Some special linear elastic problems for axisymmetric orthotropic micropolar solids with central symmetry are dealt with. The first one is a hollow circular cylinder of unlimited length, subjected to internal and external uniform pressure. The second one is a hollow or solid circular cylinder of finite length, subjected to twisting moments acting on its bases. In both cases, one of the axes of elastic symmetry is parallel to the cylinder axis; the other two are arbitrarily oriented in the plane of any cross-section of the solid. The elastic properties are invariant along the cylinder axis. The two problems are governed by formally similar sets of ordinary differential equations in the kinematic fields (in-plane displacements and microrotations). In the general case, numerical solutions are derived and critically discussed. Special emphasis is put on the comparison between ‘classical’ Cauchy solution and micropolar solution.

Numerical solutions for some axisymmetric elastic micropolar orthotropic bodies / Taliercio, A.; Veber, D.; Mola, A.. - (2008), pp. 1-16. (Intervento presentato al convegno 9th International Conference on Computational Structures Technology, CST 2008; Athens; Greece tenutosi a Athens nel 2/9/2008 - 5/9/2008).

### Numerical solutions for some axisymmetric elastic micropolar orthotropic bodies

#### Abstract

Some special linear elastic problems for axisymmetric orthotropic micropolar solids with central symmetry are dealt with. The first one is a hollow circular cylinder of unlimited length, subjected to internal and external uniform pressure. The second one is a hollow or solid circular cylinder of finite length, subjected to twisting moments acting on its bases. In both cases, one of the axes of elastic symmetry is parallel to the cylinder axis; the other two are arbitrarily oriented in the plane of any cross-section of the solid. The elastic properties are invariant along the cylinder axis. The two problems are governed by formally similar sets of ordinary differential equations in the kinematic fields (in-plane displacements and microrotations). In the general case, numerical solutions are derived and critically discussed. Special emphasis is put on the comparison between ‘classical’ Cauchy solution and micropolar solution.
##### Scheda breve Scheda completa Scheda completa (DC)
2008
Proceedings of the ninth International Conference on Computational Structures Technology
1
16
978-190508823-2
Civil-Comp Press
Taliercio, A.; Veber, D.; Mola, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/20.500.11767/33401`
• ND
• 0
• ND