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Abstract. We model the cortical dynamics underlying a free association 
between two memories. Computationally, this process may be realized as the 
spontaneous retrieval of a second memory after the recall of the first one by an 
external cue, what we call a latching transition. As a global cortical model, we 
study an associative memory Potts network with adaptive threshold, showing 
latching transitions. With many correlated stored patterns this unstable 
dynamics can proceed indefinitely, producing a sequence of spontaneously 
retrieved patterns. This paper describes the informational properties of latching 
sequences expressed by the Potts network, and compares them with those of the 
sentences comprising the corpus of a simple artificial language we are 
developing, BLISS. Potts network dynamics, unlike BLISS sentences, appear to 
have the memory properties of a second-order Markov chain. 
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1   Introduction 

Cortical networks have been thought to retrieve memories associatively [1], both at 
the local and global level [2]. The simple Hopfield neural network model [3] has 
stimulated the study of content-addressed, auto-associative retrieval in terms of 
attractor dynamics. Once a memory has been retrieved by an external cue, however, if 
the corresponding attractor state is made unstable, it may serve itself as an internal 
cue for a second memory.  Based on this simple observation, many authors have 
explored recurrent networks that model processes of the free association between two 
memories. These proposals differ in the ingredients introduced in order to destabilize 
the first attractor state, so as to produce a spontaneous sequential retrieval of several 
stored memories. 

In 1986 Sompolinsky and Kanter [4] proposed a simple network that, with a 
specific set of connection weights, could retrieve an equally specific sequence of 
memories. In 1987 Tsuda [5, 6] proposed a model with two coupled networks, a 
stable and an unstable one, interacting with each other and generating oscillating 
retrieval. Hermann et al [7], in 1993, obtained “episodic” and “semantic” transitions 
among memories with a dynamic threshold influencing active neurons. 

Similarly to the work of Hermann, we study here a network where transitions 
among patterns are due to an adaptive threshold, but with a different kind of units. 



2   Potts Model 

The network, described in detail in [8], is a recurrent network with Potts units. Instead 
of a single neuron each unit represents a local cortical network, and can take S 
different uncorrelated active states (plus one inactive state). The active states 
represent memories at the local network level, realized as local attractor states through 
a process the model does not describe, as it focuses on the global cortical level. 
Within each active state the activation rate is taken to be threshold-linear. We study 
the global attractor dynamics, after storing on the tensor connections among Potts 
units p global activity patterns. Each unit receives C connections. 

To have spontaneous transitions among attractors we introduce a fatigue model: 
both an overall and a state-specific adaptive threshold which, with a characteristic 
time constant, tracks the mean activation value of each Potts unit in that state. After 
retrieving a global pattern the system is in a quasi-stable attractor, as the threshold 
continues to increase and to weaken each active state, until the unit changes state or 
becomes inactive. The free-energy landscape of configurations is then dynamically 
modified, leading the system to abruptly jump to a new attractor, often nearby. 

In order to have structured latching transitions, however, the introduction of a 
dynamic threshold is not enough: correlations among patterns are also needed. In [9] 
we have studied the detailed dynamics of transitions between two correlated patterns. 
In this simplified condition we have identified three types of latching transition, each 
characterized by a range of correlations: quasi-random transitions between weakly 
correlated attractors, history-dependent transitions between attractors with stronger 
correlations, oscillatory transitions between pairs of closely overlapping attractors. 

3   Extended Potts Dynamics 

With a generative algorithm, as explained in [8], we produce a set of correlated 
patterns and we store them into the network. In this more natural and complex 
condition, transitions among all pairs of patterns may occur, and they still seem to 
cluster in the three types above. Starting with an external cue, that induces the 
retrieval of a pattern, a series of transitions follows, as in Fig.1, until activity dies out 
or we stop the simulation. Its duration increases with the correlation among patterns 
and with p, the total number of patterns. Latching dynamics can be quite disorderly, 
but we can extract the sequence of patterns that, at each time t, have the highest 
overlap with the activity of the Potts network. We can then study the properties of 
such discrete sequences, neglecting the originally continuous nature of the dynamics. 

4   BLISS Sentences 

In a separate project, we have designed an artificial Basic Language Incorporating 
Syntax and Semantics, BLISS, in order to test the language acquisition capability of 
the Potts and of other networks. BLISS is intended to be of intermediate complexity, 



and in its current provisional form it includes a stochastic regular grammar with 30 
production rules but no semantics yet. The associated probabilities (e.g. for transitive 
vs. intransitive verbs) are fine-tuned to the statistics of the one-million-word Wall 
Street Journal (WSJ) corpus. The 170 terminal symbols belong to different lexical 
categories such as verb, noun, adjective, determiner, demonstrative, …, whose 
relative frequencies are also tuned to the WSJ corpus. With a Perl code we have 
generated 50,000 BLISS sentences, of length between 5 and 12 words and with 
maximum 3 levels of embedding. 

�Æ Ahriman takes Zarathustra 

�Æ New lions build the house 

�Æ The cow dances 

�Æ The knife assumes that the worm 
sees AhuraMazda 

�Æ Yasmin knows that Magi don't 
believe that the ox doesn't need the 
dog 

�Æ Great black stones give the stone 
to Yasmin 

Fig. 1. (left) Example of Potts dynamics: different colors show the overlap of the network with 
different patterns; (right) Examples of sentences generated by the artificial language BLISS. 

5   Entropy and Information 

We may now focus on the memory properties of both processes, Potts latching 
dynamics and BLISS sentences, described as discrete sequences of ‘symbols’ picked 
from among p=80 memory patterns and p=170 words, respectively.   

In the Potts case, we have run p x p latching sequences stopping each sequence 
after 30 transitions, of which we have analysed the last 20.  Averaging across all 
transitions, we count the occurrence of all possible single patterns, consecutive pairs 
and triplets of patterns, and compute e.g. the entropy H(xn) and the information among 
the symbols ( = patterns) in position n and the ones in position n+i, I(xn ; xn+i). We 
proceed similarly with BLISS, using sentences with at least 7 symbols ( = words).  

Results show that both systems span an entropy lower than log2 p, naturally for 
BLISS and in the Potts case due to finite size effects. Both have favourite pairs and 
triplets: while many among all the possible combinations never occur, others are 
frequently present. Comparing the frequency of each pair with that of its inverse, 
BLISS is seen to be almost fully asymmetric (either one never occurs), while Potts 
dynamics are substantially symmetric, as expected. The most frequent Potts pairs are 
comprised of strongly correlated patterns. For BLISS, in Fig. 2 (right) each color 
denotes the entropy at a specific position and the information which that position 
conveys to the next positions. Over half of the total variability at each position is seen 
to be independent of the words in previous positions, while the rest is determined by a 
long history of all preceding words, pointing at extended syntactic dependences.   



   

 
 

Fig. 2.  (left) Information flow in the Potts latching sequence (blue), in a first-order Markov 
chain (gray) and in a second-order Markov chain (black); (right) Information flow in BLISS 
sentences, each color denoting the decaying influence of the word chosen at each position. Note 
the different y-scales (both in bits). 

In order to better characterize information propagation along the Potts latching 
sequence, in Fig. 2 (left) we have compared our sequences with Markov chains of 
first and second order. To equalize the noise present in a finite sample, we have also 
produced p x p Markov chains of 20 steps, with the two transition matrices of the first 
and second order chains extracted from the original Potts latching sequences. We can 
see in Fig. 2 that, whereas in a first order Markov process information decays faster 
than in BLISS, but also monotonically, the surprising trend of the latching 
information is similar to the one of a second-order Markov chain. 
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