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Overview

The main purposeof this work is to describe the ground state properties of
dilute Fermi uids in the strongly interacting regimecharacterizedby a large
and negative scattering length. The study of such systemshas generated
great interest in various �elds. A few yearsback, the experimental e�orts in
the physicsof ultracold gaseshave allowed to createsuch systems,opening
the possibility to test our knowledgeof the pairing phenomenaunder a big
variety of conditions. Strongly correlated particles were already very well
known in condensedmatter and nuclear physics, as well as in astrophysics
wherethe description of neutron stars falls into this category.
In the asymptotic limit of the scattering length as going to �1 (unitary
limit ), all the length scalesassociated to the interactions disappear, and the

only characteristic length is the interparticle distancer 0 = 1
kF

3

q
9�
4 (or equiv-

alently the inverseof the Fermi momentum, 1=kF ). In this limit the energy
can be then expressedin terms of the Fermi gasenergy, E = � 3~2k2

F
10m . Analyt-

ical approachesand Monte Carlo simulations reveal that the proportionalit y
constant � is far from being unity, revealing the essential role of the correla-
tions induced amongthe particles. Thereforeany attempt to apply a mean
�eld theory in this context fails.
Our approach to handlesuch systemsis basedon Quantum Monte Carlo and
the Fermi-Hyper netted chain (FHNC), with particular attention to the last
one. The main achievements presented in this thesisconsistof:

� Formulation of the FHNC theory for a correlatedBCS state (denoted
hereafter by FHNC/BCS) for the caseof longitudinal spin dependent
Jastrow correlations,namelycorrelationswhich distinguishspin-parallel
from spin anti-parallel pairs.

� Derivation of all the neededFHNC/BCS integral equationsto compute
the energy per particle, one- and two-body density matrix and the
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excitation energies.

Calculations have been made for neutron matter with semirealistic spin-
dependent NN potentials and for dilute Fermi systemsinteracting through
Lennard-Jonespotentials with large and negative scattering length/ The
main results are the following:

� Large e�ects have been found in the energy per particle and conse-
quently on the equation of state for the longitudinal spin dependency
of the Jastrow correlations in the description of the BCS superuid
phase.

� The excitation energyof the superuid system, and in particular the
gap energyhasbeencalculated for the �rst time in full FHNC theory.
Good agreement hasbeenfound with QMC evaluations.

The structure of the thesis is as follows. The �rst chapter contains an in-
troduction to the problem, followed by someinsights into the Feshbach res-
onancesmechanism which allows to producethe strongly interacting regime
in laboratory for dilute Fermi gases. The mentioned resonances,o�er the
possibility of changing the e�ective scattering length between a ! �1 to
a ! + 1 , giving accessto the known BCS-BEC crossover, which will be
briey described later. The chapter �nishes by introducing the readerto the
superuidit y of neutron matter, which is alsoa systemwith large and nega-
tive scattering length. Chapter 2 concernsdirectly with the methods of cal-
culations, starting by the Auxiliary Field Di�usion Monte Carlo (AFDMC)
which was developed as an extension of the Di�usion Monte Carlo to ad-
dressproblems in which the Hamiltonian dependson spin variables, as the
NN interaction requires. The main emphasisin this chapter as well as in
the in whole thesis is given to the formalism of the FHNC. The extension
of the FHNC/BCS to the caseof longitudinal spin (� z) dependent correla-
tions is described in detail including the expressionof the energyfor a spin
dependent potential. The FHNC in the normal phasewith and without � z

dependenceare reviewed in the Appendices. In Chapter 3, the equation of
state (EOS) for neutron matter and of dilute Fermi gasesin the strongly
correlated regime, are presented by direct application of the FHNC meth-
ods. Chapter 4 is devoted to presentation of the FHNC theory to calculate
the momentum distributions in the superuid phase.We present in Chapter
5 the implementation of the FHNC methods to calculate the gap energyof
such superuid systems,as well ascalculation of the excitation energy.
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Chapter 1

In tro duction

Superuidit y of strongly correlatedFermionsis a subject of current interest.
Dilute Fermi gas,high Tc superconductivity, liquid 3He and neutron matter
are only few examplesof interesting systems,for which a better understand-
ing of the interplay betweenlong range order phenomenaand strong corre-
lations is needed.The questionof whether many-body e�ects are important
also in the low density regime, where the superuid phasetransition may
occur, for quantities such as ground state and gap energies,momentum dis-
tribution or pairing function is still an open and challengingproblem. Most
of the ground state and gap energycalculationsare limited to either uncor-
related BCS theory or at most to two-body correlatedapproximation, based
upon Brueckner Hartree-Fock (BHF) or Correlated Basis Function (CBF)
theories. The argument of the superuid phasetransition occurring at low
density which hasbeenusedto justify the above approximations is however
not valid for thosesystemsin which particles interact strongly.
The important parameterin the systemis � = kF a, wherekF = (6� 2�=� )1=3,
with � being the uid density and � its spin degeneracy, kF is the Fermi
momentum and a is the 1S0 scattering length. Large and negative values
of � favor weak coupling BCS superuid [1] and, at the sametime, induce
strong correlations amongst the particles. In the asymptotic limit (unitary
regime) � ! �1 , the limit that Bertsch proposedto study in 1998[2], the
only remaining length is kF , and therefore the ground state energy is pro-
portional to the Fermi kinetic energy EF = 3

5
(~kF )2

2m . It turns out that the
proportionalit y constant is 0.44 instead of being 1 [3], implying that mean
�eld approximations fail even in the low density regime.
Ultracold dilute gas of Fermi atoms have been produced in atom traps in
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10 In tro duction

the regimeof interaction having largenegative scattering length by usingthe
Feshbach resonancemechanism. In the experiment by K.M. Ohara et al. [4]
with 6Li � = � 7:4. As the atomic interaction strength is increasedtowards
the Bertsch limit, namely that corresponding to a ! �1 , one getsbosonic
two-Fermions bound state. Therefore one may considerdilute Fermi gases
with large scattering length as being intermediate systemsbetween weak
coupling BCS superuids and dilute BosegasundergoingBose-Einsteincon-
densation(BEC) [5], [6]. Dilute Bosegasin the strongly interacting regimeof
largea=r0, wherer0 = ( 3

4� � )1=3 is the averageinterparticle spacing,have been
experimentally produced [7], [8] and theoretically studied [9], [10], [11]. A
secondimportant exampleis provided by neutron matter which canbe found
in the interior of neutron starsand which showsup superuid properties[12].
The scattering length of NN interaction has been found to be � � 18:5 fm
in 2H(� � ;  nn) reactions[13] and � � 16:3 fm in deuteronbreak up experi-
ments [14]. At densitiesassmall as10� 3 fm� 3 the parameter� rangesfrom 5
to 5.7,namely is much larger than one. Quantum Monte Carlo methodshave
beenrecently applied to perform numerical simulations of Fermi uids in the
superuid phase.The Di�usion Monte Carlo (DMC) [15] and the Auxiliary
Field Di�usion Monte Carlo (AFDMC) [16] for the caseof spin dependent
interactions, have recently been implemented to use correlated pfa�ans as
guiding functions ([3], [17]).

We develop here a technique based upon Fermi Hyper Netted Chain
(FHNC) theory [18], and denoted as FHNC/BCS to perform variational
calculations with correlated BCS wave functions. The type of correlation
we consider is of the Jastrow-type, namely

Q
Fij , with Fij depending on

� z(i ) and � z(j ), the z-components of the spinsof particles i and j , in order
to distinguish parallel from antiparallel spin pairs. FHNC integral equation
methodshavebeenthoroughly usedin CBF theory to perform ab initio calcu-
lations of the static and dynamical properties of several strongly interacting
Fermi uids at low temperature ranging from liquid helium to nuclearmatter
in both bulk and con�ned geometries[19]. In the eighties, FHNC theory has
beengeneralizedto deal with pure Jastrow correlated BCS wave functions
(but with no � z-dependence). In that paper ([20] denoted here as I) the
FHNC/BCS integral equationshave beenderived to compute the two-body
distribution function g(r 12), the momentum distribution n(k) and the pairing
function � (k), but they have never beenapplied to perform calculations of
the ground and excited statesenergiesof strongly interacting Fermi systems
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in the continuum. The FHNC/BCS theory hasonly beenapplied in Hubbard
model calculationsof strongly correlatedelectron in a lattice [21], [22], [23],
wherethe knowledgeof g(r 12) and n(k) were the only required quantities.

1.1 Dilute Fermionic gases

Bose-Einsteincondensationin dilute gaseswas achieved experimentally in
1995 for the alkali gases:rubidium [24], sodium [25] and lithium [26]. In
this striking phenomenon,the quantum nature of particles shows up at tem-
peraturesof the order of 10� 5 K and low densitiesaround 1013 � 1015 cm� 3,
more than four orders of magnitude lighter than air. Since that time a
vast number of work have beenpublished in the experimental as well as in
the theoretical �eld. The most important achievements concernthe man-
ifestation of superuidit y through the observation of Josephson-like e�ects
[27], [28], the realization of quantized vortices [29], the interferenceof matter
waves[30] and the study of coherencein atomic lasercon�gurations [31], to
mention just of a few. Later on the with the achievement of degeneracyin
a Fermi gas[32], the research has focusedon the realization of a superuid
and the understandingof the pairing phenomenain this type of systems.
The quantum essenceof particles becomesimportant when the de Broglie
wavelength, de�ned as:

� =

r
~

2mkB T

is comparable with the average interparticle spacing. The need of low
temperatures to reveal the quantum world, can lead the particles to form
molecular states and reach a solid or liquid transition. Thereforea delicate
balance between temperature and density must hold in order to keep the
atomic system in gaseousphase. Two types of scattering processesplay
important roles: the binary collisionswhich allow the systemto thermalize
at a rate proportional to the density � � (processwhich leadsto cooling the
system),and the 3-body collisionswhoserate is proportional to � � 2, which
lead to the formation of molecules. Thus extremely low densitiesallow to
achieve degeneracyin a gas.
Although the rangeof temperaturesat which quantum degeneracyappearsin
Fermionsand bosonsis the same,its e�ects aremanifestedin a di�erent way.
In the Bosecase,quantum statistical e�ects are translated into the onsetof
a phasetransition to the Bose-Einsteincondensate. On the contrary, the
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appearanceof quantum behavior in Fermi systems,does not coincide with
the occurrenceof a superuid phase,which actually does not take place if
there are no interactions betweenFermions. From the theoretical point of
view the many body physicsof Fermionsat low temperature is particularly
rich and challenging.

The experimental processto reach such low temperatures and densities
starts usually with lasercooling and magnetictrapping, followed by evapora-
tive cooling . Thesetechniquesapply to both bosonicand fermionic species,
but for the latter when only a single component is present, the Pauli ex-
clusionprinciple inhibits the thermalization process,challengingany further
reduction of the temperature. To overcomethis di�cult y the technique of
sympatheticcooling with mixtures of di�erent fermionicor bosonic-fermionic
speciesis used. Quantum degeneracyhasbeenreported for instanceby Tr-
uscott et al. [33] in Lithium by applying sympathetic cooling between the
Fermion 6Li and its bosonicisotope 7Li, and by DeMarcoand Jin [32]mixing
the hyper�ne states j9=2; 9=2i and j9=2; 7=2i of 40K.

At such low temperaturesthe most important physical processesis lead
by two body scattering, characterizedby the scattering length a, while the
relevant internal states of the atom are the hyper�ne states. The coupling
between such internal states in the presenceof the external magnetic �eld
givesrise to the socalled Feshbach resonances,which then provide a control
mechanism of the strength of the interactions.
The feasibility of this mechanism openeda new tool to achieve superuidit y
in fermionic systems.As a result, novel conditions were reached by varying
the external magnetic �eld. In 2002,O'Hara et al. [4] succeededin creat-
ing a dilute gas in a strongly interacting regime. This particular situation is
producedby working closeto the Feshbach resonance,where the scattering
length blows up to in�nit y. In the unitary regime, which is characterized
by the disappearanceof all the lengths associated with the interactions, the
remaining length scaleis 1=kF . As a consequence,the description of these
Fermi dilute gasis expectedto exhibit a universalcharacter. Another inter-
esting feature is the critical temperature, which is much higher than the one
predicted in the BCS regime; its estimations are of the order of the Fermi
temperature, thereforethe superuid phaseis more easily reachable. In Ta-
ble 1.1. is shown the order of magnitudeof the critical temperature in terms
of the Fermi temperature, for various Fermi systems.
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System Tc/T F

Classicalsuperconductors 10� 4 � 10� 4

Superuid 3Helium 10� 3

High Tc superconductors 10� 2

Dilute Fermi gasesin the vicinit y of a Feshbach resonance � 0:2

Table 1.1: Ratio between Critical and Fermi temperature for di�erent
fermionic systems.Taken from [34]

The presenceof an external magnetic�eld turns out to be important not
only as a tool for trapping and cooling the alkali gases,but also to modify
the e�ective interactions betweenatoms. The tunabilit y of the interactions
makes it possibleto change from attractiv e (a < 0) to repulsive (a > 0)
e�ective interactions; this is known as the BCS-BEC crossover. In the next
subsectionsa brief overview of the Feshbach mechanism and the crossover is
given.

1.1.1 Feshbach resonances

One of the most appealing aspects in the physics of dilute systemsis the
abilit y to tune the type of e�ective interactions. The central mechanism
responsible for the tuning is the magnetic �eld, which revealsand modi�es
the hyper�ne structure of the probe, which is particularly rich for alkali
atoms. The phenomenon�rst investigatedin the context of nuclear matter
[35], was primarily observed in dilute atomic gasesfor sodium, undergoing
BEC in 1998 [36], [37]. Soon after, Feshbach resonancesmade possible
the achievement of condensationin Rb85 [38]. It has also been veri�ed in
fermionic vapors such as K40 [39] and Li6 [40].

The interactions between alkali atoms are basically determined by the
state of the valenceelectrons. Two colliding atoms can form a singlet state
thereforesharing the sameorbital with di�erent spin states. The Coulomb
repulsion between them is reected in a strongly repulsive potential. In
contrast a triplet state does not support such reduction in energy and the
electronsare far from each other in order to maintain the antisymmetry of
the wave function.

Due to magnetic interaction with the nuclear spin, a coupling between
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both con�gurations can arise. As a consequenceif two atoms are colliding
in a triplet state for instance, the electronic and nuclear spin of one of the
atomsmay be ipp ed, thus resulting in a singlet state. This state is usually
formed for a short life time up to another collision processbringing back the
triplet initial potential.

The electronicZeemancoupling to the triplet state in the presenceof an
external magnetic �eld, can shift its relative energeticposition with respect
to the singlet con�guration. Let � be the shift introduced in the scattering
threshold of the singlet and triplet states. Usually the singlet threshold is
above the triplet one, thereforeis energeticallyunfavorable for atoms in the
singlet to escape out. It is very commonin this problem to refer to a state
(set of quantum numbers) as channel. With this convention, the singlet
con�guration is denotedasclosed channel while the triplet, asopen channel.
This terminology is moreappropriate, becausein generalthe interactionsare
madeof a superposition of both singlet and triplet states.

The exampleshown in Fig. 1.1 shows the potential felt by the scattering
atoms in the singlet S = 0 or in the triplet S = 1 two-body states. For a
Feshbach resonanceto occur a bound state belongingto the closedchannel
must lie closeto the scattering threshold of the open channel. The energy
di�erence � betweenthe bound state energyand the zeroenergycorrespond-
ing to the continuum of scattering states of the triplet or open channel is
referredto as detuning parameter.

The scattering processis then tremendouslya�ected by the existenceof
bound states in closedchannels. Adjusting the magnetic �eld it is possible
to changethe detuning parameter from positive (bound state of the closed
channel above the threshold of the open channel) to negative (bound state
bellow the zeroenergy). The intermediate situation when � = 0, occursfor
a particular valueof the magnetic�eld B0. As a consequenceof the coupling
betweenboth channels,the scattering length is modi�ed with respect to the
background scattering length abg, if there is no coupling betweenchannels.
The dependenceof the scattering length with the magnetic �eld is ruled by,

a = abg

�
1 �

� B
B � B0

�
;

where � B is a measureof the width of the resonance,and the detuning
parameter� � B � B0. When the energyof the scatteringparticles is below
that of the bound state, an attractiv e (a < 0) e�ective interaction arises
between them and when the opposite situation occurs a repulsive (a > 0)



1.1 Dilute Fermionic gases 15

Figure 1.1: Pictorial description of a Feshbach resonance. The lower line
corresponds to the potential between two scattering atoms in triplet spin
state (open channel) and the upper to the interaction potential in the singlet
state (closedchannel). The shift betweenthe continuum states(represented
with dashedlines) between open and closedchannelsdue to the magnetic
�eld, correspondsto � (B). The detuning parameter� measuresthe di�erence
betweenthe boundstate in the closedchanneland the zeroenergyof the open
channel. Taken from [41].

interaction is established(Seefor instanceFig. 1.2). Thus it follows that in
the former casethere is no bound state; for that sideof the resonancewhen
a ! �1 the systemis at the onset of a molecular bound state. From the
other sidewhen the a ! + 1 ; the bound state reachesthe stabilit y. There-
fore the picture of the systemevolvesfrom Cooper pairs (weakly interacting
particles) to the BEC of bosonicmoleculesmadeof two Fermions.

The magnetic �eld acts like a knob for the interactions opening a wide
rangeof possibilities to test our knowledgein the many body processgiving
rise to the condensationof particles. Although the scattering length passes
through jaj ! 1 , the N body problem of superuidit y evolves in a smooth
way, showing that weak coupling and strong coupling pairing correspondsto
two facesof the samecoin; the crossover between BCS and BEC is based
preciselyon this fact.
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-
a < 0 -

a > 0
r

r

Figure 1.2: Left: Exampleof an attractiv e potential (blue line) togetherwith
the solution of the reducedradial equation (red line). Right: Idem situation
for a repulsive potentail. The scattering length a is given by the intercept of
the asymptotic reducedradial wave function on the r axis (greenlines).

1.1.2 BCS/BEC crossover

In the context of pairing in Fermi systemsthere are two di�erent pictures
involved. On one side the weak pairing case(a small and negative), suc-
cessfullyexplained by standard BCS theory and on the other the model of
composite bosons(dimer moleculeof Fermions) undergoingBEC. Through
the Feshbach resonancesfor instance, the pairing phenomenaevolves from
dealing with Cooper pairs whosesize is huge compared to the interparti-
cle Fermion distance, to real tightly bound bosonicmolecules,experiencing
the crossover which is characterizedby jaj large corresponding to a strong
coupling regime. This is the region of interest for us. In Fig.1.3 a pictorial
representation of the pair formation is shown in both cases.

Besidethe di�erences in the pair size, also the transition temperatures
di�er considerably. In the BCS theory the Fermi liquid undergoesa pairing
instabilit y at a temperature much smaller than the characteristic Fermi
temperature Tc � TF : The formation of Cooper pairs coincideswith the
transition to the superuid (or superconductivity) state. In contrast Bosons
condenseat a temperature of the order of their degeneracytemperature.
Bosonsare composite objects made up of an even number of Fermionsand
the temperature required to dissociate them is tremendouslylarger than the
condensationtemperature, Tc � Tdissoc:
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Figure 1.3: Representation of the pairs in the BCS (left) and BEC (right)
case. The BCS pairing is characterized by the strong overlapping of the
Cooper pairs while in the BEC superuid, real bound moleculescondensein
a macroscopicwave function. the di�erence betweenthe

Certainly there are many commonfeaturesconcerningtheir macroscopic
behavior. Bosonic and fermionic superuids are described by a coherent
wave function and in three dimensions,their density matrices exhibit O�-
diagonal long rangeorder (ODLRO).

The quantit y of works done in this �eld is large and the motivations
behind them comefrom very diverseinterests. A variety of techniquesrang-
ing from renormalizedmean �eld theories, variational approaches, random
phaseapproximation (RPA) and numerical simulation have constructed the
rich map of the �eld, but still open questionsare left, especially concerned
with the intermediate regime.

In this brief introduction we will show the behavior of important quanti-
ties in the crossover, emphasizingin the limiting regimesof weak and strong
coupling. This follows the work doneby Randeria et. al [5].

Commonlyonestarts with a systemof Fermionswith attractiv e two body
interactions. The fermionic nature of the particles is an important condi-
tion in the experiments, sincethe bosoniccounterpart would require a large
amount of energiesto be broken into their constituent Fermions. Following
Randeria [5] notation, the Hamiltonian density for a continuum model1 is

1Lattices models are also very used, the most important being the Hubbard model.
Here there are two parameterswhich rule the crossover, the �lling factor and the coupling
U=t. Where U is the on-site attraction and t the hoping constant.
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written like

H = 	 � (x)
�
�

r 2

2m
� �

�
	 � (x) � g	 " (x)	 #(x)	 #(x)	 " (x)

where 	 � (x), 	 � (x) are the creation and destruction �eld operators at
position x, spin � . The chemical potential is introduced to �x the average
density and g is the strength of the bareattractiv e interaction (this is the only
parameter introducedso far in the model). Natural units are used. At the
temperaturesof interest, only the s wave scattering length as, characterizes
the two body interaction.

In order to �nd the temperature at which the systemis unstable against
pair formation, basically the samepath as in pure BCS is followed. How-
ever this time the chemical potential is no longer �xed to the Fermi energy
and the constrain that only the Fermionsaround the Fermi surfacefeel the
attraction is no longerassumed. Instead the ultraviolet divergenceis solved
by replacing the bare g interaction by a renormalization of the scattering
length, which is valid in the low energylimit. This condition is stated in

m
4� as

= �
1
g

+
X

jkj< �

1
2" k

where � is a cut o� for low energy states. In the BCS weak coupling
region g ! 0 while for strong attractiv e interactions g ! 1 , therefore the
scattering length goes from as ! �1 in the weak limit to as ! 1 in the
strong one. The temperature T0 we look for satis�es

�
m

4� as
=

X

k

"
tanh( � k

2T0
)

2� k
�

1
2" k

#

;

where � k = " k � �; is the single particle energymeasuredwith respect
to the chemicalpotential. Finally the equation for the density allows to �nd
� , this quantit y will have an important role in the whole crossover.

n0(�; T) =
X

k

�
1 � tanh

�
� k

2T

��

It canbe found that in the weakcoupling limit, the BCSresultsarerecov-
ered, namely � = � F and T0=8e� 2 � � 1� F exp(� � =2kF jasj), which coincides
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with the transition temperature. On the contrary in the limit ( 1
kF as

! 1 )
the pairs are strongly bound with energyEb = 1

ma2
s
, the chemical potential

is negative � ' � Eb=2 and T0 ' (Eb=2) ln(Eb=�F )3=2. Thereforewhen the
scattering length reacheslarge and negative values,as ! �1 the systemis
on the onsetof a two body bound state, the limit 1=as = 0 correspondsto a
threshold for the existenceof a true moleculewith binding energyEb.

However this approach doesnot apply properly in the strong interaction
regime, basically becausethe normal phasewe have assumedcorresponds
to Fermi gas, which is not true in Bosonic limit. There is no possibility
to recover the bosonicdegreesof freedom without including a dependence
of the frequencyin the quantum uctuations which leadsto the formation
of a tight bound pair (Gaussianapproximation). We will limit ourselves
to mention the result without giving details of the calculation [42]. The
temperature at which the superuid transition takesplacesTc di�ers from T0

which is related to the dissociation temperature, while in the weak coupling
turn out to be the samequantit y (in generalthis treatment doesnot a�ect
the outcomewe underlined for the weak coupling limit). The known BEC

critical temperature is obtained, Tc = �
m

h
n

2� (3=2)

i 2=3
where 2m is the mass

of the composite bosonand n=2 its density. The chemical potential at the
critical temperature corresponds to the energy necessaryto break a pair,
� (Tc) = � Eb=2: Clearly it changessign through the crossover and it evolves
between the two extreme casessmoothly. In Fig. 1 and 2 we show the
behavior of the critical temperature and the chemical potential respectively,
as a function of the inverseof the scattering length.

In this work we will constrain to work with Fermi dilute gasesin the the
limit when a ! �1 , therefore far from the weak coupling limit, where we
presumecorrelationsbetweenparticles are no longer negligible.

1.2 Neutron Matter

Neutron stars are the densestobjects known so far in the universe. Im-
proving our understandingof this exotic systemsimplies a cooperative e�ort
betweendi�erent branchesof physics,sinceall the forces(strong, electroweak
andgravitational) areinvolved. Through the accessibleobservational probes,
such as pulse radio emission,thermal X-ray radiation emitted from the sur-
face and gravit y waves, valuable information on their composition and dy-
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Figure 1.4: Chemical potential and Critical temperature in the crossover.
Taken from [43]

namicsis obtained,and reciprocally constituting a good test of our knowledge
of nature at short distancesand under strong interactions.

At such high densities(the Fermi temperature is around KeV, very small
comparedto the usual TF � MeV of Fermions in solids for instances), the
nucleonsundergo strong interactions which are responsible for the appear-
anceof a superuid phase. The existenceof this state in neutron stars had
already beenpredicted theoretically by Migdal [44] in 1959,two yearslater
than the arrival of the BCS theory, but the observational proof did not arise
until 1967with the discovery of radio emissionsof pulsars by Jocelyn Bell.
These pulsed emissionsturn out to have a perfect periodicity around sec-
ondsor less,which are closelyrelated with the rotational period of the star.
However somedeviations in their periods have beenregistered,which can be
divided in three kinds:

a) Glitches or macrojumps: They correspond to suddenincreasesin the
rotational speedaround �
 =
 � 10� 6 � 10� 8 and spin down ratesof pulsars
by �( d
 =dt)=
 � 10� 3: The systemreturned to the initial valuesin a time
that canvary from weeksto years,but in somecasesthe processis completely
irreversible.

b) Timing Noiseor Microjumps. Correspond to stochastic variations in
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the spin and spin down rates which appear in superposition to the perfect
periodicity of the star.

c) Long Term Periodic Variabilities. They are associated with the pre-
cessionbut this is a more rare event.

It is believed that the explanation for theseanomaliesis connectedto the
presenceof a superuid component which in the caseof glitches is weakly
coupledto the normal part of the star wherethe pulsedemissiontakesplace.
For microjumps, a stochastic couplingbetweenthe two components might be
the reason,but it is unclearup to now. A schematic descriptionof a neutron
star is shown in Fig. 1.5

The hypothesis of superuidit y in the interior of neutron stars is sup-
ported by experimental evidence. The surfacetemperatureswould be lower
if no nucleon superuidit y was present. Many new information about dis-
sipative processesis expected to con�rm this picture, through the study of
the gravitational wavesemitted by such denseobjects.

Figure 1.5: Schematic representation of the interior of a neutron star. Taken
from [45]

The analysisof scatteringprocessrevealsthe type of pairing channelpre-
ferred by the nucleonic system under study. The density and the isospin
symmetry (balancedor unbalancedpopulation of protons and neutrons), are
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the parameters which tune the kind of dominant pairing channel, for in-
stanceat high densities(laboratory energiesabove 250MeV) and for slightly
broken isospin symmetry, the tensorial part of the Nucleon-Nucleon(NN)
interaction is the most attractiv e, leading to a coupled 3P2 � 3 F2 favorable
pairing channel. This is in generalthe caseinside neutron stars. On the
contrary when nucleonic matter is isospin symmetric, the 3D2 is the most
favorable.

At low density for symmetric nuclear matter, the tensorial part of the
force,makes3S1 � 3 D1 the most interacting pairing channel. This attractiv e
interaction exhibits a bound state (the deuteron) in free space. For highly
asymmetric isospin,the superuidit y phaseis not supported due to the large
di�erence in the Fermi momentum of proton andneutron components. In the
inner crust of the neutron star, 1S0 pairing in the neutron gascomponent,
may occur at densities much lower than the saturation density � 0 = 0:16
fm� 3.

The study of the pairing phenomenacannot be treated without paying
specialattention to the strong couplingbetweenFermionswhich enrichesbut
also complicatesany approach. Many di�erent techniqueshave beenused
to cope with it. Among them Green'sfunction methods and the BCS mean
�eld have described qualitativ ely the problem, and many of their insights
becamethe starting point of ab initio calculations. From that knowledge,
it is well known that the Gap in the weak coupling limit, behaveslike

�( pF ) = � � e- 1
� ( pF ) j V ( pF ;p F ) j

where� � is an e�ective chemical potential, � (pF ) is the density of states
and V(pF ; pF ) is the matricial element of the interaction at the Fermi mo-
mentum. Although the magnitude of the gap is correctly estimated, the
approximation fails whenhaving potentials whosematricial elements acquire
a dependencyon the momentum, for instancedue to the presenceof short
rangerepulsive cores,as it is the caseof realistic NN forces.

A �rst re�nement of the theory consistof taking into account the inuence
of the medium in the interactions amongthe particles, which is addressedin
the literature asthe polarization e�ect. This hasimportant consequenceson
the gap. On onehand, the density uctuations tend to enhancethe magni-
tude of the gap, sincethe e�ective attractiv e interactions are enlarged,but
on the other hand the spin-density uctuations tend to reducethe superuid,
and this is the leadinge�ect in the inner crust of the neutron stars. Recently
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Figure 1.6: Single S-wave (1S0) pairing gap in neutron matter versus the
Fermi momentum and the density. � 0

vn
stands for the Gap in the caseof a

pure BCS state. Instead � vn or � v0
n

corresponds to the Gap for correlated
BCS state by using vn or v0

n potentials respectively. The black points with
error bars comefrom ADMC calculations. Taken from [17].

microscopiccalculations basedon the auxiliary �eld di�usion Monte Carlo
(AFDMC) and lowest order Correlated Basis Function (CBF) and in pure
neutron matter revealedthat the e�ect of the polarization in 1S0 pairing type
hassmaller inuences than what found in previousstudies[17].

In the samework, a calculation of gap was performed pointing a slight
reduction with respect to the standardBCS theory. The maximum gapbeing
2:5 MeV at kF = 0:8 fm� 1. In Fig. 1.6 we report their results for di�erent
nucleon-nucleon potentials (vn ), characterizedby di�erent number of spin-
isospinoperators: v4, v6, v8, v18 and v40, v60 and v80. For instancethe �rst 6
operators Op(ij ) for the pair of particles ij are given by;

v6(ij ) =
X

p=1 ;6

vp(r ij )Op(ij )

where O1(ij ) = 1 (scalar term), O2(ij ) = �!� i � �!� j (spin spin interac-
tion), O3(ij ) = S(ij ) = [3br � (i )br � (j ) � � �� ] � � (i )� � (j ) (tensor operator) and
Op= p+3 (ij ) = Op(ij ) � �!� i � �!� j , with �!� the isospinand p = 1; 2; 3. The greek
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indicesstand for cartesiancomponents.
The NN potential v18 includes18 operatorial components and it is obtained
by �tting the NN data up to the threshold energy. The potentials v4, v6,
v8 are calculated from the v18 potential by cutting out the extra 14, 12 and
10 operatorial components. The potentials v40, v60 and v80 are �tted to the
lower energyNN scattering data, and they should consideras semirealistic
potentials.

The short range correlations induced by the strong nuclear interactions
canbeincorporatedwithin a variational descriptionof the problem. The sim-
plest level of the CBF theory (which this work concernswith) is to consider
a pure Jastrow ansatz,namely,

	 J (1; 2; :::; N ) =
Y

i<j =1 ;:::;N

f J (r ij )� (1; 2; :::; N ) :

in which � (1; 2; :::; N ) is a model function that describes the systemat the
noninteracting or weakly interacting level. In the caseof superuids, the
model function is a BCS state,

jBCSi =
Y

k

[uk + vk ay
k " ay

� k #]j0i ;

whereay
k ;� (ak ;� ) is the creation (annihilation) operator of a Fermion in the

singleparticle state with momentum k and z-spin component � .

A useful improvement consistof constructing N body correlators having
an operatorial dependence,for instanceon the total spin-isospin,denotedas
bP (ST )(ij ) (S standsfor the singlet statesand T for triplet).

bF4 (1; 2; :::; N ) = S

"
Y

i<j =1 ;:::;N

bf 4(ij )

#

where
bf 4(ij ) =

X

S;T =0 ;1

f (ST )(r ij ) bP (ST )(ij )

However the feasibility of a full expansionby using FHNC methods is lim-
ited, becausethe di�erent operators do not commuter amongthem. A Gap
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equation hasbeenderived by using such trial correlatedstate, performing a
lowest order cluster expansionwith the bv4 versionof the Reid soft potential
[46], [47]. In this formalism the correlation factors do not depend on the
BCS amplitudes uk and vk ; this approach is denotedasIndependent Cooper
pairs (ICP). A larger gap of the BCS is obtained as a consequenceof the
repulsive behavior of the correlation.

The inclusion of tensor components also under the ICP for the Reid bv6

potential leadsto a reduction of the Gap with respect to BCS. The calcu-
lations done by Chen [48] considera simple choice for the Jastrow but the
energy is calculated at higher order in the FHNC expansion. Polarization
e�ects have also been taken in that work, which reducedthe Gap by 80%
comparedto other studiesand in contradiction with the X-ray observations.
This underlying reasonmight be that secondorder is not enoughin the prob-
lem of nuclei.

In this work we will considerthe 4-term semirealisticAfnan-Tang poten-
tial, which for the caseof neutron matter �!� i =1, becomesa 2-term potential.
1S0 neutron pairing is consideredthereforethe BCS state is consideredasthe
model state. Spin independent and dependent (z component) correlations
areassumedto correlatedthe particles. Under this simpli�ed assumptionthe
operators do commute among themselves and the FHNC expansioncan be
fully applied. The calculation of the energyaswell asthe oneand two body
momentum distributions is performed at full order. Although we do not
expect to give a realistic description of the problem, our work constitute the
�rst step towards a more careful approach to the pairing e�ects in neutron
matter.
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Chapter 2

Man y-b ody metho ds

Many body systemshave beenwidely studied under a great variety of tech-
niques. Roughly we can divide them into two branchesnamely stochastic
and non stochastic methods. The last approach implies an analytical pro-
cedure basedeither on perturbation theory or variational theories like for
instanceFermi Hypernetted Chain (FHNC) [18]. In dealing with strongly
correlated systemsit is commonto introduce a diagrammatic notation and
deviseresummationtechniquesto sum up in�nite classof diagrams. On the
other sidestochastic methods are basedon the useof random walks to sam-
ple the expectation valuesof physical quantities or the Schr•odingerequation
itself from a suitable distribution.

In the following, a generaldescriptionof the auxiliary �eld di�usion Monte
Carlo and of FHNC methods is given, referring them speci�cally to the treat-
ment of superuid systems.

2.1 Quan tum Mon te Carlo metho ds

The abilit y to introducestrong interactions in the problem relieson the pre-
vious knowledgeobtained by a non stochastic previous study. Concerning
the method itself, it is free from convergenceproblems(typical in the per-
turbativ e approach), but its main shortcoming is in the fact of considering
a �nite number of particles ("granular" simulations), which is particularly
inconvenient when studying long rangee�ects.

Among this methods the simplestversionin the Variational Monte Carlo
(VMC) in which a trial wave function is carefully chosen. The many body

27
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integrals involved in the evaluation of the expectation values,are calculated
by the Metropolis algorithm, and the generatedstatistical errors are con-
trolled by variance reduction techniques. Comparing this method with its
non stochastic counterpart, the FHNC, the former is more precisebecause
the accurate evaluation of the integrals is translated into the inclusion of
diagramsof higher order. In order to mimic the systema �xed number of
particles is allocated in a cubic box of adjusted length to have the required
density, then periodic boundary conditions are imposed.

A morere�ned stochasticmethod is the di�usion Monte Carlo (DMC),which
solvesthe imaginary time Schr•odingerequation for a N body system,taking
advantage of its similarity with a di�usion equation. It will be described
briey in what follows.
The Schr•odinger equation in imaginary time, is given by:

�
@	
@t

= (H � E)	( R; t); (2.1)

where R = (r 1; r 2; :::; r N ) is the 3N dimensional vector that allocates the
position of the N particles and t is the imaginary time measuredin units of
~.
The time dependent wave function 	( R; t) can be expandedin terms of a
completeset of eigenfunctions� i (R) of the Hamiltonian:

	( R ; t) =
X

i

ci e[� (E i � E )t ]� i (R); (2.2)

whereE i is the eigenvalue associated to the eigenvectors � i (R).

At larget the ground state � o is projected out. DMC solvesthis di�usion
equation stochastically by sampling the con�gurations R (called \w alkers")
accordingto Eq. (2.1). In order to e�cien tly solve the di�usion equationthe
importancesamplingtechnique is used. It rewrites the Schr•odingerequation
in terms of the function

f (R; t) � �( R)	( R ; t) (2.3)

where�( R) is a time-independent trial wave function that describesapprox-
imately the ground state of the systemat the variational level.
When the Hamiltonian is of the form

H =
~2

2m
r R

2 + V(R); (2.4)
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Eq.. (2.1) turns out to be

�
@f (R; t)

@t
= � Dr 2

R f (R ; t) + Dr R (F (R)f (R; t)) + (EL (R) � E)f (R; t);

(2.5)
whereD = ~2=(2m) is calledthe di�usion coe�cien t andEL (R) = �( R) � 1H �( R)
is the local energy. The term

F (R) = 2�( R) � 1r R �( R); (2.6)

acts asan external forcethat guidesthe di�usion processto regionswhere�
is large and it is called drift or quantumforce.

In dealingwith Fermions,which requiresan antisymmetrized wave func-
tion, the problem of �nding the right node surfaceappears. This is the main
drawback of this method, which somehow it is cured by using the Fixed
Node approximation. Such approximation is basedon freezingthe nodesof
the trial wave function during the simulation. Thereforea bad nodal initial
picture necessaryin mapped in the �nal result. Details of DMC canbe found
in [49], [50].

Sincethis work is focusesin the study of fermionic pairing, a very good
starting trial wave function is the BCS. This choice is constructedby anti-
symmetrizing the product of the two-body (pair) functions having organized
the particles of the system in pairs; perfect pair matching. Therefore any
numerical simulation which made use of the BCS as a trial wave function
requiresa more sophisticatedtool than a simple determinant (Slater type),
called Pfa�an.

2.1.1 The Pfa�an

Let us start with the mathematical de�nition of the Pfa�an [51]. Let's
considera pair of elements x and y, belongingto an index set X . Consider
the quantit y h[xy], which satis�es the law of skewsymmetry (antisymmetry):

h[xy] = � h[yx] for x; y 2 X (2.7)
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This property can be extendedto an arbitrary even number of elements, by
de�ning the Pfa�an . For instance,

h[wxyz] = h[wx]h[yz] � h[wy]h[xz] + h[wz]h[xy]

= h[wx]h[yz] + h[wy]h[zx] + h[wz]h[xy]: (2.8)

Notice that h[wxyz] = � h[xyzw]. In generalany odd permutation of the
elements reversesthe sign.
The Pfa�an can be written like the squareof the determinant of a skew
matrix (cij = � cj i ), i.e

detC = (Pf C)2 (2.9)

where C correspond to the matrix of the perfect matchings between the
elements, for instance

C =

0

B
B
@

0 c12 c13 c14

� c12 0 c23 c24

� c13 � c23 0 c34

� c14 � c24 � c34 0

1

C
C
A :

Determinants arespecial casesof P�a�ans whenthe skew matrix is bipartite.
Supposethat h[xy] = 0 whenx and y belongto the samepart. It is usefulto
imagine that the set of indicesconsistsof two disjoint setsX and X so that
x 2 X and x 2 X . Then the matrix is bipartite if h[xy] = 0 and h[xy] = 0.
For instance, let particles 1 and 2 belong to the set X and 3 and 4 to X ,
thereforec12 = 0 and c34 = 0. In that casewe can write the matrix C in the
form:

C =
�

0 B
� B T 0

�

whereB is the matrix of non zeroelements of C, B T is its transposeand 0 is
the zeromatrix. In such a case,det A = (det B)2 and therefore,the Pfa�an
is a determinant:

Pf C = detB (2.10)

Since, by construction, BCS type wave function � pairing is an antisym-
metric sum over the perfect matchings 1 betweenparticles, then Pfa�an is

1A perfect matching is a partition into pairs.
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the quantit y we needto compute. The pair function � (r ij ) is already a func-
tion that satis�es the antisymmetrization condition required for h. Then the
pairing wave function can be written like:

� pairing (R) = Pf

0

B
B
B
@

0 � 12 � 13 : : : � 1N

� � 12 0 � 23 : : : � 2N
...

...
. . .

...
...

� � 1N � � 2N : : : : : : 0

1

C
C
C
A

where the number of particles N is assumedto be even. Notice that in the
caseof a singlet state, the matrix C is bipartite, where the set X corre-
spondsto spin-up particles and X to spin-down particles. It follows that the
Pfa�an can be written as a determinant and its calculation is straightfor-
ward. This is not true anymore if the pairing is of the p type, for instance.
Another important caseof not-bipartite matrix concernsto spin-dependent
Hamiltonians, this is the caseof neutron matter in which weare interestedin.

The Quantum Monte Carlo method to be usedin thesecasesis the Aux-
iliary Field Di�usion Monte Carlo. The technique, originally developed by
Schmidt and Fantoni [16], can be viewed as an extension of the method
by Zhang et. al. [52], [53] for lattices in which the spin-isospindegreesof
freedomof nucleonsare sampledwhile the spatial degreesare handle with
standard di�usion Monte Carlo. It has beensuccessfullyapplied in the nu-
clearmatter in the study of largenucleonsystem(up to A . 100) interacting
via semirealistic[54] as well as full realistic

nuclear interactions [55] and in spin-polarized systems[56].
The study of superuids in QMC implies the use of a correlated BCS

state as a guiding function which is translated into introducing a correlated
Pfa�an, namely:

	( R) =
Y

i;j

f J (r ij )� pairing (R) (2.11)

in which � pairing (R) (the Pfa�an) correspondsto a projectedBCS state with
a �xed number of even particles, properly correlatedwith a Jastrow function
f J (r .

In the following section we focus the attention on many-body theories
in particular the Fermi Hyper-netted chain, to study BCS-superuids in the
strongly correlated regime.
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2.2 FHNC metho d

Perturbation theory is oneof the most commonapproachesto addressmany
body problems. It usesthe noninteracting states as a baseto construct a
solution in terms of a normalized parameter which modulates the strength
of the interaction. The problem of long range interactions (electronic case
for instance)can be properly cured by rearrangements or resummations. In
particular the random-phaseapproximation is usedto sum certain diagrams
(ring diagrams)leadingto producea screeningof the Coulomb long rangepo-
tential. But any attempt to tackle hard coreproblemsor very strongly repul-
sive potentials, like helium liquids, fails under any perturbative method. Still
particular summations(ladder terms) canbeperformedunder the Brueckner-
Hartree-Fock theory to handle problemsin nuclear matter at not very high
densities.

Although the clearanalysisthat is possibleto extract from a perturbative
study, specially in limiting conditions, the feasibility of this method is very
restricted.

On the other hand variational methods, can be easily adapted to cope
with strongly correlated systems. When interactions are highly repulsive,
the needof introducing dynamical correlations allows to overcomethe dif-
�cult y. This approach starts from the construction of a many body wave
function which describes the problem at the noninteracting level or weakly
interacting. Next a proper correlation function if chosento curethe strongly
nature of the interactions. The most common choice is the Jastrow type,
which forces a pair of particles to have the desired short range behavior.
More sophisticatedinclude for instance, triplet, backo w type (momentum
depending), spin dependent and non central (tensorial) correlations. Dealing
with such function improves cluster expansionand resummation methods.
FHNC is the most powerful of such techniques, and it is the focus of our
attention in this thesis.

A further improvement is given by the correlated basis function (CBF)
perturbative theory, which is basedupon a variational Jastrow correlation
wave function and FHNC summations.
We will generalizein the following the FHNC theory to deal with Fermi
systemsin the superuid phase.
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2.2.1 FHNC for longitudinal spin dependent correlated
Fermi gases

Beforeaddressingthe BCS problem, we will review the theory for the caseof
a pure Slater determinant asa model function, introducing longitudinal spin
dependencein the Jastrow correlator, originally developed by Fantoni and
Fabrocini [57], [58]. Sincewe aredealingwith Fermionsof spin 1/2, there are
two possiblespin con�gurations for the pair, either parallel or antiparallel,
then the spin degeneracy� = 2, being the parallel caselabeled by (p) and
the antiparallel by (a). The two body correlation factor is given then by

f (i; j ) =
�X

k=1

f (k)(r ij )P(k)
� (i; j ); (2.12)

with P(k)
� (i; j ) the projection operator of the spin state of particles i and j

on the state (k). In the case� = 2 they are,

P(p)
� =2 (i; j ) =

1
2

(1 + � iz � j z); P(a)
� =2 (i; j ) =

1
2

(1 � � iz � j z):

The parallel and antiparallel component can be found by solving the Euler-
Lagrangeequationswhich will be stated.

Basically the calculation of the expectation value of the two body oper-
ators we are interestedin, is done through the two body radial distribution
function de�ned by

g(k)(r12) =
N (N � 1)

� � 2

Z
dx3:::dxN � � (R)Fp(m)(1)p(n)(2)F�( R) (2.13)

where � is a normalization constant, p(m) (i ) is the projection operator for
particle i on state m (de�ned z spin component), and the integration is done
over the position and spin coordinates of the N-2 particles di�erent from 1
and 2. Statesm and n for particles 1 and 2 respectively, correspond to the
pair state k. The many-body state �( R) describes the systemat a nonin-
teracting level or undergoingweak interactions. In this work a Fermi seein
momentum spacenamely a Slater determinant in coordinates, was consid-
ered.
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The main di�erence respect to the state independent correlated case,is
the presenceof the operators which in general introduce undesirablecon-
mutators. For the chosenJastrow, due to the commutativit y of the z Pauli
matrices, it is possibleto group the correlators:

F2 =
Y

i<j

f 2(i; j ) =
Y

i<j

�X

k=1

[f (k)(r ij )]2P(k)
� (i; j ) = 1 +

�X

k=1

h(k)(r ij )P(k)
� (i; j ):

(2.14)
having replacedEq..(2.12)andde�ning h(k)(r ij ) = f (k)2 (r ij )� 1. The func-

tion h(k) is usedasa parameterof expansionsincethe property lim r ij ! 0 h(k)(r ij ) =
0 holds.

The standard FHNC technique originally developed in [18], usesthe fact
that the denominator cancelsagainst the unlinked and reducible (factoriz-
able) parts of the numerator of g(r12), in that way its calculation is reduced
to sum all the irreducible terms of the numerator; the so called nodal and
composite diagrams. The presenceof a state dependent Jastrow operator
maintains the expansionlinked, but in general the irreducibilit y does not
hold. For the simpli�ed version we chose,both of them still apply and no
particular di�culties arise.
Essentially the convolutions used in the extendedFHNC will link any two
particles in � di�erent ways. A genericterm in the cluster expansionis then
of the form,

z(i; j ) =
�X

k=1

z(k) (r ij )P(k)
� (i; j ) =

Z
dxm p(i; m)� (m; m)q(m; j ) (2.15)

wherethe components are given by

z(p)(r ij ) =
�
2

Z
dr m [p(p)(r im )q(p)(rmj ) + p(a) (r im )q(a) (rmj )]

z(a) (r ij ) =
�
2

Z
dr m [p(p)(r im )q(a)(rmj ) + p(a) (r im )q(p)(rmj )]:

(2.16)

Much caremust be taken when there is a statistical correlation between
particles(`(kF r ) = 1

(2� )3 �

R
k� kF

dkei k �r ), becausenecessarythe dynamicalcor-

relation (if existing) must be of type h(p) , in which the spin of the particles
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is the same.
The nodal equationsare then given by,

Ndd(r12) = f X dd(r13) + X de(r13)jNdd(r32) + X dd(r32)g +

f X dd(r13)jNed(r32) + X ed(r32)g

Nde(r12) = f X dd(r13) + X de(r13)jNde(r32) + X de(r32)g +

f X dd(r13)jNee(r32) + X ee(r32)g (2.17)

Nee(r12) = f X ed(r13)jNee(r32) + X ee(r32)g +

f X ed(r13) + X ee(r13jNde(r32) + X de(r32)g

N (p)
cc (r12) =

�
�

Z
dr 3[X (p)

cc (r13)(N p
cc(r32) + X p

cc(r32)) � `(kF r13)X (p)
cc (r32)]

and the composite ones,

X (k)
dd (r ) = F (k)(r ) � N (k)

dd (r ) � 1

X (k)
de (r ) = (F (k)(r ) � 1)N (k)

de (r ) (2.18)

X (k)
ee (r ) = F (k)(r )[N (k)

ee (r ) � (`(kF r ) � N (k)
cc (r ))2� k;p + N (k)

de

2
(r )] � N (k)

ee

X (p)
cc (r ) = (F (p)(r ) � 1)(N (p)

cc � `(kF r )) :

The subindexesd, dynamical and e, exchange (two statistical lines), refer
to the kind of correlation reaching the external points (particles 1 and 2)
while ccmeansthat both points are touchedby only onestatistical line. The
function F (k) is de�ned by

F (k)(r ) = f 2
(k)(r )eN ( k )

dd (r ) ; k = a;p: (2.19)

Those coupledequationsconstitute the FHNC/0 (elementary diagramsare
neglected). Once they are solved, the expressionfor the radial distribution
function in terms of nodal functions corresponds to,

g(k)(r12) = F (k)(r12)[(1 + N (k)
de (r12))2 + N (k)

ee (r12) � (l(kF r12) � N (k)
cc (r12))2� k;1]:

(2.20)
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2.3 FHNC/BCS

2.3.1 Correlated BCS ansatz and cluster expansion

In this sectionweextendthe FHNC/BCS theory of I to Jastrow-typecorrela-
tions which can distinguish betweenspin parallel and spin antiparallel pairs.
It is well known that � z dependent correlationsdo not improve signi�cantly
the variational upper bounds obtained with the simple Jastrow ansatz for
Fermi systemsin the normal phase,like for instanceliquid 3He. However one
expects that for superuid systems,becauseof the pairing betweenk " and
� k # states, the two-body correlation f p(r ij ) betweenspin-parallel pairs be
di�erent from f a(r ij ) correlating spin-antiparallel pairs. Such an extension
of FHNC/BCS theory requires only minor modi�cations of the derivation
given in I, since� z dependent correlationscommute among themselves. As
a consequencedi�erently from the caseof full spin-dependent correlations
(which do not commute each other) [47], one is still able to carry a full
FHNC summations, the only limitation being a self consistent inclusion of
bridge diagrams.

2.3.2 The correlated BCS ansatz

The correlatedBCS state is de�ned by

jCBCSi =
X

N

X

f mN g

F̂N j� (mN ) ih� (mN ) jBCSi ; (2.21)

wherethe jBCSi state is given by

jBCSi =
Y

k

[uk + vk ay
k " ay

� k #]j0i ; (2.22)

whereay
k ;� (ak ;� ) is the creation (annihilation) operator of a Fermion in the

singleparticle state having momentum k and z-spin component � , namely

hr jay
k ;� j0i =

1
p



ei k �r � (� ) � ' k ;� (r ): (2.23)

The state � (mN ) in Eq. (2.21) corresponds to a Slater determinant of N
singleparticle orbitals with labels f mN g,

hr1; : : : ; rN jF̂N j� (mN ) i =
NY

i<j

F(ij )
Âf ' m1 (r 1) : : : ' mN (r N )g

p
N !

(2.24)
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wherer i � (r i ; � i ) and mi � (k; � ) and F(ij ) can be decomposedas:

F(ij ) = f p(r ij )Pp(ij ) + f a(r ij )Pa(ij ): (2.25)

The spin projection operators Pp(ij ) and Pa(ij ) are given by,

Pp(ij ) =
1 + � z(i )� z(j )

2
; Pa(ij ) =

1 � � z(i )� z(j )
2

;

where � z j "i = 1 and � z j #i = � 1. One can also write the � z-dependent
correlation in the form,

F(ij ) =
[f p(r ij ) + f a(r ij )]

2
+

[f p(r ij ) � f a(r ij )]
2

� z(i )� z(j ); (2.26)

the Jastrow caseof I is recovered for f p(r ij ) = f a(r ij ) = f (r ij ).
In Eq. (2.21) the summation over N is extended to any even number of
particles, and for a given N the summation over f mN g is done over all the
possible orbital states, mN labeling a set of such N orbital states. The
state vector jCBCSi is not an eigenstateof the particle-number operator
N̂OP =

P
m ay

m am . However, uctuations around hN̂OP i =
 = � , with � being
the density of the system,goesas1=
 and thereforecan be neglectedin the
thermodynamic limit of physical quantities, such as the energyper particle
or the momentum distribution (seeI).

2.3.3 Cluster expansion

Let us calculatethe expectation value of a given two-body scalar(spin inde-
pendent) operator Ŷ , whoserepresentation in R spaceis given by

hR N jŶ jR N i =
NX

j >i =1

Y(r ij ) =
1
2

X

i 6= j

Y(r ij ) (2.27)

wherejR N i = jr 1 : : : r N i . From Eq.. (2.21) and (2.24) we have

hCBCSjŶ jCBCSi =
1
2

X

N

1
(N � 2)!

X

n1 ;:::;nN
m1 ;:::;m N

Z
dr1 : : : drN

[' �
n1

(r 1) : : : ' �
nN

(r N )] Y(r12)
Y

j >i

F2(ij )[' m1 (r 1) : : : ' mN (r N )]

hBCSjay
n1

: : : ay
nN

j0ih0jamN : : : am1 jBCSi ; (2.28)
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wherethe factor 1
(N � 2)!

1
2 comesfrom the normalization factor 1

N ! times N (N � 1)
2

which is the number of pairs in Ŷ for N -particles state. Integration
R

dr i

means both spatial integration
R

dr i and spin summation for particle i ,
namely

h� n i (i )j� m i (i )i =
�
s(1)

n i
(i ); s(2)

n i
(i )

�
 

s(1)
m i (i )

s(2)
m i (i )

!

=
2X

� =1

s�
n i

(i )s�
m i

(i ) (2.29)

which gives1 if both � n i and � m i areup-particle (1,0) statesor down-particle
(0,1) statesand zerootherwise.
If the spin degeneracy� is equal to 4, like for instance in nuclear matter,
then the label � in Eq. (2.29) runs from 1 to 4 instead from 1 to 2.
Following the usual method of doing cluster expansion, let us expand the
correlation term

Q
F2(ij ) in terms of cluster operators. Writing F2(ij ) in

the form,

F̂2(ij ) = f 2
p (r ij )P̂p(ij ) + f 2

a (r ij )P̂a(ij )

= 1 + hp(r ij )P̂p(ij ) + ha(r ij )P̂a(ij )

� 1 + ĥ(ij ); (2.30)

we consider ĥ(ij ) as a \small" operator and we develop hR N jŶ jR N i as a
power seriesof it. In order to do so we �rst expandY(r 12)

Q
F̂2(ij ),

Y(r12)
Y

F̂2(ij ) = X̂ 2(12) +
X

k> 3

X̂ 3(1; 2;k) + : : : (2.31)

where
X̂ 2(12) = Y(r 12)F̂2(12) (2.32)

is singledout in all the terms of the r.h.s. of Eq. (2.31). This is because1
and 2 are the "in teracting particles" (also denotedas \external indices\); in
fact Y(r 12) may have strong repulsionat short distancesand thereforeneed
to be dressedby F2(12) in all the cluster terms since Y(r 12)F2(12) is well
behaved in the full rangeof r 12.
The three-body term in Eq. (2.31) is given by

X̂ 3(1; 2;k) = X̂ 2(1; 2)
�
ĥ(1k) + ĥ(2k) + ĥ(1k)ĥ(2k)

�
; (2.33)
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and the various expressionsfor X̂ p with p > 3 are obtained in a straightfor-
ward manner.
Let us now insert Eq. (2.31) into Eq. (2.28) with the result

hCBCSjŶ jCBCSi =
1
2

X

p

1
(p � 2)!

Z
dr 1 : : : dr pL p(r 1; : : : ; r p)

where

L p(r 1; : : : ; r p) =
X

s1 ;:::;sp

X

n1 ;:::;np
m1 ;:::;m p

' �
n1

(r 1) : : : ' �
np

(r p) X̂ p(12;3; : : : ; p) ' m1 (r 1) : : : ' mp (r p)

hBCSjay
n1

: : : ay
np

amp : : : am1 jBCSi ; (2.34)

where,di�erently from the Jastrow caseof I, the clusteroperator X̂ p(12;3; : : : ; p)
generatesdi�erent functions depending on the spin states � 1; : : : ; � p. The
projector on the vacuum j0ih0j of Eq. (2.28) is disappearedin Eq. (2.34).
This is becausein Eq. (2.28) any cluster term X̂ p involving p particles ap-
pears in all the terms of summation over N , with N � p. Integration over
the N � p uncorrelated particles p + 1; p + 2; : : : ; N gives 1 and implies
np+1 = mp+1 ; : : : ; nN = mN . Such term has a factor 1

(N � 2)! in Eq. (2.28),
which after the summationover all the permutations of states' mp+1 ; : : : ; ' mN

reducesto 1
(p� 2)! . Collecting up all such termswith N � p onegetsthe overall

projection operator

P̂p = j0ih0j+
X

mp+1

ay
mp+1

j0ih0jamp+1 +
X

mp+1 ;m p+2

ay
mp+1

ay
mp+2

j0ih0jamp+1 amp+2 + : : :

(2.35)
which coincideswith the identit y operator. Therefore for any value of p,
P̂p = I .

The calculation of the r.h.s of Eq. (2.34) is performedby usingthe Wick's
contraction algebraas in I, which leadsto the following exchangefunctions

lv(r ij ) =
2

(2� )3� 0

Z
dk v2

k ei k �r ; (2.36)

for spin parallel pairs which are correlatedwith f 2
p (r ij ), and

lu(r ij ) =
2

(2� )3� 0

Z
dk uk vk ei k �r ; (2.37)
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for spin antiparallel pairs which arecorrelatedwith f 2
a (r ij ). As for the caseof

uids in the normal phase,the exchangefunctions form disjoint loops. In the
superuid phaseeach exchangeloop may have any number of v-exchanges,
but only an even number of u-exchanges(there are no u-exchangesin the
normal phase). For this reason it is convenient to collect both exchange
correlationsin a singlecomplexoperator

L̂ (r ij ) = �
1
2

lv(r ij )P̂p(ij ) +
i
2

lu(r ij )P̂a(ij ): (2.38)

which reducesto the standard Fermi exchangefunction � 1
2 l (r ij ) for the nor-

mal phase,which can be obtained in the limit v2
k ! �( k � kF ) and uk ! 0.

The density of the uncorrelatedBCS state � 0 is de�ne in the following way:

� 0 =
�

(2� )3

Z
dkv2(k) (2.39)

and when the normal phaseis recovered it coincideswith the energyof the
system,� 0 = � .
The � z-dependenceof the correlationsdoesnot a�ect the linked cluster prop-
erty of the expectation value of Ŷ ,

hŶ i =
hCBCSjŶ jCBCSi
hCBCSjCBCSi

: (2.40)

As in the Jastrow caseof I, the denominator hCBCSjCBCSi exactly cancels
the unlinked portions present in the numerator, thereforeonly linked cluster
diagramscontaining the two interacting particles 1 and 2 are left, with the
result,

hŶ i =
1
2

X

p

1
(p � 2)!

Z
dr 1 : : : dr pL (link ed)

p (r 1; : : : ; r p); (2.41)

where L (link ed)
p (r 1; : : : ; r p) is given by a sum of linked cluster terms having

p-particles,

L (link ed)
p (r 1; : : : ; r p) =

X

�

L (link ed)
p;� (r 1; : : : ; r p): (2.42)

For instanceL (link ed)
2 (r 1; r 2) is madeup of 3 cluster terms or equivalently of

3 cluster diagrams.

L (link ed)
2 (r 1; r 2) = Y(r12)

n 1
2

�
f 2

p (r12)+ f 2
a (r12)

�
�

1
2

hp(r12)l2
v(r12)+

1
2

ha(r12)l2
u(r12)

o

(2.43)
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At the three-body level onehas33 cluster diagramswhich can be easilycon-
structed dressingthe r.h.s of Eq. (2.33) with all the possibleexchanges.
As for the Jastrow caseof I, the cluster diagramsare not all irreducible and
one has to use the renormalizedversion of FHNC theory RFHNC to sum
them up [59]. The RFHNC cluster diagrams are irreducible, but each dot
is "dressed" with a vertex correction which sumsup the reducible portions
attached to it.
The cluster terms L (link ed)

p;� are better represented by diagramsin which dots
stand for particlesand linesfor correlations. The interacting particles1 and 2
are represented by empty dots, and particles in the medium by full dots. Ex-
changecorrelations lv(r ij ) and lu(r ij ) are represented by oriented solid lines
with labels v and u respectively, dynamical correlations hp(r ij ) and ha(r ij )
by dashedlines with labelsp and a respectively.

The diagrammatical rules are very similar to those given in I for the
Jastrow case.We report them here for clarity:

� Exchange correlations lv and lu form closed loops without common
points.

� A given exchangeloop with p dots may have any number, nv 6 p, of
lv exchanges,whereasonly an even number nu 6 p of lu exchangesis
allowed.

� Each closedloop carries a factor � 2� (� 1=� )nv (i=� )nu where � = 2 is
the spin degeneracy.

� v-exchangedpairs can only be correlatedwith hp functions, whereasu-
exchangedpairs can only be correlated with ha. Not-exchangedpairs
can be correlated with both hp and ha and therefore by the function
1
2(ha + hp).

� The interacting particles 1 and 2 are always dressedby Y(r 12)F̂ 2(12).
The operator F̂ 2(12) becomesf 2

p (r12), f 2
a (r12) or 1

2

�
f 2

p (r12) + f 2
a (r12)

�

depending on the spin statesof particles 1 and 2.
The operator F̂ 2(12) gives the correlation function f 2

p (r12) if the 1-
2 spin state is parallel, or f 2

a (r12) if antiparallel. For the two-body
cluster with no exchange,F̂ 2(12) givesrisesto 1

2

�
f 2

p (r12) + f 2
a (r12)

�
.
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� Each dot (empty or full) carries a vertex correction. There are two
typesof vertex corrections

cd = � 0eUd ;

c = (1 + Ue)cd; (2.44)

Dots which are reachedby oneor moreexchangelinescarry the vertex
correction cd whereasthe other onesare associated with c. Dots which
are reach by exchangelines only carry the vertex correction (cd � 1)� 0.

Fig. (2.1) displays an exampleof 4-body linked diagram corresponding
to

L (link ed)
4;� = � 4 Y(r 12)

f 2
p (r12) + f 2

a (r12)

2
lv(r23)hp(r23)

2
lu(r34)ha(r34)

2
lu(r24)

2
(2.45)

wherethe v-exchangedparticles 2 and 3 are correlatedwith hp(r23) whereas
the u-exchangedparticles3 and 4 arecorrelatedwith ha(r34). The interacting
particles 1 and 2, which are not exchangedare correlatedwith 1

2(f 2
a + f 2

p ).

n4 .

n3 .

n2 .

n1 .

.

. m3

m4

. m2

. m1

v

u

v
a

p

1 2

4 3

Figure 2.1: Graphical representation of L 4;� of Eq. (2.45). The diagram on
the right displays the corresponding set of Wick's contractions. The points
in the left column correspond to the indicesn� . Those in the right column
correspond to the indicesm� . An arrow connectingtwo points represents a
contraction. The arrows alongthe columnscorrespond to contractions of the
type ayay or aa, existing only in the superuid phase.



2.4 Energy expressions for the correlated BCS ansatz 43

The FHNC/BCS equationsto computethe pair distribution function en-
tering in the calculation of hŶ i , through the equation

hŶ i =
1
2

hN̂ i �
Z

dr 12Y(r 12)g(r 12); (2.46)

where
hN̂ i � = (c� 0)2
 ; (2.47)

aregiven in Appendix A. Appendix B will present the FHNC/BCS equations
to compute the expectation value of a spin-dependent two-body potential.

2.4 Energy expressions for the correlated BCS
ansatz

In this sectionwe derive the expressionsto compute the energyexpectation
value of a superuid Fermi system in the strongly interacting regime, de-
scribed by a correlated BCS trial function having � z-dependent two-body
correlations.

2.4.1 Poten tial energy

Let us �rst study the caseof a scalar two-body potential given by

V̂ =
X

vc(r ij ) (2.48)

like that usedto describe the interaction betweentwo atoms in dilute Fermi
gassystems.From Eq. (2.46), it follows that

hV̂ i

hN̂ i
=

�
2

Z
dr 12 vc(r12)

1
2

�
gp(r12) + ga(r12)

�
; (2.49)

with gp(r12) and ga(r12) given by Eq. (A.19).
Notice that the density � = c� 0 doesnot necessarilycoincidewith � 0, which
is fully determinedby the BCS amplitude v2

k and therefore is the density of
the "uncorrelated\ uid. Neither jBCSi nor jCBCSi are eigenstatesof N̂ .
Thereforethe correlation operator

Q
F (ij ) modi�es the expectation valueof

hN̂ i with respect to that obtained with the pure jBCSi state.
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Let us alsoconsiderthe more complexcaseof a spin-dependent potential of
the type

V̂ = V̂c + V̂� =
X

[vc(r ij ) + � i � � j v� (r ij )]; (2.50)

typical of semirealisticN-N interactions usedto study the properties of the
neutron matter which is formedin the interior of neutron stars (fully realistic
interactions include tensor and spin-orbit components).
The expectation valueof the scalarpotential V̂c, leadsto the sameexpression
given in Eq. (2.49). On the contrary, the spin-dependent part V̂� requires
the calculation of someextra FHNC quantities with respect to those given
in Appendix A and given in Appendix B.
The spin operator � 1 � � 2 has nonvanishing matrix elements between ex-
changedantiparallel spin states,namely

h"# j� 1 � � 2j #"i = 2: (2.51)

This implies that the correlation operator F̂ (ij ) with either i or j equalto the
external points 1 or 2 may lead to a correlation function � (r ij ) di�erent from
hp(r ij ) or ha(r ij ) consideredin Appendix A. To this aim let us distinguish
between direct and exchangeterms relatively to the interacting particles 1
and 2.

� Direct terms. Di�eren tly from the caseof pure Jastrow correlation
model, for which the spin operator � 1 � � 2 has a vanishing trace, here
the � z-dependenceof F̂ (ij ) leadsto a di�erence betweenspin-parallel
and spin-antiparallel states,becausef p(r ij ) 6= f a(r ij ). Since

h"" j� 1 � � 2j ""i = h##j� 1 � � 2j ##i = 1; (2.52)

h"# j� 1 � � 2j "#i = h#" j� 1 � � 2j #"i = � 1; (2.53)

the contribution of direct terms to the expectation value of V̂� is given
by

hV̂� i direct

hN̂ i
=

�
2

Z
dr 12 v� (r12)

1
2

�
gdir

p (r12) � gdir
a (r12)

�
; (2.54)

which vanishesin the limiting casef p(r ij ) = f a(r ij ), and therefore
gp(r12) = ga(r12), where

gdir
� (r12) = F � (r12)

nh
1 +

cd

c

�
N �

de(r12) + E �
de(r12)

� i 2
+

+
� cd

c

� 2h
N �

ee(r12) + E �
ee(r12)

io
; (� = p;a); (2.55)
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wherethe quantities F � (r12), N �
nm (r12) and E �

nm (r12) are given in Ap-
pendix A.

� Exchangedterms. We considerherethe cluster terms in which particle
1 and/or 2 areexchangedeither amongthemselves(1-2 exchangeloops)
or with other particles in the medium (1-2,3,: : : exchange loops). To
this aim we distinguish the cluster terms A in which the spin statesof
particles 1 and 2 are not exchanged,from those,B, in which they are
exchanged.
In the cluster terms A the � 1 � � 2 matrix elements are given in Eq.
(2.52) (for the v-contractions) and Eq. (2.53) (for the u-contractions).
They give the following contribution

hV̂� i exch;A

hN̂ i
= �

�
4

Z
dr 12 v� (r12)

� cd

c

� 2n
F p(r12)Re[N p

cc(r12) + Lp
cc(r12) + E p

cc(r12)]2

� F a(r12)Re[N a
cc(r12) + La

cc(r12) + E a
cc(r12)]2

o
(2.56)

Summingup the two contributions of Eq.. (2.54) and (2.56) we get

hV̂� i direct + hV̂� i exch;A

hN̂ i
=

�
4

Z
dr 12 v� (r12)

�
gp(r12) � ga(r12)

�
: (2.57)

Let usnow considerthe cluster terms B. Thesemay result from both v-
and u-contractions and require that the dynamical correlationslinking
1 or 2 with any of the medium onesare of the form

� (r ij ) = f a(r ij )f p(r ij ) � 1; (2.58)

with i and j equalto 1 or 2. To computethe B terms oneneedsto solve
another set of RFHNC integral equationswhich are given in Appendix
B. Their contribution to the expectation value of V̂� is given by

hV̂� i exch;B

hN̂ i
= �

�
4

� c�

c

� 2
Z

dr 12 2v� (r12)f 2
a (r12)eN � � (r 12 )+ E � � (r 12 )

n�
Re

�
Ncc;� � (r12) � lv(r12) + Ecc;� � (r12)

�� 2

+
�
Im

�
Ncc;� � (r12) + lu(r12) + Ecc;� � (r12)

� � 2
o

(2.59)
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The factor 2 multiplying v� comesfrom Eq. (2.51). The plus sign in
front of the Im part is due to the change of the sign in the Wick's
contractions ayay and aa in the B terms (seefor instancediagramsof

Fig. 2.2).
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U

V

D2D1

W1 W2 W3

Figure 2.2: Examples of cluster diagrams contributing to the expectation
value of hV̂� i , together with the graphical representation of Wick's contrac-
tions. W1 and W2 refersto the cluster diagram D1, whereasW3 to D2.

DiagramsW1 and W2 represent the contractions of the clusterdiagram
D1. In diagram W1 there is a spin exchangefor particles 1 and 2 and
it is included in the [Im(: : :)]2 term of Eq. (2.59). Diagram W2 hasno
spin exchangeand is included in Eq. (2.56). The global sign due to
ayay and aa contractions in W1 is the opposite of that of W2 and W3.

Diagram W3, which refers to cluster diagram D2, has spin exchange
for particle 1 and 2, like W1 and is included in the [Re(: : :)]2 terms of
Eq. (2.59).

2.4.2 Kinetic energy

Let us calculate the kinetic energy expressionaccording to the Jackson-
Feenberg identit y (ref. [60]). Similarly to the expressiongiven in Eq. (2.28),
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onehas

hCBCSjT̂ jCBCSi = �
~2

2m

X

N

1
(N � 1)!

X

n1 ;:::;nN
m1 ;:::;m N

Z
dr1 : : : drN

[' �
n1

(r 1) : : : ' �
nN

(r N )]FN r 2
1

�
FN [' m1 (r 1) : : : ' mN (r N )]

	

hBCSjay
n1

: : : ay
nN

j0ih0jamN : : : am1 jBCSi ; (2.60)

where

FN =
NY

j >i =1

f (ij ): (2.61)

After the application of the Jackson-Feenberg identit y onegetsthe following
result

TN = �
~2

2m

Z
dr1 : : : drN [' �
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n
[' �
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nN
(r N )]FN r 2

1

�
FN

�
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��
' �
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nN
(r N )

�
FN

�

r 1
�
FN

�
' m1 (r 1) : : : ' mN (r N )

�� o
; (2.62)

which is most conveniently written in the following form:

TN = �
~2

2m

Z
dr 1 : : : dr N [' �
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nN
(r N )]F2

N r 2
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�
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(r N )]

�
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n
[' �
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(r 1) : : : ' �

nN
(r N )]F2

N

[' m1 (r 1) : : : ' mN (r N )]
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(2.63)

wherer 2
1� acts on the singleparticle orbitals ' � (r i ) only. The main advan-

tage of the Jackson-Feenberg form is that the three-body terms r 1i F(1i ) �
r 1j F(1j ) cancelexactly. The remaining three-body terms are numerically
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small and can safelybe neglected.
The expectation value of the kinetic energyis given by

hTi
hN i

= T0 + T2 + T2� + T3� ; (2.64)

where the uncorrelated term T0 results from the �st of the three terms on
the r.h.s of Eq. (2.63) and is given by

T0 = 2
X

k

~2k2

2m
v2

k =
1

� 2�
~2

2m

Z
dk k4v2

k : (2.65)

In the caseof v2
k = �( k � kF ), T0 reducesto the Fermi kinetic energy 3~2k2

F
10m .

The secondterm on the r.h.s of Eq. (2.63) givesrise to the "b osonic" kinetic
energyT2

T2 = �
~2

4m
�

1
2

2X

� =1

Z
dr 12 g� (r12)r 2

1 ln f � (r12): (2.66)

Finally, the third expressionon the r.h.s of Eq. (2.63) produces a two-
body and a three-body kinetic term T2� and T3� . The resulting cluster
diagrams are characterized by the fact that the external point 1 must be
reached by a dynamical line, without counting those which may comefrom
the vertex correction. To understand this property one should considera
cluster diagram, in whose irreducible portion of the exchange type in 1,
there are no dynamical correlations either hp(r1i ) or ha(r1i ) reaching 1. In
the corresponding cluster term the laplacian r 2

1� can be substituted with
r 2

1, and, consequently its integral vanishes. This general rule drives the
construction of the cluster terms contributing to T2� and T3� .
Let us �rst considerthosecluster diagramshaving a two-body exchangeloop
L2

cc(r1i ) passingthrough 1. They give rise to the following two-body kinetic
energyterm

T (A )
2� = �

~2

16m
�
� cd

c

� 2
Z

dr 12

2X

� =1

�
F � (r12) � 1

� �
r 2

12L
�
cc

2(r12)
�
: (2.67)

The cluster diagramshaving exchange loops with more than two exchange
lines and passingthrough 1 produce a two-body term T (B )

2� and the three-
body one T3� . The two-body term is characterizedby the laplacian acting
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on L �
cc(r12) and is given by 2

T (B )
2� = �

~2

8m
�
c2

Z
dr 12 Re
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� =1

n
c2

d
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�
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d

�
N �
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cc(r12)

�
+ cd(cd � 1)N �

cc;hl (r12)
o

r 2
12L

�
cc(r12):(2.68)

T2� in Eq. (2.64) is the sum of T (A )
2� and T (B )

2� , namely

T2� = T (A )
2� + T (B )

2� : (2.69)

The three-body term is characterizedby the laplaciangiving riseto
�
r 1L �

cc(r1i )
�
��

r 1L �
cc(r1j )

�
, and it is approximated by the following expression
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(2.70)

wherethe matrix A ij is given by

A ij =
�

cd cd

cd cd � 1

�
(ij = h; l); (2.71)

and

X �
hh (r ) =

�
F � (r ) � 1

�
r 2L �

cc(r );

X �
hl (r ) = X �

lh(r ) = 0;

X �
l l (r ) = r L �

cc(r ); (2.72)

and

Y �
hh (r ) =

�
F � (r ) � 1

��
N �

cc(r ) + L �
cc(r )

�
+ N �

cc;hh(r );

Y �
hl (r ) = Y �

lh (r ) = N �
cc;hl (r );

Y �
l l (r ) = N �

cc;ll + L �
cc(r ): (2.73)

2Notice that the elementary diagramsof the cc-type have always dynamical lines reach-
ing both 1 and 2
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A full FHNC treatment of T3� requiresthe solution of extra integral equa-
tions for the functions X �

ij (r13), for which the de�nitions given in Eq. (2.72)
represent the lowest order approximation (Seeref. ([60]). However, the term
T3� asgiven in Eq. (2.71 -2.73) is in generalnumerically very small, and the
correctionscoming from the full FHNC treatment of ref. ([60]) is negligible,
and it is not reported here.

2.5 Euler equations

In this section we derive an Euler equation to compute the optimal corre-
lation functions f p(r ij ) and f a(r ij ) as well as the BCS amplitude v2

k . This
is formally obtained by performing a functional variation of the energyex-
pectation value with respect to f p, f a and v2

k , and equating them to zero.
Instead of doing this, we approximate the energyexpectation value with its
two-body approximation E2. Then, we set the functional variations E2 with
respect to f p, f a and v2

k equal to zerounder the constraints that

f p(r � d) = f a(r � d) = 1 (2.74)

f 0
p(r � d) = f 0

a(r � d) = 0; (2.75)

wherethe healing distanced is consideredas a variational parameter. Such
approximation has beenwidely usedin a number of applications to nuclear
matter and providescorrelation functions with the correctshort rangebehav-
ior [47], [19]. The solutionsof a "full" Euler equation improve this two-body
approximation namely for the intermediate and long-rangebehavior of the
correlation function. The derivation of a full Euler equationand the inclusion
of long rangecorrelation is a subject of future interest.
Let us calculatethe energyexpectation valueat the secondorder of the clus-
ter expansion. From the expresionsgiven in the previous sectionwe obtain
the following results
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(2.76)
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and
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which can be more conveniently written as
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(2.78)

The vertex correctionscd, c� and c arefunctionalsof the correlation functions
f p, f a and of the BCS amplitude v2(k). One can use the �rst order of the
Power Series(PS) expansionto approximate them, asdonein ref. [17]. The
reasonfor such approximation is related to the fact that at any order of the
PS expansionthe normalization properties are reproduced correctly, which
is not true for the expansionin the number of points. The expressionsof the
vertex correctionsin such approximation are given by

cdj1 = 1 +
1
2

� 0

Z
dr 12

�
hp(r12) + ha(r12)

�
; (2.79)
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�
�

(2.80)

c j1 = cd + Uej1 (2.81)

c� j1 = 1 + � 0

Z
dr 12 � (r12) (2.82)
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Notice that in the limit of lu(r ij ) ! 0 and f p(r ij ) = f a(r ij ), the zeroth order
approximation of the PS,weget cdj0 = c� j0 = 1, Uej0 = 0 and thereforec = 1.
In �rst order, cdj1 6= c� j1 6= 1, but cd + Uej1 is still equal to 1 as required
by the normalization property. In the BCS ansatz, such property doesnot
hold anylonger becauseof the non conservation of particles, but still the �rst
order of PS expansionshould be a reasonableapproximation.
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2.5.1 Energy expressions

In the following two tables, we summarizethe expressionsof the energyfor
the normal and superuid phases,for both spin independent as well as lon-
gitudinal spin-dependent correlations. In table 2.5.1 we present the kinetic
energyand table 2.5.1 the potential energy for the generalcaseof spin de-
pendent interactions.
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Kinetic Energy State indep enden t correlations � z -dep enden t correlations

Normal Phase TF = 3~ 2
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Table 2.1: Kinetic Energy
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Poten tial energy State indep enden t correlations � z -dep enden t correlations
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Table 2.2: Potential Energy for spin dependent interactions.
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Chapter 3

Equation of state for neutron
matter and dilute Fermi gases

In this sectionwe report the results obtained for two cases:a) dilute Fermi
atomswith largeand negativescatteringlength, b) Neutron matter. Wehave
usedthe FHNC theory in the normal and superuid phase(FHNC/BCS) for
the situations of Jastrow state independent and longitudinal spin-dependent
correlations.

3.1 Dilute Fermi gases with large scattering
length

Wewill considera non-polarizedFermi gaswith attractiv e interactionswhich
will leadto pairing e�ects supporting a superuid state. The density � of the
non interacting gas determinesthe Fermi momentum kF = 3

p
6� 2�=� and

the total energy, corresponding to:

EF G =
3
5

~2k2
F

2m
(3.1)

where� is the spin degeneracyand m is the massof the fermionic atom.
We are interested in dilute systemsat very low temperatures, therefore the
basic consequencesof the interactions are governed by two body colliding
process.In the dilute regime,the rangeof the interaction R0 is much smaller

than the interparticle distancer 0 = 3

q
9�
2�

1
kF

. The interactionsbetweenatoms

57
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can be strong but they only occur when the atoms are closeto each other.
The relevant scatteringprocessesinvolve stateswith zeroangularmomentum
` = 0, namely s-wave states. If no other internal degreesof freedom are
consideredthen two interacting atoms must have di�erent spin states, due
to the Pauli exclusionprinciple. At this level the collision processcan be
describedby the Schr•odingerequationwritten in relativecoordinatessystem:

�
�

~2

2�
r 2 + V(r )

�
' (r ) = E ' (r ); (3.2)

where � is the reducedmass(� = m=2 for identical atoms). The solution
for E > 0 consistsin a superposition of the incoming plane wave in the z
direction and a scatteredwave,

' (r ) = eik z + ' sc(r ): (3.3)

At largedistancesthe scatteredwave is an outgoing sphericalwave, ' sc(r ) =
f (� ) eik r

r wherethe f (� ) is the scattering amplitude and the dependency1=r
ensuresthe conservation of energy. At low energies,the scatteringamplitude
approachesa constant value � a, and the wave function becomes

' (r ) = 1 �
a
r

; (3.4)

a is the known s-wave scattering length, which gives the intercept of the
asymptotic wave function Eq. 3.4.

Di�eren t model potentials can be employed to describe the low energy
process,aslong asthey reproducethe available scattering length data. Then
the detailsof the potential V(r ) arenot important at this point. At the many
body level it is convenient to replacethe microscopicpotential by an e�ective
one;a very well-known exampleis the zerorange(R0 = 0) pseudopotential,
Vef f (r ) = g� (r )@=@r where the strength of the interaction is related to a,
through g = 2� ~2a=� .
Instead we will consideran interaction of the Lennard-Jonestype, namely

V(r ) = 4�
� � �

r

� 12
�

� �
r

� 6
�

(3.5)

The range of the interaction is chosento be smaller than the interparticle
distance, while the depth of the potential is found in order to satisfy the



3.1 Dilute Fermi gases with large scattering length 59

value of the experimental scattering length. We will considerasa particular
examplea fermionic lithium gas. Following O'Hara et. al. [4] which we refer
as caseLi , the zero-energyscattering length is as = � 104a0 (a0 the Bohr
radius), while the density corresponds to � Li =0.93 � 1013 cm� 3. In the
experiment the gasis load in an optical trap and evaporatively cooled, later
an externalmagnetic�eld inducesstrongly interactionsthrough the Feshbach
mechanism. The gasis releasedfrom the trap while maintaining the �eld, and
the expansionis imaged with a charge-coupleddevicecamera. The output
revealsan anisotropic expansionwhich is interpreted as consequenceof the
strong interactions and a possiblesignatureof superuidit y.
In the mentioned work, the dimensionlessparameter � Li = kF jasj = 7:4,
which we adopt as a reference. By solving Eq. 3.2 at E = 0, we found
that the parametersthat determine the Lennard-Jonespotential to �t the
condition reported [4] are:

r0 = 1:3 � 103 �A (unit of length) EF G = 7:9 �K (unit of energy)
� = 0:09 r 0

� = 610:10 EF G

In Fig. 3.1 a sketch of the potential and the reducedradial solution u(r )
whoseintercept with the r axis corresponds to the s scattering length are
presented. The large value of the scattering length (as = � 42:84 � ) is not
visible in the �gure 1.

3.1.1 Normal phase

Having set the parametersof the Lennard-Jonespotential, the next step
in order to apply a FHNC calculation is to �nd the correlation function
induced by such potential. We will considera two body Jastrow correlator
f (r ), coming from the solution of the Euler-Lagrangeequation obtained by

1The wave function can be written like ' (r ) = Y`;m (� ; � )Rk` (r ), where the radial part
is usually expressedas Rk` (r ) � uk` (r )=r. Then the equation to be solved in terms of the
reducedradial wave function uk l (r ) is:

�
�

~2

2�
d2

dr2 +
`(` + 1)~2

2�r 2 + V (r )
�
uk l (r ) = Euk l (r ): (3.6)

In the present case` = 0
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Figure 3.1: Lennard-Jonespotential (blue line) and solution of the reduced
radial wave function u(r ) (red line) at energy E = 0. The intercept of
the asymptotic behavior of u(r ) with the r axis (not visible in the plot)
corresponds to the scattering length

performing a variation of the energyexpressionat secondorder in the cluster
expansion. The resulting equation is given by,

� 00(r ) =
�

� 00(r )
� (r )

+
m
~2

�
V(r ) � �

�
�

�( r ) (3.7)

where �( r ) � � (r )f (r ) (3.8)

and � 2(r ) � r 2

�
1 �

`2(kF r )
�

�
: (3.9)

`(kF r ) is the Slater function and � is a Lagrangemultiplier introducedto force
the Jastrow function to beshort ranged. The distanceat which f (r ) becomes
1:0 is called the healing distance, d. The boundary conditions satis�ed by
f (r ) are then,

f (d) = 1; f 0(d) = 0: (3.10)

In Fig. 3.2 we show the value of the FHNC energyversusthe healingdis-
tance. For the regionout of the rangeshowed in the �gure (d > 0:17 r 0), the
larger the healing distancesthe worsethe normalization condition becomes,
while the energy decreasesmonotonically down to reach a situation of no
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Figure 3.2: Variational energyversushealingdistancefor a dilute Fermi gas
with the Lennard-Jonespotential.

convergence2 at d > 0:9 r 0 . This fact is an e�ect of the large contributions
from the elementary diagrams, which are neglected. The plateau reached
by the energy is a sign of the good convergenceof the method. The opti-
mum healing distanceis found at d = 0:134 r 0, corresponding to an energy,
Enor mal = 0:864EF G.

The optimal Jastrow correlator f (r ) and the pair distribution function
g(r ) are shown in Fig. 3.3. The e�ect of the repulsive part of the Lennard-
Jonespotential is manifestedas a hard core in thesequantities, forcing any
pair of particles to avoid approaching within a distance r � 0:05 r 0. The
e�ects of the dynamical correlations are appreciablein a small range while
the intermediateand long rangearedominatedby the statistical correlations
exhibiting a behavior of noninteracting particles at such distances.The pair
distribution function for free particles g(r ) = 1 � 1

2`2(kF r ) is shown in green
coinciding with the pair distribution of our problem at distanceslarger than
the healing distance.

Next we have varied the density of the system while keeping the value

2The following normalization condition (in the normal state) has to be ful�lled;

S(k = 0) = 1 + �
Z

dr 12
�
g(r12) � 1

�
= 0; (3.11)

implying no long range pathologiesfor the correlations functions.
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Figure 3.3: Left: Jastrow correlation function. Right:Pair distribution func-
tion for a dilute Fermi gas. Both correspond to the case� Li . The marked
di�erence in the spatial extensionof the statistical (� 1=kF ) and the dynami-
cal correlations(� d) is noticeablein the shape of g(r ). The freeparticle pair
distribution is alsoshown in green. The behavior of g(r ) in the dilute prob-
lem di�ers form the free particle only at distancessmaller than the healing
distance.
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of the scattering length �xed (as = � 104a0). We have calculated the energy
of the normal phasefor the following cases:kF jasj = 1; 3; 5; 9; 12; 14. The
energyas a function of the density, is presented in Fig. 3.4, referred to the
density � Li .
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Figure 3.4: Energy of the normal phase for a dilute Fermi gas with the
Lennard-Jonespotential at variousdensities.The energiesaregiven in terms
of EF GLi = 7:9 �K and the densitiesin terms of � Li = 0:93� 1013 cm� 3.

The inclusion of � z-dependencein the correlations introduces a small
di�erence between the parallel and antiparallel components of the Jastrow,
as we show in Fig. 3.5. On the contrary the parallel component of the pair
distribution function is dominatedby the Slater function which only acts for
particles having the samespin, while the antiparallel is short ranged (See
right of Fig. 3.5). The state dependent choice reducesweakly the energyof
the normal phase,being this e�ect more notorious at larger densitiesas it is
presented in Table 3.1.

3.1.2 Superuid phase

In the superuid phasethe Euler-Lagrangeequation is identical to Eq. 3.7
with the following de�nitions:

�( r ) � � (r )f (r ) (3.12)

� 2(r ) � r 2

�
1 �

� cd

c

� 2
�

l2
v(r ) � l2

u(r )
�

� �
(3.13)
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Figure 3.5: Left: Parallel (red line) and antiparallel (greenline) components
of the Jastrow correlation function. Right: Parallel (red line) and antiparallel
(green line) components of the pair distribution function. Both situations
correspond to the referencecasefor Li 7 ultracold atoms interacting via a
Lennard-Jonespotential.

kF as �=� Li E[EF GLi ] E � z [EF GLi ]
1 0.0024 0.0179 0.0179
3 0.0666 0.1556 0.1556
5 0.3085 0.4155 0.4155

7.4 1.0000 0.8643 0.8642
9 1.7990 1.2309 1.2307
12 4.2643 2.0187 2.0179
14 6.7716 2.5813 2.5795

Table 3.1: Energy of the ground state for ultracold Li 7 atoms at various
densitiesin the normal phase(the scattering length is as = � 104a0, in all the
cases).The third columncorrespondsto the energiesof the state independent
choiceand the forth columnlabeledwith � z to the caseof Jastrow correlations
depending on the longitudinal spin.
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where the two statistical functions lv(r ) and lu(r ) are de�ned in analogy to
Eq. 2.38, in paper 1 [20] as:

lv(r ) =
�

(2� )3� 0

Z
dk v2

k ei k �r (3.14)

lu(r ) =
�

(2� )3� 0

Z
dk uk vk ei k �r : (3.15)

The Jastrow function is then found under the constrainsof Eq. 3.10. We
have considereda variational form for the uncorrelatedamplitudes u(k) and
v(k) of the uncorrelatedBCS state. The new variational parameterde�ning
them is called � . For large values of this variable one obtains the Fermi
distribution of the normal phase,as it is explainedin detail in the next sec-
tion. At this point it is pertinent to mention, that due to the strength of the
Lennard-Jonespotential, for any choiceof the amplitudes u(k) and v(k) and
thereforeof the statistical correlations lv(r ) and lu(r ), the resulting Jastrow
is not very di�erent from the normal case.The calculation of the energyfor
the parametersof the potential � = 0:09 r 0 and � = 610:10 EF GLi doesnot
support the existenceof a superuid phaseat any of the trial densities,as it
is displayed in Fig 3.6. The di�erent points of any coloredbranch represent
a particular choiceof the parameter � determining the BCS state. For high
valuesnamely � ! 1 , the energyapproachesto the normal value, but it is
always above the normal line. We concludethat the range of the potential
is important (in this theory) to lead the systeminto a superuid transition.

We have enlargedthe rangeof potential maintaining the dilute condition
and the scatteringlength measuredby O'Hara et. al. [4]. Wehaveperformed
calculationsfor:

� = 0:2 r 0 � = 120:23 EF GLi

� = 0:3 r 0 � = EF GLi

Theseschoicesallow a window of densities(O'Hara et. al. contained in)
for which the BCS state is energetically preferred. The gain in energy is
scarcelyvisible, but the behavior of the branchesat the densitieswherethe
superuid is favored is clearly di�erent. In Fig. 3.7 the EOS for � = 0:2 r 0 is
presented, the minimum density at which the BCS is energeticallypreferred
is estimated in � = 0:8464� Li corresponding to kF as = 7 and while the
maximum value of the density is � = 4:2643� Li corresponding to kF as = 12.
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Figure 3.6: Equation of state for a Lennard-Jonespotential with � = 0:09 r 0

and � = 610:10EF GLi . The full line represents the energyof the normal phase.
Every coloredbranch of points hasbeencalculatedusingasa correlatedBCS
as a trial wave function, wherethe coe�cien ts u(k) and v(k) depend on the
parameter � . At large valuesof � the energytends to the normal one. For
this potential the superuid phaseis not favored at any density.

The inclusion of � z-dependent correlationsslightly reducesthe energyof
the superuid phase,as it is shown in Fig. 3.8. We show a zoom in of the
output coming for kF as = 10 Fig 3.9. The range of densitiesfor which the
superuid phaseis preferred is not modi�ed by the presenceof longitudinal
spin dependent correlations,although more precisecalculationsare needed.

Consideringlongerrangedpotentials inducethe particles into a condensa-
tion regimewhich is not the casewe are interestedin. Therefore,we restrict
the possibleparametersof the Lennard-Jonespotential to describe a dilute
Fermi gaswith large scattering length (as = � 104a0) undergoingsuperuid-
it y to � 2 (0:2; 0:4). The proportionalit y constant 3 closestto the value in
the unitary limit was obtained when � = 0:3, being estimated in � = 0:46,
which is not far to the MC estimateseven if we are not strictly working in
the unitary regime.

3In the unitary limit jkF as j ! 1 , Monte Carlo calculations [3] establish that the

constant � in E = � 3
5

~2 k 2
F

2m is � = 0:44.
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Figure 3.7: Equation of state for a Lennard-Jonespotential with � = 0:2 r 0

and � = 120:23 EF GLi . For a range of densitieshigher than � = 0:8464� Li

the superuid phaseis energeticallyfavored.
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Figure 3.8: Equation of state for a Lennard-Jonespotential with � = 0:2 r 0

and � = 120:23EF GLi . A BCSstatewith longitudinal spindependent Jastrow
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Figure 3.9: Detail of the equation of state for a Lennard-Jonespotential
with � = 0:2 r 0 and � = 120:23 EF GLi . The full red line corresponds to the
normal FHNC energy, the light blue points reprensent the energyobtained
for di�erente BCS trials correlatedwith a simple Jastrow and the dark blue
points to a BCS choicehaving a longitudinal spin dependent Jastrow.

3.2 Neutron matter

We present in this section the results of FHNC/BCS calculations of pure
neutron matter with Jastrow-type correlation functions with and without
longitudinal spin-dependence. We use a spin-dependent semi-realistic NN
two body interactions which �ts the low energy NN scattering data up to
� 60 MeV. The choseninteraction is the S3 potential proposed by Afnan
and Tang [61], which reproduce the binding energy of the deuteron and �
particle. It is of the form

Vij (r ) = V e
S (r ) P0(ij )� 1(i; j ) + V e

T (r ) P1(ij )� 0(ij ) +

V o
S (r ) P0(ij )� 0(i; j ) + V o

T (r ) P1(ij )� 1(i; j ); (3.16)

wherethe superscriptse and o indicatesthe spatial parity of the correspond-
ing pair wave function and the subscript S and T labelsthe singlet or triplet
spin state. The spin-isospinprojector operators are given by,

P0(i; j ) =
1 � � i � � j

4
; P1(i; j ) =

3 + � i � � j

4
;

� 0(i; j ) =
1 � � i � � j

4
; � 1(i; j ) =

3 + � i � � j

4
: (3.17)
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For pure neutron matter � i � � j = 1, and Eq. 3.16becomes,

Vij (r ) = Vc(r ) + V� (r )� i � � j (3.18)

where,

Vc(r ) =
V e

S (r ) + 3V o
T (r )

4
(3.19)

V� (r ) =
� V e

S (r ) + V o
S (r )

4
: (3.20)

The S3 potential is given by:

V o
S (r ) = V o

T (r ) � Vodd(r ) = 1000:0e� 3:0r (3.21)

V e
S (r ) = Vodd(r ) � 166:0e� 0:80r 2

� 23:0e� 0:4r 2
: (3.22)

The calculation of the scattering length for the two body systemin the
singlet spin con�guration at zeroenergygivesaN N = � 16:3 fm, whoseabso-
lute value is large comparedwith the rangeof the potential around (R0 � 2
fm). The experimental value of aN N is estimatedin � 18:5� 0:3 fm from the
2H(� � ;  n)n reaction [13] and � 18:7 � 0:3 fm from the 2H(n; nn)p reaction
[62]. The good agreement in not surprisingbecausethe Afnan-Tangpotential
reproducesthe low energyNN data. We present in Fig. 3.10the singlet part
of the Afnan-Tang interaction, together with the radial reducedpart of the
wave function solution of Eq. 3.2 and its asymptotic limit at large distances.

In what follows, we want to comparethe FHNC resultsobtained for pure
neutron matter (PNM) with the Afnan-Tanginteraction for the normal phase
with and without longitudinal spin dependencein the Jastrow factor and for
the superuid phasein the samesituation.

3.2.1 Normal phase

We �rst considerthe correlations induced by the strong interactions to be
independent on the spinstatesof the particles,namelywetakesimpleJastrow
ansatz. The optimal Jastrow correlation is found in the standard way, by
solving the secondorder Euler equation under the boundary condition given
in Eq. 3.10. Then, we solve the FHNC equationsto �nd the pair correlation
which is usedto compute the energyper particle. The energyis minimized
to get the optimal value of the healing distance d. In Fig. 3.11 we show a
typical exampleof f (r ) and g(r ) at � = 0:030 fm� 3.
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Figure 3.11: Left: Jastrow correlation function for PNM. Right: Pair dis-
tribution function. Both �gures were obtained at � = 0:030 fm� 3 and the
optimal healing distancecorresponds to d = 1:07 r 0.
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� [fm� 3] d=r0 E2 [MeV] EF H N C [MeV] EF G[M eV]
0.0020 0.82 1.30 1.36 1.89
0.0080 0.98 3.04 3.14 4.76
0.0140 1.04 4.32 4.38 6.92
0.0200 1.07 5.45 5.41 8.77
0.0260 1.08 6.49 6.34 10.45
0.0320 1.05 7.49 7.21 12.00

Table 3.2: Energy of the ground state for PNM at various densitiesin the
normal phase.The Jastrow-correlation is state independent.
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Figure 3.12: FHNC energyper particle of the normal phaseof pure neutron
matter with state independent correlations.

Notice that g(r) reaches the value of 1 at a distance much larger than
the healing distance. This is a consequenceof the presenceof the statistical
correlations. On the other side, g(r ) di�ers considerablyfrom the free gas
pair correlation function gF G(r ), ascan be appreciatedin the �gure.

The only variational parameterin this caseis the healingdistanced which
we report in Table 3.2 for di�erent densities. (The energyat secondorder
is also reported). In Fig. 3.12 is possibleto seethe energyper particle as a
function of the density.

The inclusionof a longitudinal spindependent Jastrow correlator, changes
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the Euler Lagrangeequation as follows:

� 00
p(r ) =

�
� 00

p(r )

� p(r )
+

m
~2

�
Vc(r ) + V� (r ) � � p

�
�

� p(r ) (3.23)

� 00
a(r ) =

�
� 00

a(r )
� a(r )

+
m
~2

�
Vc(r ) � V� (r )

�
1 + 2na`2(kF r )

�
� � a

� �
� a(r )

where � p(r ) � � p(r )f p(r ) (3.24)

� a(r ) � � a(r )f a(r )

and � 2
p(r ) � r 2

�
1 � `2(kF r )

�
(3.25)

� a(r ) � r: (3.26)

The results shown in the following have beenobtained by keepingthe ver-
tex correction na = 1 (seeAppendix) in the solution of the Euler-Lagrange
equationgiven in Eq. 3.23. One can seefrom Table 3.3 that its FHNC value
is always closeto 1. We have also assumedthe samehealing distance for
both f p(r ) and f a(r ). In Fig. 3.13 (left) the parallel and antiparallel corre-
lation functions are shown at � = 0:030 fm� 3. The shape of the antiparallel
component shows a peak at r = 0:72 r 0 which is manifestedas well in the
corresponding pair distribution function. In the same�gure on the right, the
two components of g(r ) are displayed.

The FHNC calculation of the energyis performedusing the FHNC equa-
tions given in Table2.5.1and 2.5.1,for the caseof � z-dependent Jastrow. We
have introducedan extra variational parameter  as a quenching parameter
of the � z dependence,namely:

f (12) = f centr al (r ) +  f � z (r )� 1z� 2z: (3.27)

When  = 0, the correlation betweenparticles1 and 2 is purely central while
for  = 1, the spin-dependent part of the Jastrow is fully set. The parallel
and antiparallel components can be written in terms of the central and � z

components as follows,

f centr al (r ) =
f p(r ) + f a(r )

2

f � z (r ) =
f p(r ) � f a(r )

2
(3.28)

The results are reported in Fig. 3.14 and Table 3.3. We �nd that  = 1 is
always is good variational choice for all the cases.One can seethat the � z-
dependencehave little e�ect on the EOSof the normal phasesof pureneutron
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Figure 3.13: Left: Parallel (red line) and antiparallel (light blue line) com-
ponents of the Jastrow function for PNM. Right: Parallel (red line) and an-
tiparallel (light blue line) components of the pair distribution function. Both
�gures were obtained at � = 0:030 fm� 3 and the optimal healing distance
corresponds to d = 1:29 r 0.

matter. A comparisonof the EOS for scalarJastrow and and � z-dependent
Jastrow is displayed in Fig. 3.15.

3.2.2 Superuid phase

Wepresent an application of the FHNC/BCS theory proposedin I to the case
of PNM, for spin-independent Jastrow correlations. Notice that in I there
wasno derivation of the expressionto computethe energyper particle. This
is the �rst calculation of the EOS for a superuid systemwith FHNC/BCS
theory. The �rst ingredient neededto apply FHNC/BCS theory, consist of
�nding the Jastrow function aswell as the probability factors u(k) and v(k)
entering in the de�nition of the uncorrelated BCS state. Lacking of a full
Euler-Lagrangeset of equationsfor f and the uncorrelatedBCS amplitudes,
we proceedwith an intermediate approach. We choosea trial probability
distribution of the form:

v2(k) =
1

1 + e(k2 � k2
0F

)�
; (3.29)
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� [fm� 3] d=r0  E2 [MeV] EF H N C [MeV] na

0.0020 1.00 1.0 1.16 1.29 0.97
0.0080 1.14 1.0 2.75 3.02 0.98
0.0140 1.20 1.0 3.98 4.25 0.98
0.0200 1.24 1.0 5.08 5.29 0.99
0.0260 1.27 1.0 6.12 6.23 0.99
0.0320 1.30 1.0 7.10 7.11 0.99

Table 3.3: Energy of the ground state for PNM at various densitiesfor the
normal phase. The correlation function is a longitudinal spin-dependent
Jastrow whosestrength is modulated by  . The vertex correction na is also
reported.
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Figure 3.14: Energy of the normal phasefor pure neutron matter when the
correlationsare longitudinal spin dependent.
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Figure 3.15: Energy of the normal phasefor pure neutron matter. The red
line corresponds to a pure simple Jastrow correlation, while the blue line to
a longitudinal spin-dependent Jastrow.
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this quantit y determinesthe uncorrelated density � 0 (seeEq. 2.39) of the
system. Notice that in the limiting caseof � ! 1 , the Fermi distribu-
tion function v2(k)j � !1 = �( k � k0F ) (and consequently u2(k)j � !1 = 0),
is recovered. Therefore the corresponding exchange correlation functions
lv(r ) ! `(kF r ), lu(r ) ! 0, and the FHNC for the normal phaseis fully re-
covered (seeAppendix). Let us call � 0F the density at which this situation
holds (� ! 1 ). Notice that for � �nite, � 0 6= � 0F .
The Euler-Lagrangeequation to �nd the dynamical correlation is given then
by:

� 00(r ) =
�

� 00(r )
� (r )

+
m
~2

�
Vc(r ) �

3V�

� cd
c

� 2� l2
v + l2

u
�

�

1 �
� cd

c

� 2� l2
v � l2

u
�

� � �
� �

�( r ) (3.30)

where �( r ) and � (r ) are de�ned in Eq. 3.12 and Eq. 3.13 respectively and
the solutions of f (r ) satisfy the boundary conditions Eq. 3.10. We have
approximated the vertex corrections c and cd to 1. We show in Fig. 3.16
(left) an example of the Jastrow function for a density � = 0:0020 fm� 3.
The FHNC/BCS allows to �nd the corresponding pair distribution function,
displayed on the right.
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Figure 3.16: Left: Jastrow correlation function for PNM in the superuid
state. Right: Corresponding pair distribution function. Both �gures were
obtained at � = 0:0020fm� 3, � = 15 and the healing distance is the same
than the normal phasenamely, d0F = 0:82 r 0F . The valueof r 0F refersto the
uncorrelatedinterparticle distanceobtained in the limit of � ! 1 .
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Three variational parametershave been de�ned so far, the healing dis-
tanced, � and k0F . The search of their optimal valuesis much moredi�cult
than in standard variational calculations,becausethe density � = c� 0 of the
systemdependson the variational parameters.That is becausejBCSi does
not conserve the number of particles and therefore � 0 is de�ned as an aver-
age of the number operator. Moreover the correlations do changesuch an
average.For this reasonthe energyexpectation valuesto be comparedmust
refer to trial functions providing the samedensity � .
To achieve this we have proceededin the following way. The parameterk0F

�xes the density � 0F of the underlying normal phasesystem,which is recov-
eredin the limit � ! 1 . We have found that the healingdistanceparameter
hasan optimal value which is always very closeto that of the normal phase
at � 0F (denoted here as d0F ), therefore we kept such value. The parameter
� is the onewhich givesthe largeste�ect in the density � 0 and consequently
in � = c� 0. We varied the � parameter, for k0F and d0F �xed, from � � 1
to � � 1. Fig. 3.18 displays the results obtained in such a way for the case
of spin-independent Jastrow.
The EOS of the BCS phase is obtained by the envelope of the various
branches. Such envelop crossesthe EOS of the normal phasein two points
which delimit the regionwhen the BCS phaseis energeticallyfavorable with
respect to the normal one. In Fig. 3.18,it is shown that the density at which
the superuid phasebecomesunfavorable occursat � = 0:02 fm� 3.

A similar procedurehas beenused to the caseof � z-dependent correla-
tions. An exampleof the parallel andantiparallel components for the Jastrow
and the pair correlation function is shown in Fig. 3.17at� = 0:012fm� 3. The
equation of state is presented in Fig. 3.19. The energyper particle is signif-
icantly lower than in the caseof spin-independent correlations. The e�ect
of the � z-dependencyis much larger than in the normal phase. Moreover
the limiting value of the superuid density is enlargedto � = 0:027 fm� 3.
Table 3.4 report the results displayed in Fig. 3.19.

In Table 3.4 somevaluesof the energyfor the optimal parameter � are
shown, together with the value of the energyat secondorder of the cluster
expansionin the number of points (consideringc = 1 and cd = 1).
Notice that for large valuesof � the FHNC energytends to the value found
in the normal phaseat a density given by � 0F .
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Figure 3.17: The parallel (red line) and antiparallel (greenline) components
of the Jastrow correlation function (left) and the pair correlation (right) for
PNM in the superuid state. Both �gures wereobtained at � = 0:012fm� 3,
� = 6:5 and the healingdistanceis the samethan the normal phasenamely,
d0F = 1:18 r 0F .

� 0F [fm� 3] d=r0F � c cd EF H N C [MeV] E2 [MeV]
0.0020 0.82 15.0 1.13 1.18 1.12 1.09
0.0060 0.94 8.0 1.09 1.13 2.52 2.68
0.012 1.03 10.5 1.02 1.06 3.89 3.97
0.0020 1.00 15.0 1.28 1.23 0.69 0.45
0.0060 1.11 10.0 1.15 1.15 1.89 1.88
0.012 1.18 6.5 1.09 1.07 3.65 3.83

Table 3.4: Energy of the ground state for PNM for the superuid phase. A
state independent Jastrow is considerin the �rst three rows while a longitu-
dinal spin dependent Jastrow corresponds to the last three rows. � , healing
distanceand the vertex correctionsc and cd are also reported. The energy
of the FNHC/BCS calculation is closeto the secondorder approximation.
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Figure 3.18: Energy of the superuid phase for pure neutron matter. It
correspondsto a choiceof pure simpleJastrow correlation. The arrow points
to the density at which the BCS state is unfavorable � = 0:02 fm� 3. The
dashedblue line delineate the normal phasewhile the black lower full line
the BCS phase.The branchesare labeledby the corresponding � 0F .
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Figure 3.19: Energy of the superuid phase for pure neutron matter. A
longitudinal spin-dependent Jastrow is considered.The arrow points to the
density at which superuid is unfavorable,� = 0:027fm� 3. The normal phase
is indicated with the upper dashedline. The envelope (lower dashedline)
de�nes the superuid phase. The labels refer to the corresponding density,
� 0F .
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Chapter 4

Calculation of the gap and
excitation energy

The gap measurements provide a tool for investigating the nature of the
paired particles responsiblefor the frictionlesscurrents at low temperatures.
In the BCS theory (weak coupling regime,small scattering length) the Gap
is proportional to the critical temperature, �( T = 0) = 1:76kB Tc; in good
agreement with the experiments. In generalthe existenceof a gap energy
is a signature of the superuid state and this feature is valid even far from
the weak coupling side; in the BEC regimeand even through the crossover.
Recently the possibility of changingthe e�ective interactionswith the tunable
Feshbach resonanceshasbeenexploited to study the dependenceof the gap
with the coupling strength, temperature and Fermi energy from the BCS
regimeto the BEC one. Experiments on Li 7 using evaporative cooling have
evidencedthe appearanceof a gap in the radio-frequencyexcitation spectra
[63]. In this chapter we developa formalism to calculatethe gapenergywhen
strongly correlationsarepresent. We present an application of the theory for
the caseof neutron matter at low density.

4.1 The gap in the FHNC/BCS theory

We calculate in this section the gap energyand the excitation energyspec-
trum of a Fermi systemin the superuid phase.Wefollow the procedureused
in [64], [65] to compute the excitation energyfor a strongly correlatedFermi
uid in the normal phase. In this caseone has a particle-hole excitation,
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namely
j	 phi = ay

pah jSLi = (ay
pah)ay

k1
: : : ay

kN
j0i : (4.1)

Note that p � (p; � ) where� is the spin projection (" or #).
One can view j	 phi asa new Slater determinant of the form

j	 phi = ay
k1

: : : ay
p : : : ay

kN
j0i ; (4.2)

where ay
p is in the sameposition of ay

h in Eq. (4.1). Therefore the set of
orbitals of j	 phi is f k1; k2; : : : ; p; : : : ; kN g with h missing,namely

n    (k)FG

h

k

kF p

�
nFG = 1 for k � kF except for k = h whereit is zero
nFG = 1 for k = p

One can do the summations independently on all the set of orbitals. The
processof cancellation of the denominator in the cluster expansionfor the
excitation energyhasbeenderived in [64], [65]. Oneremovesa small fraction
x of particles from a thin sphericalshellat q0and put them in a thin spherical
shell at q. The widths dq0 and dq are related in the following way

x =
1

� 2�
q02dq0 =

1
� 2�

q2dq

dq =
q02

q2
dq0 (4.3)

(4.4)

in generalthe width is given by,

d� =
x� 2�
� 2

: (4.5)
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n    (k)FG

k

q'

dq' dq

q

Figure 4.1: Pictorial representation of the creation of a particle-hole excita-
tion in the normal phase.

The cluster terms in the FHNC equationsremain the samein the not ex-
changedparticles, whereasthe exchangefunctions `GS(kF r )

`GS (kF r ) ! l(r; p;h; x) = `GS(kF r ) + x
hsin(pr)

pr
�

sin(hr )
hr

i
(4.6)

The factor x should be of order 1

 but, in reality is treated numerically as a

smallnessparameter. For an operator O, for instance the Hamiltonian, the
energyto createsuch excitation is given by,

hOi ph � hOi 0 = linear terms of hO(x)i in x

=
@

@x
O(x)

�
�
�
x=0

: (4.7)

In order to use a similar procedure for the gap energy, we have �rst to
understandthe structure of the excitation j	 qq0i . Let us de�ne

j	 qq0i =
ay

qaq0

vq0uq
jBCSi

=
(ay

qaq0)

vq0uq

Y
(uk + vkay

k " ay
� k #)j0i (4.8)

where vq0uq acts as a normalization factor. In fact one can view j	 qq0i as
follows

j	 qq0i = ay
qa

y
�q0

Y

k6= q;q0

(uk + vkay
k " a

y
� k #)j0i (4.9)
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which implies that both the pairs q�q and q0�q0 are missingin any term of the
seriesEq.(4.9) whereasthe orbitals q and �q0 ( 1


 ei q�r " and 1

 e� i q0�r #) are

present in any term with strength 1.
Normalization of j	 qq0i given in Eq.(4.9) is 1,

h	 qq0j	 qq0i =
Y

k6= q;q0

(u2
k + v2

k) = 1 (4.10)

becauseu2
k + v2

k = 1 for all k. It follows that the contraction rules on j	 qq0i
are very similar to thoseof the correlated jBCSi state (see[20]), namely

ay
� a� 0 = h	 qq0jay

� a� 0j	 qq0i

=
�

� �� 0v2
� if � 6= q; q0

� �� if � = q; q0 (4.11)

and

ay
� ay

� 0 = a� a� 0 =
�

t � � � �� 0u� v� if � 6= q; q0

0 if � = q; q0 (4.12)

We can now proceedin deriving the FHNC equationsfor j	 qq0i which are
structurally the sameof FHNC/BCS. As in the caseof jSLph i we have to
modify the exchangefunctions, only

lv(r ) ! lv(r; q; q0; � ) =

lv(r ) + �
h
(1 � 2v2

q)
sin(qr )

qr
+ (1 � 2v2

q0)
sin(q0r )

q0r

i
(4.13)

lu(r ) ! lu(r; q; q0; � ) =

lu(r ) � �
h
2uqvq

sin(qr )
qr

+ 2uq0vq0
sin(q0r )

q0r

i
(4.14)

The factors (1 � 2v2
q) comesfrom adding an orbital with strength 1 and

subtracting a pair with strength v2
q, and similarly for (1 � 2v2

q0). Analogous
arguments hold for the factors 2uqvq and 2uq0vq0 in Eq.(4.14).
In contrast with the normal phase,we have herealso a modi�cation for the
� 0 factor form the unchangedparticles. Here

� 0 ! � 0[1 + 2� (1 � v2
q � v2

q0)]: (4.15)

Notice that the normal phasecaseis fully recovered. If v2
q = 0 and v2

q0 = 1
(normal phase)and correspondingly u2

q = 1 and u2
q0 = 0, there areno changes
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in � 0 and lu(r ) (which is zero in this case), and lv(r ) is modi�ed as l in
Eq.(4.6).
Let usnow considerthe caseof excitation of the Fermi surfacejqj = jq0j = kF ,
with v2

kF
= u2

kF
= 1=2, for which the excitation energyis 2� (twice the gap)

where � is the gap energy. In this caselv(r ) and � 0 are not modi�ed and
one is left with the modi�cation of lu(r )

lu(r; kF ; kF ; � ) = lu(r ) � 2�
sin(kF r )

kF r
: (4.16)

The set of Nodal and Composite diagrams in the FHNC are solved in the
usual way, onceone have performed the new replacements in the exchange
functions. The calculation of the gap energyq = q0 = kF and the excitation
energyE(q), q0 = kF are reached in the limit of � ! 0.

To compute2� the procedureconsistof the following steps:

1. The solution of the FHNC/BCS for � = 0, givesthe groundstateenergy
E0.

2. Solving the FHNC/BCS equationswith the modi�cations in the statis-
tical correlation Eq. 4.16, at � = 0:1 gives the energyE(� ). Then the
calculation of the gap is given by:

E(0:1) � E0

0:1
= 2� 1

3. The value of � is decreasedand step 2 is repeatedup to reaching con-
vergence.

To calculate the excitation energyE(q):

1. The gap � is computedas it was described before.

2. By introducingthe modi�ed statistical correlationsEq. (4.13)and(4.14)
and the modi�ed uncorrelated density (4.15) in the FHNC/BCS at
jq0j = kF , onecalculatesin the sameway asfor �. After reducing� up
to convergenceonegets the excitation energyEq from:

E = � + E(q)

E(q) = E � �
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Figure 4.2: E(q) for pure neutron matter with Afnan Tang potential at
� = 0:003 fm� 3.

One may want to put E(q) in the typical form of
p

"2(q) + � 2. The
energy"(q) is given by

p
"2(q) + � 2 = Eq � �

"2(q) + � 2 = E 2
q + � 2 � 2Eq�

" (q) =
q

Eq(Eq � 2�)

We have computedthe gap for the Afnan-Tang potential S3in pure neu-
tron matter at a typical superuid density � 0F = 0:03 fm � 3. We have used
the statistical correlation functions lv(r ) and lu(r ) obtained from solution of
the Euler-Lagrangeequation at secondorder calculation for the simple Jas-
trow ansatz[17]. In Fig. 4.2 we present the energyversusthe momentum of
the excitation. The minimum of this quantit y givestwice the gap of the sys-
tems. The value we obtain � = 1:54 MeV at q = 0:42 fm� 1, is in agreement
with calculationsperformedat secondorder [17], reporting 1:61 MeV.

4.1.1 Neutron matter

In this sectionwepresent the calculationof the Gap performedby considering
the variational choice for the BCS amplitudes that we usedin the previous
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Figure 4.3: Gap versus density in pure neutron matter with Afnan Tang
potential. The red line is obtained for v0

4 and the greenfor Afnan-Tang by
performing secondorder calculations[17], [66]. The BCS amplitudes in their
calculations comefrom the solution of a BCS gap equation. The blue line
shows the resultsof this work by performing the theory previously described
and by usinga variational ansatzfor the amplitudesu(k) and v(k). A simple
Jastrow correlation was considered.

chapter (SeeEq. 3.29). In Fig 4.3 we show the behaviour of the gap as a
function of the density using the FHNC theory. We comparethe result with
the thoseobtained in [17] for v0

4 potential and for Afnan-Tang [66].
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Chapter 5

Conclusions and perspectiv es

This thesisaddressesthe pairing problemin low density Fermi systems,inter-
acting through a force with large and negative scattering length, and there-
fore are in the strongly correlated regime. Two systemshave beenstudied
in detail: i) ultracold dilute Fermi gasesand ii) pure neutron matter. In
both casesthe scattering length has large valuescomparedto the range of
the interactions and the interparticle distance.

In order to handle the strong correlations arising amongst the particles
we developed a correlated variational theory basedupon FHNC theory and
we performedcalculations in both normal and superuid phases.The main
results reported in this thesisare the following:

1. The FHNC/BCS theory hasbeengeneralizedto dealwith Jastrow cor-
relations depending on the longitudinal spin component. The expres-
sionsfor the energyper particle, the pair distribution function, the one-
and two- body momentum distributions for central and spin dependent
potentials have beenderived.

2. The equation of state for dilute Fermi gas interacting via Lennard-
Jonespotential around the value kF as = � 7:4 of the 6Li [4], has been
calculated(the rangeof valuesconsideredis kF as � [� 1; � 14]) for both
normal and superuid phases.

3. The equation of state of pure neutron matter interacting via a central
spin dependent potential �tting low energy NN scattering data, has
been calculated for both normal and superuid phases. The range

91



92 Conclusions and perspectiv es

of densities consideredis � � [0:002� 0:03] fm� 3 corresponding to
kF as � [� 6:4; � 15:7].

4. A formal theory for the calculation of the excitation energy and the
gap hasbeendeveloped in the FHNC formalism, for the caseof simple
Jastrow correlations, in full analogy to the calculation of the particle-
hole excitation energyin the normal phase.

5. The energygaphasbeencalculatedfor both dilute Fermi gasand PNM
with and without � z-dependenceof the Jastrow correlations.

The results obtained deserve the following comments:

� The � z-dependenceof the Jastrow correlation, namely the inclusion of
a degreeof freedomto distinguish parallel from antiparallel spin pairs,
has little e�ect in normal phase,but leadsto a signi�cant lowering of
the energyin the BCS phase.

� The equationof statesarecharacterizedby a regionat low densitiesfor
which the superuid phaseis energetically favorable. The maximum
density at which the BCS con�guration is preferredhasbeenestimated
in neutron matter to be � M = 0:020 fm� 3 when the simple Jastrow
ansatz is considered. The introduction of � z-dependence,increases
the value of this critical density, up to � M = 0:027 fm� 3.

� The gap has been previously calculated either with low order many-
body theory (CBF, Brueckner, etc.) or with QMC estimating the odd-
even e�ect. This is the �rst calculation of a many body theory at
all cluster orders and in the thermodynamic limit. Comparisonshow
reasonableagreement with QMC the with low-order cluster theories.

The �eld of fermionic pairing is extremely rich in perspectives. In par-
ticular we think that studiesof the role played by long rangeof correlations
is particularly needed;the FHNC theory o�ers the possibility of perform-
ing quantitativ e studies on that. Moreover FHNC theory can be used to
evaluate �nite size e�ects in QMC calculations, along the lines of Periodic
Box-FHNC [67].

Finally let us cite the most appealing scenariosto be treated by a corre-
lated variational theory as a preliminary study to more sophisticatedtools
like Monte Carlo methods:
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� Fermi-Fermi and Fermi-Bosemixtures: An increasingactivit y in this
�eld is expectedto understandthe interplay betweendi�erent mixtures
of di�erent atomic species. The superuid behavior of Fermi-Fermi
mixtures of di�erent atomic massesand Fermi-Bosemixtures in optical
latices [68] are important topics for future research.

� p-wavesuperuidit y: The recent production anddetectionof molecules
of 40K by using a p-wave Feshbach resonance,and the measurement of
its life time and binding energy, envisioned the realization of a p-wave
superuid in ultracold gases. Investigationsby Chenget al. [69], Iskin
et al. [70], and Gurarie et al. [71], have beenpioneersin predicting a
rich phasediagram as a function of the interaction strength.

� BCS/BEC crossover canbestudied in greaterdetail with FHNC theory
than with QMC methods.
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App endix A

FHNC/BCS equations for
longitudinal spin-dep endent
Jastro w

In this appendix we derive the set of FHNC/BCS equationswhich have to
be solved to sumup the linked cluster diagramsL (link ed)

p;� contributing to hŶ i
in Eq. (2.41).
The basicoperationsof FHNC theory are(i) The nodal (or convolution) inte-
gration, which is usedto sum up nodal diagramsand (ii) the construction of
composite diagrammatical structures out of nodal ones.They are performed
in a circular and iterativ e way up the inclusion of all the terms of the nodal
and compositeseries.The only diagrammaticalstructure left by the solution
of the FHNC integral equationsare the elementary or bridge diagramswhich
nobody knows how to include in a closedform like the nodal or composite
ones.They can be accounted for, with progressive approximations.
Let us �rst considerthe nodal operation schematically displayed in Fig. A.1

Due to the presenceof � z-dependent correlations, the various two-body
FHNC quantities, like X �� , X � 0� 0 and N �� 0 of Fig. A.1, have two components
in correspondenceto the spin-parallel or spin antiparallel con�guration of
their external pairs. The nodal diagram N �� 0(r ij ) is formally given by

N �� 0(r ij ) =
�
X �� c� � 0

�
�X � 0� 0

�
(A.1)
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Xa  bX ab

i j

l

' '

Figure A.1: Generic FHNC nodal diagram N �� 0(r ij ), where l is the node,
and X �� , X � 0� 0 are the two substructures,wherethe subindices� � and � 0� 0

denotethe topologicalnature of their external points. Integration is doneon
the variable r l represented by the node l.

which means

N p
�� 0(r ij ) =

1
2

Z
dr l [X p

�� (r il )X
p
� 0� 0(r l j ) + X a

�� (r il )X a
� 0� 0(r l j )]c� � 0

N a
�� 0(r ij ) =

1
2

Z
dr l [X p

�� (r il )X a
� 0� 0(r l j ) + X a

�� (r il )X
p
� 0� 0(r l j )]c� � 0 (A.2)

wherethe two terms on the r.h.s of both equationscorrespond to a spin up
or spin down particle l. The subindices� � : : : may be d, e or c which stand
for direct, exchangeor cyclic type of external points. The vertex correction
c� � 0, can be either cd or c given in Eq. (2.44) dependingwhether � � 0 include
an exchangeline (de;ed;cc) or not (dd). There may be nodeswith � � 0 = cc,
which are not reached by dynamical corelations; in these casesthe vertex
correction must be cd � 1 instead of cd (seeEq. (A.10)).
Given the two component structures of the FHNC quantities and the nodal
operation of Eq. (A.1) and Eq. (A.2), the FHNC/BCS equationshave the
samestructure given in I for the pure Jastrow case,
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Ndd(r ij ) =
�
X dd c

�
�X dd + Ndd

�
+

�
X de cd

�
�X dd + Ndd

�
+

�
X dd cd

�
�X ed + Ned

�

Nde(r ij ) =
�
X dd c

�
�X de + Nde

�
+

�
X de cd

�
�X de + Nde

�
+

�
X dd cd

�
�X ee + Nee

�

Nee(r ij ) =
�
X ed c

�
�X de + Nde

�
+

�
X ee cd

�
�X de + Nde

�
+

�
X ed cd

�
�X ee + Nee

�
(A.3)

The above six coupled integral equation sum up all the nodal diagrams
built up with the substructures(composite diagrams)X dd; X de; X ee appear-
ing on their r.h.s.

Other six coupled integral equationssum up the nodal diagrams of the
cyclic type. Let us denotewith Ncc;hh the cyclic nodal type diagramshaving
both external points reached by dynamical lines represented either hp or ha;
with Ncc;hl = Ncc;lh thosehaving oneexternal point reached by an exchange
line lv or lu only and the other one is reached by a dynamical line, and with
Ncc;ll thosehaving both external points reached by l lines only. The integral
equationsare given by

Ncc;hh(r12) =
�
X cc cd

�
�X cc + Ncc;lh + Ncc;hh

�
(A.4)

Ncc;hl (r12) =
�
X cc cd

�
�L cc + Ncc;hl + Ncc;ll

�
(A.5)

Ncc;ll (r12) =
�
L cc (cd � 1)

�
�L cc + Ncc;ll

�
+

�
L cc cd

�
�Ncc;hl (r32)

�
(A.6)

with

Lp
cc(r ij ) = � lv(r ij )

La
cc(r ij ) = il u(r ij ) (A.7)

Notice that in the �rst convolution on the r.h.s of Eq. (A.6) the vertex
correction is (cd � 1), whereasfor all the other convolutions in Eq.. (A.4)-
(A.6) the vertex correction is cd. The integral equationsEq.. (A.4)-(A.6)
can be decoupledand written in the following form

Ncc;hh(r12) =
�
X cc

�
�cdX cc

�
+

�
X cc

�
�cdL cc

�
�X cc

�
+

�
Ncc;hh

�
�Pcc

�
(A.8)

Ncc;lh(r12) =
�
L cc

�
�cdX cc

�
+

�
Ncc;lh

�
�Pcc

�
(A.9)

Ncc;ll (r12) =
�
L cc

�
�(cd � 1)L cc

�
+

�
L cc

�
�cdX cc

�
�L cc

�
+

�
Ncc;ll

�
�Pcc

�
(A.10)
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where

Pcc(r ij ) = (cd � 1)L cc(r ij ) + cdX cc(r ij ) +
�
X cc(r il )

�
�cdL cc(r l j )

�
: (A.11)

The sum of all the cyclic nodal functions Ncc;�� gives

Ncc(r12) = Ncc;hh(r12) + Ncc;hl (r12) + Ncc;lh(r12) + Ncc;ll(r12) (A.12)

It is possibleto write a single integral equation for the two components of
Ncc(r12), namely

Ncc(r ij ) =
�
X cc(r il ) + L cc(r il ) + Ncc(r il )

�
�Pcc(r l j )

�
+

�
X cc(r il )

�
�L cc(r l j )

�
(A.13)

which is useful to solve and Eq. (A.12).

Let us now construct the composite functions X �� ,

X �
dd(r ij )= F � (r ij ) � N �

dd(r ij ) � 1

X �
de(r ij )= F � (r ij )f N �

de(r ij ) + E �
de(r ij )g � N �

de(r ij )

X �
ee(r ij )= F � (r ij )f N �

ee(r ij ) + E �
ee(r ij ) + [N �

de(r ij ) + E �
de(r ij )]2

� Re[N �
cc(r ij ) + L �

cc(r ij ) + E �
cc(r ij )]2g � N �

ee(r ij )

X �
cc(r ij )= F � (r ij )f N �

cc(r ij ) + L �
cc(r ij ) + E �

cc(r ij )g � N �
cc(r ij ) � L �

cc(r ij )(A.14)

with � � a;p and whereE �
xy represents the sum of all the � -component of

elementary diagramsof classxy, and F � (r ij ) is given by

F � (r ij ) = f 2
� (r ij )eN �

dd (r ij )+ E �
dd (r ij ) : (A.15)

The expressionsof the one-body FHNC quantities Ud and Ue entering the
vertex correctionscd and c are given by:

Ud = Ed +
� 0

2

X

�

Z
dr ij

n
c
�

X �
dd(r ij ) � E �

dd(r ij ) � S�
dd(r ij )T �

dd(r ij )
	

+

cd

�
X �

de(r ij ) � E �
de(r ij ) � S�

dd(r ij )T �
de(r ij ) � S�

de(r ij )T �
dd(r ij )

	 o
;

Ue = Ee +
� 0

2

X

�

Z
dr ij

�
c
n

X �
ed(r ij ) � E �

ed(r ij ) � S�
de(r ij )T �

dd(r ij ) � S�
dd(r ij )T �

de(r ij )
o

+

cd

n
X �

ee(r ij ) � E �
ee(r ij ) � S�

dd(r ij )T �
ee(r ij ) � S�

ee(r ij )T �
dd(r ij ) � 2S�

de(r ij )T �
de(r ij )

o
+

n
cd Re

�
N �

cc(r ij )
�
S�

cc(r ij ) + L �
cc(r ij )

��
+

Re
�
L �

cc(r ij )
�
N �

cc;lh(r ij ) + N �
cc;ll (r ij ) + L �

cc(r ij )
�� o �

; (A.16)
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where

S�
xy (r ij ) = N �

xy (r ij ) + X �
xy (r ij ) (A.17)

T �
xy (r ij ) =

1
2

N �
xy (r ij ) + E �

xy (r ij ) (A.18)

and Ex stands for the sum of all one-body vertex correctedelementary dia-
gramsof the x type.

The above FHNC/BCS set of coupledintegral equation is not linear and
therefore has to be solved with an iterativ e procedure. Let us considerthe
approximation of neglectingall the elementary diagramsE. Onecan usethe
following numerical procedure

1. Set the nodal functions N �
xy equal to zero.

2. UseEq.. (A.3)-(A.10) and (A.16) for a newapproximation of the nodal
vector functions and for Ud and Ue.

3. Check the di�erences betweenthe new and old nodal vector functions.
If it is too largegoback to point 2. Otherwisecomputethe spin parallel
and spin antiparallel pair distribution functions

g� (r12) = 1 + N �
dd(r12) + X �

dd(r12) + 2
cd

c

h
N �

de(r12) + X �
de(r12)

i

+
� cd

c

� 2h
N �

ee(r12) + X �
ee(r12)

i
: (A.19)

The pair distribution function g(r ij ) appearingon the r.h.sof Eq. (2.46)
is given by

g(r12) =
1
2

�
gp(r12) + ga(r12)

�
(A.20)

The lowest order approximation of the pair distribution function is
given by

gp(r12) = f 2
p (r12)

h
1 �

1
2

l2
v(r12)

i

ga(r12) = f 2
a (r12)

h
1 +

1
2

l2
u(r12)

i
(A.21)
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App endix B

Calculation of the exchange
terms in the poten tial energy

In this appendix we derive the set of FHNC/BCS integral equationsunderly-
ing the calculation of the nodal functions N � � (r12) and Ncc;� � (r12) appearing
on the r.h.s of Eq. (2.59), which gives the contribution of B-terms to the
expectation value of V̂� .
The cluster diagramsassociated with thesenodal functions are characterized
by the property of having the dynamical correlations with indices equal to
either 1 or 2 or both of the type � (r ij ) given in Eq. (2.56). The derivation of
the integral equationsfollows the standard methods of FHNC theory. They
result to be

N � � (r12) =
�
X � d(r13) c + X � e(r13) cd

�
�X d� (r32) + Nd� (r32)

�
+

�
X � d(r13) cd

�
�X e� (r32) + Ne� (r32)

�
; (B.1)

wherethe convolution [: : : j : : :] means:

N �� 0(r12) =
�
X �� (r13) c� � 0

�
�X � 0� 0(r32)

�
= � 0 c� � 0

Z
dr 3 X �� (r13)X � 0� 0(r32);

(B.2)
which di�ers from the convolution de�ned in Eq.. (A.1) and (A.2), because
is dealingwith one-component FHNC quantities. The spin state of an inter-
acting particle is in a mixed state, namely is up in the ket and down in the
bra or viceversa.
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The FHNC quantities appearing on the r.h.s of Eq. (B.1) are given by

N � d(r12) =
�
X � d(r13) c

�
�X dd(r32) + Ndd(r32)

�
+

�
X � e(r13) cd

�
�X dd(r32) + Ndd(r32)

�
+

�
X � d(r13) cd

�
�X ed(r32) + Ned(r32)

�
(B.3)

N � e(r12) =
�
X � d(r13) c

�
�X de(r32) + Nde(r32)

�
+

�
X � e(r13) cd

�
�X de(r32) + Nde(r32)

�
+

�
X � d(r13) cd

�
�X ee(r32) + Nee(r32)

�
(B.4)

where

X � d(r12)= F� (r12) � N � d(r12) � 1; (B.5)

X � e(r12)=
�
F� (r12) � 1

�
N � e(r12); (B.6)

and
F� (r12) =

�
1 + � (r 12)

�
eN � d (r 12 )+ E � d (r 12 ) : (B.7)

To calculate the cyclic nodal function Ncc;� � (r12) it is convenient, as in ap-
pendixA, to distinguishbetweenN � �

cc;� � (r12), N � h
cc;� � (r12), N � l

cc;� � (r12) andN l l
cc;� � (r12),

which are characterizedby having � -correlationsat both ends(superscripts
� � ), � correlation at oneend and h-correlation (either hp or ha) at the other,
a � -correlation at one end and a single l-correlation (either lv or lu) at the
other and l-correlationsat both ends. The function N l l

cc;� � (r12) coincideswith
Ncc;ll(r12) given in appendix A. The FHNC integral equationsare given by

N � �
cc;� � (r12) =

�
X � c(r13) cd

�
�X c� (r32) + N h�

cc;� � (r32) + N l �
cc;� � (r32)

�
;

N � l
cc;� � (r12) =

�
X � c(r13) cd

�
�
�
�
1
2

X

�

�
L �

cc(r32) + N �
cc;hl (r32) + N �

cc;ll(r32)
�
�
;

N h�
cc;� � (r12) =

�
1
2

X

�

X �
cc(r13) cd

�
�
�
�X c� (r32) + N h�

cc;� � (r32) + N l �
cc;� � (r32)

�
;

Ncc;� � (r12) = N � l
cc;� � (r12) + N � h

cc;� � (r12) + Ncc;lh(r12) + Ncc;ll (r12); (B.8)

where

X c� (r12) =
�
F� (r12) � 1

�
�
Ncc;� � (r12) +

1
2

X

�

L �
cc(r12)

�
: (B.9)

Notice that, in the limit of the normal phasetrial function, namely when
v2

k = � (k � kF ) and consequently lu(r ) = 0, the above equationareequivalent
to thosegiven in ref. [57]. The vertex correction c� is given by

c� = eU� ; (B.10)
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where

U� = E � + � 0

Z
dr 12

n
c
�
X � d(r12) � E � d(r12) � S� d(r12)T� d(r12)

�
+

cd

�
X � e(r12) � E � e(r12) � S� d(r12)T� e(r12) � S� e(r12)T� d(r12)

� o
;(B.11)

with Sxy (r12) and Txy (r12) as obtained in Eq. (A.17) and (A.18)
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