In this paper we give a necessary and sufficient condition for the controllability in arbitrarily small time of a finite-dimensional control-affine quantum system. The condition is expressed in terms of the Lie algebra generated by the controlled Hamiltonians of the system.
A note on time-zero controllability and density of orbits for quantum systems / Agrachev, Andrey; Boscain, Ugo Vittorio; Gauthier J. ., P.; Sigalotti, Mario. - (2018), pp. 5535-5538. (Intervento presentato al convegno 56th IEEE Conference on Decision and Control, Melbourne, Australia, 2017 tenutosi a Melbourne, Australia nel 12-15 Dicembre 2017) [10.1109/CDC.2017.8264480].
A note on time-zero controllability and density of orbits for quantum systems
Agrachev, Andrey;Boscain, Ugo Vittorio;Sigalotti, Mario
2018-01-01
Abstract
In this paper we give a necessary and sufficient condition for the controllability in arbitrarily small time of a finite-dimensional control-affine quantum system. The condition is expressed in terms of the Lie algebra generated by the controlled Hamiltonians of the system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.