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ABSTRACT

We study the time-dependent spectra produced via the bulk Compton process by a cold,

relativistic shell of plasma moving (and accelerating) along the jet of a blazar, scattering on

external photons emitted by the accretion disc and reprocessed in the broad-line region (BLR).

The bulk Comptonization of disc photons is shown to yield a spectral component contributing

in the far-ultraviolet band, and would then be currently unobservable. On the contrary, the

bulk Comptonization of broad-line photons may yield a significant feature in the soft X-ray

band. Such a feature is time-dependent and transient, and dominates over the non-thermal

continuum only when: (i) the dissipation occurs close to, but within, the BLR; and (ii) other

competing processes, like the synchrotron self-Compton emission, yield a negligible flux in

the X-ray band. The presence of a bulk Compton component may account for the X-ray

properties of high-redshift blazars that show a flattening (and possibly a hump) in the soft

X-rays, previously interpreted as due to intrinsic absorption. We discuss why the conditions

leading to a detectable bulk Compton feature might be met only occasionally in high-redshift

blazars, concluding that the absence of such a feature in the spectra of most blazars should

not be taken as evidence against matter-dominated relativistic jets. The detection of such a

component carries key information on the bulk Lorentz factor and kinetic energy associated

to (cold) leptons.

Key words: radiation mechanisms: non-thermal – scattering – quasars: general – quasars:

individual: GB B1428+4217 – X-rays: general.

1 I N T RO D U C T I O N

High-redshift blazars are the most powerful observed radio-loud ac-

tive galactic nuclei, and among the best candidates to be detected

by the forthcoming GLAST γ -ray satellite. Recently, one previously

unidentified EGRET source has been associated with the blazar

Q0906−693 at a redshift 5.47 (Romani et al. 2004). Its spectral en-

ergy distribution (SED) resembles the predictions of the proposed

‘blazar sequence’ (Fossati et al. 1998; Ghisellini et al. 1998), namely

the presence of two broad peaks in the millimetre–far-infrared and

the MeV–GeV bands, with the high-energy component strongly

dominating the energy output. Furthermore, there are now half a

dozen blazars at z > 4, yet undetected in the MeV–GeV band, but

observed in the X-ray band with large-area instruments (i.e. XMM–

Newton, see Yuan et al. 2006). All of them exhibit a flat (i.e. rising

in νFν) spectrum, indicating the energetic dominance of a spectral

component peaking at high frequencies. The inferred apparent lu-
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minosities reach >1049 erg s−1, yet the intrinsic ones (i.e. corrected

for the effect of relativistic beaming) are likely to be only a minor

fraction of the jet power which energizes the radio lobes.

Despite the theoretical advances following the discovery of the

radiatively dominant γ -ray emission in blazars, and more than 30

yr after the discovery of superluminal motion in 3C 273 (Cohen

et al. 1971; Whitney et al. 1971), we are still unable to pin down the

acceleration and collimation mechanism(s) and establish whether

the energy carried in jets is mainly in the form of Poynting flux or

kinetic energy of matter and how this might depend on the distance

from the powering source (see the arguments presented by Blandford

2002 and Lyutikov 2003 in favour of electromagnetically dominated

jets, and Sikora et al. 2005 for a discussion of matter versus magnetic

jets).

One of the proposed diagnostics on the issue of jet composition

(e.g. Sikora & Madejski 2000) is based on the spectral signature

expected from a matter-dominated jet, in the form of an excess

of emission at around 1 keV, due to the bulk Comptonization by

cold leptons of the radiation fields produced by the accretion disc

and/or reprocessed in the broad-line region (BLR). This process, first

suggested by Begelman & Sikora (1987), was then considered by
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Sikora, Begelman & Rees (1994) and Sikora et al. (1997). Moderski

et al. (2004) proposed that such a process can generate a soft X-ray

precursor in the light curve of blazars.

No evidence for bulk Comptonization features have been de-

tected so far, leading to upper limits on the jet matter content (see

the above-mentioned references). However, there is increasing re-

cent evidence that the X-ray spectrum of some high-redshift blazars

shows a flattening towards low X-ray energies and possibly a hump.

The favoured interpretation so far has been the presence of intrinsic

absorption by warm material, but alternative explanations are vi-

able (see Fabian et al. 2001b; Worsley et al. 2004). In particular, it

is possible that for the first time we are observing the signature of

the bulk Comptonization process.

This motivates this work which concentrates on the (time-

dependent) detailed shape of the bulk Compton spectrum to assess

this hypothesis against available and future data, under reason-

able assumptions about the presence of ambient seed photons and

the bulk acceleration of the plasma in the jet. Future X-ray mis-

sions could provide variability as well as polarimetric information

in the X-ray band, the latter being a further valuable tool to sin-

gle out emission via bulk Comptonization among competing radi-

ation processes (Begelman & Sikora 1987), such as synchrotron

self-Compton (SSC) (Celotti & Matt 1994), and external Compton

(Poutanen 1994).

2 M O D E L A S S U M P T I O N S

We consider a shell comprising N cold (i.e. non-relativistic) leptons

moving along a jet, accelerating up to a saturation speed. During

propagation, the leptons scatter ambient photons, originating in a

(standard) radiatively efficient accretion disc and reprocessed in the

gas clouds forming the BLR, as expected in powerful quasars. In

the following, we detail the assumptions made in this scenario.

2.1 Plasma dynamics

The plasma dynamics and, in particular, the dependence of the jet

velocity on distance z from the power source, is not known. Mod-

elling of magnetically accelerated flows leads to relatively slow

acceleration (e.g. Begelman & Li 1994), before the flows reach an

asymptotic speed. Here, we parametrize the acceleration in terms of

the bulk Lorentz factor, Ŵ, increasing with distance (i.e. the height

above the disc) as

Ŵ(z) = Ŵ0

(

z

z0

)a

(1)

up to a maximum value Ŵmax, beyond which Ŵ = Ŵmax. The initial

bulk Lorentz factor, formally a free parameter, will be considered to

be 1, unless otherwise specified. The initial height z0 (corresponding

to the typical distance where acceleration sets in) will be taken of the

same order as the inner accretion radius r0. To simplify the notation,

we hereafter set Ŵ = Ŵ(z) and β = β(z) = (Ŵ2 − 1)1/2/Ŵ.

2.2 Scattering of radiation from the accretion disc

To model the radiation produced by the accretion disc, we simply

consider the surface (multicolour blackbody) temperature profile

for a Shakura & Sunyaev (1973) disc:

TD(r ) ∝ M
−1/2

BH Ṁ1/4r−3/4

[

1 −

(

6rg

r

)1/2
]1/4

, (2)

where r is the radial disc coordinate, rg = GMBH/c2 is the grav-

itational radius, MBH is the central black hole mass and Ṁ is the

mass-accretion rate.

At a given height z, the bolometric radiation energy density pro-

duced by a ‘ring’ of the accretion disc, as seen in the lab frame,

corresponds to

dU (z)

dr
=

2πr B(TD) cos θ

c(z2 + r 2)
. (3)

B(TD) = σ SBT4
D/π represents the frequency-integrated blackbody

intensity, σ SB is the Stefan–Boltzmann constant, and cos θ = [1 +

(r/z)2]−1/2, θ being the angle between the position z along the jet

and the emitting ring of the disc.

In the comoving (primed) frame of the shell, this radiation energy

density is given by

dU ′(z)

dr
= Ŵ2(1 − β cos θ )2 dU (z)

dr
. (4)

We assume that the scattering process is isotropic, that is, we neglect

the angle dependence of the differential Thomson cross-section, by

setting dσ/d	 = σ T/(4π). Thus, for an optically thin shell (see

Section 2.5), each electron scatters a fraction σ T of this radiation

energy density, re-isotropizing it in the comoving frame. For N free

and cold electrons, the scattered radiation (at a given z) corresponds

to a bolometric luminosity (in the comoving frame)

dL ′(z)

dr
= σTcN

dU ′(z)

dr
. (5)

An observer located at an angle θV with respect to the jet axis will

receive a power

dLobs(z)

dr
=

1

[Ŵ(1 − β cos θV)]4

dL ′(z)

dr
≡ δ4(z)

dL ′(z)

dr
, (6)

where δ = Ŵ−1(1 − β cos θV)−1 defines the relativistic Doppler

factor. In terms of the spectrum, the observed radiation will still have

a blackbody frequency distribution, corresponding to a transformed

temperature:

TD,obs(r , z) = TD(r )
1 − β cos θ

1 − β cos θV

. (7)

Given the total luminosity (equation 6) and spectrum (equation 7),

the observed spectrum can be normalized by setting

dLobs(z, ν)

dr
= A

2h

c2

ν3

exp(hν/kTD,obs) − 1
, (8)

A =
2πσT Nr cos θ

z2 + r 2

1

[Ŵ(1 − β cos θ )]2
. (9)

The observed power emitted at each z can be simply obtained by

integrating over the disc radii r, between r0 and an outer disc radius

(see Section 2.5).

In the following, we will also consider the time-integrated spec-

trum, as measured by the observer over an (integration) time tobs,

given by

dtobs =
dz

βc
(1 − β cos θV), (10)

leading to

tobs =

∫ z

z0

dz′

βc
(1 − β cos θV). (11)
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2.3 Scattering of broad-line photons

Besides the photons directly originating in the disc, a significant

contribution to the soft photon field can come from disc photons

reprocessed by the gas permeating the BLR (Sikora et al. 1994).

We account for this contribution assuming that the photon energy

distribution follows a blackbody spectrum peaking at the frequency

of the Lyman α (Lyα) hydrogen line, νLyα = 2.47 × 1015 Hz. This

matches the shape of this external radiation component in a restricted

energy range around the Lyα line, as seen in the comoving frame.

In fact for BLR clouds distributed in two semi-spherical shells

(one for each side of the accretion disc), any monochromatic line is

seen, in the comoving frame, within a narrow cone of semi-aperture

angle 1/Ŵ along the jet velocity direction. Accordingly, such pho-

tons are blueshifted by a factor ranging from Ŵ (photons from the

border of the cone) to 2Ŵ (photons head-on). In this (admittedly

narrow) frequency range, a monochromatic line transforms into a

spectrum ∝ νobs
2. Although the Lyα line represents the most im-

portant contribution of the BLR seed photons, the entire spectrum

produced by the BLR is more complex (see Tavecchio et al., in

preparation). Here, we stress that the blackbody assumption repre-

sents well the more complex SED from the BLR.

Thus, we set an equivalent temperature of the BLR spectrum:

TBLR ≡
hνLyα

2.8k
∼ 4.23 × 104 K. (12)

In the shell comoving frame, this temperature is seen blueshifted

by a factor ∼Ŵ, while, after scattering, the transformation in the

observer frame introduces an additional blueshift, corresponding to

a factor δ: therefore TBLR,obs ∼ ŴδTBLR.

The bolometric luminosity resulting from the scattering of BLR

photons, at a given distance z, is given by

LBLR,obs(z) = σTcNUBLRŴ2δ4, (13)

where UBLR is the energy density of BLR photons, which is con-

sidered constant within the typical distance of the BLR, defined by

a radius RBLR. For a luminosity, LBLR, of broad-line photons, the

observed spectrum will have a blackbody shape, corresponding to

the temperature TBLR,obs:

LBLR,obs(z, ν) =
2h

c2

ν3

exp(hν/kTBLR,obs) − 1

×
σT N LBLR

4σSB R2
BLRT 4

BLRŴ2
, (14)

which corresponds to the integrated luminosity given by equa-

tion (13).

2.4 Disc versus broad-line photons

Since the highest temperature is reached in the innermost parts of

the accretion disc, the angle between the energetic disc photons and

the moving shell is typically small. It is relatively large only in the

vicinity of the disc, but there the shell has not yet reached high bulk

Lorentz factors. As a consequence (see equation 7), the observed

typical frequency of the scattered disc photons will not increase

much (for θ ∼ 0 and θ v ∼ β such photons are even redshifted).

On the contrary, photons from the BLR are always seen head-on,

and as such are maximally blueshifted (i.e. by the factor Ŵδ). For this

reason (as shown below), it will be this bulk Compton component

which can provide a relevant contribution in the X-ray spectrum of

powerful blazars.

2.5 Model parameters

In the following, we quantitatively specify the choice of model pa-

rameters adopted in the spectral calculations presented in Section 3.

(i) Disc luminosity. For powerful blazars, we assume a typical

black hole mass MBH = 109M9 M⊙ and a disc accretion rate close

to the Eddington one. Therefore,

Ldisc ∼ LEdd ∼ 1047 M9 erg s−1, (15)

and the typical sizes of the inner accretion disc and jet are assumed

z0 = r0 = 6 rg. The outer accretion disc radius is set to 104rg.

(ii) Broad-line radiation. We model the BLR as a thin spherical

shell at a distance RBLR. The disc radiation reprocessed by clouds

in the BLR is assumed to have a bolometric luminosity LBLR =

0.1 Ldisc.

It should be noted that the BLR may not be the only contributor

to seed photons, besides those directly from the accretion disc. A

molecular torus (emitting infrared photons; e.g. Blazejowski et al.

2004), and intracloud plasma (scattering and isotropizing both disc

and beamed synchrotron jet radiation; e.g. Ghisellini & Madau

1996) may also provide soft photons. However, we neglect such

components here, as their contribution is very uncertain.

(iii) Number of electrons. We consider a shell of plasma, of some

initial size equal to the inner size of the accretion disc, r0. As a first-

order estimate of how many particles can be present in such a shell,

we consider the number of relativistic electrons needed to originate

the radiation dominating the SED (i.e. produced in the jet regions

where most of the dissipation occurs) and, assuming that the total

number of particles is conserved, we treat it as a lower limit to the

total number of electrons present in the shell.

This limit is clearly model-dependent. We will adopt the most

common interpretation that the high-energy radiation in the spec-

trum of powerful blazars is produced via inverse Compton emission

of a relativistic distribution of leptons on the external photon fields

discussed in Sections 2.2 and 2.3. In this scenario, the inferred num-

ber density of relativistic particles relies on estimates of the magnetic

field and seed photon energy density required to give raise to the

observed luminosity. On the other hand, these quantities are quite

tightly constrained by fitting the whole SED – both the synchrotron

and the inverse Compton components. Furthermore for powerful

blazars, the electron distribution is basically in the complete cool-

ing regime (namely, electrons of all energies cool within a light

crossing time), which constrains the low-energy particle end.

For a reference value of N = 1054N54 particles (see Section 3),

which initially occupy a volume of typical size r0 = f 2rg(2rg being

the Schwarzschild radius), the corresponding initial optical depth

is τ 0 ≡ σ Tr0(N/r3
0) ∼ 7.4N54/(fM9)2. At the base of the jet, the

shell can be optically thick for scattering (depending on f): in the

calculations, we rescale the bulk Compton emission by the factor

max(1, τ ), which accounts for the reduction in the scattered flux

when τ > 1 (self-shadowing). However, for a conical jet, the re-

gion rapidly becomes transparent as τ ∝ z−2, independently of the

shell width. After transparency is reached, all electrons contribute

to the emission and the process becomes largely independent of the

specific geometry (shell or spherical), and the expressions given in

Section 2.4 are appropriate.

(iv) Plasma dynamics. As mentioned above, we parametrize the

uncertain dynamics as Ŵ(z) = (z/z0)a . In the following examples,

we adopt a = 1/2, which, for Ŵmax ∼ 10, corresponds to reach the

asymptotic bulk Lorentz factor at distances z = z0Ŵ
2
max, approxi-

mately a few hundreds rg. In the context of the internal shock sce-

nario (Rees 1978; Sikora et al. 1994; Ghisellini 1999; Spada et al.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 375, 417–424



420 A. Celotti, G. Ghisellini and A. C. Fabian

2001), this is approximately the distance where shell–shell colli-

sions take place, that is, where most of the dissipation occurs. For

a = 1 (i.e. more rapid acceleration), the results are qualitatively the

same, but the observed time-evolution is quicker.

3 R E S U LT S

Fig. 1 shows a sequence of bulk Compton spectra resulting from

scattering disc and line photons. The sequence refers to spectra at

different times (in the observer frame) from the beginning of the

plasma acceleration at z0 = 6rg. Each spectrum corresponds to the

average luminosity received in 3 h of integration time, tobs, again

as measured in the rest frame of the source. The acceleration (Ŵ ∝

z1/2) terminates when Ŵmax = 15 is reached. For comparison, the

BLR size is RBLR = 1018 cm ∼ 104rg.

The total number of cold particles is set at N ∼ 1053, and the

observer is located at a viewing angle θ v = 3◦.

The figure shows separately the contribution from scattering of

disc (continuous lines) and BLR (dashed lines) photons. For clarity,

the top panel shows the evolution of the spectrum in the rising phase

of the disc-scattered component (roughly until the Lorentz factor

reaches Ŵmax), while the bottom panel shows its decline.

Such evolution corresponds to the following phases.

(i) At early times, the bulk Lorentz factor is small, with a corre-

spondingly low scattered luminosity, from both disc and line pho-

tons. The former component is more prominent as the radiation

energy density of the disc photons is larger at small z. The different

slope of the disc-scattered radiation with respect to the multicolour

blackbody is due to the dilution of photons produced at larger disc

radii, weakly contributing to the total energy density.

Figure 1. Temporal evolution of the bulk Compton spectrum. Long dashed

line: accretion disc spectrum. Solid lines: bulk Compton spectra from scat-

tered disc photons. Dashed lines: bulk Compton spectra from scattered

broad-line photons. Each spectrum corresponds to the average luminosity,

assuming 3 h of integration time, produced by the shell as it moves from

z0 to the BLR, assumed to be at RBLR = 1018 cm. The top panel shows the

evolution for the first 21 h (observer time) during which the contribution

from bulk Comptonization of disc photons increases; the bottom panel cor-

responds to the time-interval between 21 and 51 h, during which the same

component decreases in flux. Note that the luminosity and spectrum from the

bulk Comptonization of BLR photons remain constant after ∼21 h (bottom

panel), corresponding to the fact that Ŵ has reached its maximum value.

(ii) As the jet accelerates (before reaching Ŵmax), the BLR-

scattered component increases more rapidly than the disc-scattered

one. This is because the radiation energy density of the BLR photons

is constant for a stationary observer inside it, but increases like Ŵ2 in

the shell comoving frame. The radiation energy density produced by

the inner disc, instead, decreases for a stationary observer, and even

more so in the shell frame (since the photon directions form small

angles with respect to the shell velocity). Only photons produced at

large disc radii are blueshifted, and make up the dominant part of

the disc radiation energy density.

(iii) When the shell reaches its maximum Lorentz factor (at

tobs ∼ 21 h), it is already relatively far from the disc. In the co-

moving frame, a larger and larger portion of the disc is seen at small

angles (i.e. in the comoving frame photons are seen redshifted).

Correspondingly, the disc-scattered radiation intensity decreases

(bottom panel of Fig. 1), while the BLR line-scattered component

remains constant and dominates.

(iv) As mentioned in Section 2.4, the typical energies of the disc

and BLR line scattered components are different. The disc-scattered

hump peaks in the far-ultraviolet (far-UV), in the spectral region

currently most difficult to observe. This is because energetic disc

photons reach the shell at small angles, except at very early times

when, however, the Lorentz factor is still low. Therefore, they are

not significantly boosted. Line photons, instead, always intercept

the shell head-on (in the comoving frame), and thus are maximally

boosted. The peak frequency of this component depends only on

the value of Ŵ that the shell has at a given z (and, of course, on the

viewing angle).

To investigate the last item better, which is crucial in assessing

the detectability of bulk Compton emission, we show in Fig. 2 the

Figure 2. The bolometric bulk Compton luminosity from the scattering of

disc photons (top panel) and the frequency peak of this component (bottom

panel) as a function of the height of the shell above the disc, z. Broad-line

photons are neglected here. The thick (black) lines show the contribution

from soft photons produced in the entire disc, while the thin lines represent,

respectively, the contribution from 6–60rg (blue); 60–600rg (green) and 600–

6000rg (red). Note that the three regions of the disc similarly contribute to the

total luminosity. The solid and dashed lines correspond to viewing angles

θv = 0◦ and 3◦, respectively. We assumed Ldisc = 1047 erg s−1, MBH =

109 M⊙.
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bolometric luminosity and the peak frequency of the disc-scattered

spectrum as a function of the shell–disc distance, z. The solid and

dashed lines correspond to θv = 0◦ and 3◦, respectively. The contri-

bution of seed photons from the inner (6–60rg), central (60–600rg)

and outer (600–6000rg) parts of the disc is shown separately: the

inner part is relevant only when the shell is close to the disc, while

the other part mostly contributes when the shell moves beyond a

few (∼10) rg. The curves change behaviour when Ŵ reaches Ŵmax

(or z > RBLR), which in this particular example occurs at z ∼ 2 ×

1017 cm.

3.1 The case of GB B1428+4217

To illustrate the possible relevance of the bulk Compton process for

the interpretation of the X-ray spectra of blazars, which motivates

this work, we consider the case of GB B1428+4217, a powerful

blazar at redshift z = 4.72. This is one of the best-studied high-

redshift (z > 4) blazars, the spectrum of which has been observed

in X-rays by ROSAT (Boller et al. 2000), BeppoSAX (Fabian et al.

2001a) and XMM–Newton (Worsley et al. 2004, 2006). These obser-

vations showed that the X-ray spectra flatten towards low energies

with respect to a higher-energy power law. This behaviour has been

interpreted as likely due to (warm) absorbing material (with columns

exceeding 1022 cm−2). Alternative interpretations are, however, pos-

sible (Fabian et al. 2001b): a flattening of the low-energy part of an

inverse Compton component could be due to a low energy cut-off

in the electron population and/or a sharply peaked soft (seed) pho-

ton distribution. The sharpness of the X-ray break (occurring over

a range of only a few keV in the rest frame) is, however, difficult to

explain within these models.

Here, we consider the possibility that the flattening and (possibly)

a hump in the soft X-ray spectrum (see Worsley et al. 2004; Yuan

et al. 2005) reveal the presence of emission via bulk Comptonization.

For this specific example, we consider the parameters which allow

us to reproduce the high-energy spectral component on the basis of

the external inverse Compton process (e.g. in Ghisellini, Celotti &

Costamante 2002). The SED can be satisfactorily fitted as emission

of a shell with cross-section radius ∼2 × 1016 cm and width (as

measured in the comoving frame) R′ = 1.2 × 1015 cm, moving

with a bulk Lorentz factor Ŵ = 17. The inferred magnetic field is

B = 11 G and the (comoving) number density of relativistic particles

is ∼5.9 × 105 cm−3, corresponding to a total number of relativistic

particles Nrel ∼ 8.8 × 1053. The observer is at θv = 3◦.

To account also for the soft X-ray flattening and hump, we assume

that again the plasma accelerates from z0 = 6rg according to Ŵ =

(z/z0)1/2, up to Ŵmax = 17. The dynamics of the shell with respect

to the observer time corresponds to the case presented in Fig. 3.

The disc luminosity is Ldisc = 4 × 1047 erg s−1, for an MBH = 4 ×

109 M⊙. The BLR, located at RBLR = 1.2 × 1018 cm, reprocesses

10 per cent of the disc radiation. The resulting spectra are shown

in Fig. 4, where we report different X-ray data sets, and optimize

the parameters to reproduce the BeppoSAX (top panel) and XMM–

Newton (bottom panel) states.

The overall SED clearly depends on the relative normalization

of the relativistic and cold electron distributions. The power-law

components in Fig. 4 (dotted lines) extend from the peaks of the two

bulk Compton components: this corresponds to a similar number of

electrons in the two particle distributions,1 namely a total number of

1 For the relativistic particle distribution, we assume N(γ ) ∝ γ −(2α+1) ex-

tending down to γ min ∼ 1, where α is the spectral index, L(ν) ∝ ν−α .

Figure 3. The bulk Lorentz factor Ŵ, Doppler factor δ, and observed (rest

frame) time tobs (the latter expressed in hours), as a function of the location

of the shell above the disc. The input parameters are the same as used in

the previous case, except for Ldisc = 4 × 1047 erg s−1 (for a black hole of

MBH = 4 × 109 M⊙); RBLR = 1.2 × 1018 cm; a total number of (cold)

particles N = 8.6 × 1054 and a viewing angle θv = 3◦. The vertical dashed

lines correspond to the start of our calculations (i.e. 6rg) and the assumed

location of the BLR.

Figure 4. Illustration of how the bulk Compton process can explain some

details of the X-ray spectrum of a powerful blazar, GB B1428+4217. The X-

ray data are from BeppoSAX (red in the online version), XMM–Newton (cyan

in the online version) and ASCA (blue in the online version). The power law

is assumed to start from the top of the two Comptonization humps, corre-

sponding to the assumption that a number of leptons similar to those ‘cold’

are accelerated to relativistic energies and form a power-law distribution

extending down to γ min = 1. Top panel: spectrum predicted during 3 h of

exposure time, starting 100 h after the beginning of the acceleration. Bottom

panel: the same, but after 110 h. Due to the hardness of the power law, the

contribution to the total power law of disc and broad-line photons is almost

equal even after 100 h, despite the fact that the bulk Compton hump from

disc photons is less powerful than the one from the broad-line photons. All

frequencies are in the rest frame of the source.
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(cold) particles N = 4.0 (1.3) × 1054 (for the top and bottom panels,

respectively).

The normalizations of the relativistic and cold particle distribu-

tions have been assumed to be similar, and the two populations have

been considered independently. Clearly, a self-consistent treatment

should, in principle, account for the acceleration and cooling pro-

cesses to determine the relative normalization (in number and en-

ergy) as a function of time. The assumption made here corresponds

to about half of the particles present at the dissipation site to be ac-

celerated. Alternatively, this could correspond to a situation where

all leptons are cold for half of the exposure time, and relativistic for

the other half.

The spectra shown in Fig. 4 refer to the average luminosity de-

tected in three hours of integration time (rest frame), starting at

t1 = 100 h (top panel) and t2 = 110 h (bottom panel) with respect to

the beginning of the acceleration (z = z0). These times correspond

to locations of the shell quite close to RBLR (see Fig. 3).

After t1, the luminosities (νLν) of the bulk Compton spectra of disc

and line-scattered photons are similar, while at t2 the contribution

from the line photons dominates. In fact, by t2 the shell has already

reached its maximum Lorentz factor, quite far from the inner parts

of the disc.

As already shown (see Fig. 1), the bulk Compton spectrum of the

disc photons, at all times, peaks in the far-UV, and is thus unde-

tectable. However, its luminosity is highly time-dependent (see the

top panel of Fig. 1), exceeding the bulk Compton luminosity off line

photons at times t � t1 (rest frame) for the specific example shown

here.

As a consequence, had dissipation – namely acceleration of elec-

trons to relativistic energies – occurred at lower height above the

disc, we would have a non-thermal spectrum dominated by the scat-

tering of the disc, not line, photons. This would imply that the

X-ray excess due to bulk Compton off the line photons would be-

come undetectable, being exceeded by non-thermal radiation. This

can be seen by comparing the spectra in the top and bottom panels

of Fig. 4. Early dissipation, however, faces a severe difficulty in ac-

counting for the SED, since the source becomes opaque to the γ −

γ →e± process. The emission of the created pairs would contribute

at frequencies between the two broad peaks of the SED, resulting

in an overproduction of X-rays with respect to the observed level

(Ghisellini & Madau 1996).

Note that – as shown in Fig. 4 – the power-law continuum from

disc-scattered photons dominates over a limited frequency range

even if the corresponding bolometric energy density is smaller than

that of line-scattered photons. For non-thermal scattered radiation

with a hard spectrum (α < 1), the typical frequencies of the seed

photons are important: disc radiation should not be discarded as a

main contributor to the seed photon field, on the basis of its bolo-

metric energy density only (see Dermer & Schlickeiser 1993).

In the observationally interesting X-ray range (i.e. 0.1–10 keV,

that translates into 0.5–50 keV rest frame for sources at z ∼ 4),

the spectrum can be approximated as the sum of a power law and a

blackbody. The latter component would correspond to a hump in the

mid X-ray band, accompanied by a flattening towards soft energies.

The bulk Compton feature is expected to be time-dependent, and

generally transient. The necessary conditions for it to be detectable

are: (i) dissipation must occur far from the accretion disc, but within

and near to the BLR; (ii) the shell should move close to its maximum

speed; and (iii) other competing processes, such as SSC, should not

dominate over the bulk Compton and external inverse Compton

processes (see Section 4).

4 D I S C U S S I O N

We have shown that bulk Comptonization of the radiation from an

accretion disc around a supermassive black hole, although impor-

tant in a bolometric sense, would be currently unobservable, since

its spectrum peaks in the far-UV. On the contrary, the bulk Compton

process on photons produced in the BLR can give raise to an observ-

able feature which can be represented by a blackbody. The entire

(bulk Compton+relativistic Compton) spectral shape, can then be

approximated as a blackbody+power law.

The bulk Compton feature is however difficult to detect, even

in the most favourable case. First, in general, it can be a transient

feature, if the plasma injection or dissipation in the jet is not con-

tinuous. Such possibilities are, in general, supported by the strong

variability across the electromagnetic spectrum of blazars. Above

we mimicked these possibilities assuming that the dissipation re-

gion is a shell moving along the jet, thus giving raise to a bulk

Compton feature when the shell is close to the BLR. However, it is

well possible that a ‘cold’ component is in fact more continuous.

In such a case, the bulk Compton component would correspond to

the ‘integration’ of the spectra shown. Secondly, the radiation has to

be strongly beamed, namely the jet has to be highly relativistic and

the angle with the line of sight small. A third condition for a bulk

Compton feature to be detectable is that other emission processes

do not mask it. The most likely component that could hide it is that

produced by SSC. It should be noted that the estimated spectrum

(see Fig. 4) does not include emission via the SSC process, as this

would require to assume – as another free parameter – the relative

intensity of the external soft photon and magnetic fields. The SSC

could, in principle, provide a significant contribution at the UV and

softest X-ray energies even in powerful sources. However, from the

observational point of view, the SSC component contributes the least

to the X-ray spectrum of the most powerful sources, since among

blazars they show the flattest X-ray spectra and the largest ‘Comp-

ton dominance’, that is, the ratio of the high- versus low-energy

components increases as the bolometric luminosity does (Fossati

et al. 1998). This can be interpreted (Ghisellini et al. 1998) as due

to the increased importance of the external seed radiation field rela-

tive to the locally produced synchrotron one with increasing source

power.

This contrasts with the finding that the radiation energy density

of BLR photons decreases or remains constant in higher-luminosity

objects, according to the relations reported by Kaspi et al. (2000)

and Bentz et al. (2006), respectively. On the other hand, BLR pho-

tons might not be the only contributors to the seed field: the BLR

clouds themselves and/or some intracloud scattering material can

enhance and isotropize beamed synchrotron radiation from the jet,

the external radiation (Ghisellini & Madau 1996) and disc radiation

(Sikora et al. 1994). The presence and the optical depth of such scat-

tering material could depend on the disc luminosity: more massive

outflows or winds from the disc could be favoured at accretion rates

near the Eddington one. The emission lines and thermal optical–

UV component in high-redshift blazars indeed indicate accretion

luminosities close to the Eddington ones even for black hole masses

exceeding 109 M⊙.

If the Lyα hydrogen line provides most of the seed photon field,

the detection of the bulk Compton signature would constitute a pow-

erful diagnostic to estimate the product δŴ. Another independent

estimate of Ŵ or δ, would then allow us to estimate both the jet

speed and the viewing angle. For instance, if the source shows su-

perluminal motion with an apparent speed βa (and assuming Ŵ does
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not change), we have

Ŵδ =
νp

νLyα

, (16)

βa =
β sin θv

1 − β cos θv

→ Ŵδ =
βa

β sin θv

, (17)

where νp is the peak of the bulk Compton spectrum. The above two

equations can be solved for θv and Ŵ:

sin θv =
βa

β

νLyα

νp

, (18)

Ŵ =
νp/νLyα

[

(2νp/νLyα) − 1 − β2
a

]1/2
. (19)

The other key diagnostic which can be inferred from a bulk Comp-

ton feature is the kinetic energy associated to the cold scattering

material, which is independent of the magnetic field intensity and

the filling factor of the scattering plasma.

In the case of GB B1428+4217, the above interpretation of the

SED implies Ekin = NŴmpc2 ∼ 10(3.4) × 1053 erg, for a proton–

electron plasma. If the width of the shell containing this mass is of

the order of the initial jet size (in the observer frame, i.e. R ∼ 6rg

∼ 3.6 × 1015 cm), then the corresponding kinetic luminosity is Lkin

= Ekinc/(6rg) ∼ 8.6(2.8) × 1047 erg s−1, corresponding to about the

luminosity radiated by the accretion disc. Lkin is clearly less if there

are electron–positron pairs; it should be noted that in the case of

a pair-dominated plasma, the jet could be significantly decelerated

because of the drag due to the bulk Compton, but even more so

when dissipation occurs and also the ‘rocket’ effect would come

into play. Note also that Lkin ∝ 1/R. R is here a free, unknown

parameter and indeed a different assumption on R has been made

by Ghisellini et al. (2002). However, despite this uncertainty on Lkin,

the effective Ekin is in fact substantially independent of such choice.

Fitting the overall SED would also allow us to estimate the mag-

netic field intensity and hence the power in Poynting flux. For this

purpose, we will examine the X-ray data and SED of powerful, high-

redshift blazars with indications of a bulk Compton feature (Fabian

et al., in preparation). Interestingly, in agreement with the predic-

tion of this scenario, indications of soft X-ray flattening appear to

be connected with the source X-ray luminosity (Yuan et al. 2006).

Future large-area X-ray instruments might even provide time-

dependent X-ray spectra from which, in principle, it should be pos-

sible to constrain the jet acceleration. Nevertheless, different shells

might contribute to the observed spectrum and, thus, the deconvo-

lution from X-ray variability to plasma acceleration might be much

more complex than that outlined here.

5 C O N C L U S I O N S

The study of the bulk Compton spectrum produced by cold plasma

accelerating in a blazar jet showed the following results.

(1) If dissipation (i.e. acceleration/injection of relativistic lep-

tons) occurs during the (early) shell acceleration phase, the radi-

ation from the disc can provide a relevant source of photons for

the relativistic external Compton process. Broad-line radiation be-

comes competitive and dominant for such process at a shell–disc

distance comparable to the BLR. The dominance between the two

components depends on the spectral index of the relativistic Comp-

ton spectrum.

(2) The bulk Comptonization of the radiation field originating in

the accretion disc produces a component peaking in the far-UV, thus

most difficult to observe, and its contribution to the soft X-ray band

is negligible.

(3) Instead the bulk Compton scattering of broad-line photons

may give an observable feature in the soft X-ray band of the most

powerful quasars, if the dissipation takes place close to, but within,

the BLR radius when the shell has reached high bulk Lorentz factors

(and for small viewing angles).

(4) The transient nature of the bulk Compton feature and the

requirement that other radiation processes (most notably, the SSC

process) do not dominate over it, imply that the bulk Compton com-

ponent is rarely detectable. Its absence cannot thus be considered as

evidence that jets are not matter dominated.

(5) On the other hand, the detection of this feature allows two

key quantities to be estimated: (i) the bulk Lorentz factor, and (ii)

the amount of cold leptons in the shell and in turn the corresponding

kinetic power.

(6) In principle, the time-dependent behaviour of the bulk Comp-

ton component would trace the jet acceleration profile.

(7) The bulk Compton contribution would result in a flattening

of the X-ray spectrum towards softer energies, which could mimic

absorption, and possibly a hump. Indications of such features have

been found in the spectra of some powerful high-redshift blazars.

A re-analysis of their X-ray spectra and SED will be presented in a

forthcoming paper.
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