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1 Introduction

The holographic principle [1, 2] has been a very powerful idea which relates the unknown
physics of quantum gravity to that of a more familiar non-gravitational theory. It also
benefits us in an opposite way. We can conveniently study a strongly coupled quantum
field theory by replacing it with a classical gravity theory. One of the most well studied
holographic setups is the AdS/CFT correspondence [3–5]. In most of the examples in
AdS/CFT studied so far, the holography works as an equivalence between a gravity or string
theory on a Anti de-Sitter space (AdS) and a conformal field theory (CFT) on a compact
manifold. Therefore it is intriguing to ask what will happen if there are boundaries on the
manifold on which the CFT is defined. Such a CFT is called a boundary conformal field
theory (BCFT) if a part of conformal symmetry (called boundary conformal symmetry) is
preserved at the boundaries.

In the recent paper [6], an effective description of holographic dual of BCFT
(AdS/BCFT) has been generally considered and several physical quantities including the
partition functions have been computed. We would like to note that in specific setups, a
holography construction of BCFT, which is very similar to ours, has already been men-
tioned in the earlier papers [7, 8]. In this construction, we introduce an extra boundary
Q in addition to the asymptotic AdS boundary M such that the boundary of Q coincides
with that of M (refer to figure 1). One of the crucial points is that we impose the Neu-
mann boundary condition instead of the standard Dirichlet one in the gravity sector. A
new ingredient in this holography is that we can add degrees of freedom localized at the
boundary. In the two dimensional CFT, this is measured by so called the boundary entropy
or g-function [9]. We would also like to mention that different constructions of holographic
dual of field theories with boundaries can be found in [10–12].

The purpose of this paper is to further study the properties of AdS/BCFT. At the
same time, we will also expose detailed calculations on the results reported briefly in the
letter [6]. Some of new results in this paper are described as follows. We construct gravity
duals of conformal field theories on strips, balls and also time-dependent boundaries in any
dimension. We prove a holographic g-theorem in any dimension. As a particular example,
we introduce a ‘boundary central charge’ in three dimensional conformal field theories.
Our holographic g-theorem argues that it decreases under RG flows. We also computed
holographic one-point functions. Finally, we give an example of string theory embedding
of this holography.

This paper is organized as follows. In section two, we review the general prescription of
AdS/BCFT. In section three, we explain the holographic calculation of boundary entropy
in two dimensional conformal field theories. In section four, we study the gravity dual of a
CFT on an interval and analyze the Hawking-Page phase transition. In section five, we show
the holographic g-theorem in any dimension. In section six, we present holographic duals of
CFTs defined on balls or strips in higher dimensions. In section seven, we consider examples
of AdS/BCFT with time-dependent boundaries. In section eight, we calculate the holo-
graphic one point functions. In section nine, we present an example of string theory embed-
ding of AdS/BCFT. In section ten, we summarize conclusions and discuss future problems.
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Figure 1. A schematic setup of AdS/BCFT. The CFT lives on M , which has the boundary ∂M .
Its gravity dual is denoted by N and its asymptotically AdS is M . The boundary ∂M is extended
into the bulk AdS, which constitutes the boundary Q.

2 Holographic dual of BCFT

We would like to formulate a holographic dual of CFT defined on a manifold M with a
boundary ∂M . We argue that this is given by generalizing the AdS/CFT correspondence [3]
in the following way. To have a gravity dual, we extend d dimensional manifold M to a
d+ 1 dimensional manifold N so that ∂N = M ∪Q, where Q is a manifold homologous to
M . The conformal invariance in the bulk of M requires that N is a part of AdS space.

In the standard AdS/CFT, we impose the Dirichlet boundary condition at the bound-
ary of AdS and following this we assume the Dirichlet boundary condition on M . On the
other hand, we impose a Neumann boundary condition on Q [6] as we will explain later.
The reason for this is that this boundary should be dynamical from the viewpoint of holog-
raphy and there is no natural definite metric on Q specified from the data in the CFT side.
Notice that here the boundary Q is no longer asymptotically AdS. On the other hand, if
we impose the Neumann boundary condition on a boundary which is parallel with the AdS
boundary M , the setup coincides with that of the Randall-Sundrum models [13]. Also, we
would like to note that in principle, it is also possible to adopt the Neumann boundary
condition at the AdS boundary M as discussed in [14].

2.1 Neumann boundary condition

To make the variational problem sensible, it is conventional to add the Gibbons-Hawking
boundary term [15] to the Einstein-Hilbert action:

I =
1

16πGN

∫
N

√
−g(R− 2Λ) +

1
8πGN

∫
Q

√
−hK. (2.1)

The metric of N and Q is denoted by g and h. K = habKab is the trace of extrinsic
curvature. The extrinsic curvature Kab is defined by

Kab = ∇anb, (2.2)

where n is the unit vector normal to Q and here we implicitly assume a projection onto Q
from N . For example, in the coordinate system (so called Gaussian normal coordinate)

ds2 = dr2 + habdx
adxb, (2.3)
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we can explicitly show that

Kab =
1
2
∂hab
∂r

. (2.4)

Now let us consider the variation of metric in the above action. After a partial inte-
gration, we find

δI =
1

16πGN

∫
Q

√
−h
(
Kabδh

ab −Khabδhab
)
. (2.5)

Notice that the terms which involve the derivative of δhab cancel out thanks to the boundary
term. In this way, by imposing the Neumann boundary condition instead of the Dirichlet
one, we obtain the boundary condition

Kab − habK = 0. (2.6)

It is also possible to add some matter fields localized on Q and consider a generalized
action by adding

IQ =
∫ √

−hLQ. (2.7)

This modifies (2.6) into
Kab − habK = 8πGNT

Q
ab, (2.8)

where we defined
TQab =

2√
−h

δIQ
δhab

. (2.9)

Before we go on, we would like to briefly remind us of the standard treatment of the
asymptotically AdS boundary M . We introduce the same Gibbons-Hawking boundary
term on another boundary M as usual. In this case we do not need to require (2.9) and
instead we impose the Dirichlet boundary condition δhab = 0, regarding the Brown-York
tensor [16, 17]

τab =
1

8πGN
(Kab − habK)− TMab (2.10)

as the holographic energy stress tensor [18–20].

2.2 Construction of AdS/BCFT

As a simple class of examples, we would like to assume that the boundary matter lagrangian
LQ is simply a constant. This leads us to consider the following action (we omit the
boundary terms for the AdS boundary M)

I =
1

16πGN

∫
N

√
−g(R− 2Λ) +

1
8πGN

∫
Q

√
−h(K − T ). (2.11)

The constant T is interpreted as the tension of the boundary Q. In AdS/CFT, a d + 1
dimensional AdS space (AdSd+1) is dual to a d dimensional CFT. The geometrical SO(2, d)
symmetry of AdS is equivalent to the conformal symmetry of the CFT. When we put a
d− 1 dimensional boundary to a d dimensional CFT such that the presence of the bound-
ary breaks SO(2, d) into SO(2, d − 1), this is called a boundary conformal field theory
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(BCFT) [21, 22]. Note that this symmetry structure looks the same as that in the holog-
raphy for defect or Janus CFTs [7, 23–26].

The boundary condition (2.8) for the system (2.11) leads to

Kab = (K − T )hab. (2.12)

By taking its trace, we obtain

K =
d

d− 1
T. (2.13)

To realize expected symmetries, we employ the following ansatz of the metric

ds2 = dρ2 + cosh2 ρ

R
· ds2

AdSd
. (2.14)

If we assume that ρ takes all values from −∞ to∞, then (2.14) is equivalent to the AdSd+1.
To see this, let us assume the Poincare metric of AdSd by setting

ds2
AdSd

= R2−dt2 + dy2 + d~w2

y2
, (2.15)

where ~w ∈ Rd−2. Remember that the cosmological constant Λ is related to the AdS radius
R by

Λ = −d(d− 1)
2R2

. (2.16)

If we define new coordinates z and x by

z =
y

cosh ρ
R

, x = y tanh
ρ

R
, (2.17)

then we obtain the familiar form of the Poincare metric of AdSd+1

ds2 = R2dz
2 − dt2 + dx2 + d~w2

z2
. (2.18)

Now to realize a gravity dual of BCFT, we will put a boundary Q at ρ = ρ∗ and this
means that we restrict the spacetime to the region −∞ < ρ < ρ∗ as depicted in figure 2.
The extrinsic curvature on Q can be found from (2.4)

Kab =
1
R

tanh
( ρ
R

)
hab. (2.19)

By using (2.12), ρ∗ is determined by the tension T as follows

T =
d− 1
R

tanh
ρ∗
R
. (2.20)

This leads to the constraint −(d− 1) ≤ TR ≤ d− 1.
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Figure 2. The holographic dual of a half line. The spacetime dual to BCFT is restricted to the
region −∞ < ρ < ρ∗ and is surrounded by the shaded region.

3 AdS3/CFT2 and boundary entropy

Here let us concentrate on the case of d = 2, which describes the two dimensional BCFT.
The reason that this setup is special is that it has been well studied in the subject of
two dimensional CFT [27]. Moreover, the BCFT has an interesting quantity called the
boundary entropy (or g-function) introduced in [9].

The boundary state of a BCFT with a boundary condition α is denoted by |Bα〉 below.
The function called g is defined by the disk amplitude [9]

gα = 〈0|Bα〉, (3.1)

where |0〉 is the vacuum state. The boundary entropy S(α)
bdy is simply defined by

S
(α)
bdy = log gα. (3.2)

Below we will present two different calculations of the boundary entropy, which turns out to
coincide as expected. Later, in section 4.2 we will provide a third independent holographic
calculation of the boundary entropy.

3.1 Boundary entropy from disk partition function

Consider a holographic dual of a CFT on the round disk defined by t2E + x2 ≤ r2
D in the

Euclidean AdS3 spacetime

ds2 = R2dz
2 + dτ2 + dx2

z2
, (3.3)

where τ is the Euclidean time. In the Euclidean formulation, the action (2.11) is now
replaced by

IE = − 1
16πGN

∫
N

√
g(R− 2Λ)− 1

8πGN

∫
Q

√
h(K − T ). (3.4)

Note that ρ∗ is related to the tension T of the boundary via (2.20). When the BCFT
is defined on the half space x < 0, its gravity dual has been found in previous section.
Therefore we can find the gravity dual of the BCFT on the round disk by first applying

– 6 –
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the conformal map

x′µ =
xµ + cµx

2

1 + 2(c · x) + c2 · x2
,

z′ =
z

1 + 2(c · x) + c2 · x2
, (3.5)

where cµ = (cτ , cx) are arbitrary constants, and then performing a proper translation [28].
Finally, we obtain the following domain in AdS3

τ2 + x2 + (z − sinh(ρ∗/R)rD)2 − r2
D cosh2(ρ∗/R) ≤ 0. (3.6)

In this way we found that the holographic dual of BCFT on a round disk is given by a
part of the two dimensional round sphere as described in figure 3. A larger value of tension
corresponds to the larger radius.

Now we would like to calculate the disk partition function in order to obtain the
boundary entropy. For this we just need to evaluate (3.4) in the domain (3.6). In the end
we find

IE =
R

4GN

(
r2
D

2ε2
+
rD sinh(ρ∗/R)

ε
+ log(ε/rD)− 1

2
− ρ∗
R

)
, (3.7)

where we introduced the cutoff such that z > ε. By adding the counter term on the AdS
boundary, we can subtract the divergent terms in (3.7). The difference of the partition
function between ρ = 0 and ρ = ρ∗ is given by

IE(ρ∗)− IE(0) = − ρ∗
4GN

. (3.8)

Since the partition function is given by Z = e−SE , we obtain the boundary entropy

Sbdy = −IE =
ρ∗

4GN
=
c

6
arctanh(RT ), (3.9)

where implicitly we assumed Sbdy = 0 at T = 0 because the boundary contributions vanish
in this case.

By employing the integrals computed to get (3.7), we can evaluate the action in the
case of a domain M in the boundary given by an annulus. We consider as Q = Q1 ∪ Q2

the disconnected configuration shown in figure 4 and we discuss a connected configuration
in the appendix B.
Since the orientation of the two surfaces Q1 and Q2 of the disconnected boundaries are
opposite, the definition of tension is opposite. This means that ρ∗,1 > 0 at Q1 corresponds
to T > 0 (or equally large boundary entropy), while ρ∗,2 > 0 at Q2 corresponds to T < 0 (or
smaller boundary entropy). Thus, the result is given by the difference of two contributions
like (3.7)

IE =
R

4GN

[
r2
D,2−r2

D,1

2ε2
+
rD,2 sinh(ρ∗,2/R)−rD,1 sinh(ρ∗,1/R)

ε
+log

(
rD,1
rD,2

)
− ρ∗,2−ρ∗,1

R

]
(3.10)

where the logarithmic divergence is canceled in the difference.
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Figure 3. The holographic dual of a disk.

3.2 Boundary entropy from holographic entanglement entropy

Another way to extract the boundary entropy is to calculate the entanglement entropy.
The entanglement entropy SA with respect to the subsystem A is defined by the von
Neumann entropy SA = −Tr ρA log ρA for the reduced density matrix ρA. The reduced
density matrix ρA is defined by tracing out the subsystem B, which is the complement of
A. In quantum field theories, we specify the subsystem A by dividing a time slice into two
regions. For a two dimensional CFT with a boundary (i.e. BCFT) we can generally obtain
the following result [29]

SA =
c

6
log

l

ε
+ log gα, (3.11)

where c is the central charge and ε is the UV cut off (or lattice spacing); the subsystem A

is chosen to be an interval with length l such that it includes the boundary.
In AdS/CFT, the holographic entanglement entropy [30–32] is given in terms of the

area of the codimension two minimal surface (called γA) which ends at ∂A

SA =
Area(γA)

4GN
. (3.12)

This calculation of boundary entropy from the holographic entanglement entropy has been
first applied to Janus CFTs in [33]. Moreover, for supersymmetric Janus CFTs, the ex-
cellent agreement between the holographic result and the CFT result has been confirmed
in [34, 35].

Consider the gravity dual of two dimensional BCFT on a half space x < 0 in the
coordinate (3.3). By taking the time slice τ = 0, we define the subsystem A by the interval
−l ≤ x ≤ 0. In this case, the minimal surface (or geodesic line) γA is given by x2 + z2 = l2.
If we go back to the coordinate system (2.14) and (2.15), then γA is simply given by
τ = 0, y = l and −∞ < ρ ≤ ρ∗. Then

SA =
1

4GN

∫ ρ∗

−ρ∞
dρ =

ρ∗ + ρ∞
4GN

. (3.13)

Here ρ∞ is related to the UV cut off using (2.17) via ρ∞ = R log 2l
ε . By subtracting the

bulk contribution which is divergent as in (3.11), we finally find

Sbdy = SA(ρ∗)− SA(0) =
ρ∗

4GN
. (3.14)

This indeed agrees with (3.9).
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Figure 4. The holographic dual of an annulus made by two disconnected surfaces in the bulk.

Actually, in the formula (3.12), we need to choose the end point of the geodesic γA
on Q such that the total length takes the minimum value. Indeed, we can check explicitly
that this minimum is realized when γA is a circle with radius l as is assumed in (3.13).

4 Holographic dual of intervals and Hawking-page transition

So far we studied the holographic dual of BCFT in the presence of a single boundary.
As a next step, we would like to analyze the holographic dual of two dimensional CFT
on an interval in the setup of AdS3/CFT2 as one of the simplest examples with multiple
boundaries. We assume such a system at finite temperature and there are two candidates
for the bulk geometry, one of them is the thermal AdS3 and the other is the BTZ black
hole (AdS3 black hole) [36]. In the absence of the boundaries, the former is favored at low
temperature, while the latter at high temperature. It is natural to expect a similar phase
structure and indeed we will confirm this below.

4.1 Low temperature phase

At low temperature, the bulk geometry is expected to be given by the thermal AdS3 defined
by the metric

ds2 = R2

(
dτ2

z2
+

dz2

h(z)z2
+
h(z)
z2

dx2

)
, (4.1)

where h(z) = 1− (z/z0)2. The periodicity of the Euclidean time τ , denoted by the inverse
temperature 1/TBCFT (≡ 2πzH), can be chosen arbitrary, while that of the space direction
x is determined to be 2πz0 by requiring the smoothness.

We can describe the boundary Q by the curve x = x(z). The space-like unit vector nµ

normal to the surface Q is given by

(nτ , nz, nx) = (0,−x′(z)h(z)2, 1) · z

R
√
h(z)(1 + h(z)2x′(z)2)

. (4.2)

The extrinsic curvature Kab can be computed by following the procedure explained in the
appendix A. In the end, the boundary condition (2.12) leads to the following constraint on
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the profile of Q
dx

dz
=

RT

h(z)
√
h(z)−R2T 2

, (4.3)

which is solved (fixing the constant shift by setting x(0) = 0)

x(z) = z0 · arctan

(
RTz

z0

√
h(z)−R2T 2

)
. (4.4)

Notice that x′(z) gets divergent at z∗ = z0

√
1−R2T 2 and thus this should be the

turning point. Thus the boundary Q extends from x = 0 to x = πz0. Assuming T > 0,
the bulk spacetime N is defined by the sum of (−πz0 ≤ x ≤ 0, 0 < z ≤ z0) and (0 <

x ≤ πz0, z(x) < z < z0), where z(x) is the inverse function of (4.4) and its extension to
π
2 z0 < x < πz0. This is described in figure 5(a).

Now the Euclidean action (3.4) reads

IE =
RzH
GN

∫ z∗

ε

dz

z3

(
x(z) +

πz0

2

)
+
∫ z0

z∗

dz

z3
(πz0)− zHTR

2

2GN

∫ z∗

ε

dz

z2
√
h(z)−R2T 2

, (4.5)

where ε is the UV cut off as before. To evaluate (4.5) by eliminating the divergence, we
need to be careful in that we have to regard 2πz̃0 as the physical radius, defined by

z̃0 =
√
f(ε) z0, (4.6)

by matching the asymptotic geometry at z = ε. Also the contribution Gibbons-Hawking
term at the AdS boundary M is vanishing as usual, by using the boundary integral of
K −K(0) instead of that of K, where K(0) is the trace of extrinsic curvature for the pure
AdS3 (3.3). In the end, we obtain the result

IE = − πRzH
8GNz0

= − π

24
· c

∆x · TBCFT
, (4.7)

where we employed the well-known relation [37] between the AdS3 radius R and the central
charge c of CFT2, given by

c =
3R

2GN
. (4.8)

Note that the final result (4.7) does not depend on the tension T and we can confirm
that (4.7) is also correct when T < 0.

4.2 High temperature phase

We expect that in the higher temperature phase the bulk is described by a part of the BTZ
black hole

ds2 = R2

(
f(z)
z2

dτ2 +
dz2

f(z)z2
+
dx2

z2

)
, (4.9)

where f(z) = 1 − (z/zH)2. The Euclidean time τ is compactified on a circle such that
τ ∼ τ + 2πzH and thus the temperature in the dual BCFT is TBCFT = 1

2πzH
. The length

of the interval is again denoted by ∆x = πz0.
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Figure 5. The holographic dual of an interval at low temperature (a) and high temperature (b).

We specify the boundary Q by the profile x = x(z).
The space-like unit vector nµ normal to the surface Q is given by

(nτ , nz, nx) = (0,−x′(z)f(z), 1) · z

R
√
h(z)(1 + f(z)x′(z)2)

. (4.10)

The extrinsic curvature Kab can be again computed by following the procedure explained
in the appendix A. In the end, we find that the boundary condition (2.12) requires

dx

dz
=

RT√
1−R2T 2f(z)

. (4.11)

This is solved as

x(z) = zH · arcsinh
(

RTz

zH
√

1−R2T 2

)
. (4.12)

To realize the holographic dual of the interval we need two boundaries as described in
figure 5(b). In the appendix C we study the rotating BTZ black hole generalizing (4.12)
for that case (see (C.6)).

Now we are able to evaluate the Euclidean action (3.4) in the form

IE = 2Ibdy + Ibulk, (4.13)

where 2Ibdy is the contribution from the presence of two boundaries which is vanishing if
we set T = 0. Ibulk is the bulk contribution which does not depend on T . To calculate
them we subtract the divergence in a standard holographic renormalization. For the bulk
part, we obtain

Ibulk = −πc
6

∆x · TBCFT , (4.14)

where we have to be careful about the issue like (4.6). This result (4.14) clearly agrees with
what we expect from the standard CFT results. On the other hand, each of two boundary
contributions is found to be

RzH
2GN

∫ zH

ε
dz
x(z)
z3
− TR2zH

4GN

∫ z

ε

dz

z2

1√
1−R2T 2f(z)

= −RzH
4GN

[
x(z)
z2

]zH
ε

(4.15)

= − ρ∗
4GN

+ (divergent terms),
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where we relate the tension T to ρ∗ via the previous relation (2.20) and the index α describes
each of the two boundary. Therefore we obtain the contribution to the Euclidean action
from each of the boundaries

Ibdy = − ρ∗
4GN

= − c
6

arctanh(RT ). (4.16)

Thus the total action is found to be

IE = −πc
6

∆x · TBCFT −
c

3
arctanh(RT ). (4.17)

The total entropy of this thermal system is found from (4.14) and (4.16)

Sthermal =
π

3
c∆x · TBCFT +

c

3
arctanh(RT ) (4.18)

We would also like to point out that this calculation offers one more different calculation
of boundary entropy Sbdy in AdS/CFT. Consider a BCFT at a finite temperature TBCFT ,
in other words, a CFT defined on a cylinder, the two boundary conditions imposed on its
two boundaries are denoted by α and β. They are described by the boundary states |Bα〉
and |Bβ〉. The partition function Zαβ on a cylinder, whose length is denoted by ∆x, gets
factorized in the high temperature limit TBCFT∆x� 1

〈Bα|e−H∆x|Bβ〉 ' gαgβe−E0∆x, (4.19)

where H is the Hamiltonian (in closed string channel) and E0 is the ground state energy.
The final factor e−E0∆x is interpreted as the thermal energy for the CFT as is clear in opens
string channel. Therefore the contribution from the presence of boundary is the product
of g-function gαgβ [9]. In our holographic calculation, this means g = eSbdy = e−Ibdy and
this is indeed true by comparing (4.16) and (3.9).

4.3 Phase transition

Let us examine when either of the two phases is favored. To see this we compare (4.7)
and (4.17) and pick up the smaller one. In this way we find that the black hole phase is
realized if and only if

∆x · TBCFT > −
1
π

arctanh(RT ) +

√
1
4

+
1
π2

arctanh2(RT ), (4.20)

as plotted in figure 6. At lower temperature, the thermal AdS phase is favored. At
vanishing tension T = 0, the phase boundary z0 = zH coincides with that of the Hawking-
Page transition [38]. As the tension gets larger, the critical temperature gets lower. This
is consistent with the fact that the entropy Sbdy carried by the boundary increases as
the tension does. Note also that the critical temperature gets vanishing at the maximum
tension TR = 1 and that it gets divergent at the smallest tension TR = −1. This phase
transition is first order and can be regarded as a generalization of the Hawking-Page phase
transition dual to the confinement/deconfinement transition in gauge theories [39].
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Figure 6. The plot of the critical temperature of the phase transition between black hole phase
(the region above the curve) and thermal AdS phase (the region below the curve).

5 Holographic g-theorem

In two dimension, the central charge c is a very useful quantity which characterizes the
degrees of freedom of a given CFT. Moreover, there is a well-known fact, so called c-
theorem, that the central charge decreases under the RG flow. We can construct a c-
function which interpolates the two central charges in two CFTs which are connected by
a RG flow such that it is a monotonically decreasing function [40]. Holographic proofs of
c-theorems have been obtained e.g. in [41, 42].

In the case of BCFT, an analogous quantity is actually known and is called g-function
or boundary entropy. At fixed points of boundary RG flow, they are reduced to that of
BCFT as already mentioned in (3.2). The monotonicity similar to the c function has been
conjectured in [9] and been shown in [43]. This is called the g-theorem. Here we would like
to study the holographic proof of this g-theorem. Refer to [44] for an earlier work where
the holographic c-theorem has been studied in a probe approximation.

5.1 Holographic g-theorem in 2D CFT

Consider the AdS3/BCFT2 setup and we just consider a pure gravity in the bulk as we
would like to keep the bulk conformal invariance. Since all solutions to the Einstein equation
with a negative cosmological constant are locally AdS3, we can assume that the gravity
dual is given just by cutting a AdS3 along a boundary Q. We describe the boundary Q

by the curve x = x(z) in the metric (3.3) as before. We assume generic matter fields on Q
and this leads to the energy stress tensor TQab term in the boundary condition as explained
in (2.8). It is easy to check the energy conservation ∇aTQab = 0 because ∇a(Kab−Khab) =
Rnb ∝ gnb = 0 in Einstein manifolds, where n is the Gaussian normal coordinate which is
normal to Q.

Now we would like to require that the matter fields on the boundary is physically
sensible. In particular, we impose the null energy condition (or equally weaker energy
condition) as is done usually for the holographic proof of c-theorem. It is given by the

– 13 –



J
H
E
P
1
1
(
2
0
1
1
)
0
4
3

following inequality for any null vector Na

TQabN
aN b ≥ 0. (5.1)

In our case, we can choose

N t = ±1, N z =
1√

1 + (x′(z))2
, Nx =

x′(z)√
1 + (x′(z))2

. (5.2)

Then the condition (5.1) leads to

(Kab −Khab)NaN b = − R · x′′(z)
z (1 + (x′(z))2)3/2

≥ 0. (5.3)

Thus we obtained the condition
x′′(z) ≤ 0. (5.4)

Since at a fixed point the boundary entropy is given by Sbdy = ρ∗
4GN

and we have
the relation x

z = sinh(ρ∗/R) on the boundary Q, we would like to propose the following
g-function

log g(z) =
R

4GN
· arcsinh

(
x(z)
z

)
. (5.5)

By taking derivative, we get

∂ log g(z)
∂z

=
x′(z)z − x(z)√

z2 + x2
. (5.6)

Indeed we can see that x′z−x is negative because this is vanishing at z = 0 and (5.4) leads
to (x′z − x)′ = x′′z ≤ 0. In this way, we manage to derive the g-theorem in our setup.
Notice also that we can choose x(z) such that g(z) flows from gUV to gIR. In this case we
always have gUV > gIR.

5.2 Holographic g-theorem in higher dimensions

Consider a d dimensional CFT on R1,d−1, whose coordinate is denoted by (t, x1, · · · , xd−1).
We put a boundary at x1 = 0 and consider the theory on the half space defined by xd−1 <

0. We assume a boundary relevant perturbation and would like to find its holographic
dual. This gravity dual should have the translation invariance and the Lorentz invariance
SO(1, d − 2) in the directions (x0, x1, · · · , xd−2). Therefore we can assume the following
form of the metric for the holographic dual

ds2 = A(xd−1, z)dx2
d−1 +B(xd−1, z)dxd−1dz

+ C(xd−1, z)dz2 +D(xd−1, z)(−dt2 + dx2
1 + · · ·+ dx2

d−2). (5.7)

By coordinate transformations of xd−1 and z, we can set B(xd−1, z) = 0, D(xd−1, z) = 1
z2

.
Then by requiring the vacuum Einstein equation (6.2), we find that allowed solutions are
either pure AdS space or AdS Schwarzschild black holes. Since we are interested in zero
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temperature setup, the metric should be simply given by that of the pure AdSd+1. We
specify the boundary Q by xd−1 = x(z) again. We can choose the null vector as follows:

N t = ±1, N z =
1√

1+(x′(z))2
, Nxd−1 =

x′(z)√
1+(x′(z))2

, Nxi = 0, (i = 1, 2, · · · , d−2).

(5.8)
Then the condition (5.1) leads to

(Kab −Khab)NaN b = − R · x′′(z)
z (1 + (x′(z))2)3/2

≥ 0. (5.9)

As in the AdS3 case, this means that ρ∗ is a monotonically decreasing function under the
RG flow. Therefore we can, for example, choose (5.5) to be an analogue of holographic
g-function in higher dimension. The precise relation to the partition function on a ball will
be analyzed in the next section.

6 AdS/BCFT in higher dimension

6.1 Holographic dual of balls

Consider a d+ 1 dimensional (Euclidean) AdS space with the Poincare metric

ds2 = R2dz
2 + dxµdx

µ

z2
. (6.1)

This satisfies the Einstein equation Rµν − 1
2Rgµν + Λgµν = 0. We find

Rµν +
d

R2
gµν = 0, R = −d(d+ 1)

R2
, Λ = −d(d− 1)

2R2
. (6.2)

To find a holographic dual of d dimensional ball Bd with radius rB, we can act the
conformal transformation [28]

x′µ =
xµ + cx2

1 + 2(c · x) + c2 · x2
,

z′ =
z

1 + 2(c · x) + c2 · x2
, (6.3)

on the d dimensional half space. In this way, we find that the following surface satisfies
the constraint (2.12)

x2
0 + x2

1 + · · ·+ x2
d−1 + (z − rB sinh(ρ∗/R))2 − r2

B cosh2(ρ∗/R) = 0, (6.4)

where ρ∗ is related to the tension T as in (2.20). Then, we define r(z) as the radius of the
sphere at a slice of z as follows:

r(z) =

√
r2
B cosh2

(ρ∗
R

)
−
(
z − rB sinh

(ρ∗
R

))2
. (6.5)
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The Euclidean action (3.4) is evaluated as follows

IE =
dRd−1Bd

8πGN

∫ rBe
ρ∗/R

ε
dz
r(z)d

zd+1
− TRdSd

8π(d− 1)GN

∫ rBe
ρ∗/R

ε
dz
r(z)d−1

√
r(z)′2+1

zd
(6.6)

=
Rd−1

8πGN
2πd/2

Γ(d/2)

∫ rBe
ρ∗/R

ε
dz

(
r(z)d

zd+1
− rB sinh

ρ∗
R

r(z)d−2

zd

)
, Sd =

2π(d+1)/2

Γ((d+ 1)/2)
,

where Bd and Sd are the volume of d dimensional unit ball and sphere, respectively. In the
last line of (6.6), the formula dBd = Sd−1 and (2.20) are used. Notice that for d = 2, the
analysis has been already done in 3.1.

6.1.1 AdS5 case

In particular we consider the AdS5 case d = 4. By subtracting the divergences simply,1

the result is expressed as

IE =
πR3

16GN

(
5− 2e−

2ρ∗
R + 4

ρ∗
R

+ 4 log rB
)
. (6.7)

For a 4D CFT with the central charge a, this can be rewritten as follows

IE =
a

2

(
5− 2e−

2ρ∗
R + 4

ρ∗
R

+ 4 log rB
)
. (6.8)

Notice that the holographic g-theorem (5.9) argues that this increases monotonically under
the RG flow as opposed to the AdS3 case.

Using the Euclidean action (6.8) and holography, we can reproduce the central charge
of the even dimensional theory via the trace anomaly. Since we consider the theory on the
d = 4 ball (a disk for d = 2) for the field theory side, we have the scale rB, namely the
radius of the ball. The conformal invariance is quantum mechanically broken because of
the trace anomaly. Under the Weyl transformation δgµν = 2δrBgµν/rB, the trace anomaly
for CFT’s is then described by [30–32, 45]

rB
δ logZ(Bd)

δrB
=
∫
Bd

ddx
√
g〈Tµµ〉 = −2(−1)d/2a

∫
Bd

√
gEd

= −2(−1)d/2A, (6.9)

where Z(Bd) = e−IE(Bd) is the partition function for the CFT, A is the central charge in
particular A = c

12 for d = 2 and A = a for d = 4. The energy stress tensor is normalized
such that Tµν ≡ −(2/

√
g)δI/δgµν for the CFT’s action I. Here, we used the fact that

for theories on the ball, the following normalized Euler density Ed in d dimension only
contributes to the trace anomaly:∫

Sd

ddx
√
gEd = 2,

∫
Bd

ddx
√
gEd = 1. (6.10)

1We just subtract terms of the form
P4
i=1 aiε

−i + a0 log ε to make the action finite.
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Substituting the Euclidean action IE (6.8) or (3.7) into − logZ(Bd) in (6.9), we indeed
obtain via holography

A =

{
a for d = 4,
R

8GN
= c

12 for d = 2.
(6.11)

Hence, (6.11) reproduces the correct central charges in two and four dimensions.
For even d = 2k (k > 1), we can write the action (6.6) more explicitly. As for the

contribution from the bulk term, the indefinite integral we need to compute reads

∫
r(z)2k

z2k+1
dz = (−1)k log z +

k−1∑
r=0

k−r∑
s=0

a(k)
r,s (ρ∗/R)

(rB
z

)2k−2r−s
(6.12)

where we have introduced

a(k)
r,s (α) ≡ (−1)r

(
k

r

)(
k − r
s

)
(2 sinhα)s

2r + s− 2k
. (6.13)

The result (6.12) has been obtained by expanding the polynomial r(z)2 (see (6.5)). Since
0 6 2r+ s 6 2k− 1, all the terms in the double sum are power like divergent when z → 0.
As for the boundary term we have to consider (now k > 0)

∫
r(z)2k

z2k+2
dz =

(−1)k+1

z
+

1
rB

k−1∑
r=0

k−r∑
s=0

ã(k)
r,s (ρ∗/R)

(rB
z

)2k+1−2r−s
(6.14)

where the expansion coefficients read

ã(k)
r,s (α) ≡ (−1)r

(
k

r

)(
k − r
s

)
(2 sinhα)s

2r + s− 2k − 1
. (6.15)

In the double sum occurring in (6.14) we have all the powers from z−2k−1 to z−2.
By employing (6.12) and (6.14) into (6.6), we find that all the terms computed at z = ε

are divergent and therefore must be subtracted. Thus O(1) term in the ε expansion of IE
is given only by the contribution at the upper extremum and it reads

IE =
R2k−1

8πGN
2πk

Γ(k)

[
(−1)k log

(
rB e

ρ∗/R
)

+
k−1∑
r=0

k−r∑
s=0

a(k)
r,s (ρ∗/R) e−(2k−2r−s)ρ∗/R (6.16)

− sinh(ρ∗/R)
(

(−1)ke−ρ∗/R +
k−2∑
r=0

k−1−r∑
s=0

ã(k−1)
r,s (ρ∗/R) e−(2k−1−2r−s)ρ∗/R

)]
.

Notice also that, since the upper extremum in (6.6) is proportional to rB, the dependence
on rB cancels in all the power-like terms and enters only through the logarithmic term
occurring in (6.12) computed at the upper extremum. This is consistent with the CFT
dual as the violation of conformal symmetry only comes from the conformal anomaly.
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6.1.2 AdS4 case

In this case, by evaluating IE and subtracting any divergences which are polynomials of ε,
we finally obtain

IE =
R2

2GN

[
π

2
+ arctan

(
sinh

ρ∗
R

)
− 1

24
sinh

3ρ∗
R

+
(

log
ε

rB
+ log cosh

ρ∗
R
− 33

24
− log 2

)
sinh

ρ∗
R

]
. (6.17)

Notice that there is a logarithmic term which should be interpreted as some conformal
anomaly. Even though this theory is dual to three dimensional CFT, this appearance of
the anomaly is expected because there is the two dimensional boundary which can lead to
the conformal anomaly. Indeed the coefficient of the log term is proportional to sinh ρ∗

R and
therefore it vanishes for the trivial boundary ρ∗ = 0. We can define the effective boundary
central charge cbdy as

rB
∂ logZ
∂rB

= − 1
2π

〈∫
dx2√gTµµ

〉
=
cbdy

6
χ(Σ), (6.18)

where χ(Σ) is the Euler number of Σ, which is the boundary of M i.e. given by S2. In this
way, we obtain

cbdy =
3R2

2GN
sinh

ρ∗
R
. (6.19)

According to the discussion in the analysis in section 5.2, ρ∗ decreases under RG flows.
Therefore our boundary central charge cbdy also decreases under RG flows.

As done in the section 6.1.1, we can consider the generic case with even number of
dimensions, i.e. odd d = 2k − 1 (k > 2). In this case the analysis is more complicated
because a square root remains in the integrands of the terms involved in the computation.
In order to shorten the expressions, from (6.5) we find it convenient to introduce

r(z) ≡ rB r̃(z̃) z̃ ≡ z

rB
(6.20)

Then, the action (6.6) in our case becomes

IE =
R2(k−1)

8πGN
2π(2k−1)/2

Γ((2d− 1)/2)

[∫ eρ∗/R

ε̃

r̃(z̃)2k

z̃2k r̃(z̃)
dz̃ − sinhβ

∫ eρ∗/R

ε̃

r̃(z̃)2(k−1)

z̃2(k−1)+1 r̃(z̃)
dz̃

]
.

(6.21)
We proceed as in the section 6.1.1 and for (6.20) we get

r̃(z̃)2h =
h∑
r=0

h∑
s=0

b(h)
r,s (ρ∗/R) z̃r+s b(h)

r,s (β) ≡ (−1)r
(
h

r

)(
h

s

)
eβ(r−s) . (6.22)

This allows us to write the term contained between the square brackets in (6.21) as follows

k∑
r=0

k∑
s=0

b(k)
r,s (ρ∗/R)

∫ eρ∗/R

ε̃

dz̃

z̃2k−r−s r̃(z̃)
−sinh(ρ∗/R)

k−1∑
r=0

k−1∑
s=0

b(k−1)
r,s (ρ∗/R)

∫ eρ∗/R

ε̃

dz̃

z̃2k−1−r−s r̃(z̃)
(6.23)
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where we remark that, in the first double sum, for the power of z−1 we have 0 6 2k −
r − s 6 2k, while in the second double sum, coming from the boundary term, we have
1 6 2k − 1− r − s 6 2k − 1. As for the integrals occurring in (6.23) we have∫ eρ∗/R

ε̃

dz̃

r̃(z̃)
=
π

2
+arctan(sinh(ρ∗/R))+ . . .

∫ eρ∗/R

ε̃

dz̃

z̃ r̃(z̃)
=log rB− log

(
cosh(ρ∗/R)

2

)
+ . . .

(6.24)
By computing other examples, we recognize the following structure for q > 2∫ eρ∗/R

ε̃

dz̃

z̃q r̃(z̃)
=
[
Cq(ρ∗/R) log

(
z̃

1 + z̃ sinh(ρ∗/R) + r̃(z̃)

)
− Pq−2(z̃, ρ∗/R)

r̃(z̃)
z̃q−1

]∣∣∣∣eρ∗/R
ε̃

= Cq(ρ∗/R)
[

log rB − log
(

cosh(ρ∗/R)
2

)]
+ γq(ρ∗/R) + . . . (6.25)

where the dots denote vanishing or diverging terms when ε→ 0. The polynomial Pq−2(z̃, β)
has degree q−2 in terms of z̃ and its coefficients depend on ρ∗/R. We recall that r̃(eρ∗/R) =
0 and ε̃ = ε/rB. Unfortunately we are not able to get closed forms for the function Cq(ρ∗/R)
and Pq−2(z̃, ρ∗/R) and, in order to obtain at least the dependence on rB of the finite part
of the action for any k we need to know Cq(ρ∗/R) for any positive integer q > 2.

6.2 Holographic dual of half space

Consider a holographic dual of a half space in the pure AdSd+1

ds2 = R2dz
2 +

∑d−2
i=0 dx

2
i + dx2

d−1

z2
. (6.26)

According to (2.17), the boundary Q is defined by

x = sinh
ρ∗
R
· z, (6.27)

where ρ∗ is related to the tension via TR = (d − 1) tanh ρ∗
R . The length in the Euclidean

time and the one in xd−1 direction are defined to be β and L. The Euclidean action IE is
given by

IE =
dRd−1Vd−2βL

8πGN

∫ ∞
ε

dz

zd+1
+

(d− 1)Rd−1Vd−2β

8πGN
sinh

ρ∗
R

∫ ∞
ε

dz

zd

=
Rd−1Vd−2βL

8πGN εd
+
Rd−1Vd−2β

8πGN εd−1
sinh

ρ∗
R
. (6.28)

Both divergent terms are completely canceled by the counter terms. Therefore IE = 0.

6.3 Holographic dual of strips

Consider a holographic dual of a strip in R1,d−1 which is defined by restricting to the
range 0 < xd−1 < ∆x with other coordinates x0, x1, · · · , xd−2 taking any values. We are
interested in the zero temperature case and thus we consider the AdS soliton geometry

ds2 = R2h(z)−1dz2 +
∑d−2

i=0 dx
2
i + h(z)dx2

d−1

z2
, h(z) = 1−

(
z

z0

)d
. (6.29)
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We compactify xd−1 as xd−1 ∼ xd−1 + 4π
d z0. We describe the boundary Q by xd−1 = x(z).

The constraint (2.12) leads to the differential equation

x′(z) = ± RT

h(z)
√

(d− 1)2h(z)−R2T 2
, (6.30)

where + (or −) sign corresponds to the case where the bulk spacetime N is situated in the
side of smaller (or larger) x. We fix the integration constant by requiring x(z∗) = 0, where
z∗ is defined by (d− 1)2h(z∗) = R2T 2. Notice that the bulk spacetime N is given by

− x(z) ≤ xd−1 ≤ x(z), (6.31)

for T ≤ 0. For T > 0, N is given by the complement of (6.31) at T = −|T | with respect to
the total manifold of the AdS soliton i.e. |xd−1| ≤ 2π

d z0.
If we define x0 ≡ x(0), the length ∆x of the AdS boundary M is given by

∆x = 2x0 (when T ≤ 0),

∆x =
4π
d
z0 − 2x0 (when T ≥ 0). (6.32)

We can calculate x0 as follows

x0 =
∫ z∗

0

(
dx

dz

)
dz =

RTz0

d(d− 1)

∫ w∗

0
dw

w
1−d
d

(1− w)
√

1− R2T 2

(d−1)2
− w

,

=
Γ(1/d)Γ(1/2)
Γ(1/2 + 1/d)

· RTz0

d(d− 1)
· w1/d−1/2
∗ · F (1, 1/d, 1/2 + 1/d;w∗), (6.33)

where w∗ ≡ 1− R2T 2

(d−1)2
and F (a, b, c; z) is the standard hypergeometric function.

The entanglement entropy can be calculated as follows (we first assume T < 0):

IE = − 1
16πGN

∫
N

√
g(R− 2Λ)− 1

8πGN (d− 1)

∫
Q

√
hT,

=
dRd−1Ld−2β

4πGN

∫ z∗

ε
dz
x(z)
zd+1

− TRdLd−2β

4πGN

∫ z∗

ε

dz

zd
√

(d− 1)2h(z)−R2T 2
,

= −R
d−1Ld−2β

4πGN

[
h(z)x(z)

zd

]z∗
ε

,

=
Rd−1Ld−2β

4πGN
x0 ·

(
1
εd
− 1
zd0

)
− Rd−1Ld−2β

4πGN εd−1
· RT√

(d− 1)2 −R2T 2
. (6.34)

Here β and L is the length of x0 and xi directions.
We would like to cancel the divergences by adding local counter terms. The bulk

counter term which is proportional to ε−d leads to the subtraction (remember the factor√
h(ε) in the xd−1 direction):

− Rd−1Ld−2β

4πGN
x0 ·

√
h(ε)
εd

. (6.35)
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Also the final term in (6.34) is simply canceled by the boundary counter term. In this way,
by taking into account the finite contribution in (6.35) we obtain the final result

IE = −R
d−1Ld−2β

16πGN
· ∆x
zd0
. (6.36)

It is possible to check that this result (6.36) remains the same even if T > 0.

7 Time-dependent configurations

So far we have focused on the holography for static systems where the time evolution
of boundaries in a CFT is trivial. Thus here we would like to study time dependent
configurations especially in the AdS3/BCFT2 setup. In most of the arguments below,
higher dimensional generalizations are straightforward.

7.1 Description in terms of entangled pair

Consider a pure AdS3

ds2 = R2−dt2 + dz2 + dx2

z2
, (7.1)

and a boundary Q specified by z = z(x, t). The solutions to the boundary equation of
motion (2.12) are obtained from (3.6) by a double Wick rotation. The gravity dual is given
by the region

(z −A)2 + (x− α)2 − (t− β)2 ≥ γ2, (7.2)

where α, β, γ and A are arbitrary constants. This is depicted in the right figure in figure 7.
The tension T is related to these parameters via T = − A

R|γ| . We also need to assume
|A| < |γ| so that the boundary of (7.2) is time-like. Using the translational invariance we
simply set α = β = 0 below. The AdS boundary of this spacetime (7.2) consists of two
disconnected regions x ≥

√
γ2 −A2 + t2 and x ≤ −

√
γ2 −A2 + t2, which are connected

in the bulk of AdS (see the left figure in figure 7).
It is also possible to flip the sign of the inequality in (7.2). This leads to the region

(z−A)2+(x−α)2−(t−β)2 ≤ γ2. In this case, the region looks like a half of three dimensional
cylinder and this is dual to a CFT lives on an interval defined by |x| ≤

√
γ2 −A2 + t2.

Let us consider the holographic interpretation of the solution (7.2). Since end point of
each of boundaries is accelerated much like a Rindler observer, the light cone defined by
t = ±x plays the role of Rindler horizon. Therefore the two regions at the AdS boundary
are causally disconnected. However, they are connected in the bulk AdS. This means that
they are entangled with each other as in the AdS Schwarzschild black holes [46]. This
interpretation gets clearer if we perform the following familiar coordinate transformation:

t− x = −eθ−u
√

1−
r2

+

r2
,

t+ x = eθ+u

√
1−

r2
+

r2
,

z =
r+e

θ

r
. (7.3)
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This leads to the BTZ black hole metric

ds2 = R2

[
−
(
r2

r2
+

− 1
)
du2 +

dr2

r2 − r2
+

+
r2

r2
+

dθ2

]
, (7.4)

where the horizon is situated at r = r+. In this coordinate system, (7.2) can be rewritten
as

e2θ − 2
Ar+e

θ

r
≥ γ2 −A2, (7.5)

which coincides with (4.12).2 The region |x| ≥
√
γ2 −A2 + t2, where the CFT is defined,

is now mapped to the half line θ ≥ 1
2 log(γ2 − A2). The horizon r = r+ is mapped to the

Rindler horizon in (7.1).
The holographic entanglement entropy between the CFT on the two half lines (we

choose the subsystem A as one of the half lines) are computed as follows3

SA =
R

4GN

∫ zIR

γ+A

dz

z
, (7.6)

where zIR is the IR cut off, which is very large. We can easily see that this is equivalent
to the entropy of the BTZ black hole (7.4) restricted inside of the boundary Q. Since the
condition (7.5) is estimated as eθ ≥ A+ γ, we find the black hole entropy is given by

SBH =
R

4GN

∫ log zIR

log(γ+A)
dθ. (7.7)

Therefore SA and SBH are identical as we wanted to show.
These correspondences are naturally understood as an example of Unruh effect because

a CFT on two half lines which are entangled due to a uniform acceleration, is equivalent
to a CFT on a half line at finite temperature.

It is straightforward to generalize our setups so that it is dual to a CFT on the two
disconnected intervals, instead of half lines. This is obtained by considering the gravity on
the region

γ2
1 ≤ (z −A)2 + x2 − t2 ≤ γ2

2 , (7.8)

assuming |γ1| < |γ2|. After the coordinate transformation (7.3), the region (7.8) is mapped
to an interval in the BTZ black hole.

7.2 Comments on g-theorem and topological censorship

In the standard AdS/CFT, a Lorentzian asymptotic AdS spacetime with multiple AdS
boundaries which are connected without encountering any horizons, is prohibited once we
assume an appropriate energy condition [48]. This is called the topological censorship. It is

2See also appendix in which we also get a surface in the rotating BTZ BH using the coordinate trans-

formation.
3Strictly speaking, we need to apply the covariant prescription of holographic entanglement entropy [47]

in such a Lorentzian time-dependent spacetime. However, since here we restrict to the time symmetric

surface at t = 0, we just need to calculate the geodesic length on that surface.
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Figure 7. The left figure denotes a two dimensional CFT defined on a spacetime with time-
dependent boundaries. The right figure describes its holographic dual.

interesting to study a similar property in our AdS/BCFT setups. We only consider static
setups and assume that the AdS boundary consists of two disconnected intervals.

In the presence of two intervals, we can find a wormhole like geometry if we can
connect them in the bulk AdS. However, this is not allowed once the null energy condition
is imposed. As discussed in section 5.2, the g-theorem is holographically equivalent to
x′′(z) ≤ 0. This requires the boundary Q eventually evolves toward the inside direction.
Therefore it prevents the boundaries from connecting smoothly with each other. In this
way, we find that the g-theorem is holographically interpreted as the topological censorship.
Notice that in our previous example of section 7.1, the two disconnected regions at the AdS
boundary can connect inside of the bulk AdS because the two regions are connected through
a horizon.

8 Correlation functions

8.1 One point function

Considering the setup given by the metric (2.14), we employ the metric (2.18). The bound-
ary Q is specified by

x = tan θ z, (8.1)

where tan θ = sinh ρ∗
R (see (2.17)).

We are interested in a one point function 〈O〉 of a scalar operator O and the scalar
field dual to O is denoted by φ. The bulk action of φ is given by

S =
1
2

∫
(dx)d+1√g(∂µφ∂µφ+m2φ2) (8.2)

=
1
2

∫
dz dx(dw)d−1

[
Rd−1

zd−1

(
(∂zφ)2 + (∂xφ)2 + (∂τφ)2 + (∂~wφ)2

)
+
Rd+1

zd+1
m2φ2

]
.

where (dw)d−1 = dτd~w. On the boundary Q, we assume the following coupling of φ

SQ =
∫
Q

(dξ)d
√
h(aφ+ · · · ), (8.3)

– 23 –



J
H
E
P
1
1
(
2
0
1
1
)
0
4
3

where the coordinates ξ parameterize the boundary Q and · · · means higher terms in φ

which are not considered here; a is just a constant.
It is useful to define a rotated coordinate x̃ and z̃

x̃ = cos θx− sin θz, z̃ = sin θx+ cos θz. (8.4)

The boundary Q is described by x̃ = 0. By considering the variation δφ of φ with the
equation of motion imposed, we find

δS = Rd−1

∫
dz̃(dw)d−1δφ

(
∂x̃φ

zd−1
+
aR

zd

)
. (8.5)

In this way, we find that the boundary condition on Q for the scalar field φ reads

(cos θ∂x − sin θ∂z)φ+
aR

z
= 0, (8.6)

where the operator acting on φ is ∂x̃ . Notice that to calculate the one point function, we
can neglect the dependence on w.
Requiring the regularity at z =∞, we can expand the solution to the equation of motion
of (8.2) as follows

φ(z, x) = zd/2
∫ ∞
−∞

dkA(k)Kν(|k|z)eikx, (8.7)

where ν =
√
d2/4 +m2R2. The function A(k) can be found by plugging (8.7) into the

boundary condition (8.6) which becomes∫ +∞

−∞
A(k)

[
ik Kν(|k|z) cos θ −

(
d

2z
Kν(|k|z) + ∂zKν(|k|z)

)
sin θ

]
eikz tan θdk (8.8)

=
∫ ∞
−∞

dk
[
ikA(k) cos θKν(|k|z)eikz tan θ

−sin θ
z

(dA(k)eikz tan θ

2
−
(
kA(k)eikz tan θ

)′)
Kν(|k|z)

]
= − aR

zd/2+1
,

where in the last line, we performed a partial integration in terms of k using ∂zKν(|k|z) =
k∂kKν(|k|z)/z. In the appendix D we give a detailed treatment of this equation.

By taking the AdS boundary limit z → 0 of φ, we get the well known behavior

φ→ zd−∆α(x) + z∆β(x), (8.9)

where ∆ = d/2 + ν is the conformal dimension of the dual operator. According to the
standard dictionary in AdS/CFT [49], we find the one point function as

〈O〉 = (2∆− d)β(x). (8.10)

Note that we have imposed two boundary conditions to determine the behavior of the
solution (8.7). The boundary condition of the regularity at z = ∞ is included in the
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boundary condition (8.6) and the boundary condition at the AdS boundary limit z → ∞
is also imposed on φ as seen in (8.9). Thus, the boundary condition above is enough to
determine the solution of φ. The dependence on k of A(k) turns out to be4

A(k) ≡ cθ
|k|d/2

k
(8.11)

and in the following we will find cθ. In the simplest case of θ = 0, from (8.8) we have

c0 =
iaR

2d/2Γ
(
d−∆+1

2

)
Γ
(

∆+1
2

) for d/2 + 1 > ν (8.12)

(see the appendix D for details). Thus we find

β(x) =
〈O〉

2∆− d
= c0

∫ ∞
−∞

dk
−πk−1|k|∆

2 sinπ
(

∆− d
2

)
Γ
(

∆− d
2 + 1

)
2∆−d/2

eikx

=
πaR sin

(
π∆
2

)
Γ(∆) x−∆

2∆ sinπ
(

∆− d
2

)
Γ
(

∆− d
2 + 1

)
Γ
(
d−∆+1

2

)
Γ
(

∆+1
2

) . (8.13)

In this way we get 〈O〉 ∼ 1/x∆ as expected. Our result can be extended for θ 6= 0.
Assuming (8.11), the boundary condition (8.8) is solved by

cθ =
iaR

2d/2Γ
(

∆+1
2

)
Γ
(
d−∆+1

2

)√
1 + v2F (∆+1

2 , d−∆+1
2 , 1

2 ;−v2)
(8.14)

(again, see the appendix D for details) where v = sinh(ρ∗/R) and therefore we get

〈O〉 ≡ aRγ

x∆
=

aR(2∆− d)π sin
(
π∆
2

)
Γ(∆)

2∆ sinπ
(

∆− d
2

)
Γ
(

∆− d
2 + 1

)
Γ
(
d−∆+1

2

)
Γ
(

∆+1
2

)
· x−∆

√
1 + v2F (∆+1

2 , d−∆+1
2 , 1

2 ;−v2)
. (8.15)

Thus, we find that the scaling of the one-point function is independent of θ. We can also see
from above that the coefficient of the one-point function should be real by considering the
odd/even property of the Fourier integral (8.8). We plotted the coefficient of the one-point
function γ as the function of v in figure 8.

For d = 4, it is interesting to compare the one-point function for θ = 0 (8.10) with
the one-point function obtained via the AdS/dCFT correspondence [23]. Substituting
aR = λ1/2 into (8.13) and using some formulas for the Gamma function, we can confirm
that our one-point function agrees completely with the one-point function in [23] of the
following form:

〈O〉 = λ1/2
Γ
(

∆−3
2

)
Γ
(

∆
2

)
Γ
(

3
2

)
πΓ(∆− 2)

x−∆. (8.16)

4If we choose the ansatz for the function A(k) ∼ |k|d/2−1, the left hand side of the boundary condi-

tion (8.8) vanishes.
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Figure 8. Setting R = 1, v(= sinh ρ∗/R) dependence of γ for d = 4 is plotted, where γ is the
coefficient of the one-point function. |γ| for the irrelevant operator (∆ > 4) seems to be small for
any v.

As pointed out in [23], the power of λ in (8.16) at strong coupling does not need to agree
with field theory results at weak coupling. For general BCFT with the gravity dual, this
power at strong coupling seems to be related with the parameter aR.

9 An example of string theory embedding

As a final study in this paper, we would like to present a concrete setup in string theory
which can be regarded as an example of AdS/BCFT. In our model described below, ori-
entifolds with D-branes play the role of the boundary Q. In a geometry which looks like
AdS ×M (M is a compact manifold), we would like to wrap the orientifolds and branes
completely on M so that the backreaction inside M gets trivial and that only the AdS part
becomes relevant as assumed in our effective descriptions of AdS/BCFT.

We would like to consider AdS4×CP 3 solution in type IIA string theory dual to N = 6
supersymmetric Chern-Simons theory (ABJM theory) [50]. We write the metric of AdS4

as follows

ds2 = R2dz
2 − dt2 + dx2 + dy2

z2
. (9.1)

The ABJM theory lives on (t, x, y) and consists of the U(N)k×U(N)−k gauge field, denoted
by (A(1)

µ , A
(2)
µ ) and four chiral multiplets (its bi-fundamental scalars and fermions are de-

noted by XI and ΨI (I = 1, 2, 3, 4). We introduce the two orientifold 8-planes (O8-planes)
so that they are situated at y = 0 and y = L, extending in the nine directions other than
y. Notice that all of such configurations preserve the SU(4) R-symmetry. There are four
different types of O8-planes denoted by O8−, O8 −, O8+ and O8+ (for such a classification
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of orientifolds see e.g. [51–53]). Their differences are clear in the boundary state formalism.
If we write the cross-cap state in the NSNS and RR sector as |ΩNSNS〉 and |ΩRR〉, then
we can represent

|O8−〉 = −|ΩNSNS〉 − |ΩRR〉, |O8 −〉 = −|ΩNSNS〉+ |ΩRR〉,

|O8+〉 = |ΩNSNS〉+ |ΩRR〉, |O8+〉 = |ΩNSNS〉 − |ΩRR〉. (9.2)

In string theory setup with orientifolds, we need to impose the tap-pole cancelation, which
requires that the total RR charge vanishes. For example, the RR-charge of an O8∓-plane
is given by ∓8 times that of a D8-brane.

The basic setup is the O8− − O8− system, i.e. a O8− is at y = 0 and another O8− is
at y = L (refer to figure 9). We need to add totally 16 D8-branes. If we place a half of
them at y = 0 and the other half at y = L, then the RR charge source completely cancels
out and the solution will coincide with the one in AdS/BCFT with the vanishing tension
T = 0 as the NS tadpole is also completely canceled out. In this case of two O8− planes,
the Z2 orientifold projection acts as a parity transformation which exchanges the two gauge
groups

A
(1,2)
t,x (t, x, y) → −

(
A

(2,1)
t,x (t, x,−y)

)T
,

A(1,2)
y (t, x, y) →

(
A(2,1)
y (t, x,−y)

)T
,

XI(t, x, y) → XI(t, x,−y)T ,

ΨI(t, x, y) → P ·ΨI(t, x,−y)T , (9.3)

where MT denotes the matrix transposition of M ; the matrix P is the standard one which
describes the parity transformation of three dimensional fermions. For more details refer to
the appendix E. Notice that the SU(4)R symmetry which rotates the index I is preserved
after this projection.

The Z2 projection (9.3) is also clear from the T-dualized setup of N D3-branes with
a NS5-brane and (1, k) 5-brane considered in [50]. The D3-branes are wrapped on a circle
and they are divided into two parts (called fractional D3-branes), cut by the two 5-branes.
We insert two O7-planes so that they coincide with two 5-branes. The orientifold action
now exchanges two different fractional D3-branes and therefore it also exchanges the two
U(N) gauge group. This setup preserves a half of the original supersymmetries.

The presence of 8 D8-branes at each of the boundaries y = 0 and y = L introduces
8 massless chiral (complex) fermions at each of them. This comes from the D2-D8 open
strings with the orientifold projection. In the ABJM setup without the orientifold, an
appearance of Weyl fermions have been studied in [54, 55] as an example of holographic
edge states of quantum Hall effect. In summary, this three dimensional gauge theory dual to
the AdS4 with two O8− planes is defined by the ABJM theory projected by the action (9.3)
at two boundaries y = 0 and y = L with 8 chiral fermions at each of the boundaries. This
supersymmetric Chern-Simons theory lives on R1,2×S1/Z2 and note that S1/Z2 describes
an interval. The holography tells us that this theory preserves the boundary conformal
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symmetry at the two boundaries and therefore it offers us an example of AdS/BCFT. The
tension of the boundaries is vanishing as the local tadpole cancelation between O8-planes
and D8-branes.

Before we go on, it is instructive to why these edge modes need to appear in this
model. To answer this, we would like to look at the gauge anomaly when we reduce the
theory on the interval and consider its two dimensional field theory in the low energy limit.
It is useful to note that the matrix P can be regarded as the chirality matrix when it is
reduced to two dimension. Thus the condition (9.3) tells us that the right-moving mode
of the fermion should be symmetric, while the left-moving one should be antisymmetric.
In this way, the low energy two dimensional theory is not a non-chiral theory and we have
to worry about the gauge anomaly. Now we want to estimate the anomaly of U(N) gauge
symmetry which is obtained from the projection of U(N)×U(N) gauge symmetry by (9.3).
First consider the SU(N) part. The gauge anomaly induced matter in the representation
R in two dimension is proportional to TrR[T aT b]right−TrR[T aT b]left, where the difference
means that between the left-moving sector contribution and right-moving one. The relation
of such traces between antisymmetric (A), symmetric (S) and fundamental representation
(F) is given by

TrA[T aT b] = (N − 2)TrF [T aT b], TrS [T aT b] = (N + 2)TrF [T aT b]. (9.4)

Since there are four Dirac fermions ΨI which satisfy the projection (9.3), the SU(N) gauge
anomaly is given by

4TrS [T aT b]− 4TrA[T aT b] = 16TrF [T aT b]. (9.5)

This anomaly is completely canceled if we add extral 16 chiral left-moving fermions
with the fundamental representation, which indeed coincide with the edge modes from
the D8-branes. For the anomaly for the U(1) part of U(N), we can similarly confirm
the cancelation.

Moreover, we can move some of the D8-branes from one of O8− planes to another
with the supersymmetries kept. This offers us an example where the boundary Q has non-
vanishing tension. However, we need to be careful to identify its bulk geometry because
the boundary also gives rise to the dilaton gradient. It will be an intriguing future problem
to work out its back-reacted solution in type IIA supergravity.

So far we studied the case where both of the O8-planes are the O8− type. We would
also like to briefly discuss some other cases (refer to figure 9). If one of them is O8− and the
other is its anti-plane i.e. O8−, then the supersymmetries are completely broken and we
do not need any D8-branes for the RR tadpole cancelation. In this case, no chiral fermion
appears and there is no anomaly. This is also consistent with the fact that the fermion
boundary condition is twisted and no zero mode remains. Notice that the Z2 projection for
O8− is given by (9.3) with the sign in front of fermion transformation flipped. Since the
tension of these orientifolds is negative, it is bent toward internal direction and eventually
should smoothly connect with each other. This can be regarded as a boundary version of
the AdS soliton.
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Figure 9. Schematic Pictures of AdS4/BCFT3 setups with various O8-planes. The vertical line in
the left side in each of figures represents the AdS boundary.

On the other hand, if we consider a system with a O8− and a O8+, then a half of the
original supersymmetries are preserved. In this case, since both NSNS and RR tadpole are
canceled, we do not need any D8-branes. The Z2 projection for O8+ is given by replacing
the SO projection in (9.3) with the Sp projection. In this case, we can indeed confirm
that the remained fermion zero modes are non-chiral after we impose the two boundary
conditions. Finally if we consider two O8+-planes, then we need to insert 8 anti D-branes
at each boundaries. This again leads to eight chiral (complex) fermions at each of them.

Finally we would like to notice that if we take the strong coupling limit, we will
find the Horava-Witten model [56, 57], where the boundary Q is now introduced in the
AdS4 × S7/Zk background of M-theory.

10 Conclusions and discussions

In this paper we studied various aspects of the holographic dual of BCFT (AdS/BCFT).
We explicitly constructed holographic duals of conformal field theories on balls.

In AdS5/BCFT4, we confirmed that the coefficient of the logarithmic term in the
partition function agrees with that computed from the conformal anomaly in the field
theory. In AdS4/BCFT3, we noticed there is again a logarithmic term and we found that
this is associated with the boundary degrees of freedom as in the central charge in CFT2.
Thus we called this a boundary central charge. It will be an intriguing future direction
to study this quantity from a field theory side. In AdS3/BCFT2, the partition function is
interpreted as the g-function.

Next we showed a holographic g-theorem in any dimension, which argued that the
holographically defined g-function decreases under RG flows if we assume the null energy
condition. As a special example of this, we found that the boundary central charge in
BCFT3 decreases under RG flows. We also pointed out this g-theorem is closely related to
the topological censorship which prohibits the existence of AdS wormholes.

If we heat up such systems, it is natural to expect a Hawking-Page type phase tran-
sition. We explicitly show this transition in the AdS3/BCFT2 case. We find that as the
boundary entropy gets larger, the transition temperature gets lower. In higher dimen-
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sions, though we found a solution in the low temperature phase, we did not in the high
temperature phase. This leaves an interesting future problem.

Moreover, we presented a time-dependent example of AdS/BCFT. In this example,
the two disconnected regions at the AdS boundary are accelerated so that they cannot
communicate with each other. These two regions are connected in the bulk AdS. We
confirmed that the entanglement entropy between them is equal to the black hole entropy
after a coordinate transformation which makes the background static.

We also computed holographic one-point functions and confirmed that their scaling
property is the same as what we expect from field theory calculations. Finally, we gave an
example of string theory embedding of this holography, based on the type IIA AdS4×CP3

geometry with O8-planes. This is dual to a ABJM theory on an interval. The gauge
anomaly cancelation requires massless chiral fermions localized at the two dimensional
boundary, being consistent with the D-brane analysis. In this example, even though we
can change the value of the tension T , it is possible that the back reactions of the D8-branes
and O8-planes break the conformal invariance. This issue deserves future study. At the
same time, it is an important future problem to find some other examples in string theory
and realize AdS/BCFT with a non-vanishing tension T .
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A Calculations of extrinsic curvatures

Here we would like to explain the calculations of extrinsic curvatures in d+ 1 dimensional
spacetime. If we define hµν (µ, ν = 0, 1, 2, · · · , d) to be the induced metric of d-dimensional
submanifold Q and nµ to be a space-like unit normal vector on Q (toward the outside
direction), then we have the relation

hµν = gµν − nµnν . (A.1)
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Figure 10. A connected surface in the bulk associated to the annulus.

The extrinsic curvature Kµν is defined by

Kµν = hρµh
λ
ν∇ρnλ, (A.2)

where ∇ρnλ is the standard covariant derivative in the d + 1 dimensional spacetime. Its
trace is given by

K = gµνKµν = hµνKµν . (A.3)

These expressions using the d+ 1 dimensional coordinate are degenerate because Kµνn
ν =

hµνn
ν = 0. In this convention, the boundary equation of motion (2.12) is equivalent to

Kµν = (K − T )hµν . (A.4)

After projecting to the d dimensional coordinate, we obtain Kab and hab (a, b =
0, 1, 2, · · · , d− 1).

B Possibility of connected boundary for the annulus

In this appendix we consider the boundary theory defined on an annulus and the connected
surface Q extending in the bulk shown in figure 10 as a possible solution of (2.12) in
Euclidean AdS3 (3.3).
We find it convenient to parameterize this surface by two angular coordinates (θ, φ) as
follows

z = r1(sinφ+ sin δ) τ = (r0 + r1 cosφ) cos θ x = (r0 + r1 cosφ) sin θ (B.1)

where 0 6 θ 6 2π and −δ 6 φ 6 π + δ while δ ∈ (−π/2, π/2) is a parameter. The
circumference in the middle of the boundary annulus has radius r0 while r1 < r0 is the
radius of the circumference arch shown in figure 10. The parameter δ tells us whether the
center of this circumference arch has z > 0 (δ > 0) or z < 0 (δ < 0). The surface Q is
generated by rotating this arch around a vertical axis defined by τ = 0 and x = 0. The
thickness of the boundary annulus is 2r1 cos δ.
The surface Q is equivalently described by the following constraint(√

τ2 + x2 − r0

)2
+ (z − r1 sin δ)2 = r2

1 . (B.2)
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The induced metric on Q reads

hab =
R2

z2

(
(r0 + r1 cosφ)2 0

0 r2
1

)
(B.3)

while from the expression of Kab for Q we find that

Kab −K hab =
R

z2

− (r0 + r1 cosφ)2 sin δ 0

0
r0 sinφ− r1 sin δ cosφ

r0 + r1 cosφ
r2

1

 . (B.4)

It is clear that we cannot solve both the two equations given by Kab − Khab = −Thab
through the parameter δ only. Indeed, the first equation provides the tension T = sin δ/R
but then the other one leads to r0 = 0, which makes the annulus collapse to a circle and
Q becomes the surface shown in figure 3.

C Boundaries in rotating BTZ black holes

In this appendix we find a surface in the rotating BTZ satisfying the boundary equa-
tion (A.4) by using the fact that it is locally equivalent to AdS3. The metric of the
rotating BTZ is given by

ds2 =
r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2dx2 +

(
−

(r2 − r2
+)(r2 − r2

−)
r2

+
r2

+r
2
−

r2

)
dt2 + 2r+r−dtdx,

(C.1)
where we used the convention of the unit AdS radius R = 1.

This metric is obtained by a coordinate transformation of the pure AdS3 metric ds2 =
(dw+dw− + dz2)/z2 as follows:

w+ =

√
r2 − r2

+

r2 − r2
−

exp((x+ t)(r+ + r−)) ≡ T + V, (C.2)

w− =

√
r2 − r2

+

r2 − r2
−

exp((x− t)(r+ − r−)) ≡ −T + V, (C.3)

z =

√
r2

+ − r2
−

r2 − r2
−

exp(xr+ + tr−). (C.4)

This transformation changes the following sphere to a surface:

w+w− + (z − rB sinh(ρ∗))2 − r2
B cosh(ρ∗)2 = 0. (C.5)

Remind that R is set to be 1 and this surface is a solution of the gravity dual of BCFT.
Employing the coordinate transformation above, the surface in the rotating BTZ black
hole is given by

0 = F (t, x, r) ≡ x+
1
r+

[
ρ∗ + t r− − log

(rB
2

)
− log

(
f̃(r)

)]
(C.6)
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where

f̃(r) ≡ (e2ρ∗ − 1)

√
r2

+ − r2
−

r2 − r2
−

+

√
e4ρ∗(r2

+ − r2
−) + 2e2ρ∗(2r2 − r2

+ − r2
−) + r2

+ − r2
−

r2 − r2
−

. (C.7)

Remind that for the case r− = 0, the rotating BTZ black hole becomes the BTZ black
hole. Setting r− = 0, indeed, the surface (C.6) becomes the surface of the BTZ BH found
in (4.12):

x+
1
r+

 ρ∗ +− log
(rB

2

)
− log

(e2ρ∗ − 1)
r+

r
+

√
4e2ρ∗r2 + (e2ρ∗ − 1)2r2

+

r

 = 0 .

(C.8)
Taking the derivative and using the coordinate transformation r → 1/z,

dx

dz
=

T√
1− T 2(1− r2

+z
2)
. (C.9)

In addition, the surface (C.6) for the rotating BTZ (C.1) is also a solution of the boundary
equation.

To check this, first, the surface normal reads

n̂µ = ∂µF (t, x, r), nµ =
n̂µ√
n̂ν n̂ν

(C.10)

while the induced metric is defined in (A.1). The second Christoffel symbol for the rotating
BTZ black hole is obtained as

Γ3
13 =

r3

(r2 − r+
2) (r2 − r−2)

, Γ3
12 =

r+ r− r
(r2 − r+

2) (r2 − r−2)
,

Γ2
13 = − r+ r− r

(r2 − r+
2) (r2 − r−2)

, (C.11)

Γ2
12 =

(
r2 − r−2 − r+

2
)
r

(r2 − r+
2) (r2 − r−2)

, Γ1
33 =

r4 − r2r−2 − r+
2r2 + r+

2r−2

r
, (C.12)

Γ1
22 −

r4 − r2r−2 − r+
2r2 + r+

2r−2

r
, Γ1

11 = − r4 − r+
2r−2

r (r2 − r+
2) (r2 − r−2)

. (C.13)

The extrinsic curvature are obtained by using (A.2) and (A.3). After a short computation,
the surface (C.6) is found to be the solution as follows:

K = 2T, Kµν −
K

2
hµν = 0. (C.14)

D Details about the one point function

In this appendix we give some technical details on the derivation of the results of the
section 8.
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Given (8.7), it is useful to recall that the modified Bessel function of the second kind Kν(z)
is related to the modified Bessel function of the first kind Iν(z) as follows

Kν(z) =
π

2
I−ν(z)− Iν(z)

sin νπ
Iν(z) =

(z
2

)ν ∞∑
n=0

(z/2)2n

n!Γ(ν + n+ 1)
. (D.1)

where we have also provided the expansion of Iν(z). Let us consider the boundary condi-
tion (8.8)∫ +∞

−∞
A(k)

[
ik Kν(|k|z) cos θ −

(
d

2z
Kν(|k|z)+∂zKν(|k|z)

)
sin θ

]
eikz tan θdk = − aR

zd/2+1
.

(D.2)
By using that

∂zKν(z) = −Kν−1(z) +Kν+1(z)
2

(D.3)

and (8.11), the boundary condition (D.2) reads (we change the integration variable k̃ ≡ kz
here)

cθ
2

∫ +∞

−∞
|k̃|d/2

{
2Kν(|k̃|) cos θ (D.4)

+

[
d

k̃
Kν(|k̃|)− |k̃|

k̃

(
Kν−1(|k̃|) +Kν+1(|k̃|)

)]
i sin θ

}
eik̃ tan θdk̃ = iaR .

By exploiting the parity of the integrand, we can write (D.4) as follows

cθ

∫ +∞

0
k̃d/2

{
2Kν(k̃) cos θ

(
eik̃ tan θ + e−ik̃ tan θ

)
(D.5)

+ i sin θ
[
d

k
Kν(k̃)−Kν−1(k̃)−Kν+1(k̃)

](
eik̃ tan θ − e−ik̃ tan θ

)}
dk̃ = 2i aR

where we can recognize cos(k̃ tan θ) and sin(k̃ tan θ) in the expressions between the round
brackets. The integral in the l.h.s. of (D.5) clearly provides a real number, thus cθ is
purely imaginary.

Let us consider first the simplest case of θ = 0 i.e. x = 0. The condition (D.5) then
becomes

2c0

∫ +∞

0
kd/2Kν(k) dk = i aR . (D.6)

By using the following integral in (D.6)∫ ∞
0

kµ−1Kν(k) dk = 2µ−2 Γ
(µ+ ν

2

)
Γ
(µ− ν

2

) {
Re(µ) > Re(ν)
Re(µ+ ν) > 0

(D.7)

and also (8.11), we get 8.12. In the general case of θ > 0, by employing the following
integrals∫ ∞

0
kµ−1Kν(k) cos(bk) dk = 2µ−2 Γ

(µ+ ν

2

)
Γ
(µ− ν

2

)
F
(µ+ ν

2
,
µ− ν

2
;
1
2

; − b2
)

(D.8)∫ ∞
0

kµ−1Kν(k) sin(bk) dk = (D.9)

= 2µ−1b Γ
(µ+ ν + 1

2

)
Γ
(µ− ν + 1

2

)
F
(µ+ ν + 1

2
,
µ− ν + 1

2
;
3
2

; − b2
)
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the boundary condition (D.5) becomes

2d/2

cos θ
Γ(α+) Γ(α−)

{
cos2 θ F

(
α+, α−; 1/2 ;− v2

)
(D.10)

− sin2 θ
[
(2α− − 1)F

(
α+, α−; 3/2 ;− v2

)
− 2α− F

(
α+, α− + 1; 3/2 ;− v2

)]}
=

i aR

cθ

where

α+ ≡
d/2 + ν + 1

2
α− ≡

d/2− ν + 1
2

v ≡ tan θ . (D.11)

By employing the following identity of the hypergeometric function

(c− 1)F (a, b; c− 1; z)− b F (a, b+ 1; c; z) + (b− c+ 1)F (a, b; c; z) = 0 (D.12)

the boundary condition (D.10) simplifies to

2d/2 Γ(α+) Γ(α−)
√

1 + v2 F
(
α+, α−; 1/2 ;− v2

)
=

i aR

cθ
. (D.13)

From this equation we obtain cθ, given in (8.14) . For θ = 0 we recover (8.12) as special
case.

E Discrete symmetries of ABJM theory

Here we summarize the discrete symmetries of the ABJM theory. The two U(N) gauge
fields are denoted by A

(1)
µ and A

(2)
µ . The matter fields consists of bi-fundamental four

complex scalars XI and bi-fundamental four Dirac fermions ΨI (I = 1, 2, 3, 4). See also [50,
58] for earlier discussions on the discrete symmetries. The charge conjugation symmetry
C is given by

A(1,2)
µ (t, x, y) → −A(1,2)

µ (t, x, y)∗,

XI(t, x, y) → XI(t, x, y)∗,

ΨI(t, x, y) → C ·ΨI(t, x, y)∗, (E.1)

where T denotes the transposition of the matrix and C denotes the matrix which describes
the parity transformation of three dimensional fermions. Notice that the two gauge groups
are not interchanged in this C transformation. The parity symmetry P is given by

A
(1,2)
t,x (t, x, y) → −

(
A

(2,1)
t,x (t, x,−y)

)T
,

A(1,2)
y (t, x, y) →

(
A(2,1)
y (t, x,−y)

)T
,

XI(t, x, y) → XI(t, x,−y)T ,

ΨI(t, x, y) → P ·ΨI(t, x,−y)T , (E.2)
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where the two gauge groups are exchanged. Finally, the time reversal symmetry T is found
to be

A
(1,2)
t (t, x, y) →

(
A

(2,1)
t (−t, x, y)

)T
,

A(1,2)
x,y (t, x, y) → −

(
A(2,1)
x,y (−t, x, y)

)T
,

XI(t, x, y) → XI(t, x,−y)T ,

ΨI(t, x, y) → T ·ΨI(t, x,−y)T , (E.3)

where the two gauge groups are again exchanged. Remember that a standard Chern-
Simons gauge theory with a single gauge group does not have either parity or time reversal
symmetry [59].

For a Dirac fermion description with the signature ηµν = (1,−1,−1), the gamma
matrices can be defined by γ0 = σ1, γ1 = −iσ2, γ2 = iσ3 (σ1,2,3 are the Pauli matrices). In
this convention, the matrix C,P, T is given by C = iγ1, P = iγ2 and T = iγ1.
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