i = 1 to 8. The initial global refinement is 3 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.82: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 3 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.83: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM
with Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.84: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.85: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM
with CG as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.86: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.87: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM
with GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.88: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.89: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM
with Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.90: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.91: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM
with CG as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.92: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.93: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM
with GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.94: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.95: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM
with Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.96: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.97: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM
with CG as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle

108



Ornela Mulita CHAPTER 5. S-AFEM

105 106

10−9

10−8

10−7

10−6

10−5

10−4

Number of DOFs

V
al

ue
of

th
e
|·
| 1

of
th

e
to

ta
le

rr
or |u− u1

h|1 (S-AFEM CG)

|u− u3
h|1 (S-AFEM CG)

|u− u5
h|1 (S-AFEM CG)

|u− u7
h|1 (S-AFEM CG)

|u− u9
h|1 (S-AFEM CG)

|u− u11
h |1 (S-AFEM CG)

|u− u13
h |1 (S-AFEM CG)

|u− u15
h |1 (S-AFEM CG)

|u− uh| (AFEM)

Figure 5.98: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.99: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM
with GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.100: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.101: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM
with Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.102: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.103: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM
with CG as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.104: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.105: Value of the error estimator J for the Fichera corner problem in 3D, for
FEM discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM
with GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from
i = 1 to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells
for refinement at each cycle
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Figure 5.106: Value of the | · |1 error for the Fichera corner problem in 3D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle

we plot the value of the error estimator J and the value of the | · |1 seminorm
of the total error, as the number of smoothing iterations l = 2i− 1 increases for
i = 1, . . . , 8. As a marking criterion we select a fraction of 1/7 of cells with the
largest error indicator to be marked for refinement.

For piecewise bi-linear finite elements, when the Richardson iteration is used
as a smoother, the estimator for S-AFEM exhibits the same order of convergence
as the estimator for classic AFEM starting from five to seven smoothing iterations,
as shown in Figure 5.107, and the final errors have almost the same accuracy, as
shown in Figure 5.108 Surprisingly, things work perfectly when the CG method is
used as a smoother: after three CG smoothing iterations both the estimator for
S-AFEM and for classic AFEM show the same order of convergence, as shown in
Figure 5.109, and the accuracy of the final approximation is the same, as shown
in Figure 5.108. The same behaviour is shown when the GMRES method is used
as a smoother, as shown in Figures 5.111 and 5.112.

For higher degree finite element approximations, we can see how the pres-
ence of the algebraic error influences the error estimator, which turns out to
be quasi optimal generally after five or seven iterations when the CG and GM-
RES are used as smoothers, while it shows less optimal behaviour compared
to classic AFEM, when the Richardson iteration is used as a smoother. We
again point out that the performance of the Richardson iteration might be im-
proved due to further studies of the evaluation of the optimal relaxation param-
eter γ, which we are considering as fixed γ = 0.25. Finally, as evidenced in
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Figure 5.107: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 3 and we select a fraction of 0.15 of all cells for
refinement at each cycle

Figures 5.114, 5.116, 5.118, 5.120, 5.122, 5.124, 5.126, 5.128, 5.130, 5.132, 5.134
and 5.136 the accuracy of the final solutions produced by S-AFEM and by classic
AFEM is almost the same and S-AFEM turns out to be a good method also for
higher-order FEM discretisations.

5.5 S-AFEM applied to diffusion-transport prob-
lems: an example

In this section, we test the accuracy of S-AFEM for the class of diffusion-transport
problems of the following form

−∆u+ β · ∇u = f in Ω and u = 0 on ∂Ω, (5.5)

where we add to our classical model problem the transport term β · ∇u. For
our numerical examples, we will consider a two-dimensional problem where the
transport term β ·∇u is determined by β = (β, β)T , where the parameter β takes
the values 1, 10 and 50. It is well known that in this case Problem (5.5) has a
unique solution (cf. eg. [77]). In particular, we impose a forcing term equals to
f = 2β to the system such that the exact solution is

x+ y +
−eβx + 1

eβ − 1
− eβy − 1

eβ − 1
. (5.6)
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Figure 5.108: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with Richardson as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 3 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.109: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
CG as a smoother, as the smoothing iteration count l = 2i−1 goes from i = 1 to 8. The
initial global refinement is 3 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.110: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with CG as a smoother,
as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The initial global
refinement is 3 and we select a fraction of 0.15 of all cells for refinement at each cycle
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Figure 5.111: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 3 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.112: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 1, when we apply 10 cycles of AFEM and S-AFEM with GMRES as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 3 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.113: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.114: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with Richardson as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.115: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.116: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with CG as a smoother,
as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The initial global
refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each cycle
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Figure 5.117: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.118: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 2, when we apply 9 cycles of AFEM and S-AFEM with GMRES as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.119: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.120: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with Richardson as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.121: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.122: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with CG as a smoother,
as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The initial global
refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each cycle
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Figure 5.123: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.124: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 3, when we apply 8 cycles of AFEM and S-AFEM with GMRES as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.125: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.126: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with Richardson as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.127: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.128: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with CG as a smoother,
as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The initial global
refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each cycle
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Figure 5.129: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.130: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 4, when we apply 7 cycles of AFEM and S-AFEM with GMRES as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.131: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with
Richardson as a smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.132: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with Richardson as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle
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Figure 5.133: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with CG
as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The
initial global refinement is 2 and we select a fraction of 0.15 of all cells for refinement
at each cycle
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Figure 5.134: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with CG as a smoother,
as the smoothing iteration count l = 2i − 1 goes from i = 1 to 8. The initial global
refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each cycle
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Figure 5.135: Value of the error estimator J for the peak problem in 3D, for FEM
discretisation degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with
GMRES as a smoother, as the smoothing iteration count l = 2i − 1 goes from i = 1
to 8. The initial global refinement is 2 and we select a fraction of 0.15 of all cells for
refinement at each cycle
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Figure 5.136: Value of the |·|1 error for the peak problem in 3D, for FEM discretisation
degree deg = 5, when we apply 6 cycles of AFEM and S-AFEM with GMRES as a
smoother, as the smoothing iteration count l = 2i− 1 goes from i = 1 to 8. The initial
global refinement is 2 and we select a fraction of 0.15 of all cells for refinement at each
cycle

Since the system associated to Problem (5.6) is not symmetric, the only pos-
sibility for both a robust solver and for the smoother is given by the GMRES
method (cf. eg. [67]). We apply classic AFEM and S-AFEM for both bi-linear
piecewise and higher order finite element discretisations for deg = 1, . . . , 5. We
plot the value of the estimator J and the value of the | · |1 of the total error,
as the GMRES smoothing iteration count l goes from 1 to 5. For all the cases
where the transport term β = (1, 1)ˆT (corresponding to small transport), the
behaviour of the estimator for S-AFEM (∀l = 1, . . . , 5) is exactly the same as
the one given by the classic AFEM, for the case deg = 1, as shown in Fig-
ure 5.137, while it approaches it as the GMRES smoothing iteration count in-
creases from 1 to 5 for higher order FEM discretisations (i.e. for deg ≥ 2), as
shown in Figures 5.139, 5.139, 5.141, 5.143 and 5.145. However, in all cases,
the accuracy of the final approximations is almost the same, as evidenced in
Figures 5.138, 5.140, 5.142, 5.144 and 5.146. For the choices of the transport
term β = (10, 10)T (corresponding to moderate transport) and β = (50, 50)T

(corresponding to large transport) again the behaviour of the estimator for S-
AFEM (∀l = 1, . . . , 5) is exactly the same as the one given by the classic AFEM,
for the case deg = 1, as shown in Figures 5.147 and 5.157, while it approaches
it as the GMRES smoothing iteration count increases from 1 to 5 for higher
order FEM discretisations, as evidenced in Figures 5.149, 5.149, 5.151, 5.153,
5.165, 5.159, 5.159, 5.161, 5.163 and 5.165. In all cases, however, the accuracy
of the final approximations is almost the same, as evidenced in Figures 5.148,
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Figure 5.137: Value of the error estimator J for the diffusion transport problem in
2D, with transport term β = (1, 1), and FEM discretisation degree deg = 1, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.

5.150, 5.152, 5.154, 5.156, 5.158, 5.160, 5.162, 5.164 and 5.166,showing that
S-AFEM turns out to be a good method also for more complicated and non-
symmetric problems.

5.6 Conclusions

In this work we propose and analyse a new smoothed algorithm for adaptive
finite element methods (S-AFEM), inspired by multilevel techniques, where the
exact algebraic solution in intermediate steps is replaced by the application of a
prolongation step, followed by a fixed number of smoothing steps. One of the key
discoveries of this research program, that was our motivational starting point, has
been the fact that the combined application of the Estimate-Mark steps of AFEM
is largely insensitive to substantial algebraic errors in low frequencies. Indeed,
even though the intermediate solutions produced by S-AFEM are far from the
exact algebraic solution, we show that their a posteriori error estimation produces
a refinement pattern for each cycle that is substantially equivalent to the one that
would be generated by classical AFEM, leading to the same set of cells marked for
refinement. Our strategy is based on solving exactly the problem at the coarsest
level and at the finest level, and at applying the Estimate-Mark-Refine steps at
the rough approximations obtained at the intermediate levels. More importantly,
we show that the accuracy of the final approximation obtained through S-AFEM
is almost the same to the one that would be obtained by classical AFEM, at a
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Figure 5.138: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (1, 1), and FEM discretisation degree deg = 1, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.139: Value of the error estimator J for the diffusion transport problem in
2D, with transport term β = (1, 1), and FEM discretisation degree deg = 2, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.140: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (1, 1), and FEM discretisation degree deg = 2, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.141: Value of the error estimator J for the diffusion transport problem in
2D, with transport term β = (1, 1), and FEM discretisation degree deg = 3, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.142: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (1, 1), and FEM discretisation degree deg = 3, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.143: Value of the error estimator J for the diffusion transport problem in
2D, with transport term β = (1, 1), and FEM discretisation degree deg = 4, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.144: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (1, 1), and FEM discretisation degree deg = 4, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.145: Value of the error estimator J for the diffusion transport problem in
2D, with transport term β = (1, 1), and FEM discretisation degree deg = 5, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.146: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (1, 1), and FEM discretisation degree deg = 5, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.147: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (10, 10), and FEM discretisation degree deg = 1, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.148: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (10, 10), and FEM discretisation degree deg = 1, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.149: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (10, 10), and FEM discretisation degree deg = 2, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.150: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (10, 10), and FEM discretisation degree deg = 2, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.151: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (10, 10), and FEM discretisation degree deg = 3, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.152: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (10, 10), and FEM discretisation degree deg = 3, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.153: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (10, 10), and FEM discretisation degree deg = 4, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.154: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (10, 10), and FEM discretisation degree deg = 4, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.155: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (10, 10), and FEM discretisation degree deg = 5, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.156: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (10, 10), and FEM discretisation degree deg = 5, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.

103 104 105

10−1

100

Number of DOFs

V
al

ue
of

th
e

es
ti

m
at

or
J

J(u1
h) (S-AFEM GMRES)

J(u2
h) (S-AFEM GMRES)

J(u3
h) (S-AFEM GMRES)

J(u4
h) (S-AFEM GMRES)

J(u5
h) (S-AFEM GMRES)

J(uh) (AFEM)

Figure 5.157: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (50, 50), and FEM discretisation degree deg = 1, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.158: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (50, 50), and FEM discretisation degree deg = 1, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.159: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (50, 50), and FEM discretisation degree deg = 2, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.160: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (50, 50), and FEM discretisation degree deg = 2, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.161: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (50, 50), and FEM discretisation degree deg = 3, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.162: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (50, 50), and FEM discretisation degree deg = 3, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.163: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (50, 50), and FEM discretisation degree deg = 4, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.164: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (50, 50), and FEM discretisation degree deg = 4, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.
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Figure 5.165: Value of the error estimator J for the diffusion transport problem in 2D,
with transport term β = (50, 50), and FEM discretisation degree deg = 5, when we
apply 10 cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing
iteration count l goes from 1 to 5.
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Figure 5.166: Value of the | · |1 error for the diffusion transport problem in 2D, with
transport term β = (50, 50), and FEM discretisation degree deg = 5, when we apply 10
cycles of AFEM and S-AFEM with GMRES as a smoother, as the smoothing iteration
count l goes from 1 to 5.

fraction of the computational cost.
This thesis work contains the detailed and rigorous analysis of the error prop-

agation properties of the S-AFEM. In particular, we prove a series of theorems
and results that rigorously estimate the algebraic error propagation between dif-
ferent nested levels, which shows that the algebraic error is made up by small
contributions given by the accumulation of low frequency terms, which have in
general a smaller influence on the estimator. The analysis of the discretisation
error and convergence estimates for S-AFEM are not covered in this work but
they are part of our current and future investigations.

We provide numerical evidences that the S-AFEM strategy is competitive in
cost and accuracy by considering different variants of our algorithm, where differ-
ent smoothers are considered for the intermediate cycles (respectively Richardson
iteration, the CG method, and the GMRES method). We conclude that in gen-
eral, all smoothers are good smoother candidates for the intermediate cycles.
While in our numerical experiments the CG and the GMRES turn out to be bet-
ter smoothers compared to Richardson iterations, we’d like to point out that its
performance strictly depends on the relaxation parameter γ, and can be improved
with a detailed study of the optimal choice for γ.

Moreover, we investigate the accuracy and of S-AFEM for high order finite
element discretisations and we find out that S-AFEM turns out to be a good
strategy also for higher order finite element discretisations, and one could use
directly the CG method (or, alternatively, the GMRES method) as smoothers for
the intermediate iterations. Our numerical evidences show that two smoothing
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iterations are enough for the two-dimensional case, while from five up to seven
smoothing iteration are enough for the three-dimensional case independently on
the polynomial degree of the finite element approximation.

Finally, we show how the S-AFEM strategy works well not only for classi-
cal two and three dimensional problems that are used to benchmark adaptive
mesh-refining techniques, but also for more complex non symmetric problems by
providing a two-dimensional example of a diffusion-transport problem. Even if at
the moment we don’t have theoretical results for these more complex cases, there
are good insights that S-AFEM algorithm leads to the shown speed-up even in
realistic scenarios, making it a highly valuable and promising algorithm for many
practical applications.

Motivated by the theoretical results on the discretisation error and by our
numerical evidences, we argue that in the intermediate AFEM cycles it is not
necessary to solve exactly the discrete system. What matters instead is to capture
accurately the highly oscillatory components of the discrete approximation at each
cycle, through a smoothing method. We show that various types of smoothing
methods work well for S-AFEM and only a few smoothing iterations are necessary,
for the estimator to manifest a quasi optimal convergence order and for it to
produce the same set of marked cells for refinement at each cycle.
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