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Abstract 

Locomotion is one of the most complex motor behaviors. Locomotor patterns change 

during early life, reflecting development of numerous peripheral and hierarchically 

organized central structures. Among them, the spinal cord is of particular interest since it 

houses the central pattern generator (CPG) for locomotion. This main command center is 

capable of eliciting and coordinating complex series of rhythmic neural signals sent to 

motoneurons and to corresponding target-muscles for basic locomotor activity. For a long-

time, the CPG has been considered a black box. In recent years, complementary insights 

from in vitro and in vivo animal models have contributed significantly to a better 

understanding of its constituents, properties and ways to recover locomotion after a spinal 

cord injury (SCI). This review discusses key findings made by comparing the results of in 

vitro isolated spinal cord preparations and spinal-transected in vivo models from neonatal 

animals. Pharmacological, electrical, and sensory stimulation approaches largely used to 

further understand CPG function may also soon become therapeutic tools for potent CPG 

reactivation and locomotor movement induction in persons with SCI or developmental 

neuromuscular disorder. 
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Basic structure of locomotion: biomechanical basis and neural organization 

Walking is a relatively stereotyped motor behavior that allows terrestrial movement of 

limbed animals. In these organisms, locomotion consists of the rhythmic reiteration of a 

basic motor scheme, the gait, which is characterized by the alternated activation of pairs of 

appendages and, within each limb, by the transition between the phase in which the base 

of support remains in contact with the ground (stance) and when it swings forwards 

(swing) [1]. The different number of limbs between bipeds and quadrupeds influences 

complexity of gait patterns. There is a large repertoire of locomotor gaits expressed by 

quadrupeds, mainly in relation to the speed of locomotion [2]. However, the most common 

type of locomotion is characterized by the double alternation between hind- and fore- 

limbs, and between ipsilateral limbs [3], particularly during to low-to-moderate speeds of 

locomotion. 

Although different tetrapod species may exhibit different gaits as adults (i.e., walking, 

trotting, bounding, etc.), a pattern of interlimb coordination characteristic of walking 

(alternating homologous limbs) is shown by newborns of many species, including kittens, 

rabbits, rats, jerboas, gerbils, jirds, kangaroo rats, dormice, and voles [4-11]. Similarities in 

locomotor coordination may be due to similarities in body size and morphologies (short 

limbs, wide stance), and relative immaturity of the CNS (central nervous system), PNS 

(peripheral nervous system), and skeletal system. Specialization in locomotor patterns 

subsequently emerges in animals experiencing geometric and allometric growth and 

continued development of neural and motor systems. Even human infants, which can 

show a variety of crawling patterns (i.e., hands-and-knees, hands-and-feet, creeping, 

scooting, and mixes of these patterns), predominately exhibit an alternating interlimb 

pattern during crawling [12] that is kinematically similar to non-human primates and other 

mammals [13]. Furthermore, the development of bipedal walking locomotion in humans 

shows many parallels—e.g., gradual reduction of step cycle duration and variability, 

hyperflexion of leg joints, training effects—as with other animals [14]. 

In bipedal organisms, locomotion faces a further challenge. Notably, each step 

continuously pushes the center of mass forward and this requires a series of sophisticated 

systems of postural control to recover balance in response to this continuous instability 

[15]. Nevertheless, the imbalance following each step seems to obey to a functional 

significance. Indeed, the forward propulsion of the body to recover the center of mass 

becomes the necessary consequence to maintain the equilibrium, which is then 

compromised once again at the end of each step and at the beginning of the following one 

[16]. 
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This rhythmic nature of locomotion requires a phasic activation of osteo-articular and 

muscular actuators in the periphery. As a matter of fact, muscles are recruited only in 

distinct phases to alternate the two limbs. Furthermore, flexor and extensor muscles 

around the joints of each limb are sequentially activated to allow swing and stance. Phasic 

muscular activation generates metabolic advantages with respect to a postural massive 

tonic contraction. Indeed, albeit the effort of moving the body in space, the energetic 

consumption during gait is quite similar to static posture [17]. The energetic cost of 

locomotion is concomitantly reduced also by passive elastic structures (e.g. tendons, 

ligaments and muscular components) that temporarily store the propulsive energy lost at 

one stage of the stride and return it in the following phase of gait [18]. From a kinetic point 

of view, limbed animals typically use gaits that are energetically favorable for body 

propulsion [19]. Note that further details about energetic considerations and locomotion in 

spinal cord-injured persons may be found in this issue in the paper by Nash and 

colleagues. 

The most economical locomotor pattern is selected by continuously processing 

sensory input, including proprioceptive afferents that provide information about body 

mechanics [20; 21]. Nevertheless, continuous fluctuations from the nominal preferred gait 

naturally occur during normal walking, regardless of the increase in energy expenditure 

[22]. Step-by-step variability also plays an important role in optimizing locomotor 

performance, as it represents a robust control system that promptly adjusts the pattern in 

response to environmental perturbations [23]. This same logic of efficiency of movement 

and dynamic sensorimotor integration governs the systems responsible for generating and 

organizing rhythmic interlimb coordination during locomotion.  

A remarkable network of spinal interneurons, mainly localized in the upper lumbar 

segments of the spinal cord, is responsible for producing the fundamental neural 

commands underlying basic locomotion [24-26]. Once activated, this network, named 

central pattern generator (CPG), sustains itself rather automatically [27]. This hierarchical 

arrangement thus reduces the need for constant supraspinal modulation of the locomotor 

rhythm. Supraspinal mechanisms may then be mostly limited to planning, triggering, and 

terminating locomotion [28; 29], modulating movement and posture in response to visual 

and auditory stimuli [30], and allocating neural resources toward the control of vital and 

cognitive functions. Although the locomotor CPG represents only a small portion of the 

spinal cord, a wider network of propriospinal neurons reverberates its rhythmic pattern 

along the whole axis [31], to integrate other rhythmic tasks, such as respiration or 

movement of upper limbs [32; 33].  
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During the embryonic stage of prenatal development, intrinsic rhythmogenicity of 

spinal networks and basic elements of the locomotor pattern (i.e. the double alternation 

among the two sides of the cord) are already expressed [34]. Shortly before and after birth 

the spinal CPG is tuned by descending fibers [35]. Hence, activity-dependent mechanisms 

of plasticity mediate the processing of afferent inputs and their regulation of the locomotor 

pattern [36]. This is especially apparent in immature animals that are undergoing continual 

development of muscle-skeletal actuators, overall body growth, and physiological systems. 

Even the earliest attempts to perform locomotion reveal a dynamic interplay between form 

and function. For example, rabbits [11] and some rodents [8] show quadrupedal walking 

during the early postnatal period, before the development of elongated hindlimbs and 

other forms of locomotion such as bounding and ricochetal locomotion. This suggests that 

although locomotor mechanisms are structurally in place and capable of functioning, that 

locomotor behavior is assembled in a dynamic fashion, and is dependent upon multiple 

factors that are necessary to physically support and move the animal’s body. 

Maximal efficiency in the hierarchical organization and sensorimotor integration of the 

neuromotor system is, in turn, supported to some extent by the redundancy of structures, 

which renders locomotion more resistant to occasional failures [37] and reduces 

vulnerability in response to peripheral or central lesions. Indeed, synergies in the activation 

of multiple muscles [38; 39] allow the alternated activation of limbs, even in the presence 

of localized muscular deficits [40; 41]. At the same time, the intrinsic variability in recruiting 

CPG interneurons [42] physiologically drives plastic rearrangements and neuronal 

compensation mechanisms, enabling gait to be expressed even after discrete neurological 

lesions [43]. Together, task efficiency and redundancy of structure sustain the function of 

the neuromotor system, even if the two principles are in contrast with one another because 

the maintenance of supernumerary replacing elements in case of damage requires a more 

consuming structure. Despite the redundancy, the compromise between these two 

elements reached by the neuromotor system still exposes locomotion to serious functional 

deficits in cases of severe impairments.  

Although problems with peripheral actuators (such as osteoarticular, muscle or 

peripheral nerve lesions) may be allayed to some degree by using prostheses or orthoses, 

to permit locomotion, on the other hand, central damage is currently incurable, and may 

lead to paralysis. In this situation, the study of the neuronal bases of locomotion, including 

cellular substitution or reconfiguration of residual spinal circuits, can support targeted 

interventions to exploit spinal mechanisms of self-repair and plasticity. Such a multi-level 

understanding of CPG functions and supraspinal-peripheral system contributions to its 
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modulation is likely to yield the development of a multidisciplinary approach for functional 

recovery in persons with a spinal cord injury (SCI). Although locomotion in neurologically 

intact individuals involves continuous integration of neural networks throughout the CNS, 

including cortical, sub-cortical, cerebellar, and spinal areas, we chose to focus primarily in 

this review on spinal mechanisms, CPG properties, and clinically relevant research tools. 

�

Initiation and modulation of locomotion: considerations for recovery of locomotor 

activity following SCI 

In individuals with a complete SCI, several sensory inputs can still access and 

modulate the output of the spinal locomotor CPG, including afferent feedback from muscle 

proprioceptors, joint receptors, and cutaneous afferents. Sensory stimulation and activity-

dependent feedback has been shown to facilitate locomotion for those with an incomplete 

SCI (e.g., [44-47]). See also the paper from Pearcey and colleagues in this issue, for 

further details on cutaneous contribution to locomotion. However afferent input alone is not 

likely to lead to a functional recovery of locomotor ability in humans with complete SCI 

[48]. Therefore, it is critical to consider modulatory effects on spinal networks in 

combination (sensory, electrical, and pharmacological approaches) for the development of 

therapeutic techniques, as combined methodologies may ultimately achieve greater 

functional outcomes through synergistic actions. Here we review the sensory afferent 

control, electrical initiation, and pharmacological neuromodulation of locomotor activity in 

spinal preparations, which together represents a promising avenue for examining the 

function and plasticity of spinal locomotor networks. 

�

Sensory afferent control of locomotion 

 Early experiments by Graham Brown [49; 50] were critical in determining that the 

spinal cord contains the necessary elements to produce basic, phasic locomotor activity 

produced by the limbs, devoid of sensory inputs. However, since the time of these crucial 

studies that discovered the independence of central mechanisms from external stimuli, it 

has become widely recognized that sensory afferent stimulation plays an important role in 

modulating spinal locomotor networks and plays a key role in the recovery of locomotion 

for individuals with SCI [51; 52]. Sensory stimulation not only facilitates the expression of 

locomotion, but it permits adaptation of locomotion to the environment, regulates reflex 

activity, promotes transitions between different phases of the locomotor cycle, and helps to 

induce plasticity in the injured spinal cord. 
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 Proprioceptive stimulation from muscle and Golgi tendon organ receptors play an 

important role in regulating reflex activity in the spinal cord and during locomotion. 

Because central excitability is typically decreased or impaired following neural damage, 

understanding how reflexes may alter activity and plasticity in spinal locomotor networks is 

essential. It is well established that hip joint afferents activate appropriate patterns of leg 

muscle activity during walking and are important for initiating the transition from stance to 

swing. This has been shown to be the case for spinal cats [53-55], human infants [56], and 

adult humans with SCI [57; 58]. Additionally, in spinal cats, activation of group Ia and 

group Ib afferents from ankle extensors entrains the locomotor rhythm, prolongs extensors 

bursts, and inhibits flexor activity [59; 60], such that a reduction in extensor muscle Ib 

activity promotes the transition from stance to swing during locomotion [61]. Stimulation of 

ankle group Ia afferents and cutaneous nerve stimulation (delivered to the nerve 

innervating the plantar foot) also prolongs extensor activity. This suggests that both Ib and 

Ia afferent activity continually shape amplitude and timing of the locomotor step cycle [60]. 

Proprioceptive feedback from the hindlimbs is also thought to be important for regulating 

interlimb coordination and locomotor speed adaptations, as on a treadmill, for intact as 

well as spinal animals [62-65]. 

Strong cutaneous stimulation, delivered to the perineum [65-67] or to the tail (tail-

pinch; [68]), can induce some locomotor stepping in spinal animals. In fact, recently it was 

shown that perineal stimulation alone was sufficient to induce stepping movements on a 

treadmill in spinal rats, thus permitting treadmill training to occur [67]. Modulation of 

locomotor behavior, such as altered foot contact and limb activity, occurs following 

mechanical stimulation of the skin on the back [69], section of cutaneous nerves 

innervating the foot [70], and electrical stimulation delivered to the foot dorsum [71]. Such 

studies indicate that cutaneous stimulation likely alters excitability of spinal circuits for 

locomotion and weight-supported posture, and are important for inducing plasticity 

following SCI (see [72] for review). In adult humans with chronic incomplete SCI, excitation 

of plantar cutaneous afferents modulated walking in a phase-dependent manner, 

suggesting interactions among locomotor mechanisms, peripheral afferents, and 

segmental reflex circuits [73]. 

Given that the spinal cord is capable of sensory-induced functional plasticity, 

activity-dependent mechanisms in the spinal cord are often exploited to try and rehabilitate 

locomotor function. For example, operant conditioning of the H-reflex modifies spinal reflex 

pathways in various animals [74-76], as well as improves locomotion in incomplete spinal 

rats [77] and chronic incomplete spinal humans [46]. Cycle training has been shown to 
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normalize spinal reflex excitability in spinal adult rats [78], as well as determine gait (an 

alternating or synchronous pattern) following several days of anti- or in-phase cycle 

training in young spinal rabbits [11]. More commonly, daily treadmill training is used to help 

restore locomotion in animals with SCI [62; 63; 65; 79].  

It is likely that both proprioceptive and cutaneous afferents are involved in cycle and 

treadmill training effects. However, the necessary and sufficient mechanisms promoting 

activity-dependent functional plasticity in the spinal cord remain largely elusive. Possible 

neural mechanisms involve plastic changes (i.e, neural reconfigurations, receptor and 

transporter up- and down-regulation, axonal sprouting, long-term potentiation or 

depression, presynaptic modulation) occurring at the level of locomotor CPG, interneurons 

downstream from the locomotor CPG, or motoneurons. Regardless of the exact 

mechanisms [80], it is clear that the isolated or damaged spinal cord is capable of 

dynamic, sensorimotor integration that is dependent upon both endogenous and 

exogenous factors [81], and that understanding these mechanisms provides important 

opportunities for facilitating recovery and limiting further damage.  

In fact, sensory afferent stimulation and use-dependent plasticity is a hallmark of 

physical therapy treatments. For decades now, stepping on a treadmill or use of gait 

orthoses has helped to restore gait in individuals with SCI (e.g., [82; 83]). For those with 

incomplete SCI, locomotor training improves many aspects of locomotion, including: 

interlimb coordination, endurance, walking speed, and limb kinematics (for review see 

[48]). However outcomes are typically better for individuals with an incomplete rather than 

complete SCI, indicating that supraspinal structures likely play a role in recovery of 

function for incomplete lesions. Although locomotor training typically has not resulted in 

recovery of walking locomotion in complete SCI individuals [57; 84], a case report of a 33-

year-old man with complete SCI showed some over-ground walking function following 

task-specific practice coupled with robotic locomotor training as part of an intensive 

physical therapy program [85]. The authors asserted that intensive physical therapy and 

locomotor training together was likely more effective than locomotor training alone, and 

that training intensity, frequency, and task-specificity are likely important factors for 

improving motor outcomes. 

Another promising application of afferent stimulation and use-dependent plasticity in 

promoting locomotor function can be seen with partial body-weight supported treadmill 

training (BWSTT) in infants that have developmental neuromuscular disorders. Parents of 

infants with Down Syndrome were provided small treadmills for the home and engaged 

their babies in treadmill-induced stepping practice 5 days a week, between the ages of 8-
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10 months, in addition to traditional physical therapy. Although infants with Down 

Syndrome often start walking at 2 years of age (which is about one year later compared to 

typically developing infants), infants that received treadmill training learned to walk 

independently significantly earlier compared to infants that received physical therapy alone 

[86; 87]. Infants also showed improvement in other motor milestones, such as pulling to 

stand [86]. Similar early intervention strategies using BWSTT are currently being 

examined in infants that have myelomeningocele (MMC) [88]. MMC is the most severe 

form of spinal bifida in which the developing spine and neural tube do not close properly 

during prenatal development. This typically results in a small part of the lower spinal cord 

and meninges (forming a sac) protruding from the back of the individual, accompanied by 

severe motor and sensory deficits including bladder dysfunction and paralysis below the 

level of spinal damage, which is usually at the lumbar or sacral level. Infants with MMC 

start walking around 2.5-5 years of age [89], if they are able to walk at all. After 6 months 

of BWSTT as described above for infants with Down Syndrome, MMC infants showed 

earlier mean onset ages for motor items on the Bayley Scales of Infant Development, and 

higher bone mineral content in the legs compared to MMC infants who did not receive 

treadmill training [88]. Furthermore, enhancing sensory feedback via increasing overall 

friction on the treadmill belt increased the step rate on the treadmill for infants with MMC 

[90], suggesting that synergistic approaches may be more effective at triggering locomotor 

plasticity in the injured, developing spinal cord. 

Electrostimulation facilitates locomotion 

 In humans, spinal locomotor circuits can be directly activated, even in the absence of 

any voluntary control, by relatively nonspecific stimuli such as direct electrical non-

patterned stimulation of the lumbar cord [91], continuous vibration of the quadriceps and 

hamstring muscle groups [92], tonic electrical stimulation of the peroneal or sural nerves 

[93], transdermal spinal cord stimulation (see companion paper from Minassian and 

colleague) or electromagnetic stimulation at the level of the lumbosacral spinal cord [94]. 

The automatic stepping movements generated by these approaches suggests that the 

CPG can function independently from brain control and thus opens the door to new 

paradigms for the recovery of posture and locomotion in individuals with severe SCI.  

 Among these methods, epidural stimulation dorsally applied over lumbosacral 

segments promotes reproducible locomotor patterns that can be recorded from adult 

spinal rats in vivo [95-97]. In humans, epidural stimulation is a minimally invasive 

technique that has been used for several years to alleviate spasticity and pain. Clinical use 
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confirmed that epidural stimulation of the thoraco-lumbar spinal cord enables bursts of 

electromyographic activity in lower limb muscles and few step-like alternating flexion and 

extension movements after complete SCI [91]. More recently, epidural stimulation 

associated with intense training reactivated motor functions in persons with a chronic 

spinal lesion [98; 99]. In these cases, electrical stimulation was not able to automatically 

trigger locomotion per se, but facilitated locomotor-like patterns evoked by afferent stimuli 

and reactivated voluntary commands, but only during protocol delivery [98; 99]. Likewise, 

transcutaneous electrical stimulation generated similar results in five SCI subjects [100]. 

Overall, electrical stimulation of the spinal cord enabled all of the nine subjects tested with 

complete paralysis to voluntarily move their lower limbs. Therefore, it now represents one 

of the most promising strategies to restore locomotor function following SCI.  

 However, the potential of electrical stimulation has not been fully disclosed yet. In fact, 

while research on both animals and humans has assessed the best parameters of 

intensity, frequency and location for stimulation, there has not been a full exploration of 

stimulating patterns and their motor consequences. For example, only trains of square 

pulses have been used [101], without varying the wave shape of single pulses. Another 

issue that requires further study is the combined use of electrical stimulation with 

pharmacology, in order to find agents more specifically targeted to enhancing locomotor 

CPG function. Indeed, some experimental pharmacological interventions have already 

been associated with potential recovery of locomotion in individuals with SCI [102]. More 

recently, results of a phase I/IIa trial with a first oral CPG activator called SpinalonTM has 

provided evidence of safety as well as promising preliminary efficacy data (induced 

rhythmic EMG activity in both legs) in 45 complete SCI persons (paper from Radhakrishna 

and colleagues, this issue; for corresponding preclinical results in mice, see [103]). It is 

thus straightforward to consider the adoption of complementary and synergistic strategies 

as a logical direction for translating some basic biological concepts into clinical settings.  

 The possibility of identifying a methodology for reactivating human spinal locomotor 

mechanisms after SCI does not imply that spinal injured persons could easily and safely 

just get up and walk voluntarily. An essential component of successful over ground 

locomotion are the neural mechanisms for maintaining posture and recovering stability 

after an occasional imbalance, which are severely compromised following a spinal lesion, 

both in animals [104] and in humans [105]. Nevertheless, epidural electrical stimulation 

significantly improved posture and recovery after a loss of balance, when applied to the 

lumbar segments of spinal animals [106; 107] as well as to spinal cord injured persons [98; 
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99]. These findings suggest that electrical stimulation may therefore be a promising 

component to a rehabilitation strategy for recovering walking. 

Pharmacological modulation of locomotion 

In this section we briefly highlight findings on in vitro and in vivo animal models 

regarding some of the main neurotransmitters and neuromodulators that are known to 

stimulate and modulate synaptic spinal locomotor function. These chemical signals 

principally influence locomotor CPG functioning by altering motoneuron and CPG 

interneuron electrical properties, altering synaptic responses between motoneurons and 

CPG interneurons, or both. It is important to note that the effect of neuromodulators on 

locomotor network activity occasionally differs among species. For a more comprehensive 

review of pharmacological neuromodulation of locomotor networks, see Miles and Sillar 

[108] or Guertin [109]. 

 The rhythmic activity produced within the spinal locomotor CPG is mainly produced by 

glutamate-mediated excitation and GABA- and glycine-mediated inhibition between spinal 

interneurons. Both ionotropic [110; 111] and metabotropic glutamate receptors [112] 

modulate aspects of CPG activity such as excitability, speed, and rhythmicity. Inhibitory 

neurotransmission regulates the left-right alternating pattern, and the speed and stability of 

the locomotor rhythm [113]. Renshaw cells, Ia inhibitory neurons, inhibitory commissural 

neurons, and several other classes of inhibitory neurons are involved [113-115]. 

 Monoaminergic systems also play a key role in activating and modulating spinal 

locomotor networks. Activation of 5-HT receptors induces locomotor activity in the isolated 

rodent spinal cord in vitro (e.g., [116; 117]) and in spinal rodents in vivo (e.g., [118-121]). 

Depending on the receptor class that is activated, 5-HT receptor activation in some cases 

also increases the frequency and amplitude of locomotor bursts, increases the regularity of 

stepping, and can decrease stepping (reviewed in [108]). Activation of dopamine receptors 

stimulates locomotor activity in spinal rodents in vivo [122], but in the isolated spinal cord 

in vitro the rhythm is slower than that which is induced by 5-HT [123]. Stimulation of 

noradrenergic receptors induces locomotor activity in spinal cats (e.g., [124; 125]) and 

modulates network activity, such as increasing tonic spinal activity and locomotor bursts, 

in the isolated spinal cord of the neonatal rat in vitro [126; 127]. Additional modulators of 

spinal locomotor circuits are acetylcholine [128; 129] various neuropeptides [130; 131], 

and trace amines [132]. 

 In animals with SCI, the availability of some neuromodulators to influence spinal 

circuits changes drastically. Acutely after SCI, glutamate and aspartate levels increase to 
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>400% in the spinal cord and this contributes to tissue injury [133]; their levels, and levels 

of GABA and glycine decrease thereafter [134]. Thus following SCI, the balance between 

excitation and inhibition in the spinal cord is disrupted [81]. Furthermore, the brain is the 

main source of monoaminergic-containing cells in the CNS, including 5-HT [135]. 

Following SCI, these substances no longer can be released from supraspinal projections 

caudal to the site of injury. Part of the consequence then is the up-regulation of 5-HT and 

noradrenergic receptors caudal to the lesion [136-139]. Hence, levels of endogenous 

neuromodulators, and likewise receptor levels, after a SCI change in relation to the time of 

injury, and may thereby influence responses to both drugs and sensory or electrical 

stimulation. 

 Pharmacological modulation is one way to help induce plasticity in the injured spinal 

cord, though combination efforts may be more fruitful than drug treatments alone. For 

instance, spinal adult rats treated with subthreshold doses of serotonergic agonists, 

provided electric epidural stimulation, and step-trained improved their hindlimb stepping 

coordination and muscle activation patterns within one week following SCI [97]. 

Comparable results without electrical stimulation may be obtained using higher doses of 

synergistic combinations with 5-HT agonists and NA/DA agonists or precursors in spinal-

transected mice and turtles [103; 140]. As with other combinatorial approaches, the potent 

CPG-activating effects of suprathreshold doses of proper drug cocktails (e.g., SpinalonTM) 

can further improve overtime with repeated training (drug administration 3-5 times/week) 

[141; 142]. These findings suggest that sensory afferent feedback from step training 

interacts with electrical and/or pharmacological activation of spinal networks to induce 

neuronal plasticity changes following SCI. CPG activation through locomotor training 

increases the percentage of active motoneurons in the spinal cord [143]. In turn, these 

results suggest that afferent feedback may act on enhanced motoneuron excitability, 

induced by serotonergic receptors and electrical stimulation. Serotonergic stimulation also 

has been shown to influence spinal reflex pathways and to presynaptically influence 

segmental afferent projections (reviewed in [144]). Although using multiple, concurrent 

treatments in humans with SCI may not be the most desired approach to reinstating 

locomotor behavior, experimental paradigms such as those using rodent or cat models are 

explicating many important principles of reawakening spinal locomotor networks that are 

important to understand in approaching this challenge in humans. In fact, recent work with 

humans indicates that coupling stimulation with training promotes more adaptive plasticity 

and improves motor performance, and suggests that augmenting training with stimulation 

helps to better activate spinal circuitry [145]. Understanding and treating the 



�

���

�

�

pharmacological bases of this plasticity should help to further facilitate improvements in 

function. 

�

Examining spinal mechanisms of locomotion from different levels of analysis in 

immature preparations: novel strategies for activating locomotor stepping following 

SCI 

Numerous experimental paradigms have been developed to study locomotion. Here 

we focus on the isolated spinal cord in vitro, and behavioral analysis in vivo, discussing 

recent insights provided by our laboratories using electrostimulation, pharmacological, and 

sensory feedback manipulations. Our research illustrates how an integrative approach to 

the study of locomotor mechanisms in immature animals reveals important dynamic 

interactions among levels of analysis, and strengths and limitations of specific 

experimental approaches. Together this work has important implications for 

neurorehabilitation strategies for SCI, including opening new avenues for combinatorial 

approaches. 

Selective electrostimulation of dorsal roots triggers locomotor patterns in the 

isolated spinal cord 

 Electrostimulation through a bipolar hook electrode selectively applied to dorsal roots 

(DRs) cut distally from the spinal cord has been shown to evoke bouts of locomotion in 

spinal cats ([146]; see also Lev Tov and colleagues, this issue). A similar outcome was 

observed more consistently on in vitro spinal cords isolated from neonatal rats. In these 

preparations, electrical stimulation with stereotyped trains of square impulses triggered 

brief episodes of electrical oscillations, alternating between flexor and extensor motor 

pools on both sides of the cord (fictive locomotion rhythm, FL; [25]), when selectively 

delivered through tight fitting electrodes to either DRs [147] or sacrocaudal afferents [148]. 

In addition, activation of multiple DRs with staggered pulses [149; 150] effectively 

generated FL, indicating a multi-segmental convergence of afferent inputs on neuronal 

circuits during electrical spinal cord stimulation, as also reported in both in vivo animals 

[151] and in humans [100; 152]. 

 However, still to be defined are both the neurophysiological mechanisms of electrical 

stimulation for triggering locomotor activity and the involved spinal wiring. Supposedly, the 

origin of FL episodes in response to DR stimulation may relate to the cumulative 

depolarization of distinct post-synaptic sites able to vary extracellular ionic concentrations 

[153] and facilitate the release of neurotransmitters that selectively activate network 
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elements crucial for generating the locomotor pattern. Indeed, selective stimulation of a 

subpopulation of spinal neurons is sufficient to trigger the locomotor pattern [154]. 

Modeling studies also have demonstrated that it is possible to effectively activate the CPG 

through even a few afferent projections [155]. Functional projections from the periphery to 

the CPG have been identified in both Ia afferents from muscle spindles and, mostly, in Ib 

afferents from Golgi tendon organs [156]. 

 A peculiarity of locomotor episodes evoked by electrical stimulation in the spinal cord 

in vitro is that they spontaneously decay, regardless of continuous delivery of trains, and 

only can be transiently rescued by varying either intensity or stimulation site. The cause of 

this failure is not related to impairment of action potential invasion toward afferent 

terminals, nor to changes in the passive properties of the motoneuron membrane [157]. 

On the other hand, at the presynaptic level, stimulation with trains of impulses decreases 

glutamate release [157], even though this effect does not seem to be linked to the 

disappearance of locomotor cycles [147]. Rather, progressive deterioration of FL episodes 

and pattern ceasing during continuous DR electrostimulation can be caused, at the post-

synaptic level, by the membrane shunt determined by the depolarization that derives from 

increased potassium concentrations [153] and by the release of inhibitory 

neurotransmitters eventually reducing FL oscillations [158; 159]. High frequency 

stimulation may also involve receptor desensitization, since recovery (e.g. for glutamate 

receptors) can require up to hundreds of milliseconds [160], and depend on the quantity of 

the receptor agonist and the composition of the receptor subunit [161].  

 Overall, the spontaneous cessation of the pattern induced by afferent stimulation may 

be a property of the functional organization of the spinal locomotor circuit, which attributes 

a triggering role to afferents, with intrinsic self-limiting properties. Indeed, volleys in 

afferent fibers induce presynaptic inhibition on their own terminals, thus stopping excitation 

[162], in a manner dependent upon the frequency of incoming input [163]. Moreover, 

spinal interneurons that are rhythmically active during locomotor activity are modulated by 

the ongoing phasic rhythm and might filter sensory input out of phase with their oscillation 

frequency, thus stopping the pattern shortly after its onset [164]. Cellular properties, and 

peculiar channel expression patterns shown by crucial classes of dorsal interneurons, also 

may be involved in sensory motor integration and gating [165].  

  However, in vitro studies allow induction of FL through different experimental 

modalities to optimally trace the dynamics of CPG recruitment [116; 166]. A comparison 

between electrically- and pharmacologically-induced FL patterns indicates that 

neurochemicals added to the perfusion bath generate FL with a much slower onset, but 
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that once established remains stable for many hours. Moreover, unlike electrical 

stimulation, it is possible to finely modulate frequency of pharmacologically-induced FL by 

titrating concentrations of pharmacological agents [147]. This might imply that modulation 

of the locomotor pattern requires involvement of a more widespread region of the spinal 

cord rather than the few segments activated by electrical stimulation of a single DR [167]. 

 Albeit variations in frequency of stereotyped trains of pulses within a relatively broad 

range (1-25 Hz) does not affect number (nor periodicity) of locomotor cycles [147], 

stimulation with trains of distinct pairs of frequencies, even simultaneously delivered to 

different DRs, activates longer episodes of FL [150]. This suggests that, rather than the 

selection of a specific frequency, optimal DR electrostimulation to evoke FL must provide a 

minimum level of input range variability. Several studies suggest that critical levels of 

variability in CPG input are required to engage neural control mechanisms, even in a 

highly repetitive motor task. For example, lack of variation in step trajectories interferes 

with the normal cycle progression that the networks execute, which can result in an 

inability to learn or improve the performance of motor tasks [42; 168; 169].  

Innovative protocols of electrostimulation exploit the intrinsic rhythmogenic 

potential�of spinal circuits 

 Locomotor-like activity in the in vitro spinal cord (Fig. 1 A) has been optimally evoked 

by stimulating one DR or the cauda equina with intrinsically variable asynchronous (i.e. 

noisy) patterns, obtained by sampling biosignals corresponding to rhythmic motor patterns 

in vitro or in vivo, from either a ventral root (VR, Fig. 1 B), a muscle, or a single 

motoneuron [131; 150; 170; 173; 174]. The clear advantage of this approach relies on 

stimulation strength, which, unlike canonical electrostimulation, is much lower than the 

minimum one required to induce a reflex response (i.e., sub-threshold). Moreover, when 

compared to the classic protocols of electrical stimulation [147], noisy biosignals induce 

locomotor-like oscillations of longer duration and with a greater number of cycles [170; 

173], although the pattern still does not last throughout the protocol. The reason behind 

the improved efficiency of the protocols that use noisy biosignals is still under 

investigation. A possible explanation could rely on the presence of an intrinsic variability in 

amplitude and frequency of noisy protocols that accommodates the variability required by 

the locomotor network, mimicking the volley of physiological input that reach the spinal 

cord during locomotion [175]. Noise-derived high variability of the stimulus per se is not 

sufficient to elicit FL, as a phasic component in the lower frequencies seems also to be 

required, as demonstrated by the inefficacy of stimulation using either the sole Gaussian 
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noise (Fig. 1 C) or biosignals sampled during tonic muscle activation [174]. At the same 

time, FL could not even be induced by noise-free phasic input such as pure sinusoids (Fig. 

1 D), or artificial noisy waveforms, software-designed by adding to a pure sinusoid either 

the spontaneous baseline activity at rest [170] or Gaussian noise (Fig. 1 E). These results 

indicate that input able to optimally trigger the CPG must contain both the low frequency 

component of rhythmic motor tasks and the high frequency spectral density of motor-

related biosignals. As a result, effectiveness of noisy waveforms might be linked to the 

relative contribution of such distinct stimulus frequencies particularly efficient in activating 

frequency-dependent CPG elements [150]. Moreover, variability in the amplitude of the 

stimulating patterns might play a crucial role reminiscent of the control over sacral network 

output, using amplitude-modulated signals delivered to the peripheral nerve [171; 172]. 

The possibility to deliver these protocols at subthreshold intensity makes them an elective 

tool to exploit the intrinsic rhythmogenic potential of spinal circuits. 

Pharmacological synergism of electrically-induced locomotor patterns 

 In spinal animals, superior locomotor performances so far have been found with 

suprathreshold doses of specific drug cocktails or with subthreshold doses of 5-HT 

agonists combined with electrical stimulation of the spinal cord [103; 141; 142; 176-179]. 

This suggests that innovative neurorehabilitation strategies to improve sensorimotor 

functions following neuromotor disorders could combine pharmacotherapy, training and 

electrical stimulation. In neonatal rat isolated spinal cords, FL was activated by the 

association of neurochemicals at low doses and noisy protocols at weak intensity (but not 

conventional trains of rectangular pulses), both unable to generate a locomotor pattern on 

their own. Moreover, this combination modulated cycle frequency and increased duration 

of FL episodes beyond the limits of electrical stimulation alone, even if delivered at optimal 

intensity [173]. However, these effects were not seen in the presence of a generic 

increase in the overall neuronal excitability of the spinal cord mediated by a shift in 

extracellular ionic concentrations [173], indicating that locomotor circuits, once optimally 

triggered by low intensity noisy patterns, can be modulated by a likewise selective (low 

concentration) pharmacological stimulation.  

 In this regard, it has been recently demonstrated that even nanomolar concentrations 

of the neuropeptide oxytocin, which alone is unable to elicit FL, can synergize with weak 

noisy stimulating protocols to elicit locomotor network activation [131]. These findings 

suggest that combining low doses of oxytocin with direct sub-threshold electrical 

stimulation helps to exploit the automatic locomotor capacities of isolated spinal circuits. 
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This perspective is even more interesting, in light of the ongoing clinical trials targeting 

safety of oxytocin for spinal cord dysfunction (http://clinicaltrials.gov). 

Strengths and limitations of the in vitro approach 

 Newborn rat spinal cord networks are organized in a very similar way as adult 

networks [180], but the former ones allow advantages in terms of easier surgical isolation 

of the spinal cord, technical access to multiple electrophysiological recordings and 

electrical stimulations, as well as a longer in vitro availability compared to older tissue 

[181]. In addition, spinal cord isolation reduces the basic modulatory tone [182], in turn 

increasing consistency of motor output. As a result, it is possible to unveil even the 

slightest modulatory effects that could only be barely identified in vivo even using a very 

high number of repetitions. In general, however, the in vitro approach also allows 

recordings of the motor output with a pure neuronal origin, thus excluding any influence 

from the activation of either compensatory muscle contractions or modulators of peripheral 

circulation. Moreover, the clear distinction between input from DRs and motor output from 

VRs makes the isolated spinal cord an elective model for assessing the recruitment of 

locomotor networks by afferent electrical pulses. As a result, we can carefully determine 

the efficacy of the different protocols of stimulation, by quantifying the number of FL 

oscillations or by assessing the minimum duration of stimulation required to induce an 

episode of FL. For example, the most selective protocols available in vitro are efficient 

even when delivered for periods as short as 500 ms [150]. 

 Nevertheless, the in vitro model does have a few limitations. For example, it does not 

allow a full analysis of motor control in terms of fine-tuning abilities, such as kinematic 

analysis, which is available with in vivo animal preparations. Furthermore, using in vitro 

preparations, we cannot identify the neuronal output that corresponds with maintenance of 

standing posture nor to the different coordination among muscle groups, considering the 

complexity of the motor behavior displayed by the behaving animal [3]. Thus for example, 

this does not permit confirmation of whether distinct protocols of electrical stimulation can 

generate different motor behaviors in vivo. For all these reasons, in order to propose 

innovative strategies to reactivate stepping after spinal cord damage, and to consider 

pediatric incidence of SCI [183], it would be profitable to adopt a multilevel analysis of 

locomotion in immature preparations. An extremely useful research approach could thus 

consider the serial application of the same experimental treatments to the same animals in 

each setup, to integrate initial kinematic assessments of real behavior and 

electrophysiological recordings of spinal network activity, after spinal cord isolation.  
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Stimulation of stepping behavior in vivo  

To confirm the function of spinal circuits in vivo, behavioral paradigms in animals 

have been developed. The in vivo complement to the isolated spinal cord in vitro comes in 

the form of air-stepping. During air-stepping, animals typically are provided body-weight 

support by being held in a sling, with limbs unobstructed so they can move in the air (Fig. 

2). Using the air-stepping paradigm, the function of locomotor circuits may be examined in 

immature and SCI animals that may not have the postural control or muscle strength for 

independent walking. To evoke air-stepping, pharmacological, sensory, or electrical 

stimulation is often used. 

For example, when newborn rats are suspended in a sling, air-stepping may be 

evoked by treatment with the dopamine precursor L-DOPA [184] or the 5-HT2A receptor 

agonist quipazine [185]. Both L-DOPA-induced and quipazine-induced air-stepping 

produce alternating limb kinematic patterns consistent with walking locomotion [186; 187]. 

A mid- or low-thoracic spinal transection eliminates L-DOPA-induced hindlimb stepping 

[188], however it does not eliminate quipazine-induced stepping [120; 121; 188; 189], 

suggesting that 5-HT receptors in the spinal cord engage spinal locomotor networks. 

Pharmacological stimulation of air-stepping has led to better understanding of the 

development [120; 190; 191], mechanisms [188; 192], function [187], and sensory 

modulation [121; 185] of locomotor circuits in vivo, including for animals with SCI [119; 

189; 193; 194].  

Sensory stimulation such as tail-pinch [68] and olfactory stimulation (bedding 

material; [195]), and electrical stimulation delivered by epidural [196] or intraspinal 

methods [197], also stimulates air-stepping. Air-stepping is not a phenomenon limited to 

rodents, as it has been reported in cats [198], dogs [199], monkeys [197], and human 

infants [201] and adults [202].  

There are several advantages for using the air-stepping paradigm to examine 

locomotion. First, air-stepping occurs in a living, animal body that is equipped with a 

complex anatomy and physiology for supporting behavior. Thus compared to in vitro 

models, it is more behaviorally relevant. Second, because of this complex physiology, it 

allows examination of interactions among factors that may influence ongoing locomotor 

behavior, such as neurotransmitter receptor stimulation and movement-produced sensory 

feedback. Third, it permits investigation of locomotor activity without the need for balance 

control and body-weight support via reduction of external resistance. This is useful for 

studying developing animals that have immature postural systems and weak muscles, and 
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humans and animals that have weakened or damaged sensorimotor systems such as with 

SCI. Fourth, and related to the reduction of external resistance, it allows for study of the 

integrity of locomotor mechanisms separate from postural mechanisms. This separation 

may be useful to understand in some situations where balance and posture problems may 

interfere with phasic limb patterning.  

However, the air-stepping paradigm alone will not reveal all mechanisms involved 

with locomotion. Techniques at additional levels of analysis, and use of other paradigms 

such as the isolated spinal cord in vitro, are necessary to more precisely identify cellular 

properties, molecular signaling cascades, and genetic regulation of spinal locomotor 

networks. Further, while air-stepping resembles locomotor behavior in terms of alternating 

limb activity, it is still not actual locomotion. True locomotion involves integration among 

sensory, motor and cognitive systems and movement of the body center of mass through 

space. Thus air-stepping is a rather contrived experimental situation that is quite removed 

from the complex, dynamic interactions experienced by walking individuals. Therefore it is 

necessary to combine findings from behavioral experiments using the air-stepping 

paradigm with more reductionist, as well as more sophisticated, paradigms and 

preparations to more accurately depict the control and regulation of locomotion. This kind 

of multilevel analysis of locomotion is necessary for approaching the myriad factors that 

are necessary for addressing SCI. 

Synergistic effects of pharmacological and sensory stimulation on locomotor 

behavior in developing rats in vivo  

Recent research has focused on the development and regulation of locomotor 

behavior in the developing nervous system, using the in vivo perinatal rat as a model 

system. Understanding how such factors promote development and shaping of locomotor 

mechanisms during ontogeny has implications for facilitating recovery of function following 

SCI or developmental neuromuscular disorders, particularly as we now recognize that 

these mechanisms are activity-dependent [88].  

In rats, the neural mechanisms controlling locomotion begin developing during the 

prenatal period [120; 203; 204], with much continued development occurring during the 

early postnatal period [4; 205]. During this early time in development, the spinal cord 

exhibits remarkable plasticity. For instance, following a spinal cord transection, immature 

rats recover significantly more motor function compared to older animals, mainly due to 

increased synaptogenesis and decreased denervation and spinal shock [206-209]. Thus 
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by studying locomotor function in spinal cord transected immature rats, the function of the 

isolated spinal cord in vivo may be evaluated at the height of spinal plasticity.  

For example, in a series of studies, how newborn rats adapt their stepping behavior 

to a range of motion (ROM) restriction manipulation was examined. In these studies 

alternating air-stepping behavior was induced with the 5-HT2A receptor agonist quipazine 

(3.0 mg/kg), and ROM restriction was imposed by placing a Plexiglas plate beneath the 

limbs of the rats at a distance of 50% of limb length when the limbs were fully extended. 

Intact postnatal day 1 (P1; 24 hr after birth) and P10 rats adapted their stepping behavior 

to the ROM restriction, such that they accommodated the ROM restriction task by altering 

intralimb coordination to apparently preserve the alternating pattern of interlimb 

coordination [191]. Specifically subjects made larger hindlimb step cycle excursions 

moving their limbs more towards the front and back of the body, rather than directly 

underneath the body. When subjects were administered a low-thoracic spinal cord 

transection on P1, such that hindlimb locomotor networks were now isolated from the rest 

of the CNS, hindlimb stepping behavior on P10 was abundant and intralimb adaptations to 

the ROM restriction also were made in these spinal subjects [121]. In fact, hindlimb 

stepping in spinal subjects (~450 bilateral hindlimb steps per 5 min bin) occurred 

approximately three times as much compared to intact subjects. This may be due in part to 

an up-regulation of 5-HT receptors in the caudal spinal cord following a spinal cord 

transection [137-139]. But in spinal subjects that received ROM restriction, frequencies of 

hindlimb stepping decreased to intact levels of stepping (~150 bilateral hindlimb steps per 

5 min bin) during, but not after, ROM restriction (Fig. 3 A). Hence the cutaneous and 

proprioceptive stimulation provided by ROM restriction may have acted to specifically 

reduce stepping behavior or, alterations in intralimb coordination may have compromised 

the ability to maintain such high levels of alternating interlimb coordination in the isolated 

spinal cord. Intralimb adaptations to ROM restriction were much more drastic in spinal 

compared to sham subjects [121]. Together, these studies are suggestive of strong 

synergistic actions between pharmacological stimulation and sensory afferent feedback in 

permitting locomotor adaptations to environmental perturbations in the isolated spinal cord 

in vivo. To establish if 5-HT2A receptor up-regulation is a mechanism of hindlimb behavioral 

supersensitivity producing these effects, specifically in the area of the hindlimb locomotor 

CPG, an investigation is underway which is examining hindlimb stepping parameters and 

5-HT2A receptor density in the lumbar cord, in relation to age at spinal cord transection.  

Additionally, because it is becoming clear that sensory and pharmacological 

stimulation may often have synergistic effects on spinal function, recently the effect of 
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quipazine on sensory responsiveness in acute spinal transected rats was examined 

(unpublished data by Swann, Kauer, Allmond & Brumley). Response to tail pinch was 

recorded in newborn rats that were prepared by mid-thoracic spinal transection and 

pretreated with quipazine, and compared to controls. All subjects showed an immediate 

and robust motor response to tail pinch that consisted mainly of hindlimb steps (Fig. 3 B). 

In shams, both quipazine-treated and saline-treated subjects showed persistent effects of 

the tail pinch. However in spinal animals it was only quipazine-treated subjects that 

showed persistent effects, while saline-treated subjects did not. This study suggests that 

serotonergic stimulation in spinal subjects helps to recover sensory responsiveness to 

sham levels. However, it is important to note that quality of movement was different in 

spinal and sham subjects: spinal subjects including those treated with quipazine showed a 

higher percentage of low amplitude and smaller excursion hindlimb steps in response to 

tail pinch, whereas sham subjects showed a high percentage of high amplitude and large 

excursion steps. Thus serotonergic stimulation may help to restore excitation in the spinal 

cord, but not necessarily the amplitude and kinematics of leg movements.    

Examination of non-neural factors in the regulation of locomotor function in spinal 

injured rats also has been investigated in the immature rat model in vivo. In this study, rats 

were treated with a thoracic hemisection on P3 and injected into the lesion site with human 

placental pericytes (unpublished data by Mayo, Kauer, Brumley and Bearden). Pericytes 

are cells of the microvascular wall that have been shown to stimulate angiogenesis in vitro 

[210; 211], promote functional recovery in ischemic heart repair [212], muscle regeneration 

following injury [213], and regulate blood-brain barrier permeability [214]. On P10, spinal 

injured subjects were examined for locomotor function. Pericyte treatment significantly 

improved hindlimb locomotor function and increased neurofilament density in both male 

and female rats. Additionally, placental pericytes were found in the tissue of all subjects, 

and migrated both rostral and caudal from the site of injury. Vessel density increased only 

in males. These results indicate that vascular changes within the spinal cord play a role in 

locomotor recovery from SCI in rats, and suggest some possible sex differences in 

vascular organization, function, or timing of repair in spinal tissue (unpublished data by 

Mayo, Kauer, Brumley and Bearden). Thus pericytes may be useful as a therapeutic cell 

treatment following SCI, perhaps limiting vascular dysfunction and/or playing a role in 

supporting neuronal reconfigurations. Intriguingly, assays with endothelial cells or spinal 

cord tissue culture showed faster wound healing and greater vascular density when 

pericytes were stimulated with CoCl2 (to activate hypoxia-inducible pathways known for 

stimulating capillary growth) in vitro [211]. However when examined in spinal tissue in vivo 
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(described above), naïve pericytes, but not pericytes stimulated with CoCl2, promoted 

better recovery of locomotor function in SCI subjects (unpublished data by Mayo, Kauer, 

Brumley and Bearden). Thus results at one level of analysis may not necessarily be 

predicative of results at another level of analysis (i.e., cellular/in vitro ��������	
����
����	��

under exact conditions), though each approach can reveal important insights to inform a 

different level of analysis (i.e., increasing angiogenic activity in vitro and improving 

locomotor function in vivo; under modified conditions). 

While the spinal in vivo neonatal rat preparation is more directly relevant to SCI, the 

intact neonatal rat offers important insights into general issues of neurobehavioral 

development and plasticity as well. For example, it has been shown that locomotor 

behavior in intact newborn rats is modulated by the substrate that the animal is stepping 

on [188], ROM restriction [191], treadmill speed [215], posture [216], and testing 

environment [187]. Thus even before the onset of independent walking and maturation of 

neural pathways (e.g., corticospinal tract development, myelination), it is clear that 

locomotor mechanisms demonstrate plasticity and are responsive to the environment. This 

principle is evident in developing humans as well [88]. Understanding how the 

development of locomotion typically occurs at multiple levels of analysis and factors that 

go into the shaping of locomotor circuits is crucial for developing therapies of locomotor 

recovery for infants and children that experience motor dysfunction due to pediatric SCI, 

stroke, or congenital disorders (e.g., neural tube defects such as spina bifida). For 

example, basic research has yielded insights of clinical significance, such as early 

identification and empirically-based treatments of motor dysfunction to optimize 

neurobehavioral outcomes in children [217]. Implementation of activity-based treatments 

for infants with Down syndrome and MMC were discussed earlier in this review. To further 

our understanding of these disorders, mechanisms affected, and treatment options, 

experimental paradigms with animals such as the in vivo perinatal rat is crucial as it 

permits testing at earlier ages, cellular and systems manipulations, and evaluation of 

possible treatments.   

Conclusion/Perspective 

The spinal locomotor system is complex and, undoubtedly, still incompletely 

understood. From the seminal work of Sherrington and Graham Brown a century ago, 

which suggested the existence of this ‘black box’ for locomotion in the spinal cord, up to 

the pivotal insights since the 1980s about cellular and pharmacological properties of the 

CPG gained with the development of different in vitro isolated spinal cord preparations 
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(e.g, isolated spinal cords from lampreys, tadpoles, turtles, rats and mice both wild-type 

and genetically-engineered), significant advances have been made. As challenging as it is, 

carefully comparing data from in vitro and in vivo approaches has already begun to yield 

the development of promising combinatorial approaches that remain to be clinically tested. 

If one day, some of these CPG-activating approaches get approval by regulatory 

authorities, they may not cure SCI, but, combined with proper training, they may lead to 

significant benefits on health, as holistic approaches designed to prevent or reverse 

metabolic diseases, cardiovascular problems and other chronic illnesses associated 

generally with SCI-related physical inactivity. 
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Figure 1.�Innovative protocols of electrostimulation applied to a DR optimally trigger fictive 

locomotion patterns in the isolated spinal cord. A: The isolated spinal cord from a neonatal 

rat (one day post-natal) continuously perfused with physiological solution remains long-

lastingly viable, allowing multiple recordings and stimulations through suction glass 

electrodes connected to ventral and dorsal roots, respectively. B: A 60 s trace sampled 

from VRrL5 during a stable FL induced by NMDA (5 µM) + 5HT (10 µM) is exported 

through off line analysis to a programmable electrical stimulator, to design the protocol 

named FListim (Fictive Locomotion induced stimulation). FListim is delivered (6 µA, 0.3 

threshold, Th, defined as the minimum intensity required to induce a reflex response using 

a single square pulse) to the DRlL6 of the same isolated spinal cord, now perfused in 

physiological solution after extensive wash out from neurochemicals. In response to 

stimulation, a cumulative depolarization appears superimposed by an episode of fictive 

locomotion (FL) pattern, consisting of 15 oscillations fully alternated among the bilateral L2 

VRs (see magnification on B1). After 30 seconds, traces repolarize to baseline, while FL 

cycles fade away despite continuous stimulation. C: Delivery of a trace of Gaussian noise 

artificially created through software failed to elicit FL, which is replaced by multiple 

synchronous bursts. D: A pure sinusoid of the same main frequency and amplitude of 

FListim induces a first cumulative depolarization that eventually ceases, while FL cycles 

are replaced by synchronous discharges time-locked with peaks of the stimulating waves.  

E: An artificial noisy waveform, constructed by adding the Gaussian noise to a pure 

sinusoid, does not induce any alternating cycles but only a cumulative depolarization with 

few synchronous cycles.    
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Figure 2. Air-stepping in the neonatal rat. Photograph of a 1-day-old rat showing 

alternating stepping behavior, following treatment with the 5-HT2A receptor agonist 

quipazine. The subject was secured to a horizontal bar, injected with quipazine, and 

recorded from a camera at a lateral angle. Behavioral testing occurred inside of an infant 

incubator that is temperature- and humidity-controlled. 
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Figure 3. Alternating hindlimb stepping in neonatal rats following pharmacological and 

sensory stimulation. A: Rats were given a low thoracic spinal transection or sham surgery 

on P1, and tested for quipazine-induced hindlimb stepping on P10. Following a 5-min 

baseline, half of the subjects experienced ROM restriction (shaded region), whereby a 

Plexiglas plate was placed beneath their limbs. They were also injected with 3.0 mg/kg 

quipazine (arrow) to induce stepping behavior. Note that spinal subjects showed 

significantly more hindlimb stepping across the test session, except for ROM-restricted 

subjects during the period of restriction (they fell to sham levels). B: Rats were prepared 

by acute mid-thoracic spinal transection and tested for sensory responsiveness to a tail 

pinch on P1. Ten minutes before tail pinch, subjects were pretreated with 3.0 mg/kg 

quipazine. Tail pinch (dashed line) was administered by gently squeezing forceps around 

the base of the tail. Response to tail pinch occurred immediately and persisted for about 1-

min in sham subjects and spinal subjects pretreated with quipazine. Points show means; 

bars depict SEM. 
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