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Overview

The main purposeof this work is to descrike the ground state properties of
dilute Fermi uids in the strongly interacting regimecharacterizedby a large
and negative scattering length. The study of sud systemshas generated
greatinterestin various elds. A few yearsbad, the experimertal e orts in
the physicsof ultracold gaseshave allowed to create sud systems,opening
the possibility to test our knowledgeof the pairing phenomenaunder a big
variety of conditions. Strongly correlated particles were already very well
known in condensedmatter and nuclear physics, as well asin astrophysics
wherethe description of neutron stars falls into this category

In the asymptotic limit of the scattering length a; goingto 1  (unitary
limit ), all the length scalesass@iated to the interactions disappear, and the

only characteristic length is the interparticle distancer, = é s 97 (or equiv-

alertly the inverseof the Fermi momertum, 1=kg). In this limit the energy

canbe then expressedn terms of the Fermi gasenergy E = X2 Analyt-
ical approatcesand Monte Carlo simulations reveal that the proportionality
constart is far from being unity, revealingthe essetial role of the correla-
tions induced amongthe particles. Thereforeany attempt to apply a mean
eld theory in this cortext fails.

Our approad to handle sud systemsis basedon Quantum Monte Carlo and
the Fermi-Hyper netted chain (FHNC), with particular attention to the last

one. The main achievemerts presened in this thesis consistof:

Formulation of the FHNC theory for a correlated BCS state (denoted
hereafterby FHNC/BCS) for the caseof longitudinal spin dependen
Jastrow correlations,namelycorrelationswhich distinguish spin-parallel
from spin anti-parallel pairs.

Derivation of all the neededFHNC/BCS integral equationsto compute
the energy per particle, one- and two-body density matrix and the
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excitation energies.

Calculations have been made for neutron matter with semirealistic spin-
dependert NN potentials and for dilute Fermi systemsinteracting through
Lennard-Jonespotentials with large and negative scattering length/ The
main results are the following:

Large e ects have beenfound in the energy per particle and conse-
quertly on the equation of state for the longitudinal spin dependency
of the Jastrow correlations in the description of the BCS super uid
phase.

The excitation energy of the super uid system,and in particular the
gap energyhasbeencalculatedfor the rst time in full FHNC theory.
Good agreemeh has beenfound with QMC evaluations.

The structure of the thesisis as follows. The rst chapter cortains an in-
troduction to the problem, followed by someinsights into the Festbad res-
onancesmedanism which allows to producethe strongly interacting regime
in laboratory for dilute Fermi gases. The mertioned resonancesp er the
possibility of changing the e ective scattering length betweena! 1 to
al! +1, giving accessto the known BCS-BEC crosseer, which will be
brie y descrited later. The chapter nishes by introducing the readerto the
super uidit y of neutron matter, which is alsoa systemwith large and nega-
tive scattering length. Chapter 2 concernsdirectly with the methods of cal-
culations, starting by the Auxiliary Field Di usion Monte Carlo (AFDMC)

which was deweloped as an extension of the Diusion Monte Carlo to ad-
dressproblemsin which the Hamiltonian dependson spin variables, as the
NN interaction requires. The main emphasisin this chapter as well asin
the in whole thesisis given to the formalism of the FHNC. The extension
of the FHNC/BCS to the caseof longitudinal spin ( ,) depender correla-
tions is descrited in detail including the expressionof the energyfor a spin
dependent potertial. The FHNC in the normal phasewith and without
dependenceare reviewed in the Appendices. In Chapter 3, the equation of
state (EOS) for neutron matter and of dilute Fermi gasesin the strongly
correlated regime, are presertied by direct application of the FHNC meth-
ods. Chapter 4 is dewted to preseration of the FHNC theory to calculate
the momertum distributions in the super uid phase.We presein in Chapter
5 the implemertation of the FHNC methods to calculate the gap energy of
sud super uid systems,aswell as calculation of the excitation energy



Contents

1

Intro duction 9
1.1 Dilute Fermionicgases. . . . . . . . . . o i e 11
1.1.1 Feslbachresonances. . . .. .. ... ... ...... 13
1.1.2 BCS/BEC cross@er . . . .. .. .. .......... 16
1.2 NeutronMatter . . . . . . . .. ... 19
Man y-b ody metho ds 27
2.1 Quantum Monte Carlomethods . . . . . ... ... ...... 27
211 ThePfaan . ... .. ... ... ... ... ... ... 29
22 FHNC method . .. ... ... ... . ... ... .. ..... 32
2.2.1 FHNC for longitudinal spindependert correlatedFermi
JASES. . . v e e e 33
23 FHNC/BCS . . . . . . . e 36
2.3.1 Correlated BCS ansatzand cluster expansion . . . . . 36
2.3.2 The correlatedBCSansatz. . . . ... ......... 36
2.3.3 Clusterexpansion. . . . . . ... .. ... ....... 37
2.4 Energy expressiondor the correlatedBCSansatz . . . . . .. 43
2.4.1 Potertial energy. . . . . ... oo 43
24.2 Kineticenergy. . . . . . . . . . i 46
25 Eulerequations . . . . ... ... ... ... ... 50
25.1 Energyexpressions. . . . . . . . .. ... ....... 53
Equation of state for neutron matter and dilute Fermi gases 57
3.1 Dilute Fermi gaseswith large scatteringlength . . . . . . . .. 57
3.1.1 Normalphase. . ... .................. 59
3.1.2 Superuid phase . ... ... .. .. ... .. ..., 63
3.2 Neutronmatter . . . .. .. ... ... .. ... 69
3.21 Normalphase. . .. .. ... .. ... ... ...... 70



CONTENTS

3.2.2 Superuid phase . . .. .. ... ... ... ... 74
Calculation of the gap and excitation energy 83
4.1 The gapin the FHNC/BCS theory . ... ... . ... . ... 83

4.1.1 Neutronmatter . . . . ... ... ... ... ...... 88
Conclusions and perspectiv es 91

FHNC/BCS equations for longitudinal spin-dep endent Jas-
trow 95

Calculation of the exchange terms in the potential energy 101



Chapter 1

In tro duction

Super uidit y of strongly correlated Fermionsis a subject of currert interest.
Dilute Fermi gas,high T superconductivity, liquid *He and neutron matter
are only few examplesof interesting systems,for which a better understand-
ing of the interplay betweenlong range order phenomenaand strong corre-
lations is needed.The questionof whether many-body e ects are important

alsoin the low density regime, where the super uid phasetransition may
occur, for quartities sud as ground state and gap energiesmomertum dis-
tribution or pairing function is still an open and challenging problem. Most
of the ground state and gap energycalculationsare limited to either uncor-
related BCS theory or at most to two-body correlated approximation, based
upon Bruedkner Hartree-Fock (BHF) or Correlated Basis Function (CBF)

theories. The argumen of the super uid phasetransition occurring at low
density which hasbeenusedto justify the above appraximations is howewver
not valid for those systemsin which particles interact strongly.

The important parameterin the systemis = kra, wherekg = (6 2= )3,
with  being the uid density and its spin degeneracykg is the Fermi
momertum and a is the 1S, scattering length. Large and negative values
of favor weak coupling BCS super uid [1] and, at the sametime, induce
strong correlations amongstthe particles. In the asymptotic limit (unitary

regime) ! 1 , the limit that Bertsch proposedto study in 1998(2], the
only remaining length is kg, and therefore the ground state energyis pro-
portional to the Fermi kinetic energyEg = %% It turns out that the
proportionality constart is 0.44 instead of being 1 [3], implying that mean
eld appraximations fail evenin the low density regime.

Ultracold dilute gasof Fermi atoms have been produced in atom traps in
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10 Intro duction

the regimeof interaction having large negative scattering length by usingthe
Festbad resonancemedanism. In the experimert by K.M. Ohara et al. [4]
with 6Li = 7:4. As the atomic interaction strength is increasedtowards
the Bertsch limit, namely that correspndingto a! 1 , onegetsbosonic
two-Fermions bound state. Therefore one may considerdilute Fermi gases
with large scattering length as being intermediate systemsbetween weak
coupling BCS super uids and dilute BosegasundergoingBose-Einsteincon-
densation(BEC) [5], [6]. Dilute Bosegasin the strongly interacting regimeof
largea=rq, whererg = (41)1:3 is the averageinterparticle spacing,have been
experimertally produced [7], [8] and theoretically studied [9], [10], [11]. A
secondmportant exampleis provided by neutron matter which canbe found
in the interior of neutron stars and which shavs up super uid properties[12).
The scattering length of NN interaction has beenfound to be 185 fm
in2H( ; nn) reactions[13] and 16:3 fm in deuteronbreak up experi-
merts [14]. At densitiesassmallas10 3 fm 3 the parameter rangesfrom 5
to 5.7, namelyis much larger than one. Quantum Monte Carlo methods have
beenrecerly appliedto perform numerical simulations of Fermi uids in the
super uid phase.The Diusion Monte Carlo (DMC) [15]and the Auxiliary
Field Di usion Monte Carlo (AFDMC) [16] for the caseof spin dependen
interactions, have recerly beenimplemerted to use correlated pfa ans as
guiding functions ([3], [17]).

We dewlop here a technique based upon Fermi Hyper Netted Chain
(FHNC) theory [18, and denoted as FHNC/BCS to perform variational
calculations with correlated BCS wave funct&sns. The type of correlation
we consideris of the Jastrow-type, namely = F;, with F; depending on

(i) and ,(j), the z-componerts of the spins of particlesi andj, in order
to distinguish parallel from antiparallel spin pairs. FHNC integral equation
methods have beenthoroughly usedin CBF theory to performabinitio calcu-
lations of the static and dynamical properties of se\eral strongly interacting
Fermi uids at low temperature rangingfrom liquid helium to nuclear matter
in both bulk and con ned geometrieg19]. In the eighties, FHNC theory has
beengeneralizedto deal with pure Jastrow correlated BCS wave functions
(but with no ,-dependence). In that paper ([20] denoted here as |) the
FHNC/BCS integral equationshave beenderived to compute the two-body
distribution function g(r,), the momertum distribution n(k) and the pairing
function (k), but they have newer beenapplied to perform calculations of
the ground and excited states energiesof strongly interacting Fermi systems
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in the continuum. The FHNC/BCS theory hasonly beenappliedin Hubbard
model calculations of strongly correlated electronin a lattice [21], [27], [23],
wherethe knowledgeof g(ri2) and n(k) werethe only required quartities.

1.1 Dilute Fermionic gases

Bose-Einsteincondensationin dilute gaseswas adieved experimertally in
1995for the alkali gases:rubidium [24], sadium [25] and lithium [26. In
this striking phenomenonthe quartum nature of particles shovs up at tem-
peraturesof the order of 10 ° K and low densitiesaround 10  10'® cm 2,
more than four orders of magnitude lighter than air.  Sincethat time a
vast number of work have beenpublishedin the experimertal aswell asin
the theoretical eld. The most important achievemeris concernthe man-
ifestation of super uidit y through the obsenation of Josephson-lik e ects
[27], [28], the realization of quartized vortices[29], the interferenceof matter
waves[3( and the study of coherencan atomic lasercon gurations [31], to
mertion just of a few. Later on the with the achievemen of degeneracyin
a Fermi gas[32), the researb hasfocusedon the realization of a super uid
and the understandingof the pairing phenomenain this type of systems.

The quantum essenceof particles becomesimportant when the de Broglie
wavelength, de ned as: r

2kaT

is comparablewith the averageinterparticle spacing. The need of low
temperatures to reveal the quantum world, can lead the particles to form
molecular states and read a solid or liquid transition. Therefore a delicate
balance between temperature and density must hold in order to keep the
atomic systemin gaseousphase. Two types of scattering processelay
important roles: the binary collisionswhich allow the systemto thermalize
at a rate proportional to the density (processwhich leadsto cooling the
system), and the 3-body collisionswhoserate is proportional to 2 which
lead to the formation of molecules. Thus extremely low densitiesallow to
achieve degeneracyin a gas.

Although the rangeof temperaturesat which quantum degeneracyappearsin
Fermionsand bosonsis the same,its e ects are manifestedin a di erent way.
In the Bosecase,quartum statistical e ects are translated into the onsetof
a phasetransition to the Bose-Einsteincondensate. On the cortrary, the




12 Intro duction

appearanceof quantum behavior in Fermi systems,doesnot coincide with
the occurrenceof a super uid phase,which actually doesnot take place if
there are no interactions between Fermions. From the theoretical point of
view the many body physics of Fermionsat low temperature is particularly
rich and challenging.

The experimertal processto read sud low temperatures and densities
starts usually with lasercooling and magnetictrapping, followed by evapora-
tive cooling . Thesetechniquesapply to both bosonicand fermionic species,
but for the latter when only a single componert is presen, the Pauli ex-
clusion principle inhibits the thermalization process,challengingany further
reduction of the temperature. To overcomethis di cult y the technique of
sympathetic cooling with mixtures of di erent fermionic or bosonic-fermionic
speciesis used. Quantum degeneracyhasbeenreported for instanceby Tr-
uscott et al. [33]in Lithium by applying sympathetic cooling betweenthe
FermionSLi and its bosonicisotope ’Li, and by DeMarcoand Jin [32] mixing
the hyper ne statesj9=2;9=2i and j9=2;7=2i of “°K.

At sud low temperaturesthe most important physical processess lead

by two body scattering, characterizedby the scattering length a, while the
relevant internal states of the atom are the hyper ne states. The coupling
between sud internal statesin the presenceof the external magnetic eld
givesrise to the so called Feslbad resonanceswhich then provide a cortrol
medanism of the strength of the interactions.
The feasibility of this medanism openeda newtool to achieve super uidit y
in fermionic systems. As a result, novel conditions were reated by varying
the external magnetic eld. In 2002,O'Hara et al. [4] succeededn creat-
ing a dilute gasin a strongly interacting regime. This particular situation is
produced by working closeto the Festbadch resonancewhere the scattering
length blows up to innit y. In the unitary regime, which is characterized
by the disappearanceof all the lengths assaiated with the interactions, the
remaining length scaleis 1=k-. As a consequencethe description of these
Fermi dilute gasis expectedto exhibit a universal character. Another inter-
esting feature is the critical temperature, which is much higher than the one
predicted in the BCS regime;its estimations are of the order of the Fermi
temperature, thereforethe super uid phaseis more easily readable. In Ta-
ble 1.1. is shown the order of magnitude of the critical temperature in terms
of the Fermi temperature, for various Fermi systems.
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System | TTe
Classicalsuperconductors 104 104

Super uid 3Helium 10 3

High T superconductors 10 2

Dilute Fermi gasesn the vicinity of a Festbad resonance 0:2

Table 1.1: Ratio between Critical and Fermi temperature for dierent
fermionic systems. Taken from [34]

The presenceof an external magnetic eld turns out to be important not
only asa tool for trapping and cooling the alkali gasesbut alsoto modify
the e ective interactions betweenatoms. The tunability of the interactions
makes it possibleto change from attractive (a < 0) to repulsive (a > 0)
e ectiv e interactions; this is known asthe BCS-BEC crosseer. In the next
subsectionsa brief overview of the Festbadh medanism and the crosseer is
given.

1.1.1 Feshbach resonances

One of the most appealing aspects in the physics of dilute systemsis the
ability to tune the type of e ective interactions. The certral medanism
responsible for the tuning is the magnetic eld, which revealsand modi es
the hyper ne structure of the probe, which is particularly rich for alkali
atoms. The phenomenonrst investigatedin the cortext of nuclear matter
[35], was primarily obsened in dilute atomic gasesfor sadium, undergoing
BEC in 1998 [36], [37]. Soon after, Feslbach resonancesmade possible
the achievemen of condensationin Rb® [38]. It has also beenveried in
fermionic vapors sud as K#° [39]and Li® [40.

The interactions between alkali atoms are basically determined by the
state of the valenceelectrons. Two colliding atoms can form a singlet state
therefore sharing the sameorbital with di erent spin states. The Coulonb
repulsion between them is re ected in a strongly repulsive potertial. In
cortrast a triplet state doesnot support sud reduction in energy and the
electronsare far from ead other in order to maintain the antisymmetry of
the wave function.

Due to magnetic interaction with the nuclear spin, a coupling between
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both con gurations can arise. As a consequencé two atoms are colliding
in a triplet state for instance, the electronic and nuclear spin of one of the
atoms may be ipp ed, thusresulting in a singlet state. This state is usually
formedfor a short life time up to another collision processbringing bad the
triplet initial potertial.

The electronicZeemancoupling to the triplet state in the presenceof an
external magnetic eld, can shift its relative energeticposition with respect
to the singlet con guration. Let be the shift introducedin the scattering
threshold of the singlet and triplet states. Usually the singlet threshold is
above the triplet one,thereforeis energeticallyunfavorable for atomsin the
singlet to escag out. It is very commonin this problem to refer to a state
(set of quarntum numbers) as channel With this corvertion, the singlet
con guration is denotedas closal channelwhile the triplet, asopen channel
This terminology is more appropriate, becausean generalthe interactions are
made of a superposition of both singlet and triplet states.

The exampleshown in Fig. 1.1 shaws the potential felt by the scattering
atoms in the singlet S = 0 or in the triplet S = 1 two-body states. For a
Feslbad resonanceto occur a bound state belongingto the closedchannel
must lie closeto the scattering threshold of the open channel. The energy
di erence betweenthe bound state energyand the zeroenergycorrespnd-
ing to the cortinuum of scattering states of the triplet or open channel is
referredto asdetuning parameter.

The scattering processis then tremendouslya ected by the existenceof
bound statesin closedchannels. Adjusting the magnetic eld it is possible
to changethe detuning parameter from positive (bound state of the closed
channel above the threshold of the open channel) to negative (bound state
bellow the zeroenergy). The intermediate situation when = 0, occursfor
a particular value of the magnetic eld By. As aconsequencef the coupling
betweenboth channels,the scattering length is modi ed with respect to the
badkground scattering length ayg, if there is no coupling between channels.
The dependenceof the scattering length with the magnetic eld is ruled by,

B .
B By

where B is a measureof the width of the resonanceand the detuning
parameter B Bo. When the energyof the scattering particlesis below

that of the bound state, an attractive (a < 0) e ective interaction arises
betweenthem and when the opposite situation occurs a repulsive (a > 0)

a=ay 1
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Figure 1.1: Pictorial description of a Festbad resonance. The lower line
correspnds to the potertial between two scattering atoms in triplet spin
state (open channel) and the upper to the interaction potertial in the singlet
state (closedchannel). The shift betweenthe cortinuum states (represeied
with dashedlines) between open and closedchannelsdue to the magnetic
eld, correspndsto (B). The detuning parameter measureshe di erence
betweenthe bound state in the closedchanneland the zeroenergyof the open
channel. Taken from [41].

interaction is established(Seefor instanceFig. 1.2). Thus it follows that in
the former casethere is no bound state; for that side of the resonancexhen
a! 1 the systemis at the onsetof a molecular bound state. From the
other sidewhenthe a! +1 ;the bound state reathesthe stability. There-
fore the picture of the systemewlvesfrom Cooper pairs (weakly interacting
particles) to the BEC of bosonicmoleculesmade of two Fermions.

The magnetic eld acts like a knob for the interactions opening a wide
range of possibilitiesto test our knowledgein the many body processgiving
rise to the condensationof particles. Although the scattering length passes
through jaj! 1 , the N body problem of super uidit y ewlvesin a smaooth
way, shaving that weak coupling and strong coupling pairing correspndsto
two facesof the samecoin; the crosseer between BCS and BEC is based
preciselyon this fact.
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a>0

Figure 1.2: Left: Example of an attractiv e potential (blue line) togetherwith
the solution of the reducedradial equation (red line). Right: Idem situation
for a repulsive potentail. The scattering length a is given by the intercept of
the asymptotic reducedradial wave function on the r axis (greenlines).

1.1.2 BCS/BEC crossover

In the cortext of pairing in Fermi systemsthere are two di erent pictures
involved. On one side the weak pairing case(a small and negatiwe), suc-
cessfullyexplained by standard BCS theory and on the other the model of
composite bosons(dimer moleculeof Fermions) undergoingBEC. Through
the Festbadh resonancedor instance, the pairing phenomenaewlves from
dealing with Cooper pairs whosesize is huge comparedto the interparti-
cle Fermion distance, to real tightly bound bosonicmolecules,experiencing
the crosseer which is characterizedby jaj large correspnding to a strong
coupling regime. This is the region of interest for us. In Fig.1.3 a pictorial
represemation of the pair formation is showvn in both cases.

Besidethe di erences in the pair size, also the transition temperatures
di er considerably In the BCS theory the Fermi liquid undergaesa pairing
instability at a temperature much smaller than the characteristic Fermi
temperature T, Te: The formation of Cooper pairs coincideswith the
transition to the super uid (or superconductivity) state. In cortrast Bosons
condenseat a temperature of the order of their degeneracytemperature.
Bosonsare composite objects made up of an even number of Fermionsand
the temperature requiredto dissaiate them is tremendouslylarger than the
condensationtemperature, T Tgissoc:
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Figure 1.3: Represetation of the pairs in the BCS (left) and BEC (right)
case. The BCS pairing is characterized by the strong overlapping of the
Cooper pairs while in the BEC super uid, real bound moleculescondensdn
a macroscopicwave function. the di erence betweenthe

Certainly there are many commonfeaturesconcerningtheir macroscopic
behavior. Bosonic and fermionic super uids are descrited by a coheren
wave function and in three dimensions,their density matrices exhibit O -
diagonallong range order (ODLRO).

The quartity of works done in this eld is large and the motivations
behind them comefrom very diverseinterests. A variety of techniquesrang-
ing from renormalized mean eld theories, variational approades, random
phaseappraximation (RPA) and numerical simulation have constructedthe
rich map of the eld, but still open questionsare left, especially concerned
with the intermediate regime.

In this brief introduction we will showv the behavior of important quarti-
ties in the crosseer, emphasizingin the limiting regimesof weak and strong
coupling. This follows the work done by Randeriaet. al [5].

Commonly onestarts with a systemof Fermionswith attractiv e two body
interactions. The fermionic nature of the particles is an important condi-
tion in the experimerts, sincethe bosoniccourterpart would require a large
amourt of energiesto be broken into their constituert Fermions. Following
Randeria [5] notation, the Hamiltonian density for a cortinuum model* is

ILattices models are also very used, the most important being the Hubbard model.
Herethere are two parameterswhich rule the crosswer, the lling factor and the coupling
U=t. Where U is the on-site attraction and t the hoping constart.
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written like

r 2

H=" (x) — X) g (X) «(X) &(x) «(x)

where  (x), (x) are the creation and destruction eld operators at
position X, spin . The chemical potential is introducedto x the average
density and g is the strength of the bare attractiv e interaction (this is the only
parameterintroducedso far in the model). Natural units are used. At the
temperaturesof interest, only the s wave scattering length ag, characterizes
the two body interaction.

In orderto nd the temperature at which the systemis unstable against
pair formation, basically the samepath asin pure BCS is followed. How-
ewer this time the chemical potential is no longer xed to the Fermi energy
and the constrain that only the Fermionsaround the Fermi surfacefeel the
attraction is no longerassumed. Insteadthe ultraviolet divergences solved
by replacing the bare g interaction by a renormalization of the scattering
length, which is valid in the low energylimit. This condition is stated in

m 1 X 1
+

4a ¢

jkj<

where is a cut o for low energystates. In the BCS weak coupling
regiong ! O while for strong attractiv e interactionsg! 1 , thereforethe
scattering length goesfrom as ! 1 in the weaklimit to as! 1 in the
strong one. The temperature Ty we look for satis es

m _ X tanh(z) 1

4as: 2 2"k !

k

where ¢ = "¢ ; isthe single particle energy measuredwith respect
to the chemical potential. Finally the equation for the density allowsto nd
, this quantity will have an important role in the whole crosseer.

X k
no(; T) = 1 tanh oT
k

It canbefoundthat in the weakcouplinglimit, the BCSresultsarerecov-
ered,namely = ( andTo=8e 2 ! -exp( =2kgjasj), which coincides
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with the transition temperature. On the cortrary in the limit (2! 1)
the pairs are strongly bound with energyE, = -1, the chemical potertial

maz’

isnegative ' Ep=2andTy' (Ep=2)In(Ep=r)3>2. Thereforewhenthe
scattering length reaheslarge and negative values,a;! 1 the systemis
on the onsetof a two body bound state, the limit 1=a; = 0 correspndsto a
threshold for the existenceof a true moleculewith binding energyEy,

Howe\er this approat doesnot apply properly in the strong interaction
regime, basically becausethe normal phasewe have assumedcorrespnds
to Fermi gas, which is not true in Bosoniclimit.  There is no possibility
to recover the bosonic degreesof freedomwithout including a dependence
of the frequencyin the quartum uctuations which leadsto the formation
of a tight bound pair (Gaussianappraximation).  We will limit oursehes
to mertion the result without giving details of the calculation [42. The
temperature at which the super uid transition takesplacesT, di ers from T,
which is related to the disscciation temperature, while in the weak coupling
turn out to be the samequartity (in generalthis treatment doesnot a ect
the outcome we underlined for the weak ﬁouplinlg2 Ii3mit). The known BEC

critical temperature is obtained, T, = — ﬁ where 2m is the mass

of the composite bosonand n=2 its density. The chemical potential at the
critical temperature correspnds to the energy necessaryto break a pair,
(Te) = Ep=2: Clearly it changessign through the crosseer and it ewlves
between the two extreme casessmaoothly. In Fig. 1 and 2 we shaw the
behavior of the critical temperature and the chemical potertial respectively,
as a function of the inverseof the scattering length.
In this work we will constrainto work with Fermi dilute gasesn the the
limit whena! 1 , thereforefar from the weak coupling limit, where we
presumecorrelations betweenparticles are no longer negligible.

1.2 Neutron Matter

Neutron stars are the densestobjects known so far in the universe. Im-
proving our understandingof this exotic systemsimplies a cooperative e ort
betweendi erent branchesof physics,sinceall the forces(strong, electroveak
and gravitational) areinvolved. Through the accessibl@bsenational probes,
sud as pulseradio emission,thermal X-ray radiation emitted from the sur-
face and gravity waves, valuable information on their composition and dy-
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Figure 1.4: Chemical potential and Critical temperature in the crosseer.
Taken from [43]

namicsis obtained, and reciprocally constituting a good test of our knowledge
of nature at short distancesand under strong interactions.

At sud high densities(the Fermi temperature is around KeV, very small
comparedto the usual T MeV of Fermionsin solids for instances), the
nucleonsundergo strong interactions which are responsible for the appear-
anceof a super uid phase. The existenceof this state in neutron stars had
already been predicted theoretically by Migdal [44]in 1959,two yearslater
than the arrival of the BCS theory, but the obsenational proof did not arise
until 1967 with the discovery of radio emissionsof pulsars by Jocelyn Bell.
These pulsed emissionsturn out to have a perfect periodicity around sec-
ondsor less,which are closelyrelated with the rotational period of the star.
Howewer somedeviationsin their periods have beenregistered,which canbe
divided in three kinds:

a) Glitches or macrojumps. They correspnd to suddenincreasesn the
rotational speedaround = 10 ® 10 & and spin down rates of pulsars
by ( d =dt)= 10 3: The systemreturned to the initial valuesin a time
that canvary from weeksto years,but in somecasegshe processs completely
irreversible.

b) Timing Noiseor Microjumps Correspond to stochastic variations in
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the spin and spin down rates which appear in superposition to the perfect
periodicity of the star.

c) Long Term Periodic Variabilities. They are asseiated with the pre-
cessionbut this is a more rare evert.

It is believed that the explanation for theseanomaliesis connectedto the
presenceof a super uid componert which in the caseof glitchesis weakly
coupledto the normal part of the star wherethe pulsedemissiontakesplace.
For microjumps, a stochastic coupling betweenthe two componerts might be
the reason,but it is unclearup to now. A schematic description of a neutron
star is shown in Fig. 1.5

The hypothesis of super uidit y in the interior of neutron stars is sup-
ported by experimertal evidence. The surfacetemperatureswould be lower
if no nucleon super uidit y was presen. Many new information about dis-
sipative processess expectedto con rm this picture, through the study of
the gravitational wavesemitted by sud denseobjects.

A NEUTRON STAR: SURFACE and INTERIOR
® Suiss Spaghets

»——— ATMOSPHERE
ENVELOPE
CRUST
‘OUTER CORE
INNER CORE

Figure 1.5: Schematic represetation of the interior of a neutron star. Taken
from [45]

The analysisof scattering processrevealsthe type of pairing channelpre-
ferred by the nucleonic systemunder study. The densily and the isospin
symmetry (balancedor unbalancedpopulation of protons and neutrons), are
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the parameterswhich tune the kind of dominart pairing channel, for in-
stanceat high densities(laboratory energiesabove 250MeV) and for slightly
broken isospin symmetry, the tensorial part of the Nucleon-Nucleon(NN)
interaction is the most attractiv e, leading to a coupled®P, 2 F, favorable
pairing channel. This is in generalthe caseinside neutron stars. On the
cortrary when nucleonic matter is isospin symmetric, the 3D, is the most
favorable.

At low density for symmetric nuclear matter, the tensorial part of the
force,makes3S; 2D, the mostinteracting pairing channel. This attractiv e
interaction exhibits a bound state (the deuteron) in free space. For highly
asymmetricisospin,the super uidit y phaseis not supported dueto the large
di erence in the Fermi momerntum of proton and neutron componerts. In the
inner crust of the neutron star, 'Sy pairing in the neutron gascomponen,
may occur at densities much lower than the saturation density o = 0:16
fm 3.

The study of the pairing phenomenacannot be treated without paying
specialattention to the strong coupling betweenFermionswhich enrichesbut
also complicatesany approad. Many di erent techniqueshave beenused
to cope with it. Among them Green'sfunction methods and the BCS mean
eld have descriked qualitatively the problem, and many of their insights
becamethe starting point of ab initio calculations. From that knowledge,
it is well known that the Gap in the weak coupling limit, behaeslike

( pr) = e (pp)jV%pF:‘pFn

where is an e ective chemical potertial, (pg) is the density of states
and V (pr; pr) is the matricial elemen of the interaction at the Fermi mo-
mertum. Although the magnitude of the gap is correctly estimated, the
appraximation fails when having potentials whosematricial elemens acquire
a dependencyon the momertum, for instance due to the presenceof short
rangerepulsive cores,asit is the caseof realistic NN forces.

A rst re nement of the theory consistof taking into accour the in uence
of the mediumin the interactions amongthe particles, which is addressedn
the literature asthe polarization e ect. This hasimportant consequencesn
the gap. On one hand, the density uctuations tend to enhancethe magni-
tude of the gap, sincethe e ective attractiv e interactions are enlarged, but
on the other hand the spin-densiy uctuations tend to reducethe super uid,
and this is the leadinge ect in the inner crust of the neutron stars. Recertly
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Figure 1.6: Single S-wave (') pairing gap in neutron matter versusthe
Fermi momertum and the densiy. ) standsfor the Gap in the caseof a
pure BCS state. Instead , or o correspndsto the Gap for correlated
BCS state by using v, or v° potertials respectively. The black points with
error bars comefrom ADMC calculations. Taken from [17].

microscopiccalculations basedon the auxiliary eld di usion Monte Carlo
(AFDMC) and lowest order Correlated Basis Function (CBF) and in pure
neutron matter revealedthat the e ect of the polarization in 'S, pairing type
has smallerin uences than what found in previousstudies[17].

In the samework, a calculation of gap was performed pointing a slight
reduction with respectto the standard BCStheory. The maximum gapbeing
2.5 MeV at ke = 0:8 fm L. In Fig. 1.6 we report their results for di erent
nucleon-rucleon potertials (v,), characterizedby di erent number of spin-
iIsospinoperators: vy, Vg, Vg, Vig and Vg, Vgo and vgo. For instancethe rst 6
operators OP(ij ) for the pair of particlesij are given by;

X
Ve(ij ) = vP(r; )OP(ij )
p=1;6
where O(ij ) = 1 (scalar term), O?(ij) = ! i !,- (spin spin interac-

tion), O3(ij ) = S(jj ) = [3I|o (b (j} ] (i) (j) (tensor operator) and
OP=P*3(jj) = OP(ij) i *;,with* theisospinandp= 1;2;3. The greek
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indicesstand for cartesiancomponerts.

The NN potential v;g includes18 operatorial componerts and it is obtained
by tting the NN data up to the threshold energy The potentials vg, Ve,
vg are calculatedfrom the v;g potertial by cutting out the extra 14,12 and
10 operatorial componerts. The potertials v4, Vg0 and vgo are tted to the
lower energy NN scattering data, and they should consideras semirealistic
potertials.

The short range correlations induced by the strong nuclear interactions
canbeincorporated within avariational descriptionof the problem. The sim-
plest level of the CBF theory (which this work concernswith) is to consider
a pure Jastrow ansatz, namely,

Y
3(1;2;:::;N)=. fa(ri) (L;2:5N):

in which  (1;2;:::;N) is a model function that describesthe systemat the
noninteracting or weakly interacting level. In the caseof super uids, the
model function is a BCS state,

Y
jBCS = [ux + wal.a’,,ioi;
k

whereay. (a; ) is the creation (annihilation) operator of a Fermionin the
single particle state with momernium k and z-spin componert

A usefulimprovemen consistof constructing N body correlators having
an operatorial dependence for instanceon the total spin-isospin,denotedas
B(ST(jj ) (S standsfor the singlet statesand T for triplet).

" #
Y
B, (1;2:5N) = S 0,(ij )

where X
(i ) = f D )PED (i)

S;T=0;1
However the feasibility of a full expansionby using FHNC methods is lim-
ited, becausethe di erent operators do not comnuter amongthem. A Gap
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equation has beenderived by using sud trial correlated state, performing a
lowest order cluster expansionwith the ta, version of the Reid soft potertial
[46], [47]. In this formalism the correlation factors do not depend on the
BCS amplitudes uy and vg; this approad is denotedasIndependert Cooper
pairs (ICP). A larger gap of the BCS is obtained as a consequencef the
repulsive behavior of the correlation.

The inclusion of tensor componerts also under the ICP for the Reid i35
potertial leadsto a reduction of the Gap with respect to BCS. The calcu-
lations done by Chen [48 considera simple choice for the Jastrow but the
energyis calculated at higher order in the FHNC expansion. Polarization
e ects have also beentaken in that work, which reducedthe Gap by 80%
comparedto other studiesand in cortradiction with the X-ray obsenations.
This underlying reasonmight be that secondorderis not enoughin the prob-
lem of nuclei.

In this work we will considerthe 4-terr|n semirealisticAfnan-Tang poten-
tial, which for the caseof neutron matter - ; =1, becomesa 2-term potertial.
1S, neutron pairing is consideredhereforethe BCS state is consideredasthe
model state. Spin independert and dependen (z componert) correlations
areassumedo correlatedthe particles. Under this simpli ed assumptionthe
operators do comnute amongthemsehes and the FHNC expansioncan be
fully applied. The calculation of the energyaswell asthe oneand two body
momertum distributions is performed at full order. Although we do not
expect to give a realistic description of the problem, our work constitute the
rst step towards a more careful approad to the pairing e ects in neutron
matter.
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Chapter 2

Man y-b ody metho ds

Many body systemshave beenwidely studied under a great variety of tech-
niques. Roughly we can divide them into two branches namely stochastic
and non stochastic methods. The last approad implies an analytical pro-
cedure basedeither on perturbation theory or variational theories like for
instance Fermi Hypernetted Chain (FHNC) [18]. In dealing with strongly
correlated systemsit is commonto introduce a diagrammatic notation and
deviseresummationtechniquesto sumup in nite classof diagrams. On the
other side stochastic methods are basedon the useof random walks to sam-
ple the expectation valuesof physical quartities or the Scredingerequation
itself from a suitable distribution.

In the following, a generaldescriptionof the auxiliary eld di usion Monte
Carlo and of FHNC methodsis given, referring them speci cally to the treat-
mert of super uid systems.

2.1 Quantum Monte Carlo metho ds

The ability to introducestrong interactions in the problem relieson the pre-
vious knowledge obtained by a non stochastic previous study. Concerning
the method itself, it is free from corvergenceproblems (typical in the per-
turbativ e approad), but its main shortcomingis in the fact of considering
a nite number of particles ("granular" simulations), which is particularly
incornveniert when studying long rangee ects.

Among this methods the simplestversionin the Variational Monte Carlo
(VMC) in which a trial wave function is carefully chosen. The many body

27
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integrals involved in the ewaluation of the expectation values,are calculated
by the Metropolis algorithm, and the generatedstatistical errors are con-
trolled by variance reduction techniques. Comparing this method with its

non stochastic courterpart, the FHNC, the former is more precisebecause
the accurate ewvaluation of the integrals is translated into the inclusion of

diagramsof higher order. In order to mimic the systema xed number of

particles is allocated in a cubic box of adjusted length to have the required
density, then periodic boundary conditions are imposed.

A morere ned stochasticmethod is the di usion Monte Carlo (DMC),which
solvesthe imaginary time Sdredingerequationfor a N body system,taking
advantage of its similarity with a di usion equation. It will be descrited
briey in what follows.

The Sdredinger equationin imaginary time, is given by:

@ e

@ (H E)( R;t); (2.1)
where R = (rq;ry;::;ry) is the 3N dimensional vector that allocates the
position of the N particlesand t is the imaginary time measuredin units of
The time dependert wave function ( R;t) can be expandedin terms of a
completeset of eigenfunctions ;(R) of the Hamiltonian:

X
(R:t)= cd E BU (R): (2.2)

whereE; is the eigervalue asseiated to the eigervectors (R).

At larget the groundstate , is projected out. DMC solvesthis di usion
equation stochastically by sampling the con gurations R (called \w alkers")
accordingto Eq. (2.1). In orderto e cien tly solwe the di usion equationthe
importance samplingtechnique is used. It rewrites the Sciredinger equation
in terms of the function

fF(Ri)  (R)( R (2.3)

where ( R) is atime-independert trial wave function that describesapprox-
imately the ground state of the systemat the variational level.
When the Hamiltonian is of the form

2
H=-—rg*+ V(R); 2.4
o’ R (R); (2.4)
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EqQ.. (2.1) turns out to be

OED = br Ry + Dr a(FRY Rit) + (ELR) BN (R:D;
(2.5)
whereD = ~2=(2m) is calledthe di usion coe cient andE_(R) = ( R) H ( R)
is the local energy The term

F(R)=2(R) 1r r ( R); (2.6)

actsasan external forcethat guidesthe di usion processto regionswhere
is large and it is called drift or quantumforce.

In dealingwith Fermions,which requiresan antisymmetrized wave func-
tion, the problem of nding the right node surfaceappears. This is the main
drawbadk of this method, which somehav it is cured by using the Fixed
Node appraximation. Sud approximation is basedon freezingthe nodes of
the trial wave function during the simulation. Thereforea bad nodal initial
picture necessaryn mappedin the nal result. Details of DMC canbe found
in [49], [50].

Sincethis work is focusesin the study of fermionic pairing, a very good
starting trial wave function is the BCS. This choiceis constructed by anti-
symmetrizing the product of the two-body (pair) functions having organized
the particles of the systemin pairs; perfect pair matching. Therefore any
numerical simulation which made use of the BCS as a trial wave function
requiresa more sophisticatedtool than a simple determinart (Slater type),
called Pfa an.

2.1.1 The Pfaan

Let us start with the mathematical de nition of the Pfaan [51]. Let's
considera pair of elemens x and y, belongingto an index set X. Consider
the quartit y h[xy], which satis es the law of skew symmetry (antisymmetry):

hixy] = h[yx] for X;y2 X (2.7)
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This property can be extendedto an arbitrary even number of elemerts, by
de ning the Pfa an . For instance,

h[wxy z] hlwx]h[yz] h[wy]h[xz] + h[wz]h[xy]

h[wx]h[yz] + h[wy]h[zx] + h[wz]h[xy]: (2.8)

Notice that h[wxyz] = h[xyzw]. In generalany odd permutation of the
elemerts reversesthe sign.
The Pfaan can be written like the square of the determinart of a skew
matrix (¢; = Gi), i.e
detC = (Pf C)? (2.9)

where C correspnd to the matrix of the perfect matchings between the
elemerts, for instance

0 1

0 Ci12 Ciz Cig
C = % Co 0 C3 Cx § .
Cia C3 0 cuh’

Ca Ca Cu O

Determinarts are specialcasesof P a ans whenthe skew matrix is bipartite.
Supposethat h[xy] = 0 whenx andy belongto the samepart. It is usefulto
imaginethat the set of indices consistsof two disjoint setsX and X sothat
x 2 X and X 2 X. Then the matrix is bipartite if h[xy] = 0 and h[xy] = 0.
For instance, let particles 1 and 2 belongto the set X and 3 and 4 to X,
thereforecy;, = 0 and ¢34 = 0. In that casewe canwrite the matrix C in the

form:

_ 0O B
€= BT 0
whereB is the matrix of non zeroelemerns of C, BT is its transposeand 0 is
the zeromatrix. In sud a case,detA = (detB)? and therefore, the Pfa an
IS a determinart:

PfC = detB (2.10)

Since, by construction, BCS type wave function aiing IS @n antisym-
metric sum over the perfect matchings ! between particles, then Pfa an is

1A perfect matching is a partition into pairs.
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the quartity we needto compute. The pair function (r;) is already a func-
tion that satis es the antisymmetrization condition requiredfor h. Then the
pairing wave function can be written like:

0 1
0 12 13 ‘i1 AN
0 Dl
pairing (R) = Pf% :12 . ..23 . Z:N §
1IN o il 0

where the number of particles N is assumedto be even. Notice that in the
caseof a singlet state, the matrix C is bipartite, where the set X corre-
spondsto spin-up particlesand X to spin-dowvn particles. It follows that the
Pfa an can be written as a determinart and its calculation is straightfor-
ward. This is not true anymore if the pairing is of the p type, for instance.
Another important caseof not-bipartite matrix concernsto spin-dependert
Hamiltonians, this is the caseof neutron matter in which we areinterestedin.

The Quantum Monte Carlo method to be usedin thesecasess the Aux-
iliary Field Diusion Monte Carlo. The technique, originally deweloped by
Sdmidt and Fantoni [16], can be viewed as an extension of the method
by Zhang et. al. [52, [53 for lattices in which the spin-isospindegreesof
freedom of nucleonsare sampledwhile the spatial degreesare handle with
standard di usion Monte Carlo. It hasbeensuccessfullyappliedin the nu-
clearmatter in the study of large nucleonsystem(up to A . 100)interacting
via semirealistic[54] as well asfull realistic

nuclear interactions [55] and in spin-polarized systems[56].

The study of super uids in QMC implies the use of a correlated BCS
state as a guiding function which is translated into introducing a correlated
Pfa an, namely:

Y
(R)= fa(rij) pairing (R) (2.11)
N]
in which  ,aiing (R) (the Pfa an) correspndsto a projected BCS state with
a xed number of even particles, properly correlatedwith a Jastrow function
fJ (r .

In the following section we focus the attention on many-body theories
in particular the Fermi Hyper-netted chain, to study BCS-suger uids in the
strongly correlated regime.
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2.2 FHNC metho d

Perturbation theory is one of the most commonapproadesto addressmany

body problems. It usesthe noninteracting states as a baseto construct a
solution in terms of a normalized parameter which modulates the strength
of the interaction. The problem of long range interactions (electronic case
for instance) can be properly cured by rearrangemets or resummations. In

particular the random-phaseapproximation is usedto sum certain diagrams
(ring diagrams)leadingto producea screeningof the Coulomb long rangepo-
tential. But any attempt to tackle hard coreproblemsor very strongly repul-
sive potertials, like helium liquids, fails under any perturbative method. Still

particular summations(ladder terms) canbe performedunderthe Bruedkner-
Hartree-Fock theory to handle problemsin nuclear matter at not very high

densities.

Although the clearanalysisthat is possibleto extract from a perturbative
study, specially in limiting conditions, the feasibility of this method is very
restricted.

On the other hand variational methods, can be easily adapted to cope
with strongly correlated systems. When interactions are highly repulsive,
the needof introducing dynamical correlations allows to overcomethe dif-
culty. This approad starts from the construction of a many body wave
function which describesthe problem at the noninteracting level or weakly
interacting. Next a proper correlation function if chosento curethe strongly
nature of the interactions. The most common choice is the Jastrow type,
which forcesa pair of particles to have the desired short range behavior.
More sophisticatedinclude for instance, triplet, badk ow type (momertum
depending), spin dependert and non certral (tensorial) correlations. Dealing
with sud function improves cluster expansionand resummation methods.
FHNC is the most powerful of sud techniques, and it is the focus of our
attention in this thesis.

A further improvemen is given by the correlated basisfunction (CBF)
perturbative theory, which is basedupon a variational Jastrow correlation
wave function and FHNC summations.

We will generalizein the following the FHNC theory to deal with Fermi
systemsin the super uid phase.
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2.2.1 FHNC for longitudinal spin dependent correlated
Fermi gases

Beforeaddressinghe BCS problem, we will reviewthe theory for the caseof
a pure Slater determinart asa model function, introducing longitudinal spin
dependencein the Jastrow correlator, originally deweloped by Fantoni and
Fabrocini [57], [58]. Sincewe are dealingwith Fermionsof spin 1/2, there are
two possiblespin con gurations for the pair, either parallel or antiparallel,
then the spin degeneracy = 2, beingthe parallel caselabeled by (p) and
the antiparallel by (a). The two body correlation factor is given then by

X
Fa0)= faolr))PYGT); (2.12)
k=1

with P*(i; j) the projection operator of the spin state of particlesi and j
on the state (k). In the case = 2 they are,

1 1
PR G0)= 50+ & 2 PLGED =50 & )

The parallel and antiparallel componert can be found by solving the Euler-
Lagrangeequationswhich will be stated.

Basically the calculation of the expectation value of the two body oper-
ators we are interestedin, is donethrough the two body radial distribution
function de ned by

Z
¥(rp) = N D gk (RIFP™@WPPQRF(R)  (2.13)

where is a normalization constart, p(™ (i) is the projection operator for
particle i on state m (de ned z spin componert), and the integration is done
over the position and spin coordinates of the N-2 particles di erent from 1
and 2. Statesm and n for particles 1 and 2 respectively, correspnd to the
pair state k. The many-body state ( R) descrilesthe systemat a nonin-
teracting level or undergoingweak interactions. In this work a Fermi seein
momertum spacenamely a Slater determinart in coordinates, was consid-
ered.
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The main di erence respect to the state independernt correlated case,is
the presenceof the operators which in generalintroduce undesirable con-
mutators. For the chosenJastrow, due to the comnutativit y of the z Pauli
matrices, it is possibleto group the correlators:

Y Y X X
FP= f2(ij) = [Fao(r PO 1) = 1+ hgo(ry PO ):
i<j i k=1 k=1
(2.14)
having replacedEqg..(2.12)and de ning hg(rj) = fao2(rij) 1. The func-
tion hy is usedasaparameterof expansionsincethe property lim, 1 o hg,(rj;) =
0 holds.

The standard FHNC technique originally deweloped in [18], usesthe fact
that the denominator cancelsagainst the unlinked and reducible (factoriz-
able) parts of the numerator of g(ry,), in that way its calculation is reduced
to sum all the irreducible terms of the numerator; the so called nodal and
composite diagrams. The presenceof a state dependert Jastrow operator
maintains the expansionlinked, but in generalthe irreducibility does not
hold. For the simpli ed versionwe chose,both of them still apply and no
particular di culties arise.

Essetially the convolutions usedin the extended FHNC will link any two
particlesin  di erent ways. A genericterm in the cluster expansionis then
of the form,
X z
()= Z90)PY(j) = dxmp(i; m) (m;m)g(m;j)  (2.15)
k=1

wherethe componerts are given by
Z

2P (ryj) = > dr m [P® (1im )A® (rmj ) + P (Fim )2 (1 )]
Z

2®(ryj) = > drm [P (Fim YA (o ) + PP (Fim ) AP (7 )]
(2.16)

Much care must be tqigen When there is a statistical correlation between
particles (" (kgr) = ﬁ K ke dkek "), becausenecessaryhe dynamical cor-

relation (if existing) must be of type h(®, in which the spin of the particles
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is the same.
The nodal equationsare then given by,

Naa(ri2) = fXaa(riz) + Xae(r13)jNaa(rs2) + Xaa(rs2)g+

f X ad(r13)jNea(raz) + Xea(rs2)g
Nge(r12) = fXad(ris) + Xae(ri3)iNde(rsz) + Xae(rs2)g+

f X ad(r13)jNee(rs2) + Xee(rsz2)g (2.17)
Nee(r12) = fXed(r13)jNee(rsz2) + Xee(ra2)g+

FXea(r13) + Xee(r13]Nae(raz) + Xae(rs2)g

N (riz) = —  dralX@(ria)(NE(ra2) + X&(ra2)) (ke r1a) X (ra2)]

and the composite ones,

X = FOM NG 1

Xge () = (FO()  DNg(r) (2.18)
X)) = FOOINOE  Cker) NOE)? o+ NP NK
XO@) = FOr) DND  “(ker):

The subindexesd, dynamical and e, exchange (two statistical lines), refer
to the kind of correlation reading the external points (particles 1 and 2)
while ccmeansthat both points are touched by only onestatistical line. The
function F® is de ned by

FO(r) = f(zk)(r)eNéS’(r); k= a;p: (2.19)

Those coupled equationsconstitute the FHNC/O (elemertary diagramsare
neglected). Oncethey are solwed, the expressionfor the radial distribution
function in terms of nodal functions correspndsto,

g (ri2) = FOrL)I@+ NQr)2+ NO(ri2)  (I(kery) NE(r12)? wal
(2.20)
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2.3 FHNC/BCS

2.3.1 Correlated BCS ansatz and cluster expansion

In this sectionwe extendthe FHNC/BCS theory of | to Jastrow-type correla-
tions which can distinguish betweenspin parallel and spin antiparallel pairs.
It is well known that , dependert correlationsdo not improve signi cantly
the variational upper bounds obtained with the simple Jastrov ansatz for
Fermi systemsin the normal phase like for instanceliquid *He. Howewer one
expectsthat for super uid systems,becauseof the pairing betweenk " and

k # states, the two-body correlation f ,(r;; ) betweenspin-parallel pairs be
dierent from f,(r;j) correlating spin-artiparallel pairs. Sut an extension
of FHNC/BCS theory requires only minor modi cations of the derivation
givenin I, since , depender correlationscommnute amongthemsehes. As
a consequencali erently from the caseof full spin-dependen correlations
(which do not comnute ead other) [47], one is still able to carry a full
FHNC summations, the only limitation being a self consisten inclusion of
bridge diagrams.

2.3.2 The correlated BCS ansatz

The correlated BCS state i§< de )r(1ed by
jCBCS = Fni (moih (my)iBCSi; (2.21)

N fmyg
wherethe |BCS state is given by
Y
jBCS = [ux + wal.a,,joi; (2.22)
k

Wherea{; (ax: ) Is the creation (annihilation) operator of a Fermionin the
single particle state having momertum k and z-spin componert , namely

el j0i = p—e ' () i (1): (2.23)

The state (m,) in Eq. (2.21) corresmnds to a Slater determinart of N
single particle orbitals with labelsf my g,

A YA () e
bro; oo rndfag i = F(ij) A %W v ('v)g

i<j

(2.24)
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wherer;  (ri; i) andm; (k; ) and F(ij ) can be decommsedas:

F(ij ) = fo(rij )Pp(ij ) + fa(rij )Pa(ij ): (2.25)
The spin projection operators Py(ij ) and P,(ij ) are given by,
Lo 1+ (1) (), L () 23).
where ,j "I = land ,j #i = 1. One can also write the ,-dependen

correlation in the form,

F(ij ) = [fp(rij)';fa(rij N, [Folriy) 2fa(rij )] L) LG): (2.26)

the Jastrow caseof | is recoveredfor fy(rj) = fa(rj) = f(ry).
In Eq. (2.21) the summation over N is extendedto any even number of
particles, and for a given N the summation over f my g is done over all the
possible orbital states, my labeling a set of sudx N orbital states. The
state vegtor JCBCS is not an eigenstateof the particle-number operator
op = ,aan. Howewr, uctuations around Nopi: = ,with being
the density of the system,goesas1= and thereforecan be neglectedin the
thermodynamic limit of physical quartities, sud asthe energyper particle
or the momenrtum distribution (seel).

2.3.3 Cluster expansion

Let us calculatethe expectation value of a given two-body scalar(spin inde-
pendert) operator ¥, whoserepresemation in R spaceis given by

o i X 1X
RyjPiRyi = () =5 Y(ry) (2.27)
i>i=1 i6j

wherejRyi = jry::iryi. From Eq.. (2.21) and (2.24) we have

e X 1 X
hCBCSYjCBCS = 2 W 2y drq::idry

Y
[na(ro) ooty ()] Y (r2) F2G0 ma(ra) o my (ra)]

j>i

BCSay, :::a) jO0ihCjan, :::am,jBCS;

(2.28)
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wherethe factor ;3 comesfrom the normalization factor g; times "5

which is the number of pairs in ﬁ{ for N -particles state. Integration dr;
means both spatial integration dr; and spin summation for particle i,

namely
!

sH(i)
s (i)

hon (D) mi (1)

s (i); (1)

X2

Sn, (1), (i) (2.29)

=1

which givesl1if both , and ., areup-particle (1,0) statesor down-particle
(0,1) statesand zero otherwise.

If the spin degeneracy is equalto 4, like for instance in nuclear matter,
then the label in Eq. (2.29) runs from 1 to 4 instead from 1 to 2.
Following the usyal method of doing cluster expansion,let us expand the
correlation term ~ F2(ij ) in terms of cluster operators. Writing F2(ij ) in
the form,

F2(ii )

fpz(l'ij )pp(” ) + fe?(rij )pa(ij )
1+ hp(ry )Ps(ii ) + ha(ri )Pa(ij )
1+ fij ); (2.30)

we considerﬁ(ij ) as a \small" operator and we dewlop PBNijRNi asa
power seriesof it. In orderto do sowe rst expandY (rip) - F2(ij ),

Y X
Y(r)  B2(ij) = X,(12)+  Xa(1;2:k) + i (2.31)
k>3
where
X,(12) = Y(r1p)F?(12) (2.32)

is singledout in all the terms of the r.h.s. of Eq. (2.31). This is becausel
and 2 are the "interacting particles" (also denotedas\external indices\); in
fact Y (r12) may have strong repulsionat short distancesand therefore need
to be dressedby F?(12) in all the cluster terms since Y (r12)F2(12) is well
behaved in the full rangeof r,.

The three-body term in Eq. (2.31) is given by

X3(1;2;k) = X,(1;2) fi(ak) + fi2k) + Ak)A(2k) ; (2.33)
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and the various expressiondor )?p with p > 3 are obtained in a straightfor-
ward manner.
Let us now insert Eq. (2.31) into Eq. (2.28) with the result

1X 1 z
, (P 2)

hCBCSYjCBCS = dry:ccdrpl p(ro;zii;rp)

Lo(rosiciirg) = "ha(ra) it (rp) )’<\p(12;3;:::;p) "my(ry) i

hBCSay, :::a) am, ! am,]BCS;

generatesdl erent functions depending on the spin states ;;:::; ,. The
projector on the vacuum jOihQj of Eq. (2.28) is disappearedin Eq. (2.34).
This is becausein Eq. (2.28) any cluster term )?p involving p particles ap-
pearsin all the terms of summation over N, with N p. Integration over
the N  p uncorrelated particles p+ 1,p+ 2;:::;N glves 1 and implies
Npt1 = Mper;iii;Ny = My. Sud term hasafactor O] 2), in Eq. (2 28),
which afterthe summationover all the permutations of states' ., ;115" m,
reducesto .. Collectingup all sudh termswith N p onegetsthe overall
projection operator

X X
Py = jOinGj+  a, . jOihCjan,., + al, ., &, j0hOjan,., am,., +

Mp+1 Mp+1 ;Mp+2

(2.35)

which coincideswith the identity operator. Therefore for any value of p,

Pp=1.

The calculation of the r.h.s of Eq. (2.34)is performedby usingthe Wick's
cortraction algebraasin I, which leadsto the following excdhangefunctions

2 Z
l(rj) = = dkVvZekr, 2.36
( J) (2 )3 0 k ( )
for spin parallel pairs which are correlated with fg(rij ), and
2 z
Iu(rij) = dk uk v ek i (2.37)

2 )%

mp (I'p)

(2.34)



40 Man y-b ody metho ds

for spin antiparallel pairs which are correlatedwith f 2(r;; ). As for the caseof

uids in the normal phase,the exdangefunctions form disjoint loops. In the
super uid phaseead exdangeloop may have any number of v-exchanges,
but only an even number of u-exdanges(there are no u-exdangesin the
normal phase). For this reasonit is corveniert to collect both exdiange
correlationsin a single complexoperator

Cr3) = Ghr)Boli )+ Slulry)PaCi ) (238)

which reducesto the standard Fermi exdhangefunction %I(rij ) for the nor-
mal phase,which can be obtainedin the limit v2! ( k kg)andug! O,
The density of the uncorrelatedBCS s%ate o Is de ne in the following way:

— 2

0= ZBE dkv<(k) (2.39)
and when the normal phaseis recoveredit coincideswith the energyof the
system, ¢ =

The ,-dependenceof the correlationsdoesnot a ect the linked cluster prop-
erty of the expectation value of 4

Wi = hCBCSYjCBCS
" hCBCSCBCS

As in the Jastrow caseof |, the denominator "CBCSCBCS exactly cancels
the unlinked portions presen in the numerator, thereforeonly linked cluster
diagramscortaining the two interacting particles 1 and 2 are left, with the

result,

(2.40)

Qi = 1X 1 z (linked)/p «u... .

hYi = > p M dry:iidrpl o (res:iisrp); (2.41)
where L p("”k eOI)(rl; .11, rp) Is given by a sum of linked cluster terms having
p-particles,

. X .
L koD (ry; i) = L oD (ry; i) (2.42)

For instanceL ™ *¥(r;r,) is madeup of 3 cluster terms or equivalertly of

3 cluster diagrams.
n

i 1 1 1
L2 rair2) = Y(ra) 5 FRr* F2r2) - She(raa)li(raa)+ Sha(ria)l3(rao)
(2.43)

o
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At the three-body level onehas 33 cluster diagramswhich can be easily con-
structed dressingthe r.h.s of Eqg. (2.33) with all the possibleexdianges.
As for the Jastrow caseof I, the cluster diagramsare not all irreducible and
one has to usethe renormalizedversion of FHNC theory RFHNC to sum
them up [59]. The RFHNC cluster diagrams are irreducible, but ead dot
is "dressed" with a vertex correction which sumsup the reducible portions
attachedto it. _

The clusterterms L p(;"”k ) are better represeted by diagramsin which dots
stand for particlesand linesfor correlations. The interacting particles1 and 2
arerepreseted by empty dots, and particlesin the medium by full dots. Ex-
changecorrelations|,(r; ) and I (r; ) are represeted by orierted solid lines
with labels v and u respectively, dynamical correlations hy(rij) and h,(rjj)
by dashedlines with labelsp and a respectively.

The diagrammatical rules are very similar to those given in | for the
Jastrow case.We report them herefor clarity:

Exchange correlations |, and |, form closedloops without common
points.

A given exdhangeloop with p dots may have any number, n, 6 p, of
|, exdhanges,whereasonly an even number n, 6 p of I, excdhangesis
allowed.

Ead closedloop carriesa factor 2 ( 1= )" (i= )" where = 2is
the spin degeneracy

v-exdangedpairs can only be correlatedwith h, functions, whereasu-
exdangedpairs can only be correlated with h,. Not-exdhangedpairs
can be correlated with both h, and h, and therefore by the function
3(ha+ hp).

The interacting particles 1 and 2 are always dressedby Y (r 12)F2(12).
The operator F2(12) becomesf 2(r1z), f2(re) or 5 f2(rp) + f2(ri2)
depending on the spin states of particles 1 and 2.

The operator F2(12) gives the correlation function fg(rlz) if the 1-
2 spin state is parallel, or f 2(ry,) if antiparallel. For the two-body
cluster with no excange, F2(12) givesrisesto 5 Fo(r) + f2(r) .
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Ead dot (empty or full) carries a vertex correction. There are two
typesof vertex corrections

Ca = o€’
c= (1+ Ug)cq; (2.44)

Dots which arereaded by oneor more excdhangelines carry the vertex

correction ¢y whereasthe other onesare ass@iated with ¢. Dots which
are reat by exchangelines only carry the vertex correction(cqy 1) o.

Fig. (2.1) displays an example of 4-body linked diagram correspnding
to

Fo(ri) + £2(r12) 1,(r2s)hp(ras) lu(raa)ha(ras) lu(ras)
2 2

L™= av () >
(2.45)

wherethe v-exdangedparticles 2 and 3 are correlatedwith hy(rz3) whereas
the u-exdhangedparticles 3 and 4 are correlatedwith h,(rz4). The interacting

particles 1 and 2, which are not exchangedare correlatedwith £(f 2 + fpz).

n, my
ot Lo,
Ny m;
Ny m;

Figure 2.1: Graphical represemation of L 5. of Eq. (2.45). The diagram on
the right displays the correspnding set of Wick's cortractions. The points
in the left column correspnd to the indicesn . Thosein the right column
correspnd to the indicesm . An arrow connectingtwo points represeis a
cortraction. The arrows alongthe columnscorrespnd to cortractions of the
type @&’ or aa, existing only in the super uid phase.
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The FHNC/BCS equationsto computethe pair distribution function en-
tering in the calculation of h¢i, through the equation
1 z
Wi = éhrﬁi drioY (r12)9(r12); (2.46)

where

i = (co)? ; (2.47)

aregivenin Appendix A. Appendix B will presen the FHNC/BCS equations
to compute the expectation value of a spin-dependen two-body potertial.

2.4 Energy expressions for the correlated BCS
ansatz

In this sectionwe derive the expressiongo computethe energyexpectation
value of a super uid Fermi systemin the strongly interacting regime, de-
scribed by a correlated BCS trial function having ,-dependen two-body
correlations.

2.4.1 Potential energy

Let us rst study the caseof a scalartwo-body potertial given by
X
V=" wv(ry) (2.48)

like that usedto descrilbe the interaction betweentwo atomsin dilute Fermi
gassystems.From Eq. (2.46), it follows that

Hi £ 1

i =5 driz Vc(r12)§ g°(ri2) + 9(ri2) ; (2.49)
with gP(rq12) and g?(r12) given by Eq. (A.19).

Notice that the density = c o doesnot necessarilycoincidewith , which
is fully determinedby the BCS amplitude v2 and thereforeis the density of
the "uncorrelated\ uid. Neither @CSi nor jCBCS are eigenstatesof K.
Thereforethe correlation operator = F (ij ) modi es the expectation value of
hli with respect to that obtained with the pure jBCS state.
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Let us also considerthe more complexcaseof a spin-dependent potential of
the type X
V=V+Y = [v(ri)+ « Vv (2.50)

typical of semirealisticN-N interactions usedto study the properties of the

neutron matter which is formedin the interior of neutron stars (fully realistic

interactions include tensor and spin-orbit componens).

The expectation value of the scalarpotential V., leadsto the sameexpression
given in Eq. (2.49). On the cortrary, the spin-dependent part ¥ requires
the calculation of someextra FHNC quartities with respect to those given

in Appendix A and given in Appendix B.

The spin operator ; , has nonvanishing matrix elemens between ex-
changedantiparallel spin states, namely

h'#j 1 2 #i=2 (2.51)

This impliesthat the correlation operator F (ij ) with eitheri orj equalto the
external points 1 or 2 may leadto a correlation function (r; ) di erent from
hp(rij) or ha(r) consideredin Appendix A. To this aim let us distinguish
betweendirect and exdhangeterms relatively to the interacting particles 1
and 2.

Direct terms. Dierently from the caseof pure Jastrow correlation
model, for which the spin operator ; , hasa vanishingtrace, here
the ,-dependenceof F(ij ) leadsto a di erence between spin-parallel
and spin-artiparallel states,becausef ,(rj;) 6 f4(rj). Since

h™ j 1+ o™i =h##j ¢ J##i= 1 (2.52)
h"#j 1 " =h#"] ¢ L#1 = 1, (2.53)
the cortribution of direct terms to the expectation value of ¥ is given
by
Z
W i g 1 .
# = > drip v (rlz)é gS"(fu) gglr(r12) ; (2.54)

which vanishesin the limiting casef,(rj) = fa(rj), and therefore
Oo(r12) = Ga(ri2), where
_ nh c iy
g (r2) = F (rp) 1+ ° Nge(ri2) "‘_Ede(l’lz) +

c oh [o]

+ Nee(rlZ) + Eee(r12) , ( = p;a);(2-55)
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wherethe quartities F (ri2), N, (ri2) and E, (r12) are givenin Ap-
pendix A.

Exchangedterms. We considerherethe cluster terms in which particle
1 and/or 2 are exthangedeither amongthemsehes(1-2 exdhangeloops)
or with other particles in the medium (1-2,3; :: exdhangeloops). To
this aim we distinguish the cluster terms A in which the spin states of
particles 1 and 2 are not exdianged, from those, B, in which they are
exdanged.

In the cluster terms A the ; , matrix elemens are given in Eq.
(2.52) (for the v-cortractions) and Eq. (2.53) (for the u-cortractions).
They give the following cortribution

HO| ch:A Z Cd Zn
ﬁ = 2 driz v (rio) < FP(ri2)Re[NE(riz) + LB (ri2) + Eé’c(rlz)]z
(0]

F2(ri)ReN&(ri2) + Li(ro) + E&(ri))? (2.56)

Summing up the two cortributions of Eq.. (2.54) and (2.56) we get

ho |directH';:"|\7 I'exch;A - 3 drip v (riz) Go(riz)  Ga(ri2) : (2.57)

Let usnow considerthe clusterterms B. Thesemay result from both v-
and u-cortractions and require that the dynamical correlationslinking
1 or 2 with any of the medium onesare of the form

(rij) = fa(ri)fo(ry) 1, (2.58)

with i andj equalto 1 or 2. To computethe B terms oneneedsto solve
another setof RFHNC integral equationswhich are givenin Appendix
B. Their cortribution to the expectation value of ¥ is given by

Z
KO i exen: c 2
exch:B  _ E dry, 2v (rlz)fg(rlz)eN (ri2)+E (r12)

Re Ncc; (rlz) Iv(rlz) + Ecc; (rlz)

+ Im Ncc; (I’12)+ |u(|'12) + Ecc; (rlz)

(0]
2

(2.59)
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The factor 2 multiplying v comesfrom Eqg. (2.51). The plus signin
front of the Im part is due to the change of the sign in the Wick's
cortractions a&ay and aa in the B terms (seefor instance diagrams of

Fig. 2.2).

BN w EN

D2
A A f |
S )
¥ ' A
(e
w2 W3

Figure 2.2: Examples of cluster diagrams cortributing to the expectation
value of W0 i, together with the graphical represetation of Wick's cortrac-
tions. W1 and W2 refersto the cluster diagram D1, whereasw3 to D2.

DiagramsW1 and W2 represen the cortractions of the cluster diagram
D1. In diagram W1 there is a spin exdhangefor particles 1 and 2 and
it is included in the [Im(:::)]? term of Eq. (2.59). Diagram W2 hasno
spin exdiangeand is included in Eg. (2.56). The global sign due to
aLay and aa cortractions in W1 is the opposite of that of W2 and W3.

Diagram W3, which refersto cluster diagram D2, has spin exdange
for particle 1 and 2, like W1 and is included in the [Re(;::)]? terms of
Eq. (2.59).

2.4.2 Kinetic energy

Let us calculate the kinetic energy expressionaccording to the Jadkson-
Feerbergidentity (ref. [60). Similarly to the expressiongivenin Eq. (2.28),
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one has
hCBCST|CBCS = >m N L drqi:::dry
N Ny, ny
mq;:my
[ n,(ro)ii p (r)IFN T i Fnl mo(ro) i my (ra)l
BCSay, :::a) j0ihCjan, :::an,jBCSi; (2.60)
where
Y\I
Fn = f(ij): (2.61)
j>i=1

After the application of the Jadkson-Feerbergidentit y onegetsthe following
result
2z
Ty = o drozoodrn [ o, (r) it o, (0n)IFN T 3

FnIom 1 my
N[~2 %l’l) (LN)]

= drozicdry [, (ra) i o (PPN T 3

2m
Fn " ma(ra)iii" my (Pn) rol Cag(ro) it (rn) Fa
r. FN ' ml(rl):::l my (rN) ; (262)
which is most conveniertly written in the following form:
2z
TN = % dl']_:::dl’N[' nl(rl):::l ny (rN)]Fﬁ r i[l ml(rl):::l mn (rN)]
Z
2
% drl:::drN[' nl(rl):::l NN (rN)] Fn (r %FN) (r 1FN)2

[ T_lz(rz) el my (rN)]

to droccdryr £ [ o, (ro) st o, (F0)IFR

0
[ ma(ra) s my (Pn)] (2.63)

wherer 2 actson the singleparticle orbitals ' (r;) only. The main advan-
tage of the Jadkson-Feerberg form is that the three-body terms r ;F(1i)
r 1jF(1j) cancelexactly. The remaining three-body terms are numerically
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small and can safely be neglected.
The expectation value of the kinetic energyis given by

hTi

—— = Tog+ T+ Ty + T3 ; 2.64

N i 0 2 2 3 ( 6 )
where the uncorrelatedterm T, results from the st of the three terms on
the r.h.s of Eq. (2.63) and is given by

X ~2k? 2 1~ 2 4.2
To=2 ——Vi= 55— dkkivw: (2.65)
. 2m m
3~2kZ

In the caseof vi = ( k kg), To reducesto the Fermi kinetic energy Tom-
The secondterm on the r.h.s of Eq. (2.63) givesriseto the "b osonic" kinetic
energyT,
~2 1)@ z

T= — 5 dri, g (rig)r $Inf (ry): (2.66)
Finally, the third expressionon the r.h.s of Eq. (2.63) producesa two-
body and a three-body kinetic term T, and T3 . The resulting cluster
diagrams are characterized by the fact that the external point 1 must be
readed by a dynamical line, without courting those which may comefrom
the vertex correction. To understand this property one should considera
cluster diagram, in whose irreducible portion of the exdange type in 1,
there are no dynamical correlations either hy(rq;) or ha(rq) reading 1. In
the correspnding cluster term the laplacianr 7 can be substituted with
r 2, and, consequetly its integral vanishes. This generalrule drives the
construction of the cluster terms cortributing to T, and T3 .
Let us rst considerthosecluster diagramshaving a two-body exdangeloop
L2(ry;) passingthrough 1. They give rise to the following two-body kinetic
energyterm

Z
2 X2

~ Cq 2

TZ(A) = 16m ¢ dra, . F(re) 11 ichcz(rlz) : (2.67)

The cluster diagrams having exdangeloops with more than two exdange
lines and passingthrough 1 produce a two-body term TéB) and the three-
body oneT; . The two-body term is characterizedby the laplacian acting
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on L.(r12) and is given by 2
2 £ X n
am @ dri> Re GG F (r2) 1 Ng(ri) + Eglriz)
=1
0

+C5 Neenn(ri2) + Ego(ri2) + Ga(Ca 1)Ngep(riz) 1 3L o(r163:68)

T =

T, in EqQ. (2.64)is the sum of TZ(A) and TZ(B), namely
T, =T™ + 78 (2.69)

The three-body term is characterizedby the laplaciangiving riseto r ;L .(rs)
r 1L (ry) , andit is appraximated by the following expression

2 24 X
Ts = == drydrgs Ai (L ion)AjkAj oo
8m ¢ ik
iO;jO;kO
1N
éRe X§ (r1i2)Xfgo(ras) + X§ (r12)Xfyo(ris) Yio(r2s)
0

+ Xﬁ?(rlz)X?q o(ris) + X?(rlz)xi%j o(r13) Yico(r 23) (2.70)

wherethe matrix A; is given by

A= o T = (2.72)
and
Xn(r) = F (r) 1 2L(r);
Xp(r) = Xip(r) = G;
Xy(r) =1 Le(r); (2.72)
and

Yhh(r) = F (I’) 1 Ncc(r) + Lcc(r) + Ncc;hh(r);
Y (r) = Yin(r) = Neen(r);
YII (r) = Ncc;ll + Lcc(r): (2-73)

2Notice that the elemenary diagrams of the cctype have always dynamical lines reach-
ing both 1 and 2
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A full FHNC treatment of T3 requiresthe solution of extra integral equa-
tions for the functions X (r13), for which the de nitions givenin Eq. (2.72)
represen the lowest order approximation (Seeref. ([60]). Howewer, the term
T3 asgivenin Eq. (2.71-2.73)is in generalnumerically very small, and the
correctionscoming from the full FHNC treatment of ref. ([60]) is negligible,
and it is not reported here.

2.5 Euler equations

In this section we derive an Euler equation to compute the optimal corre-
lation functions f,(r;;) and f(rij) aswell asthe BCS amplitude v2. This
is formally obtained by performing a functional variation of the energy ex-
pectation value with respect to f,, f, and vZ, and equating them to zero.
Instead of doing this, we approximate the energyexpectation value with its
two-body appraximation E,. Then, we setthe functional variations E, with
respectto f,, f, and vZ equalto zerounder the constrairts that

fo(r dy=fa(r dy=1 (2.74)
£ =t d=0 (2.75)

wherethe healing distanced is consideredas a variational parameter. Suc
appraximation hasbeenwidely usedin a number of applications to nuclear
matter and providescorrelation functions with the correctshort rangebehav-
ior [47],[19. The solutionsof a "full" Euler equationimprove this two-body
approximation namely for the intermediate and long-rangebehavior of the
correlationfunction. The derivation of afull Euler equationand the inclusion
of long range correlation is a subject of future interest.

Let us calculatethe energyexpectation value at the secondorder of the clus-
ter expansion. From the expresionsgiven in the previous sectionwe obtain
the following results

Z
R | h 2 2
Wi, T e o ) R SOOI HCO R (S
2 2 '
PV ) F2) 1S ) A 1+ S i)

c 2 2 '
Vo< 2fa2(r12)% 12(r 12) + 15(r 12)

(2.76)
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and .
Wi 2 1 4o
e dk k*v2(k) (2.77)
2 £ h ih o 2 i
am dri,  F2(rir 2Infp(rp) 1 < 15(r 12)
h ih 6 2 i
+ f2(r)r 2Infu(rp) 1+ = 12(r 12)
2 g, 27 h i h i
+m = dr, ho(riz) 1 22(r1z) + ha(rp) r 212(r12)
which can be more corveniertly written as
Z
hfi 21 o
W, S oz KKV
2 Z h Cq 2 [
o :rlz f2(ri2) 1. - 12(r 1)
5 i
#1802 1 2 () (2.78)

The vertex correctionscy, ¢ and c are functionals of the correlation functions
fo, fa and of the BCS amplitude v3(k). One can usethe rst order of the
Power Series(PS) expansionto appraximate them, asdonein ref. [17]. The
reasonfor sud approximation is related to the fact that at any order of the
PS expansionthe normalization properties are reproduced correctly, which
is not true for the expansionin the number of points. The expression®f the
vertex correctionsin Zsuch appraximation are given by

Ca, = 1+ g o drip hp(rio) + ha(rio) ; (2.79)
Ud, = 50 dre () +
e300 dradts hy(raal(rz) Mrh(ri2)  Lu(riglu(rso
Na(rzo)urzs) Wras)lriz) + L(ri2)lrso) (2.80
ci, =+ U, (2.81)

Cj, = 1+ o drz (rio) (2.82)
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Notice that in the limit of I,(rj) ! Oandf,(rj) = fa(rj), the zeroth order
approximation of the PS,wegetcyj, = ¢ j, = 1, Ugj, = 0 andthereforec = 1.
In rst order, cyj, 6 cj, 6 1, but cg + Ugj, is still equalto 1 asrequired
by the normalization property. In the BCS ansatz, suc property does not
hold anylonger becauseof the non consenration of particles, but still the rst
order of PS expansionshould be a reasonableapproximation.
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2.5.1 Energy expressions

In the following two tables, we summarizethe expressionf the energyfor
the normal and super uid phases,for both spin independernt aswell aslon-
gitudinal spin-dependeri correlations. In table 2.5.1 we presen the kinetic
energyand table 2.5.1the potential energyfor the generalcaseof spin de-
pendert interactions.
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Kinetic  Energy State indep endent correlations 2 -dep enden t correlations
_ 3-2,2 - 3-2,2
Normal Phase Te = fom KE Te = fom Xf
2 R 2 P R

Top = 7 drg(r)r 2inf(r) Toa = —q0 =1 drg (0r 2t ()
h,zf‘:TF*szA’fTZB ) )
2 R 2. r 2 2kg ) 2R N (») LI 2+ 2.2 :
Tog = g GTF() 1 2Neo()r 2(ker) —ED Tog = =g dr FO) 1 2N () (ke ) 1 22 (ker)

2 R 2 R
To= 7k k4R To= 5 ak kévE
2 R 2 P R
Sup eruid Phase Ty = 4”7 dr g(r)r 2Inf(r) Ty = ;7 % 2=1 dr g (r)r 2inf (r)
A 2 2R 12(ry 12(r A 2 2R P
T = 22t 2Tg p(ry g 2l G0N T 22 % 2Rt LR () 1r 202 12
hT
—hN“=T0+T2+T§ +TZB , R " R o
(B) _ =~ 2 _ly(r)+ilyu(r) (B) _ =~ 2
T, = gwgz?2 drRer v ui T, = gwgz drRe -1
N2 2 ° "2 2 ° 2
cg F(r) 1 Nce(r)+ cgNeghn (r) + cg(cg  1)Negn (1) g F (1) I Ng(r)+ cgNegepn (r)+ cqg(cqg  DNgey (r) 1 “Le(r)

Table 2.1: Kinetic Energy




Poten tial energy

State indep endent correlations

z-dep enden t correlations

i R i R P
WL = 5 T drtVe(r)gar (1) + Gexen (1) [Ve(r) + 3V (r)]g W= 1 7dr Ve(r) 49 (D)+V (1(gP(r) g3(r)
v (naf2me" N () C(ker) 2
Normal gair (1) = F1+ 2Nge (1) + NG (1) + Nee(r)]
Phase .
Jexen (1) = F(1) Ngo(r) -—XED Ggr ()= F (DI + 2Ngg (1) + Ngg 2(r) + Ngg (1)]
nwi - R p a
VL= 7T dr Ve(r)g(r) + 3V (D[ghen (1) 93en (19 , o o
W= Lo7dr Ve(r) ;9 (D+V (r)gP(r) g3(r) 2V (r)
Sup er uid h i
Phase Gar (1) = F(1) 1+ 2% Nge () + % 2NZ (1) + Nee (r)] Si2meY D Re N () LB (M2 Ml N oo (r) + L& (1) 2
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n, 2 o]
0B (= % ZF() Ly (im Nee (1) (Im Neo (1) 2

Gar (N =F (1) 1+ 298N (N + L [Ng2(r) + Ngg (r)]

h i
2
Gexen (1) = 4 “F (1Re Ngg(r) + Lgg(r)

Table 2.2: Potential Energy for spin dependen interactions.
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Chapter 3

Equation of state for neutron
matter and dilute Fermi gases

In this sectionwe report the results obtained for two cases:a) dilute Fermi
atomswith largeand negative scatteringlength, b) Neutron matter. We have
usedthe FHNC theory in the normal and super uid phase(FHNC/BCS) for
the situations of Jastrow state independert and longitudinal spin-dependert
correlations.

3.1 Dilute Fermi gases with large scattering
length

We will considera non-polarizedFermi gaswith attractiv e interactionswhich
will leadto pairing e ects supporting a super uid state. The dﬁnsity of the
non interacting gas determinesthe Fermi momernium kg = *6 2= and
the total energy correspnding to:

Erc = ¢ (3.1)

where is the spin degeneracyand m is the massof the fermionic atom.

We are interestedin dilute systemsat very low temperatures, therefore the
basic consequencesf the interactions are governed by two body colliding
process.In the dilute regime,the raag@f the interaction Rg is much smaller

than the interparticle distancery = ° g—é The interactions betweenatoms
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can be strong but they only occur when the atoms are closeto ead other.

The relevant scatteringprocessemvolve stateswith zeroangularmomertum
© = 0, namely s-wave states. If no other internal degreesof freedom are
consideredthen two interacting atoms must have di erent spin states, due
to the Pauli exclusionprinciple. At this level the collision processcan be
descriked by the Sdredingerequationwritten in relative coordinatessystem:

;—2|' 24 V(r) ' (r) = E' (r), (32)

where is the reducedmass( = m=2 for idertical atoms). The solution
for E > 0 consistsin a superposition of the incoming plane wave in the z
direction and a scatteredwave,

L(r) = € () (3.3)

At large distancesthe scatteredwave is an outgoing sphericalwave, ' s(r) =
f( )e':' wherethe f () is the scattering amplitude and the dependencyl=r
ensureghe conseration of energy At low energiesthe scatteringamplitude
approadesa constart value a, and the wave function becomes

‘(=1 ?; (3.4)

a is the known s-wave sattering length which gives the intercept of the
asymptotic wave function Eq. 3.4.

Di erent model potertials can be employed to descrile the low energy
processaslong asthey reproducethe available scattering length data. Then
the details of the potential V (r) arenot important at this point. At the many
body level it is corvenien to replacethe microscopicpotertial by ane ective
one;a very well-known exampleis the zerorange (R, = 0) pseudopotertial,
Vert (r) = g (r)@@ where the strength of the interaction is related to a,
through g= 2 ~%a= .

Instead we will consideran interaction of the Lennard-Jonestype, namely

12 6
V(i) =4 - — (3.5)
r r
The range of the interaction is chosento be smaller than the interparticle
distance, while the depth of the potertial is found in order to satisfy the
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value of the experimertal scatteringlength. We will considerasa particular
examplea fermionic lithium gas. Following O'Hara et. al. [4] which we refer
as caselLi, the zero-energyscattering length is a; = 10%a (8, the Bohr
radius), while the density correspndsto [ =0.93 10 cm 3. In the
experimert the gasis load in an optical trap and evaporatively cooled, later
an external magnetic eld inducesstrongly interactionsthrough the Festbach
medanism. The gasis releasedrom the trap while maintaining the eld, and
the expansionis imagedwith a charge-coupleddevice camera. The output
reveals an anisotropic expansionwhich is interpreted as consequencef the
strong interactions and a possiblesignature of super uidit y.

In the mertioned work, the dimensionlessparameter |, = kgjasj = 7:4,
which we adopt as a reference. By solving Eq. 3.2 at E = 0, we found
that the parametersthat determine the Lennard-Jonespotertial to t the
condition reported [4] are:

ro=13 10° A (unit of length) Erc = 719 K (unit of energy)
= 0:09r1,
= 61010 EFG

In Fig. 3.1 a sketch of the potential and the reducedradial solution u(r)
whoseintercept with the r axis correspndsto the s scattering length are
presemed. The large value of the scattering length (as = 4284 ) is not
visible in the gure 1.

3.1.1 Normal phase

Having set the parametersof the Lennard-Jonespotertial, the next step
in order to apply a FHNC calculation is to nd the correlation function
induced by sud potential. We will considera two body Jastrow correlator
f (r), coming from the solution of the Euler-Lagrangeequation obtained by

1The wave function can be written like' (r) = Y-m ( ; )Rk (r), where the radial part
is usually expressedas R (r)  uk (r)=r. Then the equation to be solved in terms of the
reducedradial wave function uy(r) is:
2R+ )P

>azt "oz ° V(r) uk(r) = Eug(r): (3.6)

In the present case” = 0
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rl ]

Figure 3.1: Lennard-Jonespotertial (blue line) and solution of the reduced
radial wave function u(r) (red line) at energyE = 0. The intercept of
the asymptotic behavior of u(r) with the r axis (not visible in the plot)
correspndsto the scattering length

performing a variation of the energyexpressionat secondorder in the cluster
expansion. The resulting equationis given by,

0
t = —D+Bve (n @D
where ( r) (rnHf(r) (3.8)
(ke r)

and  2(r) r2 1 ; (3.9)

“(ker) isthe Slaterfunction and is aLagrangemultiplier introducedto force

the Jastrow function to be shortranged. The distanceat which f (r) becomes
1.0 is called the healing distanae, d. The boundary conditions satis ed by

f (r) arethen,

f(d) = 1 f%d) = O (3.10)

In Fig. 3.2we shaw the value of the FHNC energyversusthe healingdis-
tance. For the regionout of the rangeshoved in the gure (d> 0:17ry), the
larger the healing distancesthe worsethe normalization condition becomes,
while the energy decreasesnonotonically down to read a situation of no
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Figure 3.2: Variational energyversushealing distancefor a dilute Fermi gas
with the Lennard-Jonespotertial.

corvergence” at d > 0:9r, . This fact is an e ect of the large cortributions
from the elememary diagrams, which are neglected. The plateau readed
by the energyis a sign of the good corvergenceof the method. The opti-
mum healing distanceis found at d = 0:134r, correspnding to an energy
Enormar = 0:864Erg.

The optimal Jastrow correlator f (r) and the pair distribution function
g(r) are shawvn in Fig. 3.3. The e ect of the repulsive part of the Lennard-
Jonespotertial is manifestedas a hard corein thesequartities, forcing any
pair of particles to avoid approading within a distancer  0:05ry. The
e ects of the dynamical correlations are appreciablein a small range while
the intermediate and long range are dominated by the statistical correlations
exhibiting a behavior of noninteracting particles at sud distances. The pair
distribution function for free particlesg(r) = 1 %‘z(kp r) is shovn in green
coinciding with the pair distribution of our problem at distanceslarger than
the healing distance.

Next we have varied the density of the systemwhile keepingthe value

2The following normalization condition (in the normal state) hasto be ful lled;
Z
S(k = 0) =1+ drqio g(rlz) 1 =0 (311)

implying no long range pathologiesfor the correlations functions.



62 Equation of state for neutron matter and dilute Fermi gases

- ! ‘ // L /
5087 ’ 08
3 = /
e (2] //
S 06} s 06}
° S o
= ©
30471 g 04
z 3 |
202} & 02 “‘
2 |
(= / )

0 L / L L 0 I ol I

0 0.05 0.1 0.15 0.2 0.001 0.01 0.1 1 10
r[ro] r[ro]

Figure 3.3: Left: Jastrow correlation function. Right:Pair distribution func-
tion for a dilute Fermi gas. Both correspnd to the case ;. The marked
di erence in the spatial extensionof the statistical ( 1=kr) and the dynami-
cal correlations( d) is noticeablein the shape of g(r). The freeparticle pair
distribution is alsoshown in green. The behavior of g(r) in the dilute prob-
lem di ers form the free particle only at distancessmaller than the healing
distance.
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of the scattering length xed (as = 10%a). We have calculatedthe energy
of the normal phasefor the following cases:krjasj = 1;3;5;9;12,14. The
energyas a function of the density, is preserted in Fig. 3.4, referredto the
density ;.

w
o1

= N
P oo N o W
\

N

o
=
N
w
ot
al
o
~

Energy per particle [Erg,; ]

o

Figure 3.4: Energy of the normal phasefor a dilute Fermi gas with the
Lennard-Jonegotential at variousdensities. The energiesare givenin terms
of Erg, = 7:9 K and the densitiesin termsof ; = 0:93 10" cm 3.

The inclusion of ,-dependencein the correlations introducesa small
di erence betweenthe parallel and antiparallel componerts of the Jastrow,
aswe shaow in Fig. 3.5. On the cortrary the parallel componert of the pair
distribution function is dominated by the Slater function which only acts for
particles having the samespin, while the antiparallel is short ranged (See
right of Fig. 3.5). The state dependert choice reducesweakly the energy of
the normal phase,being this e ect more notorious at larger densitiesasit is
presened in Table 3.1.

3.1.2 Superuid phase

In the super uid phasethe Euler-Lagrangeequation is idertical to Eq. 3.7
with the following de nitions:

(r) (r)f(r) (3.12)
2 2
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Figure 3.5: Left: Parallel (red line) and antiparallel (greenline) componerts
of the Jastrow correlationfunction. Right: Parallel (red line) and antiparallel
(greenline) componerts of the pair distribution function. Both situations
correspnd to the referencecasefor Li’ ultracold atoms interacting via a
Lennard-Jonespotential.

kras = i E[Ercy] E ?[Erg,]
1 0.0024 0.0179 0.0179
3 0.0666 0.1556 0.1556
5 0.3085 0.4155 0.4155
7.4 1.0000 0.8643 0.8642
9 1.7990 1.2309 1.2307
12 4.2643 2.0187 2.0179
14 6.7716 2.5813 2.5795

Table 3.1: Energy of the ground state for ultracold Li’ atoms at various
densitiesin the normal phase(the scatteringlengthisas = 10%a, in all the
cases).The third columncorrespndsto the energiesf the state independert
choiceandthe forth columnlabeledwith , to the caseof Jastrow correlations
depending on the longitudinal spin.
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wherethe two statistical functions |, (r) and I,(r) are de ned in analogyto
Eq. 2.38,in paper 1 [20] as:
Z

IL(r) = @y, dk v2 ek’ (3.14)

l(r) = EBER dk uv €' (3.15)
The Jastrow function is then found under the constrainsof Eq. 3.10. We
have considereda variational form for the uncorrelatedamplitudes u(k) and
v(k) of the uncorrelated BCS state. The new variational parameterde ning
them is called . For large values of this variable one obtains the Fermi
distribution of the normal phase,asit is explainedin detail in the next sec-
tion. At this point it is pertinent to mertion, that dueto the strength of the
Lennard-Jonespoterntial, for any choice of the amplitudes u(k) and v(k) and
therefore of the statistical correlationsl, (r) and l,(r), the resulting Jastrow
is not very di erent from the normal case.The calculation of the energyfor
the parametersof the potertial = 0:09r, and = 61010 Egg, doesnot
support the existenceof a super uid phaseat any of the trial densities,asit
is displayed in Fig 3.6. The di erent points of any coloredbranch represen
a particular choice of the parameter determining the BCS state. For high
valuesnamely ! 1 , the energyapproadesto the normal value, but it is
always above the normal line. We concludethat the range of the potential
is important (in this theory) to lead the systeminto a super uid transition.
We have enlargedthe rangeof potential maintaining the dilute condition
and the scatteringlength measuredoy O'Hara et. al. [4]. We have performed
calculationsfor:

= 02r, 12023Erq,
0:3 lo = E|:(_*.,Li

Theseschoicesallow a window of densities(O'Hara et. al. cortained in)
for which the BCS state is energetically preferred. The gain in energyis
scarcelyvisible, but the behavior of the brandchesat the densitieswherethe
super uid is favoredis clearly di erent. In Fig. 3.7the EOSfor = 0:2rqis
presened, the minimum density at which the BCS is energeticallypreferred
is estimated in = 0:8464 |; correspnding to kras = 7 and while the
maximum value of the density is = 4:2643 |; correspndingto kpag = 12.
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Figure 3.6: Equation of state for a Lennard-Jonespotertial with = 0:09r
and = 61010Efrg, . Thefull line represets the energyof the normal phase.
Every coloredbranch of points hasbeencalculatedusingasa correlatedBCS
asa trial wave function, wherethe coe cien ts u(k) and v(k) depend on the
parameter . At large valuesof the energytendsto the normal one. For
this potertial the super uid phaseis not favored at any density.

The inclusion of ,-dependert correlationsslightly reducesthe energyof
the super uid phase,asit is shovn in Fig. 3.8. We shov a zoom in of the
output coming for kras = 10 Fig 3.9. The range of densitiesfor which the
super uid phaseis preferredis not modi ed by the presenceof longitudinal
spin dependen correlations, although more precisecalculationsare needed.

Consideringlongerrangedpotentials inducethe particlesinto a condensa-
tion regimewhich is not the casewe are interestedin. Therefore,we restrict
the possibleparametersof the Lennard-Jonespotertial to descrite a dilute
Fermi gaswith large scattering length (as = 10%ag) undergoingsuper uid-
ity to 2 (0:2;0:4). The proportionality constant 2 closestto the value in
the unitary limit was obtained when = 0:3, being estimatedin = 0:46,
which is not far to the MC estimatesewven if we are not strictly working in
the unitary regime.

3In the unitary limit jkrasj ! 1, Monte Carlo calculations [3] establish that the
~2k§ . .
is = 0:44.

2m

constart in E = 3
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Figure 3.7: Equation of state for a Lennard-Jonespotential with = 0:2rg

and = 12023 Egg, . For a range of densitieshigher than = 0:8464 ;
the super uid phaseis energeticallyfavored.
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Figure 3.8: Equation of state for a Lennard-Jonespotential with = 0:2rg

and = 12023Efg, - A BCSstatewith longitudinal spin dependert Jastrow
is considered.This dependencedoesnot bring any new featuresin the EOS.
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Figure 3.9: Detail of the equation of state for a Lennard-Jonespotertial
with = 0:2rpand = 12023 Egg, . The full red line correspndsto the
normal FHNC energy the light blue points reprensenh the energyobtained
for di erente BCS trials correlatedwith a simple Jastrow and the dark blue
points to a BCS choice having a longitudinal spin dependern Jastrow.

3.2 Neutron matter

We presen in this section the results of FHNC/BCS calculations of pure
neutron matter with Jastrow-type correlation functions with and without
longitudinal spin-dependence. We use a spin-dependert semi-realistic NN
two body interactions which ts the low energy NN scattering data up to

60 MeV. The choseninteraction is the S3 potential proposed by Afnan
and Tang [61], which reproduce the binding energy of the deuteron and
particle. It is of the form

Vi(r) = Vs(r) Po(ij) a(ij)+ VE(r) Pu(ij) ofij) +
Vg'(r) Po(ij) ofi;) + VP(r) Pa(ij) 1(i5]); (3.16)

wherethe superscriptse and o indicatesthe spatial parity of the correspnd-
ing pair wave function and the subscriptS and T labelsthe singlet or triplet
spin state. The spin-isospinprojector operators are given by,

.. 1 i i .. 3+ i
Po(i;j) = ————  Pulii)) = ———

i) = T = T @A)
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For pure neutron matter ; ; = 1, and Eq. 3.16becomes,
Vi(r) = Ve(r)+V(r) i (3.18)
where,
e 0]
Vi(r) Vs(r) +43VT (r) (3.19)
e (0]
V() = VS(r)J Ve (). (3.20)
The S3potertial is given by:
VO(r) = VP(r)  Voga(r) = 10000e 3¢ (3.21)
VE(r) = Vou(r) 1660e %8 230e 4 (3.22)

The calculation of the scattering length for the two body systemin the
singlet spin con guration at zeroenergygivesayy = 16:3 fm, whoseabso-
lute value is large comparedwith the rangeof the potential around (Ry 2
fm). The experimertal value of ay is estimatedin 185 0:3 fm from the
2H( ; n)n reaction[13]and 187 0:3 fm from the ?H(n; nn)p reaction
[62]. The good agreemenhin not surprisingbecauseahe Afnan-Tang potertial
reproducesthe low energyNN data. We presen in Fig. 3.10the singlet part
of the Afnan-Tang interaction, together with the radial reducedpart of the
wave function solution of Eq. 3.2 and its asymptotic limit at large distances.

In what follows, we want to comparethe FHNC results obtained for pure
neutron matter (PNM) with the Afnan-Tanginteraction for the normal phase
with and without longitudinal spin dependencen the Jastrow factor and for
the super uid phasein the samesituation.

3.2.1 Normal phase

We rst considerthe correlationsinduced by the strong interactions to be
independert onthe spin statesof the particles, namelywe take simple Jastrow
ansatz. The optimal Jastrow correlation is found in the standard way, by
solving the secondorder Euler equation under the boundary condition given
in EQ. 3.10. Then, we solwe the FHNC equationsto nd the pair correlation
which is usedto compute the energyper particle. The energyis minimized
to get the optimal value of the healing distanced. In Fig. 3.11we shov a
typical exampleof f (r) and g(r) at = 0:030fm 3.
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Figure 3.10: Singletpart of the Afnan-Tangpotential (blue line) and solution
of the reducedradial wave function at energyE = 0 (red line) with its
asymptotic behavior at larger (greenline). The intercept of the greenline
with the r axis, give the value of the scattering length, not visible in the
gure. The units of u(r) are not displayed.
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Figure 3.11: Left: Jastrow correlation function for PNM. Right: Pair dis-
tribution function. Both gures were obtained at = 0:030fm 2 and the
optimal healing distancecorrespndsto d = 1:07 ry.
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[fm °] d=ro E;[MeV] Egunc[MeV] Egg[MeV]
0.0020 0.82 1.30 1.36 1.89
0.0080 0.98 3.04 3.14 4.76
0.0140 1.04 4.32 4.38 6.92
0.0200 1.07 5.45 541 8.77
0.0260 1.08 6.49 6.34 10.45
0.0320 1.05 7.49 7.21 12.00

Table 3.2: Energy of the ground state for PNM at various densitiesin the
normal phase. The Jastrow-correlation is state independert.
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Figure 3.12: FHNC energyper particle of the normal phaseof pure neutron
matter with state independen correlations.

Notice that g(r) readesthe value of 1 at a distance much larger than
the healing distance. This is a consequencef the presenceof the statistical
correlations. On the other side, g(r) di ers considerablyfrom the free gas
pair correlation function geg(r), ascan be appreciatedin the gure.

The only variational parameterin this caseis the healingdistanced which
we report in Table 3.2 for di erent densities. (The energyat secondorder
is alsoreported). In Fig. 3.12is possibleto seethe energyper particle asa
function of the density.

The inclusionof alongitudinal spindependen Jastrow correlator, changes
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the Euler Lagrangeequation as follows:

plr) . m

o) = 0 S Ve +V () 5 () (3.23)
%) = 0%3 + DV VO L ker) 0 (D)
where  (r) p(r)fo(r) (3.24)
a(r) a(r)fa(r)
and  (r) r21 “?(ker) (3.25)

a(r) r: (3.26)

The results shown in the following have beenobtained by keepingthe ver-
tex correctionn, = 1 (seeAppendix) in the solution of the Euler-Lagrange
equationgivenin Eg. 3.23. One can seefrom Table 3.3 that its FHNC value
is always closeto 1. We have also assumedthe samehealing distance for

both fy(r) and f,(r). In Fig. 3.13(left) the parallel and antiparallel corre-
lation functions are shavn at = 0:030fm 3. The shape of the antiparallel

componert shavs a peakat r = 0:72 ro which is manifestedas well in the
correspnding pair distribution function. In the same gure on the right, the
two componerts of g(r) are displayed.

The FHNC calculation of the energyis performedusingthe FHNC equa-
tions givenin Table2.5.1and 2.5.1,for the caseof ,-dependert Jastrow. We
have introduced an extra variational parameter asa quending parameter
of the , dependencenamely:

f(12) = feenra(r) + f ,(r) 12 2 (3.27)
When = 0, the correlation betweenparticles 1 and 2 is purely certral while
for = 1, the spin-dependernt part of the Jastrow is fully set. The parallel

and antiparallel componerts can be written in terms of the certral and ,
componerts as follows,
fp(r) + fa(r)
2
fo(r) fa(r
f.r) = Tolr)_1alr) 5 a(") (3.28)
The results are reported in Fig. 3.14and Table 3.3. We nd that = 1is
always is good variational choicefor all the cases.One can seethat the ,-
dependencehavelittle e ect onthe EOS of the normal phasesf pure neutron

f centr al (I’)



74 Equation of state for neutron matter and dilute Fermi gases

o

N
o
N

12
= 1}
- 1} SR
S . S
5 08} S /
o S 08
o <
(8]
06 S
g T 06 /
b = /
© o /
3 04 cup
3 g /
o]
o
=
'_

0 0

0 0204 0608 1 12 14 0 05 1 15 2 25 3 35

r [ro] r[ro]
Figure 3.13: Left: Parallel (red line) and antiparallel (light blue line) com-
ponerts of the Jastrow function for PNM. Right: Parallel (red line) and an-
tiparallel (light blue line) componerts of the pair distribution function. Both

gures were obtained at = 0:030fm 2 and the optimal healing distance
correspndsto d = 1:29r,.

matter. A comparisonof the EOS for scalarJastrow and and ,-dependert
Jastrow is displayed in Fig. 3.15.

3.2.2 Superuid phase

We presen an application of the FHNC/BCS theory proposedin | to the case
of PNM, for spin-independert Jastrow correlations. Notice that in | there
was no derivation of the expressionto computethe energyper particle. This

is the rst calculation of the EOS for a super uid systemwith FHNC/BCS

theory. The rst ingrediert neededto apply FHNC/BCS theory, consist of
nding the Jastrow function aswell asthe probability factors u(k) and v(k)

ertering in the de nition of the uncorrelated BCS state. Lacking of a full

Euler-Lagrangeset of equationsfor f and the uncorrelatedBCS amplitudes,
we proceedwith an intermediate approad. We choosea trial probability
distribution of the form:

1
2 — .
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[fm °] d=ro E> [MeV] Erync[MeV] n,
0.0020 1.00 1.0 1.16 1.29 0.97
0.0080 1.14 1.0 2.75 3.02 0.98
0.0140 1.20 1.0 3.98 4.25 0.98
0.0200 1.24 1.0 5.08 5.29 0.99
0.0260 1.27 1.0 6.12 6.23 0.99
0.0320 1.30 1.0 7.10 7.11 0.99

Table 3.3: Energy of the ground state for PNM at various densitiesfor the
normal phase. The correlation function is a longitudinal spin-dependert
Jastrow whosestrength is modulated by

reported.

[MeV]
g o N 0

Energy per particle

o R, N W N

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
[fm 2]

. The vertex correction n, is also

Figure 3.14: Energy of the normal phasefor pure neutron matter when the

correlationsare longitudinal spin dependert.
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Figure 3.15: Energy of the normal phasefor pure neutron matter. The red
line correspndsto a pure simple Jastrow correlation, while the blue line to
a longitudinal spin-dependert Jastrow.
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this quartity determinesthe uncorrelated density , (seeEq. 2.39) of the
system. Notice that in the limiting caseof ! 1, the Fermi distribu-
tion function v3(k)j 1 = ( k ko ) (and consequetly u?(k)j n = 0),
is recovered. Therefore the correspnding exdiange correlation functions
l(r) ! “(ker), Iy(r) ! 0O, and the FHNC for the normal phaseis fully re-
covered (seeAppendix). Let uscall o the density at which this situation
holds( ! 1 ). Noticethat for nite, (6 .

The Euler-Lagrangeequationto nd the dynamical correlation is giventhen

by:

oPr m v &«
(?r)) RO ; — (1) (3.30)

A =

where ( r) and (r) aredened in Eq. 3.12and Eq. 3.13respectively and
the solutions of f (r) satisfy the boundary conditions Eq. 3.10. We have
approximated the vertex correctionsc and ¢y to 1. We show in Fig. 3.16
(left) an example of the Jastrow function for a density = 0:0020fm 3.
The FHNC/BCS allowsto nd the correspnding pair distribution function,
displayed on the right.
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Figure 3.16: Left: Jastrow correlation function for PNM in the super uid

state. Right: Corresponding pair distribution function. Both gures were
obtainedat = 0:0020fm 3, = 15and the healing distanceis the same
than the normal phasenamely, dy. = 0:82r,_. The valueof ro. refersto the
uncorrelatedinterparticle distanceobtained in the limit of ! 1 .
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Three variational parametershave beende ned so far, the healing dis-
tanced, andko.. The seart of their optimal valuesis much moredi cult
than in standard variational calculations,becausehe density = ¢  of the
systemdependson the variational parameters. That is becausgB CSi does
not consere the number of particles and therefore ¢ is de ned as an aver-
age of the number operator. Moreover the correlations do changesud an
average. For this reasonthe energyexpectation valuesto be comparedmust
refer to trial functions providing the samedensity
To adhieve this we have proceededin the following way. The parameter kg,
xes the density . of the underlying normal phasesystem,which is recov-
eredin thelimit ! 1 . Wehave foundthat the healingdistanceparameter
has an optimal value which is always very closeto that of the normal phase
at o. (denotedhereasd,, ), thereforewe kept sud value. The parameter

is the onewhich givesthe largeste ect in the density o and consequetly
in = c o. Wevariedthe parameter,for ko, and do. xed, from 1
to 1. Fig. 3.18displays the results obtained in sut a way for the case
of spin-independen Jastrow.
The EOS of the BCS phaseis obtained by the ervelope of the various
branches. Sudt envelop crosseshe EOS of the normal phasein two points
which delimit the regionwhenthe BCS phaseis energeticallyfavorable with
respect to the normal one. In Fig. 3.18,it is shavn that the density at which
the super uid phasebecomesunfavorable occursat = 0:02fm 3.

A similar procedurehas beenusedto the caseof ,-dependen correla-
tions. An exampleof the parallel and antiparallel componerts for the Jastrow
and the pair correlation function is shovn in Fig. 3.17at = 0:012fm 3. The
equation of state is preserted in Fig. 3.19. The energyper particle is signif-
icantly lower than in the caseof spin-independen correlations. The e ect
of the ,-dependencyis much larger than in the normal phase. Moreover
the limiting value of the super uid density is enlargedto = 0:027 fm 3.
Table 3.4 report the results displayed in Fig. 3.19.

In Table 3.4 somevaluesof the energyfor the optimal parameter are
shown, together with the value of the energyat secondorder of the cluster
expansionin the number of points (consideringc= 1 andcy = 1).

Notice that for large valuesof the FHNC energytendsto the value found
in the normal phaseat a density givenby ..
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Two body Jastrow correlator, f (r)
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Figure 3.17: The parallel (red line) and antiparallel (greenline) componerts
of the Jastrow correlation function (left) and the pair correlation (right) for

PNM in the super uid state. Both gures wereobtained at

= 0:012fm 3,

= 6:5 and the healing distanceis the samethan the normal phasenamely,

dO,: = 1218['0,:.
o [fm °] d=ro C € Erunc[MeV] E;[MeV]
0.0020 0.82 15.0 1.13 1.18 1.12 1.09
0.0060 0.94 8.0 1.09 1.13 2.52 2.68
0.012 1.03 105 1.02 1.06 3.89 3.97
0.0020 1.00 15.0 1.28 1.23 0.69 0.45
0.0060 1.11 10.0 1.15 1.15 1.89 1.88
0.012 1.18 6.5 1.09 1.07 3.65 3.83

Table 3.4: Energy of the ground state for PNM for the super uid phase. A
state independert Jastrow is considerin the rst three rows while a longitu-
dinal spin dependen Jastrow correspndsto the last three rows. , healing
distance and the vertex correctionsc and cy are also reported. The energy
of the FNHC/BCS calculation is closeto the secondorder approximation.
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Figure 3.18: Energy of the super uid phasefor pure neutron matter. It
correspndsto a choiceof pure simple Jastrow correlation. The arrow points
to the density at which the BCS state is unfavorable = 0:02fm 3. The
dashedblue line delineate the normal phasewhile the bladk lower full line
the BCS phase. The branchesare labeledby the correspnding o, .
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Chapter 4

Calculation of the gap and
excitation energy

The gap measuremets provide a tool for investigating the nature of the
paired particles responsiblefor the frictionless currerts at low temperatures.
In the BCS theory (weak coupling regime, small scattering length) the Gap
is proportional to the critical temperature, ( T = 0) = 1:76kg T,; in good
agreemeh with the experimerts. In generalthe existenceof a gap energy
is a signature of the super uid state and this feature is valid even far from
the weak coupling side; in the BEC regimeand even through the crosswoer.
Recerly the possibility of changingthe e ectiv einteractionswith the tunable
Festbadth resonancedas beenexploited to study the dependenceof the gap
with the coupling strength, temperature and Fermi energy from the BCS
regimeto the BEC one. Experimerts on Li’ using evaporative cooling have
evidencedthe appearanceof a gap in the radio-frequencyexcitation spectra
[63]. In this chapter we dewelop a formalismto calculatethe gap energywhen
strongly correlationsare presen. We presei an application of the theory for
the caseof neutron matter at low density.

4.1 The gap in the FHNC/BCS theory

We calculate in this sectionthe gap energyand the excitation energyspec-
trum of a Fermi systemin the super uid phase.We follow the procedureused
in [64], [65]to computethe excitation energyfor a strongly correlated Fermi
uid in the normal phase. In this caseone has a particle-hole excitation,
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namely

j pni = &@anjSLi = (alan)ay :::ay jOi: (4.1)
Notethat p (p; ) where isthe spin projection (" or #).
Onecanview| i asanew Slater determinart of the form

jopni =& alia jOi; 4.2)
where & is in the sameposition of a in Eq. (4.1). Thereforethe set of
orbitals of j ppi isfky; Koy iiz;p;iii; kg with h missing, namely

Neg (K)
h ke p ‘

N = 1 for k kg exceptfor k = h whereit is zero
Nfg =1 fork=p

One can do the summationsindependerly on all the set of orbitals. The
processof cancellation of the denominator in the cluster expansionfor the
excitation energyhasbeenderivedin [64],[65]. One removesa small fraction
x of particles from a thin sphericalshellat g°and put them in athin spherical
shellat q. The widths dp and dy are related in the following way

1 1
X = TqmdQOZ qudq
dg = gdqo (4.3)

(4.4)

in generalthe width is given by,

o
1

(4.5)
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Ne (K)

Figure 4.1: Pictorial represemation of the creation of a particle-hole excita-
tion in the normal phase.

The cluster terms in the FHNC equationsremain the samein the not ex-

changedparticles, whereasthe excdangefunctions “gs (kg r)

hsin(pr) sin(hr)i
pr hr

“es(ker) ! I(r;pshix) = “Gs(ker) + x (4.6)
The factor x should be of order X but, in reality is treated numerically asa
smallnessparameter. For an operator O, for instancethe Hamiltonian, the
energyto createsud excitation is given by,

MOipn  MOiyg linear terms of hO(x)i in x

@ .
@™ (4.7)

In order to use a similar procedure for the gap energy we have rst to
understandthe structure of the excitation j qpl. Let usde ne

Y ag0
%% ipcs
quuq
Ya.o) Y
= (@3ae) (ug + way.a’,,)joi (4.8)
quuq

J qqoI =

where vpoug acts as a normalization factor. In fact one can view j gl as
follows
Y Y Y Y
Y .
I aeel = agap (U + wag. & | ,)]0i (4.9)
k6 g,q°
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which implies that both the pairs qq and q%P are missingin any term of the
seriesEq.(4.9) whereasthe orbitals q and ® (£€97 " and Le 9°" #) are
presen in any term with strength 1.
Normalization of | i givenin Eq.(4.9)is 1,
Y
h @ gl = (uw+v3) =1 (4.10)
k6 q;q°

becauseu? + vZ = 1 for all k. It follows that the cortraction rulesonj i
are very similar to those of the correlatedjBCSi state (see[2(]), namely

y _ oy

?—Ia 0 h qqoja a o qqoI

_ w2 it 6 qqf
=g (4.11)

and

t owv if 6qgd
0 it =qq
We can now proceedin deriving the FHNC equationsfor j i which are

structurally the sameof FHNC/BCS. As in the caseof jSLy,i we have to
modify the exdiangefunctions, only

a,=aao (4.12)
L1 L1

() ! L(gd )=

. . i

L+ @ mg)s'”érqr)+(1 mgo)s'”éqqor) (4.13)
() ' l(rgd )= .

lu(r) 2UqVqSIn(qr)+2Uq0quS|nq((;ﬂ) (4.14)

The factors (1 2v§) comesfrom adding an orbital with strength 1 and

subtracting a pair with strength v2, and similarly for (1 2v§0). Analogous

argumeris hold for the factors 2ugvy and 2uqvy in Eq.(4.14).

In cortrast with the normal phase,we have here alsoa modi cation for the
o factor form the unchangedparticles. Here

o! oll+2(1 V2 VY (4.15)

Notice that the normal phasecaseis fully recovered. If vg = 0and vgo =1

(normal phase)and correspndingly uj = 1 and u% = 0, there are no changes
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in o and ly(r) (which is zeroin this case),and I,(r) is modied as| in
Eq.(4.6).

Let usnow considerthe caseof excitation of the Fermi surfacejqj = jq9 = ke,
with vlfF = uEF = 1=2, for which the excitation energyis 2 (twice the gap)
where is the gap energy In this casel,(r) and , are not modi ed and
oneis left with the modi cation of I, (r)

sin(kgr)
kFr

The set of Nodal and Composite diagramsin the FHNC are solved in the
usual way, onceone have performedthe new replacemets in the exdange
functions. The calculation of the gap energyg= ¢°= ke and the excitation
energyE(q), o°= ke arereadiedin the limit of ! O.

l(r ke ke: )= 1u(r) 2

: (4.16)

To compute2 the procedureconsistof the following steps:

1. The solution of the FHNC/BCS for = 0, givesthe ground state energy
Eo.

2. Solvingthe FHNC/BCS equationswith the modi cations in the statis-
tical correlation Eq. 4.16,at = 0:1 givesthe energyE( ). Then the
calculation of the gap is given by:

E©:1) Eo _ 5
0:1 ot
3. The value of is decreasedand step 2 is repeatedup to reading con-
vergence.

To calculate the excitation energyE (Q):
1. Thegap iscomputedasit wasdescrited before.

2. By introducingthe modi ed statistical correlationsEq. (4.13)and (4.14)
and the modi ed uncorrelated density (4.15) in the FHNC/BCS at
ja9 = ke, onecalculatesin the sameway asfor . After reducing up
to corvergenceone getsthe excitation energyE from:

E + E(Q)

E(a)

E
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Figure 4.2: E(q) for pure neutron matter with Afnan Tang potertial at
= 0:003fm 3.

One may want to put E(q) in the typical form of P "2(Q+ 2. The
energy"(q) is given by

RO
(o) = Eq(Eq 2)

We have computedthe gap for the Afnan-Tang potential S3in pure neu-
tron matter at a typical super uid density o. = 0:03fm 3. We have used
the statistical correlation functions |, (r) and I,(r) obtained from solution of
the Euler-Lagrangeequation at secondorder calculation for the simple Jas-
trow ansatz[17]. In Fig. 4.2 we presen the energyversusthe momerium of
the excitation. The minimum of this quartity givestwice the gap of the sys-
tems. The value we obtain = 1:54MeV at q= 0:42fm 1, isin agreemen
with calculations performedat secondorder [17], reporting 1:61 MeV.

4.1.1 Neutron matter

In this sectionwe presen the calculation of the Gap performedby considering
the variational choice for the BCS amplitudes that we usedin the previous
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Figure 4.3: Gap versusdensity in pure neutron matter with Afnan Tang
potertial. The red line is obtained for v and the greenfor Afnan-Tang by
performing secondorder calculations[17], [66]. The BCS amplitudesin their
calculations come from the solution of a BCS gap equation. The blue line
shows the results of this work by performing the theory previously descriked
and by usinga variational ansatzfor the amplitudesu(k) and v(k). A simple
Jastrow correlation was considered.

chapter (SeeEq. 3.29). In Fig 4.3 we showv the behaviour of the gap as a
function of the density usingthe FHNC theory. We comparethe result with
the those obtained in [17] for v§ potential and for Afnan-Tang [66].
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Chapter 5

Conclusions and perspectiv es

This thesisaddresseshe pairing problemin low density Fermi systems,inter-
acting through a force with large and negative scattering length, and there-
fore are in the strongly correlated regime. Two systemshave been studied
in detail: i) ultracold dilute Fermi gasesand ii) pure neutron matter. In
both casesthe scattering length has large valuescomparedto the range of
the interactions and the interparticle distance.

In order to handle the strong correlations arising amongstthe particles
we deweloped a correlated variational theory basedupon FHNC theory and
we performed calculationsin both normal and super uid phases.The main
results reported in this thesisare the following:

1. The FHNC/BCS theory hasbeengeneralizedo dealwith Jastrow cor-
relations depending on the longitudinal spin componert. The expres-
sionsfor the energyper particle, the pair distribution function, the one-
and two- body momertum distributions for certral and spin dependen
potertials have beenderived.

2. The equation of state for dilute Fermi gas interacting via Lennard-
Jonespotential around the valuekras = 7:4 of the 6Li [4], hasbeen
calculated(the rangeof valuesconsidereds kras [ 1; 14])for both
normal and super uid phases.

3. The equation of state of pure neutron matter interacting via a certral
spin dependent potential tting low energy NN scattering data, has
been calculated for both normal and super uid phases. The range
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of densities consideredis [0:002 0:03] fm ® correspnding to
keras [ 6:4; 157].

4. A formal theory for the calculation of the excitation energy and the
gap hasbeendewlopedin the FHNC formalism, for the caseof simple
Jastrow correlations, in full analogyto the calculation of the particle-
hole excitation energyin the normal phase.

5. The energygaphasbeencalculatedfor both dilute Fermi gasand PNM
with and without ,-dependenceof the Jastrow correlations.

The results obtained desere the following commerts:

The ,-dependenceof the Jastrow correlation, namely the inclusion of
a degreeof freedomto distinguish parallel from antiparallel spin pairs,
haslittle e ect in normal phase,but leadsto a signi cant lowering of
the energyin the BCS phase.

The equation of statesare characterizedby a regionat low densitiesfor

which the super uid phaseis energeticallyfavorable. The maximum

density at which the BCS con guration is preferredhasbeenestimated
in neutron matter to be , = 0:020fm 3 when the simple Jastrow

ansatzis considered. The introduction of ,-dependence,increases
the value of this critical density, upto = 0:027fm 3.

The gap has been previously calculated either with low order many-
body theory (CBF, Bruedner, etc.) or with QMC estimating the odd-
even e ect. This is the rst calculation of a many body theory at
all cluster ordersand in the thermodynamic limit. Comparisonshov
reasonableagreemen with QMC the with low-order cluster theories.

The eld of fermionic pairing is extremely rich in perspectives. In par-
ticular we think that studiesof the role played by long range of correlations
is particularly needed;the FHNC theory o ers the possibility of perform-
ing quartitativ e studies on that. Moreover FHNC theory can be usedto
evaluate nite sizee ects in QMC calculations, along the lines of Periodic
Box-FHNC [67].

Finally let us cite the most appealing scenariosto be treated by a corre-
lated variational theory as a preliminary study to more sophisticatedtools
like Monte Carlo methods:



93

Fermi-Fermi and Fermi-Bosemixtures: An increasingactivity in this
eld is expectedto understandthe interplay betweendi erent mixtures
of di erent atomic species. The super uid behavior of Fermi-Fermi
mixtures of di erent atomic massesand Fermi-Bosemixtures in optical
latices [68] are important topics for future researb.

p-wave super uidit y: The recen production and detectionof molecules
of °K by using a p-wave Festbad resonanceand the measuremen of

its life time and binding energy envisioned the realization of a p-wave

super uid in ultracold gases. Investigationsby Chenget al. [69], Iskin

et al. [70], and Gurarie et al. [71], have beenpioneersin predicting a
rich phasediagram as a function of the interaction strength.

BCS/BEC crosseer canbe studiedin greaterdetail with FHNC theory
than with QMC methods.
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App endix A

FHNC/BCS equations for
longitudinal spin-dep endent
Jastro w

In this appendix we derive the set of FHNC/BCS equationswhich have to
be solved to sumup the linked cluster diagramsL ,;f;"”k ed) cortributing to hYi
in Eq. (2.41).

The basicoperationsof FHNC theory are (i) The nodal (or corvolution) inte-
gration, which is usedto sum up nodal diagramsand (ii) the construction of
composite diagrammatical structures out of nodal ones. They are performed
in a circular and iterative way up the inclusion of all the terms of the nodal
and composite series. The only diagrammatical structure left by the solution
of the FHNC integral equationsare the elememary or bridge diagramswhich
nobody knows how to include in a closedform like the nodal or composite
ones. They can be accourted for, with progressie approximations.

Let us rst considerthe nodal operation sthematically displayed in Fig. A.1

Due to the presenceof ,-dependen correlations, the various two-body
FHNC quartities, likeX ,X ooandN oofFig. A.1, have two componers
in correspndenceto the spin-parallel or spin antiparallel con guration of
their external pairs. The nodal diagram N o(r; ) is formally given by

N O(rij ) = X C oX oo (Al)
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><ab ><aI b'

i j

Figure A.1: Generic FHNC nodal diagram N o(r; ), wherel is the node,
and X , X oo arethe two substructures,wherethe subindices and © °
denotethe topological nature of their external points. Integration is doneon
the variable r, represeted by the node .

which means

N

NP o(rij ) = dl’| [Xp (I’n)X po o(l’|j) + X@ (I’n)X % o(r” )]C 0

NI~ NIl
N

N2 o(rij ) = dl’| [Xp (r“)X ao o(r|j) + X2 (I’n)X po o(l’|j )]C 0 (A2)

wherethe two terms on the r.h.s of both equationscorrespnd to a spin up
or spin down particle I. The subindices ::: may bed, e or c which stand
for direct, exdhangeor cyclic type of external points. The vertex correction
C o, canbe either cq or c givenin Eq. (2.44) dependingwhether  %include
an excangeline (de;ed;cc) or not (dd). There may be nodeswith  °= cg,
which are not readed by dynamical corelations; in these casesthe vertex
correctionmust becy 1 insteadof ¢y (seeEq. (A.10)).

Given the two componert structures of the FHNC quartities and the nodal
operation of Eq. (A.1) and Eqg. (A.2), the FHNC/BCS equationshave the
samestructure givenin | for the pure Jastrow case,
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Naa(rij) = Xda € Xgg+ Nagg + Xge Cg Xgg + Ngg +
Xdd Cd Xed + Neg
Nae(rij) = Xdgd € Xge+ Nge + Xge Cg Xge+ Nge +
de Cd >(ee"' Nee
Nee(rij) = Xed C Xde+ Nde + XeeCd Xde+ Nde +
>(ed Cd >(ee"' Nee (A-3)

The above six coupledintegral equation sum up all the nodal diagrams
built up with the substructures(composite diagrams) X gq; X ge; X ee @ppear-
ing on their r.h.s.

Other six coupledintegral equationssum up the nodal diagrams of the
cyclic type. Let us denotewith N..nn the cyclic nodal type diagramshaving
both external points readed by dynamical lines represeted either h,, or hy;
with Nce.ni = Neein those having one external point readed by an exdhange
line I, or |, only and the other oneis readed by a dynamical line, and with
Nci thosehaving both external points readed by | linesonly. The integral
equationsare given by

Ncc;hh(r12) = Xee G Xt Ncc;lh + Ncc;hh (A-4)
Neci(F12) = Xee € Lec + Neghi + Negyi (A.5)
Ncc;ll(rlz) = Lcc (Cd 1) Lcc+ Ncc;ll + Lcc Cd Ncc;hl(r32) (A6)
with
Leury) = Iu(ry)
Lec(ri) = ily(ry) (A.7)

Notice that in the rst corwvolution on the r.h.s of Eq. (A.6) the vertex
correctionis (cg 1), whereasfor all the other corvolutions in Eq.. (A.4)-
(A.6) the vertex correction is ¢q4. The integral equationsEq.. (A.4)-(A.6)
can be decoupledand written in the following form

Ncc;hh(rlz) = ch Cchc + ch Cdl-cc ch + Ncc;hh I:’cc (A8)

Neein(re) = Lec CaXee + Necin Pee (A.9)
Ncc;ll(rlz) Lcc (Cd 1)|—cc + I—cc Cchc Lcc + I\Icc;ll Pcc(A-lo)
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where

Pee(rij) = (ca DLoc(rij) + caXee(rij) + Xee(ri) Galec(ryy) @ (A.11)
The sum of all the cyclic nodal functions N¢.. gives

Nee(r12) = Neenn(riz) + Neeni(ri2) + Neegn(ri2) + Neen(ri2) (A.12)
It is possibleto write a single integral equation for the two componerts of
Nco(ri2), namely

Nee(rij) = Xee(rin) + Lee(rin) + Nee(ri) Pee(rij) + Xee(ri) Lee(r) (A.13)

which is usefulto solwe and Eq. (A.12).

Let us now construct the composite functions X

de(rij ): F (rij ) Ndd(rij ) 1
Xae(ri)=F (rj )fNge(rij) + Ege(rj )9 Nge(ri)
XeelTi )= F (rj )fNeo(rij) + Eee(rij) + [Ne(rij ) + Ege(rij )]
REN(rij) + Leo(rip) + Ece(ri )’ Neo(rij)
ch(rij ): F (rij )f Ncc(rij ) + Lcc(rij ) + Ecc(rij )g Ncc(rij ) Lcc(rGA-]A)

with a;p and where E,,, represets the sum of all the -componert of
elemenary diagramsof classxy, and F (rj ) is given by
Fo(ry) = f2(ry)elaln) Fali: (A.15)

The expressionsof the one-body FHNC quartities Uy and U entering the
vertex correctionsi:d and c are given by:

n
Ug = Eq+ 50 drij ¢ Xgg(rij) Ega(ri)  Sga(ri)Tea(ri) +
(0]
G Xge(Mi)  Ege(ri)  Saa(ri)Tae(rij)  Sge(rij ) Taa(ri)
, X Z n 0
Ue = Ect+ > drij € Xeg(rij) Eeq(ri)  Sge(ri)Taa(ri)  Sga(rij ) Tae(ri) +
n 0

:‘:]d Xee(rij ) Eee(rii ) de(rij )Tee(rij ) See(rij )Tdd(rij ) 2Sde(rij )Tde(rij ) +

Co Re No(rij) Selrij) + Lec(ry) +
(0]
Re Lcc(rij ) Ncc;lh(rij ) + Ncc;ll(rij ) + Lcc(rij ) ; (A-16)
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where
Sxy(rij ) = ny(rij ) + Xxy(rij ) (A17)
Txy(rij ) = %ny(rij ) + Exy(rij ) (A18)

and E, standsfor the sum of all one-body vertex correctedelememary dia-
gramsof the x type.

The above FHNC/BCS set of coupledintegral equationis not linear and
therefore hasto be solved with an iterative procedure. Let us considerthe
approximation of neglectingall the elemenary diagramsE. One canusethe
following numerical procedure

1. Setthe nodal functions N, equalto zero.

2. UseEq.. (A.3)-(A.10) and (A.16) for a newappraximation of the nodal
vector functions and for Uy and Ue.

3. Ched the di erences betweenthe new and old nodal vector functions.
If it istoolargegobadk to point 2. Otherwisecomputethe spin parallel
and spin antiparallel pair distribution functions

th [
g (ri2) = 1+ Ngy(riz) + Xgq(riz) + 2— Nge(riz) + Xge(riz)
e, 2N F

+ Nee(ri2) + Xee(ra2) : (A.19)

The pair distribution function g(r;; ) appearingonther.h.sof Eq. (2.46)

is given by L
g(ri) = > Op(r12) + da(riz) (A.20)
The lowest order approximation of the pair distribution function is
given by
h 4 [
O(re2) = fg(l’lz) 1 é'&(l’lz)
h [
1
Ga(rz) = f2(rp) 1+ élﬁ(rlz) (A.21)
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App endix B

Calculation of the exchange
terms In the potential energy

In this appendix we derive the setof FHNC/BCS integral equationsunderly-
ing the calculation of the nodal functions N (ri2) and N¢.. (ri2) appearing
on the r.h.s of Eq. (2.59), which givesthe cortribution of B-terms to the
expectation value of V .

The cluster diagramsassaiated with thesenodal functions are characterized
by the property of having the dynamical correlations with indices equal to
either 1 or 2 or both of the type (r; ) givenin Eq. (2.56). The derivation of
the integral equationsfollows the standard methods of FHNC theory. They
result to be

N (riz2) = X g(riz) ¢+ X o(ris) ¢g Xq (rs2) + Ng (rsz) +
X 4(r1z) cg Xe (rs2) + Ne (ra2) ; (B.1)

wherethe corvolution [:::j:::] means:

Z
N o(rlz) = X (I'13) C oX o 0(I’32) = oC o dl'3 X (r13)X 0 o(r32);
(B.2)
which di ers from the convolution de ned in Eqg.. (A.1) and (A.2), because
is dealingwith one-commnert FHNC quartities. The spin state of an inter-

acting particle is in a mixed state, namely is up in the ket and down in the
bra or vicewersa.

101



102 Calculation of the exchange terms in the potential energy

The FHNC quartities appearing on the r.h.s of Eq. (B.1) are given by

N a(ri) X d(ri3) € Xga(raz) + Nga(rs2) + X e(riz) € Xga(raz) + Naa(rsz) +

X d(ri3) Ca Xed(rsz) + Ned(rsz) (B.3)
N e(riz) = X a(ris) € Xge(raz) + Nae(rs2) + X e(ri3) Ca Xae(rs2) + Nae(rs2) +
X d(r13) Co Xee(rsz) + Nee(rsz) (B.4)
where
X dg(r)=F (riz2) Na(riz) L (B.5)
X e(riz)= F (riz) 1N ¢(roo); (B.6)
and
F(ri)= 1+ (ryp) €' ona)rEaln2): (B.7)

To calculate the cyclic nodal function N (ri2) it is corveniert, asin ap-
pendix A, to distinguishbetweenN .. (ri2), N (ri2), N (riz) andNe.. (ri2),
which are characterizedby having -correlationsat both ends(superscripts

), correlation at oneend and h-correlation (either h, or h,) at the other,
a -correlation at one end and a single |-correlation (either |, or |,) at the
other and |-correlationsat both ends. The function N[ (ry,) coincideswith
Neceni(ri2) givenin appendix A. The FHNC integral equationsare given by

Nee. (r1i2) = X o(rs) G Xe (ra2) + N (ra2) + N (ra2) ;
1 X
NC(!:; (rlZ) = X c(r13) Cd é Lcc(r32) + Ncc;hl(r32) + Ncc;ll(rSZ) ;
h 1X h |
Ncc; (r12) = é ch(rl3) Cd XC (r32) + Ncc; (r32) + Ncc; (r32) ;
Ncc; (r12) = Nc(l;; (r12) + NCQ; (rlz) + Ncc;lh(rlz) + Ncc;ll(rlZ); (88)

where 1X
Xc(ri2)= F(rz) 1 N (rp)+ > Lee(rio) - (B.9)

Notice that, in the limit of the normal phasetrial function, namely when
vi= (k kg)andconsequetty |,(r) = 0, the above equationare equivalert
to thosegivenin ref. [57]. The vertex correction ¢ is given by

c =¢€; (B.10)
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where
Z n
U=E+ o drip cXg(riz) Eg(riz2) Sa(riz)Ta(rz) +
0
Cd X e(r12) Ee(riz) Sa(ri2)Te(riz) Se(ri)Ta(r) (B.11)

with S,y (ri12) and Ty, (ri2) asobtainedin Eq. (A.17) and (A.18)
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