In recent years, substantial progress was made towards understanding convergence of fast-slow deterministic systems to stochastic differential equations. In contrast to more classical approaches, the assumptions on the fast flow are very mild. We survey the origins of this theory and then revisit and improve the analysis of Kelly-Melbourne [Ann. Probab. Volume 44, Number 1 (2016), 479–520], taking into account recent progress in p-variation and càdlàg rough path theory.

Multiscale Systems, Homogenization, and Rough Paths / Chevyrev, Ilya; Friz, Peter K.; Korepanov, Alexey; Melbourne, Ian; Zhang, Huilin. - 283:(2019), pp. 17-48. ( Conference in Honor of the 75th Birthday of S.R.S. Varadhan, 2016 Technische Universität Berlin, Berlin - Germany 15 - 19 August, 2016) [10.1007/978-3-030-15338-0_2].

Multiscale Systems, Homogenization, and Rough Paths

Chevyrev, Ilya;
2019-01-01

Abstract

In recent years, substantial progress was made towards understanding convergence of fast-slow deterministic systems to stochastic differential equations. In contrast to more classical approaches, the assumptions on the fast flow are very mild. We survey the origins of this theory and then revisit and improve the analysis of Kelly-Melbourne [Ann. Probab. Volume 44, Number 1 (2016), 479–520], taking into account recent progress in p-variation and càdlàg rough path theory.
2019
Probability and Analysis in Interacting Physical Systems
283
17
48
9783030153373
9783030153380
https://arxiv.org/abs/1712.01343
Springer New York LLC
Chevyrev, Ilya; Friz, Peter K.; Korepanov, Alexey; Melbourne, Ian; Zhang, Huilin
File in questo prodotto:
File Dimensione Formato  
1712.01343v2.pdf

non disponibili

Descrizione: postprint
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 444.61 kB
Formato Adobe PDF
444.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-3-030-15338-0.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/148834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact