We find a class of solutions of the sixth Painlevé equation corresponding to almost all the monodromy data of the associated linear system; actually, all data but one point in the space of data. We describe the critical behavior close to the critical points by means of the elliptic representation, and we find the relation among the parameters at the different critical points (connection problem).
The Elliptic Representation of the Painleve’ 6 Equation / Guzzetti, Davide. - 14:(2006), pp. 83-101. (Intervento presentato al convegno Asymptotic Theories and Painlev\'e Equations tenutosi a Universite' d'Angers, France nel June 1-5, 2004).
The Elliptic Representation of the Painleve’ 6 Equation
Guzzetti, Davide
2006-01-01
Abstract
We find a class of solutions of the sixth Painlevé equation corresponding to almost all the monodromy data of the associated linear system; actually, all data but one point in the space of data. We describe the critical behavior close to the critical points by means of the elliptic representation, and we find the relation among the parameters at the different critical points (connection problem).File | Dimensione | Formato | |
---|---|---|---|
ProceedAngers.pdf
non disponibili
Licenza:
Non specificato
Dimensione
292.13 kB
Formato
Adobe PDF
|
292.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.