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1 Introduction

The AdS/CFT correspondence continues to provide novel perspectives on a wide range

of physical problems. Here we just mention two developments, which are of relevance for

the present paper. First, there have been interesting proposals to give a non-perturbative

definition of quantum gravity in three dimensions via the dual CFT [1, 2]. Second, it

has become clear that variants of the AdS/CFT correspondence might provide important

insights into strongly coupled field theories that are of direct physical relevance, as for

instance in condensed matter systems or hydrodynamics. (For reviews see [3–5].)

Concerning the latter development, one important new aspect is that the relevant field

theories are often non-relativistic, thus requiring a generalization of the usual AdS/CFT

prescription. In particular, the background geometry of the gravitational dual has to

deviate from the maximally symmetric Anti-de Sitter geometry, AdSd+1, for the latter

admits an isometry group that is directly related to the d-dimensional Lorentz invariance on

the field theory side. One class of background geometries that are of interest in this respect

are the so-called Lifshitz vacua which give rise to a different scaling of space and time [6];
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see also [7]. (Another class are the Schrödinger space-times which feature in addition

a Galilei symmetry [8, 9].) Unfortunately, these geometries do not appear as solutions

of ordinary supergravity theories. This provides one motivation for considering higher-

derivative theories of gravity, because these do permit Lifshitz vacua. (For applications of

higher-derivative gravity in this context see, e.g., [10–12].) The first step towards AdS/CFT

applications of higher-derivative theories consists of the computation of the boundary stress

tensor [13]. One aim of this paper is to compute the stress tensor for higher-derivative

theories that are quadratic in the curvature.1

Another motivation to compute the stress tensor for higher-derivative gravity is the

special case of the so-called new massive gravity (NMG) [15, 16], see also [17–19]. Specif-

ically, this is a particular curvature-squared theory in three dimensions, which has been

discussed as an interesting candidate for a consistent theory of quantum gravity. The

knowledge of the stress tensor allows one to compute the mass or energy of gravitational

solutions, in particular of black holes. This is of importance because it has been clear since

the attempts of [2] that there are potential conflicts in theories of this type with having

unitary graviton (bulk) modes and positive mass for the so-called BTZ black holes. There

are more black hole solutions in NMG, and so we compute here also their masses by use of

the stress tensor. An independent reason to consider NMG is the recent observation that it

permits Lifshitz vacua and black holes [20]. Thus, here we have the opportunity to address

the question of how to compute mass and other physical parameters in such backgrounds.

Before we proceed, let us briefly recall the general definition of the Brown-York stress

tensor [21, 22]. Suppose one starts from a gravitational action S that leads to a well-

posed variational principle in the following sense: in order to derive the required bulk

equations of motion it is sufficient to set the variation of the fields at the boundary equal

to zero, in particular the variation of the boundary metric, δγij = 0, but not their normal

derivatives. Then one can define the boundary stress tensor as the variation with respect

to the boundary metric,

T ij =
2√−γ

δS

δγij
. (1.1)

This gives rise to conserved charges and, in particular, to a definition of the mass or

energy as a (d − 1)-dimensional integral over T00. Unfortunately, gravitational theories

as usually formulated do not permit a well-posed variational principle, and so in this

case (1.1) is not even meaningful. For the second-order Einstein-Hilbert theory this can be

remedied by adding the Gibbons-Hawking term as a boundary action. However, due to their

higher-derivative nature, for generic theories involving quadratic or higher powers of the

curvature there is no corresponding boundary term that leads to a well-posed variational

principle [23], even though in special cases this might be different (for some exceptions

see [24, 25]). The various aspects of this problem have been discussed extensively in the

literature for the special class of f(R) theories, which involve only the scalar curvature,

see [26] for a recent survey. Here, the problem can be circumvented by introducing an

1For the stress tensor of gravitational theories that are dual to non-relativistic theories by virtue of

appropriate matter couplings see [14].
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auxiliary scalar φ, which allows one to reformulate the action as a second-order ‘dilaton-

like’ gravity with a f(φ)R term. Due to this effective reduction of the number of derivatives,

a generalized Gibbons-Hawking term does exist and is of the form f(φ)K, where K is the

trace of the extrinsic curvature. Because the variation of φ is then also taken to be zero

at the boundary, this leads to a well-posed variational principle. Equivalently, one may

establish a well-defined variational principle by imposing the additional boundary condition

that the on-shell value of φ, i.e., the scalar curvature R, is not varied.

It is fairly obvious that this strategy can be generalized to generic higher-derivative

theories of gravity, upon introducing more auxiliary fields that have a non-trivial tensor

structure, see for instance [27]. However, a systematic treatment of the Brown-York stress

tensor (1.1) computed in this way is so far lacking. (For related approaches see [28–31].)

Here, we are going to reformulate generic curvature-squared theories in such a way that

there is a generalized Gibbons-Hawking term so that (1.1) can be applied. However, strictly

speaking this procedure is not unique, because there are different choices for the auxiliary

fields and it is not clear a priori that these different choices lead to physically equivalent

answers. We propose a specific set of auxiliary fields that is in some sense minimal, and we

verify that it leads to physically sensible answers for NMG by comparing with quantities

that have been computed by other methods.

This paper is organized as follows. In section 2 we first determine the generalized

Gibbons-Hawking term for NMG and then extend these results to arbitrary curvature-

squared theories. In section 3 we compute the boundary stress tensor and determine the

counterterm that leads to finite results for asymptotically AdS3 solutions. In the following

sections we apply this renormalized stress tensor to NMG. We compute in section 4 the

central charges, the mass of BTZ black holes and of new black holes at the ‘chiral point’.

In section 5 we turn to the Lifshitz vacua and an asymptotically Lifshitz black hole so-

lution, and we show that by virtue of the auxiliary fields a novel covariant counterterm

can be constructed. We conclude in section 6. Some technical details about the ADM

decomposition and auxiliary fields in arbitrary dimensions can be found in the appendices.

2 The generalized Gibbons-Hawking term

In this section we are going to formulate general curvature-squared theories in such a way

that they allow a well-posed variational principle. As outlined in the introduction, this

requires an auxiliary field in order to cast the action into a form which is second-order in

derivatives. Before turning to the general theory in arbitrary dimensions, we first illustrate

the method with the special case of massive gravity in three dimensions as this is the case

we will analyze in more detail later.

2.1 Massive gravity in D = 3

The massive D = 3 gravity theory constructed in [15] is defined by the Lagrangian

LNMG =
1

κ2

√−g

[

σR +
1

m2

(

RµνRµν − 3

8
R2

)

− 2λm2

]

, (2.1)
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where σ = ±1 controls the sign of the Einstein-Hilbert term, m is a mass parameter and λ

a cosmological parameter. One remarkable feature of this theory is that, despite its higher

derivatives, it propagates massive graviton modes unitarily about some of its maximally

symmetric vacua for σ = −1. Given our conventions (which are those of [16]), this means

that the sign of the Einstein-Hilbert term is the opposite of the sign in higher dimensions.

In the following we will also refer to the choices σ = +1 and σ = −1 as the ‘right-sign’

and ‘wrong-sign’ Einstein-Hilbert term, respectively. One question we will address below

is whether the requirement that black hole solutions have positive mass leads to the same

sign of the Einstein-Hilbert term as the requirement that the graviton modes be unitary

(i.e. have positive energy).

In the fourth-order form there is no well-posed variational principle for which only

the variations δgµν of the metric but not their (normal) derivatives are set to zero at the

boundary. To remedy this we cast the action into second-order form by introducing an

auxiliary field fµν ,

L =
1

κ2

√−g

[

σR + fµνGµν − 1

4
m2
(

fµνfµν − f2
)

− 2λm2

]

, (2.2)

where f = gµνfµν and

Gµν = Rµν − 1

2
R gµν (2.3)

is the Einstein tensor. As far as the bulk dynamics is concerned, this action is equivalent

to (2.1), for the algebraic field equations of fµν ,

fµν =
2

m2

(

Rµν − 1

4
R gµν

)

, (2.4)

allow one to eliminate this auxiliary field, which gives back (2.1). This choice of auxiliary

field proved also to be useful in order to analyze the physical content of NMG [15, 16].

Let us now inspect the equations of motion and the variational principle. The ‘Einstein

equations’ obtained by varying the metric read

σGµν + λm2gµν − 1

2
m2
[

fµ
ρfνρ − ffµν − 1

4
gµν

(

fρσfρσ − f2
)

]

+ 2f(µ
ρGν)ρ +

1

2
Rfµν − 1

2
fRµν − 1

2
gµν fρσGρσ

+
1

2

[

D2fµν − 2DρD(µfν)ρ + DµDνf + (DρDσfρσ − D2f)gµν

]

= 0 .

(2.5)

Inserting (2.4) into this equation one obtains the 4th order Einstein equations as given

in [15]. It is this equivalent form which we have used for the computations to be discussed

below in which we confirmed solutions of the NMG field equations. We should note that the

explicit expression (2.5) involves an ambiguity, for it depends on the question which index

structure of f we consider as fundamental and which we regard as obtained by raising and

lowering indices with gµν . For definiteness, here we have chosen fµν as fundamental field.

One may check that the fourth-order equations are independent of this choice. However,
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the boundary stress tensor does depend on such a choice, and we will come back to this

point below.

If we vary now the action about a solution of the bulk equations of motion (2.5), the

terms linear in the variations naturally vanish up to boundary terms. To be more precise,

the variation reads

δSNMG =
1

κ2

∫

M3

d3x
√−g Dµvµ , (2.6)

where

vµ = σwµ − 1

2
fwµ + fρσgµνDρ (δgσν) − 1

2
fρσDµ (δgρσ) − 1

2
fµνgρσDν (δgρσ)

+
1

2

[

Dµf νρ − 2Dνfµρ + gµνDρf + gνρDσfσµ − gνρDµf
]

δgνρ , (2.7)

and we introduced

wµ = gµνDρ(δgνρ) − gρσDµ(δgρσ) , (2.8)

which defines the total derivative appearing in the variation of the pure Einstein-Hilbert

term. In order to have a well-defined variational principle, all terms with a bare δgµν may be

set to zero at the boundary, so these terms in (2.7) can be ignored for the moment (though

they will contribute later to the boundary stress tensor). To get rid of the remaining terms,

we have to add local boundary terms, to which we turn now.

In order to define the boundary terms generalizing the Gibbons-Hawking term, we

choose coordinates xµ = (xi, r), corresponding to a slicing of the bulk M3 by two-

dimensional Lorentzian submanifolds Mr for each value of the radial coordinate r, each

slice being parameterized by the coordinates xi. One should think of Mr in the limit

r → ∞ as the two-dimensional boundary, which is the space on which the dual CFT will

be defined. Correspondingly, we make an ADM-like split of the metric,

ds2 = N2dr2 + γij

(

dxi + N idr
) (

dxj + N jdr
)

, (2.9)

where γij defines the boundary metric, while N and Ni denote lapse and shift function,

respectively. (For more details on the ADM decomposition we refer to appendix A.) Using

Stokes’ theorem and
√−g =

√−γN , (2.6) can also be written as

δSNMG =
1

κ2

∫

∂M3

d2x
√−γ nµvµ , nµ = (0, 0, N) , (2.10)

where nµ is the normal vector on the hypersurfaces Mr. The three-dimensional geometry

is fully encoded in the intrinsic boundary geometry determined by the boundary metric

together with the extrinsic curvature tensor defined in terms of the normal vectors,

Kµν = −1

2
(Dµnν + Dνnµ) . (2.11)

The relevant ‘boundary part’ then reads

Kij = Γr
ijN = − 1

2N
(∂rγij −∇iNj −∇jNi) , (2.12)
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while the other components, Krr and Kir, can be expressed in terms of Kij , i.e., the latter

tensor encodes the full information about the extrinsic geometry. Here and in the following

∇i denotes the covariant derivative with respect to the Levi-Civita connection determined

by the boundary metric γij . So far we have not fixed any gauge, since the lapse and

shift functions in (2.9) are completely arbitrary. For the computation it turns out to be

convenient to perform a gauge-fixing according to

Ni = 0 , N = 1 , (2.13)

corresponding to Gaussian normal coordinates, for which Kij = −1
2∂rγij. In order to

reconstruct the completely general result at the end of the computation, i.e., to undo the

gauge-fixing, we simply have to replace ∂rγij by −2Kij according to (2.12), as we review

in the appendix.

Next we have to express the radial component vr of (2.7), which is the relevant one for

the boundary part of the variation, in terms of Kij and the intrinsic boundary geometry.

For this we have to choose a 2 + 1 split also for the auxiliary fµν ,

fµν =

(

f ij hi

hj s

)

. (2.14)

Here we have to keep in mind that even after the gauge-fixing (2.13) the components

s and hi are generally non-zero. A straightforward computation then shows that the

variation (2.6) can be written as

δSNMG =
1

κ2

∫

∂M3

d2x
√−γ vr (2.15)

=
1

κ2

∫

∂M3

d2x
√−γ

[

2σγijδKij + f ijδKij − fγijδKij

]

,

where here and in the following we denote by slight abuse of notation f = γijfij, in contrast

to the covariant trace above. We ignored all terms with a bare δγij . Moreover, we have

omitted a term proportional to hkγij∇k(δγij), since it contains only a boundary derivative

of δγij , and so upon partial integration (using that the boundary of the boundary is empty)

it may be brought to a form with a bare δγij . From (2.15) it is now straightforward to

read off the generalized Gibbons-Hawking term,

SGGH =
1

κ2

∫

∂M3

d2x
√−γ

(

−2σK − f̂ ijKij + f̂K
)

, (2.16)

where K = γijKij is the trace of the extrinsic curvature. Moreover, here we use the

following combinations of the components of fµν ,

f̂ ij = f ij + 2h(iN j) + sN iN j ,

ĥi = N(hi + sN i) , (2.17)

ŝ = N2s ,
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which are fixed by the requirement that they transform covariantly and reduce to the fields

defined in (2.14) for the gauge-fixing (2.13) to normal coordinates. (See appendix A for

the derivation.) The term proportional to σ is the well-known Gibbons-Hawking term for

pure gravity, to which the boundary action reduces in the limit fµν ≡ 0 corresponding to

m2 → ∞. Let us point out again that after the addition of (2.16) we have a well-posed

variational principle by virtue of the fact that the variation of fµν (as for any other ‘bare’

field) can be taken to be zero at the boundary, δfµν = 0. This is in contrast to the

original fourth-order formulation without further boundary conditions. In that case the

components of fµν entering (2.16) would be replaced by their on-shell values determined by

the full bulk curvature tensor, whose variation in turn gives rise to additional contributions

involving Kij , thus annihilating the original cancellation of these terms. In other words,

in order to establish a well-posed variational principle in the fourth-order formulation one

would have to impose the boundary condition that precisely those combinations of the bulk

curvature tensor that determine fµν on-shell are kept fixed during the variation. It should

be clear from this discussion that the role of the auxiliary field is to provide a technical

simplification in that it allows for a clear separation between the objects which have to be

varied and those which have to be kept fixed.

2.2 Curvature-squared theories in general dimensions

Let us now see whether the results of the previous subsection generalize to curvature-

squared theories in arbitrary dimensions. The main difference to the three-dimensional

case is that in higher dimensions there can also be a term involving the Riemann tensor.

Thus we consider Lagrangians of the form

L =
√−g

(

a1R
µνρσRµνρσ + a2R

µνRµν + a3R
2
)

. (2.18)

Without the term quadratic in the Riemann tensor a formulation second-order in deriva-

tives could be achieved in complete analogy to (2.2), upon introducing an auxiliary sym-

metric 2-tensor, for which the free coefficients are encoded in the coefficients of the terms

quadratic in the auxiliary fields. However, the presence of the full Riemann tensor requires

a new 4-index auxiliary field. As we pointed out before, there is an ambiguity of which set

of auxiliary fields to choose. For instance, one could simply add an auxiliary field φµνρσ ,

carrying the symmetries of the Riemann tensor, to the symmetric 2-tensor. However, this

choice is non-minimal in that the 4-index field by itself is sufficient to cast the action into

a form which is second-order in derivatives. In fact, the Lagrangian

L =
√−g

(

φµνρσRµνρσ + b1φ
µνρσφµνρσ + b2φ

µνφµν + b3φ
2
)

, (2.19)

with φµν and φ denoting the single and double trace, leads to generic curvature-squared

actions of the form (2.18) upon integrating out φµνρσ , with the three free coefficients

determined by the coefficients b1, b2 and b3 (see appendix B for more details). In three

dimensions φµνρσ carries the same number of components as fµν — for the same reasons

that the Riemann tensor is equivalent to the Ricci tensor —, and so in this case (2.19) is

equivalent to our previous ansatz whose validity we confirm below.
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Next we investigate the variational principle of (2.19). The on-shell variation contains

a boundary term originating from

δS
∣

∣

∣

on−shell
=

∫

dd+1x
√−g φµν

ρ
σδRµν

ρ
σ =

∫

dd+1x
√−g Dµvµ , (2.20)

with

vµ = −2φµνρσDρ(δgνσ) + 2Dρφ
µνρσδgνσ . (2.21)

Here we ignored terms that are zero on-shell, while the second term with a bare δgµν is

irrelevant for the variational principle. Next we rewrite this expression in a ADM decom-

position adapted to the boundary, using a gauge-fixing to normal coordinates. We obtain

for the radial component

vr = 4φijδKij , (2.22)

where φij = φirjr. Thus the Gibbons-Hawking term takes the following form,

SGGH = −4

∫

∂Md+1

ddx
√−γ φ̂ijKij , (2.23)

with the covariant version of the auxiliary field given by φ̂ij = N2φirjr, see appendix

A. Remarkably, this form is completely universal in that it is independent of the details

of the theory, i.e., on the precise coefficients of the curvature-squared terms and the

space-time dimension.

As a consistency check we next verify that upon specializing (2.23) to D = 3, we obtain

the result of the previous subsection. In D = 3 the Einstein tensor is related to the full

Riemann tensor via

Rµνρσ = εµνλερστGλτ . (2.24)

Therefore, the relevant term in the D = 3 first-order action, fµνGµν , reduces to the one

in (2.19) by virtue of the identification fµν = εµρσενλτφρσλτ . The boundary part is then

given by

f̂ ij = 4
(

φ̂ij − γij φ̂
)

, (2.25)

where φ̂ denotes the trace with respect to γij. Inserting (2.25) into (2.16) we obtain

precisely (2.23). Thus the two forms of the generalized Gibbons-Hawking term in D = 3

are equivalent.

3 The boundary stress tensor and its counterterms

So far we have shown that generic curvature-squared theories in arbitrary dimensions admit

a reformulation that allows for a generalized Gibbons-Hawking term which leads to a well-

posed variational principle. The boundary stress tensor is then well-defined and determined

according to (1.1). Here we are first giving this boundary stress tensor for NMG and then

– 8 –
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for the generic theory in higher dimensions. Finally, we extend the result for NMG by a

counterterm, which is required in order to obtain finite results.2

Taking the full boundary variation resulting from (2.7) and the generalized Gibbons-

Hawking term (2.16) into account, we find

8πGT ij = σ
(

Kij − Kγij
)

− 1

2
f̂Kij −∇(iĥj) +

1

2
Dr f̂

ij − K(i
kf̂

j)k +
1

2
ŝKij

+γij

(

∇kĥ
k − 1

2
ŝK +

1

2
f̂K − 1

2
Dr f̂

)

, (3.1)

where we introduced Newton’s constant via κ2 = 16πG. Here we have used again that

the computation is most easily done in normal coordinates for which (2.13) holds. After

this, the result can be ‘covariantized’ by introducing the full extrinsic curvature Kij and

replacing the components of fµν by the hatted quantities (2.17) and introducing the

‘covariant r-derivative’ Dr. (For more details we refer to appendix A.) As before, we

observe that the terms proportional to σ correspond to those of the standard boundary

stress energy tensor for pure gravity [21], and the full T ij reduces to this one in the limit

m2 → ∞, for which fµν = 0.

We have to comment on the following subtlety of the computation. There is an ambi-

guity related to the definition of the auxiliary field f , namely whether we regard the fun-

damental field as a tensor with lower, upper or mixed indices. While the bulk equations of

motion are independent of this choice, as it should be, the boundary stress tensor (3.1) does

depend on it, for it is this choice that determines how the generalized Gibbons-Hawking

term depends on the boundary metric γij. For instance, if we regard the fundamental field

as an object with lower indices, the relevant part of the Gibbons-Hawking term reads

∫

d2x
√−γ f ijKij ≡

∫

d2x
√−γ γikγjlfijKkl , (3.2)

and so the variational derivative δS/δγij will contain a term proportional to fi
kKjk. On

the other hand, if we regard f ij with upper indices as fundamental, the term in (3.2)

does not require a metric to raise indices and therefore the variational derivative does not

lead to the same term. Thus, even though both forms of the Gibbons-Hawking term are

invariant under boundary-preserving diffeomorphisms, they lead to different contributions

to the stress tensor. There is no way to fix this ambiguity a priori, but one may use

the following heuristic reasoning. In order to compute the one-point function 〈Tij〉 of

the energy-momentum tensor in the AdS/CFT correspondence, one has to inspect its

coupling to a source (namely the graviton modes) according to hijTij . Now, these modes

are exponentially growing or decaying as functions of the radial coordinate unless its index

structure is hi
j , in which case it is finite [34]. This suggests that also the fundamental

form of the auxiliary field is fµ
ν .3 It is this choice that has been used in the computation

of (3.1), and below we will show that it leads to the correct value of the central charges,

that have been determined before by other methods.

2For alternative methods to compute conserved charges in NMG we refer to [32, 33].
3We are grateful to Daniel Grumiller for suggesting this argument to us.
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For completeness we record here also the stress tensor in generic dimensions, which

is derived from the action (2.19) together with the Gibbons-Hawking term (2.23) by use

of (1.1). It reads

T ij = 4
(

2∇kφ̂
ikj + Drφ̂

ij + Kklφ̂
ikjl − Kφ̂ij − γij φ̂klKkl

)

, (3.3)

where we have not included the contribution of the Einstein-Hilbert term or other possible

couplings. (We refer to appendix A for the hatted quantities.) Let us stress that, as it

stands, (3.3) is most likely incomplete because generically one still needs to add a coun-

terterm in order to obtain finite results. Here we are not going to further investigate the

stress tensor in arbitrary dimensions, but focus instead on (3.1) for NMG.

Next we evaluate the boundary stress tensor of NMG for the maximally symmetric

AdS background in order to determine the counterterm that renders the result for physical

parameters finite. In general, following Brown and York [21], the knowledge of the stress

tensor allows one to construct the conserved charges associated to the Killing vectors ξi of

the boundary geometry according to [13]

Qξ =

∫

Σ
dx

√
ρ ui Tij ξj . (3.4)

The functions appearing here refer to an ADM-like split, but now of the two-dimensional

boundary metric,

γijdxidxj = −N2
Σdt2 + ρ (dx + N∗

Σdt)2 , (3.5)

where Σ denotes a space-like ‘surface’ with one-dimensional metric ρ and time-like normal

vector ui. The charges (3.4) allow us to define mass and momentum as boundary integrals,

M =

∫

Σ
dx

√
ρNΣ Tij ui uj , Px =

∫

Σ
dx

√
ρ ρ ui T xi . (3.6)

Let us now give these formulas explicitly for AdS3, which we parameterize with stan-

dard coordinates,

ds2 =
ℓ2

r2
dr2 +

r2

ℓ2

(

−dt2 + dx2
)

, (3.7)

which implies that the shift functions are zero and the lapse is N(r) = ℓ/r. The auxiliary

field is determined by its field equation in terms of the AdS metric, which implies in

particular

f̂ ij = − 1

m2ℓ2
γij , ĥi = 0 , ŝ = − 1

m2ℓ2
. (3.8)

In the coordinates (3.7), the mass or energy of an asymptotically AdS solution and its

angular momentum, respectively, are given by

M =

∫

dxT00 , J = −
∫

dxT10 . (3.9)
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We next have to evaluate T00 by inserting (3.7) and (3.8) into (3.1). One finds

8πGT00 = −r2

ℓ3

(

σ +
1

2m2ℓ2

)

, (3.10)

which diverges once we go to the boundary by sending r → ∞. This can be remedied by

adding a local pure boundary term as a counterterm to the action. The leading term in a

derivative expansion involving only the boundary metric is a ‘cosmological constant’ term,

and it turns out that this is sufficient also for the present theory. Specifically, the new

action

Stotal = SNMG + SGGH − 1

8πGℓ

(

σ +
1

2m2ℓ2

)
∫

d2x
√−γ (3.11)

gives rise to a renormalized stress tensor

T ren
ij = Tij −

1

8πGℓ

(

σ +
1

2m2ℓ2

)

γij . (3.12)

By construction, the extra contribution cancels the divergent term in (3.10), leaving van-

ishing mass, M = 0, for the AdS groundstate, as required.

4 Dual CFT and black hole parameters

After having determined the boundary stress tensor and the local counterterm rendering

physical parameters finite, we are now in a position to compute various interesting quanti-

ties. We begin with the central charges of the hypothetical CFT at the boundary, applying

the method of [13], and then turn to the computation of mass and angular momentum for

various black hole solutions.

4.1 Central charges

The starting point for this computation is the fact that the central charges encode the

anomalous transformation behaviour of the energy-momentum tensor under conformal

transformations, i.e., the Weyl anomaly [35–38]. Specifically, if we choose light-cone coor-

dinates x±, the conformal transformations take the standard form

δx+ = −ξ+(x+) , δx− = −ξ−(x−) , (4.1)

under which the stress tensor transforms as

δT++ = LξT++ − c

24π
∂3

+ξ+ , δT−− = LξT−− − c

24π
∂3
−ξ− . (4.2)

Here, Lξ denotes the Lie derivative, i.e., these terms represent the covariant part of the

transformation. Now, the stress tensor (3.1) computed from the gravitational action does

transform covariantly under the boundary-preserving diffeomorphisms discussed in the ap-

pendix.4 However, non-trivial central charges and thus anomalous transformation rules

4In fact, the precise form of (3.1) has been fixed by requiring a covariant transformation behaviour.
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emerge in this picture due to the fact that the asymptotic symmetry group of AdS3 is larger

than these restricted diffeomorphisms. The boundary conditions defining the asymptotic

form of AdS3 have been given by Brown and Henneaux [35] (though at the so-called chi-

ral point these can be relaxed to logarithmic boundary conditions [40, 41], leading to the

notion of ‘log gravity’). Starting from the AdS3 metric with the boundary part written in

light-cone coordinates,

ds2 =
ℓ2

r2
dr2 − r2dx+dx− , (4.3)

the asymptotic form of the metric is given by

g+− = −r2

2
+ O(1) , g++ = O(1) , g−− = O(1) , (4.4)

grr =
ℓ2

r2
+ O

(

1

r4

)

, g+r = O

(

1

r3

)

, g−r = O

(

1

r3

)

.

The diffeomorphisms that leave this asymptotic form invariant are parametrized by the

following vector fields

X+ = ξ+(x+) +
ℓ2

2r2
∂2
−ξ−(x−) ,

X− = ξ−(x−) +
ℓ2

2r2
∂2

+ξ+(x+) , (4.5)

Xr = −r

2

(

∂+ξ+ + ∂−ξ−
)

,

as one may verify with (A.2). We observe that the r-component also depends on the bound-

ary coordinates xi, and so these diffeomorphisms do not belong to the class of boundary-

preserving diffeomorphisms under which the stress tensor transforms covariantly.

Under (4.5) the AdS3 metric transforms as

δg++ = −ℓ2

2
∂3

+ξ+ , δg−− = −ℓ2

2
∂3
−ξ− , (4.6)

with all other components staying invariant. The extrinsic curvature Kij of AdS3 and its

trace stay invariant. The diagonal components of the auxiliary field f ij also transform

non-trivially,

δf++ = − 2

m2r4
∂3
−ξ− , δf−− = − 2

m2r4
∂3

+ξ+ . (4.7)

With these ingredients the transformation of, say, T++ can be computed from (3.12),

8πGδT++ = − ℓ

2
∂3

+ξ+

(

σ +
1

2m2ℓ2

)

, (4.8)

which implies for the central charge by use of (4.2)

c =
3ℓ

2G

(

σ +
1

2m2ℓ2

)

. (4.9)
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This coincides with the value computed in [16, 39] by other methods (based on [42, 43]),

thus confirming the validity of the boundary stress tensor.

It is amusing to note that the counterterm in (3.12) is proportional to the central

charge. Thus, at the special point where the central charge vanishes (the so-called chiral

point), the divergence of the stress tensor disappears without counterterm, leading directly

to a finite result. This is in contrast to the divergences encountered in topologically massive

gravity, where a counterterm is required even at the chiral point [44, 45].

4.2 BTZ black holes

The BTZ black hole is a solution of pure AdS gravity that is locally equivalent to AdS3 [46].

Despite being locally ‘trivial’, it has an event horizon and, in general, a non-vanishing

entropy and mass, the latter of which will be computed in the following. The metric is

given by

ds2 = N2dr2 − N−2dt2 + r2 (dφ + Nφdt)2 , (4.10)

where

N(r) =

(

−8GM +
r2

ℓ2
+

16G2J2

r2

)− 1

2

, Nφ = −4GJ

r2
, (4.11)

with |J | ≤ Mℓ. In general there are two event horizons located at

r2
± = 4GMℓ2

(

1 ±
[

1 −
(

J
Mℓ

)2
]

1

2

)

, (4.12)

and we observe that absence of naked singularities requires M > 0.

To compute mass and angular momentum we insert this metric into the regularized

stress tensor (3.12). We obtain from (3.9)

MBTZ = M

(

σ +
1

2m2ℓ2

)

, JBTZ = J

(

σ +
1

2m2ℓ2

)

, (4.13)

where we used for the spatial boundary coordinate
∫

Σ dx → ℓ
∫ 2π

0 dφ. This result agrees

with [32]. We observe that the values are proportional to the central charges (4.9). In

particular we conclude that for physical solutions with M > 0 the mass of the BTZ black

hole is positive whenever the central charge is positive. One of the main results of [16] was

that the bulk gravitons propagate unitarily and non-tachyonic whenever the central charge

is negative. So we encounter here the same conflict as in topologically massive gravity

with negative cosmological constant [2]: either one chooses the parameters such that the

graviton modes have positive energy (i.e. are not ghosts), then the BTZ black holes have

negative mass, or one chooses the parameters such that the BTZ black holes have positive

mass, but then the gravitons are ghosts. Both choices indicate an instability of the AdS

vacua. In the case of NMG, however, there is one exception, namely the chiral point

corresponding to cL = cR = 0. At this point the bulk modes are massive spin-1 excitations

that propagate unitarily and non-tachyonic for the ‘wrong-sign’ Einstein-Hilbert term, and
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the mass of the BTZ black holes is zero for both sign choices, as follows from (4.13). At the

same time, there are new black holes solutions, which are not locally equivalent to AdS3,

and we turn now to the important question whether their mass is positive for the same

choice of parameters.

4.3 New black holes at the chiral point

New black hole solutions that are not locally AdS3 have been given by Clement in [47].

The general metric considered in [47] is given by

ds2 = −
(

2ρ

ℓ2
− F (ρ)

)

dt2 +
ℓ2

4ρ2
dρ2 +

(

2ρ + ℓ2F (ρ)
)

dϕ2 − 2ℓF (ρ)dtdϕ . (4.14)

This reduces for F (ρ) = 0 to AdS3, which is related to the metric in the form (3.7) via the

coordinate transformation r2 = 2ρ. Specifically, at the chiral point a new asymptotically

AdS solution (in the sense of log gravity) has been found which is defined by

F (ρ) = d ln

∣

∣

∣

∣

ρ

ρ0

∣

∣

∣

∣

. (4.15)

Inserting this into the stress tensor and then into (3.9) we obtain for mass and angular

momentum

M =
2dσ

G
, J =

2dℓσ

G
, (4.16)

which coincides with the results found in [47] by other methods. In [47] it has been shown

that this metric is devoid of naked singularities if d < 0. From (4.16) we infer that the

physical mass for this choice is positive only provided σ = −1. Thus we conclude that at the

chiral point all requirements on both physically acceptable black hole solutions and unitarily

propagating bulk modes consistently lead to the ‘wrong-sign’ Einstein-Hilbert term.

5 Lifshitz backgrounds and black holes

In this section we are going to discuss to what extent a finite stress tensor can be defined

for Lifshitz backgrounds. We first review the appearance of Lifshitz solutions in NMG,

slightly extending the discussion of [20]. We then turn to the black hole solution that is

asymptotically Lifshitz given in [20] and discuss the computation of its mass.

5.1 Lifshitz vacua and their stress tensor

We start with a discussion of the appearance of Lifshitz solutions in NMG. The latter are

characterized by a different scaling of space and time and have attracted much interest

recently due to their possible application as gravity duals to non-relativistic systems as,

e.g., in condensed matter physics. Their metric is given by [6]

ds2 =
ℓ2

r2
dr2 − r2z

ℓ2z
dt2 +

r2

ℓ2
dx2 , (5.1)
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where z is the so-called dynamical exponent. Here, x generically denotes the spatial direc-

tions of the ‘boundary part’, which will be one-dimensional in the case we are interested

in. The boundary part is invariant under the anisotropic scaling

t → αzt , x → αx , (5.2)

provided r → α−1r. This reduces to the standard scale invariance of relativistic CFTs for

z = 1, for which the Lifshitz metric (5.1) coincides with the AdS metric (3.7).

Inserting the Lifshitz ansatz into the NMG field equations shows that they are solved

provided the cosmological parameter in the action is given by

λ = − z2 + z + 1

z2 − 3z + 1
. (5.3)

Moreover, the Lifshitz length scale ℓ is determined by the field equations according to

ℓ2 =
1

2m2σ

(

z2 − 3z + 1
)

. (5.4)

Let us now inspect the space of Lifshitz solutions in more detail. The relation (5.3)

provides a quadratic equation for z and, accordingly, for a given model with fixed λ there

are generically two Lifshitz vacua. Their dynamical exponents are

z± = −1 − 3λ ±
√

5λ2 − 14λ − 3

2(1 + λ)
. (5.5)

For maximally symmetric vacua the points λ = −1 and λ = 3 are special. The former

is special in that the two (A)dS vacua coincide, the latter because it corresponds to the

‘chiral point’ at which the central charges of the dual CFT vanish [16]. These points are

also special in the case of Lifshitz solutions. First, for λ = −1 there is a unique solution

with z = 0. More precisely, the z− solution is regular at λ = −1, despite appearance,

where it is a zero, while z+ has a singularity. Second, we infer from (5.5) that the solutions

are real except in the interval λ ∈ (−1
5 , 3). Thus, there is a ‘gap’ in the space of Lifshitz

solutions after λ = −1
5 (corresponding to another special point P1), which restart again

at λ = 3, i.e., at the second special point P2. Precisely at λ = 3 we have z = 1, i.e., the

Lifshitz metric reduces to the AdS metric. See the figure.

We turn now to the question whether a renormalized stress tensor can be defined.

Evaluating the Brown-York tensor for the Lifshitz solution (5.1), we find for the time

component

8πGT00 = − r2z

ℓ2z+1

(

σ − z2 − 3z + 1

2m2ℓ2

)

. (5.6)

As before, here we have inserted the on-shell values for the auxiliary fields in the Lifshitz

background, which implies in particular

ŝ = −z2 − z + 1

m2ℓ2
, f̂ = − 2z

m2ℓ2
. (5.7)
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Figure 1. Lifshitz vacua corresponding to z+(λ), indicated by a solid line, and z
−
(λ), indicated

by a dashed line, see (5.5). P1 and P2 are the special points mentioned in the text.

Remarkably, using the relation (5.4) that is satisfied for the Lifshitz solutions in NMG, we

find T00 = 0. Thus, while generally the mass computed from (3.6),

M =

∫

Σ
dx

ℓz−1

rz−1
T00 = − 1

8πGℓz+2

(

σ − z2 − 3z + 1

2m2ℓ2

)
∫

dx rz+1 −→ ∞ , (5.8)

diverges once we approach the boundary at r → ∞, which could again be renormalized

by adding a counterterm
∫

d2x
√−γ, for the particular class of Lifshitz solutions they are

already finite. One can check that this holds also for T01 = T10 and T11. In this sense they

resemble the AdS case at the chiral point. However, this does not exclude the possibility

that a counterterm is required in order to obtain finite results for other solutions. Evidently,

such a counterterm would have to vanish when specialized to the Lifshitz vacua. We will

see next that precisely this happens for the Lifshitz black hole.

5.2 Asymptotically Lifshitz black holes

We turn now to the particular point where a black hole has been found that is asymptoti-

cally Lifshitz [20]. This solution might prove to be important for finite temperature effects

in potential applications as the gravity dual of condensed matter systems. The metric

ansatz reads

ds2 =
ℓ2

r2
H(r)dr2 − r2z

ℓ2z
F (r)dt2 +

r2

ℓ2
dx2 . (5.9)

The functions are given by

F (r) = H−1(r) = 1 − r2
H

r2
, (5.10)
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where rH denotes a free integration constant. Analogous to the Schwarzschild solution

in D = 4, this metric has a curvature singularity at r = 0 and a single event horizon at

r = rH . Inserting (5.9) into the NMG equations and using (5.3) and (5.4) shows that the

only Lifshitz solutions have z = 3. We then infer that

λ = −13 , 2m2ℓ2 = σ . (5.11)

From the second equation of (5.11) we conclude that m2 has to be chosen to be negative

for σ = −1, which case is contained in our general analysis so far.

Next, we discuss the computation of the mass. Inserting the black hole solution (5.9)

into the stress tensor we obtain

T00 =
r2
H

2πGℓ7σ
r4 + O(r2) , (5.12)

which gives rise to a divergence as r → ∞ upon insertion into the mass formula given

in (5.8). This cannot be renormalized by adding only a cosmological constant term, because

this would upset the finiteness for pure Lifshitz vacua found above. However, in the Lifshitz

case we have more possibilities for adding a local counterterm. For instance, we can add

terms involving any powers of f̂ and ŝ because these are scalars under boundary-preserving

diffeomorphisms. However, given the fact that on-shell these are related to the (bulk)

curvature tensor and that we are dealing with theories quadratic in the curvature, let us

illustrate the procedure with counterterms quadratic in f̂ or ŝ. Their on-shell values for

this black hole solution are given by

ŝ = − 7

m2ℓ2
, f̂ = − 2

m2ℓ2

(

3 − 2r2
H

r2

)

, (5.13)

and therefore only f̂ is sufficient in order to cancel the divergence. Thus, we make the

following ansatz for the action including boundary counterterms

Sren = SNMG + SGGH +
1

16πG

∫

d2x
√−γ (α1 + α2f̂ + α3f̂

2) , (5.14)

which gives rise to the renormalized stress tensor

T ren
ij = Tij +

1

16πG
(α1 + α2f̂ + α3f̂

2)γij . (5.15)

Here we have three free coefficients, but only two conditions to fix them. First, the coun-

terterm has to vanish when evaluated for pure Lifshitz solutions in order to be consistent

with their finiteness without counterterm. Second, the counterterm has to cancel the di-

vergence in (5.12). Thus, in presence of only a single Lifshitz black hole solution, the

counterterm is not uniquely determined. We conclude that at present our understanding

of the Lifshitz case is insufficient in order to determine the correct boundary stress tensor

unambiguously. One might, however, speculate that a third condition can be obtained

by assuming the standard thermodynamic relation dM = TdS. If one assumes that the

entropy can be computed via Wald’s formula, whose validity in the Lifshitz case is in fact
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is not clear to us, one can apply the result of [48]. (For another approach towards the

thermodynamics of Lifshitz black holes we refer to [49].) Given the (positive) Hawking

temperature as determined in [20], this implies for the mass

M = − σ

4G

(rH

ℓ

)4
. (5.16)

The requirement that this value follows from the stress tensor (5.15) finally fixes all coef-

ficients,

α1 =
15σ

2ℓ
, α2 =

1

4ℓ
, α3 = − σ

32ℓ
. (5.17)

Unfortunately, given the ambiguity of the counterterm, this computation does not provide

an independent check for the mass. Rather this has to await the knowledge of more

Lifshitz black hole solutions or a convincing physical principle that might fix the form of

the counterterm.

6 Conclusions and discussion

In this paper we investigated the definition of the Brown-York stress tensor for curvature-

squared theories in generic dimensions, with a special emphasis on new massive gravity.

This requires a formulation of the gravitational theory that admits a well-posed variational

principle. While for generic curvature-squared theories in the usual formulation there is

no Gibbons-Hawking like term that is sufficient, we provided here an on-shell equivalent

reformulation involving an auxiliary tensor field carrying the symmetries of the Riemann

tensor that does allow for a Gibbons-Hawking term. It is remarkable that the latter takes

the simple form (2.23), which is completely universal in that it does not depend on the

details of the theory. This result might be useful for other applications as well.

Given this reformulation, the boundary stress tensor is well-defined according to (1.1).

We provided evidence that this prescription involving the auxiliary field is reasonable by

computing physical quantities for new massive gravity. In particular, we confirmed the

values of the central charges and the mass of the BTZ black holes. In addition, we computed

the mass of black holes that are asymptotically AdS (but, in contrast to BTZ black holes,

not isometric to AdS3), and we discussed the asymptotically Lifshitz case. For the latter

we proposed a novel covariant counterterm, which leads to a finite result for the black

hole solution. It remains, however, to be seen whether this is the right prescription and

whether the analogous procedure works also in higher dimensions. In particular, it would

be desirable to have a reasoning from first principles that determines the counterterm

uniquely. In this context we mention that several new Lifshitz black hole solutions of

higher-derivative gravity have been found in D ≥ 4 while this paper was in the stages of

completion [50], and it would be interesting to attempt the computation of mass and other

physical quantities for these solutions by the method outlined here.

For the asymptotically AdS black hole we found that its mass is physical if and only

if one chooses the ‘wrong-sign’ Einstein-Hilbert term. For the special case of ‘chiral new

massive gravity’ this implies that all physical requirements, namely that both the gravitons
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and black holes have positive mass/energy, lead to a consistent choice for the sign of the

Einstein-Hilbert term. (This is in contrast to topologically massive gravity at the chiral

point which still exhibits a conflict between gravitons and BTZ black holes.) Thus we

provided further evidence that chiral new massive gravity might be ‘well-behaved’ precisely

for the ‘wrong-sign’ Einstein-Hilbert term, see also [51]. On the other hand, for the Lifshitz

case there is so far no independent check for the sign of the Einstein-Hilbert term, for the

behavior of graviton modes about the Lifshitz vacua has not been investigated. We leave

this for future research.

The computation of the stress tensor provides just the first step of the AdS/CFT

program. Further results for chiral new massive gravity have already appeared in [51],

where it has been shown at the level of 2-point functions that the dual CFT is a logarithmic

CFT. This research can be extended into various directions. For instance, it would be

interesting to examine curvature-squared theories, in three and higher dimensions, in regard

to the question whether the field theories dual to any of these models is of relevance, say,

in condensed matter physics.

Acknowledgments

We acknowledge helpful discussions with Allan Adams, Eric Bergshoeff, Gaston Giri-

bet, Daniel Grumiller, Roman Jackiw, Hong Liu, John McGreevy, Pietro Menotti, Paul

Townsend and Mattias Wohlfarth.

This work is in part supported by funds provided by the U.S. Department of Energy

(DoE) under the cooperative research agreement DE-FG02-05ER41360. The work of OH is

supported by the DFG — The German Science Foundation. The work of ET is supported

by INFN through a Bruno Rossi fellowship.

A ADM variables and boundary diffeomorphisms

In this appendix we present further details on the ADM decomposition used for the com-

putation of the boundary variation and the corresponding counterterms. In terms of ADM

variables involving lapse and shift functions N and Ni, the bulk metric is parameterized as

gµν =

(

γij Ni

Nj N2 + N iNi

)

, (A.1)

where γij denotes the boundary metric. A similar decomposition is used for the auxiliary

field fµν , see eq. (2.14).

We now inspect the presence of gauge symmetries in this decomposition. Any generally

covariant theory is invariant under diffeomorphisms whose infinitesimal action on the fields

is given by the Lie derivative with respect to a vectorial parameter Xµ, i.e.,

δXgµν = LXgµν ≡ Xρ∂ρgµν + ∂µXρgρν + ∂νX
ρgµρ , (A.2)

δXfµν = LXfµν ≡ Xρ∂ρf
µν − fµρ∂ρX

ν − fρν∂ρX
µ .
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In the ADM decomposition, the vectorial diffeomorphism parameter can be decomposed

accordingly,

Xµ =
(

ξi, λ
)

, (A.3)

where a priori ξi and λ are arbitrary functions of xµ = (xi, r). However, once the coordi-

nates are adapted to the boundary in the sense that the normal vector on the boundary

in this coordinates is given by nµ = (0, 0, N) (compare eq. (2.10)), the diffeomorphism

symmetry is reduced. Acting with a general diffeomorphism on nµ implies

δnµ = Xρ∂ρnµ + ∂µXρnρ ⇒ δni = ∂iλN . (A.4)

Thus, in order to maintain ni = 0, the diffeomorphism parameter along the radial direction

is restricted to be independent of the xi, i.e., λ = λ(r). We refer to these as ‘boundary-

preserving diffeomorphisms’.

Next, let us evaluate the boundary-preserving diffeomorphism symmetry for the ADM

variables. Applying (A.2) to (A.1) and setting ∂iλ = 0, we obtain

δγij = Lξγij + λ∂rγij ,

δNi = LξNi + λ∂rNi + ∂rλNi + ∂rξ
j γij , (A.5)

δN = LξN + λ∂rN + ∂rλN .

In particular, one may verify that the transformation rule for N under these diffeomor-

phisms is consistent with its transformation as the r-component of nµ according to (A.4).

With these transformation rules at hand we are now able to derive the rules of gauge-fixing

and undoing the gauge-fixing as used in the main text. After choosing Gaussian normal

coordinates with N = 1 and Ni = 0, the residual diffeomorphisms are parametrized by

Xµ = (ξi(xi), λ), where λ is now a constant. Under this residual symmetry ∂rγij trans-

forms covariantly in the sense that it transforms in the same way as γij . This is not the

case in the most general formulation without gauge-fixing, and so in this case ∂rγij has to

be suitably ‘covariantized’. As to be expected, the ‘covariant r-derivative’ is given by the

extrinsic curvature (2.12) in that the latter transforms as

δKij = LξKij + λ∂rKij . (A.6)

Thus, gauge invariance shows that in order to undo the gauge-fixing we have to replace

−1
2∂rγij by the full Kij .

Let us now repeat this analysis for fµν . Under the boundary-preserving diffeomor-

phisms its components transform according to (A.2) as

δf ij = Lξf
ij + λ∂rf

ij − 2h(i∂rξ
j) ,

δhi = Lξh
i + λ∂rh

i − hi∂rλ − s∂rξ
i , (A.7)

δs = Lξs + λ∂rs − 2s∂rλ .

We observe that the transformation rules receive non-covariant terms which vanish only for

the residual diffeomorphisms after gauge-fixing to normal coordinates. In order to remedy
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this, we introduce combinations involving lapse and shift functions in such a way that they

transform covariantly in general. Specifically, the hatted quantities (2.17) transform as

δX f̂ ij = Lξ f̂
ij + λ∂rf̂

ij , etc. , (A.8)

as required. Also, we have to introduce ‘covariant r-derivatives’,

Dr f̂
ij =

1

N

(

∂rf̂
ij − Nk∂kf̂

ij + f̂kj∂kN
i + f̂ ik∂kN

j
)

, (A.9)

Drf̂ =
1

N

(

∂rf̂ − N j∂j f̂
)

, (A.10)

which transform in the same way as f̂ ij and f̂ .

The previous discussion can actually be casted into a more covariant form, which

we briefly review in the following. Instead of splitting the indices into boundary and

normal directions, one can formally maintain the full covariance by introducing projection

operators. For this we use the normal vector nµ, whose contravariant components read

nµ =
(

−N−1N i, N−1
)

. (A.11)

The boundary metric can then be defined ‘covariantly’ as

γµν = gµν − nµnν =

(

γij 0

0 0

)

, (A.12)

where we stress that the last equality holds without gauge-fixing. Upon raising and lowering

indices with gµν one obtains a projector from the tensor with mixed indices,

γµ
ν = δµ

ν − nµnν =

(

δi
j 0

N j 0

)

. (A.13)

We should point out that this covariant language is somewhat formal in that the vector

nµ reflecting the presence of the boundary still transforms only under the subgroup of

boundary-preserving diffeomorphisms as a vector. Nevertheless, the covariant combina-

tions (2.17) of the auxiliary fields can now simply be written as

f̂ ij = fµνγµ
iγν

j , (A.14)

ĥi = fµνγµ
inν , (A.15)

ŝ = fµνnµnν . (A.16)

Analogously, one finds for the auxiliary field corresponding to the full Riemann tensor

φ̂ij = φµνρσγµ
iγρ

jnνnσ = N2φirjr , (A.17)

φ̂ijk = φµνρσnµγν
iγρ

jγσ
k = N

(

φrijk − 2φrir[jNk]
)

, (A.18)

φ̂ijkl = φµνρσγµ
iγν

jγρ
kγσ

l (A.19)

= φijkl − 2N [iφj]rkl − 2φijr[kN l] + 4N [iφj]rr[kN l] ,

where we used the Riemann-tensor symmetries of φµνρσ .
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B Auxiliary fields in arbitrary dimensions

Here we present for completeness some relations for the auxiliary-field formulation in arbi-

trary dimensions. The auxiliary field has the same algebraic symmetries as the Riemann

tensor, corresponding to the (2,2) Young tableau,

φµνρσ = −φνµρσ , φµνρσ = −φµνσρ , φ[µνρ]σ = 0 , (B.1)

which imply also the ‘exchange property’ φµνρσ = φρσµν . Taking this symmetry into

account, the field equations for φ read

Rµνρσ + 2b1φµνρσ + 2b2φ〈µρgνσ〉 + 2b3φ g〈µρgνσ〉 = 0 , (B.2)

where 〈 〉 denotes the projector which imposes the symmetries (B.1). Explicitly, we have,

e.g.,

φ〈µρgνσ〉 =
1

4
(φµρgνσ − φνρgµσ − φµσgνρ + φνσgµρ) . (B.3)

Taking the single and double trace of (B.2), one obtains the relations

φ = − R

2b1 + db2 + d(d + 1)b3
, (B.4)

φµν = − 2

4b1 + (d − 1)b2

(

Rµν − b2 + 2db3

2[2b1 + db2 + d(d + 1)b3]
R gµν

)

, (B.5)

φµνρσ = − 1

2b1

{

Rµνρσ − 4b2

4b1 + (d − 1)b2
R〈µρgνσ〉 (B.6)

+
2[b2

2 − 4b1b3 + (d + 1)b2b3]

[4b1 + (d − 1)b2][2b1 + db2 + d(d + 1)b3]
R g〈µρgνσ〉

}

.

Finally, reinserting these on-shell values into (2.19), one obtains the following relation

between the coefficients of (2.19) and (2.18),

a1 = − 1

4b1
, (B.7)

a2 =
b2

[

4b1 + (d − 1)b2

]

b1
, (B.8)

a3 = − b2
2 − 4b1b3 + (d + 1)b2b3

2b1

[

4b1 + (d − 1)b2

][

2b1 + db2 + d(d + 1)b3

] . (B.9)

We note that the equivalence of (2.18) and (2.19) does not hold for all choices of coefficients,

because a1 = 0 corresponding to the absence of the square of the Riemann tensor is not

contained for D > 3, as one sees from (B.7). In this case it is sufficient to work with an

auxiliary symmetric 2-tensor as in D = 3.
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