A phase-space formulation of the theory of
elasticity and its relaxation

Sergio Conti
Institute for Applied Mathematics, University of Bonn

v IIII| S

—er
UNIVERSITAT lam

Joint work with Stefan Miiller (Bonn), Michael Ortiz (Bonn/Caltech)
Sissa, Trieste, January 2020

International Conference to celebrate Gianni Dal Maso's 65th Birthday



B Introduction

s Introduction

Usual approach to nonlinear elasticity in the calcuus of variations:

The deformation v : 2 — R" minimizes the effective energy
Elu] = / W (Du) + g(x, u)dx
Q

(+ boundary data).
Where does W come from?

Experimental data,
Microscopic simulation data,
Symmetry requirements,
Physical intuition,

Fitting.



B Introduction

s Mechanics in phase space

Key idea: compatibility and equilibrium are central,

material laws come later.

Usual approach: uj makes [o[W(Duj) — f - uj]dx small:
Duj is an exact gradient (compatibility)

The stress o} is given by 0; = DW(Du;) (material law)

Equilibrium dive; + f = 0 is fulfilled only asymptotically

Idea: Duj € L2(Q;R"™*") is an exact gradient (compatibility)
o; € L?(; R™") obeys divo; + f = 0 (equilibrium)

Asymptotically, the pair (Duj(x), oj(x)) approaches the
“material set” D), C R™" x R™" for almost all x € Q.



B Introduction

= Plan

Elementary example: bar and spring.

Finite elasticity in phase space
Classical solutions, strong solutions, generalized solutions

div-curl convergence, coercivity, closedness
[SC, SM, MO, arXiv:1912.02978]

Linearized elasticity in phase space
Transversality

Relaxation
[SC, SM, MO, ARMA 2018]

Related: Relaxation in stress space
sym-div-quasiconvexity
[SC, SM, MO, ARMA 2019]



B Introduction

s Elementary example: bar and spring

g
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L

Phase space of bar X = {(¢,0)} = R?
Compatibility + equilibrium: oA = k(up — €L)

Constraint set £ := {(¢,0) : A= k(ugp —€eL)} C X
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s Elementary example: bar and spring
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B Introduction

s Elementary example: bar and spring

g
A k Lo £
——  PWWWAAWAWO———
L i‘

Phase space of bar X = {(¢,0)} = R?
Compatibility + equilibrium: 0 A = k(up — €L)
Constraint set £ := {(¢,0) : A= k(ug —eL)} C X
Material data set D C X, e.g., D = {(¢,€'/3) : e € R}
Classical solution set: DN E.

Data-driven solution: min{dist(z,D): z € £}.



B Introduction

s The general data-driven problem

= | minimize dist?(z,y) over y € D, z € £

D = {material data}
m &£ = {compatibility and equilibrium}

m Aim: find the compatible strain field and the equilibrated
stress field closest to the material data set

m No material modeling, no data fitting (ideally)

m Raw material data is used (ideally, unprocessed) in
calculations ('the facts, nothing but the facts ...")

T. Kirchdoerfer and M. Ortiz CMAME (2016, 2017).
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s The general data-driven problem
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s Finite elasticity in phase space

Q C R” Lipschitz, bounded, 9Q =Tp UTy, H" Y(p) >0

Phase space:
Xp.q(Q) :={(F,P): FeP(Q;R™"), P e LI9(Q;R™")}
1/p+1/g=1

Constraint set £ C X, 4:

pairs (F, P) which satisfy

i) Compatibility F=Vu, wu=gonlp
ii) Equilibrium divP=f, Pv=honTly
i) Moment equilibrium  FPT = PFT

Material data set
D= {(F’ P) € Xqu : (F(X)’ 'D(X)) € Dioc a-e-}



B Finite elasticity in phase space

s Minimizers of the data-driven problem
Minimize

/Q (IFC) = FIP + 1P(x) = P'(x)17) dx
if (F,P)eé&, (F',P")eD,

00, otherwise.

I((F,P),(F',P)) :=

Questions:

Existence?

Coercivity, lower semicontinuity?
Relaxation?

Approximation?

Discretization?
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s Many concepts of solution

u € WHP(Q;R") is a classical solution if (Du, T(Du)) € &,
with Die = {(F/, P') : P' = T(F), F' € R™"}.

(F,P) € X,4(Q) is a strong solution if (F,P) € END.

((F,P),(F',P)) € ExD C Xpq() x Xp4(R) is a generalized
solution if it is a minimizer of /.

((F,P),(F',P)) € EXxD C Xpq() x Xp,q() is a relaxed
solution if it is accumulation point of a minizing sequence of /.

Remark: “Strong solution” is the same as
“generalized solution and inf / = 0".



B Finite elasticity in phase space

s Coercivity

Lemma: If (F,P) € &, then [, F-P < c|(F,P)|lx,, + ¢, with ¢
depending on the boundary data.

Proof: If F=Vwuand divP 4+ f =0 in €, then
JoF -P=JqVu-P= [qu-Pv+ [,uf.
By the boundary data, [, u- Pv has linear growth.

Definition: We say that Dy, is (p, g)-coercive if

1 1

—|F|IP+ =|P|9—c < F-Pforall (F,P) € Djpe.

c c

Theorem: If Dy, is coercive, and inf | < oo, then minimizing

sequences have a weak limit (in X, 4). The constraint set £ is
weakly closed.

11
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s Example in 2d

Let Wa(€) := 3% + Zalé|* + g(det€),
with g € CY(R) convex, |g’|(t) < b+d|t|, n=2,0<d < 2a.

Then DW, generates a (4,4/3)-coercive data set.

Choosing g(t) = %B(t -1- %)2 Ws is minimized by SO(2).
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s Example in 3d

Let Ws(¢) = 3[¢[” + Fal¢[* + Gel¢[® + g(det).
with g € C}(R) convex, |g’|(t) < b+ d|t|, n=3,0<d < 3e.

Then DW; generates a (6,6/5)-coercive data set.

Choosing g(t) = 38(t—1— %)2, W3 is minimized by SO(3).
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s div-curl convergence

(Fk, Px) € Xp,4(R2) is div-curl convergent to (F, P) if

Fr = FinlP, P, — Pin L9,
curl F — curl Fin WP, div P, — div P in W19,

Div-curl Lemma [Murat-Tartar]:
If (Fi, P) =" (F, P) then FP] — FPT.

Lemma: If (Fx, Px) € D, (F,,P,) €€,

and I((Fi, Px), (Fis PR)) = 0,

then both sequences are div-curl convergent
and they have the same limit (F, P).



B Finite elasticity in phase space

m div-curl closed data sets

D C Xp,q(Q2) is div-curl closed if it is closed with respect to
div-curl convergence.

Dioe C R™M x R™" is locally div-curl closed if

(Fk7 Pk) S D/oc a.e. and (Fk, Pk) div;;:ur/ (F*’ P*) c Ran % ]Rnxn
implies (Fs, Pi) € Dioc.

Theorem: D is div-curl closed iff it is locally div-curl closed.

Proof: localization by blow-up, Hodge decomposition for
truncation, ...

15
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s Polymonotonicity and quasimonotonicity

T : R™" — R"™" is strictly polymonotone if there are
AR 5 RN B e COR™M x R"™™;[0,00)) such that

(T(F+G)—T(F))-G> A(F)-M(G)+ B(F, G),

for all F, G € R™", with B(F,G) > 0 for all G # 0.
Here M : R — R7(") is the vector of minors.

T :R™" — R"™" (Borel, loc. bd.) is strictly quasimonotone if

/(T(F + D) — T(F)) - Dy dx > / B(F, Dy)dx

w

for all F e R™", p € C°(w; R"). [cp. Zhang 1988]

Theorem: both imply that D is div-curl-closed.



B Finite elasticity in phase space 17

s Example in 2d

Let Wa(€) := 3% + Zalé|* + g(det€),
with g € CY(R) convex, |g’|(t) < b+d|t], b<2,0<d < 2a.

Then DW, generates a (4,4/3)-coercive, div-curl closed data set.

Choosing g(t) = 38(t — 1 — 1£22)2 W, is minimized by SO(2).
2 B
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s Example in 3d

Let Ws(¢) = 3[¢[” + Fal¢[* + Gel¢[® + g(det).
with g € CY(R) convex, |g’(t) — g'(s)| < d(|t] + |s]), 0 <I< c.e.

Then DW; generates a (6,6/5)-coercive, div-curl closed data set.

Choosing g(t) = 38(t — 1 — 1£3349€)2 /3 is minimized by SO(3).
2 B



B Finite elasticity in phase space

= Open problems

Approximation of D: What happens if we have a sequence
Dy — D, do solutions converge to solutions? What topology is
relevant?

Approximation of £: How do we discretize &, for example, for
numerics? How to deal with the condition FPT = PFT?

Relaxation: What if we have coercivity but no lower
semicontinuity, what is the appropriate concept of relaxation?

How should we deal with the inf [ > 0 case?

19
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s Geometrically linear elasticity in phase space

Rn)(n

sym

Ran

sym

20
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s Geometrically linear elasticity in phase space

Q C R” Lipschitz, bounded, 9Q =Tp UTy, H" Y(p) >0

Phase space:
Xiin :={(6,0) : e € L2(Q;RXM), o € L2(;RM)}

sym sym

Constraint set: £ C X, consists of pairs (€, o) which satisfy:
i) Compatibility e¢=3(Vu+(Vu)T), u=gonTlp
ii) Equilibrium dive =f, ov=honTly.

Material data set:
D ={(e,0) € Xiin : (€(x),0(x)) € Djoc a.e.}

Simplest example:
Hooke's law, Djoc = {(6,0) € (R2XM2 .6 =Ce}, C>0

sym
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s Compatibility with the classical theory
Proposition: Assume f € L?(Q;R"), g € H1/2(8Q;R”),
h € HY2(0Q; R™),
D ={(e,0) : 0(x) = Ce(x)a.e.}
Then, the data-driven problem
min{d(z,D), z € £}
has a unique solution. Moreover, the data-driven solution satisfies

o= Ce
divoe+f=0

1
€= 5(Vu+ VuT), ue WH(Q;R")

ov=hon Ty (in H1/?)
u=gonp (in H/?)



B Geometrically linear elasticity in phase space

s Coercivity

Coercivity follows from transversality: 3¢ > 0,b > 0

ly —zll = c(llyll +[lzl) = b VyeDVzel.

If this holds, and /(yp, zy) < C, then, up to a subsequence,
(yhyzh) — (y,z) in L2(Q;R”><n><n><n % Rnanan)_

If I(yn,zn) — 0 then y, — zp — 0.

If D is linear at infinity,
then transversality holds.

23
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s Abstract data convergence

Def.: A sequence (yp, zp) in Xiin X Xiin is said to converge to
(y,z) € Xiin X XLin in the data topology, (vh, zh) 4 (y,z), if

Yh—VY, zp—z and y,—z—y—2z

Corresponding notion of
I'(A)-convergence for functionals F : Xy X Xin — [0, 00]
Kuratowski K(A)-convergence for subsets of Xi i, X Xiin-

Concept of relaxation! (I'-limit of constant sequence)
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s Sampled local material data sets
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s Convergence of sampled data sets

2t

tp  uniform approximation
pn  fine approximation
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s Relaxation and approximation

Theorem: Let £ C XLin be weakly sequentially closed,
D ={z:z(x) € Djoc a.e.}, D C XLin. Suppose:

i) (Relaxation) D x & = K(A)— lim (D x &).

h—ro0
ii) (Fine approximation)
= Ph i 0 d(gyploc,h) < Ph V’E € D/oc;
iii) (Uniform approximation)
Fth 10 d(§ Dioc) < th V€ € Dioc -

iv) (Transversality) 3¢ >0, b> 0

ly =zl =z c(lyll +1lz) = b VyeDVzel.

Then, D x £ = K(A) (D x ).

— lim
h—oo



A-Relaxation of the two-well problem

Relaxation: The two-well problem in 1d

g

g0

Dloc

Dioc ={(¢,Ce + 00),e <0} U{(¢,Ce — 09), e > 0},
={(C o —€p,0):0 <o} U{C o +e,0): 0> —0p},

((C > 0, og > 0,60 = (C_ldo).

28
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s Relaxation: The two-well problem in 1d

g g

g0 /
€ €
_O'O - - _
Dloc Dloc

Dioc ={(¢,Ce + 00),e <0} U{(¢,Ce — 09), e > 0},
={(C o —€p,0):0 <o} U{C 0 +¢,0): 0> —00},

25Ioz: =Dioc U {((C_la + peo, U)? |M| <1, |U| < UO}
(C >0, g > 0,60 := CLoyg).

Then, D x € = K(A)—limp_0o D x E.



B A-Relaxation of the two-well problem

s Data relaxation vs. relaxation

of the energy

o
w
,'\ Y o[ J
* A 4 A} 4
’ . S S S S
e . . . . .
- , ~ . ~ao
o" o" € ‘ €
r .

'/' W(e) = 2C min ((€ + €0)?, (e — €0)?)

29



B A-Relaxation of the two-well problem

s Data relaxation vs. relaxation of the energy
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W(e) = 2C min ((€ + €0)?, (e — €0)?)
Relaxed energy: convexification W**

29



B A-Relaxation of the two-well problem

s Data relaxation vs. relaxation of the energy
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W(e) = 2C min ((€ + €0)?, (e — €0)?)
Relaxed energy: convexification W**
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B A-Relaxation of the two-well problem

s Data relaxation and hysteresis

g

/

/

€

graph W**/

/

30



B A-Relaxation of the two-well problem

s The general two well problem with equal moduli

Fix C>0and b e R2%".  Let Djoe :=D" UD,

sym loc loc’

D ={(Co+b0):0c €RYY, o b>—Cb- b},
Dipe ={(C'o—b,0): 0 €RYY, 0-b<Ch-b}.

..... then there is a (somewhat long) formula for Dy, and

Dx&=K(A)- lim DxE&.

h—o0



Summary

Phase-space formulation
of continuum mechanics

Possible application:
Data-driven simulation (no model!)

Existence for finite elasticity
via div-curl-convergence and quasimonotonicity

Approximation and Relaxation
for infinitesimal elasticity

Example: geometrically linear s
two-well problem
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