In this paper we give a necessary and sufficient condition for the controllability in arbitrarily small time of a finite-dimensional control-affine quantum system. The condition is expressed in terms of the Lie algebra generated by the controlled Hamiltonians of the system.

A note on time-zero controllability and density of orbits for quantum systems / Agrachev, Andrey; Boscain, Ugo Vittorio; Gauthier J. ., P.; Sigalotti, Mario. - (2018), pp. 5535-5538. ((Intervento presentato al convegno 56th IEEE Conference on Decision and Control, Melbourne, Australia, 2017 tenutosi a Melbourne, Australia nel 12-15 Dicembre 2017 [10.1109/CDC.2017.8264480].

A note on time-zero controllability and density of orbits for quantum systems

Agrachev, Andrey;Boscain, Ugo Vittorio;Sigalotti, Mario
2018

Abstract

In this paper we give a necessary and sufficient condition for the controllability in arbitrarily small time of a finite-dimensional control-affine quantum system. The condition is expressed in terms of the Lie algebra generated by the controlled Hamiltonians of the system.
Proceedings of 56th IEEE Conference on Decision and Control, Melbourne, Australia, 2017
5535
5538
978-1-5090-2873-3
Agrachev, Andrey; Boscain, Ugo Vittorio; Gauthier J. ., P.; Sigalotti, Mario
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11767/59088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact