Using the concept of Boolean derivative of a cellular automaton we study the local damage spreading and present a definition of the maximal Lyapunov exponent. We calculate this exponent for all minimal elementary one dimensional cellular automata and for totalistic cellular automata of range two and three. A random matrix approximation describes the behavior of “chaotic” cellular automata and predicts a directed percolationtype phase transition.
Maximal Lyapunov Exponent for 1D Boolean Cellular Automata / Bagnoli, F.; Rechtman, R.; Ruffo, S.. - 396:(1993), pp. 19-28. (Intervento presentato al convegno NATO Advanced Study Institute on `Cellular Automata and Cooperative Systems' tenutosi a Les Houches, France nel June 22 to July 2, 1992) [10.1007/978-94-011-1691-6_3].
Maximal Lyapunov Exponent for 1D Boolean Cellular Automata
Ruffo, S.
1993-01-01
Abstract
Using the concept of Boolean derivative of a cellular automaton we study the local damage spreading and present a definition of the maximal Lyapunov exponent. We calculate this exponent for all minimal elementary one dimensional cellular automata and for totalistic cellular automata of range two and three. A random matrix approximation describes the behavior of “chaotic” cellular automata and predicts a directed percolationtype phase transition.File | Dimensione | Formato | |
---|---|---|---|
BagnoliRechtmanRuffo-MaxLyapunovExponentsCA-Kluwer93.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
430.37 kB
Formato
Adobe PDF
|
430.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.