In contrast to what happens for ferromagnets, the lattice structure participates in a crucial way to determine existence and type of critical behaviour in antiferromagnetic systems. It is an interesting question to investigate how the memory of the lattice survives in the field theory describing a scaling antiferromagnet. We discuss this issue for the square lattice three-state Potts model, whose scaling limit as T->0 is argued to be described exactly by the sine-Gordon field theory at a specific value of the coupling. The solution of the scaling ferromagnetic case is recalled for comparison. The field theory describing the crossover from antiferromagnetic to ferromagnetic behaviour is also introduced.

Field theory of scaling lattice models. The Potts antiferromagnet

Delfino, Gesualdo
2002-01-01

Abstract

In contrast to what happens for ferromagnets, the lattice structure participates in a crucial way to determine existence and type of critical behaviour in antiferromagnetic systems. It is an interesting question to investigate how the memory of the lattice survives in the field theory describing a scaling antiferromagnet. We discuss this issue for the square lattice three-state Potts model, whose scaling limit as T->0 is argued to be described exactly by the sine-Gordon field theory at a specific value of the coupling. The solution of the scaling ferromagnetic case is recalled for comparison. The field theory describing the crossover from antiferromagnetic to ferromagnetic behaviour is also introduced.
2002
Statistical Filed Theories
73
3
12
978-1-4020-0761-3
Kluwer Academic Publishers
Delfino, Gesualdo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact