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Abstract 

The ability to readily access social group representations and automatically categorize others as 

members of social groups plays a central role in our social lives. This ability helps us guide our 

behavior by providing a rich set of information about unknown individuals based on the existing 

knowledge stored in our semantic system. Neuropsychological studies reporting the presence of 

patients with dementia disproportionally impaired at processing social group knowledge, with spared 

knowledge about other categories, together with patients presenting the opposite pattern, led to 

propose that social groups might well be represented separately from categories such as animals, 

plants or objects. 

The organization of the semantic system in categories is consistent with several theories 

arguing that the relevance of the sensory and functional information, or features, forming a 

representation varies depending on the semantic category. The presence of a dissociation for social 

groups is however only accommodated by more recent theories that go beyond the simpler 

sensory/functional distinctions made by traditional models. Some of these theories suggest that for 

the representation of social groups a critical role is played by affective features. This hypothesis was 

corroborated by a study with brain tumor patients whose lexical semantic processing of social groups 

was affected by lesions of the left amygdala, insula and inferior frontal gyrus, all of which are also 

part of the brain network involved in processing affective information. However, beyond this finding, 

the empirical evidence in support of the affective features hypothesis put forward about social groups 

is to date relatively scarce. Thus, the aim of my dissertation is to provide the evidence of the greater 

relevance of affective features in social group representations by describing three original studies.  

 First, I have reviewed the main theories of semantic memory and affect, and then I reported 

three original studies. In Study 1, by applying transcranial magnetic stimulation on the left inferior 

frontal gyrus, previously linked to processing negative affect, I showed a link between processing 

social group knowledge and this area. Results showed an increase in the speed at which negative 
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social categories are categorized, without affecting responses to other stimuli. In Study 2, I reported 

that social category names are more susceptible to affective priming effects compared to nonsocial 

categories. The behavioral priming effect was also reflected in a late neural component measured via 

electroencephalography, where social group names displayed different amplitudes based on the 

affective congruence with the preceding prime. In Study 3 I documented that evaluative responses to 

social group names and pictures tend to be delayed compared to those towards nonsocial categories, 

despite no differences in categorical semantic access. Additionally, a multivariate pattern analysis 

(MVPA) of the neural correlates associated with this evaluation highlighted a better decoding of 

affective content for social groups in both an early, and a late time window across input modalities.  

The findings reported in my thesis provide an affirmative answer to the hypothesized greater 

relevance of affective features in social group representations. I argue that such relevance is expressed 

in terms of an affect processing region contributing to their semantic categorization, a greater benefit 

from affective priming and an enhanced affective decoding. These results hopefully add valuable 

neuroscientific evidence about how social groups are represented, contributing towards the 

identification of their neural substrate and affective electrophysiological correlates in terms of 

response magnitude and temporal dynamics. 
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CHAPTER 1 

Introduction 

“Man is by nature a social animal; an individual who is unsocial naturally and not accidentally is 

either beneath our notice or more than human. Society is something that precedes the individual.” 

- Aristotle, Politics 

 

In order to survive and thrive we live next to other people in a social environment. The observation 

made by Aristotle of society preceding the individual can indicate the great influence that a perceived 

social group has on what we think of and feel about other people. In just a fraction of a second, faces 

tend to automatically be categorized as members of a given social group, based on their gender, 

ethnicity, social status or occupation, a process that precedes the processing of the face’s personal 

identity (Ito & Urland, 2003). In this instance, the ‘society’ preceding the individual is her/his social 

group, carrying along all the characteristics that are proper of that group, automatically attributed to 

the individual. For such categorization to occur, one needs to have a mental representation of the 

different categories present in our society, each with specific characterizing features. Moreover, this 

representation needs to be stored in the brain for later recollection, as indeed argued by several models 

of semantic memory described in the following paragraphs. The existence of a dedicated set of brain 

regions that support social group representations has recently been reinforced by the observation of 

patients with impaired social group representation following brain damage (Rumiati, Carnaghi, 

Improta, Diez, & Silveri, 2014). Building on extant theories suggesting that semantic representations 

are embodied by virtue of their reliance on sensory and functional processing modalities, the 

argument has been put forward of a special link between the representation of conspecifics and the 

processing of affective information. Accordingly, based on evidence showing the presence of damage 
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to brain regions supporting the processing of emotions, the resulting reduced ability to do so has been 

suggested to be the leading cause to an impoverished representation of social groups (Piretti et al., 

2015).  

Beyond correlational data, the hypothesis of a special link between social groups and affective 

processes has not found supporting or disproving evidence to date, especially as compared to the 

effort that has poured in research on other categories of knowledge. By presenting an overview of the 

main theories of semantic cognition and describing a series of original studies, the aim of my thesis 

is to provide a better understanding of (a) how our conceptual knowledge about categories of 

conspecifics is represented within the affective/semantic system, (b) how the affective information 

about social groups is processed by the brain, and (c) whether the representation of social groups 

possesses unique characteristics that makes it different from that of non-social categories (in the 

affective domain). 

 

 Semantic memory and social cognition 

1.1 Semantic memory and semantic representations 

As a component of long-term memory, semantic memory is described as the storage of our 

encyclopedic, conceptual knowledge. We may know what a pen is when we see one, but we do not 

necessarily know when and where we acquired such knowledge: while the former information is 

stored in the semantic memory, the latter information is stored by the episodic memory (Patterson, 

Nestor, & Rogers, 2007). When we think about a concept, our brain recreates a representation of that 

concept, which also leads to the renewal of the related multisensory perceptual experience in the 

absence of sensory stimulation. “Representation” will be thus intended here as the act by which 

consciousness, as a result of sparse neural activity (Dehaene, Changeux, Naccache, Sackur, & 

Sergent, 2006), reproduces an external object, or an internal object such as mood or a fantastic 

product, and also the content of that act of recreation, i.e., a simulation (M. Wilson, 2002). In the 
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human brain, the representation of the concept ‘pen’ will thus comprise the features that characterize 

it, which could be its shape, purpose and use. As pens come in different shapes and forms, according 

to the Prototype theory, the immediate mental representation we form after reading the word ‘pen’ 

would consist of the features that our idea of the standard, prototypical pen possesses (Fillmore, 

1975). All these features will also be reciprocally linked to the entry in the mental lexicon for the 

word ‘pen’, the symbol used to refer to that concept (Binder, Desai, Graves, & Conant, 2009; 

Leshinskaya & Caramazza, 2016). The single symbols (i.e., words, or lexical items) linking to our 

conceptual knowledge are held by some theories to be organized in a lexical-semantic network made 

of nodes and relationships, allowing words to be also represented separately from the sensory and 

functional features of the concepts they refer to (e.g., Leshinskaya & Caramazza, 2016). The strength 

of the links between entries in the network is dictated by two factors. The first factor is their spatio-

temporal contingency, or statistical co-occurrence (Simmons, Hamann, Harenski, Hu, & Barsalou, 

2008; Vigliocco, Meteyard, Andrews, & Kousta, 2009), as in the word ‘pen’ often appearing next to 

the word ‘paper’, and the second factor consists of the similarities and overlap of their features (Farah 

& McClelland, 1991; Rogers et al., 2004), such as the color and use of the words ‘paper’ and ‘board’. 

When it comes to the question as to how the brain represents concepts in the first place, a very popular 

view, common to several theories, argues that semantic knowledge is grounded into perception and 

action. Our conceptual understanding would be thus dependent on the way our body interacts with 

the environment and the brain areas processing that information, for which semantic knowledge 

would be itself ‘embodied’. As will be described more in detail in the following sections, there is 

convergent evidence that shows how semantic representations follow a hierarchical organization 

which is partially embodied. As such, this organization contains both distributed modality- and 

attribute-specific systems and amodal single-locus systems that abstract knowledge from 

combinations of features (Leshinskaya & Caramazza, 2016; Patterson et al., 2007). 
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1.2 Evidence for category-specificity in semantic knowledge 

The first cases of category-specific semantic impairments were described by Warrington and 

colleagues (Warrington, 1975; Warrington & Mccarthy, 1983; Warrington & Shallice, 1984).  Some 

patients were disproportionally impaired at recognizing pictures representing animals and plants 

when presented with their names during an identification task; in contrast, they performed much better 

when they were presented with names of man-made objects. Later reports of patients presenting the 

reverse pattern, that is, a disproportionate recognition of objects compared to animals and plants (for 

reviews, see Capitani, Laiacona, Mahon, & Caramazza, 2003, and Thompson-Schill, 2003), led to 

suggest a living/non-living distinction in semantic representations. The correlation between the type 

of semantic deficit and lesioned brain areas (Warrington, 1975; Warrington & Shallice, 1984), with 

damage to visual regions and motor regions leading, respectively, to deficits for living and non-living 

things, was later also observed in healthy individuals using imaging techniques. Martin and 

colleagues, using positron emission tomography (PET), reported how naming animals activated brain 

regions associated with visual processing, whereas for tools led to a greater activation in areas 

associated with motor actions, such as the left premotor area (Martin, Haxby, Lalonde, Wiggs, & 

Ungerleider, 1995; Martin, Wiggs, Ungerleider, & Haxby, 1996). 

 

1.3 Category-specificity in social cognition 

The idea of our knowledge about other people as also being represented by a distinct neural substrate 

was first suggested by neuropsychological studies reporting patients with an inability to name and 

recall more detailed information about otherwise familiar people as a consequence of brain damage 

(e.g., Miceli et al., 2000; Thompson et al., 2004). The category-specificity of conspecifics was made 

evident not only by patients with an impairment sparing knowledge about the semantic categories of 

objects or animals, but also by patients showing the reverse pattern i.e., an impairment for objects 

and animals with intact knowledge about people (Haslam & Sabah, 2013; Kay & Hanley, 2002; 
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Lyons, Kay, Hanley, & Haslam, 2006; Thompson et al., 2004). Rumiati and colleagues (Rumiati et 

al., 2014) later also described patients with specific impairments in their knowledge about social 

groups, revealing how impairments for conspecifics can also occur at a supraordinate, categorical 

level. In order to better understand what makes the representation of social categories unique, the 

following sections will provide a description of the different theories initially formulated to explain 

the category-specific deficits first reported only among non-social categories (for reviews, see 

Capitani, Laiacona, Mahon, & Caramazza, 2003, and Thompson-Schill, 2003), their evolution, and 

their explanation of the emergence of semantic deficits for conspecifics. 

 

1.4 Theories of semantic memory 

One of the first theoretical accounts on the emergence of the category-specific deficits is the 

sensory/functional theory (SFT) first proposed by Warrington and Shallice (1984). The theory holds 

that categorical deficits emerge because of damage to systems processing modality-specific 

information, either sensory or functional, in which living and non-living things, respectively, are 

represented. With this interpretation, Warrington and Shallice first introduce the seeds for the later 

theories of embodied cognition, whereby the contents of semantic cognition are based on perception 

and action (e.g., Barsalou, 2010), an organizational principle also found to emerge in computational 

models of the conceptual semantic system (Farah & McClelland, 1991). 

A different theory, the domain-specific hypothesis (DSH; Caramazza & Shelton, 1998), 

suggests instead that distinct semantic categories are processed by specific brain networks developed 

as a result of evolutionary pressure. Although, as I will discuss later, the theory has since been updated 

(Mahon & Caramazza, 2009), in its original formulation, semantic categories emerged because their 

unique survival relevance related to nutrition, escaping from predators or reproduction. According to 

this interpretation, any relationship that a category has with a specific sensory or motor feature or 

brain region is only secondary to its pre-determined implementation. As the SFT, also the DSH 
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endorses to some extent the embodied view of semantic memory. Nevertheless, an emphasis is put 

on the greater independence of conceptual knowledge systems from sensory/motor ones. 

 

1.4.1 Beyond the animate/inanimate distinction 

Although sufficient in explaining the living/non-living dissociations initially reported, both the SFT 

and the DSH needed to be refined in order to accommodate later findings of patients with deficits in 

sub-categories within the living/non-living distinction. Within the living category, beyond the deficits 

for conspecifics (e.g., Miceli et al., 2000), single cases have been reported with selective deficits also 

for fruits/vegetables (Hart et al., 1983; Samson & Pillon, 2003) and for animals (Blundo et al., 2006; 

Caramazza & Shelton, 1998). Such findings led to both a reformulation of the existing theories, but 

also the formulation of new ones, each nowadays enjoying different degrees of support. I will here 

briefly describe some of the most accredited theories by dividing them according to the way in which 

embodiment is interpreted (Meteyard, Cuadrado, Bahrami, & Vigliocco, 2012; Meteyard & 

Vigliocco, 2008). Based on how the interaction between semantic representations and 

perceptual/motor modalities is explained, theories either belong to the ‘secondary activation’ (or 

secondary embodiment) or to the ‘mediation’ (or weak embodiment) categories. 

 

1.4.2 Secondary activation theories 

Secondary activation theories argue that semantic representations are not dependent on sensory 

information and thus are amodal. The link to sensory-motor content is present in the form of a 

secondary activation deriving from the existent connections between an independent semantic 

system, and the sensory and motor systems. Damage to sensory/functional modules would thus result 

in impoverished representations with minimal semantic impairments (Meteyard et al., 2012). 
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As a first theory of the kind, the hub-and-spokes model (Lambon Ralph, Jefferies, Patterson, 

& Rogers, 2016; Noonan, Jefferies, Visser, & Lambon Ralph, 2013; Patterson, Nestor, & Rogers, 

2007; Rogers et al., 2004) went beyond the initial binary sensory/functional distinction by holding 

that the process by which conceptual representations are formed consists of an interplay between a 

central amodal module (the ‘hub’) and several, modality-specific areas (‘spokes’). Accordingly, the 

modality-specific information of the spokes would be abstracted away by the hub, rendering it purely 

symbolic. Whereas damage to the hub, located in the anterior temporal lobes (ATL), would result in 

semantic impairments across categories, as observed in semantic dementia patients (e.g., Jefferies, 

Patterson, Jones, & Lambon Ralph, 2009), damage to modality-specific areas would impair the 

processing of knowledge features related to sound, praxis, function, vision, valence, and mental 

lexicon. Thus, damage to the praxis spoke would in turn impair the knowledge of a specific semantic 

category mostly relying on that knowledge. For instance, lesions to the temporo-parietal area, 

involved in the processing of praxis-related information, have been found to lead to an impairment 

of the semantic representation of man-made tools, for which their most relevant semantic feature 

relates mainly to their use (e.g., Buxbaum & Saffran, 2002). 

Another secondary activation theory, the distributed domain-specific hypothesis (distributed 

DSH; Mahon & Caramazza, 2009) holds that semantic content is distributed across several regions 

and interacts with sensory and motor information via non-arbitrary connections. Like the hub-and-

spokes model, the distributed DSH also expands the number of properties relevant for conceptual 

knowledge to include sensory processes, motor action and emotional responses. As in the original 

formulation of the theory, an organization into domain-specific networks would be the result of 

evolutionary pressure, and all semantic knowledge would be represented in an amodal, abstract 

manner. The representation of each concept would produce an activation of sensory/motor 

information, but this would only be secondary to it. Thus, areas processing semantic information 

would only connect to sensory/functional brain regions, without overlapping. 
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1.4.3 Mediation theories 

Unlike secondary activation theories, the key assumption of mediation theories is that sensory/motor 

information constitutes at least part of the semantic representations. Rather than being the result of a 

secondary activation, the activity in modality/specific cortical areas, and thus their content, plays a 

key role in conceptual representations. Furthermore, the integration of single features within a 

modality would take place nearby those areas, as for the combination of features across modalities, 

according to a principle of spatial proximity. The explanation of interaction effects between word 

processing and perception/action is to be found in a mediation process by areas adjacent to primary 

sensory and motor areas, and presenting reciprocal connections (Meteyard et al., 2012). In this way 

the activation of semantic content and the processing in primary areas are not completely independent, 

and the strength of the reciprocal influence depends on the characteristics of the connections, but also 

on the task demands, which could make some sensory/motor features more salient than others 

(Simmons & Barsalou, 2003). 

One of such theories is the Convergence Zone (CZ) theory first proposed by Damasio 

(Damasio, 1989) and later extended by Simmons and Barsalou (Simmons & Barsalou, 2003). 

Accordingly, higher-order CZs present in association cortices respond to patterns of activation in 

adjacent sensory/motor cortices, which themselves respond to modality-specific features. 

Convergence zones would thus be part of a hierarchical neuronal organization, going from neurons 

responding to simple features (e.g., grey color) to combinations of features (e.g., visual input deriving 

from the sight of a grey dog, including its shape and motion), defined as conjunctive neurons. Unlike 

the original theorization of Damasio, which argued that CZs act as a bidirectional bridge that 

reinstates patterns of activity across the neuronal hierarchy, Simmons and Barsalou (Simmons & 

Barsalou, 2003) proposed CZs to have a representational capacity on their own. This means that 

damage to simpler CZs would not lead to impaired representations, as feature combinations are stored 
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in higher-order CZs. The authors also add to the theory a Similarity in Topography (SIT) principle, 

which predicts that the distance between two neurons in a convergence zone would be inversely 

proportional to the similarity of the features they associate. For instance, in a visual CZ, the 

conjunctive neurons responding to human faces would be located closer together to those that respond 

to faces of other mammals, as opposed to chairs. 

The grounding representation in perception, action and emotion (GRAPES) model proposed 

by Martin (Martin, 2016) is another instance of mediation theories. The model extends the original 

sensory/functional theory and differentiates itself from the CZ theory by suggesting that semantic 

memory is organized according to the properties of concepts, rather than according to sensory 

modalities. In turn, the property acquisition modality would not define the location of its neural 

substrate, which would therefore be biologically pre-determined. This proposal was driven by studies 

on the similarities between typically developing individuals and individuals with congenital 

modality-specific deficits. For example, in congenitally blind individuals (Amedi, Raz, Azulay, 

Malach, & Zohary, 2010), the recognition of an object based on tactile information, deriving from its 

never-before-seen shape, would rely on the same areas recruited in the typically developing for 

processing shape information, and partially overlapping with visual shape processing areas in the 

ventral occipital stream (Amedi, Jacobson, Hendler, Malach, & Zohary, 2002). These areas store 

information about object properties and partially overlap with the sensory-motor regions allowing to 

experience them in a specific modality. Nevertheless, as it would be the case for hearing the sound of 

an engine or reading the word ‘car’, the information about the visual properties of a car can be readily 

accessed from different input modalities. Although the representation of a concept can involve several 

areas, each dealing with a different type of property, the relevance of a property in the representation 

varies from one category to another, and this relative distribution is also continuously updated through 

learning. 
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1.5 Social group representations and the affective features hypothesis 

While the link between the category of tools and the processing of praxis has been extensively studied 

(e.g., Martin, 2016), it remains to be fully understood which kind of features are more relevant for 

processing social categories. In reporting cases of patients impaired in processing social groups, 

Rumiati and colleagues (Rumiati et al., 2014) highlighted the importance of distinguishing between 

person-specific and group categorical knowledge in the semantic domain. This distinction is 

particularly important when drawing conclusions on the processing of conspecifics based on 

comparisons with other categories of knowledge. Accordingly, any difference emerging from the 

comparison of person-specific knowledge with knowledge about animals and objects would be 

confounded by the required level of analysis. As an example, while Ronald Reagan is a unique 

individual with very specific characteristics and only one individual will be identified as such, all 

chairs of any shape and color will always be considered as chairs. While we can discuss what all 

chairs have in common, that is, that they are supposed to be sat on, we cannot talk in the same terms 

about Ronal Reagan for obvious reasons. On the contrary, despite differences in their individual 

identities, all policemen will be considered as having the common social function. The idea that these 

two levels of analysis also imply different neural substrates is also made evident by studies showing 

a greater efficiency of social categorical knowledge extraction from faces relative to person-specific 

knowledge (Cloutier, Mason, & Macrae, 2005; Mason & Macrae, 2004), and also by evidence of 

subordinate (instance-specific) knowledge being generally more impaired than that for super-ordinate 

(categorical) concepts in neurodegenerative diseases such as semantic dementia (Patterson et al., 

2006; Rogers, Patterson, Jefferies, & Lambon Ralph, 2015). 

The first reports of neurological patients with impairments in recognizing social groups 

(Rumiati et al., 2014) and the co-occurrence of lesions in brain areas commonly linked to affective 

processes, including the amygdala and the insula (Piretti et al., 2015), together with the presence of 

affective deficits (Carnaghi, Silveri, & Rumiati, 2015), led to suggest that social group representations 
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may rely to a greater extent on their affective features (Piretti et al., 2015). Unlike objects, people are 

agents, that is, they originate action that can directly affect the individual. Humans therefore focus on 

knowing other people’s intentions and dispositions, whose expected consequences would serve as a 

useful source of information. Neuroimaging studies identified affect processing brain areas which 

selectively respond to social, as opposed to nonsocial stimuli, as well as areas, such as the amygdala, 

that show additive effects of a picture’s emotionality and sociality (Norris, Chen, Zhu, Small, & 

Cacioppo, 2004). 

The above theories also contain hints linking affective features to the representation of 

conspecifics. In the hub-and-spokes model, the authors suggested that impairments in the processing 

of conspecifics may derive from damage to cortical areas involved in the processing of affective 

features. This processing of valence, as they defined it, would be carried out by the orbitofrontal 

cortex, which is connected to subregions of the ATL hub via the uncinate fasciculus (Lambon Ralph 

et al., 2016). However, the authors also pointed to the lack of empirical evidence in understanding 

how affective knowledge interacts with knowledge about conspecifics. 

In one of its latest formulations, the distributed domain-specific hypothesis also suggests the 

presence of an integration of affective information especially when representing conspecifics, which 

would be less evolutionarily relevant for tools. As one of the neural correlates of this integration 

process, the theory points to the fusiform face area, which would selectively respond to faces by virtue 

of its connectivity with several regions implied in extracting socially relevant information from 

stimuli, among which the amygdala (Mahon & Caramazza, 2011). 

The link between affect and social cognition is also made explicit by other theories. For 

example, in their conceptual topography theory, Simmons and Barsalou also include an emotional 

processing modality (Simmons & Barsalou, 2003). Accordingly, emotional CZs would contain 

conjunctive neurons integrating information coming from different modalities which, based on 

previous studies, might be located in the orbitofrontal cortex and in the right somatosensory cortex. 



 

14 
 

While the former is hypothesized to integrate emotional and conceptual information (and is also 

highlighted by the hub-and-spokes model), the latter would bind emotional features from different 

sources, and has been indicated to be particularly relevant for decoding information from facial 

expressions and bodily postures. 

Lastly, in his GRAPES theory, Martin proposes emotion to be a conceptual property relevant 

for social knowledge, and that such socio-emotional knowledge is processed by a circuitry of regions 

for processing biological motion (superior temporal sulcus) and emotion (amygdala). Nevertheless, 

the author also recognizes the need for further studies to clarify the roles of frontal and anterior 

temporal cortices in our social knowledge (Martin, 2016). 

 

1.6 Affective features hypothesis and abstract concepts 

Given the lack of causal evidence that our knowledge about social groups is characterized by a greater 

reliance on affective features, either by secondary activation or by mediation, my thesis will be 

dedicated to the investigation of how the processing of affective information interacts with semantic 

knowledge, and whether this interaction presents some unique properties when representing social 

groups. 

Regardless of the semantic category, the contribution of affective information to conceptual 

knowledge has so far mostly been linked to the representation of abstract words. These words, such 

as “honor”, as opposed to “knight”, relate to concepts regarded as difficult, if not impossible, to 

perceive and act upon (Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 2011; Vigliocco, 

Meteyard, Andrews, & Kousta, 2009). As for the hypothesis of a greater reliance on affective features 

put forward about social categories, it has been suggested that abstract concepts may be grounded in 

affective states, or that, among the several features contributing to their representation, affect plays a 

predominant role (Vigliocco et al., 2014). While the reason for such grounding has been attributed to 
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the lack of external perceptual features of abstract concepts (Barsalou & Wiemer-Hastings, 2005), 

this explanation does not apply to social categories, or at least not to the same extent. Indeed, it would 

be hard to fully attribute an increased reliance on affective features to an increased abstractness of 

social groups. Although these concepts could be considered as relatively more abstract than object 

concepts, concepts such as ‘policeman’ do possess a combination of sensory correlates, including 

visual (e.g., wearing a uniform) and motor features (i.e., bipedal motion; Papeo, Wurm, Oosterhof, & 

Caramazza, 2017), that concepts like “grace” do not possess. For these reasons, the greater weight of 

affective features will mostly be attributed to the occurrence of exclusively social emotional processes 

like mentalization and empathy. 

 

 Affective semantic knowledge 

2.1 Affective features in semantic cognition 

From an evolutionary perspective, the ability to perform fast evaluations is of utter importance to 

respond quickly to stimuli in the environment. This automatic process allows us to determine whether 

whatever we encounter is potentially harmless, beneficial or dangerous (Cacioppo & Berntson, 1999). 

Thus, at the most basic level, evaluative processes produce a positive or negative affective response 

to determine whether something is good or bad for us, which not only guides our immediate behavior, 

but stores the affective association in memory for it to be retrieved in a second moment. The 

immediate response and its recollection from memory are not processed and experienced in the same 

manner. For example, eating a candy will be associated with a pleasant experience. The concept of a 

candy elicited by reading the word will also be linked to something pleasant. In both cases, positive 

valence information is being processed, nonetheless these take place at different levels of processing. 

In his hierarchical emotion theory, Panksepp (Panksepp, 1998, 2012) argues that there are three levels 

at which affective processing can occur. The first level comprises positive or negative response 

elicited by a direct experience with an object (e.g., eating a candy); the second level is related to 
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Pavlovian learning (e.g., anticipating the positive experience of eating a candy at the sight of the 

candy); the third-level processing would coincide with the long-term memory association, which can 

be recollected even in the absence of a stimulus (e.g., reading the word ‘candy’ and knowing that it 

is associated with a pleasant experience). Some authors make an even simpler distinction between 

the terms ‘affective valence’ and ‘semantic valence’, the former being the valence of a direct 

emotional response, and the latter referring to the semantic knowledge about valence (Itkes, Kimchi, 

Haj-Ali, Shapiro, & Kron, 2017). Valence is also addressed by several theories on emotion that 

consider affect as a core component from which discrete emotional experiences, like happiness, fear, 

and anger are derived (Kuhlmann, Hofmann, & Jacobs, 2017). In turn, even if emotions are more 

complex than affective reactions, on which they are built, the two terms are often used 

interchangeably. As in the present thesis this will also be the case, the terms will always refer to the 

basic positive/negative distinction just described. 

When it comes to which brain regions support positive and negative valence processing, 

contrasting theories argued about the two valences as being processed by the same neural substrate 

(e.g., Carroll, Yik, Russell, & Barrett, 1999; Russell & Carroll, 1999), or about there being distinct 

neural substrates processing positive and negative affective information (e.g., Cacioppo, Gardner, & 

Berntson, 1999). More recent meta-analytic studies present support for both theories and suggest the 

presence of an interplay between valence-general and valence-specific regions (Cacioppo, Gardner, 

& Berntson, 1999; for a review see Lindquist et al., 2016). The presence of an even partially separable 

neural network for affective processing makes the study of affective processing increasingly complex. 

The possibility of positive and negative valence being processed separately also imply the possibility 

that the same stimulus can be associated with both positive and negative affect, whose immediate 

relevance is context and goal-dependent (Man, Nohlen, Melo, & Cunningham, 2017). An example of 

this can be the concept of ‘exercising’, linked to both fatigue and the reward of keeping fit. Even with 

separate representations of positive and affect for the same concept, it has been suggested that the 
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more dominant association will influence early, automatic evaluative processes regardless of task 

demands, whereas later processing may involve adjusting the initial affective association with a 

conflicting one, and thus elicit greater reflective processing driven by contextual information and task 

demands (Cunningham, Raye, & Johnson, 2004; Cunningham & Zelazo, 2007). As affective 

responses are highly subjective, if different brain areas are involved in the processing of negative and 

positive affect, this means that the processing of the same stimulus by two individuals may not always 

involve the same neural substrate, a factor that needs to be taken into account. 

Either in Panksepp’s third-level processing, in the concept of ‘affective valence’, affective 

theories converge with the previously outlined semantic theories suggesting valence (or, more 

generally, affect and emotion) to constitute a distinct feature of semantic representations (e.g., 

Lambon Ralph et al., 2016; Mahon & Caramazza, 2011; Martin, 2016; Simmons & Barsalou, 2003). 

Although related to semantic knowledge, affective knowledge has been shown to possess an at least 

a partially distinct neural substrate, leading to different behavioral outcomes. For instance, whereas 

semantic information (i.e., nonaffective) would drive instrumental goal-directed behaviors in frontal 

brain regions, affective information has been argued to directly drive behaviors of approach and 

avoidance with the contribution of the amygdala (Amodio & Ratner, 2011). Other studies also show 

how the areas involved in affective and non-affective processing in general are highly anatomically 

interconnected and communicating reciprocally (Ghashghaei & Barbas, 2002), which allows for a 

study of their interaction and their interdependence. If we think of features as the building blocks of 

semantic representations, it may seem straightforward to assume that their perception precedes the 

full conscious conceptual representation. Identifying an object involves first processing its single 

physical properties, like its color and shape. However, affective features can only be extracted after 

the perceptual encoding, and they will differ from individual to individual. One can then ask whether 

it is possible to discern between valence as being stored in memory, rather than being derived from a 

post-hoc evaluation (Lebrecht, Bar, Barrett, & Tarr, 2012), even though a post-hoc evaluation may 
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also be based on a memory storage, although accessed in a more controlled manner (Cunningham & 

Zelazo, 2007). 

 

2.2 Affective features in priming studies 

A first empirical indication of how affect can be conceived as a conceptual property is given by 

studies showing the influence of pre-activating affective valence processing on semantic access. As 

previously stated, the strength of the associations within the semantic network is also determined by 

the features shared by two concepts. Semantic priming paradigms have been extensively used to 

measure these associations also by means of spreading of activation, which could be derived from the 

processing of common specific features (e.g., the word ‘strawberry’ preceding the word ‘cherry, both 

referring to something red, sweet and edible; Collins & Loftus, 1975; Neely, 2012). Affective 

priming, as a special case of semantic priming, is considered to be a demonstration that affective 

features are also representational constituents (Storbeck & Robinson, 2004). As such, these features 

were absent in initial semantic representation theories (e.g., Warrington & Shallice, 1984). Affective 

priming refers to the process by which the representation of a concept is facilitated by the prior 

processing of affectively congruent information, like a word, which is considered to activate a 

valence-processing node in the network (De Houwer, Hermans, Rothermund, & Wentura, 2002; 

Fazio, Jackson, Dunton, & Williams, 1995; Fazio, Sanbonmatsu, Powell, & Kardes, 1986). For 

example, people are on average faster at identifying a positive word such as ‘love’ if this was 

immediately preceded a positive word like ‘plush’, as opposed to a more negative word as ‘knife’. 

Moreover, this facilitation, only obtained with shorter prime-target delays (for a review, see Klauer 

& Musch, 2003), is considered to be independent of any non-affective association between the prime 

words and the targets. Rather, it is thought to depend on automatic processing of the congruent 

affective features that the prime concept activates (De Houwer et al., 2002; Spruyt, Houwer, & 

Hermans, 2009). These affective prime-target relationships can in some cases have an even greater 
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influence compared to nonaffective relationships. This is the case of when affective features are made 

salient via task demands, like explicitly asking to focus on the affective content of a concept (e.g., 

Bargh, Chaiken, Govender, & Pratto, 1992; Bargh, Chaiken, Raymond, & Hymes, 1996; Klinger, 

Burton, & Pitts, 2000; Storbeck & Robinson, 2004). 

 

2.3 The neural correlates of affective features processing 

At the neurophysiological level, event-related potential (ERP) studies indicate that the mechanisms 

behind affective priming are similar to those of semantic priming, as suggested by the elicitation of a 

common N400 effect (Yao & Wang, 2014; but see also Herring, Taylor, White, & Crites, 2011). If 

we consider affective information as a type of semantic feature, this should not be surprising. 

Nevertheless, neuroimaging studies show the presence of both common and distinct networks 

implementing the two processes. In a study by Liu and colleagues (H. Liu, Hu, Peng, Yang, & Li, 

2010), the left middle frontal gyrus (MTG)/superior temporal gyrus (STG) have been found to be 

active in both types of priming, activity in the left inferior frontal gyrus (IFG) and in the STG was 

specific to semantic priming, and the left fusiform gyrus (FG) and insula were involved in affective 

priming. The common activation in the temporal cortex is in line with semantic theories indicating 

the area as supporting amodal conceptual processing (Lambon Ralph et al., 2016), while the left IFG 

has been repeatedly shown to be involved in semantic memory retrieval and selection (Moss et al., 

2005). The FG also finds an association with semantic processes in other studies, both for positive 

and negative affective information (Luo et al., 2004), whereas the insula is more commonly associated 

with subjective emotional responses (Amodio, 2014), but presents variations when it comes to the 

valence being processed, with the left part responding more strongly to negative than to positive 

stimuli (Lindquist et al., 2016). 

 Several of the areas involved in affective and nonaffective semantic priming are also active 

when processing emotional information in social stimuli. For example, activity in the amygdala has 
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also been associated with both positive and negative social clues, like those concerning social group 

membership of individual faces, and has thus been proposed to support the processing of social threat 

and social reward (Amodio, 2014). The anterior insula is found to support the subjective experience 

of negative affect also when processing social stimuli, while the area involved in mentalizing and 

perspective taking, the medial prefrontal cortex (mPFC) more broadly, may be engaged more strongly 

towards ingroup (positive valence) than outgroup (negative valence) members (Gilbert, Swencionis, 

& Amodio, 2012). This latter region, receiving projections from the amygdala and insula, is also 

thought to support the integration of general affective processes with processes such as mentalizing 

and empathy. Such use of affective information for processes which are unique to social encounters, 

like mentalizing and empathy, does provide an initial indication of how affective information related 

to social stimuli may undergo distinct processes which do not take place when representing nonsocial 

concepts. 

 

2.4 Affective features as attitudes 

In absence of person-specific information, when it comes to evaluative judgments of other 

individuals, the main driving factor stems from the affective knowledge we have about the social 

group we associate that individual with. In the social psychological literature, this knowledge is 

defined as an attitude, and it is conceptualized as a subjective evaluation represented in memory that 

determines our positive or negative disposition towards others (Fazio et al., 1995, 1986; Greenwald 

& Banaji, 1995). The combined effects of categorization and evaluation makes it possible for attitudes 

to influence novel social encounters, as how people feel about a social group is generalized to all 

individuals identified as its members. In turn, it could be argued that the most salient valence 

information about individuals comes from their social groups. This affective trace in semantic 

memory does not necessarily require a prior interaction with the members of a social group. The 

information simply acquired from our social environment (Hilton & von Hippel, 1996), from our 
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parents (Castelli, Zogmaister, & Tomelleri, 2009) and through mass media (Tukachinsky, Mastro, & 

Yarchi, 2015) is enough for attitudes to be created. Based on the data conveyed by different sources, 

we start to link a social group with an affective evaluation. But whereas in social psychology the main 

‘attitude objects’ of interest are represented by people, they can also consist of any non-social entity, 

such as places, objects, or even abstract concepts, to which several of the same processes apply. The 

unanswered question is the extent to which the attitude towards different categories of concepts, as 

part of our knowledge about them, contributes to their representation, and whether such affective 

knowledge plays a special role when social groups are compared with nonsocial categories. 

 

 Introduction to the studies 

In the following chapters I will present three experiments designed to study how we process social 

and non-social categories and the role of affective semantic information. To achieve this aim, I will 

employ transcranial brain stimulation and neurophysiological recordings during semantic 

categorization and evaluation tasks. In particular, I will compare social groups and objects of different 

types, both on the positive and the negative side of the valence spectrum. As the extent of embodiment 

in semantics is still under debate, I will attempt to accommodate my findings within the multiple 

semantic models that argue for an affective processing modality. As this modality represents a 

meeting point between semantic and affective theories, its mechanisms are expected to follow those 

of what the latter theories described as semantic affect. The affective semantic component will thus 

be treated as having two dimensions, a positive and a negative one, each represented in distinct 

valence-specific areas at the level of the cortex (Lindquist et al., 2016). 

In Study 1 I will focus on the contribution of a frontal cortical area - the left inferior frontal 

gyrus - found to be involved in processing negative affective responses (Kensinger & Schacter, 2006) 

and damaged in patients showing semantic deficits for social groups (Piretti et al., 2015). The aim of 

the study was to assess whether the stimulation of this area would affect to a greater extent the 
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categorization of names of social groups which are generally evaluated as more negative in 

comparison to more positively evaluated social groups, and to non-social categories overall. In Study 

2, while recording the corresponding neurophysiological signatures via electroencephalography 

(EEG), I will require participants to focus on the affective content of the same types of stimuli in 

order to provide an evaluative response during an affective priming paradigm. Here too, the 

comparison between social and non-social categories will involve the affective dimension, evaluating 

whether the brain response to positive and negative information changes based on the semantic 

category from which it is derived and on the affective congruency with prime words. In Study 3 I will 

apply multivariate pattern analyses (MVPA) on EEG data to measure the temporal dynamics of the 

brain in processing the affective content of social and non-social stimuli. In this study I will 

manipulate the modality of presentation of the stimuli, allowing to measure the activity of a cross-

modal neural substrate for processing affective knowledge of social groups. 
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CHAPTER 2 

Study 1: The Contribution of the Left Inferior Frontal 

Gyrus in Affective Processing of Social Groups 

 

This chapter is a modified version of the following paper: Suran, T., Rumiati, R. I., & Piretti, L. 

(2019). The contribution of the left inferior frontal gyrus in affective processing of social groups, 

Cognitive Neuroscience, 10:4, 186-195, DOI: 10.1080/17588928.2019.1593127 

 

Abstract 

We investigated the contribution of the pars opercularis of the left inferior frontal gyrus (LIFGop) in 

representing knowledge about social groups. We asked healthy individuals to categorize words 

preceded by semantically congruent or incongruent primes while stimulating the LIFGop. Previous 

studies showing an involvement of the LIFGop both in processing social stimuli and negative valence 

words led us to predict that its stimulation would affect responses to negative social category words. 

Compared to the Vertex as control site, the stimulation of the LIFGop increased the speed of 

categorization of negative social groups, and disrupted the semantic priming effect for negative words 

overall. Within the framework of recent theories of semantic memory, we argue that the present 

results provide initial evidence of the representation of social groups being characterized by affective 

properties, whose processing is supported by the LIFGop. 

 

 Introduction 

The study of neurological patients’ cognitive and affective abilities allows highlighting the underlying 

neural systems. Thus, brain damage has been shown to selectively and severely impair the ability of 
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individuals to name and recall detailed information about otherwise familiar people, leaving their 

semantic knowledge about objects or animals intact (e.g., Miceli et al., 2000; Thompson et al., 2004); 

or it can produce the reverse pattern, that is, impaired recognition of objects and animals with intact 

knowledge about people (Haslam & Sabah, 2013; Kay & Hanley, 2002; Lyons, Kay, Hanley, & 

Haslam, 2006; Thompson et al., 2004). These dissociations argue in favor of distinct brain systems 

for processing conspecifics and other non-social stimuli. However, the theories formulated to explain 

the category-specific deficits initially reported only among non-social categories have been a little 

silent on how concepts about conspecifics might be represented (for reviews, see Capitani, Laiacona, 

Mahon, & Caramazza, 2003; Caramazza, Anzellotti, Strnad, & Lingnau, 2014; Thompson-Schill, 

2003).  

Extant neuropsychological research has shown that patients’ failure to name/recognize 

famous people such as Ronald Reagan (Miceli et al., 2000; Thompson et al., 2004) is selectively 

limited to the individual identities, while their ability to recognize non-social entities remains intact. 

Nevertheless, the level of the information required for the successful recognition of individual 

conspecifics might be intrinsically different from the one required for recognizing non-social entities. 

Recently, Rumiati, Piretti and colleagues reported that some patients were selectively impaired at 

recognizing conspecifics when presented as social groups (e.g., doctors; Piretti et al., 2015; Rumiati, 

Carnaghi, Improta, Diez, & Silveri, 2014). This deficit is argued to originate at the semantic level as 

it has been observed when either sorting names of social groups (Rumiati et al., 2014) or naming 

images depicting them (Piretti et al., 2015). In the latter study, using voxel-based lesion-symptom 

mapping (VLSM), Piretti et al. (2015) documented tumor patients with lesions in regions associated 

also with affective processes such as insula, amygdala, basal ganglia, and inferior frontal gyrus, who 

were impaired at naming photographs of social groups. This association between damage to affective 

processing areas and recognition deficits involving social groups led us to hypothesize that successful 

recognition of such social categories may depend on an intact ability to process affective information. 
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As the recognition of living and non-living things primarily weights on sensory and functional 

properties respectively, we hypothesized that recognition of social groups might require a privileged 

access to affective properties. Indeed, compared with patients without the deficit and healthy controls, 

patients with dementia and semantic deficits for social groups expressed less extreme affective 

evaluations for both positive and negative social groups, an effect that is known as emotional blunting 

(Carnaghi et al., 2015).  

From a theoretical perspective, Barsalou and colleagues proposed that, in addition to the other 

sensory modalities, a model of conceptual knowledge should also include an emotion modality that 

is relevant for processing the affective properties of conceptual representations (Simmons and 

Barsalou, 2003; Barsalou, 2008). In their view, the internal affective states represent a component of 

knowledge that is as important as the external perceptual experience processed by other modalities 

(Barsalou, 2008). Thus, the patients’ deficit at recognizing social groups (Rumiati et al., 2014; Piretti 

et al., 2015) can be interpreted as being due to degraded affective properties that play a prominent 

role in their representation. Martin (2016) too suggested that the affective properties are stored in 

emotional systems, with affective information being a salient component of social concepts. An 

emotion modality is also present in the hub-and-spokes model proposed by Lambon Ralph and 

collaborators (Lambon Ralph, Jefferies, Patterson, & Rogers, 2016; Noonan, Jefferies, Visser, & 

Lambon Ralph, 2013; Patterson, Nestor, & Rogers, 2007; Rogers et al., 2004) whereby the conceptual 

representations result from integrating several, modality-specific areas or spokes – that process 

information related to sound, praxis, function, vision, valence, and verbal description – which in turn 

feed a central modality-independent module (the ‘hub’). Interestingly, the model predicts that 

impairments involving the representation of conspecifics may derive from damage to cortical areas 

that process valence (Lambon Ralph et al., 2016).  

As to the neural correlates, the pars opercularis of the left inferior frontal gyrus (LIFGop) 

singled out by Piretti et al (2015) is one of the candidates in which the affective processing of social 
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groups may take place. This area has also been found across several neuroimaging studies. First, the 

LIFGop is specifically involved in the semantic representation of familiar people when individual 

identities are categorized based on their profession at the level of social group (Chedid et al., 2016). 

Additionally, the LIFGop is one of the joint regions being active when healthy subjects read sentences 

describing behaviors of both individuals and social groups (Van der Cruyssen, Heleven, Ma, 

Vandekerckhove, & Van Overwalle, 2014). 

As to the involvement in the processing of affective information related to conspecifics, the 

LIFGop has been associated with both emotional empathic responses (Shamay-Tsoory, Aharon-

Peretz, & Perry, 2009), and in processing emotional facial expressions (Decety & Chaminade, 2003). 

Moreover, as the LIFGop is also part of Broca’s area, its damage has also been shown to impair 

linguistic processes linked to affect. Thus damage to this region impairs the retrieval of the names of 

the emotions conveyed by facial expressions (Adolphs, Damasio, Tranel, Cooper, & Damasio, 2000), 

while neuroimaging techniques repeatedly highlighted a link between LIFGop and the affective 

processing of words with a negative valence. For instance, the cortical activity in this area increases 

more when participants judge the animacy of words with negative valence than positive valence 

(Kensinger & Schacter, 2006; but see also Leclerc & Kensinger, 2011). Additionally, a greater 

LIFGop activation to negative than neutral or positive words has been recorded in working memory 

tasks with emotional word distractors (García-Pacios, Garcés, del Río, & Maestú, 2017). Last, the 

area is increasingly activated when subjects read sentences about negative social groups or an 

individual with a negative trait performing a negative behavior, compared to when positive behaviors 

are performed by positive social groups or individuals (Van der Cruyssen et al., 2014). In sum, the 

reviewed evidence suggests a key role of the LIFGop in both lexical and affective processing 

involving conspecifics. Based on the hypothesis that the representation of social groups relies on 

processing affective information, and that the LIFGop supports to a greater extent the processing of 
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negative words, this area might in turn be expected to support the representation of social groups with 

a negative valence.  

In the present study we applied transcranial magnetic stimulation (TMS) over the LIFGop 

when healthy participants performed a semantic priming task. In fact, there is a consensus that the 

contribution of an area to a category-specific representation can be established by applying TMS 

during a semantic priming task (e.g., Cattaneo, Devlin, Salvini, Vecchi, & Silvanto, 2010; Fuggetta, 

Rizzo, Pobric, Lavidor, & Walsh, 2009). The stimulation, by influencing the activity of an area based 

on the initial state of activation, should induce the same facilitatory effects in categorizing an 

unprimed target as if it was preceded by a congruent prime (Cattaneo, Rota, Vecchi, & Silvanto, 

2008). Consistently, we expected a smaller priming effect for social groups than for objects when 

stimulating the LIFGop, with no significant differences in RTs between congruent and incongruent 

trials containing social group targets. More specifically, this reduced difference should result from 

the categorization of social groups in incongruent trials targets becoming faster when stimulating the 

LIFGop relative to a control site, leaving the responses in congruent trials unaffected. Given the 

previously established link between the LIFGop and the processing of negative valence stimuli, we 

additionally expected to record stronger or unique effects for social group words associated with a 

more negative valence. 

 

 Method 

2.1 Participants 

Twenty participants (10 females, age range: 20 – 31 years) took part to the study for a monetary 

compensation. The inclusion criteria consisted in the absence of common contraindications to TMS 

(Rossi, Hallett, Rossini, & Pascual-Leone, 2009, 2011), speaking Italian as first language and self-

reported right-handedness. This study protocol was approved and carried out in accordance with the 

recommendations of the local Ethics Committee (2793/10), and in accordance with the Declaration 

of Helsinki. All subjects gave written informed consent prior to participating. 
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2.2 Materials 

Stimuli were selected from a dataset of 175 Italian plural related nouns of Objects (e.g., chiavi [keys]) 

and Social groups (e.g., studenti [students]). Ratings were collected from a sample of 14 participants, 

and were based on familiarity, imageability, and valence. The pool of selected stimuli consisted of 

30 nouns of Social groups and 30 nouns of Objects (see Appendix 1). The two categories were 

matched on word length, t(58) = 1.00. p = .34, familiarity t(58) = 1.53, p = .40, imageability, t(58) = 

-1.92, p = .06, and valence, t(58) = 1.00, p = .32. Additionally, each category was divided into two 

sub-samples of equal size based on their valence. Within each category, Positive (e.g., modelle 

[female models], gioielli [jewels]) and Negative words (e.g., alcolisti [alcoholics], pistole [guns]) 

were matched based on length (tSocial_Groups(28) = 1.19, p = .24; tObjects(28) =.34, p = .74), familiarity 

(tSocial_Groups(28) = 1.33, p = .19; tObjects(28) =.46, p = .64), and imageability (tSocial_Groups(28) = -.11, p 

= .91; tObjects(28) = .43, p = .67), but differed significantly in their valence (tSocial_Groups(28) = 9.48, p 

< .001; tObjects(28) = 11.22, p < .001; see Table 1). The words ‘PERSONE’ (people) and ‘OGGETTI’ 

(objects) were used as primes, with the former being treated as semantically congruent to Social 

groups, and the latter to Objects. Primes and targets were always presented in uppercase and 

lowercase, respectively, to make it easier for participants to distinguish between the two and reduce 

the likelihood of erroneously responding to the primes. 

Category Valence Imageability Familiarity Length 

Social 

   positive 
6.23 (.46) 7.03 (.42) 6.50 (1.12) 7.93 (1.79) 

Object 

   positive 
6.06 (.48) 7.36 (.83) 5.90 (1.33) 7.20 (1.47) 

Social 

   negative 
3.98 (.80) 7.04 (.38) 5.99 (.96) 7.13 (1.89) 

Object 

   negative 
3.45 (.76) 7.25 (.42) 5.69 (1.08) 7.00 (1.77) 

Table 1. Mean valence, imageability, and familiarity on a scale from 0 to 7 (0 = extremely low; 9 = extremely 

high) and average word length for each word category. Standard deviations reported within parentheses. 
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To assess whether there were significant differences between each target Category/Valence 

group in terms of their semantic relationship with the primes, we employed the Italian version of the 

snaut open online software (http://meshugga.ugent.be/snaut-italian-2/; Mandera, Keuleers, & 

Brysbaert, 2017) to extract their respective semantic distances, calculated based on word co-

occurrences in large text corpora. An ANOVA on the resulting values using Category and Valence 

as between factors and Congruence as within factor revealed only a significant main effect of 

Congruence [F(1, 56) = 45.73, p < .001, 𝜂𝑝
2 = .45], characterized by a lower semantic distance for 

Congruent (M = .79, SD = .10), relative to Incongruent primes (M = .92, SD = .08), with all other 

effects being nonsignificant (all ps > .35). 

 

2.3 Transcranial Magnetic Stimulation 

Three-dimensional MRI data of each subject were co-registered to the volunteer’s cranium to provide 

a navigational template for the positioning of the TMS coil. The positioning was conducted with the 

Brainsight software (version 2.1.5; Rogue Research, Montreal Canada) connected to a Polaris Vicra 

Optical Tracking System (Polaris, Northern Digital, Ontario, Canada). The system tracked the coil’s 

position with respect to the head using a stereotactic camera, which senses both the coil and the 

reflectors located on a strap tied to the subject’s head. Stimulation sites were identified on each brain 

reconstruction based on macro-anatomical landmarks (nasion, inion, lateral canthi, and tragi), and the 

locations of the induced field and stimulation spots were displayed on the MRI data. LIFGop location 

was based on the findings of Piretti and colleagues (2015) through MNI coordinates (x = -48, y = 1, 

z = 15), whereas Vertex location was set manually as the midpoint between nasion and inion and 

between the tragi. 

Paired-pulse TMS was delivered via two 200² units connected to a 70 mm figure-of-eight coil 

through a BiStim2 module (Magstim Company, Whitland, UK). During the experiment, the coil was 

held by a mechanical arm. For the LIFGop, the coil was oriented with an angle of approximately 45° 

http://meshugga.ugent.be/snaut-italian-2/
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from the nasion-inion line with the handle pointing inwards. For the Vertex, the coil was oriented 

tangentially to the scalp and perpendicular to the sagittal plane. The two pulses were separated by a 

100 ms interval (10 Hz), held to induce an inhibition of cortical activity (as in, Chen, Wassermann, 

Canos, & Hallett, 1997; Oshio et al., 2010; but see also Opie, Ridding, & Semmler, 2015; Shirota, 

Sommer, & Paulus, 2016), and delivered approximately every 6 seconds. 

 

2.4 Procedure 

Prior to positioning the coil, each participant’s resting motor threshold (RMT) was measured. The 

determination of the RMT was conducted via observed movement motor threshold estimation (OM-

MT; Pridmore, Fernandes Filho, Nahas, Liberatos, & George, 1998), defined as the percentage of 

total machine output (PTMO) of single-pulse stimulation over the left primary motor cortex (M1; ~5 

cm lateral from the Vertex) that evoked 5 out of 10 visible contralateral finger/hand motor responses. 

Stimulation intensity was then set to 90% of each subject’s RMT (M = 30.7, SD = 3.50). 

After positioning the coil over the target area, participants completed a semantic priming 

paradigm. A PC running E-Prime (version 2.1, Psychological Tools, Inc) controlled the presentation 

of the stimuli, the recording of responses, and the onset of the TMS pulses. Stimuli were projected 

on a white background via a 19” LCD monitor with resolution of 1280*1024 pixels and a screen 

frame rate of 60 Hz. During each trial, a fixation cross was presented for 500 ms, followed by the 

presentation of a prime word (50 ms). The prime was replaced by a blank screen (100 ms) that 

preceded the target which remained on the screen for 1500 ms, or until participants gave a response 

via button press (see Fig. 1). 
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Figure 1. Temporal progression of a trial containing a Positive Social group target preceded by the 

semantically congruent prime. Bolts indicate TMS pulse delivery, with the first pulse coinciding with the offset 

of the prime and the second with the onset of the target word, separated by a 100 ms interval. 

 

Within the task, the first TMS pulse was delivered at the offset of the prime, whereas the 

second one coincided with the onset of the target word. To avoid potential effects associated to the 

stimulation in the preceding trial, a 4000 ms inter-trial interval was used, making a single trial last up 

to a maximum of 6150 ms. Participants were instructed to just attend the first word (prime) and to 

categorize the second word (target) based on whether it represented a living or a non-living entity. 

The response was given via button press, with the category-button mapping counterbalanced across 

participants. Since the TMS was mainly targeted to a left-lateralized area, participants always 

responded using the index and middle fingers of their left hand. Before starting with the main task, 

participants were given 5 practice trials with a different sample of stimuli to familiarize with the task 

and the stimulation. During the main task, all target stimuli were presented twice in a random order, 

once with the semantically congruent, and once with the semantically incongruent prime. The 

resulting 120 trials were then split into two blocks of 60 trials each. After the first block, participants 

could take a short self-paced break, after which they continued by pressing a response button. The 

same procedure, lasting approximately 7 minutes, was completed by each participant twice, once per 
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stimulation site, with the order of the site being counterbalanced across participants. The experiment 

thus consisted of a 2 (Site: LIFG vs. Vertex) x 2 (Category: Social groups vs. Objects) x 2 (Valence: 

Positive vs. Negative) x 2 (prime-target Congruence: Congruent vs. Incongruent) within-subjects 

design, with response time (RT) as the dependent variable. Given the subjectivity of the valence 

ratings previously acquired, to check whether the present subjects considered the two semantic 

categories having an equal valence within each level of the pre-established Valence factor, we asked 

them to rate the valence of each word at the end of the session. 

 

2.5 Data analysis 

We used R (R Core Team, 2016) and lme4 (Bates, Mächler, Bolker, & Walker, 2015) to perform a 

linear mixed effects analysis using RTs as predicted variable and Site, Category, Valence, 

Congruence and their interactions as fixed effects. The model also controlled for the effects of item 

length, familiarity and imageability to improve the accuracy of the fixed effect estimates. Random 

intercepts for each item nested within each subject were used as random effects. Incorrect trials and 

trials with RTs greater than 2 SD from their average (629 ms, SD = 161) were filtered prior to analysis. 

To fix deviations from normality, as from visual inspection of residual plots, RT were transformed 

via reciprocal log-transformation. Following transformation, no visible deviations from normality we 

detected. P-values are reported using restricted maximum likelihood (REML) estimation and the 

Satterthwaite approximation to calculate the denominator degrees of freedom. Follow-up analyses to 

explore the significant interactions were conducted via an analysis of simple effects, with Bonferroni-

corrected contrasts between congruence and stimulation site conditions. The effects size of the 

contrasts were calculated using the Cohen’s d for repeated measures (Cohen’s dz; Lakens, 2013; 

Rosenthal, 1986). 



 

  33 
 

As a manipulation check, to assess whether the subjects’ valence ratings coincided with the 

pre-determined Valence factor, we ran an ANOVA on the average valence ratings of the target words 

given at the end of the session, using Category and Valence as factors. 

 

 Results 

3.1 Main results 

The analysis revealed a significant main effect of Congruence [F(1, 3325) = 50.51, p < .001], with 

participants being overall slower on Incongruent trials compared to Congruent trials, and no 

significant main effects of Site [F(1, 3342) = 1.56, p = .21], Category [F(1, 1129) =.18, p = .67] and 

Valence [F(1, 1128) =.71, p = .40]. Two significant three-way interactions emerged between Valence, 

Category and Site [F(1, 3348) = 7.71, p = .006], and between Valence, Congruence and Site [F(1, 

3328) = 3.85, p = .05], but not a significant four-way Congruence x Category x Valence x Site 

interaction [F(1, 3329) = .01, p = .93]. To disentangle the Valence x Category x Site interaction, we 

tested how RTs to each Category were influenced by stimulation Site based on their valence. To do 

so, we ran two random effects models, one for each level of Valence, using Category and Site as fixed 

factors, controlling for imageability, length and familiarity. Random intercepts for Congruence nested 

within items and subjects were used as random effects. 

For Negative stimuli, the results showed a significant Site x Category interaction [F(1, 1147) 

= 7.19, p = .007]. Bonferroni-corrected contrasts addressing stimulation effects showed a significant 

effect for Social groups [t(1158) = -2.58, p = .03, Cohen’s d = -.58], with faster responses when 

stimulating the LIFGop compared with the Vertex, and no effect for Objects [t(1135) = 1.20, p = .68, 

Cohen’s d = .27] (see Figure 2). In addition, there was a significant difference in the stimulation effect 

between the two categories [t(1147) = 2.68, p = .02, Cohen’s d = .60]. As for the Positive stimuli, 

neither the interaction [F(1, 2150) = 1.58, p = .21], nor the main effect of Site [F(1, 2150) = .61, p = 

.43], or Category [F(1, 2150) = 1.58, p = .21], were observed. 
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Figure 2. Mean RTs (ms) for Negative (left panel) and Positive targets (right panel) separated by stimulation 

site and Category. Relative to the Vertex, participants were significantly faster to respond to social groups of 

more negative valence when the LIFGop was being stimulated. Error bars represent ± 1 SE. 

 

To disentangle the Valence x Congruence x Site interaction, we tested how RTs in each 

Congruence condition were influenced by the stimulation Site based on whether they belonged to the 

Negative or Positive valence (see Figure 3). As for the previous interaction, we ran two random effects 

models, one for each level of Valence, using Congruence and Site as fixed factors, controlling for 

word imageability, familiarity and valence ratings. Random intercepts for items nested within 

categories and within subjects were used as random effects. 

The results for Negative stimuli showed a main effect of Congruence [F(1, 1679) = 12.60, p 

< .001], no significant effect of Site [F(1, 1686) = .97, p = .32], and a marginally significant Site x 

Congruence interaction [F(1, 1676) = 3.35, p = .07]. Bonferroni-corrected contrasts on priming 

effects (Congruent vs Incongruent trials) showed the presence of a significant priming during the 
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stimulation of the Vertex [t(1681) = 3.79, p < .001, Cohen’s d = .84], but not during the stimulation 

of the LIFGop [t(1673) = 1.22, p = .67, Cohen’s d = -.27]. For the Positive valence stimuli, the 

significant main effect of Congruence [F(1, 1647) = 40.35, p < .001], did not interact with the Site 

factor [F(1, 1654) = .96, p = .33]. 

 

Figure 3. Mean RTs (ms) for Negative (left panel) and Positive targets (right panel) separated by stimulation 

site and semantic congruence with the preceding prime. Error bars represent ± 1 SE. 

 

3.2 Manipulation check 

The analysis of the valence ratings showed a significant main effect of the pre-established Valence 

factor [F(1, 19) = 65.30, p < .001, 𝜂2  = .77], with positive valence words having higher ratings (M = 

6.29, SD = 1.07) compared to negative words (M = 4.26, SD = 1.20). The main effect of Category 

and the interaction between Category and Valence were not significant (both ps > .10). 
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3.3 Exploratory analysis 

We further explored the data to assess the extent to which the faster responses for Negative Social 

groups during LIFGop stimulation were driven by changes in RTs in Incongruent or Congruent trials 

relative to the Vertex. To this end, we ran Bonferroni-corrected contrasts for stimulation effects 

(Vertex vs. LIFG) on Incongruent and Congruent trials containing Negative Social groups or 

Negative Objects. 

For Negative Social groups, a significant effect of the stimulation emerged in Incongruent 

trials [t(1686) = -2.74, p = .01, Cohen’s d = -.61], but not in the Congruent ones [t(1687) = -.93, p = 

.71, Cohen’s d = -.21], indicating that the overall faster responses to Negative Social groups, and the 

same lack of a priming in the LIFGop stimulation condition, was mostly driven by faster responses 

to unprimed targets (see Figure 4). In the case of Negative Objects, no significant effects of 

stimulation were observed for either Incongruent [t(1677) = -.12, p = 1.00, Cohen’s d = -.03], or 

Congruent trials [t(1670) = 1.76, p = .15, Cohen’s d = .39]. 

 

Figure 4. Mean RTs (ms) for Incongruent (left panel) and Congruent (right panel) of negative valence divided 

by semantic category and site of stimulation. Error bars represent ± 1 SE. 
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 Discussion 

With the present study we aimed at assessing the role played by the LIFGop in representing social 

groups. This prediction was based on empirical facts and extant theories. First, brain-damaged 

patients were described with a selective deficit in processing social groups (Rumiati et al., 2014), and 

the LIFGop was identified as the underlying common cortical region associated with patients’ poorer 

naming performance on social groups (Piretti et al., 2015). Second, some theoretical propositions 

(Barsalou, 2008; Lambon Ralph et al., 2016; Martin, 2016) led us to hypothesize that the semantic 

representation of social groups might be better captured by affective properties, with the affective 

valence playing a critical role. Moreover, the observed association between LIFGop activity and the 

processing of negative valence words (García-Pacios et al., 2017; Kensinger & Schacter, 2006; 

Leclerc & Kensinger, 2011) suggested that this area might be specifically involved in representing 

social groups of negative affective valence. 

When TMS was applied over the LIFGop, relative to the Vertex, we found a significant 

decrease in RTs to negative social categories, with no effect for positive social categories or objects 

of any valence. In line with our hypothesis, we interpret this finding as an indication of a preferential 

involvement of the LIFGop, boosted by TMS, in the representation of social groups when processing 

negative affective attributes. An exploratory analysis also revealed that, when the stimulation was 

applied to the LIFGop (relative to the Vertex), the faster responses were mostly driven by lower RTs 

to unprimed trials. These findings, together with the unaltered responses to primed trials, are 

consistent with previous TMS studies on object representations, also reporting faster responses in 

unprimed trials (Cattaneo et al., 2010, 2008). According to the state-dependent hypothesis, the TMS 

effect on the target neuronal population in a state of lower activation (during the unprimed condition) 

should lead to an increased excitability and faster processing (Cattaneo et al., 2010, 2008; Silvanto, 

Muggleton, & Walsh, 2008). It is thus plausible that the overall facilitation we found in categorizing 
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negative social groups derives from a combination of the TMS-induced facilitation in incongruent 

trials and a stable priming effect in congruent trials. 

Additionally, our results have shown a disruption of the priming effect, which, contrary to our 

expectations, was not unique to social groups, but it was present for negative words in general, 

including objects. In the latter case, although not significant, the disruption of the priming was 

numerically mostly led by a decrease in RTs for primed object targets, contrary to what was found 

for social groups. If the LIFGop supports the activation of negative affective representations and these 

are more strongly linked to the processing of social groups, then an increase in its excitability through 

stimulation might have increased participants’ readiness to categorize a social group when reading a 

negative word regardless of its category. We hypothesize that such readiness might have produced a 

lag in the categorization of primed object targets. Although purely speculative, this idea is in line with 

electrophysiological studies suggesting the presence of effects driven by the affective content of 

words preceding and influencing later semantic processing (Kissler, Assadollahi, & Herbert, 2006). 

It is still not clear whether the involvement of the LIFGop might extend beyond accessing the 

existing social semantic knowledge. For instance, a recent TMS study failed to find a significant 

involvement in the formation of social impressions (Ferrari et al., 2016). However, unlike the present 

study, the possibility of a valence-specific effect was not considered by Ferrari and colleagues, 

suggesting that a possible contribution of this region in creating novel social impressions, especially 

for negative stimuli, is not to be excluded. To this end, it is worth noting that an fMRI study on 

impression formation from social behavioral descriptions reported an increased activation of the 

LIFGop when contrasting negative vs. positive social attributes (Van der Cruyssen et al., 2014). 

When it comes to accessing the representation of social groups, our findings support the 

hypothesis on the relevance of affective information, consistently with the proposal that social 

concepts are characterized by a predominance of affective properties (Piretti et al., 2015). This 

conclusion is consistent with the role of LIFGop in processing negative valence words (García-Pacios 
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et al., 2017; Kensinger & Schacter, 2006; Leclerc & Kensinger, 2011; Van der Cruyssen et al., 2014), 

and with multiple theorizations linking the processing of social concepts with affect (e.g., Lambon 

Ralph et al., 2016; Martin, 2016). Consistently with the Conceptual topography theory (Simmons & 

Barsalou, 2003), the present findings also support the distinction in processing of positive and 

negative affective features within the emotional modality, additionally suggesting the latter being 

implemented in the LIFGop. Finding the same pattern of results for positive words following the 

stimulation of an area involved in the processing of positive affective information would bring 

additional evidence in support of this distinction and of the hypothesis that social concepts rely on 

affective information. 

Our results are not easily accommodated within previous theories of emotion lateralization 

suggesting that the processing of negative affect is right-lateralized in the prefrontal regions 

(Davidson, 1992, 1995; Davidson & Irwin, 1999). Consistent with our findings, however, in a more 

recent neuroimaging study the affective processing of picture and word stimuli led to a bilateral 

activation of prefrontal lateral regions (Kensinger & Schacter, 2006). In the domain of language, 

Kensinger & Schacter (2006) found a greater activation for negative compared with positive words 

only in the LIFGop. Yet, our results do not exclude the possibility that also other areas might support 

the processing of social groups with a negative valence. We rather favor the idea that the LIFGop is 

part of a wider network of cortical and subcortical regions supporting affective and semantic 

processing, that in our study we might have affected indirectly with the stimulation. 

In conclusion, our data support the hypothesis of a predominant role of the LIFGop in 

affective processing of social groups. Confirming the previously evidenced involvement of the region 

in processing negative features, we suggest that its activation facilitates the processing of lexical 

stimuli that rely more heavily on such features. In this view, compared to the categorization of objects, 

the categorization of social group names is facilitated because their representation relies more on 

affective information than objects do. As such, our findings bring additional evidence to the 
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theoretical propositions that link semantic representations to affective processes (Barsalou, 2008; 

Lambon Ralph et al., 2016; Martin, 2016; Simmons & Barsalou, 2003) and suggest where in the brain 

this interplay is likely to take place. While a comparison with only the objects category poses a limit 

to the strength of our conclusions, we encourage future studies on the representation of social groups 

to replicate the present findings by taking into account comparisons with semantic categories such as 

animals. As previous research has argued objects and animals to be distinguished for the variety of 

their uses and of their visual properties, respectively, we argue that the factor playing a greater role 

in enabling us to discern among social groups is likely to be the affective valence we attribute to them. 
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CHAPTER 3 

Study 2: Electrophysiological Correlates of Social 

Group Representations in Affective Priming 

 

Abstract 

There is growing evidence in cognitive neuroscience that processing of information about social 

groups involves the associated affective features, compared with processing information about 

nonsocial semantic categories. With the present study we aimed at assessing the extent of such 

involvement by measuring event-related potentials in healthy individuals while they performed an 

affective priming paradigm requiring evaluative responses. Behavioral results showed a greater 

affective priming for social group than for nonsocial category targets, while the analysis of the neural 

correlates revealed a modulation in the late positive component, which was higher in the positive 

valence social groups as compared to positive valence nonsocial categories. The present findings 

complement previous neuropsychological and brain stimulation studies by showing how the 

engagement in affective processing enhances the representation of social groups compared to 

nonsocial categories, as indicated by the emergence of a distinct behavioral and neurophysiological 

response. 

 

 Introduction 

When we categorize our conspecifics into social groups based according to characteristics such as 

gender, ethnicity, social status or occupation, we rely on both semantic and affective information. For 

example, the label “criminals”, referred to people being guilty of crimes, comes together with its 

generally negative evaluation; likewise, the label “students”, in addition to informing us about the 
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young age of individuals that attend some type of educational system, would generally be attached to 

a positive evaluation. The semantic component informs us about the appearance and behavior of the 

group, whereas the affective one determines our attitude, a positive or negative disposition towards it 

(T. D. Wilson, Lindsey, & Schooler, 2000). The semantic and affective systems have often been 

regarded as being apart (Pessoa, 2008), however arguments for their interdependence have also been 

put forward. For instance, it has been suggested that affective information would be a core component 

of our conceptual knowledge as much as any other type of information, and that its relevance would 

differ depending on the semantic category (Barsalou, 2008; Lambon Ralph et al., 2016). In particular, 

some authors have proposed that the affective information largely contributes towards the 

representation of conspecifics (Lambon Ralph et al., 2016; Mahon & Caramazza, 2011; Martin, 

2016). Indeed, neuropsychological studies documented patients with a selective deficit at processing 

social groups, thus suggesting that concepts about them might have a representation of their own 

(Carnaghi, Silveri, & Rumiati, 2015; Rumiati, Carnaghi, Improta, Diez, & Silveri, 2014). Moreover, 

widespread tumor lesions in areas commonly linked to affective processes affected the patients’ 

accuracy at naming pictures of social groups (Piretti et al., 2015). What needs to be explained is the 

role played by valence in processing the affective information. Using transcranial magnetic 

stimulation on healthy subjects, the increased excitability of the inferior frontal gyrus, associated to 

the processing of negative valence stimuli, has been found to facilitate the categorization of negative 

social groups (Suran, Rumiati, & Piretti, 2019).  

To further assess the extent to which affective valence contributes to the semantic 

representation of social groups, we employed an affective priming paradigm (Fazio, 2001; Fazio, 

Sanbonmatsu, Powell, & Kardes, 1986). During the test, participants are shown either a positive or 

negative target word upon which they build an evaluative response. To influence their speed in 

evaluating the target, a prime word of the same or opposite valence is presented right before it, pre-
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activating an affective processing. The priming effect corresponds to faster responses to targets 

preceded by affectively congruent, relative to affectively incongruent primes. 

In order to establish the stage at which the primes influence the processing of the targets, we 

complemented the behavioral paradigm with the measurement of event-related potentials (ERPs). 

The two most studied components in affective priming are the N400 (~400 ms post-target onset) and 

the late positive component (LPC; ~600 ms post-target onset), whose effects emerge from their 

differences between congruent and incongruent trials. In this context, the former effect has been 

associated with the process of integrating the semantic content of primes and targets (Zhang, Lawson, 

Guo, & Jiang, 2006; Zhang, Li, Gold, & Jiang, 2010). The LPC, reported to be sensitive to word 

valence (for a review, see Citron, 2012), has been regarded to also capture affective prime-target 

incongruities and thus to be a more reliable index of affective priming when controlling for non-

affective prime-target relationships (Herring et al., 2011; Hinojosa, Carretié, Méndez-Bértolo, 

Míguez, & Pozo, 2009). 

In line with previous studies showing a facilitated response to manipulable object targets 

following sensory-motor priming (Labeye, Oker, Badard, & Versace, 2008; Myung, Blumstein, & 

Sedivy, 2006), at the behavioral level we expected that activating the processing of affective 

information would result in a facilitated response (i.e. shorter reaction time) to social groups. 

Moreover, such facilitation, if not specific to social groups, was expected be significantly greater 

when compared to the facilitation observed for non-social semantic categories. As there is yet no 

consensus concerning which ERP component should be more sensitive to affective priming, as in 

previous studies, we expected to find both an N400 (Zhang et al., 2006, 2010) and an LPC effect 

(Herring et al., 2011). Additionally, we expected these effects to be greater towards social category 

targets relative to nonsocial categories, reflecting their hypothesized stronger reliance on the affective 

features being primed. 
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 Method 

2.1 Participants 

Twenty-six healthy right-handed participants, all Italian native speakers, were recruited from the local 

population in exchange of monetary compensation, and all gave written consent prior to participation. 

Because of the inability to obtain sufficient EEG data in three participants due to the presence of 

artefacts coming from excessive movement, these were excluded from the analysis, bringing the final 

sample to 23 participants (13 female, age range 19-29). The study was approved by the Ethics 

Committee of the International School for Advanced Studies (SISSA, Trieste) in accordance with the 

Declaration of Helsinky. 

 

2.2 Materials 

A total of 108 plural nouns of social categories (N = 54) and nonsocial categories (N = 54) were used 

as target stimuli after being selected from a larger database rated by a different sample of 12 subjects 

(see Appendix 2). Each semantic category was divided in a positive and negative subset of 27 

elements each, differing significantly in their valence ratings [Social positive vs. Social negative, 

t(52) = 20.66, p < .001; Nonsocial positive vs. Nonsocial negative, t(52) = 22.24, p < .001). 

Additionally, within each valence subset, social and nonsocial category nouns were matched 

according to their average ratings of valence [Social negative vs Nonsocial negative, t(52) = 1.32, p 

= .19; Social positive vs Nonsocial positive, t(52) = 1.34; p = .19), arousal [Social negative vs 

Nonsocial negative, t(52) = 1.54, p = .13; Social positive vs Nonsocial positive, t(52) = 1.56; p = .13], 

familiarity [Social negative vs Nonsocial negative, t(52) = 1.22, p = .23; Social positive vs Nonsocial 

positive, t(52) = .28; p = .78], and length [Social negative vs Nonsocial negative, t(52) = .71, p = .48; 

Social positive vs Nonsocial positive, t(52) = .98; p = .33] (see Table 1). A separate sample of 18 

words to be used as primes was obtained from the ANEW rated database of Italian words 

(Montefinese, Ambrosini, Fairfield, & Mammarella, 2014). These consisted of 9 positive and 9 

negative nouns and adjectives of significantly different valence [t(18) = 33.23, p < .001], and matched 
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according to their arousal [t(18) = .28, p = .78], familiarity [t(18) = .02, p = .98], length [t(18) = .86, 

p = .40], concreteness [t(18) = .24, p = .81]. The additional concreteness matching was done to 

account for the different effects of abstract and concrete prime words on affective priming (Yao & 

Wang, 2013). To this list of words, 9 strings of hash symbols (#) with an equal average length to the 

positive and negative words (5-8 elements) was added to serve as affectively neutral primes, bringing 

the total number of primes to 27. 

To ensure an equal semantic relationship between the prime words and each target 

Category/Valence group, we employed the Italian version of the snaut open online software 

(http://meshugga.ugent.be/snaut-italian-2/) to extract their respective semantic distances, calculated 

based on word co-occurrences in large text corpora via cosine similarities between semantic vectors 

(Mandera et al., 2017). A mixed ANOVA on the extracted values using Category and Valence as 

between factors and Congruence as within factor showed, as expected, a significant main effect of 

Congruence [F(1, 104) = 104.9, p < .001, 𝜂𝑝
2 = .50] characterized by a lower semantic distance for 

Congruent relative to Incongruent primes, and an interaction between Congruence and Valence [F(1, 

104) = 13.05, p < .001, 𝜂𝑝
2 = .11] with a greater distance between congruent and incongruent primes 

for negative, relative to positive words. 

Category N Valence Arousal Familiarity Length 
Semantic 

distance ∆ 

Social 

   Positive 
27 6.24 (.48) 4.11 (.42) 4.02 (1.11) 7.19 (1.24) .03 (.04) 

Nonsocial 

   Positive 
27 6.41 (.45) 3.90 (.56) 3.94 (1.13) 6.82 (1.52) .03 (.04) 

Social 

   Negative 
27 3.06 (.64) 3.93 (.50) 3.10 (.88) 7.30 (1.54) .05 (.05) 

Nonsocial 

   Negative 
27 3.28 (.58) 3.73 (.48) 2.81 (.86) 7.00 (1.52) .06 (.04) 

Table 1. Mean valence, arousal and familiarity ratings (0 = extremely low; 7 = extremely high), average word 

length, and difference in the semantic distance (cosine) with the congruent and incongruent primes for each 

target word category separated by valence class. Standard deviations reported within parentheses. 

http://meshugga.ugent.be/snaut-italian-2/
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2.3 Procedure 

Participants performed the affective priming task in a dark and acoustically insulated room. The task 

required to evaluate a target word preceded by a prime of the same or opposite valence. Instructions 

were provided to the participants in both written and oral form by the experimenter. Prior to the task 

proper, participants completed a set of 20 practice trials containing a different set of primes and 

targets. To ensure the task had been understood, participants had to undergo 20 additional practice 

trials in a newly randomized order if they had responded incorrectly to more than practice 5 trials. 

Each trial began with the presentation of a fixation cross (500 ms), after a 200 ms interval, the prime 

(150 ms) and the target (300 ms) appeared, separated by a 100 ms ISI (see Figure 1). After the offset 

of the target, participants were presented with a blank screen during which they had an additional 

1500 ms to give their evaluation via button press. Following this period, or after pressing a button, 

the blank-screen intertrial interval was jittered between 800 and 1200 ms (in 100 ms intervals). To 

respond, participants pressed either the “f” or the “j” key on a QWERTY keyboard, with “positive” 

and “negative” response mapping counterbalanced across participants. Key-choice was driven by the 

presence of dash-like bumps allowing for easier identification in the dark room. To help participants 

differentiate primes from targets, the primes were always presented in uppercase and targets in 

lowercase format. Additionally, to ensure words with equal length subsided an equal amount of visual 

angle, all word stimuli were presented in Lucida Sans Typewriter monospaced font, thus making the 

amount of horizontal space occupied by each character the same. 

Participants completed 324 test trials split in 12 equal blocks. The breaks between blocks were 

self-paced. The 108 targets were presented three times, each time paired with a prime of different 

valence. To avoid two same targets appearing too close to one-another, prime-target pairs were 

presented in a pseudo-random order. Only after all targets had been presented once in a random order, 

they were presented for the second time in a new order, and the same was done for the third 

presentation. Within each of the 3 resulting cycles of 108 trials, the order of the appearance of each 
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prime-target pair was randomized. The task was programmed in Python using the Psychopy library 

(Peirce, 2007), and lasted approximately 25 minutes. 

 

Figure 1. Schematic representation of the affective priming task depicting an affectively congruent trial. 

Stimuli succession is represented left to right, with the respective screen presentation time expressed in 

milliseconds below each stimulus. The last blank display represents the intertrial interval with a jittered 

duration between 800 and 1200 ms in 100 ms intervals. 

 

2.4 Behavioral data analysis 

Behavioral data were preprocessed and analyzed in R (R Core Team, 2016). Subjects whose overall 

accuracy was lower than 80% were excluded from further analyses (n = 3). On the remaining 20 

subjects, the average accuracy score was subjected to a 2 (Category: Social vs. Nonsocial) x 2 

(Valence: Positive vs. Negative) x 3 (Congruence: Congruent vs. Incongruent vs. Neutral) repeated 

measures ANOVA. The same model was then applied to the log-transformed RTs following the 

removal of incorrect trials and trials in which RTs deviated by more than 2 SD from each subject’s 

average (14% of the total trials). As a measure of effect size we used partial eta squared. Post-hoc 

tests for significant higher order effects were calculated as planned contrasts on priming effects 

applying the Bonferroni correction. 
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2.5 EEG recordings and data analysis 

EEG was recorded with a set of 64 Ag/AgCl active electrodes mounted on an elastic cap based on the 

International 10-20 system (Klem, Lüders, Jasper, & Elger, 1999). Signal amplification was achieved 

through a BioSemi Active-Two amplifier system. During recording data were visualized and stored 

by means of ActiView acquisition software (ActiView 707, Biosemi, Amsterdam, The Netherlands). 

Electrode offsets were kept between ±20 mV, and the signal was sampled at a rate of 1024 Hz, with 

a 24-bit digitization resolution. A common mode voltage based on the ActiveTwo’s CMS/DRL 

feedback loop was used for analog-to-digital conversion of recorded voltages for each electrode (cf. 

to https://www.biosemi.com/faq/cms%26drl.htm). Data were band-pass filtered between 0.01–100 

Hz during data acquisition. To monitor eye movements and blinks, horizontal and vertical 

electrooculogram (EOG) was recorded via four additional electrodes placed at the outer canthi of 

both eyes, and below and above the left eye. 

EEG data preprocessing was performed using the Brainstorm software (Tadel, Baillet, 

Mosher, Pantazis, & Leahy, 2011) and subsequently analyzed in R (R Core Team, 2016) using the 

erpR package (Arcara & Petrova, 2014). First, the EEG recordings were resampled offline at 250 Hz 

and band-pass filtered (0.05 – 40 Hz). Bad electrode channels were removed upon visual inspection, 

as well as movement artefacts. Eye blinks artifacts were removed through independent components 

analysis (ICA; Makeig, Bell, Jung, & Sejnowski, 1996). Epochs containing artefacts other than eye 

movements were removed after visual inspection. Average ERPs were computed separately for each 

participant, electrode, target category/valence combination from -200 to +1500 ms relative to the 

onset of the target, and baseline-corrected using the 200 ms pre-stimulus period. 

To identify the time windows for the N400 and the LPC components and avoid the issue of 

circularity in windows selection, we used the collapsed localizer approach (Luck & Gaspelin, 2017) 

and the examination of existing literature. Both for the N400 (480 – 680 ms) and the LPC (700 - 900 

ms), the waves collapsed across all conditions were used. For the respective components, the time 
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regions surrounding the greatest peak amplitudes were selected. Four symmetrical regions of interest 

(ROIs; see Fig. 2) were then created by averaging the amplitude of the respective electrodes selected 

based on a visual inspection of the scalp topography of collapsed conditions in the relevant time 

windows previously obtained. Each of the four ROIs represented a combination of Caudality (frontal 

vs. posterior) and Laterality (left vs. right). 

The resulting ERPs were subjected to two 2 (Category: Social vs. Nonsocial) x 2 (Valence: 

positive vs. negative) x 2 (Congruence: congruent vs. incongruent) x 2 (Caudality: frontal vs. 

posterior) x 2 (Laterality: left vs. right) repeated measures ANOVAs, one for each component’s time 

window. Follow-ups to significant interactions consisted of Bonferroni-corrected contrasts of priming 

effects. Interactions that involved spatial factors (Caudality or Laterality) were followed up within 

each level. The aim of our study was to assess the effects of affective congruence across categories, 

thus, consideration is exclusively given to the contrasts concerning the interactions between affective 

Congruence and target Category. Only interactions yielding significant follow-up contrasts are 

reported. 
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Figure 2. Scalp regions used for electrode grouping for statistical analyses of event-related potentials. 

 

 Results 

3.1 Behavioral results 

The analysis of the RTs showed a significant main effect of Congruence [F(2, 38) = 8.76, p < .001, 

𝜂𝑝
2 = .32] and a significant interaction between Category and Congruence [F(2, 38) = 3.88, p = .03, 

𝜂𝑝
2 = .17]. All other main effects and interactions were not significant (p > .1). Follow-up analyses on 

the Congruence effect revealed a significant difference between the Congruent and Neutral condition 

[t(38) = 3.48, p < .01], and between the Congruent and Incongruent condition [t(38) = 3.76, p < .01], 

whereas between the Incongruent and Neutral conditions there was no significant difference [t(38) = 

-.30, p > .05]. In the interaction, a significant difference between Congruent and Incongruent trials 
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(i.e., the priming effect) was observed for Social groups [t(38) = 4.65, p < .001] but not for Nonsocial 

categories [t(38) = 1.87, p = .38]. This difference was significantly greater for Social groups relative 

to Nonsocial categories [t(38) = -2.78, p = .05]. 

 

 

Figure 3. a) Violin plots with reaction times (ms) to target words based on the affective congruence with the 

preceding prime. Congruent trials are faster relative to Incongruent and Neutral trials, indicating the presence 

of a facilitation of the affectively congruent primes. b) Priming effect, calculated as the difference between 

Incongruent and Congruent trials, for Social and Nonsocial targets. Social groups showed a greater affective 

priming effect following the same primes. Error bars represent ±1 SE. 

 

3.2 ERP results 

480 – 680 ms. This time interval encompassed a negative-going wave, peaking around 600 

ms, interpreted by previous authors using an analogous paradigm as reflecting the N400 (Zhang et 

al., 2006). Although the results revealed a significant interaction between the factors of Category, 

Valence, and Congruence [F(1, 19) = 6.85, p = .017, 𝜂𝑝
2 = .26], post-hoc analyses did not show 

significant categorical differences based on Congruence for targets of either Valence (both ps > .05). 

700 – 900 ms. The analysis of the later time-window also revealed a significant 3-way 

interaction between Category, Valence and Congruence [F(1, 19) = 7.25, p = .01, 𝜂𝑝
2 = .28] which in 
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turn interacted also with Caudality [F(1, 19) = 6.57, p = .02, 𝜂𝑝
2 = .26]. Post-hoc Bonferroni-corrected 

contrasts showed a higher LPC for Congruent as compared to Incongruent trials for Positive Social 

group targets in the anterior electrode clusters [t(89) = -3.09, p = .008], which was not significant in 

the posterior clusters [t(89) = -2.21, p = .09]. Only in the anterior electrodes, this difference between 

Congruent and Incongruent trials for Social group targets was also significantly greater than the one 

for Nonsocial targets [t(89) = 2.70, p = .03]. No other LPC effects were observed (all ps > .05). An 

exploratory analysis of the anterior clusters motivated by the visual inspection of the scalp distribution 

of the LPC effect for Social groups (see Figure 4b) has shown that a marginally significant effect over 

the left electrodes [t(104) = -2.43, p = .05], and a significant effect over the right electrodes [t(104) = 

-3.50, p = .002], leading to a significant difference between Social and Nonsocial categories only over 

the right anterior cluster [t(48) = 2.87, p = .02]. Again, no LPC effect was found for Nonsocial targets 

(all ps > .05). 

  

a) 
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Figure 4. a) Grand average ERP waveforms of the right anterior electrode cluster divided by congruent (blue 

lines) and incongruent trials (red lines) for social groups (left column) and objects (right column) of positive 

valence (top row) and negative valence (bottom row). Only social groups of positive valence presented a 

significant priming effect in the LPC time window. Colored bands represent ±1 SE of the respective grand 

averages. b) Following the same disposition, topographic maps of the difference in amplitude between 

congruent and incongruent trials in the 700-900 ms time window for all conditions. 

 

 Discussion 

Processing affective features has been proposed to contribute to the semantic representation of 

conspecifics at the level of social groups (Piretti et al., 2015; Rumiati et al., 2014). The present study 

aimed at testing this claim by assessing whether priming affective information facilitates an 

evaluative response towards social groups relative to objects. To achieve this aim, we tested the 

hypothesis that deciding whether the name of a social group is positive or negative, compared to that 

of an object, is faster following the presentation of semantically unrelated but affectively congruent 

positive and negative primes. The behavioral data supported the hypothesis that participants would 

b) 
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show a significant affective priming effect for social group names regardless of their valence, but not 

for objects. The priming effect was mostly driven by faster evaluative responses to affectively 

congruent targets (i.e., positive priming), compared with incongruent and neutral conditions, while 

no difference was observed between these two. 

As argued in previous priming studies, the facilitation found could be due to congruent primes 

inducing a greater motor readiness to press the corresponding response key (Damian, 2001), rather 

than being the result of a spreading of activation within an affective/semantic network (De Houwer 

& Randell, 2002; Fazio, 2001; Spruyt, Hermans, Houwer, & Eelen, 2002). However, the presence of 

a categorical difference in the magnitude of the affective priming effect allows us to dismiss this 

interpretation of the findings. As the response priming might have partially driven the main priming 

effect by facilitating congruent motor responses, we argue that the categorical difference is likely to 

have emerged from an unequal spreading of activation in the affective/semantic network, from which 

social groups received a greater benefit. In addition, our findings allow us to argue that the spreading 

of activation in such network is not the same for all concepts, but it applies to some concepts more 

than to others, and might depend on the relevance of the affective features for their representation: 

this argument would explain why social group targets benefit from this spreading of activation more 

than the nonsocial category targets do. On the other hand, the lack of an affective priming effect for 

nonsocial category targets is in accordance with previous reports failing to find such effect with 

concrete words, mostly denoting object names (Yao & Wang, 2013; but see also De Houwer & 

Randeil, 2002). 

As to the ERP findings, we observed a significant category- and valence-specific effect for 

positive social groups in the 700-900 ms time window, with congruent trials eliciting a greater 

positivity relative to incongruent trials in the right-frontal region. This finding is however not in line 

with previous affective priming studies, reporting a greater amplitude in the incongruent condition 

from an LPC, and associating it with affective integration (Herring et al., 2011). In particular, the 
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scalp distribution of the effect suggests a it may reflect a different late right frontal component. Taking 

also into account its latency, the effect may indicate a sustained post-retrieval processing, indeed 

previously attributed to a greater motivational relevance of emotional stimuli (Ally & Budson, 2007; 

Van Strien, Langeslag, Strekalova, Gootjes, & Franken, 2009). This increased processing for positive 

social groups may have thus been triggered by the presentation of the preceding positive primes. To 

this end, the effect could also be interpreted as an anticipated late peak for primed as opposed to 

unprimed positive social groups. Both interpretations would be in line with previous findings 

suggesting that positive primes facilitate associative processes by increasing accessibility to 

associations (Storbeck & Clore, 2005). Social groups might thus receive a greater benefit from such 

increase in the affective semantic domain. 

In line with recent studies showing that the absence of a strong modulation of the semantic 

relationship between primes and targets does not elicit N400 effects (Herring et al., 2011), we failed 

to find a significant affective priming in the N400 time window. Although the congruent primes were 

semantically closer to the targets compared to incongruent primes, this difference may have indeed 

not been enough pronounced, suggesting that the results mostly reflect a modulation of the affective 

relationship between targets and primes, rather than a semantic one. This claim is also supported by 

the presence of a significantly stronger effect for social relative to nonsocial targets, despite the two 

categories not differing in their semantic distance from the congruent and incongruent primes. It is 

also worthy to mention that the lack of such significant effect could be simply related to statistical 

reasons. Even if an effect is true, as an N400 in affective priming may be, it is not expected to be 

replicated in every experiment (Lakens & Etz, 2017). 

An additional explanation as to why we found no effect for negative social groups in both 

ERP components, despite the presence of a behavioral effect, could be associated to differences in 

familiarity between positive and negative targets. Since the target semantic category matchings were 

conducted within each valence, it is possible that the expected effects for negative social categories 
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did not emerge because of the overall lower familiarity of negative nouns (see Table 1). Previous 

studies indeed showed that ERP effects are influenced by familiarity in priming paradigms (Voss, 

Lucas, & Paller, 2010). Even if this was the reason for the lack of an effect for negative social groups, 

the lack of an equivalent LPC effect for positive nonsocial categories still allows us to argue in favor 

of a greater reliance on affective features by positive social groups. 

The greater influence of affective priming towards social groups could be also explained by 

their relatively greater ratings of abstractness. Indeed, the same claim about a greater reliance on 

affective features has also been attributed to more abstract words in general because of the lack of a 

sensory component (Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 2011; Vigliocco et al., 

2014). Although social groups are on average rated as relatively more abstract than objects, first, there 

is no indication of the presence of a direct correlation with a word’s abstractness and its reliance on 

affective processes, and second, they do not qualify as abstract words, as they do not lack sensory 

properties. Indeed, social group names as concrete stimuli are also found in several studies assessing 

the differences between the affective processing of abstract and concrete concepts (e.g., Newcombe, 

Campbell, Siakaluk, & Pexman, 2012; Yao et al., 2016; Yao & Wang, 2013). Moreover, if the greater 

reliance on affective features would be explained by an increased abstractness, we would expect 

patients showing deficits for abstract concepts to also be impaired in processing social groups, and 

vice versa, however, we are not aware of studies examining such dissociation. To clarify this issue, 

we suggest that future studies should employ equally representative pictures depicting social groups 

and objects as target stimuli, and test whether the same differences in affective priming emerge. 

In conclusion, by showing a facilitated access to the affective component of their semantic 

representation following affective priming, we can support the claim that representation of 

conspecifics relies to a greater extent on the processing of affective features (Piretti, 2017; Rumiati 

et al., 2014). These results contribute to explaining previous findings associating the damage and 

stimulation of areas commonly involved in processing affective information with the specific 
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representation of social groups (Piretti et al., 2015; Suran, Rumiati, et al., 2019). Although the reason 

and the nature for such reliance is still debated (Meteyard et al., 2012), we propose that the greater 

association with affective processing when representing social groups could derive from the repeated 

engagement in empathetic (Barsalou, 2008) and evaluative responses (Piretti et al., 2015) when the 

meaning of these concepts is acquired and rehearsed. 
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CHAPTER 4 

Study 3: Temporal dynamics of cross-modal affective 

representations in social and nonsocial categories 

 

Abstract 

Affective features have been suggested to play a predominant role in social group representations. 

Although studies identified overlaps between affective processing regions and social groups 

representations, not much is known about the temporal dynamics of their interaction. In the present 

study, I used multivariate decoding of electroencephalography (EEG) data from an evaluative task to 

track affective representations as a function of stimulus semantic category. Pattern classifiers were 

trained at distinguishing between positive and negative valence concepts presented as words and then 

tested on the same concepts presented as pictures. In contrasting performance between social groups 

and objects, the results revealed a stronger affective decoding for social groups in both an early and 

late time windows, coinciding with delayed evaluative responses. The present findings provide initial 

evidence of the presence of categorical differences in affective temporal dynamics, and point to an 

increased complexity in social group affective/semantic representations. 

 

 Introduction 

Human lesion studies suggest that social categories such as social groups might be represented in an 

independent brain network from non-social categories (Piretti et al., 2015; Rumiati et al., 2014). 

Moreover, differently from nonsocial categories, the representation of social groups seems to give 

affective features a significantly greater weight. In a TMS study, we recently provided evidence that 
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stimulating the inferior frontal gyrus, commonly associated with the processing of negative affective 

features, speeds up the categorization of negative social group names. That is, when participants were 

presented with negative social group names such as “butchers”, as opposed to the positive category 

of “musicians”, TMS speeded up categorization responses to the former, thus suggesting a link 

between affective processing and semantic processing (Suran, Rumiati, et al., 2019). Moreover, using 

an affective priming paradigm, we found greater facilitation in evaluating social groups relative to 

objects following the presentation of semantically unrelated but affectively congruent primes. This 

suggests that the elaboration of affective information enhances the subsequent processing of social 

groups (Suran, Arcara, Piretti, & Rumiati, 2019). This set of findings is consistent with theories of 

semantic memory positing a central role of affective features in the representation of social groups 

(Lambon Ralph et al., 2016; Mahon & Caramazza, 2011; Simmons & Barsalou, 2003). As for how 

this central role of affect may be implemented anatomically, previous neuroimaging studies identified 

activation in regions selectively responding only to affective information related to social groups, as 

well as areas responding to both social groups and nonsocial categories but showing an increased 

response to the former (Norris et al., 2004). Even within regions processing both types of concepts, 

it is possible that the greater weight of affective information for social groups may be also reflected 

in the temporal dynamics of its processing, an aspect that fMRI, given its relatively low temporal 

resolution may have been unable to capture. To overcome such limitation, in the present study we 

used the temporal resolution of electroencephalography (EEG) to study whether differences between 

social and non-social are present in the temporal dynamics of processing their affective features. 

Additionally, to control for possible confounds of modality-specific mechanisms, we investigated the 

neural correlates of affective processes common to both visual and lexical inputs. 

According to one conceptualization of how semantic knowledge might be organized in the 

brain, affective features are independent from features that rely on other modalities (Lambon Ralph 

et al., 2016). A first characteristic of affective features is that they do not possess a dedicated input 
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modality. This implies that, to study affect, one needs to rely on stimuli, such as words or pictures, 

which, despite eliciting the same affective processes, are also expected to rely on distinct modality-

specific brain regions. For this reason, if one were to identify differences between two categories in 

affective features processing, it is often not possible to rule out the possibility that the difference is 

due to other properties of the stimulus, such as visual features in pictures that cannot be fully matched 

(Fairhall & Caramazza, 2013; Leonardelli, Fait, & Fairhall, 2019). By jointly using the information 

from two distinct input modalities, multivariate pattern analysis (MVPA) of neural information 

allows to overcome this limitation by individuating cognitive processes that are shared by different 

input modalities via cross-decoding (Grootswagers, Wardle, & Carlson, 2017; King & Dehaene, 

2014). To this end, for each time point from the target word onset, a classifier was trained to 

distinguish valence-dependent neural patterns, and then tested on recognizing them in pictures 

representing the same concepts (King & Dehaene, 2014). Each classifier trained on words was tested 

on all time intervals from picture presentation, lasting up to 1 second post stimulus-onset. The 

resulting time generalization analysis allowed us to study the changes in valence-specific brain 

patterns, and to directly compare them between word and picture targets in the temporal domain (King 

& Dehaene, 2014). To this end, we asked participants to complete an evaluative task in which they 

were required to explicitly focus on the affective content of the stimuli while their brain responses 

were being recorded. 

Affect-driven effects common to both words and pictures have been reported before in early 

and late time windows in studies adopting univariate analysis approaches. For example, singling-out 

negative information (associated with reactions to threat) can occur as early as in the 165-195 ms 

time window after target word onset (D. Zhang et al., 2014), while a later time window (~450 ms 

post-stimulus) has been argued to reflect the automatic processing of the polarity of affectively 

charged words (D. Zhang et al., 2014), the presence of an affective content of greater arousal 

(Hinojosa, Carretié, Valcárcel, Méndez-Bértolo, & Pozo, 2009), as well as the start of a more 
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controlled, context-dependent processing of affective information (Cunningham, Espinet, Deyoung, 

& Zelazo, 2005). In studies using picture stimuli, the presence of valenced as opposed to affectively 

neutral content is found in an early (150-180 ms) time window, whereas the affective polarity of such 

stimuli, as for words, is evidenced by a later component (~450 ms, Zhu et al., 2015). If such temporal 

and activation similarities reflect the involvement of shared underlying processes, we expected to 

record modality-independent valence effects both in early (~150 ms) and later time windows (~450 

ms). Based on the hypothesized interaction between the semantic category and affective processing, 

we expected an earlier and better modality-independent decoding when processing social compared 

to nonsocial categories at all valence processing stages. 

 

 Method 

2.1 Participants 

Twenty-one healthy participants (16 females, age range: 21 – 33 years) took part to the study for 

monetary compensation. The inclusion criteria consisted in speaking Italian as first language, self-

reported right-handedness, and a minimum of 95% conformity in evaluating the target word stimuli 

according to the valence manipulation based on an online survey. The study protocol was approved 

and carried out in accordance with the recommendations of the local Ethics Committee, and in 

accordance with the Declaration of Helsinki. All subjects gave written informed consent prior to 

participating. 

 

2.2 Materials 

A total of 40 nouns of social groups (N = 20) and objects (N = 20) was selected from a larger database 

rated by a different sample of 12 subjects and used as target word stimuli. Each semantic category 

was equally split in a positive and negative subset of 10 elements each, differing significantly in their 
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valence ratings (see Appendix 3). Within the positive and the negative valence stimuli, social group 

and object nouns were matched according to their average ratings of valence, arousal, familiarity, and 

length (see Table 1). 

To exclude the possibility of categorical differences in RTs being due to differences in valence 

ambivalence (Cunningham et al., 2004) - as participants might take longer at considering both 

positive and negative features - we also administered an additional online survey to 40 participants 

(33 females, age range: 21-35). The survey presented participants with the target stimuli in a random 

order and asked to rate on a 9-point Likert scale the degree of both the positivity and negativity of 

each concept (0 = not at all, 9 = very much).To calculate ambivalence from the survey data, we 

computed for each concept an index of ambivalence using the equation of the Gradual Threshold 

Model (Priester & Petty, 1996) and subjected it to a 2 (Category: Social vs. Nonsocial) x 2 (Valence: 

Positive vs. Negative) ANOVA. The analysis of the resulting ambivalence scores revealed no effect 

of Category [F(1, 36) =.60, p = .44, 𝜂𝑝
2 = .02], a main effect of Valence [F(1, 36) = 44.71, p < .001, 

𝜂𝑝
2 = .55], with negative concepts being overall more ambivalent, and no significant interaction [F(1, 

36) = 3.03, p = .09, 𝜂𝑝
2 = .08]. 

A sample of 40 pictures representing the same concepts expressed by the selected words was 

retrieved from Google Images and matched across category and valence polarity in their 

representativeness ratings, collected from a different sample of 14 participants (see Table 1). Where 

applicable, the faces of the depicted individuals were manually blurred using the GIMP 2 software 

(Kimball, Mattis, Natterer, & Neumann, 2013). Additionally, pictures were also matched in low-level 

visual features (all ps > .05). These included average luminance, amount of red, green and blue, and 

average spatial frequency, extracted through a custom Matlab script (adapted from Blechert, Meule, 

Busch, & Ohla, 2014). 
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Variables Valence Arousal Familiarity Length Ambivalence Pic. represent. 

Social 

   Positive 
6.14 ± .71 3.91 ± .62 3.46 ± 1.02 7.4 ± 1.17 1.82 ± 2.06 6.69 ± .26 

Object 

   Positive 6.42 ± .47 4.00 ± .69 3.8 ± 1.04 6.8 ± 1.48 0.45 ± 1.01 6.64 ± .16 

Social 

   Negative 
3.30 ± .81 3.88 ± .57 3.63 ± .75 7.9 ± .52 4.50 ± 2.10 6.64 ± .27 

Object 

   Negative 3.07 ± .48 3.81 ± .57 2.94 ± 1.13 7.1 ± 1.52 5.03 ± 1.44 6.70 ± .20 

ANOVA p < .001 p = .92 p = .26 p = .37 p = .09 p = .87 

 

Table 1. Descriptive statistics for selected words and pictures, divided the combination of semantic category 

and valence polarity. Means of word length and ratings of valence (1, unpleasant to 7, pleasant), arousal (1, 

not arousing to 7, very arousing), familiarity (1, unfamiliar to 7, familiar), ambivalence, and of picture 

representativeness (1, not representative to 7, very representative). On the bottom row, p-values of one-way 

ANOVAs on each factor, using as independent variable the combination of category and valence polarity. 

 

To ensure an equal speed in semantic access between categories, we collected a measure of 

accessibility by devising a simple categorisation task. In this task, an independent sample of 20 

participants (11 females, age range: 25-35) was asked to provide speeded responses to the selected 

stimuli. The task required to categorize the targets based on whether they represented people or 

objects, using the same timings of the main task (see Fig. 1). The analysis of the reaction times showed 

no main effect of category [F(1, 19) =.53, p = .48, 𝜂𝑝
2 = .03], for which participants took on average 

the same time to categorize social groups and objects, regardless of modality and valence (both ps > 

.05). 

2.3 Procedure 

Following the montage of the EEG cap, participants were seated in an acoustically isolated room and 

asked to fixate an “X” in the center of the screen for 3 minutes to record resting-state EEG activity. 
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After this period, they completed an evaluative requiring to indicate via button press whether the 

concept represented by the target stimulus was associated with a pleasant or unpleasant feeling. A PC 

running PsychoPy (Peirce, 2007) controlled the presentation of the stimuli and the recording of 

responses. Stimuli were projected on a gray background via a 19” LCD monitor with resolution of 

1280*1024 pixels and a screen refresh rate of 60 Hz. During each trial, a fixation cross was presented 

for 700 ms, followed by a 200 ms blank screen and by the presentation of the target stimulus (300 

ms). The target was then replaced by another blank screen that lasted for 1700 ms, giving participants 

a total of 2000 ms to respond from target onset (see Figure 1). The evaluation was given via button 

press by using the index finger of each hand placed over the ‘f’ and ‘j’ QUERTY keyboard buttons. 

The intertrial interval (ITI) was jittered between 800 and 1200 ms at 100 ms intervals, and presented 

a white fixation cross on a gray background. Participants were instructed to try to restrict their 

blinking to the ITI period to reduce the number of artefacts. The target stimuli consisted of images or 

words representing social groups or objects of positive or negative valence, presented in a random 

order. Participants first completed a block of 10 practice trials, followed by 12 test blocks of 40 trials 

each. Single blocks contained either pictures of words in an alternating, counterbalanced order, and 

were separated by self-paced breaks. 

The experiment consisted of a 2 (Category: social group vs. object) x 2 (Valence: positive vs. 

negative) x 2 (Modality: picture vs. word) within-subjects design, with response time (RT), accuracy, 

and EEG voltage as the dependent variables. 
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Figure 1. Temporal progression an evaluation trial with examples of social groups of negative and positive 

valence, represented as words or pictures (only one of the stimuli was presented each time). Participants were 

instructed to evaluate the target starting from its onset, and to try not to blink until the appearance of the white 

cross (ITI). 

 

2.4 Electrophysiological recordings 

A set of 64 Ag/AgCl active electrodes connected to a BioSemi Active-Two amplifier system were 

mounted on an elastic cap according to the International 10/20 system to record the continuous neural 

signal by means of ActiView acquisition software (Biosemi, Amsterdam, Netherlands). Electrode 

offsets were kept between ±20 mV, while the signal was sampled at a rate of 1024 Hz with a 24-bit 

resolution. A common mode voltage based on the ActiveTwo’s CMS/DRL feedback loop was used 

for analog-to-digital conversion of recorded voltages for each electrode (cf. to 

https://www.biosemi.com/faq/cms%26drl.htm). Anti-aliasing filters were used and data were band-

pass filtered between 0.01–100 Hz during data acquisition. 

 EEG data preprocessing was performed using the Brainstorm software (Tadel et al., 2011). 

First, the EEG recordings were downsampled offline at 125 Hz and band-pass filtered (0.05 – 40 Hz). 

Bad electrode channels were removed upon visual inspection, as well as movement artefacts. Eye 

https://www.biosemi.com/faq/cms%26drl.htm
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blinks artefacts were removed through independent components analysis (ICA; (Makeig et al., 1996). 

Epochs containing artefacts other than eye movements were removed after visual inspection. One 

subject (female, age 24) was excluded from all further analyses due to the presence of excessive 

movement artefacts. The data were then epoched from -200 to +1500 ms relative to the onset of the 

target and baseline-corrected from -200 ms to target onset. 

 

2.5 Behavioral data analysis 

Behavioral data were preprocessed and analyzed in R (R Core Team, 2016). Data from correct trials 

within 2 SD from each participant’s average were then log-transformaed to reduce the skew of the 

distribution and subjected to a 2 (Category: Social vs. Nonsocial) x 2 (Valence: Positive vs. Negative) 

x 2 (Modality: names vs. pictures) repeated-measures ANOVA. Follow-ups to significant interactions 

consisted of Bonferroni-corrected contrasts. Only results involving interactions with the Category 

factor and yielding significant post-hoc contrasts are reported. 

 

2.6 ERP data analysis 

The time windows for the main components were identified from the existing literature 

(Hinojosa, Carretié, Valcárcel, et al., 2009; D. Zhang et al., 2014; Zhu et al., 2015) and the visual 

inspection of average peak amplitudes. In order not to lose statistical power in quantifying effects 

over several electrodes, eleven regions of interest (ROIs; see Figure 2) were then created by averaging 

the amplitude of the respective electrodes (as in Hinojosa, Carretié, Valcárcel, Méndez-Bértolo, & 

Pozo, 2009). The resulting ERPs were subjected to two 2 (Category: Social vs. Nonsocial) x 2 

(Valence: positive vs. negative) x 2 (Modality: word vs. picture) x 11 (Cluster: [OC, LP, RP, LC,  

RC, LF, RF, FP, MF, MC, MP]) repeated measures ANOVAs, one for each component’s time 

window (150 - 200 ms, 400 - 700 ms and 700 - 1000 ms). Where necessary, the degrees of freedom 
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of the F ratios were adjusted using the Greenhouse–Geisser epsilon correction. Follow-ups to 

significant interactions including Valence consisted of Bonferroni-corrected contrasts of Valence 

effects. Only interactions yielding significant follow-up contrasts are reported. 

 

Figure 2. Clusters of electrodes grouped for statistical analysis of ERPs. OC, occipital, LP, left posterior, 

RP, right posterior, LC, left central, RC, right central, LF, left frontal, RF, right frontal, FP, frontopolar, MF, 

middle frontal, MC, middle central, MP, middle posterior. 

 

2.7 Decoding analysis 

Multivariate classification analyses were performed using the CoSMoMVPA analysis package 

(www.cosmomvpa.org) (Oosterhof, Connolly, & Haxby, 2016) implemented in MATLAB. 

Classification was performed separately for every 8 ms time bin using linear discriminant analysis 

(LDA) classifiers. These were trained to discriminate the patterns of activation across EEG sensors 

for the two valence conditions in one subset of the data, and tested on another. 
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Cross-decoding was conducted separately for Social and Object categories. Training data 

consisted of trials from the Words condition, after which classifiers were tested on trials from the 

Pictures condition. In this way, the decoding performed by the classifier on pictures derived from the 

identification of the same patterns of valence differences that had been learned on word stimuli. The 

correctly identified patterns were thus common to both modalities. To increase the reliability signal-

to-noise ratio and the of the data for the classifier, for each participant and experimental condition 

separately, five averaged trials were created. As the number of correct trials differed between 

participants and within conditions, the averages containing roughly the trials corresponding to each 

experimental block/run, with the constraint that no average was derived from more than one trial 

more than the other averages. 

Given the consistency of the response mappings within participants, to avoid the confound of 

decoding motor responses rather than valence differences (Grootswagers et al., 2017), classifiers were 

trained and tested on the combined data from pairs of participants with opposite mappings. The 

classification accuracy of each participant was calculated by averaging the performance of all the 

classifications containing that participant’s data (i.e., 10 for each subject). The percentage of correct 

predictions of the classifier was used as index of classification accuracy. The classification was 

generalized across train and test times, for which it was repeated for their every possible combination, 

leading to a classification accuracy map of 125 x 125 points (i.e., 1000 ms x 1000 ms with 125 Hz 

resolution) for every comparison in each participant. Individual maps were smoothed with an 

averaging box filter of the size of 3 x 3 time points (i.e., 24 ms in both training and testing time). 

 

2.8 Statistical testing 

To identify time-periods presenting above chance classification accuracy, we used threshold-free 

cluster-estimation procedure (Smith & Nichols, 2009) with default parameters from the 

CoSMoMVPA package (Oosterhof et al., 2016), using multiple comparison correction based on a 

sign-permutation test (with null distributions created from 10,000 bootstrapping iterations). To reveal 
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where decoding performance was significant, the threshold on the statistical maps was set at Z > 2.57 

(i.e., p < .005). The procedure was first applied within each category against the mean of 0.5 decoding 

accuracy and then used to check for significant differences in contrasting the two. 

 

 Results 

3.1 Behavioral results 

Reaction times analysis showed a main effect of category [F(1, 19) = 128.83, p < .001, 𝜂𝑝
2 = .87] with 

faster responses to non-social than to social categories. No other significant main effects were present. 

Significant first order interactions emerged between category and valence [F(1, 19) = 18.24, p < .001, 

𝜂𝑝
2 = .49], and between category and modality [F(1, 19) = 47.94, p < .001, 𝜂𝑝

2 = .72], with the former 

indicating how the difference in RTs between social groups and objects was significantly greater in 

the positive relative to the negative valence targets (p = .001), and in pictures relative to words (p < 

.001). Last, a post-hoc analysis of the significant second-order interaction between category, valence 

and modality [F(1, 19) = 8.37, p = .009, 𝜂𝑝
2 = .31], revealed that social groups were evaluated slower 

relative to objects in all valence and modality combinations (all ps < .001) but the negative word one, 

where there was no significant categorical difference (p = .60). (see Figure 3). 

 

Figure 3. Violin plots displaying single participant mean RT distribution and group mean RTs for Object and 

Social category targets divided by valence. Error bars represent ± 1 SE. 
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3.2 ERP results   

150 – 200 ms. The analysis of the P1 time window resulted in a significant three-way interaction 

between Valence, Category and Cluster [F(3.19, 60.53) = 3.28, p = .025, 𝜂𝑝
2 = .15], and a significant 

four-way interaction between Valence, Category, Modality and Cluster [F(2.61, 49.61) = 7.54, p < 

.001, 𝜂𝑝
2 = .28]. Follow-up analyses for the word modality evidenced a significant Valence effect in 

the right frontal cluster (p < .05), with a greater amplitude for negative as opposed to positive stimuli 

(p < .05). The effect was only significant for Social groups (p < .05), while the effect for and 

difference from Objects was not significant (both ps > .1). No effects were present for pictures in the 

same cluster. For pictures, a significant Valence effect was present for Objects in the occipital, left 

posterior and left anterior clusters (ps < .05), with no effect for Social groups (ps > .05), and a 

significant difference between categories (ps < .05). A Valence effect for both categories was present 

in the right posterior and the mid frontal clusters (ps < .05), presenting also a significant difference 

between categories (p < .05). This difference was characterized by a greater amplitude for negative 

vs positive stimuli for Objects and a greater amplitude for positive vs negative stimuli for Social 

groups. 

400 – 700 ms. A significant interaction was present between Valence, Category and Cluster 

[F(3.71, 70.49) = 3.27, p = .02, 𝜂𝑝
2 = .15]. At the single cluster level, a marginally significant Valence 

effect, with a greater amplitude for positive stimuli, was only present for words in the central right 

electrodes (p = .07). In the picture modality, the same cluster also presented a significant Valence 

effect for Objects (p < .05), where the difference with Social groups was marginally significant (p = 

.08). 

700 – 1000 ms. Significant interactions between Valence, Modality and Cluster [F(3.84, 72.98) 

= 2.54, p = .049, 𝜂𝑝
2 = .12], Valence, Category and Cluster [F(4.36, 82.75) = 2.62, p = .036, 𝜂𝑝

2 = .12], 

Valence, Category and Modality [F(1, 19) = 6.87, p = .017, 𝜂𝑝
2 = .27] were present in the latest time 

window. These were accompanied by a marginally significant four-way interaction involving 
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Valence, Category, Modality and Cluster [F(3.24, 61.57) = 2.51, p = .063, 𝜂𝑝
2 = .12]. Follow-up 

analyses showed a significant Valence effect in the right posterior cluster for words (p < .05) but not 

for pictures (p > .1). Within this cluster, the effect of Valence was significant for Social groups (p < 

.05) but not for Objects (p > .1), with the difference between the two categories also being significant 

(p < .05). A marginally significant Valence effect in the left central cluster for words only (p = .07), 

with a greater amplitude for negative stimuli, was driven by a significant effect for Social groups (p 

< .05), with no effect for Objects and no significant difference between categories (both ps > .1). In 

the right central cluster, the main effect of Valence (p < .05) was accompanied by two marginally 

significant effects in both categories (ps = .07), in all cases displaying a greater amplitude for positive 

relative to negative word stimuli. For pictures, only a marginally significant Valence effect emerged 

for Social groups in the left posterior region (p = .09). 

 

3.3 Cross-modal valence decoding in social groups and object categories 

Valence cross-decoding results for social groups evidenced a first significant decoder performance 

period at 100-150 ms, followed by a second interval going from ~450 to 1000 ms (see Figure 3A & 

3C). In the case of object categories, only one significant window was present between ~400 and 700 

ms (see Figure 3B & 3C). When contrasting decoder performance between categories, a significantly 

greater decoding performance was found for social groups in two time windows - an early window 

going from 50 to 150 ms and a late window starting at 750 ms up to 1000 ms (see Figure 3D). 

Time-generalisation results evidenced how decoding did not differ based on modality, as all 

significant regions laid on the diagonal (see Figures 4A & 4B). Additionally, a sustained pattern of 

neural activity across modalities was present for social groups in the ~450-1000 ms time window 

(King & Dehaene, 2014), as evidenced by the square-shaped region of significance (see Figure 4A). 

This pattern was unique to social groups and was not present for objects (see Figure 4B). 
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Figure 4. A) Time-generalization plots resulting from cross-decoding valence of social category and object 

category targets (B). Black contours represent above chance decoding accuracy (p < .001). C) Classification 

accuracy across the time-generalization diagonal for social and object category targets, and (D) their 

difference. Asterisks indicate above chance decoding accuracy time intervals (p < .001). 

 

 Discussion 

With the present study we aimed at identifying the distinctive patterns of brain activity associated 

with the affective processing of social groups and compare it to the one of nonsocial categories. 

Following previous neuropsychological studies (Piretti et al., 2015; Rumiati et al., 2014; Suran, 

Rumiati, et al., 2019) and theoretical propositions suggesting a greater relevance of affective features 

C D 

A B 
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in representing social categories (Lambon Ralph et al., 2016; Mahon & Caramazza, 2011; Simmons 

& Barsalou, 2003), and following studies showing both common and distinct anatomical bases for 

processing social and non-social affective information (Norris et al., 2004), we expected to find 

categorical differences in the temporal dynamics of affective processing, prioritizing the decoding of 

valence in social groups compared to nonsocial categories. To rule out possible confounds generated 

by the input modality and thus isolate affective evaluation, we cross-decoded the effects between two 

different input-modalities (words and images) using MVPA by training of classifiers using neural 

data associated with one modality (e.g. words) and test on data from the other modality (pictures). 

Additionally, we applied time generalization to study the evolution of the affect-specific neural code 

while locating its processing in the temporal dimension of the two input modalities. Our results 

showed significant differences in decoding affective features between social and nonsocial category 

targets. This difference was present in both early and later time windows, and was also reflected in 

overall response times as longer responses to social groups, but just when participants were required 

to make affective judgments. 

Significant decoding performance appeared first at 100 ms post-stimulus that was unique to 

social categories. This earlier decoding might indicate the prioritization of affective processing for 

Social groups over Objects. This effect might also be linked to the early effects found by previous 

ERP studies using words (D. Zhang et al., 2014) and pictures (Zhu et al., 2015) which, although here 

not detected across modalities by univariate analyses, was captured by the greater sensitivity and 

earlier detection attributed to MVPA (Grootswagers et al., 2017). In the second time window of 

significant decoding, above-chance accuracy started approximately at ~400 ms for nonsocial 

categories and at ~450 ms for social groups, reflecting the delay found in the behavioral response. 

This time interval overlaps with the emergence of the late positive components modulated by the 

affective content of both words and pictures (D. Zhang et al., 2014; Zhu et al., 2015), and it represents 

the only time interval in which a significant difference between negative and positive stimuli was 
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present across modalities in the same scalp region when analysing ERPs. While for Objects 

significant decoding in the second time window lasted until ~700 ms, significant affective decoding 

in Social groups extended to 1000 ms post-stimulus and was significantly greater than the one for 

Object categories from ~750 ms on. In previous ERP research, effects occurring in this time window 

are associated with a greater sustained processing of emotional stimuli (Citron, 2012) and an 

enhanced motivational significance (Y. Liu, Huang, McGinnis-Deweese, Keil, & Ding, 2012; Schupp 

et al., 2000; Tempel et al., 2013), which might be intrinsically greater in social groups due to the 

presence of conspecifics. Although more valence effects were identified with the univariate analysis 

for Social groups relative to Objects, none of these were captured across modalities and in the same 

regions. The claim of a more sustained processing of Social groups is also supported by the results of 

the time generalization, presenting a square-shaped pattern of significance, indeed associated with 

sustained patterns of brain activity in the decoded dimension (King & Dehaene, 2014). 

Reaction times to social groups evidenced a slower evaluative response in comparison to 

nonsocial categories. The lack of such differences in ambivalence and categorization times of the 

same targets allows us to exclude the possibility that the disparity was due to social group stimuli 

presenting stronger conflicting (i.e., nondominant) affective associations (Cunningham, Johnson, 

Gatenby, Gore, & Banaji, 2003; Cunningham et al., 2004), or having a delayed semantic access, 

respectively. As suggested by previous neuroimaging studies evidencing slower responses in 

categorizing phrases describing social interactions versus nonsocial actions (Wood, Romero, Makale, 

& Grafman, 2003), we speculate that it is possible that participants activated more complex 

representations for social relative to nonsocial categories to make affective decisions. Evaluative 

processes generally involve a more complex selection of information in comparison to categorization 

(Cunningham et al., 2003), thus task demands might interact with the sociality of the semantic 

categories of target stimuli. For example, the present data might reflect how the evaluation of social 

groups requires accessing all relevant representations of the behaviors commonly associated with 
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them, while in the case of nonsocial categories, just the representation of their common usage may 

have sufficed. 

 In conclusion, our results suggest that processing of affective features comes with distinct 

temporal dynamics for social groups and nonsocial categories, and represent further evidence of the 

interaction between semantic and affective information in the temporal domain. An early decoding 

of affective features for social groups however was not associated with faster responses, as the 

behavioural findings have shown that subjects took longer in providing a behavioural response when 

evaluating social groups as opposed to objects. Interestingly, this effect seems to be independent from 

the timing of access to the more basic person/object categorical representations. It is indeed possible 

that a slower evaluative response to social groups was triggered by self-presentation concerns when 

required to provide judgments about other people following access to the categorical semantic 

information (Nosek, 2005), and thus requiring additional affective processing stages as opposed to 

objects. The same sustained processing of affective information of social groups was also evidenced 

at a neural level, with longer lasting classifier decoding accuracy in a late time window, going beyond 

the behavioural response. We suggest that the delayed response and longer decoding of affective 

features in social groups, possibly associated with more sustained post-semantic attentional processes 

due to more complex representations, supports the hypothesis of a greater relevance of their affective 

features compared to nonsocial categories (Rumiati et al., 2014). As our conclusions are derived from 

a setting explicitly requiring subjects to focus only on affective content, it is possible that its increased 

weight was specific to the present task demands. By directly comparing the neural signatures resulting 

from different tasks, future studies may focus on elucidating which aspects of affective feature 

processing in social groups interact with experimental demands and which ones occur independently 

from it, being thus more intrinsic to their processing. 
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CHAPTER 5 

General discussion 

 

In the present thesis, I investigated the relationship between the representation of social groups and 

the processing of their affective features. I carried out this investigation by comparing social and non-

social category stimuli in three separate studies. The general hypothesis, common to all three studies, 

was that affective features play significantly more weight in social group representations, in thus 

differing from non-social representations. More specifically, I expected this prominent role of 

affective features in social groups representations to be reflected in faster behavioural responses 

following the stimulation of an affective cortical region (Study 1), higher susceptibility to affective 

priming (Study 2), and a better decoding of affective valence from neural activity (Study 3). 

Neuropsychological studies first suggested that the representation of social groups might be 

distinct from that of other semantic categories by reporting patients suffering from neurodegenerative 

disease (Rumiati et al., 2014). Although a specificity for conspecifics at the level of individuals was 

already known (e.g., Miceli et al., 2000; Thompson et al., 2004), by bringing the evidence to the level 

of social groups, the findings allowed for a more direct comparison with other semantic categories 

previously found to present distinct representational bases (for reviews, see Capitani, Laiacona, 

Mahon, & Caramazza, 2003, and Thompson-Schill, 2003). A possible explanation to the emergence 

of category-specificity for social groups has since been attributed to the presence of a special link 

with the processing of affective features, which would make up a significant part of social group 

semantic representations (Rumiati et al., 2014). Further evidence in support of such claim came from 

the study of the neural correlates of social group representations. By studying the brain areas 

commonly damaged in a cohort of patients showing lexical-semantic deficits for social groups, Piretti 

and colleagues (Piretti et al., 2015) identified the possible extent of the underlying neural network. 
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The authors found a co-occurrence of semantic deficits for social categories and widespread brain 

damage affecting to areas like the amygdala, the insula, and the inferior frontal gyrus, all previously 

associated with affective processes (Piretti et al., 2015). From a theoretical perspective, several 

models presented an argument associating social semantic representations with affective processes 

(Lambon Ralph et al., 2016; Mahon & Caramazza, 2011; Simmons & Barsalou, 2003), also calling 

for more evidence about the existence of such connection and its neural correlates (Lambon Ralph et 

al., 2016).  

To fill this gap, in my dissertation I carried our three studies including computer-based tasks in 

conjunction with neuroscientific techniques. More specifically, tasks required subjects to categorize 

(Study 1) or to evaluate (Studies 2-3) lexical and picture stimuli of social groups and non-social 

categories. Each behavioural paradigm was paired with either brain stimulation (TMS; Study 1) or 

neural activity recordings (EEG; Studies 2-3). In the latter case, two analytical approaches were used 

to answer specific research hypotheses, one univariate (ERPs; Study 2), measuring differences in 

activation at specific neural components, and one multivariate (MVPA; Study 3), tapping into the 

study of the brain’s temporal dynamics. 

The results of the Study 1 show how the stimulation of the pars opercularis of the left inferior 

frontal gyrus (LIFGop), previously linked to affective processing (Kensinger & Schacter, 2006; but 

see also Leclerc & Kensinger, 2011), might influence how social groups are represented in the brain. 

This influence was indexed by participants’ faster person/object categorization responses to social 

group names, without altering the speed of the behavioural responses to non-social categories. 

Additionally, these effects were confined to negative social categories, in line with the documented 

association between LIFGop activity and the processing of negative word stimuli (García-Pacios et 

al., 2017; Kensinger & Schacter, 2006; Leclerc & Kensinger, 2011; Van der Cruyssen et al., 2014). 

While my data do not allow us to fully map all the regions causally involved in processing affective 

and semantic content, however they do provide initial evidence on the contribution of an area not 
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previously considered in the domain of social/affective processing. Thus, by demonstrating that the 

effect of LIFGop stimulation is category and valence-specific, my results extend the hub-and-spokes 

model (Lambon Ralph et al., 2016), which placed valence features processing in the orbitofrontal 

cortex (OFC), as they identify an additional potential area contributing to the affective semantic 

representations of social groups. More in general, as the behavioural effect of the stimulation was 

limited to the negative valence social groups, the results also support the claim of a separability 

between areas processing positive and negative valence (Cacioppo et al., 1999) occurring at the third, 

semantic level of affective processing as described in Panksepp’s theory (Panksepp, 1998, 2012). 

In the Study 2, I found that when healthy participants engage in the processing of positive and 

negative affective content via affective priming, affectively congruent social group names presented 

shortly after to be evaluated are processed significantly faster than non-social category names. 

Moreover, this effect was present despite non-social category names being matched for valence 

ratings. This behavioural finding had a neural counterpart in a late right frontal positive component, 

suggesting that social group representations and affective information processing possibly have 

overlapping neural correlates. The priming effect fits the spreading of activation theories of affective 

priming, supporting the existence of an affective semantic node activated by the primes (Fazio, 2001; 

Fazio et al., 1995, 1986). Additionally, the categorical difference in the priming effect extends these 

theories, demonstrating how the strength of such spreading might vary as a function of the target 

word category. As an equal spreading of activation from an affective node (elicited by affective 

priming) to all affectively congruent concepts has been deemed unlikely (Klauer & Musch, 2003), 

my findings suggest that the spreading of activation might be a more selective phenomenon than 

previously thought. When controlling for differences in other word properties and for differences in 

the semantic distance with the primes, as done in Study 2, the strength of the affective priming itself 

could be adopted as an index of reliability on affective features by different concepts. 
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Unlike in Study 1, in Study 2 the greater affective priming response to social groups (vs 

objects) occurred regardless of their valence. Nevertheless, at the level of brain responses, the neural 

correlates of affective priming emerged only for positive social groups. The effect was recorded in a 

later time window of the ERPs, and was strongest in the frontal right electrodes. The distribution of 

the response, its latency, and the greater amplitude for congruent trials together may indicate the 

presence of sustained processes for positive social groups following positive primes, potentially 

related to an increased post-retrieval motivated attention. Although this effect was valence-specific, 

the presence of differences in familiarity between positive and negative words overall, shown having 

an influence in later ERPs (Voss et al., 2010), does not allow to confidently exclude the possibility 

that negative social group targets might have elicited the same effect under matched conditions. 

Indeed, in Study 2, the familiarity matching was only done between categories, and, in order to 

maintain a greater amount of stimuli, not between positive and negative words. 

In Study 3 I used both lexical and pictorial stimuli to investigate the neural correlates of 

affective processing independently of the input modality. The approach allowed me to avoid the 

limitations of Studies 1-2, in which affective processing of social group concepts was investigating 

only with lexical inputs. As conceptual processing of valenced stimuli was previously argued to 

activate an affect processing node in the semantic network, this should occur independently of the 

input modality. The results revealed how a significant decoding of affective valence occurs for social 

groups but not for non-social categories at an early post-stimulus time interval (100-200 ms). Whereas 

an intermediate time window (450-750 ms) revealed an overlap in above chance decoding 

performance of the two categories, above chance performance was present only for social groups in 

a later time window (750-1000 ms). Such pattern suggests that, compared to non-social categories, 

the neural decoding of affective information of social groups might be prioritized in early processing 

stages, going through a similar processing of non-social categories during intermediate stages, an then 

persisting in later stages. This finding might be due to the involvement of areas, such as the amygdala, 
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in which the processing of emotion has been shown to be boosted when originating from a social 

stimulus, and other areas, such as the medial prefrontal cortex (mPFC), selectively responding to 

emotional social stimuli (Norris et al., 2004), and the dorsolateral prefrontal cortex (DLPFC), 

activated during social judgments and impression updating (Hughes, Zaki, & Ambady, 2017). As the 

activity of the amygdala is regarded as automatic and thus occurring at early stages, it is likely that 

the initial decoding of social groups was driven by its activity. As for the later decoding, it is likely 

that more controlled evaluative processes came into play, in line with the reflective role of prefrontal 

areas during evaluations (Cunningham & Zelazo, 2007). These results are consistent with those of 

Study 2, where the priming effect for social groups was evident in the same late time interval, 

generated from electrodes situated approximately above the right DLPFC. It might thus be possible 

that both findings reflect a sustained attention to (Ally & Budson, 2007; Van Strien et al., 2009) or 

further updating of affective semantic content (Cunningham & Zelazo, 2007) in social groups, likely 

extending temporally beyond the forced-choice behavioural response. Unexpectedly, behavioural 

responses showed that participants’ reaction times were relatively longer when evaluating social 

groups, whereas in the semantic categorization task I found no difference with non-social categories. 

As to this latter finding, it is possible that the representations of social categories possess significantly 

more complex affective information accessed by the cognitive system in evaluative contexts (Wood 

et al., 2003), although additional studies will be needed to empirically test such interpretation. 

Future research should be also carried out to address a series of limitations present in my 

studies. First, as the brain stimulation might well affect additional areas connected to the one directly 

stimulated (Massimini et al., 2005), I cannot conclude that the LIFGop is the only area responsible 

for processing affective semantic features. To reach this conclusion a more extended mapping is 

required. As a starting step, given that the effects of the stimulation have been shown to extend to 

homologue areas on the opposite hemisphere (Fitzgerald, Fountain, & Daskalakis, 2006), it would be 

relevant to study whether the stimulation of the right IFGop leads to similar findings. As the brain 
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responses to primed social categories were located in a right frontal region above the DLPFC, which 

comprises the RIFGop, its stimulation may affect the processing of social categories of positive 

affective valence. 

Furthermore, as in Study 1 I used only names as stimuli, it is not possible to know if the role 

of the LIFGop in processing affective information is specific to the lexical domain or whether its 

processing is amodal, and thus independent of the input modality (Fairhall & Caramazza, 2013; 

Leonardelli et al., 2019). The same observation applies to Study 2, as only one modality is taken into 

account. While Study 3 shed light on the correlates of affective processes common to two modalities, 

and captured effects in early and late processing stages, I cannot argue that the recorded 

positive/negative affective decoding occurs automatically; neither can I argue that it generalizes to 

other tasks, as it might only emerge in a setting requiring a forced binary evaluative response. 

Studies 2-3, where participants performed an evaluative task, leave both unanswered the 

question about the automaticity of the recorded neural components. A first distinction can be made 

between automatic and controlled processes, respectively referring to spreading of activation, or early 

access, and task-dependent evaluation and updating(Cunningham & Zelazo, 2007). To disentangle 

these processes, future studies could adopt the same paradigms while manipulating the task 

requirements. Such manipulation could require participants to focus on the semantic category of the 

targets in a categorization task, or on more linguistic, ‘shallow’ aspects of the stimuli (lexical decision 

or naming). Although the effects of the primes may decrease in magnitude, it might be still possible 

to record how brain responses are affected by the interaction between the category of the targets and 

their congruence with the primes. The same approach can be taken in furthering the study of the 

temporal dynamics of affective valence processing, to assess whether the same decoder performance 

differences between social and non-social categories emerge during other tasks. Although an earlier 

decoding might persist, later stages may not be engaged as much as in the evaluative task used in the 

third study, as suggested by the lack of categorical differences in the behavioural control experiment. 
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Although only briefly introduced for exploratory purposes, the study of affective ambivalence 

may also be a promising venue for future research on categorical affective semantic representations 

(Cunningham et al., 2004). Despite the categorical differences in the bahavioral responses of the third 

study could not be related to higher levels of ambivalence for social groups relative to objects, the 

possibility that the consideration given to nondominant affective associations varies from one 

category to the other should not be excluded. Previous research has shown that affective ambiguity 

is more likely to affect reflective stages of processing, particluarly in tasks requiring a forced-choice 

affective evaluation, and correlating with activity in the ventrolateral prefrontal cortex (Cunningham 

et al., 2003). A comparion between social and nonsocial concepts based on the relationship between 

ambivalence and brain activity at single concept level may shed light on this possibility. 

It should be noted that all studies have been primarily concerned with comparing social groups 

and objects, and a comparison with other categories for which selective deficits have been reported, 

like fruits/vegetables (Hart et al., 1983; Samson & Pillon, 2003) and animals (Blundo et al., 2006; 

Caramazza & Shelton, 1998), is missing. While the former could be excluded a priori, emotional 

responses elicited by animals may have a comparable magnitude to that of social groups. 

Nevertheless, even with such comparison, I would expect the same affect-driven category specific 

effects for social groups to emerge. 

While the study of conspecifics at group level was justified by previous research (e.g., Rumiati 

et al., 2014), future studies could also further investigate the extent to which the affective processing 

of social groups differs from that of single individuals in terms of temporal dynamics and underlying 

areas. For instance, as access to social category knowledge has been shown to precede that of 

individual knowledge (Cloutier et al., 2005; Mason & Macrae, 2004), if a direct comparison between 

these two levels of specificity was made using a procedure similar to that of Study 3, I would expect 

valence effects be decoded faster for social groups. However, as in such case one would have to look 
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at a face to recognize the individual, the emotionality of the displayed facial expression might 

introduce an additional level of complexity that will have to be considered. 

As a last note, while the framework I adopted focused on the positive/negative valence 

dimension, it is possible that the study of single emotions may uncover unique processing areas and 

neural components when representing social groups. For example, previous research on social 

cognition has shown that distinct brain areas are activated when social groups elicit emotions that are 

exclusively social (e.g., pity or envy) as compared to non-exclusively social (e.g., disgust; Harris, 

McClure, van den Bos, Cohen, & Fiske, 2007). Accounting for this social exclusivity factor may thus 

provide more insights about the degrees of separation between processing social and non-social 

affective knowledge. 

In conclusion, my thesis provides novel evidence of a separability between social and non-

social categorical knowledge in the affective domain. My results call for future replications to assess 

their robustness and also to overcome possible limitations with the use of multiple input modalities, 

the study of affective processes beyond the dichotomous valence dimension, and the use of multiple 

tasks to isolate distinct cognitive processes. 
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APPENDIX 1 

Target stimuli from Study 1 [English translation] 

 

 

  

Positive Negative 

Social categories Objects Social categories Objects 

agricoltori [farmers] anelli [rings] alcolisti [alcoholics] aghi [needles] 

ballerini [dancers] aquiloni [kites] anziani [elderly] bare [coffins] 

dottori [doctors] bambole [dolls] arabi [Arabs] barili [barrels] 

ebrei [Jews] barche [boats] barboni [homeless] bisturi [scalpels] 

infermiere [nurses] carrozze [coaches] dentisti [dentists] coltelli [knives] 

medici [doctors] chiavi [keys] immigrati [immigrants] fucili [rifles] 

modelle [female models] corone [crowns] macellai [butchers] lamette [blades] 

musicisti [musicians] elicotteri [helicopters] militari [military] martelli [hammers] 

operai [workers] gioielli [jewels] negri [Blacks, der.] pistole [guns] 

pescatori [fishermen] palloni [balloons] obesi [obese] posacenere [ashtrays] 

pittori [painters] porte [doors] poliziotti [policemen] pugnali [daggers] 

professori [professors] rossetti [lipsticks] poveri [poor] rasoi [razors] 

scrittori [writers] scooter [scooters] preti [priests] sigarette [cigarettes] 

studenti [students] televisori [televisions] prostitute [prostitutes] siringhe [syringes] 

vigili [traffic policemen] trofei [trophies] suore [nuns] stampelle [crutches] 
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APPENDIX 2 

Target stimuli from Study 2 [English translation] 

 

 

  

Social categories Nonsocial categories 

Negative Positive Negative Positive 

aguzzini [tormentors] anziani [elderly] acari [mites] anelli [rings] 

alcolisti [alcoholics] artisti [artists] acidi [acids] aquiloni [kites] 

barboni [homeless] attori [actors] bare [coffins] barche [boats] 

becchini [gravediggers] bagnini [lifeguards] batteri [bacteria] biciclette [bicycles] 

bulimiche [bulimics] ballerini [dancers] bisturi [scalpels] birre [beers] 

bulli [bullies] camerieri [waiters] bombe [bombs] borse [purses] 

detenuti [convicts] capitani [captains] cannoni [cannons] caramelle [candies] 

dittatori [dictators] donne [women] cateteri [catheters] chitarre [guitars] 

drogati [drug addicts] giovani [youth] coltelli [knives] cuscini [pillows] 

estremisti [extremists] insegnanti [teachers] droghe [drugs] diamanti [diamonds] 

fascisti [fascists] maestre [teachers, fem.] fucili [rifles] divani [couches] 

fumatori [smokers] maestri [masters] granate [grenades] finestre [windows] 

grassi [fat people] marinai [sailors] lapidi [tombstones] foglie [leaves] 

infermi [sick] medici [medics] pallottole [bullets] forchette [forks] 

ladri [thieves] modelle [female models] pasticche [tablets] giocattoli [toys] 

militari [military] mogli [wives] pistole [guns] gioielli [jewels] 

negri [Blacks, derog.] operai [workers] proiettili [bullets] libri [books] 

obesi [obese] pittori [painters] protesi [protheses] maglie [sweaters] 

orfani [orphans] poeti [poets] pugnali [daggers] monete [coins] 

perdenti [losers] pompieri [firefighters] sigarette [cigarettes] palloni [balloons] 

poveri [poor] ragazze [girls] siringhe [syringes] perle [pearls] 

psicopatici [psychopaths] ragazzi [boys] tombe [tombs] regali [gifts] 

sadici [sadists] scolari [pupils] tossine [toxins] slitte [sleighs] 

terroni [southerners, derog.] scrittori [writers] trapani [drills] soldi [money] 

tossici [toxics] scultori [sculptors] veleni [poisons] tesori [treasures] 

vandali [vandals] sportive [sportswomen] verruche [warts] trofei [trophies] 

zingari [gypsies] studenti [students] vesciche [blisters] violini [violins] 
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Prime stimuli from Study 2 [English translation] 

 
 

 

 

 

 

 

 

 

 

 

 

Valence 

polarity 
Valence Arousal Concreteness Familiarity Length 

Positive 6.33 (.35) 5.47 (.31) 4.12 (.82) 5.28 (.71) 6.56 (1.13) 

Negative 1.78 (.22) 5.50 (.19) 4.21 (.70) 5.30 (.44) 6.11 (1.05) 

Neutral/# - - - - 6.33 (.94) 

 

Mean valence, arousal, concreteness and familiarity ratings (0 = extremely low; 7 = extremely high) and 

average number of characters for each prime valence category. Standard deviations reported within 

parentheses. 

 

  

Negative Positive 

PAURA [FEAR] AMORE [LOVE] 

LUTTO [MOURNING] GIOIA [JOY] 

MORTE [DEATH] FELICE [HAPPY] 

DOLORE [PAIN] VIVACE [LIVELY] 

FERITE [WOUNDS] SORRISO [SMILE] 

INCUBO [NIGHTMARE] TRIONFO [TRIUMPH] 

TRADIRE [BETRAY] VINCERE [TO WIN] 

ANSIOSO [ANXIOUS] SUCCESSO [SUCCESS] 

PERICOLO [DANGER] PASSIONE [PASSION] 



 

  109 
 

 

APPENDIX 3 

Target word stimuli from Study 3 [English translation] 

 

 

 

 

Social groups Objects 

Negative Positive Negative Positive 

alcolisti [alcoholics] bambini [children] bare [coffins] anelli [rings] 

barboni [homeless] anziani [elderly] coltelli [knives] biciclette [bicycles] 

detenuti [convicts] suore [nuns] droghe [drugs] chitarre [guitars] 

drogati [junkies] camerieri [waiters] fucili [rifles] cuscini [pillows] 

migrant [migrants] marina [sailors] granate [grenades] libri [books] 

militari [military] ballerina [dancers] manette [handcuffs] matite [pencils] 

obesi [obese] bagnini [lifeguards] pistole [guns] orology [watches] 

prostitute [prostitutes] pompieri [firefighters] sigarette [cigarettes] palloni [balloons] 

terroristi [terrorists] scultori [sculptors] siringhe [syringes] perle [pearls] 

zingari [gypsies] pittori [painters] stampelle [crutches] violini [violins] 


