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Abstract

The Event Horizon Telescope(EHT) has recently delivered the� rst resolved images of M87*, the supermassive black
hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017
April. Additional observations are required to investigate the persistence of the primary image feature—a ring with
azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need,
we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations
do not contain enough information to produce images, they are suf� cient to constrain simple geometric models. We
develop a�modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our
procedures using synthetic data. Applying the same approach to the observational data sets, we� nd the M87*

morphology in 2009–2017 to be consistent with a�persistent asymmetric ring of� 40� as diameter. The position angle
of the peak intensity varies in time. In particular, we� nd a�signi� cant difference between the position angle measured
in 2013 and 2017. These variations are in broad agreement with predictions of a�subset of general relativistic
magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has
the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin.

Uni� ed Astronomy Thesaurus concepts:Black holes(162); Galaxy accretion disks(562); Galaxy accretion(575);
Supermassive black holes(1663); Active galactic nuclei(16); Low-luminosity active galactic nuclei(2033); Very
long baseline interferometry(1769); Astronomy data modeling(1859); Radio interferometry(1346)

1. Introduction

The compact radio source in the center of the M87 galaxy,
hereafter M87*, has been observed at 1.3 mm wavelength
(230 GHz frequency) using very long baseline interferometry
(VLBI) since 2009. These observations, performed by early
con� gurations of the Event Horizon Telescope(EHT; Doeleman
et al.2009) array, measured the size of the compact emission to be
� 40� as, with large systematic uncertainties related to the limited
baseline coverage(Doeleman et al.2012; Akiyama et al.2015).
The addition of new sites and sensitivity improvements leading up
to the April 2017 observations yielded the� rst resolved images of
the source(Event Horizon Telescope Collaboration et al.2019a,
2019b, 2019c, 2019d, 2019e, 2019f, hereafterEHTCI–VI). These
images revealed an asymmetric ring(a crescent) with a�diameter
d�= �42�± �3 � as and a�position angle of the bright sidef B between
150° and 200° east of north(counterclockwise from north/ up as
seen on the sky;EHTC�VI); see the left panel of Figure1. The
apparent size and appearance of the observed ring agree with
theoretical expectations for a�6.5�× �109Me black hole driving
a�magnetized accretion in� ow/ out� ow system, inef� ciently

radiating via synchrotron emission(Yuan & Narayan2014,
EHTC�V). Trajectories of the emitted photons are subject to strong
de� ection in the vicinity of the event horizon, resulting in a�lensed
ring-like feature seen by a distant observer—the anticipated shadow
of�a black hole(Bardeen1973; Luminet1979; Falcke et al.2000;
Broderick & Loeb2009).

General relativistic magnetohydrodynamic(GRMHD) simu-
lations of relativistic plasma in the accretion� ow and jet-
launching region close to the black hole(EHTC�V; Porth et al.
2019) predict that the M87* source structure will exhibit
a�prominent asymmetric ring throughout multiple years of
observations, with a�mean diameterd primarily determined by
the black hole mass-to-distance ratio and a position anglef B
primarily determined by the orientation of the black hole spin
axis. The detailed appearance of M87* may also be in� uenced
by many poorly constrained effects, such as the black hole spin
magnitude, magnetic� eld structure in the accretion� ow
(Narayan et al.2012, EHTC�V), the electron heating mech-
anism (e.g., Mo�cibrodzka et al.2016; Chael et al.2018a),
nonthermal electrons(e.g., Davelaar et al.2019), and
misalignment between the jet and the black hole spin(White
et al.2020; Chatterjee et al.2020). Moreover, turbulence in the
accretion� ow, perhaps driven by magnetorotational instability
(Balbus & Hawley 1991), is expected to cause stochastic
variability in the image with correlation timescales of up to
a�few weeks (� dynamical time for M87*). The model
uncertainties and expected time-dependent variability of these

108 NASA Hubble Fellowship Program, Einstein Fellow.

Original content from this work may be used under the terms
of theCreative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.
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theoretical predictions strongly motivate the need for additional
observations of M87*, especially on timescales long enough to
yield uncorrelated snapshots of the turbulent� ow.

To this end, we analyze archival EHT observations of M87*

from observing campaigns in 2009, 2011, 2012, and 2013.
While these observations do not have enough baseline
coverage to form images(EHTC�IV), they are suf� cient to
constrain simple geometrical models, following procedures
similar to those presented inEHTC�VI. We employ asymmetric
ring models that are motivated by both results obtained with the
mature 2017 array and the expectation from GRMHD
simulations that the ring feature is persistent.

We begin, in Section2, by summarizing the details of these
archival observations with the“proto-EHT” arrays. In Section3,
we describe our procedure for� tting simple geometrical models
to these observations. In Section4, we test this procedure using
synthetic proto-EHT observations of GRMHD snapshots and of
the EHT images of M87*. We then use the same procedure to� t
models to the archival observations of M87* in Section5. We
discuss the implications of these results for our theoretical
understanding of M87* in Section6 and brie� y summarize our
� ndings in Section7.

2. Observations and Data

Our analysis covers� ve separate 1.3 mm VLBI observing
campaigns conducted in 2009, 2011, 2012, 2013, and 2017. The
M87* data from 2011 and 2013 have not been published
previously. For all campaigns except 2012, M87* was observed
on multiple nights. For the proto-EHT data sets(2009–2013), we
simultaneously utilize the entire data set from each year,� tting to
data from multiple days with a�single source model, when
available. This is motivated by the M87* dynamical timescale
argument, little visibility amplitude variation reported by
EHTC�III on a�one-week timescale, as well as by the limited
amount of available data and lack of evidence for interday
variability in the proto-EHT data sets. We use incoherent
averaging to estimate visibility amplitudes on each scan(� few
minutes of continuous observation) and bispectral averaging to

estimate closure phases(CPs; Rogers et al.1995; Johnson et al.
2015; Fish et al.2016). The frequency setup in 2009–2013
consisted of two 480 MHz bands, centered at 229.089 and
229.601 GHz. Whenever both bands or both parallel-hand
polarization components were available, we incoherently aver-
aged all simultaneous visibility amplitudes. The data sets are
summarized in Table1, where the number of detections for
nonredundant baselines of different projected baseline lengths is
given, with the corresponding(u, v) coverage shown in Figure2.
Redundant baselines yield independent observations of the same
visibility. In Table 1 we also indicate the number of available
nonredundant CPs(not counting redundant and intrasite baselines,
minimal set; see Blackburn et al.2020). As is the case for non-
phase-referenced VLBI observations(Thompson et al.2017), we
do not have access to absolute visibility phases. All visibility
amplitudes observed in 2009–2013�are presented in Figure3.

A�more detailed summary of the observational setup of the
proto-EHT array in 2009–2013 and the associated data
reduction procedures can be found in Fish et al.(2016). All
data sets discussed in this paper are publicly available.109

2.1. 2009–2012

Prior to 2013, the proto-EHT array included telescopes at three
geographical locations:(1) the Combined Array for Research in
Millimeter-wave Astronomy(CARMA, CA) in Cedar Flat,
California,(2) the Submillimeter Telescope(SMT, AZ) on Mt.
Graham in Arizona, and(3) the Submillimeter Array(SMA,
SM), the James Clerk Maxwell Telescope(JCMT, JC), and the
Caltech Submillimeter Observatory(CSO, CS) on Maunakea in
Hawai’ i. These arrays were strongly east–west oriented, and the
longest projected baselines, between SMT and Hawai’ i, reached
about 3.5 G� , corresponding to the instrument resolution
(maximum fringe spacing) of � 60� as.

The 2011 observations of M87* have not been published but
follow the data reduction procedures described in Lu et al.
(2013). The 2009 and 2012 observations and data processing of
M87* have been published in Doeleman et al.(2012) and
Akiyama et al.(2015), respectively. However, our analysis uses
modi� ed processing of the 2012 data because the original
processing erroneously applied the same correction for atmo-
spheric opacity at the SMT twice.110 The SMT calibration
procedures have been updated since then(Issaoun et al.2017).

Each observation included multiple subarrays of CARMA as
well as simultaneous measurements of the total source� ux
density with CARMA acting as a�connected-element interfe-
rometer; these properties then allow the CARMA amplitude
gains to be“network-calibrated” (Fish et al.2011; Johnson et al.
2015, EHTC�III ). Of these three observing campaigns, only 2012
provides CP information for M87*, and all CPs measured on the
single, narrow triangle SMT–SMA–CARMA were consistent
with zero to within 2� (Akiyama et al.2015); see Figure4.

2.2. 2013

The 2013 observing epoch did not include the CSO, but
added the Atacama Path� nder Experiment facility(APEX, AP)
in the Atacama Desert in Chile. This additional site brought for

Figure 1. Left panel:�one of the images of M87* obtained inEHTC�IV (see
Section 4.2 for details). A�42 � as circle is plotted with a dashed line for
reference. The observed position angle of the approaching jetf jet is 288° east
of north(Walker et al.2018). Under the assumed physical interpretation of the
ring, we expect to� nd the bright side of the crescent on average approximately
90° clockwise fromf jet (EHTC�V). We assume a�conventionf B,exp�= �198°,
indicated with a blue dashed line. Right panel:�a�random snapshot(note that
this is not a� t to the EHT image) from a�GRMHD simulation adopting the
expected properties of M87* (Section4.1). The spin vector of the black hole is
partially directed into the page, counteraligned with the approaching jet(and
aligned with the deboosted receding jet); its projection onto the observer’s
screen is located at the position angle off spin�= �f jet�Š�180°.

109 https:// eventhorizontelescope.org/ for-astronomers/ data
110 An opacity correction raises visibility amplitudes on SMT baselines by� 10%
in nominal conditions; our visibility amplitudes on SMT baselines are, thus,
slightly lower than those reported by Akiyama et al.(2015). However, the
calibration error does not change the primary conclusions of Akiyama et al.(2015).
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the � rst time the long-baselines(� 5–6 G� ) CARMA–APEX
and SMT–APEX, which are roughly orthogonal to the
CARMA–Hawai’ i and SMT–Hawai’ i baselines; see Figure2.
The addition of APEX increased the instrument resolution
(maximum fringe spacing) to � 35� as. While the 2013
observations of Sgr A* were presented in several publications
(Johnson et al.2015; Fish et al.2016; Lu et al.2018), the M87*

observations obtained during the 2013 campaign have not been
published previously.

The proto-EHT array observed M87* on March 21, 22, 23,
and 26 2013. CARMA–APEX detections were found on March
22 (11 detections) and 23(7 detections) with a�single SMT–
APEX detection on March 23. March 23(MJD 36374) was the
only day with detections on baselines to each of the four
geographical sites. No detections between Hawai’ i and APEX
were found, and there were no simultaneous detections over
a�closed triangle that would allow for the measurement of CP.

2.3. 2017

In 2017, the EHT observed M87* with � ve geographical
sites(EHTC�I; EHTC�II), without CSO and CARMA, but with
the addition of the Large Millimeter Telescope Alfonso Serrano
(LMT, LM ) on the Volcán Sierra Negra in Mexico, the IRAM

30 m telescope(PV) on Pico Veleta in Spain, and the phased-
up Atacama Large Millimeter/ submillimeter Array(ALMA,
AA; Matthews et al.2018; Goddi et al.2019). The expansion
of the array resulted in signi� cant improvements in(u, v)
coverage, shown with gray lines in Figure2, and instrument
resolution raised to� 25� as. In addition to hardware setup
developments (EHTC�II), the recorded bandwidth was
increased from 2�× �0.5 GHz to 2�× �2 GHz (226–230 GHz).
The 2017 data processing pipeline used ALMA as an anchor
station (EHTC�III ). Its high sensitivity greatly improved the
signal phase stability(Blackburn et al.2019; Janssen et al.
2019; EHTC�III ) and enabled data analysis based on robustly
detected closure quantities obtained from coherently averaged
visibilities (EHTC�IV; Blackburn et al.2020) rather than on
visibility amplitudes alone. These improvements allowed for an
unambiguous analysis of the M87* image by constraining the
set of physical(EHTC�V) and geometric(EHTC�VI) models
representing the source morphology.

2.4. M87* Data Properties

VLBI observations sample the Fourier transform of the
intensity distribution on the skyI(x, y) via the van Cittert–

Table 1
M87* Data Sets Analyzed in This Paper

Detections on Nonredundant Baselines

Year Telescopes Dates Baselinesa Zero Short Mediumb Longc Total CPs
< 0.1G� < 1G� < 3.6G� > 3.6G� > 0.1G�

2009 CA, AZ, JC Apr 5, 6 3/ 3/ 3 L 12 16/ 5 L 28 L
2011 CA, AZ, JC, SM, CS Mar 29, 31; Apr 1, 2, 4 10/ 6/ 3 52 33 21/ 6 L 54 L
2012 CA, AZ, SM Mar 21 3/ 3/ 3 14 11 19/ 6 L 44 7
2013 CA, AZ, SM, JC, AP Mar 21–23, Mar 26 10/ 7/ 5 39 41 23/ 4 19/ 1 83 L
2017 AZ, SM, JC, AP, LM, PV, AA Apr 6d 21/ 21/ 10 24 L 33/ 13 92/ 16 125 67
2017 AZ, SM, JC, AP, LM, PV, AA Apr 11d 21/ 21/ 10 22 L 28/ 9 72/ 16 100 54

Notes.
a Theoretically available/ with detections/ nonredundant, nonzero with detections.
b All / SMT–Hawai’ i.
c All / SMT-Chile.
d Single-day data set.

Figure 2. (u, v) coverage of the M87* observations performed in 2009–2013 with various proto-EHT arrays. Gray lines indicate detections obtained during the 2017
observations with a�mature EHT array, including several new sites, but without the baselines to CARMA. Dashed circles correspond to angular scales of 50� as
(inner) and 25� as(outer).
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