Condensed matter systems, such as acoustics in flowing fluids, light in moving dielectrics, or quasiparticles in a moving superfluid, can be used to mimic aspects of general relativity. More precisely these systems (and others) provide experimentally accessible models of curved-space quantum field theory. As such they mimic kinematic aspects of general relativity, though typically they do not mimic the dynamics. Although these analogue models are thereby limited in their ability to duplicate all the effects of Einstein gravity they nevertheless are extremely important - they provide black hole analogues (some of which have already been seen experimentally) and lead to tests of basic principles of curved-space quantum field theory. Currently these tests are still in the realm of gedanken-experiments, but there are plausible candidate models that should lead to laboratory experiments in the not too distant future.

Analogue models of and for gravity

Liberati, Stefano
2002-01-01

Abstract

Condensed matter systems, such as acoustics in flowing fluids, light in moving dielectrics, or quasiparticles in a moving superfluid, can be used to mimic aspects of general relativity. More precisely these systems (and others) provide experimentally accessible models of curved-space quantum field theory. As such they mimic kinematic aspects of general relativity, though typically they do not mimic the dynamics. Although these analogue models are thereby limited in their ability to duplicate all the effects of Einstein gravity they nevertheless are extremely important - they provide black hole analogues (some of which have already been seen experimentally) and lead to tests of basic principles of curved-space quantum field theory. Currently these tests are still in the realm of gedanken-experiments, but there are plausible candidate models that should lead to laboratory experiments in the not too distant future.
2002
GENERAL RELATIVITY AND GRAVITATION
34
10
1719
1734
Visser, M; Barcelo, C; Liberati, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 89
social impact